
UC Davis
IDAV Publications

Title
K-Transversals of Parallel Convex Sets

Permalink
https://escholarship.org/uc/item/6tw6h1vm

Author
Amenta, Nina

Publication Date
1996
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tw6h1vm
https://escholarship.org
http://www.cdlib.org/


K�transversals of parallel convex sets

Nina Amenta
Xerox PARC

���� Coyote Hill Road

Palo Alto� CA ������ USA

amenta�parc�xerox�com

May �� ����

Abstract

R
d can be divided into a union of parallel �d�k���ats of the form x� � g�� x� � g�� � � �xk �

gk� where the gi are constant� Let C be a family of parallel �d � k��dimensional convex
sets� meaning that each is contained in one of the above parallel �d � k���ats� We give a
parameterization of the set of k��ats in Rd� such that the set of k��ats which intersect� in a
point� any set c � C� is convex� Parameterizing the lines in R� through horizontal convex
sets as convex sets has applications to medical imaging� and interesting connections with
recent work on light �eld rendering in computer graphics� The general case is useful for
�tting k��ats to points in Rd�

The following easy reduction is well known� Let C be a �nite set of parallel line segments in
R

d� We want to �nd a �d����transversal for C� that is� a hyperplane intersecting every segment
in C� Such a hyperplane has to pass below the upper endpoint of each segment and above the
lower endpoint� In the dual� the endpoints correspond to linear halfspaces� and the intersection
of these halfspaces corresponds to the set of hyperplane transversals of the parallel segments in
the primal� So the problem is solved by linear programming in dimension d� in linear time if d
is �xed�

Here� we give the appropriate generalization of this observation for k�transversals� for � �
k � d� A k�transversal of a family of sets C is a k��at �that is� a k�dimensional a�ne subspace�
intersecting every set in C� Figure � shows the case k 	 �� d 	 
�

Figure �� The set of lines intersecting all members of a family of parallel polygons can be
represented as a convex set�

�



A family C of �d� k��dimensional sets in Rd are parallel if they can be rotated so that each
set c � C lies in a �d� k���at

x� 	 g�� x� 	 g�� � � �xk 	 gk

where g�� � � �gk are constants and x�� � � � � xk are the �rst k coordinates of a point x � Rd� From
now on we will just assume that C is so rotated� We say that a k��at y intersects a set c � C

non�degenerately if y � c consists of a single point� a k��at in general position intersects a set
c � C non�degenerately� if at all� Our Main Theorem 
�
 gives a parameterization under which
the k��ats intersecting non�degenerately any member of C form a convex set in R�k����d�k��
This result is a simple algebraic consequence of adopting the �right� parameterization of k��ats
in Rd� But it has both mathematical and practical implications�

� Background

An immediate consequence is the following�

Theorem ��� The Helly number for k�transversals of parallel �d� k��dimensional convex sets

is �k � ���d� k� � ��

A family of sets C has Helly number h for some property � �here� the property of having a
k�transversal� when h is the smallest integer �if one exists� such that any �nite subfamily C � C

has property � if and only if every subfamily B � C with jBj � h also has �� Theorems of
the form �C has Helly number h� are called Helly�type theorems because they follow the model
of Helly�s theorem� which states that the family of convex sets in Rd has Helly number d � ��
Helly�s theorem together with Theorem 
�
 implies Theorem ����

There are many Helly�type theorems about hyperplane transversals� and some about line
transversals �see �GPW�
��� but this is the �rst theorem giving a �nite Helly number for k�
transversals for all � � k � d for some family of sets� While� as we observed in the introduction�
the space of hyperplanes in Rd is isomorphic to Rd� the space of k��ats in Rd� for � � k � �d����
is a curved projective manifold� known as a Grassmanian� and generally much more di�cult to
work with� Goodman and Pollack de�ne the convex sets in a Grassmanian as the sets of k�
transversals of convex sets in Rd �GP���� They show that this de�nition is a generalization of
convexity� in some senses� but� for instance� convex set under their de�nition can have multiple
connected components� We exhibit subsets of the Grassmanian which are convex in the usual
sense�

The special case of Theorem ��� for k 	 �� d 	 
� was given by Gr�unbaum �G���� which
suggested our approach�

One immediate algorithmic consequence of Theorem 
�
 is that a k�transversal of a �nite
set C of parallel �d � k��dimensional sets� if one exists� can be found by a convex program in
dimension �k � ���d� k�� in linear expected time if d is constant� The case of line transversals
in R� is the �rst interesting one� and it has some applications in computer graphics�

