
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Response of Strongly Nonlinear Dissipative Metamaterials to Quasiharmonic And Pulses 
Excitation

Permalink
https://escholarship.org/uc/item/6v0638n1

Author
Wang, Si Yin

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6v0638n1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Response of Strongly Nonlinear Dissipative Metamaterials to Quasiharmonic And
Pulses Excitation

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Material Science and Engineering

by

Si Yin Wang

Committee in charge:

Vitali F. Nesterenko, Chair
Shengqiang Cai
Renkun Chen
Hyonny Kim
Vlado Lubarda

2016



Copyright

Si Yin Wang, 2016

All rights reserved.



The dissertation of Si Yin Wang is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2016

iii



DEDICATION

To my loving parents and husband.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Strongly nonlinear dimer system, linear elastic limit, unsolved

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Strongly nonlinear wave in “Sonic Vacuum” state of dimer

chain, role of dissipation . . . . . . . . . . . . . . . . . . . 5
1.3 Wave generated in “Sonic Vacuum” by impactor . . . . . . . 10
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Quasiharmonic Wave Propagation In Strongly Nonlinear Two-Mass
Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Experimental procedures . . . . . . . . . . . . . . . . . . . 21
2.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Nonlinear Case . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Strongly Nonlinear Case . . . . . . . . . . . . . . . 28

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 Attenuation of Short Strongly Nonlinear Stress Pulses in Dissipa-
tive Granular Chains . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Experimental procedures . . . . . . . . . . . . . . . . . . . 36
3.2 Numerical Calculations . . . . . . . . . . . . . . . . . . . . 38
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Pulse attenuation in the chain with mass ratio 0.98 . 41
3.3.2 Pulse attenuation in the dimer chain with mass ratio

0.55 . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



Chapter 4 Solitary Waves In “Sonic Vacuum” Generated By the Striker Impact 74
4.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . 75
4.2 Numerical Calculations . . . . . . . . . . . . . . . . . . . . 76
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . 78
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 5 Role of dissipation on the striker behavior and shape of propagating
pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Numerical Calculations . . . . . . . . . . . . . . . . . . . . 106
5.4 Behavior of strikers . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Stress pulses generated by striker impact . . . . . . . . . . . 110
5.6 Critical damping for the transition from oscillatory to monotonous

shock profiles . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6.1 Quasistationary shock wave with long duration gen-

erated by large mass striker . . . . . . . . . . . . . . 112
5.6.2 Finite duration shock wave generated by relatively

small mass striker . . . . . . . . . . . . . . . . . . . 114
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



LIST OF FIGURES

Figure 2.1: Schematic drawing of the experiment setup for two mass chains. . 22
Figure 2.2: Experimental results , the propagation of quasiharmonic nonlinear

pulse with main initial frequency of 5kHz at the entrance of the
system, static force F0 = 7.8N. . . . . . . . . . . . . . . . . . . . 23

Figure 2.3: The comparison between the numerical calculation of the 5 kHz
signal propagating through the system and the experimental results. 25

Figure 2.4: Experimental results , the propagation of quasiharmonic nonlinear
pulse with main initial frequency of 15kHz at the entrance of the
system. Nonlinear system, static force F0 = 7.8N. . . . . . . . . . 25

Figure 2.5: The comparison between the numerical calculation of the 15kHz
signal propagating through the system and the experimental results. 26

Figure 2.6: The comparison of the attenuation with the increase of frequency in
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.7: he propagation of oscillatory shock. Experimental and fast Fourier
transformation of the shock. . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.8: Experimental results. The propagation of quasiharmonic nonlinear
pulse with frequency of 3kHz in the strongly nonlinear system, static
force F0 = 0.82N. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.9: The comparison between the numerical calculations and the experi-
mental results for the initial signal with main frequency of 3 kHz. . 30

Figure 2.10: The propagation of quasiharmonic nonlinear pulse with the main
frequency of 15 kHz in the strongly nonlinear system, with static
force F0 = 0.82N. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.11: The comparison between the numerical calculation of the 15 kHz
signal propagating through the system and the experimental results. 32

Figure 2.12: The comparison of the attenuation with the increase of frequency. . 33
Figure 2.13: The propagation of strongly nonlinear oscillatory shock in the system,

static force F0 = 0.8N. . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.1: Experimental set-up. Cylinders and spheres aligned in 1-D chain
inside the holder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.2: Experimental results. Single pulse propagating through a chain with
the mass ratio of 0.98. . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.3: Comparison of experimental results and numerical calculations of
the pulse propagating through the system which has a mass ratio of
0.98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.4: Experimental results and numerical calculations of the pulse propa-
gating through the system with mass ratio of 0.98. . . . . . . . . . 47

vii



Figure 3.5: Relative amplitude of signal at i-th cylinders with respect to the
amplitude of the reference pulse detected by the sensor in the 4th
cylinder in the chain with mass ratio 0.98, experimental data and
numerical results with different damping coefficients. . . . . . . . 48

Figure 3.6: Attenuation in experiments (blue) and in numerical calculations with
damping coefficient 6 kg/s (red) comparing with exponential decay. 49

Figure 3.7: The formation of two wave structure (solitary wave followed by
shock wave) in one mass chain impacted by sphere with velocity
1.45 m/s, damping coefficient 6 kg/s. . . . . . . . . . . . . . . . . 50

Figure 3.8: Dependence of the force in the 21st cylinder normalized with re-
spect to the force at the entrance (at 4th cylinder) on mass ratio in
nondissipative and dissipative chains with fixed contacts. . . . . . 51

Figure 3.9: Experimental results. Stress pulses propagating through a chain with
the mass ratio 0.55, mass of cyliders is larger than mass of spheres. 52

Figure 3.10: Comparison of the experimental results and numerical calculations
(without dissipation) of the pulse propagating through the dimer
system with mass ratio 0.55, mass of cylinders is larger than mass of
spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.11: Results of experiments and numerical calculations of the pulse prop-
agating through the dimer system, mass of cylinders is larger than
mass of spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.12: The comparison of the experimental results and data from the nu-
merical calculations with different values of damping coefficient in
the dimer chain with mass ratio 0.55. . . . . . . . . . . . . . . . . 57

Figure 3.13: Attenuation of relative amplitude in experiments (blue) and in nu-
merical calculations with damping coefficient 6 kg/s (red) comparing
with exponential decay. . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.14: Comparison of the forces inside 21st cylinder and out of phase
displacements of neighboring spheres in numerical calculations. . . 59

Figure 3.15: The attenuation of the relative pulse amplitude and change of decay
efficiency in two systems with increased damping coefficient at
the same contact number in the chains at corresponding values of
damping coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.16: The change of particle velocities profiles in both sytems with increase
of damping coefficient. . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.17: Relative amplitude after propagation through the chain with the same
mass at different values of damping coefficient in experiments and
in numerical calculations. . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.18: The attenuation of the relative pulse amplitude with respect to the
amplitude of the reference pulse in the 4th cylinder, and change of
decay efficiency in two systems with increased damping coefficient. 67

viii



Figure 3.19: Relative amplitude (with respect to pulse at the 4th cylinder) after
propagation through the chain with the same mass at different values
of damping coefficient in in numerical calculations with different
damping coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.1: Experimental set-up. Cylinders and spheres aligned in 1-D chain
inside the holder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.2: Comparison of experimental results and numerical calculations of
the pulse propagating through the system. . . . . . . . . . . . . . 79

Figure 4.3: Numerical calculations of the compression pulse propagating through
the system which has a mass ratio of 0.98 and experimental results. 80

Figure 4.4: Ratio of maximum particle velocity to striker initial velocity de-
pending on the ratio ratio of striker mass to mass of spheres in the
chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.5: Velocity of rebounded striker and particles as function of their initial
position in the chain. . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.6: Velocities of the striker and particles in the chain before and right
after striker’s recoil . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.7: The history of striker velocities with different masses 0.1m−1.7m. 93
Figure 4.8: Comparison of numerical and analytical results for the ratio Pn/P0

of the first ten solitary wave created by different striker masses. . . 100

Figure 5.1: Experimental set-up. Cylinders and spheres aligned in 1-D chain
inside the holder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.2: The recoil of striker with small mass (mst = 0.43 g) impacting steel
sphere at the chain top with velocity υst = 1.457 m/s. With damping
coefficient 0 kg/s and 6 kg/s. . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.3: The dependence of the striker velocity on time, striker mass 39.13
g, at different time scales. The chain is nondissipative (µ = 0 kg/s).
Gravitation is not included. . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.4: The dependence of the striker velocity on time, striker mass 39.13 g,
at different time scales.The chain is dissipative with µ = 0 kg/s. . . 109

Figure 5.5: Results of experiments and numerical calculations of the pulse ex-
cited by the impact of rod with mass of 39.136 g with their frequency
spectrums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 5.6: Comparison of shock profiles excited by striker with mass 4 kg
in numerical calculations in the one mass spheres/cylinders chain
without gravitational load and different damping coefficients. . . . . 113

Figure 5.7: Numerical calculations of the pulse propagating through the noncom-
pressed system excited by a striker with mass 39.136 g at different
values of damping coefficients. . . . . . . . . . . . . . . . . . . . . 115

ix



LIST OF TABLES

Table 4.1: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach. Striker mass mst = 0.1m. . . 88

Table 4.2: Linear momenta (kg m/s) of the recoiled striker in numerical calcula-
tions and in analytical approach. Striker mass mst = 0.1m. . . . . . . 88

Table 4.3: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach. Striker mass mst = 0.5m. . . 92

Table 4.4: Linear momenta (kg m/s) of the recoiled striker in numerical calcula-
tions and in analytical approach.Striker mass mst = 0.5m. . . . . . . 92

Table 4.5: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach.(mst = 5g≈ 2m) . . . . . . . 95

Table 4.6: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach.(mst = 10g≈ 5m) . . . . . . 96

Table 4.7: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach. Striker mst = 39.136g≈ 19m. 97

Table 4.8: Linear momenta (kg m/s) of the single solitary wave in numerical
calculations and in analytical approach. Striker mst = 100g≈ 50m. . 98

x



ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisor Professor

Vitali Nesterenko, he been a tremendous mentor for me. I would like to thank him for

encouraging my research and for guidance throughout my doctoral years of study and

research. His advice on research have been priceless. I would especially like to thank

Professor Vlado Lubarda, Professor Ann Conn and Professor Hidenori Murakami for

selecting me as their teaching assistant during the past few years and being financially

supportive so I can get through and finish my PhD studies. I would also like to give

thanks to Tom Chalfant, Nick Busan, for providing me help with using the machineries

to prepare my samples for experiments and always keen to help me out when I needed.

Without them I could not possibly finish my researches.

During my years at the material science and engineering graduate program, where

most of my work was accomplished, there are many people I have worked with and/or

got assistance. I would like especially mention Eric Herbold, Chiu Po, and Yichao Xu.

I would like to thank them all and wish them the best luck in their career and future.

Assistance and support from these colleagues also very important in my work, and I feel

fortunate to have them facilitating all my achievements.

A special thanks to my family. I am so grateful to my parents for all of the

sacrifices that they’ve made on my behalf. Their supportive attitude has been my solid

foundation to sustain me thus far. I would also like to thank all of my friends who

supported me in writing, and incented me to strive towards my goal. At the end I would

like express appreciation to my beloved husband Han who spent sleepless nights helping

me with my research. He was always available to support me in the moments when there

was no one to answer my queries.

The text of Chapter II is, in part, based on the material in the following publica-

tions: S. Y. Wang, E. B. Herbold, and V. F. Nesterenko, in “Wave Propagation In Strongly

xi



Non- linear Two-Mass Chains”, in IUTAM Proceedings on granular materials, J.D.

Goddard, J.T. Jenkins, P. Giovine (eds.), AIP Conference Proceedings, IUTAM-ISIMM

Symposium on Mathematical Modeling and Physical Instances of Granular Flow, Reggio

Calabria, September 14-18, 2009. American Institute of Physics, vol. 1227, Melville,

New York, pp. 425-434, (2010). The dissertation author was a primary researcher and an

author of the cited material.

I also would like to thank NSF (Grant No. DCMS03013220) for my funding

during the initial period of my research.

xii



VITA

2008 B. E. in Material Science Engineering, B. Com. in Finance, Uni-
versity of Auckland, New Zealand

2010-2016 Graduate Teaching Assistant, University of California, San Diego

2016 Ph. D. in Material Science and Engineering, University of Califor-
nia, San Diego, USA

PUBLICATIONS

I.F Collins, Qu Bai, and S. Y. Wang, “Modeling the Granular Nature of Soils”, Inter.
Confer. IACMAG Oct, 2008.

P. Chiu, S.Y. Wang, E. Vitali, E. B. Herbold, D. J. Benson, and V. F. Nesterenko, “Particle
Size Effect in Granular Composite Aluminum/Tungsten”, AIP Conference Proceedings
1195, American Institute of Physics, Melville, New York, part 2, pp.1345-1348, (2009).

E. B. Herbold, J. Kim, V. F. Nesterenko, S. Y. Wang, and C.Daraio, “Pulse Propagation
in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency
Band-gap”, Acta. Mech. 205, 85, 2009.

Si Yin Wang, Eric B. Herbold, Vitali F. Nesterenko, “Wave Propagation In Strongly Non-
linear Two-Mass Chains”, in IUTAM Proceedings on granular materials, J.D. Goddard,
J.T. Jenkins, P. Giovine (eds.), AIP Conference Proceedings, IUTAM-ISIMM Symposium
on Mathematical Modeling and Physical Instances of Granular Flow, Reggio Calabria,
September 14-18, 2009. American Institute of Physics, vol. 1227, Melville, New York,
pp. 425-434, (2010)

S. Y. Wang, and V. F. Nesterenko, “Attenuation of short strongly nonlinear stress pulses
in dissipative granular chains”, Physical Review E, 91, 062211 2015.

S. Y. Wang, and V. F. Nesterenko, “Solitary waves in sonic vacuum generated by the
striker impact”, Physical Review E, (paper in preparation)

S. Y. Wang, and V. F. Nesterenko, “Role of dissipation on the striker behavior and shape
of propagating pulses”, Physical Review E, (paper in preparation)

xiii



ABSTRACT OF THE DISSERTATION

Response of Strongly Nonlinear Dissipative Metamaterials to Quasiharmonic And
Pulses Excitation

by

Si Yin Wang

Doctor of Philosophy in Material Science and Engineering

University of California, San Diego, 2016

Vitali F. Nesterenko, Chair

Strongly nonlinear waves were investigated experimentally, numerically and ana-

lytically in two-mass and one mass systems. Experimental setups consist of one dimen-

sional assembly of elastic stainless steel spheres or cylinders with different masses layered

alternatively. When such assembly is not compressed, the sound speed is zero therefore

creating a new state called “sonic vacuum”. Such systems does not supports sound waves

but strongly nonlinear solitary waves can propagate in it. Band-gap phenomenon was

observed and discussed for strongly nonlinear and nonlinear quasi-harmonic excitations

in two-mass systems.
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Formation and transformation of short, strongly nonlinear stress pulses were

investigated in granular systems with different mass ratios, but with the same contact.

Dissipation in the system with mass ratio close to 1 was faster than in the system with

mass ratio 0.55. This is contrary to the expected behavior of corresponding non dissipative

systems.

Striker impact generates a single solitary wave or a train of solitary waves depend-

ing on the mass ratio between the striker and the particle mass inside the chain. Imaginary

scenarios of striker interacting with a single mass, that’s called “effective mass”, will be

discussed to model the striker interaction with a collective of particles. This approach is

based on two conservation laws. It satisfactorily predicts the upper estimate for the linear

momenta, energies and amplitudes in the train of solitary wave in far field depending on

the relative mass of the striker and particles in the chain.
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Chapter 1

Introduction

1



2

1.1 Strongly nonlinear dimer system, linear elastic limit,

unsolved problems

The research in strongly nonlinear wave dynamics of discrete systems, particularly

of one-dimensional granular chains has become a growing area of interest [1-4]. The

study of low dimensional granular chains is a logical step forward in wave dynamics

with possible “translation” of results to totally different areas, particularly for design

of new metamaterials with tunable properties. Discrete granular chains with a strongly

nonlinear interaction law (i.e. the linear part is absent or small in comparison with the

nonlinear interaction law) are more general systems than traditional linear and weakly

nonlinear systems. Strong nonlinearity results in highly tunable systems where relatively

small external forces can dramatically change their behavior. It was demonstrated

experimentally, numerically and analytically that strongly nonlinear granular chains

support a new type of waves -strongly nonlinear solitary waves - Nesterenko wave [5]

with qualitatively different properties than well-known solitary waves of the Kortweg-de

Vries equation [1,2].

A relatively new area is the investigation of nonlinear and strongly nonlinear

waves in two mass granular chains [6,7]. These systems represent a unique opportunity

to create tunable band gap materials where the band gap frequencies may be adjusted

by external forces [6]. Most of the previous research of wave propagation in two mass

chains was related to linear and weakly nonlinear discrete systems [8-15]. Chapter 2

investigates the propagation of quasiharmonic signals and the influence of band-gaps in

nonlinear and strongly nonlinear diatomic periodic chains composed of stainless steel

cylinders and stainless steel spheres.

A band gap is a well-known phenomenon for systems with linear interaction

law between particles [16]. In the one dimensional elastic granular chain, the force
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between the contact particles interacting by Hertz law [17] is represented by the following

equation:

F = A(δ0 +δd)
3/2. (1.1)

The constant A depends on the material properties and the geometry of the contact

area [17]:

A =
4ECES(1/RS +1/RC)

−1/2

[ES(1−ν2
C)]+EC(1−ν2

S)]
, (1.2)

where in this case, EC = ES = 193GPa and νC = νS = 0.3 are the elastic modulus and

Poisson’s ratio for the stainless steel cylinder and stainless steel sphere. The radii of

contact particles are RS = 1 mm and RC = 5 mm with 1/RC = 0 because the cylinder has

a planar contact surface.

The application of the Hertz law for dynamic contact behavior is valid for the

following conditions: (1) The maximum shear stress close to the contact is smaller than

the elastic limit; (2) the contact surface has a much smaller radius than the radius of the

contacting particles; and (3) the characteristic time of the problem is much larger than the

oscillation period of the basic harmonics for the elastic sphere particle. These conditions

constraint the velocity of the particles.

The strongly nonlinear contact force can be linearized by assuming that the

dynamic relative displacement in the wave between neighboring particles is much smaller

than their initial displacement caused by static compressive force (δ0� δd):

F ≈ Aδ
3/2
0 +

3
2

Aδ
1/2
0 δd. (1.3)

The two force components are the static force F0 = Aδ
3/2
0 and dynamic force
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Fd = 3
2Aδ

1/2
0 δd = βδd , where

β =
3
2

Aδ
1/2
0 =

3
2

A2/3F1/3
0 . (1.4)

The upper and lower bound of the band gap for this system can be calculated

following the classical approach presented, for example, in [15]:

f1 =
1

2π

(
2β

M

)1/2

, f2 =
1

2π

(
2β

m

)1/2

. (1.5)

where M is the mass of the stainless steel cylinder and m is the mass of the stainless

steel sphere. This band-gap can be tuned by changing the value of β, which depends on

elastic properties and geometry of the contacting particles. In our experiments a static

load equal 7.8 N results in cutoff frequencies of f1 = 9.2kHz and f2 = 88.4kHz and for a

static load 0.8 N the cutoff frequencies are f1 = 6.3kHz and f2 = 60.6kHz.

