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Abstract of the Dissertation

Gigavolt-per-Meter Wakefields in Annular

Dielectric Structures

by

Brendan Donald O’Shea

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor James B. Rosenzweig, Chair

A wakefield accelerator uses a medium capable of sustaining appropriate electric

fields to transfer energy from a drive beam to a witness beam. Examples of

such systems include electron beam driven plasma wakefields [1, 2], laser driven

plasma wakefields [3] and electron beam driven dielectric wakefield structures

[4, 5, 6]. Dielectrics and plasmas are of particular interest because they are

capable of maintaining electric fields on the order of GVm−1 and in the case of

plasmas upwards of TVm−1 [7]. These systems provide a significant step beyond

current radiofrequency accelerating structures capable of peak electric fields on

the order of 100 MVm−1 and average effective electric fields of 20 MVm−1 [8].

Furthermore, beam driven dielectric structures produce a wakefield which is phase

synchronous with the beam, these structures do not suffer from transit time or

dephasing effects [9, 10]. In the case of dielectric wakefield accelerators, the

structures under study in this publication, the modes generated by the driving

beam are in the terahertz (THz) regime. Thus development of dielectric wakefield

accelerators is seen as a path to smaller, more compact accelerating systems and

as a means to generate THz radiation [11]. Here we demonstrate a beam-driven

ii



dielectric wakefield accelerating structure that produces sustained fields of 1.35

GVm−1 for many hundreds of thousands of drive beam pulses. In addition we

show beam-driven dielectric structures have the potential to produce single mode,

high spectral purity THZ radiation of unprecedented energy scale.
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CHAPTER 1

Introduction

The cost and size of colliders has become a serious impediment to performing

future high-energy particle experiments. This point is most obviously demon-

strated by the ubiquitous Livingston plot [12] shown in Figure 1.1. This plot

shows a bending, and eventual plateau, of the maximum beam energy of acceler-

ating systems as a function of time. This bending of the maximum beam energy

is unsurprisingly correlated with a distinct lack of new accelerating systems since

the radio-frequency (RF) structure developed at Stanford in the 1940s [13].

An increase in beam energy after the initial introduction of RF cavities can

be attributed to the increase in accelerator size and improvements in technologies

associated with RF structures, such as klystrons. As the field matured the rate

at which improvements to RF systems could be made naturally declined. With

innovation stalled the only method for building higher energy machines is to

build bigger machines. This leads to a synchrotron of 27 kilometer circumference

known as the Large Hadron Collider.

The ultimate desire for such high beam energy machines is to study the na-

ture of particles at a fundamental level. The advantage of ring based machines

is rooted in the fact that a beam passes the same location multiple times. This

allows a relatively low gradient cavity to accelerate a beam to very high en-

ergies. A one meter structure which is passed through a million times gives

the experimenter, effectively, a 1000 kilometer accelerator. This works well for
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Figure 1.1: A Livingston plot showing the increase in beam energy as a function

of time. Initially the beam energy of accelerators world wide is seen to double

every 10 years. Current trends have been unable to keep this pace.

hadrons but limitations due to synchrotron radiation, which is inversely propor-

tional to 1/mass4 [14], make high energy electron rings unfeasible. This means

that scientists are stuck accelerating and colliding relatively large non-elementary

particles, such as protons. Collisions of particles which are not elementary result

in complicated showers of constituent particles which obscure the measurement

of interest. Thusly, the lack of increase in functional gradient of accelerating sys-

tems has shifted the high-energy particle physics world to use of machines which

are able to access the beam energies necessary for new discoveries, but at the cost

of messy collisions.