Medical images� such as CAT scans and MRI images� are given as a set of parallel two��ats�
When the regions in each image are decomposed into convex pieces� the line transversals of
the various possible subsets of pieces form a convex subdivision of R� under our parameteriza�
tion� This subdivision is interesting for volume visualization and� as we discuss below� for path
planning for lasers� needles or other invasive linear elements�

Our parameterization is also used in computer graphics in a recent paper by Hanrahan and
Levoy on light �eld rendering �HL���� in which an object is represented by the radiance on the






directed lines incident to it� A light �eld is a hyper�rectangular set of lines including those
incident to the object� A quantized light �eld is stored in a four�dimensional array� and an
image is constructed by selecting the lines through a particular viewpoint� which correspond
to a two��at through the hyper�rectangle� Theorem 
�� implies that certain linear halfspaces
through the hyper�rectangle correspond to the sets of lines of constant depth in R�� This may
have some application to the important problem of reconstructing the three�dimensional shape
of an object from its light �eld representation�

Finding line transversals is an important subproblem in the visibility preprocessing of large
scenes in computer graphics� although admittedly it is di�cult to imagine a scene which requires
solving the special case of the problem treated here�

In general dimension� Theorem 
�
 can be applied to the problem of �tting k��ats to points�
Every point x � Rd is contained in exactly one member g of a set of parallel �d�k���ats� and any
k��at f in general position intersects g in exactly one point� We de�ne the �d� k��dimensional

distance between x and f to be the Euclidean distance from x to the point in which f intersects
g� Figure 
 again shows the case k 	 �� d 	 
� This metric is a higher�dimensional analogue of

Figure 
� The distance between f and x is measured in the �d� k���at g�

the vertical distance� We show that �nding the k��at which minimizes the maximum �d� k��
dimensional distance to any member of a set of points is a Convex Programming problem and
can be solved in expected linear time�

� Main Theorem

We have de�ned parallel �d � k���ats in Rd to be the a�ne subspaces satisfying x� 	 g�� x� 	
g�� � � �xk 	 gk� where the gi are constants� Let us de�ne the set H of parallel �d� k��half��ats
to be the sets formed by the intersection of a linear halfspace in R

d with one of the parallel
�d� k���ats� that is� a set satisfying the equalities

x� 	 g�

� � �

xk 	 gk

and some inequality
a�xk�� � � � � ad�kxd � �

A �d� k��half��at ha�g in H is determined by the gi and the aj � and so has d coe�cients�
A k��at in general position in Rd intersects any �d � k���at g in a single point� We will

parameterize a k��at in general position by its points of intersection with each of the k � �






following �d� k���ats�

u� 	 fx� 	 �� x� 	 �� � � � � xk 	 �g

u� 	 fx� 	 �� x� 	 �� � � � � xk 	 �g

u� 	 fx� 	 �� x� 	 �� � � � � xk 	 �g

� � �

uk 	 fx� 	 �� x� 	 �� � � � � xk 	 �g

Such a point� for each u�� is speci�ed by the �d� k� values of xk��� � � � � xd� which we shall call
y�i�k���� � � � � y�i�d�� A k��at Y in general position is thus speci�ed by �k� ���d� k� independent
parameters� the entries in the matrix

Y 	

�
�� y���k��� � � � y���d�

� � �
y�k�k��� � � � y�k�d�

�
��

In order to simplify the notation below� we will subtract the �rst row from each of the subsequent
rows� representing a k��at by the matrix

Y � 	

�
����
y���k��� � � � y���d�
y���k��� � y���k��� � � � y���d� � y���d�

� � �
y�k�k��� � y���k��� � � � y�k�d� � y���d�

�
����

This corresponds to an a�ne transformation of the space of k��ats� Rows �� � � �k now express
the change in xk��� � � � � xd per unit change in x�� � � � � xk�

Theorem ��� The �k� ���d� k��dimensional set of k��ats in Rd can be parameterized so that

the k��ats intersecting� non�degenerately� any �d � k��dimensional half��at in H form a linear

halfspace in R�k����d�k��

Proof� The points of the k��at Y are the points of the form��
x�� � � � � xk
��� x�� � � �xk� � Y

�

�

This notation indicates the concatenation of x�� � � � � xk with the vector ��� x�� � � �xk� � Y �� A
k��at in general position will intersect the �d� k���at x� 	 g�� x� 	 g�� � � � � xk 	 gk in the point�

g�� � � � � gk
��� g�� � � �gk� � Y

�

�

That point lies in the half��at ha�g if and only if

��� g�� � � � � gk� � Y
� � �a�� � � � � a�d�k��

T � �

Since the gi and the aj are constants� ha�g induces a linear inequality on the y��i�j�� and therefore

also on the y�i�j��

�



Theorem ��� The �k� ���d� k��dimensional set of k��ats in Rd can be parameterized so that

the non�degenerate k�transversals of any family C of parallel �d � k��dimensional convex sets

form a convex set in R�k����d�k��

Proof� A convex set c � C is the intersection of a �possibly in�nite� family H of �d � k��
dimensional half��ats in H � By Theorem 
��� the set of k��ats non�degenerately intersecting
such a half��at form a linear halfspace in R