Numerical calculations in the paper [5] are related to propagation of harmonic

signals which are difficult to realize in experiments. Also system composed from PTFE

balls and steel cylinders demonstrated a large attenuation masking band gap effects [6].

The response of nonlinear and especially strongly nonlinear discrete diatomic system

to periodic boundary excitations was investigated in Chapter 2. Chapter 2 attempted

to address the following questions. Whether the granular diatomic chains can support

strongly nonlinear periodic waves in experiments? Can we develop a mechanical system

with a band gap in the audible range of frequencies based on granular chains with a

low level of dissipation where the major influence on signal propagation is caused by

dispersive properties? Is the band gap introduced for a linear elastic interaction relevant

to the transmission of nonlinear and strongly nonlinear quasiharmonic waves? What is

the length of a discrete chain where some harmonics can be suppressed by the chain

structure due to the band gap influence? Can we transform oscillatory shock waves on
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short distances from the entrance? These questions are related to a basic science and

also are important for practical applications where tuning of strong amplitude signals is

desirable.

1.2 Strongly nonlinear wave in “Sonic Vacuum” state of

dimer chain, role of dissipation

Granular chain with strongly nonlinear interaction between elastic spherical parti-

cles [17] of the same mass presents an example of the discrete systems with qualitatively

new wave dynamics different than behavior of chains with elastically linear or weakly

nonlinear interactions between elements [1-4,18-24]. One dimensional granular chains

not precompressed by a static force represent an example of “sonic vacuum” [3]. This

name emphasizes that sound speed in its classical sense is zero. “Sonic vacuum” or

weakly precompressed granular chains (dynamic strains being much larger than initial

strains) supports strongly nonlinear waves which are qualitatively different than weakly

nonlinear solitary waves [1-4,18-24]. For example, strongly nonlinear solitary wave

named Nesterenko solitary wave [5] has a width which does not depend on its amplitude,

unlike width of weakly nonlinear solitary wave. The number of particles in this solitary

wave depends on the details of interaction force, for example on the exponent in power

law for interaction force [3]. Width of solitary wave, composed mostly from five particles

in chains of spherical beads, comes from force exponent 3/2 in Hertzian interaction

force. Ratio of solitary wave speed in sonic vacuum to initial sound speed is infinity,

while for weakly nonlinear solitary wave this ratio is close to one. Strongly nonlinear

solitary wave can be considered as “quasiparticle” with effective mass ∼ 1.4 mass of the

elements in Hertzian chain. A strongly nonlinear Nesterenko solitary wave converged

into weakly nonlinear KdV solitary wace when strain amplitude is close to the initial
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value, the opposite transition is not valid [3].

The behavior of these waves was investigated by different groups of researchers

numerically, for example [2, 4,19], and experimentally using gauges embedded in the

particles made from different materials [2, 3,18,20-23]. High speed photography allowing

to measure particles displacements with a micrometer-scale resolution was used in [24].

Theoretical studies include exact analytical solution of strongly nonlinear wave equation

[1, 3], stability of periodic solution in “sonic vacuum” [3, 25], proofs of existence

of solitary wave in discreet systems [26, 27] and single pulse character with double

exponential decay in [28-31].

Two mass, strongly nonlinear chains (dimer systems consisting of alternatively

arranged particles with two different masses) demonstrate a new very interesting behavior

which was first presented in [3] for relatively short chain composed from 40 particles. In

the long wave approximation the system supports solitary waves with a characteristic

space scale L≈ 10a, being twice that in the case of particles with the same masses, when

the mass of one particle (m1) is much larger than the mass of another (m2) (k = m1/m2�

1), and both have the same diameter a.

Behavior of two mass chains with different mass ratios (2, 4, 16, 24, 64) have

been studied numerically keeping the chain’s macroproperties (linear density and elastic

properties) the same, and equal to the properties of the chain with equal mass m. It was

ensured by redistribution of masses between neighboring particles under the condition

2m = m1 +m2 and choosing the same distances between particle centers and interaction

constants for both types of chains. The force acting on the contact of the chain with a

supporting wall was used for the comparison of pulse attenuation in different systems [3].

Numerical simulations demonstrated that initial disturbance (created by impact

of particle with mass equal to 2.5 mass of the cell (5m)) in the chain with large mass

ratio (64) was quickly transformed into three solitary-like waves, unlike in the chain with
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equal mass particles where six clearly detectable solitons were created. This behavior

is in agreement with the discussed analytical prediction for k� 1. The phase speeds

of leading pulses in both systems are practically identical. The time history of the light

particle was similar to the velocity profile for the neighboring heavy particle only with

amplitudes much smaller than amplitude of the leading pulse for the former particle.

Additionally the motion of light particles exhibits a qualitatively new feature: high-

frequency small-amplitude modulation of the velocity profile, more pronounced with the

decrease of wave amplitude.

A new type of behavior was observed for a chain with smaller mass ratio despite

keeping the same global properties of the system and impact by the same striker with

the same velocity. When the mass ratio for the particles in the chain become equal to 2

or 4, there are no solitary waves formed based on the observation of the velocity history

of light and heavy particles and force acting on the supporting wall. In this case the

light and heavy particles behave significantly differently (see Fig. 1.18(b) and (c) in

[3]). The velocity of the light particles in leading pulse has two maximums following

by oscillatory tail with amplitude about two times smaller than amplitude of the leading

pulse, even negative velocities were present in this oscillatory tail. These stress waves

with complex shape mostly preserve their shape and amplitudes as they propagate along

the investigated chain with 80 particles. Therefore, on this space scale they may be

characterized as quasitationary waves.

The velocity of the heavy particles in leading pulse is represented by an asymmet-

ric single peak followed by another peak with a wider duration and smaller amplitude.

These two peaks mostly preserve their shape and amplitudes as they propagate with

different speeds along the investigated chain with 80 particles, with an increase of space

between them. These results were later confirmed in experiments [3].

It is important that at the same macroproperties and at the same striker impact,
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the systems with different mass ratios demonstrate better mitigation properties (charged

by force acting on the supported wall) in comparison with the system with equal masses

of particle. The difference is more than twice at optimal mass ratio demonstrating the

possibility of optimization of the granular chains as nondissipative impact protectors

keeping their global properties the same [3].

Very important new type of behavior of stress pulses in strongly nonlinear dimer

chains excited by δ-force applied to the first particle (global properties of these chains

were not kept constant) was observed numerically in [5]. At certain discrete mass ratios

of light to heavy spherical particles (εn = 0.3428,0.1548,0.0901 and also at other smaller

values of εn) a true solitary wave was observed in numerical calculations. This solitary

wave propagated without any detectable attenuation over long distances in system with a

total number of 251 beads. Its behavior is explained by the antiresonances in the dimer

chain satisfied only for certain values of εn. These specific quantum values of mass ratios

ensure unique behavior of particles in the wave - the synchronization of the motion of

light and heavy beads, providing transferring of the entire energy of the pulse through

the chain. The conditions of propagating of unattenuated compression pulse were also

formulated using the asymptotic analysis based on slow-fast time scale separation of the

system dynamics in a reasonable agreement with numerical simulation of discrete system

[5].

At general values of ε in nondissipative chains localized soliton-like propagating

stress pulses were also observed, but their amplitude slowly decayed with distance

and they were accompanied by oscillating tails. At values of ε different from specific

quantum values εn the light bead loses contact with its left heavy neighbor at the end of

the compression pulse, generating oscillations. They left behind the main compression

pulse taking away its energy and resulting in its decay. In numerical calculations the

maximum attenuation of compression stress pulse was observed at value ε = 0.59 [5].
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The maximum attenuation was confirmed in recent experiments with a chain of

21 spheres suspended on the rods to minimize the dissipation effects [32]. Three chains

were investigated with values of ε = 1 (homogeneous chain), and two dimer chains with

ε = 0.5, and 0.125. The homogeneous chain and dimer chain (ε = 0.125) supported

solitary wave. The dimer chain with ε = 0.5 demonstrated stronger attenuated behavior

of the main pulse followed by oscillating tail. Three different levels of impacting forces

were used to excite single pulses at the impacted end of the chain. The experimental

results agree with numerical calculations (using damping coefficient in the range 32-35.4

Ns/m) demonstrating an expected deep minimum in transmitted force nearby ε = 0.5,

characteristic for nondissipative chain.

Dissipation is present in all experiments with granular chains. This dissipation

can be due to viscoelastoplastic deformation of contacts [33, 34], which in general has

nonlinear dependence on strains [35-37]. Another strongly nonlinear discrete metamate-

rial composed from steel cylinders and rubber o-rings (with better tunability than system

with Hertzian contacts [38-41]), demonstrated nonlinear dependence on strains and strain

rates being sensitive to loading path [42, 43].

Simpler models were also used to account for the dissipative properties of contact

interaction using approach based on coefficients of restitution [44], viscous friction [45]

or using standard viscous dissipation model depending only on strain rate [32, 46, 47].

These approaches allowed analysis of the unique role of dissipation on the pulse nature.

For example, at certain dissipation level excitation by δ-force resulted in two wave

structure [46, 47]. This dissipation model allowed to establish analytical conditions for

the transition from oscillatory to monotonous shock wave profiles [48, 49]. In this case

the damping coefficient is a new effective parameter which may account for the complex

nature of the dissipative processes during contact interaction. Of course its validity needs

to be checked experimentally and may depend on conditions of experiments and material
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properties.

In Chapter 3 we conducted experiments and numerical calculations to check if

two mass chains with mass ratio (0.55), being close to optimal mass ratio for attenuation

in nondissipative chain, is still the preferable attenuating system also in the presence of

dissipation. To keep mechanism of dissipation identical for both systems we used steel

cylinders in contact with spheres. The mass ratio was changed only by the changing

the height of cylinders keeping spheres the same thus preserving the type of contact

interaction between neighboring particles unlike in case where diameters of spheres were

changed [31, 32]. This allowed to clarify the role of nonlinear dispersion caused by

periodic arrangement of particles on pulse attenuation. The comparison of the attenuating

properties of these two systems were made at the same number of particles from impacted

end and also at the same mass of the system above particles where impulse was detected.

In the investigated range of pulse amplitudes, the linear viscous model with

damping coefficient 6 kg/s satisfactorily described not only the attenuation of pulse

amplitudes, but also the transformation of their shapes in both systems. The value of

damping coefficient was significantly smaller than 32-35 kg/s in [32] probably due to

the different nature of contacts. Two mass chain with mass ratio 0.55 demonstrated

better performance in experiments and in numerical calculations only when the damping

coefficient was below critical value. In numerical calculations with damping coefficient

above this value, the one mass chain outperfoms the two mass system in attenuating pulse

amplitudes.

1.3 Wave generated in “Sonic Vacuum” by impactor

Chains of elastic particles (e.g., steel beads) interacting by Hertz law exhibit

nonclassical strongly nonlinear wave propagation behavior supporting new type of
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solitary waves, shock waves and periodic waves [1-3, 50]. In case of zero precompression

these chains can be characterized as “sonic vacuum”. This term was coined in [51, 52]

emphasizing that classical sound waves can’t propagate and the basic excitations are

solitary waves and not phonons.

Important feature of this system is fast transformation of incoming pulse excited

by striker (or external dynamic force) into the train of solitary waves in weakly dissipative

chains. This behavior is due to the strong nonlinearity of Hertzian contact interaction

and dispersive behavior caused by the chain periodicity. Impact of striker results in the

fast generation of solitary waves with their numbers (n) depending on the ratio of striker

mass and mass of particles in the chain (if striker mass is larger than mass of particles)

observed in numerical calculations and in experiments [1-3, 18, 22, 50, 53]. If mass of

striker is equal or less than a mass of particles then a single solitary wave is generated

[1-3, 19-23, 28, 53].

The train of solitary waves can be generated also by the time dependent force

applied to the end of the chain. For example, triangular pulse with duration 10−4s applied

to the chain of steel particles with radius 3 mm resulted in 7 solitary waves and reduction

of pulse duration to 10−5 s resulted in a single solitary wave [1] as well as application

of delta function pulse to the end of the chain [54]. Influence of loading pulse duration

on dynamic load transfer in a simulated granular medium was investigated in [18] for

short (90 microseconds), intermediate (200 microseconds) and long (650 microseconds)

input time dynamic load. Single solitary wave was generated in the first case, train of

a few solitary waves was developed at 60th disk from the entrance while in third case

initial smooth pulse was transformed into oscillating profile. The scaling of the number

of solitary waves with ratio of the duration of incoming pulse and duration of solitary

wave corresponding to the characteristic velocity at the boundary (e.g., striker velocity

or velocity caused by external force) was introduced in [3] (see Eq. 1.79 in [3]). It was
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suggested that single solitary wave is generated when characteristic time of the collision

of striker is shorter or equal the duration of the transmitted solitary wave [22]. Universal

relation for the solitary waves generated by the external force with finite rise and decay

times was introduced in [55].

Single solitary wave or train of solitary waves can be generated by the incident

solitary wave at the interface of two granular chains depending on the mass ratio of

particles in these chains [50, 56-58].

Incident solitary wave approaching the interface from the “light” particles (PTFE

beads) results in transmitted and reflected solitary waves which parameters can be found

based on linear momentum and energy conservation laws considering a solitary wave as

quasiparticles [3, 50]. Consideration of solitary wave in “sonic vacuum” as quasiparticle

with effective mass is possible because the linear momentum and kinetic energy are a

linear and quadratic functions of maximum particle velocity, and ratio of its kinetic and

potential energies is a constant. It allows to write down the total energy (kinetic plus

potential) of particles in a solitary wave as effective kinetic energy of quasiparticle with

effective mass and linear momentum of all particles [50]. The effective mass of solitary

wave in Hertzian chain is about 1.4m, where m is mass of particles [23,53]. It should be

mentioned that this effective mass depends on the interaction law between particles in

the chain [3].

Very different behavior is observed when incident solitary wave approached

the interface from the “heavy” particles chain (stainless steel beads). In this case the

interfacial stainless steel particle quickly absorbed the main part of the energy of the

incident wave. It acts as a striker on later stages generating oscillating wave profile and

transmitting the linear momentum and energy into the chain with the “light” particles

(PTFE beads). This wave is transformed later into train of solitary waves. This process

can be characterized as practically the unidirectional energy transfer from the incident
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pulse propagating in “heavy” stainless steel chain to the “light” PTFE chain without

sending any tensile wave back to the former chain due to the zero tensile strength of the

system [57]. Parameters of generated multiple solitary waves (n≥ 3) can’t be predicted

based only on two conservation laws.

When train of solitary waves was excited by striker the maximum forces in the

specific solitary wave in the train were approximated by exponential function depending

on the solitary wave number (the first, second etc.,) with coefficient α being some function

of the mass ratio of striker and particles in chain [53]. The authors were unable to find a

specific function and to establish that exponential decrease of amplitude of solitary wave

with its number [53].

Job et al [22] demonstrated that force amplitudes of the solitary wave in the train

excited by striker decrease exponentially with solitary wave number. They demonstrated

that the interaction between the striker and the chain is better characterized as collision

with effective mass equal to effective mass of solitary wave and presented the equation for

the relation between linear momentum of the striker and linear momentum of the leading

solitary wave in the chain. Considering that linear momentum and energy of solitary

waves in the chain are equal to the linear momentum and energy of striker authors found

the dependence of coefficient α on mass ratio of striker and particles.

There is no direct way to find the parameters of separated solitary waves in the

train far away from the interface of two sonic vacuum generated by interfacial particles or

striker. Tichler etal [58] applied conservation of energy and linear momentum assuming

the imaginary “collision” process between the end bead in the heavy chain (acting as

a striker) and “in rest” solitary wave in the light chain treated as a quasiparticle with

corresponding effective mass. This approach supplements two conservation laws by the

imaginary process of linear momentum and energy transfer from the heavy interfacial

particle to the train of solitary waves in the “light” chain far away from the interface. It
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ignores the transient oscillatory wave in the “light” chain at the vicinity of the interface.

But it allows calculation the linear momentum and energy of solitary waves in the train

depending on the solitary wave number and mass ratio of heavy particle and effective

mass of solitary wave in the chain of light particles in a satisfactory agreement with

results of numerical calculations. It should be emphasized that proposed imaginary

process to calculate properties of solitary waves far away from the interface is not unique

and other approaches may be also possible.

In Chapter 4 we extended the analytical approach to calculate the parameters

of solitary wave train generated at the interface of two sonic vacua (granular chains)

proposed in [58] to the case of striker impact with different masses. It should be

mentioned that though the “heavy” interfacial particle acted as a striker it also was

supported by the rest of the “heavy” chain. It is not clear that approach proposed in [58]

would be also applicable to find the parameters of solitary waves in the train generated by

striker. In numerical calculations we found the scaling between the linear momentum of

solitary wave and its maximum particle velocity. Using this scaling we demonstrated that

approach similar to [58] allows to find parameters of solitary waves excited by striker

with different masses in nondissipative chains with reasonable accuracy. The transition

from generation of single solitary wave to the train of solitary waves is better described

by ratio of striker mass and effective mass of solitary wave, and not by ratio of striker

mass to particle mass.

We also addressed in more details the behavior of striker impacting “sonic vac-

uum”. It was found that the transition between different striker’s behavior: rebound of

the striker from sonic vacuum or gradual decrease of its velocity with time to the value

close to zero, is happening with its mass close to 1.4m, where m is the mass of particles

in the Hertzian chain. This value is close to the effective mass of solitary wave. Thus

transition from complete transfer of striker energy into the chain to its recoil is better
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modeled by ratio of striker mass and effective mass of solitary wave, and not by ratio of

striker mass to particle mass. It reflects the striker intreraction with collective of particles

near impacted end.
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Chapter 2

Quasiharmonic Wave Propagation In

Strongly Nonlinear Two-Mass Chains

Experimental set up was developed to allow the generation of quasi-harmonic

signals at the end of nonlinear and strongly nonlinear two-mass granular chains composed

of steel cylinders and steel spheres. This chapter presents the first experimental data

related to the propagation of quasi-harmonic signals in nonlinear and strongly nonlinear

chains. The signals were detected using gauges imbedded inside particles at the entrance

of the system and at depths equal to 4 cells and 8 cells. At this relatively short distances

we were able to detect practically perfect transparency at low frequencies and cut off

effects at band gap frequencies for nonlinear and strongly nonlinear signals. It was

also observed that oscillatory shocks were transformed into monotonous shocks at these

short propagating distances. Systems which are able to transform nonlinear and strongly

nonlinear signals at small sizes of the system are important for practical applications such

as attenuation of high amplitude pulses. Numerical calculations of signal transformation

by non-dissipative granular chains were also performed which demonstrated transparency

of the system at low frequencies and cut off phenomenon at high frequencies in reasonable

20
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agreement with experiments.

2.1 Experimental procedures

The one-dimensional granular chains are assembled using a PTFE cylinder with

an inner diameter of 10 mm. The stainless steel cylinders and stainless steel spheres

were arranged in alternative order with each other (Fig. 2.1a). This chain consisted of

one magnetic particle, 55 stainless steel cylinders with height 5mm, diameter 10 mm

and mass 3.21g and 57 stainless steel spheres with diameter 2 mm and mass 0.35g. An

additional magnetic particle was placed on the top of the chain to induce a compression

force due to a magnetic interaction with the outside magnet. The static force applied was

tunable by changing the weight of the magnet. We use magnets with different weights

(80g and 800g) on the top of the chain. A magnet with a relatively small weight was used

for creating conditions for a strongly nonlinear system (dynamic force being similar to

static force) and magnet with a larger weight was used for nonlinear systems (dynamic

force significantly smaller than static force).

Three calibrated piezoelectric sensors (RC ∼ 103µs) were embedded in three

stainless steel cylinders and were connected to an oscilloscope Tektronix TDS 2014 to

detect the force-time curve. The piezoelectric sensors were placed in the 1st, 5th and 9th

cell, so there were 4 cells between them.

A B&K vibration generator with a stainless steel rod having length of 20 cm and

diameter of 5 mm attached to it was used to the generate a quasiharmonic excitation at

the entrance of the diatomic chain. Agilent 33220A 20MHz function/arbitrary waveform

generator was used in our experiments.

The contact force between the rod and last particle represented boundary condi-

tions for our system which were controlled by the first gauge close to the corresponding
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Figure 2.1: Schematic drawing of the experiment setup for two mass chains. (a) The
general experimental setting. (b) The pictures of sensor assembly.

end of a system. The generator created an incoming signal with different frequencies and

amplitudes that can tune the amplitude of vibrations of the rod and parameters of waves

in the chains. A soft spring supported the vibrator to control the additional static force

which may come from the weight of vibrator.

2.2 Results and Discussions

2.2.1 Nonlinear Case

To create a nonlinear system we used a relatively large (in comparison with

dynamic force in the wave) static compression of 8 N. In this system a quasiperiodic

signal with amplitude about 2N was created at the top of the chain. The strength of

the signal was smaller than initial precompression, but of the same order of magnitude

with the static force. This kept the system in the nonlinear regime. A quasiharmonic
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signal with 5kHz was first generated. The signal had a frequency lower than the lower

bound of band gap corresponding to this static force, which is f1 = 9.2kHz, upper band

frequency f2 = 88.4kHz. It was observed that the signal was transmitted without change

of fundamental frequency, but with some attenuation. The high transparency of the

system can be explained given that the 5kHz was outside the band gap. The attenuation

of the amplitude is connected to the unavoidable dissipation in experiments.

Figure 2.2: Experimental results , the propagation of quasiharmonic nonlinear pulse
with main initial frequency of 5kHz at the entrance of the system, static force F0 = 7.8N.
The lower range of the forbidden frequency is 9.2kHz which is higher than the major
harmonic in the input signal.

The experimental results were compared with numerical calculation of the chain

without dissipation. We tried to create an input signals at the system in numerical

calculations similar to input signals in experiments. We were able to match relatively

closely the amplitudes of main harmonics though these signals are not identical. It should

be mentioned that only elastic properties of particles were used to calculate forces between

particles (Eqs. 1.1-1.4), no adjustable parameters were used in calculations. From Fig.

2.3, we can observe that time intervals corresponding to traveling of pulses from gauges

placed in 1st and 5th, and 5th and 9th cells are similar in experiments and numerical
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calculations demonstrating that the speeds of the pulses in calculations were in agreement

with experiments. The main frequency of 5 kHz was carried on during transmission

without attenuation. In numerical calculation where there is no dissipation, that is why

the signal is able to propagate with no attenuation. In the experiments, however, the initial

amplitude of the signal was reduced at the 5th cell due to inevitable dissipation (Fig. 2.2,

2.3(b), top figure). The shape of transmitted signal remains practically the same with

only reduced amplitude. The Fourier coefficients derived from a fast-Fourier-transform

similar to [5] are presented for numerical and experimental signals correspondingly at

the left and right bottom parts of Fig. 2.3.

From the comparison of numerical and experimental data we can observe that

quasiperiodic nonlinear signal with main frequency 5 kHz below lower band gap corre-

sponding to elastically linear system ( f1 = 9.2kHz, Eq. 1.5) propagates almost without

attenuation in calculations and with significant attenuation in experiments.

The example of quasiharmonic signal with a frequency 15kHz, which is inside the

band gap is shown in Fig. 2.4, comparison between experimental and numerical data is

presented in Fig. 2.5. In experiments the signals with main frequency 15kHz propagated

with strong attenuation and shape of signal changed dramatically. Still the fundamental

frequency can be clearly picked out after its propagation through 9 cells at sensor 3.

Numerical calculations of nonlinear granular chains were used to clarify a mechanism

of attenuation. The bottom waves in Fig. 2.5 (a) show that 15kHz component was

completely wiped out at the second and third gauges, the cut off frequency in numerical

calculations is about 11kHz. This behavior is in contradiction with some transparency

at the fundamental frequency 15kHz in experiments. We can provide a preliminary

explanation that this may be due to the nonlinearity of the system where low frequency

harmonics present in experiments (input signal in numerical calculations did not have this

low frequency components) cause some transparency inside band gap in experiments. We
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Figure 2.3: The comparison between the numerical calculation of the 5 kHz signal
propagating through the system and the experimental results. (a) Numerical calcula-
tions: dynamic force inside corresponding particles (c) their Fourier-transforms. (b)
Experimental results: dynamic force inside corresponding particles and (d) their Fourier-
transforms.
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Figure 2.4: Experimental results , the propagation of quasiharmonic nonlinear pulse
with main initial frequency of 15kHz at the entrance of the system. Nonlinear system,
static force F0 = 7.8N. The lower range of the forbidden frequency is 9.2kHz which is
lower than the input signal frequency.
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plan to investigate this interesting discrepancy between numerical data and experimental

results in our future research. We also observe a cut off frequency equal about 11kHz in

numerical calculations which is different than 9.2kHz calculated for the lower band gap

frequency in linear approximation corresponding to the static force 7.8N. This cut off

frequency is not reflected in experimental data.
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Figure 2.5: The comparison between the numerical calculation of the 15kHz signal
propagating through the system and the experimental results. (a) Numerical calculations:
dynamic force inside corresponding particles and (c) their Fourier-transforms. (b)
Experimental results: dynamic force inside corresponding particles and (d) their Fourier-
transforms. In (c) curves corresponding to sensors 2 and 3 are almost identical.

We compared the attenuation of propagating quasiharmonic signals with the

increase of frequency for interval of 5 - 20 kHz. Fig. 2.6 presents the relative amplitudes
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of the main harmonics detected at the second gauge (A2) and third gauge (A3) with

respect to the amplitude of the same harmonic at the gauge 1 (A1). The sudden drop of

signal transmission at the frequency of 7kHz was observed. The quasiharmonic signal

was able to propagate through the system at only 20% of the input signal strength for

the frequencies between 7kHz and 14kHz. At 15kHz the signal amplitude dropped to

zero very fast, just at the 5th cell from entrance. We may conclude that at these distances

from the entrance in our experiments the system is partially transparent for frequencies

above frequency f1 (Eq.1.5) and non transparent at frequency about 2 f1. We plan more

detailed comparison of numerical and experimental results in our future research.
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Figure 2.6: The comparison of the attenuation with the increase of frequency in ex-
periments. A1 is the amplitude of the incoming signal measured by sensor 1. A2 is
the amplitude of the signal measured by sensor 2. A3 is the amplitude of the signal
measured by sensor 3

At higher frequencies of the rod vibrations we were able to generate oscillatory

shock waves, presented in Fig. 2.7 (a).

We can see dramatic change of the shape of the pulses. From Fourier transforms

(Fig. 2.7(b)) we observe practically complete decay of component at 20kHz and less

attenuation at lower frequencies. As a result an initial front was ramped, and oscillations

on the shock profile were wiped out while lower frequencies in the propagated signal



28

(a)
(b)

Figure 2.7: The propagation of oscillatory shock. (a) Experiemntal profiles of forces
in three gauges, (b) The fast Fourier transforms of the propagating signals. Nonlinear
system, static force F0 = 7.8N. The lower range of the forbidden frequency is 9.2kHz.

were detected by sensors 2 and 3. This data are in a qualitative agreement with data in

[5] for transformation of oscillatory shocks in PTFE-stainless steel system.

2.2.2 Strongly Nonlinear Case

We consider the system as a strongly nonlinear when the amplitude of the signal

( 1N) was similar to the initial compression force (F0 = 0.82 N). We investigated first a

quasiharmonic signal at the 3 kHz excited at the entrance to the system. The frequency

of this signal was lower than the lower bound of band gap for given static compression in

linearized system ( f1 = 6.3kHz, f2 = 60.6kHz). Experimental data are presented in Fig.

2.8. We can see that the signal was transmitted without change of its shape with some

attenuation. However, there was no change in fundamental frequency as in case of low

frequency for nonlinear system (Fig.2.2).

Numerical calculations presented in Fig. 2.9 shows that the main harmonic with

frequency of 3 kHz was carried on during transmission in agreement with the experiments.

Numerical data also demonstrate transparency of strongly nonlinear system at frequency
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Figure 2.8: Experimental results. The propagation of quasiharmonic nonlinear pulse
with frequency of 3kHz in the strongly nonlinear system, static force F0 = 0.82N. The
lower range of the forbidden frequency is 6.3 kHz which is higher than the input signal
frequency.

about 6 kHz and 9 kHz. The former can be due to a strong nonlinearity of the system.

Experimental results corresponding to the main input frequency 15 kHz are

presented in Fig. 2.10. We can observe that high frequency component of strongly

nonlinear signal was practically wiped out within short distances from the entrance.

This is demonstrated by the Fourier transforms related to numerical calculations and

experiments presented in Fig. 2.11. Clearly, there was no transmission of signal in either

the numerical calculation or the experimental data at 15 kHz.

We compared the attenuation of propagating quasiharmonic signals with the

increase of frequency for interval of 3 -18 kHz for strongly nonlinear system. In the

Figure 2.12 the relative amplitudes of the main harmonics detected at the second gauge

(A2) and third gauge (A3) with respect to the amplitude of the same harmonic at the

gauge 1 (A1) are presented. The cut off of signal transmission at the frequency of 7

kHz was observed with unexpected transparency at higher frequency 9 kHz followed by

second drop in transparency at about 10 kHz. The band gap calculated for linear system
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Figure 2.9: The comparison between the numerical calculations and the experimental
results for the initial signal with main frequency of 3 kHz. (a) Numerical calculations:
dynamic force inside corresponding particles and (c) their Fourier-transforms. (b)
Experimental results: dynamic force inside corresponding particles and (d) their Fourier-
transforms.
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Figure 2.10: The propagation of quasiharmonic nonlinear pulse with the main frequency
of 15 kHz in the strongly nonlinear system, with static force F0 = 0.82N. The lower
range of the forbidden frequency is 6.3 kHz which is lower than the main frequency of
the input signal.

was 6.3 kHz to 60.6 kHz. It is amazing that strongly nonlinear system also demonstrated

transparency inside band gap calculated for the linear system.

At higher frequencies of the rod vibrations we were able to generate oscillatory

shock waves for strongly nonlinear system as it was a case for a nonlinear system (Fig.

2.13(a)).

We can observe the transmission of low frequency harmonics and fast decay of

high frequency harmonic. As a result the initial front was ramped, and high frequencies

were wiped out while the low frequencies remained (Fig. 2.13(b)). This resulted in more

monotonous shock profile.
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Figure 2.11: The comparison between the numerical calculation of the 15 kHz signal
propagating through the system and the experimental results. (a) Numerical calculations:
dynamic force inside corresponding particles and (c) their Fourier-transforms. (b)
Experimental results: dynamic force inside corresponding particles and (d) their Fourier-
transforms.
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Figure 2.12: The comparison of the attenuation with the increase of frequency. A1 is
the amplitude of the incoming signal measured by sensor 1. A2 is the amplitude of the
signal measured by sensor 2. A3 is the amplitude of the signal measured by sensor 3.

Figure 2.13: The propagation of strongly nonlinear oscillatory shock in the system,
static force F0 = 0.8N. The lower range of the forbidden frequency is 6.3 kHz which is
lower than the main input signal frequency. (a) The force dependence on time in gauges
1-3, (b) The fast Fourier transforms of the propagating signals.
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2.3 Conclusions

One-dimensional experimental set up was developed to investigate propagation

of nonlinear and strongly nonlinear quasiharmonic waves. The quasiperiodic boundary

conditions were created by vibrating rod with prescribed frequency contacting with one

end of a granular chain. Incoming waves were monitored by gauge inside particle placed

near the corresponding end of the chain. This set up allowed control of propagating

nonlinear and strongly nonlinear quasiharmonic waves and shock waves. A practically

perfect transparency of investigated systems was observed at low frequencies and cut

off effects at higher frequencies for nonlinear and strongly nonlinear signals. Numerical

calculations of signal transformation by non dissipative granular chains demonstrated

transparency of the system at low frequencies and cut off phenomenon at high frequencies

in reasonable agreement with experiments. Transition from oscillatory to monotonous

shock wave was observed in experiments for nonlinear and strongly nonlinear systems,

attributed to mesostructural effects. Strongly nonlinear systems were less transparent

than nonlinear systems at the similar amplitude of the exciting signal and at the same

distance from the entrance.

The text of Chapter II is, in part, based on the material in the following publica-

tions: S. Y. Wang, E. B. Herbold, and V. F. Nesterenko, in “Wave Propagation In Strongly

Non- linear Two-Mass Chains”, in IUTAM Proceedings on granular materials, J.D.

Goddard, J.T. Jenkins, P. Giovine (eds.), AIP Conference Proceedings, IUTAM-ISIMM

Symposium on Mathematical Modeling and Physical Instances of Granular Flow, Reggio

Calabria, September 14-18, 2009. American Institute of Physics, vol. 1227, Melville,

New York, pp. 425-434, (2010). The dissertation author was a primary researcher and an

author of the cited material.



Chapter 3

Attenuation of Short Strongly

Nonlinear Stress Pulses in Dissipative

Granular Chains

Attenuation of short, strongly nonlinear stress pulses in chains of spheres and

cylinders was investigated experimentally and numerically for specific two ratios of their

masses intentionaly keeping their contacts identical. The chain with mass ratio 0.98

supports solitary waves and another one (with mass ratio 0.55) supports nonstationary

pulses which preserve their identity only on relatively short distances, but attenuate on

longer distances because of radiation of small amplitude tails generated by oscillating

small mass particles. Pulse attenuation in experiments in the chain with mass ratio 0.55

was faster at the same number of the particles from the entrance than in the chain with

mass ratio 0.98. It is in quantitative agreement with results of numerical calculations with

effective damping coefficient 6 kg/s. This level of damping was critical for eliminating

the gap openings between particles in the system with mass ratio 0.55 present at lower

or no damping. With increase of dissipation numerical results show that the chain with

35
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mass ratio 0.98 provides faster attenuation than chain with mass ratio 0.55 due to the fact

that the former system supports the narrower pulse with the larger difference between

velocities of neighboring particles. The investigated chains demonstrated similar behavior

at large damping coefficient 100 kg/s.

3.1 Experimental procedures

Experiments were conducted with chains composed from SS304 stainless steel

cylinders and 440C stainless steel balls (Fig. 3.1) arranged alternatively. Stainless steels

SS304 and 440C have a similar elastic properties and density. The chain was placed

vertically inside the channel made by four Al alloy rods providing alignment of particles

with minimum contacts between them and rods for minimizing friction and dissipation.

Two different mass ratios were achieved by keeping the spheres the same, while selecting

cylinders with different heights. The larger cylinder has a height h = 9.6 mm and a

mass (mc) of 3.77 g and the small cylinder has a height h = 5.3 mm and a mass of

2.043 g. In both cases the spheres had a mass (ms) 2.085 g and diameter d = 8 mm, the

same as diameter of cylinders. The cell size in this array was equal to h+d. The mass

ratio of the chain with the smaller cylinder is 0.98 corresponding to the chain which

supported solitary wave. For the system with the larger cylinder height, the mass ratio

is 0.55, which corresponds to the most efficient attenuation due to dispersion effects in

nondissipative chain of spheres [1]. The waves in the systems were generated by impact

of 440C steel ball with mass 2.085 g (less than the cell mass equal 5.855 g and 4.128 g).

Two piezogauges were embedded inside cylinders at different depths, with one gauge

embedded in 4th cylinder (used to specify the incoming pulse) and the other one inside

the cylinder placed at different depths. The piezogauges, supplied by Piezo Systems

Inc. were custom cut and wired, they had the sensitivity in the range 6.8 - 7.1 N/V. The
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piezogauges (RC ∼ 537µs), were calibrated using the impact by PTFE sphere (mass 0.12

g) with a recorded velocities (0.7−0.8 m/s) and based on linear momentum conservation

which gives the value of the force integral over time from the start of the impact to

the maximum force. The signals from the gauges were recorded using oscilloscope

Tektronics TDS 2014.

Figure 3.1: Experimental set-up. Cylinders and spheres aligned in 1-D chain inside the
holder (a) and cross-sectional view of the assembly (b). Four aluminum rods hold the
particles in aligned chain. In the numerical calculations the particles inside the chain with
even numbers are spheres and particles with odd numbers are cylinders,i= 2,3,4, ...N/2.
The impactor is a separate particle outside of chain with number 1.
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3.2 Numerical Calculations

Numerical calculations of the chain behavior were based on strongly nonlinear

contact force between bodies with the radii of contact equal R1 and R2 described by a

static Hertz law [2] valid for elastic contact deformation,

F =
4E1E2

3[E1(1−ν2
2)+E2(1−ν2

1)]

(
R1R2

R1 +R2

)1/2

δ
3/2, (3.1)

where R1 and R2 are corresponding radii of the contacting undeformed particles and

their Young’s moduli (E1, E2) and Poisson’s ratios (ν1, ν2) and δ is the change between

centers of interacting bodies due to contact deformation. The curvatures of the surfaces

of contacting neighboring particles can be selected independently of their masses. These

arrays may have large masses of cylinders with small radii of rounded ends. It allows

change of interaction law and the properties of the system, but keeping overall density

the same.

To apply static law (Eq. 3.1) for the dynamic contact interaction between particles

the pulse duration should be much longer than the characteristic times of sound propa-

gation in the sphere and cylinders equal to their characteristic sizes (diameters, height

divided by corresponding sound speeds). The nondissipative equations of motion for

particles inside the chain oriented in the vertical direction and thus including gravitational

force are the following

mcü2i−1 = A[{(υ2i−1,0 +υ2i−2)− (u2i−1,0 +u2i−1)}3/2
+

−{(u2i−1,0 +u2i−1)− (υ2i,0 +υ2i)}3/2
+ ]+mcg, (3.2)
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msϋ2i = A[{(u2i−1,0 +u2i−1)− (υ2i,0 +υ2i)}3/2
+

−{(υ2i,0 +υ2i)− (u2i+1,0 +u2i+1)}3/2
+ ]+msg, (3.3)

where mc is the mass of the stainless steel cylinder and ms is the mass of the stainless steel

sphere. Displacements u2i−1,0 and υ2i,0 represent equilibrium displacements of centers

of cylinders and spheres in the gravitationally loaded chain calculated from positions in

initially undeformed chain. The other displacements u2i−1, υ2i represent dynamic parts

of overall displacements during wave propagation. N is the total number of particles

(including the impactor), i = 2,3,4, ...N/2, and even number N corresponds to the last

spherical particle contacting the wall. Even particle numbers correspond to spherical

particles in the chain and odd numbers to cylinders, the spherical impactor is particle

number 1 (see numbering of particles in Fig. 3.1). Positive subscript corresponds to the

force between neighboring particles being in contact, otherwise interaction force is zero.