�k����d�k�� The k��ats intersecting every half��at
in H correspond to the intersection c� of the corresponding halfspaces in R�k����d�k�� This is a
convex set� So the intersection of the c� is an intersection of convex sets� and so again a convex
set�

� Some algorithmic corollaries

We describe a few of the algorithmic implications of our main theorems�

��� Finding k�transversals

From Theorem 
��� we can infer immediately

Corollary ��� A non�degenerate k�transversal of a family C of parallel �d � k��dimensional

polytopes� if one exists� can be found by linear programming in dimension �k� ���d� k�� When

d is �xed� this requires time linear in the total number of facets of C�

And� from Theorem 
�
�

Corollary ��� Let C be a �nite family of parallel �d � k��dimensional convex sets� A non�

degenerate k�transversal of C� if one exists� can be found by convex programming in dimension

�k � ���d� k��

Convex programming is the problem of minimizing a convex objective function over the inter�
section of a family of convex sets� Any convex function on the space of k��ats can be used as the
objective function for the convex program in Theorem 
�
� most conveniently a linear function�
Convex programming is an LP�type problem� as de�ned in �MSW�
� �see �A��b� for a little more
on convex programming�� This means that if d is constant and the k��at minimizing the objec�
tive function for any subset of at most �k � ���d� k� � � members of C� if one exists� can be
found in time tb� then a line transversal for C can be found in expected time O�jCj� tb lg jCj��
which is linear in jCj when tb is small enough�

��� Medical images and path planning

Medical images of three�dimensional anatomy such as CAT scans and MRI images are given
as intensity images in a family of parallel slices� These slices can automatically segmented so
that each is represented as a union of polygonal convex regions of constant or continuously
varying intensity� Each region is assumed to represent a slice of a particular kind of tissue�
Under our parameterization� the lines bounding these polygons correspond to an arrangement
of hyperplanes in the four�dimensional space of lines in R��

We sketch one algorithmic consequence of this observation� Consider the problem of �nding
a path for a biopsy needle which goes to a tumor while missing a collection of vital organs� The
vital organs� the non�vital tissue� and the tumor are all represented by collections of parallel
convex polygons� We wish to �nd all acceptable paths for the needle� The set of acceptable

�



paths corresponds to a union of cells in the corresponding hyperplane arrangement in the four�
dimensional space of lines� Each cell in this arrangement is a subset of lines�

The arrangement can be constructed by random sampling �C���� We select a constant size
random sample of the parallel polygons� construct the arrangement induced by their edges in
the space of lines� and subdivide each cell of this arrangement into simplices� We construct a
subproblem for each simplex consisting of the polygons which intersect any of the lines in the
simplex� For each simplex s� we maintain the set of polygons for which are intersected by every
line in s� These can be kept in sorted order� since the polygons are parallel� We also maintain
the �rst polygon in this set corresponding to a vital organ� if any� and the �rst corresponding
to the tumor� Recursively proceeding on the subproblems gives us a tree which represents the
arrangement� A leaf in this tree is a set of lines� and tracing the path from the leaf to the root
gives us all the polygons intersected by that set of lines�

This data structure requires time and space O�n����� To �nd the leaf cells corresponding
to acceptable needle paths� we traverse the arrangement by depth��rst search and keep track
of whether the tumor or a vital organ is hit �rst by the current set of lines� If a path exists�
we will �nd at least one leaf for which this is true� While this gives an O�n���� algorithm�
our intuition is that in practice it would be much more e�cient� The set of lines passing
through three polygon edges is unlikely to intersect a fourth edge� so in practice the algorithm
as described will probably run in roughly O�n�� time� Furthermore� the only important cells
are those intersecting the tumor� Only constructing those cells could reduce the running time
to something like O�n��� The fact that the representation is linear makes the algorithm feasible
to implement�

��� Fitting k��ats to points

We de�ned the �d�k��dimensional distance from a point x to a k��at f in general position to be
the Euclidean distance from x to the point in which f intersects the unique member g of the set
of parallel �d�k���ats containing x� This metric is not as exotic as it may seem� When we �t a k�
�at to a set of points using Least Squares� we are computing the k��at which minimizes the sum
of the squared �d�k��dimensional distances to each of the points� The metric is appropriate� for
instance� when x is a multidimensional data point for which the coordinates x�� � � � � xk represent
variables which are known exactly and xk��� � � � � xd represent variables which are measured with
some error� Here� we use combinatorial methods to compute the k��at which minimizes the

maximum �d� k��dimensional distance to any point� in time linear in the number of points�
Let X be our set of n points in Rd� The region at �d � k��dimensional distance at most �

from a point x � X is a �d � k��dimensional disk c� in the unique �at g containing x in the
set of parallel �d � k���ats� For the entire set X � these disks form a set C� 	 fc� k x � Xg of
parallel �d� k��dimensional convex polytopes� Now consider the �k� ���d� k� � � dimensional
cross�product Y �R

�� A point y� � in this space represents a k��at in Rd and a value of ��

Lemma ��� Y � R
� can be parameterized so that� for any point x � X� the set of points y� �

which correspond to a k��at intersecting� non�degenerately� the disk c� around x form a convex

set�

Proof� Each disk c� is the intersection in g of an in�nite family Hg�� � H of �d�k��dimensional
half��ats� each ha�g�� of the form

a�xk�� � � � � ad�kxd � � � ad�k��

�



where the ai are normalized so that a�� � a�� � � � � a�d�k 	 �� and ad�k�� is determined by the
requirement that at � 	 �� the equality a�xk�� � � � � ad�kxd 	 ad�k�� will be satis�ed by the
point x � X at the center of the disk�

Any k��at Y � in general position intersects g in the point g � Y �� and that point lies in ha�g��
if and only if

��� g�� � � � � gk� � Y
� � �a�� � � � � a�d�k��

T � � � ad�k��

This is a linear inequality in the Y ��R�� The set of k��ats intersecting every c� is the intersection
of this in�nite set Hg�� of linear halfspaces� and hence a convex set�

So the sets of close�enough k��ats at every � form convex sets of points in R�k����d�k����
To �nd the minimum � at which there is a k��at that is within � of every point� we just have
to minimize the linear function � over the intersection of these convex sets� This gives us the
following�

Theorem ��� Let X be a �nite family of points in Rd� The k��at which minimizes the max�

imum �d� k��dimensional distance to any point of X can be found by convex programming in

dimension �k � ���d� k� � �� in linear time when d is �xed�

Note that this result also applies to distance functions in which the disk around every point
is replaced by some other �d � k��dimensional unit ball� for example what we might call the
�d� k��dimensional L� distance or the �d� k��dimensional L� distance�

� Remarks

��� Disclaimer

Note that these theorems only apply to non�degenerate k�transversals� If the parallel �d�k��sets
in C fail to span Rd� they might have a degenerate k�transversal� which intersects some c � C

in a subspace of dimension greater than zero� In the �rst interesting case of line transversals in
R
�� there may be a degenerate transversal when the parallel two�dimensional convex sets in C

all lie in the same plane� Finding a line transversal of a family of convex sets in the plane is
clearly not a convex programming problem� since the set of line transversals may have up to n
connected components� n 	 jCj� And in fact there is a lower bound of ��n lgn� for the special
case of �nding a line transversal for a family of unit balls in the plane �LW����

��� Projective transformation

The family of parallel �d�k���ats can be de�ned as the set of �d�k���ats intersecting a �d�k����
�at at in�nity f� spanned by the points at in�nity on the k��� � � � � d axes� Theorem 
�� tells us
that the family of k��ats intersecting a �d�k� ����at contained in one of these parallel �d�k��
�ats forms a hyperplane under our parameterization� These �d� k � ����ats also intersect f��
Consider a projective transformation which moves f� to an arbitrary �d � k � ���dimensional
�at f �

Corollary ��� Let Hf be the set of �d � k � ����ats intersecting a given �d � k � ����at f in

Rd� The set of k��ats in Rd can be parameterized so that the k��ats intersecting any �d�k����
dimensional �at in Hf form a hyperplane in R�k����d�k��

�



��� Axis aligned boxes

The following easy observation is a special case of Theorem 
�
�

Observation ��� The k��ats in Rd can be parameterized so that the set of k��ats intersecting

any member of a family of parallel �d� k��dimensional axis�aligned boxes is convex�

Such an axis�aligned box can be de�ned as points satisfying

x� 	 g�
� � �
xk 	 gk

and the inequalities
a� � xk�� � b�
� � �
a�d�k� � xd � b�d�k�

Substituting in the expression for the intersection of Y � and g� we get

�a�� � � � � a�d�k��
T � ��� g�� � � � � gk� � Y

� � �b�� � � � � b�d�k��
T

This system can be separated into �d� k� separate systems of linear inequalities� one for each
column of Y �� and solved as �d� k� lower�dimensional linear programs� which is much faster�
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