Coefficient A for contact interaction of flat surfaces of cylinders and spheres with

radius RS is equal

A =
4ECES(RS)

1/2

3[E−S(1−ν2
C)+EC(1−ν2

S)]
. (3.4)

The constant A depends on the Young’s moduli (EC, ES) and Poisson’s ratios

(νC,νS) of materials of interacting particles and the radius of sphere [2].

The separate equation for the impactor (dynamic displacement υ1), initially con-

tacting the first sphere in the gravitationally loaded chain (there is no contact deformation
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between these two particles prior to the impact) is:

mimpϋ1 =−A1(υ1−υ2)
3/2
+ +mimpg,A1 =

4EimpES(Rimp)
1/2

3[E−S(1−ν2
imp)+Eimp(1−ν2

S)]
, (3.5)

where A1 is corresponding to the contact of the impactor and the first sphere having the

same radii and elastic properties.

Equation for the first spherical particle in the chain (dynamic displacement υ2) is

msϋ2 = A1(υ1−υ2)
3/2
+ −A[(υ2,0 +υ2)− (u3,0 +u3)]

3/2
+ +msg. (3.6)

Equation for the last spherical particle (dynamic displacement υN) contacting the

flat wall is

msϋN = A[(uN−1,0−uN−1)− (υN,0 +υN)]
3/2
+ −A(υN,0 +υN)

3/2
+ +msg. (3.7)

In all experiments we observed attenuation of the pulse amplitude. To explain

this phenomenon we added effective linear viscous term (Fvis) to all contact interactions.

Introduction of effective viscosity to describe dissipation processes (friction, viscoplastic

deformation) on the contacts is similar to the one used in [3-8]. Resulting viscous forces

acting on the impactor, first particle, on cylinders and spheres inside the chain and

between last particle and the flat wall at the deformed contacts are described by Eqs.

3.8-3.12 with corresponding coefficients of viscous damping Fvis,1 and Fvis,N ,

Fvis,1 = µ1[υ̇2− υ̇1)], (3.8)

Fvis,2 = µ1[υ̇1− υ̇2)]+µ[u̇3− υ̇2], (3.9)

Fvis,2i−1 = µ[υ̇2i−2−2u̇2i−1 + υ̇2i], (3.10)
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Fvis,2i = µ[u̇2i−1−2υ̇2i + u̇2i+1], (3.11)

Fvis,N = µ[u̇N−1−2υ̇N)]. (3.12)

When the particles are separated the viscous term is considered to be equal zero

as well as elastic part of contact forces. In numerical calculations of dissipative chain a

linear momentum were conserved with accuracy 10−6%.

In the numerical calculation the pulse was generated by giving an initial velocity

to the impactor. Its velocity was adjusted to provide the amplitude of the reference pulse

similar to the corresponding experimental values for adequate comparison of its evolution

at later times.

3.3 Results and Discussion

3.3.1 Pulse attenuation in the chain with mass ratio 0.98

In experiments short pulse was generated by the impact of a spherical steel

particle, the same as the spherical particles in the chain. Impactor mass was close to the

half of cell mass (ms +mc). The drop height of the striker is kept equal to 3 cm resulting

in an amplitude of the reference signals (around 110 N) recorded by the gauge embedded

into the 4th cylinder.

The impact resulted in a single, solitary like pulse (Fig. 3.2). The pulse speed

(618±19 m/s) was calculated using distance between sensors and time interval between

maximums of bell shape signals using the data from the sensors embedded into 4th and

5th cylinders.

A reference pulse duration was equal to 55µs based on records from the sensor

embedded into the forth cylinder. Based on these data the length of the pulse was equal to

2.5 cell sizes (cell is composed from sphere and cylinder), which is close to the expected



42

Figure 3.2: Experimental results. Single pulse propagating through a chain with the
mass ratio of 0.98. (a) Signals correspond to sensors embedded into the 4th and 5th
cylinder. (b) Signals correspond to sensors embedded into the 4th and 21st cylinder.
Pulses were excited by the impact of a spherical steel particle. The vertical scale in both
figures is 20 N and zero time is arbitrary, the curves are offset for visual clarity.

solitary wave length in the chain with equal masses (5 particles).

As the signal propagates through the system, the amplitude decreases and the time

width of the pulse increases which is clearly seen by comparison of signals corresponding

to the sensors in 4th and 21st cylinders presented in Fig. 3.2(b). The pulse speed (611±6

m/s) calculated based on records of gauges embedded into 15th and 21st cylinders was

slightly lower than a speed measured in the interval between 4th and 5th cylinders, due

to the attenuation of the pulse amplitude (Fig. 3.2). The shape of the pulse detected by

the gauge in the 21st cylinder was slightly nonsymmetrical probably due to dissipation.

The length of this pulse (based on its speed 611 m/s and duration) was equal to 3.5 cell

size, being larger than the width of the reference pulse detected by the sensor embedded

into the 4th cylinder.

It is interesting to compare the speeds and width of the pulses with exact analytical

solution for the nondissipative chain obtained in long wave approximation for the chain

without static precompression. This is possible to do because the amplitude of the pulse in
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the wave is much larger than gravitational precompression. In numerical calculations we

demonstrated that the pulse shape and speed at the investigated distances from entrance

were negligibly affected by gravitation.

The separate numerical calculations with mass ratio equal 1 were performed and

demonstrated insignificant difference of properties of solitary waves under the same

impact at investigated number of particles in comparison with the case when mass ratio

was 0.98. In the presence of gravitation a difference in amplitudes at 43th particle was

0.02% in the chains with mass ratios 1 and 0.98. Some differences in the behavior of

chains with mass ratio 1 and 0.98 were observed at the impact by larger mass after wave

propagation at long distance from the entrance which will be a subject of the separate

research.

If we neglect the difference between masses of spheres and cylinders, then the

speed of the solitary wave(Vs) can be calculated using the following equation connecting

parameters of solitary wave solution in a long wave approximation [9]

Vs =
2√
5

cξ
1/4
m =

(
16
25

)1/5

c4/5
υ

1/5
m , (3.13)

where ξm is the maximum strain equal to 2δm/(h+ 2R), δm is the maximum change

of the distance between centers of neighboring sphere and cylinder, υm is a maximum

particle velocity in a solitary wave and the constant c corresponds to non-dissipative

contact of the sphere and plate

c2 =
E

6(1−ν2)m

√
R
2
(h+2R)5/2. (3.14)

In experiments we measure force acting on the gauge embedded inside the

cylinders. The relation between the maximum of this force and speed of solitary wave

can be satisfactory described by maximum force acting between neighboring particles



44

(Eq. 3.15), similar to [9] with constants adjusted for the array of cylinders with flat sides

and spheres

Vs ≈
h+2R√

5

(
2ER1/2

3m3/2(1−ν2)

)1/3

F1/6
m . (3.15)

This equation demonstrates that the speed of the solitary wave depends on the cell

size (h+2R). It can be different for the chains with the same masses of spherical particles

and cylinders, if the cylinders have different heights h. It should be mentioned that relation

between speed of solitary wave and maximum force acting between particles (Eq. 3.15)

uses only the leading approximation in a Taylor series for relative displacements between

neighboring particles in the discrete chain and strains in the continuum limit.

The pulse speed calculated using Eq. 3.15 and the value of the maximum force

(108 N), recorded by the gauge embedded in the 5th cylinder (Fig. 3.2(a)), is 593±12

m/s, which is close to the pulse speed (618±19 m/s) in the experiments. The speed of

the pulse (547±12 m/s), estimated using Eq. 3.15, based on the average force amplitude

(68 N) detected by the sensors in the 15th and 21st cylinders was lower than the average

speed (611± 6 m/s) measured in the interval between 15th and 21st cylinders (based

on the distance and corresponding time interval). It should be mentioned that Fm in the

Eq. 3.15 is the maximum force acting on the contact between particles, but sensors are

embedded inside particles, recording the average force on the corresponding contacts [9,

10]. This average force for the solitary wave stress pulse at low precompression is about

1.4 times smaller than the maximum force [10], contributing to the difference in speeds

calculated from the maximum of recorded force and time intervals. We can conclude

that despite the wider pulse length and its asymmetric shape its speed was close to the

speed of the solitary wave in the uncompressed uniform chain despite dissipation present

in the system. Thus this system of cylinder and spheres supports attenuated localized

stress pulses close to the solitary like waves predicted in a long wave approximation in
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agreement with previous observations in the chains composed from spheres only.

Numerical calculations of the pulse propagating in a discrete chain with mass

ratio 0.98 were carried out for the same system parameters. The main focus of our

research was on pulse propagation inside the system. To make appropriate comparison

with experiments (impact velocity 1.2 m/s), in numerical calculations the velocity of

impactor (1.06 m/s) was adjusted to reproduce the same amplitude and shape of the

reference pulse in 4th cylinder as in experiments and trace the evolution of this pulse as

it propagates inside the chain. Fig. 3.3 shows the comparison between the numerical

calculations (with and without dissipation) and the experimental results. It is worth

mentioning that gravitational force is considered in our numerical calculations. However,

since this is a relatively short chain, calculations without gravitational force show similar

results with largest difference in amplitudes of waves about 5% for longest traveling

distances investigated in this work.

Figure 3.3: Comparison of experimental results and numerical calculations of the pulse
propagating through the system which has a mass ratio of 0.98. Sensors are placed in
the 4th, 5th and 21st cylinders. (a) Experimental results, (b), (c) numerical calculations
(without dissipation) related to the forces in the corresponding cylinders. The vertical
scale is 20 N and the curves are offset for visual clarity and zero time is arbitrary.

In numerical calculations without dissipation the solitary wave was quickly

formed at the first few particles. It propagated without noticeable changes in its speed

(648 m/s) and shape with value of particle velocity in the maximum being equal to 0.74

m/s. Speed of solitary wave with the same amplitude of particle velocity using analytical
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solution (Eq. 3.13) was equal to the same value 648 m/s. Their equal values are in the

agreement with the comparison of solitary wave speeds in discrete chain and in analytical

solution in continuum limit at the same amplitude of particle velocities, the difference

being less than 1% [9]. At the same time the value of solitary wave speed in numerical

calculations was close to the experimental value of 618±19 m/s, corresponding to the

solitary wave with amplitude similar to numerical calculations. Pulse length in numerical

calculations was equal to 2.5 cells similar to experimental results.

Detailed comparison between analytical solution in a long wave approximation

and results of numerical simulations for a discrete chain were discussed in [11]. Assuming

that total displacement in numerical calculations for discrete chain during the passage of

the solitary wave is equal to displacement of particles derived from the exact solution

for strain the authors found amplitude of displacement in latter solitary wave solution.

With this value of strain amplitude in continuum limit the calculated speed of solitary

wave was close to the speed in numerical calculations within 2%. At the same amplitude

of displacement the calculated maximum of particle velocity was 12% lower than in

numerical calculations of discrete chain. A calculated maximum force using two terms

in a Taylor series was 13% lower than in numerical calculations of discrete chain [11].

This correspondence of exact solution for long wave approximation with results for a

discrete chain explains successful use of the former solution to describe experimental

results in 1-D chains made from particles of different materials where the accuracy of

force measurements is about 10% [12-14].

It is evident that we have attenuating solitary wave in our experiments. To explain

the observed attenuation of the pulse in experiments the dissipation was modeled by

introducing a viscous terms into all contact interactions, as described above (Eqs. 3.8-

3.12). Fig. 3.4 shows the comparison between the numerical calculations with dissipation

(µ = 6 kg/s) and the experimental results.
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Figure 3.4: Experimental results and numerical calculations of the pulse propagating
through the system with mass ratio of 0.98. (a) Experimental results, sensors are placed
in the 4th and 21st cylinders, (b) Numerical calculation with damping coefficient 6 kg/s
related to the forces in the corresponding cylinders. The vertical scale in (a), (b) is 20 N.
The curves are offset for visual clarity and zero time is arbitrary. .

In numerical calculations pulse at 21st cylinder has a tail with small constant

positive amplitude equal to 3 N (see insert to Fig. 3.4(b)), which is in qualitative

agreement with the modification of corresponding signal shape in experiments (Fig.

3.4a). This is also in agreement with the influence of viscous dissipation on the shape of

short pulses which was investigated in [5, 6].

Comparison of attenuation of the relative pulse amplitude (Ai/A4) in experiments

and numerical calculations using damping coefficients 0, 4 and 6 kg/s is shown in the Fig.

3.5. It is clear that introduction of the viscous dissipation correctly explains the signal

amplitude decay. Both damping coefficients satisfactory describe the experimental data,

and damping coefficient 6 kg/s provides a better fit at largest investigated distances from

the impacted end.

The decay of relative pulse amplitude due to damping as it travels through the

chain in numerical calculations (damping factor equal 6 kg/s) and in experiments is

satisfactory described by exponential function with value of exponent equal to 0.028

(Fig. 3.6). Exponential decay in numerical calculations due to plastic deformation on the

contacts was observed in the paper [15].
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Figure 3.5: Relative amplitude of signal at i-th cylinders (corresponding to different
depths) with respect to the amplitude of the reference pulse detected by the sensor in the
4th cylinder in the chain with mass ratio 0.98, experimental data and numerical results
with different damping coefficients.

The dissipation in one mass chain resulted not only in attenuation of the amplitude

of solitary like pulse, but also in the tail wave following this pulse, first introduced in

[5, 6]. No such tail was detected in nondissipative chain. This small amplitude tail

at relatively close distance from the impacted end is clearly identified in numerical

calculations shown in Fig. 3.7. At larger distance from the impacted end the clear

separation of the leading solitary wave and shock like pulse are observed in numerical

calculations (Fig. 3.7).

The mechanism of this two waves pattern was provided in [5, 6]. The faster

attenuation of leading solitary pulse is due to the larger gradients of particle velocity

due to small space scale of this pulse (about 5 particles). When its amplitude becomes

smaller than amplitude of following shock wave they start a process of convergence
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Figure 3.6: Attenuation in experiments (blue) and in numerical calculations with
damping coefficient 6 kg/s (red) comparing with exponential decay.

resulting in oscillating shock wave. This unique process of two wave structure generated

by dissipation was also observed at a larger damping coefficient 10 kg/s and 15 kg/s. For

example, in the latter case two waves were formed at the vicinity of 60th cylinder and

they converged approaching the 70th cylinder. Only oscillatory shock wave remained at

the depth corresponding to the 80th cylinder. At damping coefficient 100 kg/s two waves

pattern was not formed, instead monotonous attenuating shock wave was observed.

3.3.2 Pulse attenuation in the dimer chain with mass ratio 0.55

It is known that the sphere/sphere chain with mass ratio 0.55 does not support

stationary solitary waves [1, 3]. Pulse in the dimer chain with mass ratio 0.55 (mass of

sphere equal 2.085 g and mass of cylinder was increased to 3.77 g) in experiments was

excited by the same impactor (mass 2.085 g) at the same velocity as in the previous chain
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Figure 3.7: The formation of two wave structure (solitary wave followed by shock
wave) in one mass chain impacted by sphere with velocity 1.45 m/s, damping coefficient
6 kg/s. The y-axes scale for all curves representing forces in corresponding particles
(all of them are cylinders) are offset by 10 N for clarity.

with mass ratio 0.98. This allows comparison of pulse transformation in both chains

under identical conditions of impact and contact interaction between particles.

In this work a different cylinder/sphere dimer chain is investigated. The results

of numerical calculations for transmission of dynamic force in these chains with fixed

contacts depending on mass ratio of particles for a chain composed from 42 particles (21

spheres and 21 cylinders) are shown in Fig 3.8. It is clear that in nondissipative chains

the value of mass ratio corresponding to the position of global minimum is close to the

values in non-fixed contacts sphere/sphere chains [1,3].

The numerical calculations with damping coefficient 6 kg/s, introduced to explain

experimental results with the chain having mass ratio 0.98 and the same contacts as

dimer chain are presented in Fig. 3.8 also. It is clear that dissipation shifts the position

of the global minimum toward larger values of mass ratio (0.6) in comparison with

nondissipative chain. It should be emphasized that the change of transmitted force in
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Figure 3.8: Dependence of the force in the 21st cylinder normalized with respect to the
force at the entrance (at 4th cylinder) on mass ratio in nondissipative and dissipative
chains with fixed contacts. Mass of sphere was kept the same and mass of cylinder
changed keeping fixed contacts.

dissipative chains is not symmetric with respect to global minimum - significantly larger

reduction of amplitude is observed at mass ratios in the interval 0.6-1 than in the interval

0.1-0.6. We explain this nonsymmetric behavior by larger gradients of particle velocity

between neighboring particles in chains with smaller mass differences. This mechanism

is qualitatively similar to the difference in attenuation between chains with mass ratios

0.98 and 0.55 explained later.

In agreement with this prediction (Fig. 3.8), impact by stainless steel sphere with

velocity 1.4 m/s did not generate a single solitary wave in experiments (Fig. 3.9), unlike

in previous case with practically equal masses of sphere and cylinders (Fig. 3.2). Instead

a leading pulse was followed by series of smaller amplitude pulses. The leading pulses

captured by the gauge imbedded in the heavier particles (cylinders) have double peaks

repeatable in all experiments. In numerical calculations of the chain with mass ratio 0.5
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leading pulses of particle velocity for light particles also had two peaks, followed by

oscillating velocity profiles with negative velocities at some moments (Fig. 1.18(b) in

[9]). As the pulse propagates inside the chain it attenuates and the amplitude difference

between these two peaks becomes smaller (Fig. 3.9 (b)). The pulses following the

leading doable peak transformed into oscillatory tail later (compare signals from sensors

embedded in 4th and 5th cylinders with signal from the sensor in 21st cylinder). The

decrease in the pulse amplitude is caused by the fact that this chain does not support

solitary waves and dissipation.

Figure 3.9: Experimental results. Stress pulses propagating through a chain with the
mass ratio 0.55, mass of cylinders is larger than mass of spheres. (a) Signals correspond
to sensors embedded into the 4th and 5th cylinder. (b) Signals correspond to sensors
embedded into the 4th and 21st cylinder. Pulses were excited by the impact of a spherical
bead the same as the spherical particles in the chain. The vertical scale in both figures is
20 N and zero time is arbitrary, the curves are offset for visual clarity.

The speed of the leading pulse based on the experimental data recorded by the

gauges installed at 4th and 5th cylinder is 771 m/s. The smaller pulse speed of 712

m/s was calculated based on gauges installed in 4th cylinder to 21st cylinder. The 10%

decreasing in the pulse speed is due to the attenuating pulse amplitude in the interval

between 4th and 21st cylinders.

In numerical calculations the force acting on the gauges imbedded into the

corresponding cylinders were found by averaging the forces acting at their contacts
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with neighboring spheres similar to [10]. Fig. 3.10 (b),(c) present results of numerical

modeling of nondissipative chain related to the experimental data (Fig. 3.10(a)). In

numerical calculations reference pulses (corresponding to the force in 4th cylinder)

with amplitude similar to experiments were generated using a lower impactor velocity

(1.3 m/s) accounting for the dissipation of the signal prior its arrival on 4th cylinder in

experiments (impactor velocity 1.4 m/s).

Figure 3.10: Comparison of the experimental results and numerical calculations (with-
out dissipation) of the pulse propagating through the dimer system with mass ratio
0.55, mass of cylinders is larger than mass of spheres. (a) Experimental results; (b),
(c) numerical calculations (without dissipation) related to the forces in corresponding
cylinders. The vertical scale is 20 N and the curves are offset for visual clarity and zero
time is arbitrary.

The pulses in the numerical calculations in nondissipative chain (µ = 0 kg/s)

have the double peak feature, and the leading pulse is followed by a similar number of

pulses as in experiments. Only small decrease of pulse amplitude (when it propagates

from 4th to 5th cylinder) from 111 N to 104 N, and from 111 N to 107 N was observed

in experiments and numerical calculations, correspondingly. In numerical calculations

pulses, trailing the main double peak pulse, are clearly separated from each other (Fig.

3.10(b) and (c)), unlike in experiments where their separation is less evident (Figs. 3.9

and 3.10(a)). In experiments only second pulse is clearly separated from the leading one

in the 4th and 5th cylinders. In numerical calculations, the speed of the leading pulse

traveled from 4th to 5th cylinder is 733 m/s. This speed is close to the experimental result
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(771 m/s). The pulses frequency spectrums are similar in experiments and numerical

calculations.

The number of secondary pulses steadily increases as the wave propagates deeper

into the dimer system in experiments and in numerical calculations (Figs. 3.9 and 3.10).

This is an important specific feature for a two mass system with investigated mass ratio

because it provides a nondissipative mechanism of pulse decay due to energy leak from

the leading pulse into increasing number of secondary pulses in oscillatory tails. The

mechanism of formation of these secondary pulses without gravitational loading was

explained in [1]: for a general value of mass ratio (except some specific values) typically

the light bead loses contact with its left neighboring heavy bead retaining a small portion

of the energy of the propagating pulse and generating traveling waves in oscillating tails.

It should be mentioned that in numerical calculations the shape of the leading

pulses and their amplitudes were negligibly affected by the gravitation in the investigated

chains composed from up to 50 cylinders.

At the same time the difference in behavior between gravitationally loaded and

free of precompression chains may be very significant for longer chains. For example,

in nondissipative, noncompressed chains at relatively short distances from the impacted

end the leading double peak, corresponding to force in the heavy particles (cylinder),

is followed by a regular sequence of localized pulses. Force in spheres (light particle)

has a single leading peak, followed by periodic sequence of double peaks pulses. These

regular patterns were transformed correspondingly into two clearly separated triple peaks

leading pulses in 499th particle (cylinder) and double peaks in 500th particle (sphere),

followed by the chaotically oscillating trails in both cases.

In the same chains under gravitation loading (also with mass ratio 0.55) only

one leading double peak was observed up to the distance about 400 particles. At larger

distances the sequence of single peak pulses started to form with slowly attenuating
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leading pulse (composed from 15 particles) clearly separated from the rest at the 900th

particle.

The difference between experiments and results of nondissipative numerical cal-

culations suggests introduction of dissipative damping as with chain with similar masses.

By design both chains have identical contacts. Thus the dissipative damping should be

similar to previous case of the chain with mass ratio 0.98. It should be mentioned that

the dimer systems with different mass ratio, when composed from spherical particles [1,

3], could experience a different damping on the non-fixed sphere/sphere contacts than in

our systems with fixed plane/sphere contacts.

Fig. 3.11 shows comparison of numerical results (with different damping coeffi-

cients) with the experimental data.

Figure 3.11: Results of experiments and numerical calculations of the pulse propagat-
ing through the dimer system, mass of cylinders is larger than mass of spheres. (a)
experimental results (sensors are placed in the 4th and 21st cylinders), (b) and (c) results
of numerical calculations related to the forces in 4th and 21st cylinders with µ = 4 kg/s
and µ = 6 kg/s, correspondingly. The vertical scale is 20 N and the curves are offset for
visual clarity, zero time is arbitrary.

The decrease in the first peak amplitudes of the leading pulse at 21st cylinder in

the numerical calculation from 109 N to 59 N (with damping coefficient 4kg/s) and from

109 N to 57 N (with damping coefficient 6 kg/s) are similar to the experimental results

(109 N to 60 N).

As the signal propagates through the dissipative system, the amplitudes of the



56

leading double peak pulse decrease, while the number of following pulses increased in

numerical calculations in agreement with experiments (Fig. 3.11). Fig. 3.12 presents

experimental and numerical results with various damping coefficients related to the

amplitude attenuation of leading pulses with cylinder numbers. It is clear that in numerical

calculations the leading pulse in the chain with mass ratio 0.55 is attenuating even without

dissipation. This is due to the fact that the investigated system with mass ratio 0.55 does

not support stationary solitary waves. Without dissipation, decrease of relative amplitude

of the force at 21st cylinder is about 40% and this decay is caused solely by dispersion.

Dispersion in the pure nonlinear system means dependence of a wave speed on wave

length caused by mesostructure, e.g., size of the particles. Like in a weakly nonlinear

systems (the equation for corresponding granular chain can be found in [9], see Eq. (1.7)

there) the dispersion in strongly nonlinear systems balances strong nonlinearity resulting

in a strongly nonlinear solitary wave unique for pure nonlinear systems in one mass chain

or in two mass chains at specific values of mass ratio [1]. In two mass chains at arbitrary

mass ratio nonlinearity is nor balanced by dispersion. In this case solitary waves are not

supported by a system resulting in pulse decay (being maximized at mass ratio 0.59)

even in nondissipative chains [1]. The difference with weakly nonlinear system is that

in strongly nonlinear case the dispersion term in corresponding wave equation is also

nonlinear (Eq. 1.20-1.23 in [9]).

Numerical calculations in dissipative chains (with damping coefficients 4 kg/s

and 6 kg/s) demonstrate larger attenuation with decrease of amplitude about 50%. The

similar attenuation was observed in experiments. The role of dissipation is significant

starting at 15th cylinder, at smaller distances its role is negligible and signal attenuation

is mostly due to dispersive effects (Fig.3.12). Based on the attenuation of the amplitudes

at different positions (Fig.3.12) inside the chain we conclude that numerical calculations

with damping coefficients 6 kg/s satisfactory fit experimental data. This value also
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Figure 3.12: The comparison of the experimental results and data from the numerical
calculations with different values of damping coefficient in the dimer chain with mass
ratio 0.55. Relative amplitude of leading stress pulse at different depths (number of
cylinders are shown on the horizontal axes) is calculated with respect to the amplitude of
the reference pulse in the 4th cylinder. Mass of cylinders is larger than mass of spheres.
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provided the best fit for experimental data in chain with mass ratio 0.98. It is explained

by the same nature of contact interaction between surface of the steel cylinder and sphere

of the same diameter causing the same mechanism of dissipation.

Figure 3.13: Attenuation of relative amplitude in experiments (blue) and in numerical
calculations with damping coefficient 6 kg/s (red) comparing with exponential decay.
Relative amplitude is calculated with respect to the amplitude of the reference pulse in
the 4th cylinder. Mass of cylinders is larger than mass of spheres.

The amplitude of the pulse decays exponentially in experiments and in numerical

calculations as it travels through the two mass chain due to the combination of dispersive

and dissipative mechanisms (Fig. 3.13). As a result in the two mass chain the exponent

(0.042) is larger than in the case of mass ratio equal to 0.98.

The qualitative difference between two mass nondissipative and dissipative chains

is the opening of gaps on both sides of 21st cylinder in the former chain as demonstrated

in Fig. 3.14(a) by zero forces acting on 21st cylinder corresponding to out of phase

displacements of 21st and 22nd spheres.

In dissipative chains at damping coefficient 6 kg/s there are no gaps open (Fig.
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Figure 3.14: Comparison of the forces inside 21st cylinder and out of phase displace-
ments of neighboring spheres in numerical calculations: (a) damping coefficient equal to
zero, opening of gaps on both sides of 21st cylinder is evident at moments corresponding
to zero forces and (b) no openings of gaps at damping coefficient equal to 6 kg/s. In
both cases chain with mass ratio 0.55 impacted by sphere with velocity 1.45 m/s.

3.14(b)) and forces acting on 21st cylinder are not zero though displacements of 21st

and 22nd spheres are still out of phase. In both cases the oscillatory force profile in 21st

cylinder is observed due to oscillating motion of spheres clearly seen in their displace-

ments curves. Increase of damping coefficient to 10 and 15 kg/s reduces amplitudes

of oscillations of spheres also without gaps openings and transforming the sequence of

separated pulses into oscillatory tail.

Shape of the wave during the propagation of these pulses into the larger depths

(beyond 90th cylinder) changed into attenuating triangular shock like oscillatory pulse

with decreasing amplitudes of oscillations with increase of damping coefficient to 10 and

15 kg/s.

The similar impact on dimer chains with damping coefficient 100 kg/s resulted in

fast attenuating, smooth nonsymmetric dispersive pulses with increasing duration and

ramp time being much shorter than the tail. At this damping coefficient (100 kg/s) shock

waves in one mass chain and in two mass chains were practically identical at similar

particle numbers with slight differences in speed propagation and amplitudes.
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Two wave structure of the attenuating pulse (leading solitary like pulse clearly

separated from the following shock like wave) observed at some range of distances from

the impacted end in the chain of equal masses at damping coefficient 6 kg/s (Fig.3.7)

was not detected in dimer chains. It is interesting to compare relative attenuation in a

system with mass ratio 0.55 to the system with mass ratio 0.98 (Fig. 3.15) at the different

depths, but corresponding to the same number of cells (dissipative contacts) for chain

with different damping coefficients.

Though the damping coefficient 6 kg/s describes experimental data satisfactory

for both chains (Figs. 3.5 and 3.12), it is interesting to compare systems with different

mass ratio at larger damping coefficients which may correspond to the larger plastic

deformation at the contacts or to the chains immersed in liquid. The difference can be

expected because solitary wave is not supported in the former case (thus localized pulse

is attenuated (Fig. 3.15(a)) even without dissipation losing energy into the oscillatory

tail).

At the same time attenuation due to dissipation might mask this difference if

widths of pulses are different and contact dissipation is the main source of attenuation.

The results are presented in Fig. 3.15 (b), (c), and (d) for damping coefficients 10 kg/s and

15 kg/s, and 100 kg/s, correspondingly. For systems with damping coefficient 6 kg/s (Fig.

3.15 (b)), which gives the results most close to experimental data, the relative amplitude

decrease in the system with mass ratio 0.98 (where dissipation is the only mechanism for

attenuation) at 21st cylinder contact is about 40%. The amplitude decrease in a system

with mass ratio 0.55 at the same contact number is higher being equal close to 50%. The

10% difference is due to the presence of nonlinear dispersion (not balanced by strong

nonlinearity) in the latter system.

With the increase of damping coefficient to 10 kg/s the amplitude decrease with

increase of contact number in both systems is very close (Fig. 3.15(c)), manifesting that



61

Figure 3.15: The attenuation of the relative pulse amplitude (with respect to the ampli-
tude of the reference pulse in the 4th cylinder, mass ratios 0.98 and 0.55) and change of
decay efficiency in two systems with increased damping coefficient at the same contact
number in the chains at corresponding values of damping coefficients 0 (a), 6 kg/s (a),
10 kg/s (b), 15 kg/s (c), and 100 kg/s (d). Mass of cylinders is larger than mass of
spheres (2.085 g).
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nonlinear dispersion is not a major factor in decay in the chain with mass ratio 0.55.

Further increase of the damping coefficient to 15 kg/s demonstrates the surprising

result - the attenuation in 0.98 mass ratio system becomes larger than in the two mass

system with optimal mass ratio 0.55 (Fig. 3.15(d)), which provides maximum decay in

nondissipative dimer chain (Fig. 3.8). We explain this phenomenon by the difference

in shapes of particle velocity profiles in investigated systems (Fig. 3.16). From this

figure (Fig. 3.16(d)) it is clear that dissipation at the damping coefficient 15 kg/s does

not result in significant differences of pulses space scales in comparison with the case

without dissipation, only adding tails in particle velocities which amplitude is increasing

with increase of damping coefficient. This demonstrates that strong nonlinearity and

nonlinear dispersion caused by periodic mesostructure control the shape of the pulses in

both systems even in the presence of dissipation.

The important difference between chains with mass ratio 0.98 and 0.55 is that the

former chain supports a narrow solitary wave composed from only 5 particles, with major

gradients of velocity just between two particles at the front and two particles at the back

of this wave [9]. This large differences between velocities of neighboring particles in one

mass chain result in larger viscous dissipative losses (Eqs. 3.8-3.12) in comparison with

two mass chain were localized pulses (not solitary waves) have a longer dimensions and

thus a smaller gradients of velocity between neighboring particles. This difference may

explain the reversal in impact mitigation effectiveness of these systems with increased

damping coefficients.

Moreover two mass chains in the discussed case (heavy cylinders/light spheres)

would be heavier at the same number of particles than one mass chain (light cylinders/light

spheres). Thus at this level of dissipation (15 kg/s) one mass chain with the same number

of particles has a smaller mass also making it a better protector against impact pulse with

a short duration.
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Figure 3.16: The change of particle velocities profiles in both sytems with increase of
damping coefficient. The maximum of pulse amplitude corresponds to 42nd particle
(21st cylinder), odd numbers are related to spheres and even to cylinders. Numerical
calculations with damping coefficients 0 (a), 6 kg/s (b), 10 kg/s (c), 15 kg/s (d) and
100 kg/s (e). Particle velocities in system with mass ratio 0.98 (blue, open circles) and
particle velocities in system with mass ratio 0.55 (red, solid circles). Mass of cylinders
is larger than mass of spheres (2.085 g).
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From comparison of pulse attenuation at damping coefficients 10 kg/s and 15

kg/s we can conclude that the former value is close to critical value corresponding to

the reverse of performance of these systems with respect to pulse amplitude decay. This

transition corresponds to the prevailing influence of dissipation over decay caused by

mesostructure in dimer chain.

The further increase of damping coefficient to 100 kg/s makes the pulse shape

in both system very similar (nonsymmetric triangular pulse, Fig. 3.16(e)) resulting in

negligible role of nonlinear dispersion and in practically identical attenuation in both

systems (Fig. 3.15(e)) after pulse travelling through the same number of particles.

However, the systems with the same numbers of particles, but with different

mass ratios have different total masses. For design purpose (for example if mass of the

protection layer is the main design parameter, e.g., in helmets), it is interesting to compare

the attenuation of the pulses at different values of damping coefficient in the same systems

with different mass ratios after propagation not through the same number of particles (as

in Fig. 3.15), but through the chains with the same masses. The corresponding data from

experiments and numerical calculations are presented in Fig. 3.17, linear approximation

was used to approximate the data in Fig. 3.17(a) based on data from Fig. 3.5 and Fig.

3.12.

In experiments the attenuation of signals traveling through the length of chains

having the same masses (but with different mass ratios of particles 0.98 and 0.55 com-

posed from the same spheres (2.085 g) and cylinders having masses similar to the sphere

mass and heavier, correspondingly) are quite similar (Fig. 3.17(a)). In numerical cal-

culations without dissipation (chain with mass ratio 0.98) no attenuation of the pulse

was observed in contrast to significant attenuation in the nondissipative chain with mass

ratio 0.55, (Fig. 3.17(b)). The similar attenuation in experiments (Fig. 3.17(a)) in both

chains of equal masses, despite the two mechanism of decay existing in two mass chain
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Figure 3.17: Relative amplitude (with respect to the amplitude of the reference pulse at
the 4th cylinder) after propagation through the chain with the same mass at different
values of damping coefficient in experiments (a) and in numerical calculations with
different damping coefficients: 0 (b), 6 kg/s (c), 10 kg/s (d), 15 kg/s (e) and 100 kg/s (f).
Mass of cylinders is larger than mass of spheres (2.085 g).
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(dispersion and dissipation) versus only one mechanism in one mass chain (dissipation),

is apparently due to the stronger effect of dissipation in the latter system.

In numerical calculations with a damping coefficient of 6 kg/s, the respective

relative amplitudes are very close to experimental values for both chains (compare Fig.

3.17(a) and (c)). At the increased damping coefficients starting from 10 kg/s, the system

with mass ratio 0.98 demonstrates faster pulse attenuation than system with mass ratio

0.55 after the travelling through the chain with the same mass (Figs. 3.17(d) - (f)). This

difference in enhanced by a smaller number of contacts in the system with mass ratio 0.55

at the same total mass travelled by the pulse. Though one mass chain is also preferable

for pulse mitigation given the same mass of the chain at the damping coefficient 100

kg/s, the difference is smaller than at lower damping coefficients 10 and 15 kg/s. This is

explained by the similar gradients of particle velocity between elements in both chains

at damping coefficient 100 kg/s (Fig. 3.16(e)) and by a larger number of dissipative

contacts in one mass chain (light cylinders/light spheres) versus two mass chains (heavy

cylinders/light spheres).

Thus strongly dissipative one mass chains will be again better for the impact

protection at the same total mass of particles than two mass chains with larger mass of

cylinders relative to the mass of spheres.

It is also interesting to compare behavior of one mass system with two mass

system having the mass ratio of particles close to optimal value 0.55 (but with reduced

mass of cylinders versus spheres) at the same striker impact. The attenuation of the

relative pulse amplitude depending on number of travelled contacts in chains with mass

ratios 0.98 and 0.55 is presented in Fig. 3.18. In the latter chain a mass of cylinders is

smaller than mass of spheres (2.085 g), unlike in the previous case corresponding to Fig.

3.15.

Numerical calculations (Fig. 3.18) show that with reduced cylinder masses and
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Figure 3.18: The attenuation of the relative pulse amplitude with respect to the am-
plitude of the reference pulse in the 4th cylinder, mass ratios 0.98 and 0.55, mass of
cylinders is smaller than mass of spheres (2.085 g) and change of decay efficiency
in two systems with increased damping coefficient. Relative amplitudes in numerical
calculations at the same position in the chains at corresponding values of damping
coefficients 6 kg/s (a), 10 kg/s (b), 15 kg/s (c), and 100 kg/s (d).
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the same masses of spheres, the attenuation of relative amplitude of pulses travelled

through the same number of particles in chain (number of contacts) is similar to the

previous case of two mass chain with larger cylinder masses (Fig. 3.15). In this case

also the one mass system is better in attenuating the pulse amplitude with increased

damping coefficient probably for the reason that pulse in two mass system contains a

larger number of particles and thus a smaller difference of particle velocities between

elements. At the damping coefficient 100 kg/s the difference in attenuation is negligible

when pulse travelled the same number of particles.

But in case if the optimal two mass system (mass ratio 0.55) has a smaller cylinder

mass it also has a smaller total mass, at the same number of contacts, than one mass

system composed from the same spheres and cylinders of equal masses. For the design

purpose it is interesting to compare the attenuation of the pulses in these systems having

the same mass at different values of damping coefficients. The corresponding results

from numerical calculations are presented in Fig. 3.19.

We can see that at damping coefficient 6 kg/s (close to the value in experiments

with the identical contacts) the two mass chain with mass of cylinders being smaller

than mass of spheres (2.085 g), mass ratio is 0.55 is significantly better at the same

chain mass. This is caused by dispersion effects in combination with smaller number of

travelled dissipative contacts in one mass chain. With increased damping coefficient the

difference in mitigation between thee systems becomes smaller due to the stronger effect

of dissipation on signal attenuation in more narrow pulse in one mass chain explained

above. Thus this chain is preferable if the mass of the attenuating system is the main

design parameter, as in helmets.
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Figure 3.19: Relative amplitude (with respect to the amplitude of the reference pulse at
the 4th cylinder) after propagation through the chain with the same mass at different
values of damping coefficient in in numerical calculations with different damping
coefficients: 6 kg/s (a), 10 kg/s (b), 15 kg/s (c) and 100 kg/s (d). Mass of cylinders is
smaller than mass of spheres (2.085 g), mass ratio is 0.55.
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3.4 Conclusions

Propagation of short pulse in dimer chains with two different mass ratios (0.98

and 0.55) was investigated in experiments and numerical calculations. The same striker

was used to generate short pulses in these systems to compare their effectiveness under

the same impact. Both chains had the fixed cylinder-sphere contact, which keeps dissipa-

tive properties (damping coefficient) of both systems identical highlighting the role of

radiation based attenuation mechanism present in the chain with mass ratio 0.55, unlike

in [1, 3]. The cylinder-sphere chains are more convenient with respect to design any mass

ratios and keeping diameters of particles the same, which is difficult to accomplish with

sphere-sphere chains placed in the channel.

The attenuation of pulse amplitude due to dissipation was modeled using linear

viscosity term which qualitatively described the observed rate of attenuation in both

systems at the same damping coefficient equal 6 kg/s. In both experiments and corre-

sponding numerical calculations pulses in the system with mass ratio 0.55 attenuates

faster.

The change of the dependence of the force on mass ratio in dissipative chains

with fixed contacts is not symmetric with respect to global minimum. There is a relatively

small change of the transmitted force for small mass ratio up to optimal ratio 0.55, but

few times larger change of transmitted force was observed in the chain with small mass

difference. We explain this nonsymmetric behavior by larger gradients of particle velocity

between neighboring particles in chains with smaller mass differences.

Introduction of viscous damping blocks the gap opening starting at the damping

ratio 6 kg/s. Thus damping not only dissipate energy, but also eliminates the process of

gap openings and corresponding time scales (gap opening divided by particle velocity)

characteristic for nondissipative chains.
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The input into pulse decay due to strongly nonlinear dispersion effect in experi-

ments can be illustrated by comparison between chains with the same number of identical

dissipative contacts crossed by travelling pulse. In the system with mass ratio 0.98, where

the only active mechanism of attenuation is dissipation, 40% amplitude decrease was

observed in experiments, unlike larger decrease (50%) in the chain with mass ratio 0.55,

being caused by both mechanisms of decay. The influence of the value of damping

coefficient on the relative effectiveness of these systems to mitigate identical impact was

investigated numerically in the case when mass of cylinders was larger than mass of

spheres. If these systems have the same number of particles or the same mass travelled

by the pulse, their amplitudes in the dimer system with mass ratio 0.55 attenuate faster

than in the system with mass ratio 0.98 only when damping coefficient is below some

critical value (below 10 kg/s).

At larger damping coefficients the system with mass ratio 0.98 mitigate the same

impact better than the system with mass ratio 0.55. The former chain in this highly

dissipative systems has a smaller mass providing the same level of attenuation than the

system with mass ratio 0.55. The one mass system is preferable system for the higher

level of viscous dissipation (e.g., granular chains in liquid) because it forcefully supports

the high gradients in the narrow pulse by strongly nonlinear dispersion. At the highest

investigated level of viscous dissipation (damping coefficient 100 kg/s) the pulses in

both systems are of the similar width resulting in a similar viscous dissipation of pulses

travelling the same number of contacts.

A different behavior of two and one mass chains with increase of damping ratio

was observed with respect of shape of the propagating pulses. One mass chain excited by

impact of sphere demonstrates a two wave structure (solitary wave plus oscillatory shock

wave), this phenomena was not observed in two mass chain. At the largest damping ratio

100 kg/s both chains behave in a similar way.
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Numerical calculations for a different system where a cylinder masses are smaller

than masses of spheres show similar results to the system with larger mass of cylinders

for the same number of contacts crossed by travelling pulse. But in this case dimer

system with the same total mass has larger number of dissipative contacts enhancing

pulse attenuation at all values of investigated damping coefficients.

These results help to select appropriate mesostructure and dissipative properties

of the strongly nonlinear discrete systems for protection barriers.
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Chapter 4

Solitary Waves In “Sonic Vacuum”

Generated By the Striker Impact

The striker impact generates a single solitary wave or train of solitary waves in

discrete strongly nonlinear systems depending on the relation between impactor mass and

mass of the particle in the system. The striker did not rebound from the chain with infinite

mass if its mass is larger than the effective mass of solitary wave, its linear momentum

and energy are completely transferred into the discrete system. The resulting train of

solitary waves emerges from the collective behavior of many particles and thus in general

it can’t be predicted based on two conservation laws. This chapter presents an approach

based on imaginary collision of impactor with quasiparticle with some effective mass.

This approach is based on two conservation laws and it satisfactory predicts the linear

momenta, energies and amplitudes in the train of solitary wave in far field depending on

the relative mass of the striker and particles in the chain.

74
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4.1 Experimental procedure

Chains were composed from steel spheres (440C) and steel cylinders (304),

arranged alternatively with the diameter d and height h correspondingly, the cell size

was equal to a = h+d. They were placed inside the space formed by four aluminum

rods arranged vertically (Fig. 4.1). The mass ratio was changed by using cylinders with

different heights, but keeping the nature of contacts the same.

Figure 4.1: Cylinders and spheres aligned in 1-D chain. The numeration of particles
in the chain (i = 1,2,3, ...N/2) corresponds to the numerical calculations, striker is
particle 1.

The chain was assembled from 45 steel spheres (440C) with a mass m = 2.085 g

and 44 steel cylinders (304) with a height h = 5.3 mm and a mass of 2.043 g. This chain

with the mass ratio equal to 0.98 supports solitary like waves very close to the expected

solitary wave in the chain with equal masses of particles [1].

Wave in experiments were generated by of impact the stainless steel rods with

a flat end having masses 39.14 g and 10 g on the first spherical particle. The velocity

of impact measured using high speed camera Phantom V12 was equal to 0.25 m/s. The

impactors did not recoil at least during the time of optical observation equal 31.654 ms, it

is about 15 times longer than expected time of the arrival of the reflected wave from the

bottom of the nondissipative chain. The wave reflected from the supporting wall would

result in the recoil of the striker. We assume that the negligible velocity of the striker’s
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recoil is caused by the attenuation of reflected wave.

The forces acting inside cylinders were measured by piezogauges embedded in

the 4th cylinder (used to specify the incoming pulse) and inside the cylinders placed

deeper in the chain (10th, 15th and 21st ) similar to [2,3,4]. The piezogauges supplied by

Piezo Systems Inc. were custom cut and wired, their sensitivity was in the range 6.8 -

7.1 N/V, (time constant of the RC circuit RC ∼ 537µs, where R is the resistance of the

oscilloscope entrance and C is capacity of the piezogauge). The signals from the gauges

were recorded using oscilloscope Tektronics TDS 2014.

Piezogauges were calibrated using impact by the PTFE sphere (mass 0.12 g) with

a recorded impact velocities (0.7 - 0.8 m/s) based on linear momentum conservation of

impactor and measured force-time history up to the maximum force similar to [3].

4.2 Numerical Calculations

Static Hertzian law was used to describe elastic dynamic contact interaction of

cylinders with flat ends and spheres depending on their relative displacements. This

approach is valid under some assumptions [2,5] proven in experiments by different

groups of researchers [6-10]. We neglect very small difference in masses of spheres and

cylinders. The equations of motion of the cylinders and spheres with equal masses in the

nondissipative chain are presented below

müi = A[{(ui−1,0 +ui−1− (ui,0 +ui)}3/2
+ −{(ui,0 +ui− (ui+1,0 +ui+1)}3/2

+ ]+mg,

A =
4ECES(RS)

1/2

3[E−S(1−ν2
C)+EC(1−ν2

S)]
,

(4.1)

where m is the mass of the particles (cylinder or sphere), ui−1,0,ui,0, and ui+1,0 represent

equilibrium displacement of centers of corresponding particles in the gravitationally
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loaded chain calculated from initially undeformed positions. Variables ui−1,ui, and

ui+1 represent dynamic parts of overall displacements during wave propagation,i =

3,4, ...N−1, where N is the total even number of particles including the impactor (particle

1) and the last spherical particle contacting the wall. Positive subscript corresponds to

forces acting between neighboring particles being in contact (otherwise interaction force

is zero). The constant A depends on the Young moduli (EC, ES) and Poisson’s ratios

(νC,νS) of materials of interacting particles and the curvature of contacting areas [4]. In

our experiments we had the radii RS of spherical particles equal 4 mm and constant A

corresponds to interaction of spherical particles and cylinders with a flat faces. Density

and elastic properties of contacting particles were selected as follows ρ = 8000kg/m3,

Young’s modulus E = 193GPa, and the Poisson ratio ν = 0.3.

The separate equation for the impactor (dynamic displacement u1), initially con-

tacting the first sphere in the gravitationally loaded chain (there is no contact deformation

between these two particles prior to the impact) is

mimpü1 =−A1(u1−u2)
3/2
+ +mimpg,A1 =

4EimpES(Rimp)
1/2

3[E−S(1−ν2
imp)+Eimp(1−ν2

S)]
, (4.2)

where A1 is corresponding to the contact of the impactor (end radius of impactor Rimp,

Young’s modulus Eimp and Poisson’s ratios vimp) and the first sphere.

Equation for the first spherical particle (dynamic displacement u2) is

msü2 = A1(u1−u2)
3/2
+ −A[(u2,0 +u2)− (u3,0 +u3)]

3/2
+ +mg. (4.3)

Equation for the last spherical particle (dynamic displacement uN) contacting the

flat wall is

msüN = A[(uN−1,0−uN−1)− (uN,0 +uN)]
3/2
+ −A(uN,0 +uN)

3/2
+ +mg. (4.4)
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We include gravitational precompression in our numerical modeling (Eq. 4.1)

because it reflects vertical position of our chain in experiments. But influence of this

initial precompression on the wave propagation in experiments and in calculations was

negligible at the length of our chain and at relatively high amplitude of dynamic force.

In numerical calculations a total energy was conserved with accuracy 10−4% in

nondissipative chain and linear momentum was conserved with accuracy 10−6% (ratio of

energy/linear momentum deviations from their average values in percentages). Numerical

calculations were conducted without dissipation to clarify role of dispersion and strong

nonlinearity on the wave transformation.

4.3 Results and Discussion

The pulses in the numerical calculations were generated by the striker with mass

39.136 g (being equal about 18.7m). Its velocity was adjusted to create the amplitude of

the force in the 4th cylinder similar to experimental data. This pulse was considered as

a reference input. The generated shock like oscillating triangle wave profile (Fig. 4.2

(a)) demonstrated its clear tendency to the start of separation into train of solitary waves.

Similar behavior was observed in experiments Fig. 4.2 (b)), except that the amplitude of

the leading peak was practically constant in numerical calculations unlike its weak decay

in experiments (115N to 105N).

As the pulse propagated deeper into the chain a tendency to clear separation

of oscillating pulses into train of solitary waves can be observed in numerical calcula-

tions of (Fig. 4.3(a), (c), and (d)). The leading part of the pulse is transformed into

solitary wave around fiftieth cylinder (Fig. 4.3(c)). It is a typical feature of strongly

nonlinear discrete systems, especially evident in nondissipative granular chains where

finite duration propagated pulses are split into train of solitary waves [2,6,11]. In case
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(a) (b)

Figure 4.2: Comparison of experimental results and numerical calculations of the pulse
propagating through the system. Pulses were excited by the impact of rod with mass of
39.136 g. Sensors are placed in the 4th and 5th cylinders. (a) Numerical calculations,
(b) experimental results. The vertical scale is 20 N and the curves are offset for visual
clarity and zero time is arbitrary.

of the negligible or small dissipation we could expect that the incoming pulse would

be eventually transformed into train of solitary waves, their number with significant

amplitude being determined by the mass ratio of impactor to the mass of particles in the

chain [2].

It is important to emphasize that amplitude of this leading solitary wave is very

close to the amplitude of the leading peak in the oscillating shock like wave on the very

early stages of wave propagation (compare Fig. 4.3(a) and Fig. 4.3 (c) and (d)). Thus the

leading amplitude of oscillatory shock wave can be estimated based on the amplitude of

leading solitary wave in far field.

The same phenomenon was not observed in the experiment (Fig 4.3 (b)) though

the tendency to the separation of the leading peak is present. This difference in behavior

is caused by dissipation in experiments which was not considered in the calculations. It

is clear that with wave propagation the leading peak in experiments is more separated

from the rest of the force profile similar to numerical calculations. It is interesting that

in experiments impact by striker with smaller mass equal to five mass of spherical steel
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(a) (b)

(c) (d)

Figure 4.3: Numerical calculations of the compression pulse propagating through the
system which has a mass ratio of 0.98 and experimental results. Pulses were excited by
the impact of rod with mass of 39.136 g equal about 18.7m. (a), (c) and (d) numerical
calculations related to the forces in the 4th and 21st (a), 50th (c), and 120th (d) cylinders;
(b) experimental results, sensors are placed in the 4th and 21st cylinders. The curves are
offset for visual clarity and zero time is arbitrary.

particles forming the chain resulted in a faster separation into train of solitary waves

(compare Fig. 4.3(b) and Fig. 3 in [6] or Fig. 1.23(a) in [2]), a complete separation of the

pulse into train of solitary waves was observed at 40th particle [2, 6]. This comparison

illustrates that splitting of incoming pulse into train of solitary waves is faster at smaller

striker mass.

In numerical calculations the speed of the leading pulse propagating in the interval

between 4th and 5th cylinder was 659 m/s and between 4th and 21st cylinders was 657.8
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m/s. Numerical calculations demonstrated that gravitational precompression increases

the speed of leading pulses within investigated intervals by less than two percent. The

difference between numerical calculations and experimental results presented above

(665 m/s and 656 m/s, correspondingly) is less than one percent being within error

margins. The close values of the pulse speeds in experiments despite attenuation are due

to the weak dependence of solitary wave speed on amplitude in the chain with Hertzian

interaction [2].

We can see that initial pulse excited by striker in nondissipative chain is split

into train of multiple solitary waves in far field from the entrance if the striker mass is

significantly larger than mass of particles in the chain (Fig. 4.3(c) and (d)). Parameters

of these solitary waves can be found based on different approaches which introduce

additional hypothesis which are complimentary to energy and momentum conservation

laws [7, 12, 13].

In this chapter we consider hypothetical scenario of generating the train of solitary

waves in far field considering the multiple sequential striker impacts with imaginary

mass being in rest such that each collision generates corresponding solitary wave in

the train with linear momentum being close to the calculated values in exact numerical

approach. This scenario preserves linear momentum and energy of the system and it does

not require any additional hypothesis. This is similar to the approach used to calculate the

parameters of solitary wave train generated at the interface of two sonic vacua (granular

chains) proposed in [14] where the movement of the last heavy particle adjacent to the

interface was generating solitary train.

This scenario oversimplifies the process of striker interaction with the particles

in a granular chain considering only interaction of striker with imaginary effective

mass. In fact it interacts with collective of particles at the vicinity of impact point and

these particles are not yet self-organized themselves into particular motion for example,
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representative for solitary wave. Second simplification in the proposed scenario is the

neglect of recoil of end particles and the striker from the chain [2,6,15]. These recoiled

masses carry linear momentum and energy, which is not accounted in the proposed

scenario. This assumption is feasible because recoiled particles do not carry significant

portion of energy and linear momentum. For example, recoiled particles take only 2%

percent of the linear momentum and even less kinetic energy (0.04%) [2] after impact of

striker with mass equal to the mass of two particles. This approach is intended to provide

simple estimation of the amplitude of the leading solitary wave and neglects possibility

to create small amplitude solitary waves when mass of striker is larger than mass of the

particles in the chain.

In this chapter we investigate the accuracy of this scenario, which considers only

interaction of striker with imaginary effective mass to predict parameters of solitary wave

in the train in far field for different striker masses for nondissipative chains.

To apply the proposed scenario to the generation of the train of solitary waves we

first introduce effective mass of solitary wave considered as quasiparticle. The velocity

of particles in the solitary wave, determining their linear momenta and kinetic energy,

are proportional to the maximum particle velocity υm in the solitary wave [2]. Thus

linear momentum of solitary wave is also proportional to υm and its kinetic energy Ek is

proportional to υ2
m. The ratio of kinetic to potential energy (Ep) of the solitary wave in

sonic vacuum, corresponding to particles interaction according to the Hertz law, is close

to 1.25. This ratio does not depend on solitary wave amplitude [2]. Thus total energy

of the solitary wave is close to 1.8Ek. These properties allow consideration of a solitary

wave as a quasiparticle with the effective mass ms and with effective kinetic energy equal

to sum of kinetic and potential energies of particles in it. This effective mass does not

depend on the amplitude of solitary wave and it can be calculated from the following

equation:
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P2

2ms
= Ek +Ep, (4.5)

where P is the total linear momentum of particles (each with mass m) in the solitary

wave. The left part is the effective kinetic energy of the solitary wave (quasiparticle)

represented by a sum of Ek and Ep, which are a total kinetic and potential energies of

real particles in the chain. Using this equation and results from numerical simulations,

it was found that the effective mass of the solitary wave ms is close to 1.3m, which is

slightly lower than presented in [2, 14].

The following relation between maximum particle velocity in the strongly non-

linear solitary wave υm and its linear momentum P was found in numerical calculations

(Eq.4.6).

P≈ 1.67υmm. (4.6)

This equation is useful for calculation of linear momentum of solitary waves

based on the value of maximum particle velocity. It should be emphasized that sum

of the linear momenta of particles in the solitary wave P is not equal to msVs (Vs is a

phase speed of solitary wave). This phase speed is much larger than velocity of particles

and it depends nonlinearly on the maximum particle velocity υm. The effective mass of

solitary wave and relation between maximum particle velocity and linear momentum do

not depend on elastic properties of particles, but they do depend on the type of interaction

force between grains, e.g., for power law interaction force they depend on the value of

exponent [2].

The chain impacted by striker undergoes a complex behavior due to strongly

nonlinear interaction between multiple particles and their self organization into train of

solitary waves in far field. This complex behavior is simplified in the proposed scenario
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of the sequential impacts of the striker with the imaginary particle in rest with effective

mass meff (the striker mass mst > meff). This approach allows using conservation of linear

momentum and energy resulting in the following equation for linear momentum Pn of

the n-th solitary wave generated by the n-th impact of the striker [14]:

Pn =
2P0(B−1)n−1

(B+1)n , (4.7)

where P0 is the initial linear momentum of the striker, B = mst/meff> 1, and number n

corresponds to the n-th solitary wave.

Linear momentum of striker after impact, resulted in the generation of n-th

solitary wave, is equal to

Pst,n =
P0(B−1)n

(B+1)n . (4.8)

The multiple impacts of striker and the imaginary mass equal to meff transfer all

initial linear momentum and energy of striker into the chain generating infinite number

of solitary waves with decreasing amplitude without recoil of the striker. The proposed

scenario is different than considered in [7] where only parameters of the leading solitary

wave were determined based on the collision of the striker with effective mass in rest

being equal to effective mass of solitary wave and the amplitudes of the other solitary

waves were assumed to follow exponential dependence on their number.

The values of imaginary effective mass in rest can be chosen based on different

approaches. It is natural to select this mass being equal to the effective mass of solitary

wave because these waves are eventually emerged at the far range [2, 7,14].

Another approach to choose meff can be based on the observed phenomena in

numerical calculations that maximum particle velocity in the leading solitary wave is

equal exactly to twice of the velocity of the piston moving with constant mass or striker
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with very large mass, B� 1 [2]. This is demonstrated in Fig. 4.4. For example, the

maximum particle velocity in the leading solitary wave reaches 1.976υst when the mass

of the striker is 1000 times greater than the mass of the particles, and it increases to

1.9980υst when this mass ratio become 10000.

mst/m
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υ
m
/υ
st

1
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Figure 4.4: Ratio of maximum particle velocity to striker initial velocity depending on
the ratio ratio of striker mass to mass of spheres in the chain.

It should be mentioned that equation for the relation between linear momentum

of the striker and leading solitary wave in [7] does not predict the value of the maximum

particle velocity in the leading solitary wave being twice the velocity of impactor when

its mass much larger than mass of particles. The predicted maximum velocity in the

leading solitary wave at very large mass of striker using Eq. 19 in [7] and Eq. 4.6 is equal

to 1.61υst .

The linear momentum of the leading solitary wave at B� 1 (n = 1, P0 = mstυst),
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using imaginary scenario where striker interacts with meff, is equal P1 = 2υstmeff. (Eq.

(4.7)). Combining this result with Eq. (4.6) and taking into account that υm = 2υst obtain

meff ≈ 1.67m.

Striker interaction with the different effective masses meff might reflect different

pictures of the self-organized motion of the end particles in the chain generating a leading

solitary wave in a far field.

In case if striker mass in the proposed scenario is smaller than imaginary effective

mass in rest (B = mst /meff < 1) then only one interaction happened with the chain and

linear momentum of generated single solitary wave P is

P =
2P0

(B+1)
. (4.9)

The linear momentum of recoiled striker Pst is equal

Pst =
P0(B−1)
(B+1)

. (4.10)

The proposed scenario predicts linear momentum of the solitary waves in the

far field where initial disturbance is transformed into the train of solitary waves in case

B > 1. If B < 1 then completely different behavior is described by Eqs. (4.9) and (4.10).

To investigate if the proposed simplified scenario provides the reasonable es-

timation of the parameters of solitary waves in the train (or single solitary wave) we

compare the numerical and the analytical results using Eqs.4.7-4.10. The momenta of

solitary waves and strikers with different masses in numerical calculations performed

without gravitational precompression and using Eqs. 4.7-4.10 are presented in Tables

4.1-4.8 for different values of imaginary effective mass. Numerical (Pnum) and analyti-

cal (Pa,P′a,P
′′
a ) results for linear momentum of single solitary wave (B < 1) and striker

(Pst,num,Pst ,P′st ,P
′′
st) are presented. Values of P′a, and Pst were found using the mass of
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particles in the chain as (meff = m); Pa and Pst were calculated using coefficient B based

on the meff = ms ≈ 1.3m; P′′a , and P′′st were found assuming collisions of striker with

imaginary effective mass meff= 1.67m.

Table 4.1 presents results of the impact by striker with velocity 0.457 m/s and

the mass 0.1m (smaller than mass of particles in the chain) on the chain of particles with

mass m = 2.086 g. The initial momentum of the striker P0 = 9.533×10−5 kgm/s.

In numerical calculations a single solitary wave was excited in the chain (maxi-

mum velocity 0.05641 m/s, on its back 0.0176 m/s, on the back at the bottom, 0.0004457

m/s; ahead of maximum 0.01924 m/s, next to it 0.000543 m/s) with linear momentum

Pnum = 19.658 · 10−5 kgm/s. The numerical calculations demonstrate conservation of

linear momentum in the system with accuracy 10−8%. The striker rebounds with the

velocity -0.3746 m/s corresponding to its linear momentum −7.814 ·10−5 kgm/s. But

the sum of these linear momenta is equal to 11.844 · 10−5 kgm/s and it is larger than

initial linear momentum of the striker P0 = 9.533 ·10−5 kg m/s.

The difference between sum of the linear momentum of recoiled striker and

solitary wave and the initial linear momentum of striker is −2.333 · 10−5 kg m/s. Its

magnitude corresponds to the magnitude of the linear momentum of recoiled end particles

(24.47% of initial linear momentum). In numerical calculations the recoiled eight end

particles have fast decreasing velocities starting with the first particle: -0.005671 m/s,

-0.002429 m/s, -0.001275 m/s, -0.0007163 m/s, -0.0004135 m/s, -0.0002409 m/s, -

0.0001404 m/s, and -0.00008153 m/s, velocities of other particles are presented in Fig.

4.5. These particles have the linear momentum −2.288 · 10−5 kgm/s. Sum of linear

momenta of recoiled striker, solitary wave and eight end particles is smaller than initial

value only by 0.4%. Inclusion of linear momenta of additional recoiled end particles

increases the accuracy of momentum conservation. It is interesting that dependence of

the recoiled velocities of particles on their position in the chain follows exponential law
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first introduced in [15] for the striker mass equal mass of particle with similar exponents

(−0.56n and −0.55n, correspondingly).

Rebounded Particles (n)
1 3 5 7 9 11 13 15 17 19

Re
bo

un
d 

V
el

oc
ity

 [m
/s]

-100

-10-2

-10-4

-10-6

-10-8

Numerical Results
-0.013exp(-0.56n)

Figure 4.5: Velocity of rebounded striker and particles as function of their initial
position in the chain (n = 2 corresponds to the first particle in the chain and n > 2
correspond to subsequent particles) after impact by striker (n = 1) with mass 0.1m.

Fig. 4.6 illustrates that at the moment of striker’s recoil in numerical calculations

the velocity of the second particle is very small. In other words, at very small mass

of striker its interaction time with top particles is very small and disturbance does not

propagate in into significant depth in the particle chain.

It is also clear from particles velocities in Fig. 4.6 that at the moment of striker’s

recoil the contact between the first and second particles is under compression. In later

moments it also results in the recoil of the first particle with velocity equal -0.005671

m/s (other particle contacts are less compressed resulting in particles recoil later with

smaller velocities (Fig. 4.6), see below). This recoil of the particles near impacted end

contributes to the linear momentum of formed solitary wave in numerical calculations.

This self-organization of particles movement near the impacted end of the chain
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Rebounded Masses (n)
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ts = 11

Striker

1st particle

Figure 4.6: Velocities of the striker (n = 1) and particles in the chain at different time
(before (5th time step) and right after striker’s recoil (11th time step), each time step
is equal 1.4 microseconds)) in numerical calculations. Striker mass 0.1m, its initial
velocity 0.457 m/s. .

and their recoil is not included into proposed imaginary scenario of the strike impact with

some effective mass. It is assumed that resulting amplitude of the emerging solitary wave

can be estimated by adjusting values of effective mass. Estimation of the solitary wave

linear momentum in analytical approach assuming striker impact with effective mass meff

equal mass of solitary wave ms provides a better agreement with numerical calculations

than impact of striker with effective mass meff= m. Selecting meff= 1.67m provides

slightly better agreement of linear momentum of solitary wave still being smaller by less

than 10% with respect to values obtained in numerical calculations (Table 4.1)

The recoil velocity of striker assumed to be interacting with particle mass (m) in

analytical approach (P′st = 7.780 ·10−5) is closer to the results of numerical calculations

(Pst,num = 7.814 ·10−5).

Increase of striker mass to the value 0.5m (velocity 0.457 m/s, linear momentum
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P0 = 4.7665 ·10−4 kgm/s) results in the following parameters of the recoiled striker and

single solitary wave (Table 4.3, 4.4).

In numerical calculations a single solitary wave was excited in the chain with

linear momentum Pnum = 7.519 · 10−4 kgm/s. The striker rebounds with the velocity

-0.1661 m/s corresponding to its linear momentum −1.732 · 10−4 kgm/s. The sum of

these linear momenta is equal to 5.787 · 10−4 kgm/s and it is larger than initial linear

momentum of the striker P0 = 4.7665 ·10−4 kg m/s and the difference is −2.333 ·10−5

kg m/s. Its magnitude corresponds to the magnitude of the linear momentum of recoiled

end particles (14% of initial linear momentum). In numerical calculations the recoiled

eight end particles have fast decreasing velocities starting with the first particle: -0.0156

m/s, -0.0071 m/s, -0.0038 m/s, -0.0022 m/s, -0.0012 m/s, -0.00073 m/s, -0.00042m/s,

and -0.00025 m/s. These particles have a total linear momentum of −6.56 ·10−5 kgm/s

corresponding to 14% of initial linear momentum. Sum of linear momenta of recoiled

striker, solitary wave and accounted eight end particles is smaller than initial value only

by 0.2%.

Again the recoiled velocity of striker is better predicted in analytical calculations

assuming that it interacted only with mass of particles in the chain (m) and solitary wave

linear momentum is better predicted using the effective masses for the similar reasons

outlined above for the case of striker impact with mass 0.1m. As in the previous case the

initial linear momentum of striker is distributed mainly between recoiled striker and first

particle, but significant part of its energy is stored in the particles contacts near impacted

end which later is partially transformed into kinetic energy of solitary wave.

We can see that increase of the striker mass from 0.1m to 0.5m resulted in the

decrease of its recoil velocity. Impact by both strikers generates solitary wave due to self-

organization of a few particles near impacted end. It is interesting to use broader variation

of striker mass to probe what is the effective mass, which can describe interaction of
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the striker with the chain, and compare it with the effective mass of solitary wave. The

history of striker velocities for its different mass are presented in Fig. 4.7.

time[µs]
0 20 40 60 80 100

St
rik

er
 v

el
oc

ity
 [m

/s]

-0.4

-0.3

-0.2

-0.1

0
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0.3

0.4

0.5
mst= 0.1m
mst= 0.5m
mst= m
mst= 1.3m
mst= 1.5m
mst= 1.7m

Figure 4.7: The history of striker velocities with different masses 0.1m−1.7m. Note
the negligible recoil of striker with mass equal to the effective mass of solitary wave
(mst = meff= 1.3m).

It is clear that increase of striker mass results in the increase of its interaction

time with the top particle (which effectively increases the number of particles in the

interaction process). The fact that striker recoils when its mass equal to the particle mass

clearly demonstrates that striker interacts with some effective mass larger than particle

mass (Fig. 4.7). At striker mass equal to the effective mass of solitary wave (1.3m) it

recoils with very small velocity being less than 1% of the initial velocity. At larger striker

mass it practically stopped by the interaction with the chain, for example at striker mass

equal 1.7m its recoil velocity is 0.02% of the initial velocity and at striker mass 1.8m
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(not shown in Fig. 4.7) no recoil was detected.

It should be mentioned that when striker’s mass is equal 1.3m impact generates

a secondary solitary waves with very small amplitudes in numerical calculations (their

amplitude is less than 2%).These solitary waves are not captured by analytical approach

if B is calculated based on meff= 1.3m. But selecting B based on meff = m results in less

accurate prediction of the parameters of the leading solitary wave which is the main goal

of our approach.

As striker mass become 1.8m it does not recoil and the chain of the solitary waves

is formed with rapidly decreasing amplitude, e.g., the amplitude of the forth wave is

about 40 times smaller than the first one (Table 4.5). This striker behavior is in agreement

with analytical approach and if meff = 1.3m gives better predictions of the amplitude

of the leading solitary wave (and other waves in the train) then other two values of the

affective mass (m and 1.67m).

The parameters of the first 10 fully developed leading solitary waves at far field

at relatively large striker’s masses (mst = 2.4m∼ 48m) are presented in Fig. 4.8 (these

strikers do not recoil).

Selecting effective mass meff = 1.3m in the analytical approach predicts amplitude

of the first and second solitary waves with accuracy better than 10% when striker masses

are equal 5g and 10g. The analytical approach fails to predict amplitudes of subsequent

smaller amplitude solitary waves with this accuracy (Fig. 4.8(a) and (b)).

The analytical approach at striker mass close to 19m (selecting effective mass

meff = 1.3m) predicts amplitude of the first solitary wave with slightly less accuracy

than selecting effective mass meff = 1.67m (Fig. 4.8(c)). The analytical approach fails

to predict amplitudes of subsequent smaller amplitude solitary waves. It is interesting

that amplitudes of the subsequent solitary waves are better predicted using effective mass

interacting with the striker equal to the effective mass of the solitary wave.



95

Ta
bl

e
4.

5:
L

in
ea

r
m

om
en

tu
m

(k
g

m
/s

)
of

th
e

fir
st

fiv
e

so
lit

ar
y

w
av

es
cr

ea
te

d
by

an
st

ri
ke

rw
ith

m
st
=

5g
≈

2m
.

P n
um

P a
P
′ a

P
′′ a

P a
−

P n
um

P n
um

P
′ a−

P n
um

P n
um

P
′′ a
−

P n
um

P n
um

P 1
1.

62
2
·1

0−
3

1.
62

0
·1

0−
3

1.
3
·1

0−
3

1.
88

0
·1

0−
3

−
0.

01
59

−
0.

18
75

0.
18

75
P 2

4.
34

6
·1

0−
4

4.
79

0
·1

0−
4

5.
53

1
·1

0−
4

3.
36

3
·1

0−
4

0.
10

2
0.

27
23

−
0.

22
62

P 3
1.

25
7
·1

0−
4

1.
42

0
·1

0−
4

2.
28

3
·1

0−
4

5.
98

2
·1

0−
5

0.
13

0.
81

46
−

0.
52

39
P 4

3.
94

4
·1

0−
5

4.
23

2
·1

0−
5

9.
36

1
·1

0−
5

1.
06

4
·1

0−
5

0.
07

36
1.

37
56

0.
72

99



96

Ta
bl

e
4.

6:
L

in
ea

r
m

om
en

tu
m

(k
g

m
/s

)
of

th
e

fir
st

fiv
e

so
lit

ar
y

w
av

es
cr

ea
te

d
by

an
st

ri
ke

rw
ith

m
st
=

10
g
≈

5m
.

P n
um

P a
P
′ a

P
′′ a

P a
−

P n
um

P n
um

P
′ a−

P n
um

P n
um

P
′′ a
−

P n
um

P n
um

P 1
2.

02
4
·1

0−
3

1.
94

9
·1

0−
3

1.
6
·1

0−
3

2.
4
·1

0−
3

−
0.

03
67

−
0.

20
95

−
0.

20
95

P 2
1.

03
8
·1

0−
4

1.
12

0
·1

0−
4

1.
0
·1

0−
4

1.
1
·1

0−
4

0.
07

90
−

0.
03

66
0.

05
97

P 3
5.

59
0
·1

0−
4

6.
41

0
·1

0−
4

6.
76
·1

0−
4

5.
50

7
·1

0−
4

0.
14

7
0.

21
29

−
0.

01
48

P 4
3.

13
0
·1

0−
4

3.
67

0
·1

0−
4

4.
43
·1

0−
4

2.
65

8
·1

0−
4

0.
17

3
0.

41
53

−
0.

15
08

P 5
1.

77
9
·1

0−
4

2.
10

7
·1

0−
4

2.
90
·1

0−
4

1.
28

3
·1

0−
4

0.
18

3
0.

63
01

−
0.

27
88

P 6
1.

03
3
·1

0−
4

1.
20

8
·1

0−
4

1.
90
·1

0−
4

6.
18

9
·1

0−
5

0.
16

9
0.

83
93

−
0.

40
09

P 7
6.

17
4
·1

0−
5

6.
92

6
·1

0−
5

1.
24
·1

0−
4

2.
98

7
·1

0−
5

0.
12

2
1.

00
84

−
0.

51
62

P 8
5.

16
3
·1

0−
5

3.
97

1
·1

0−
5

8.
14
·1

0−
5

1.
44

1
·1

0−
5

−
0.

23
0.

57
71

−
0.

72
09

P 9
3.

73
2
·1

0−
5

2.
27

7
·1

0−
5

5.
33
·1

0−
5

6.
95

6
·1

0−
6

−
0.

39
0.

42
90

−
0.

81
36

P 1
0

2.
72

1
·1

0−
5

1.
30

5
·1

0−
5

3.
49
·1

0−
5

3.
35

7
·1

0−
6

−
0.

52
0.

28
26

−
0.

87
66



97

Ta
bl

e
4.

7:
L

in
ea

r
m

om
en

tu
m

(k
g

m
/s

)
of

th
e

fir
st

fiv
e

so
lit

ar
y

w
av

es
cr

ea
te

d
by

an
st

ri
ke

rw
ith

m
st
=

39
.1

36
g
≈

19
m

.

P n
um

P a
P
′ a

P
′′ a

P a
−

P n
um

P n
um

P
′ a−

P n
um

P n
um

P
′′ a
−

P n
um

P n
um

P 1
2.

63
4
·1

0−
3

2.
31

8
·1

0−
3

4.
0
·1

0−
3

2.
9
·1

0−
3

0.
11

99
0.

51
86

0.
10

10
P 2

2.
11

0
·1

0−
3

2.
01

8
·1

0−
3

3.
6
·1

0−
3

2.
5
·1

0−
3

−
0.

04
36

0.
70

62
0.

18
48

P 3
1.

73
8
·1

0−
3

1.
75

6
·1

0−
3

3.
2
·1

0−
3

2.
0
·1

0−
3

0.
01

04
0.

84
12

0.
15

07
P 4

1.
45

4
·1

0−
3

1.
52

8
·1

0−
3

2.
9
·1

0−
3

1.
7
·1

0−
3

0.
05

09
0.

99
45

0.
16

92
P 5

1.
23

0
·1

0−
3

1.
33

0
·1

0−
3

2.
6
·1

0−
3

1.
4
·1

0−
3

0.
08

13
1.

11
38

0.
13

82
P 6

1.
00

0
·1

0−
3

1.
20

0
·1

0−
3

2.
3
·1

0−
3

1.
2
·1

0−
3

0.
2

1.
3

0.
2

P 7
0.

89
0
·1

0−
3

1.
00

0
·1

0−
3

2.
1
·1

0−
3

1.
0
·1

0−
3

0.
12

3
1.

35
96

0.
12

36
P 8

0.
76

0
·1

0−
3

0.
87

8
·1

0−
3

1.
9
·1

0−
3

0.
83

8
·1

0−
3

0.
15

5
1.

5
0.

10
26

P 9
0.

65
5
·1

0−
3

0.
76

4
·1

0−
3

1.
7
·1

0−
3

0.
70

1
·1

0−
3

0.
16

6
1.

59
54

0.
07

02
P 1

0
0.

56
4
·1

0−
3

0.
66

5
·1

0−
3

1.
5
·1

0−
3

0.
58

6
·1

0−
3

0.
17

9
1.

65
96

0.
03

9



98

Ta
bl

e
4.

8:
L

in
ea

r
m

om
en

tu
m

(k
g

m
/s

)
of

th
e

fir
st

fiv
e

so
lit

ar
y

w
av

es
cr

ea
te

d
by

an
st

ri
ke

rw
ith

m
st
=

10
0g
≈

50
m

.

P n
um

P a
P
′ a

P
′′ a

P a
−

P n
um

P n
um

P
′ a−

P n
um

P n
um

P
′′ a
−

P n
um

P n
um

P 1
2.

88
5
·1

0−
3

2.
41

3
·1

0−
3

4.
1
·1

0−
3

3.
1
·1

0−
3

−
0.

16
4

0.
42

11
0.

07
45

P 2
2.

57
2
·1

0−
3

2.
18

6
·1

0−
3

3.
9
·1

0−
3

2.
9
·1

0−
3

−
0.

11
1

0.
51

63
0.

12
75

P 3
2.

34
7
·1

0−
3

2.
21

7
·1

0−
3

3.
8
·1

0−
3

2.
7
·1

0−
3

−
0.

05
5

0.
61

91
0.

15
04

P 4
2.

15
3
·1

0−
3

2.
05

0
·1

0−
3

3.
6
·1

0−
3

2.
5
·1

0−
3

−
0.

04
78

0.
67

21
0.

16
12

P 5
1.

98
4
·1

0−
3

1.
94

2
·1

0−
3

3.
5
·1

0−
3

2.
3
·1

0−
3

−
0.

02
12

0.
76

41
0.

15
93

P 6
1.

84
3
·1

0−
3

1.
84

0
·1

0−
3

3.
3
·1

0−
3

2.
2
·1

0−
3

−
0.

01
63

0.
79

06
0.

19
31

P 7
1.

71
3
·1

0−
3

1.
74

2
·1

0−
3

3.
2
·1

0−
3

2.
0
·1

0−
3

0.
01

69
0.

86
81

0.
16

57
P 8

1.
59

4
·1

0−
3

1.
65

0
·1

0−
3

3.
1
·1

0−
3

1.
9
·1

0−
3

0.
03

51
0.

94
48

0.
19

20
P 9

1.
48

6
·1

0−
3

1.
56

3
·1

0−
3

2.
9
·1

0−
3

1.
8
·1

0−
3

0.
05

18
0.

95
15

0.
21

13
P 1

0
1.

38
6
·1

0−
3

1.
48

1
·1

0−
3

2.
8
·1

0−
3

1.
6
·1

0−
3

0.
06

85
1.

02
02

0.
15

44



99

The tendency to predict amplitude of the leading solitary wave with better ac-

curacy (at meff = 1.67m than at meff = 1.3m) is clear at larger striker mass mst = 100

g≈ 50m (Fig. 4.8(d)). This is a natural behavior because effective mass meff = 1.67m

was selected based on the requirement that amplitude of particle velocity of the leading

solitary wave is equal to twice of the velocity of striker when its mass is much larger than

mass of particles in the chain.

Presented data in Fig. 4.8 demonstrate that better estimates of the amplitude of

the leading solitary wave in the analytical approach are obtained at different values of

effective mass at small and relatively large striker mass. At striker mass less than 18m

the effective mass 1.3m results in the prediction of the leading amplitude with accuracy

better than 10%. As striker mass becomes much larger than particle mass, the prediction

with effective mass 1.67m works better and always provide an upper boundary of linear

momentum for all solitary waves in the train. It should be emphasized that proposed

simple scenario does not require additional assumption of the exponential decay of the

solitary wave in the chain with its number as in [7].

Numerical calculations with larger striker mass demonstrated that the proposed

approach with meff = 1.67m gives a better estimate of the amplitude of the leading solitary

waves and provides an upper estimates of the amplitudes of 20 leading solitary waves.
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Figure 4.8: Comparison of numerical and analytical results for the ratio Pn/P0 of the
first ten solitary wave created by striker mass 5 g (2.4m) (a), 10 g (4.7m) (b), 39.136 g
(19m) (c) and 100 g (48m) (d). The linear momentum is normalized with respect to the
initial linear momentum of the striker. Velocity of striker 0.457 m/s.
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4.4 Conclusions

The amplitudes of the leading solitary waves in far field generated by the striker

impact can’t be exactly predicted based on conservation of linear momentum and energy.

Nevertheless the simple approach based on two conservation laws provides reasonable

approximation for the amplitudes of the leading solitary waves in the train though it was

not possible to describe the amplitudes of the subsequent solitary waves in the chain with

the same accuracy using only one value of the effective mass interacting with the striker.

It is based on the imaginary multiple independent collisions of striker with effective mass

in rest, increasing with striker mass.

At striker mass below 18m the effective mass equal effective mass of solitary

wave gives predictions of the linear momentum of the leading solitary wave better than

10%, at larger striker mass the similar accuracy of prediction is achieved at effective

mass equal 1.67m. It is important that this effective mass results in a maximum particle

velocity in the leading solitary wave approaching a value being two times larger than the

velocity of the striker with very large mass (mst/m = 2 ·104). This result matches the

results of numerical calculations. The estimate of the amplitude of the leading solitary

wave is also a reasonable estimate of the leading amplitude of the oscillating profile

close to the impacted end where the pulse still did not split into train of separate solitary

waves.This approach can be used to obtain upper estimates for the parameters of leading

solitary waves in experiments with weak dissipation.

It is interesting that amplitudes of the subsequent solitary waves are better pre-

dicted using effective mass interacting with the striker equal to the effective mass of the

solitary wave practically at all investigated ratios of striker mass to the mass of particles.

The striker does not rebound when with its mass is equal or larger than 1.8m.

This behavior is important for practical applications where preventing rebound of strikers
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is important additionally to the attenuation of generated shock waves due to impact. It

explains why large mass initially resting on the granular bed does not recoil under contact

explosive loading.
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Chapter 5

Role of dissipation on the striker

behavior and shape of propagating

pulses

5.1 Introduction

One dimensional chains of elastic particles interacting according to Hertz contact

law exhibit trongly nonlinear wave dynamics. Without precompression, this system

is called “sonic vacuum” [4]. Sound waves cannot propagate in “sonic vacuum”, but

it supports strongly nonlinear solitary waves (Nesterenko solitary waves) with unique

properties [1-5]. These solitary waves were observed experimentally by many researchers,

though they may significantly attenuate due to dissipation in experimental settings.

Different studies have introduced dissipations into numerical calculations and

analytical models for discrete systems [6-10]. Impact by striker with different masses

larger than mass of the particles in the chain, may result in solitary wave trains, in

oscillating or monotonous shock like profiles in experiments and in numerical calculation

104
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[1,2,4,11-15]. There exists a critical value of viscosity the stationary stress pulse excited

by boundary movement with constant velocity is monotonous [15, 16]. The critical value

of viscosity was developed for weakly nonlinear systems described by Korteweg de Vries

(KdV) equations [17] and for strongly nonlinear systems corresponding to long-wave

approximation [18]. But the critical values of the viscosity (separating weakly dissipative

from strongly dissipative behavior) causing the transition from train of decaying solitary

waves to oscillatory or to monotonous wave profiles excited by a striker with finite mass

were not identified. Using numerical calculations, we found that the critical value of

viscosity for stress waves with finite duration is of the similar order of magnitude to the

value derived for transition from oscillatory to smooth stationary stress wave [15].

5.2 Experimental Setup

The experimental set up is similar to the settings in Chapter 4 except that small

mass striker with the shape shown below was used to verify damping coefficient for the

contact interaction of sphere and cylinder. Chains were composed from steel spheres

(440C) with diameter d and steel cylinders (304) with height h arranged alternatively.

The cell size was a = h+ d. Particles are hold in chain geometry by four aluminum

rods arranged vertically (Fig. 5.1). The mass ratio was changed by using cylinders with

different heights, but keeping the nature of contacts the same.

High speed camera was used to measure the recoil velocity of the small mass

striker to verify value of damping coefficient for the sphere/cylinder contact interaction.
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Figure 5.1: Experimental set-up. (a) Cylinders and spheres aligned in 1-D chain inside
the holder (left) and cross-sectional view of the assembly (right). Four aluminum
rods hold the particles in aligned chain. The numeration of particles in the chain
(i = 1,2,3?N/2) corresponds to the numerical calculations. (b) Small striker with mass
of bottom steel disc 3.9 g and light polymer holder with mass 0.4 g.

5.3 Numerical Calculations

The chain with mass ratio of elements close to 1(0.98) was assembled from 45

steel spheres (440C) with a mass (m) 2.085 g and 44 steel cylinders (304) with a height

h = 5.3 mm and a mass of 2.043 g was investigated in numerical calculations. This chain

with the mass ratio equal to 0.98 supports solitary like waves almost identical to the

expected solitary wave in the chain with equal masses of particles [19].

Hertzian contacts were assumed between the spherical particles and the cylinders

with flat surfaces similar to Chapter 4 (Eqn 4.1-4.4). Additionally forces representing a

linear viscous dissipation (Fvis) were added to all contact interactions (striker and the first
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particle, last particle and the supporting wall and between particles in the chain):

Fvis,1 = µ1(u̇2− u̇1),

Fvis = µ(u̇i−1−2u̇i + u̇i+1),

Fvis,N = µ(u̇N−1−2u̇N),

(5.1)

where µ1 and µ are the effective coefficients of viscous damping corresponding

to interaction between striker and first particle, between last particle and the supporting

wall and particles in the chain. This simple dissipative model with effective viscous

damping coefficient was able to describe successfully the transformation of stress wave

in granular chains with similar contacts (decreasing of amplitude and change of wave

shape) at similar conditions of loading [13]. In numerical calculations a total energy

was conserved with accuracy 10−4% in nondissipative chain and linear momentum was

conserved with accuracy 10−6% (ratio of energy/linear momentum deviations from their

average values in percentages) in nondissipative and dissipative chains.

5.4 Behavior of strikers

In Chapter 3 the effective viscous dissipation (damping coefficient 6 kg/s) was

introduced to explain experimentally observed attenuation of stress pulse amplitudes.

This effective dashpot was attributed to the contact deformation of steel sphere/steel

cylinder in the frame of Kelvin-Voigt model. In this chapter we performed additional

experiments with measurements of recoil velocity of low mass striker (mst = 0.43 g)

impacting the top steel sphere. The recoil velocity of this striker is sensitive to the

viscous dissipation on its contact with top sphere, this contact is the same as between

cylinders and spheres in the chain. The results of numerical calculations are presented in

5.2. Damping coefficient equal 6 kg/s resulted in recoil velocity of striker in numerical
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calculations 0.83 m/s, which is in agreement with experimental value 0.84±0.04 m/s

(initial velocity of striker υst = 1.457 m/s).

This result gives additional justification to use Kelvin-Voigt model for contact

interaction between flat steel cylinder surface and steel spherical particles with damping

coefficient 6 kg/s.
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Figure 5.2: The recoil of striker with small mass (mst = 0.43 g) impacting steel sphere
at the chain top with velocity υst = 1.457 m/s, (a) µ = 0 kg/s, (b) µ = 6 kg/s. Velocities
of particles 1-9 are also shown to demonstrate the establishment of fast quasistationary
solitary wave with very slow rate of amplitude decay.

For a system with a heavier striker of 39.13 g and impact velocity of 0.457 m/s,

the velocity history of the striker is presented in Fig. 5.3 for nondissipative chain.

The striker was practically stopped by the chain at about 1742µ s after impact.

In numerical calculations without dissipation the striker bounced back at about 1742µs

from the moment of impact due to the arrival of reflection wave from the bottom where

the chain was in contact with a rigid wall. The second recoil is detected at about 1871µs

from the moment of impact due to arrival of the second reflected wave from the bottom.

The striker was subject to sequential reflections until fully separated from the chain and

remains a constant recoil velocity -0.3859 m/s at 13450µs.

The introduction of the damping coefficient of 6 kg/s, which satisfactory explained

the attenuation of signal amplitude and recoil velocity of small mass striker, did not
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Figure 5.3: The dependence of the striker velocity on time, striker mass 39.13 g, at
different time scales. The chain is nondissipative (µ = 0 kg/s). Gravitation is not
included.

change the first stage of the striker velocity decrease (compare Figs. 5.3 and 5.4), but

recoil velocity was reduced from -0.3 m/s to -0.22 m/s and the striker was separated from

the chain at this moment due to the arrival of the reflected wave from the bottom support.
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Figure 5.4: The dependence of the striker velocity on time, striker mass 39.13 g, at
different time scales.The chain is dissipative with µ = 0 kg/s. Gravitation is not included.

In experiments, we did not see the bouncing back of the striker up to the time

31654µs after impact. Based on the minimal distance recognizable in the high speed

camera records and duration of the record we can conclude that the recoil velocity was

less than a few hundredth mm/s. Thus this system softly catches striker preventing its
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recoil in experiments unlike in numerical calculations with viscosity 6 kg/s. It should

be emphasized that the recoil of the striker is exclusively due to the reflected wave from

the supporting wall even in case of nondissipative chain. If elastic striker impact a solid

elastic wall it always recoils if penetration is prevented.

The discrepancy between experiments and calculations may be related to more

significant attenuation at larger propagation distances, for example due to interaction of

cylinders with holder. Because of the relative rigidity of the chain the displacements of

the striker during interaction with the top particle was very difficult to detect using high

speed Phantom v12 camera.

This is very interesting behavior of the striker characteristic for its masses being

larger than masses of particles in the chain. It is analogous to the impact of striker with

the object which has the similar mass where striker will be stop and the object will assume

the velocity of the striker. It is probably one of the major reasons why granular beds

are used to support items undergoing explosive loading [4]. The behavior of granular

bed allows these items stay practically at the same place despite experienced contact

explosive loading.

5.5 Stress pulses generated by striker impact

Shapes of the stress pulses generated by impact of striker with mass 39.13g at

different depth in the chain in the numerical calculations with different viscosities and

in experiments are shown in Fig. 5.5. They are fundamentally different from the pulse

excited by a small striker mass (Fig. 5.2). The numerical calculation with viscosity

matches well with experimental results. The amplitude of the peak pulse in the 21st

cylinder decreases to about 70% of the signal amplitude in 4th cylinder.

The system with higher damping coefficient demonstrated faster attenuation in
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signal strength and slower transformation of oscillatory shock like pulse into stationary

pulses. At the same depth, when dissipation is absent, the first stationary pulse is already

forming, while with µ = 6 kg/s no stationary pulse is visible. The later case is a better

representation of the experimental results.

From the frequency spectrum (Fig. 5.5 (d) (e) (f)), all frequencies are shifted to

the lower end. It is interesting to see that some of the higher frequencies are wiped out as

it propagated through the system. Increasing damping coefficient from 4 to 6 kg/s results

in rather significant changes in spectrum in numerical calculations with higher attenuation

of higher frequency harmonics. In both cases the range of frequency spectrum is the

same as in experiments. It is interesting that the similar increase of harmonic amplitude

with frequency close to 20kHz was observed in experiments.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Results of experiments and numerical calculations of the pulse excited by
the impact of rod with mass of 39.136 g: (a) experimental results (sensors are placed in
the 4th and 21st cylinders), (b) and (c) results of numerical calculations (gravitationally
loaded chain) related to the forces in 4th and 21st cylinders with µ = 4 kg/s and µ = 6
kg/s, correspondingly. The vertical scale is 20 N and the curves are offset for visual
clarity, zero time is arbitrary. (d) (e) (f) Frequency spectrum corresponding to (a) (b) (c).
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It need to be mentioned that in oscillatory shock profile the loading path is very

different than in a single solitary wave. There are multiple cycles of loading/unloading

unlike in solitary wave, but still constant viscosity provide attenuation in reasonable

agreement with experiments.

5.6 Critical damping for the transition from oscillatory

to monotonous shock profiles

5.6.1 Quasistationary shock wave with long duration generated by

large mass striker

It is well known that the shape of the stationary shock front is transformed

from the oscillatory to monotonous at some critical value of damping coefficient for

weakly and strongly nonlinear discrete systems [17,18]. For the strongly nonlinear

uncompressed chain (“sonic vacuum”) with power law interaction between masses this

damping coefficient µ can be calculated using the corresponding equation for pcr in [18]:

µcr =
mVsh

a

√
n(n−1)

3
, (5.2)

where m is the mass of particles, Vsh is the shock wave speed, n is exponent in power

law interaction and a is the distance between mass centers of particles. More complex

equation for the precompressed chain can be found in [17,18].

The shock profile in dissipative one mass chain close to stationary can be excited

if mass of striker is much larger than the mass of the particles (2.08 g)). The shock wave

profiles generated by the striker with mass 4 kg and velocity 0.457 m/s corresponding to

different values of damping coefficients are presented in Fig. 5.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Comparison of shock profiles excited by striker with mass 4 kg in numerical
calculations in the one mass spheres/cylinders chain without gravitational load and
different damping coefficients: (a)µ = 0 kg/s, (b) µ = 6 kg/s. (c) µ = 20 kg/s, (d) µ = 40
kg/s. (e) µ = 60 kg/s, (f) µ = 80 kg/s. The signals are recorded in the 4th and 21st
cylinders.
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The initial pulse generated by impact is dramatically changing during propagation

disintegrating into train of solitary waves in nondissipative chain (Fig. 5.6(a)). The same

impact results in quasistationary oscillatory or monotonous shock waves depending on

damping. The shock wave was considered a monotonous when amplitude of the kink on

the leading front was less than 2% of the amplitude (Fig. 5.6(e)). The speed of the shock

wave in initially noncompressed chain in the numerical calculations was equal to 631

m/s (µ = 60 kg/s) and was not significantly influenced by the level of dissipation (Fig.

5.6(b)-(f)). Using this value of the shock speed Vsh and Eq. 5.2 (n = 3/2, m = 2.08 g,

a = 6.65 mm) obtain a theoretical critical value of damping coefficient corresponding to

the transition of a stationary oscillatory shock wave to a monotonic shock profile µ = 99

kg/s. This theoretical value of critical damping coefficient is about 1.6 times larger than

observed in numerical calculations (about 60 kg/s) for uncompressed chain (Fig. 5.6(e)).

Thus theoretical estimate of critical viscosity gives upper estimate for the transition from

oscillatory to monotonous shock profiles.

5.6.2 Finite duration shock wave generated by relatively small mass

striker

Eqn. 5.2 was derived for a stationary shock profile, but in most experiments we

do not have a flat shock profiles, but triangular pulses. There is no theoretical result

related to the transition from oscillatory to monotonous shock profile for finite duration

pulses. It is interesting to investigate if the critical value of damping coefficient related to

the transition from oscillatory to monotonous shock profiles is also relevant for triangular

pulses. Results of the numerical calculations for triangular pulses in free chain are

shown in Fig. 5.7 corresponding to the impact by striker with mass 39.13 g as in our

experiments.

From comparison of the critical damping coefficient for flat shock and for a finite
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Numerical calculations of the pulse propagating through the noncompressed
system excited by a striker with mass 39.136 g at different values of damping coefficient:
(a)µ = 0 kg/s, (b) µ = 6 kg/s. (c) µ = 20 kg/s, (d) µ = 40 kg/s. (e) µ = 60 kg/s, (f)
µ = 80 kg/s. At damping coefficient 60 kg/s we see a monotonous triangular profile of
the shock.
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duration triangular profile we can conclude that critical damping coefficients (60 kg/s)

are similar for these two cases. Thus theoretical value for the critical damping coefficient

ensuring transition to monotonous shock profile for stationary shock (Eq. 5.2) can be

also considered as upper estimate of critical damping coefficient for the finite durations

shocks.

5.7 Conclusions

The dissipation not only results in the attenuation of the pulse amplitudes but also

reduces the propensity of the system to the generation of solitary wave train. At small

values of viscosities the initial pulse is split into attenuating train of solitary waves. The

critical value of viscosity preventing splitting of the initial pulse into train of solitary

waves or into oscillatory shock wave is about 1.5 of critical viscosity obtained analytically

for stationary shock wave.
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