The ideal situation involves the collision of elementary particles such as elec-

trons and positrons. At present, due to bending (or synchrotron) radiation the
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only way to effectively accelerate electrons and positrons is through linear accel-

erators, such as the three kilometer linac at the SLAC National Laboratory, the

48 km linac at the proposed Compact Linear Collider (CLIC) facility [15] and

the 31 km linac at the proposed International Linear Collider (ILC) [16]. The

average gradient in the RF structures used at SLAC is on the order of 20 MVm−1

[17, 18]. Assuming, arguendo, that no other systems are needed to contain the

beam or focus it for the collision, in order to reach 1 a TeV collider it would be

necessary to use 50 kilometers of RF structures. At 22k$ per meter [19], the cost

of building a TeV collider using conventional RF technologies exceeds a trillion

dollars. A less theoretical estimate of the cost of linear colliders is provided by the

CLIC Conceptual Design Report [15] which estimates 10 billion U.S. dollars for

a 500 GeV center of mass collider. The cost savings are based on the structures

pushing to higher frequencies and gradients on the order of 100 MVm−1 but also

on the use of a novel two-beam-acceleration scheme. Even so, such sticker prices

understandably give funding agencies pause.

In addition to colliders, accelerators are increasingly used as particle beam

sources that are later used in radiation sources such as Free-Electron Lasers

(FEL) [20]. An example of which is the Linac Coherent Light Source at SLAC

National Laboratory [21]. Such light sources are key to structure determination

of macromolecules via coherent x-rays [22]. Other accelerator-FEL based sources

in operation include FLASH in Hamburg, Germany [23] and an Energy Recovery

Linac (ERL) at Jefferson Lab [24]. The former provides coherent light in the

difficult to access Extreme Ultraviolet (EUV) region of 14 nm while the latter is

a demonstration of Superconducting Radio-Frequency (SRF) technology and its

use in FEL sources. The structures used as accelerators in this thesis can also be

used as radiators as long as the wakefield in the structure is collected. As will be

outlined in future sections of this work, selection of the geometric properties of
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the structure allows selection of the wavelength of interest, including radiation of

unprecedented energy scales in the terahertz regime [25].

To overcome cost and size limits of future accelerators it is necessary to de-

velop accelerating systems with gradients well in excess of the 20 MVm−1 present

in RF technologies. A class of accelerators under study for use as future accel-

erators are known as wakefield accelerators. Such systems are configured in a

”drive-witness” modality which takes advantage of the fact that a system which

accelerates a beam is also capable of decelerating a beam. The term drive-witness

is used to describe the situation in which one beam, the drive beam, is sent

through a wakefield structure and gives up energy to that structure. This loss of

energy is converted into a wakefield in the structure which a second beam, the

witness, then absorbs.

While there are several options available for use as wakefield accelerators the

work presented here focuses on the use of dielectric lined waveguides. These

structures have shown remarkable ability to sustain fields up to ≈5 GVm−1 [26].

Fields of even one GVm−1 would be able to produce TeV electrons in a kilo-

meter. This continues the assumption stated earlier that no other elements are

necessary for transporting the beam. Such assumptions for nascent technologies

are shaky but necessary as the difficulties involved in bringing a new technology

to the maturity required to build a collider are never easy to see. It isn’t until

a detailed in-lab characterization and measurement of the physics in question

that the proverbial devil in the details shows himself. This thesis is presented

as a step in the direction of characterization of dielectric lined waveguides as an

accelerating platform. Specifically we show that gradients in excess of GVm−1

are obtainable and sustainable.

We begin this work with a short overview of beam physics to acquaint the

4



reader with the notation and terminology of the author. In chapter 3 we then

move on to a discussion of radiation sources present in an accelerator environment

and their associated uses. Chapter 4 reviews some concepts particular to wake-

field accelerators. In chapter 5 we present the specifics of a dielectric based accel-

erator and solve for the modes and coupling of a beam-dielectric lined waveguide

system. Chapter 6 presents the experiments that were conducted at the SLAC

National Accelerator Laboratory and their results and relation to the previously

derived theory. Chapter 7 is a summary and conclusion of the work presented

here as well as future work and open questions remaining before a dielectric lined

waveguide can be seriously considered a collider ready technology.
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CHAPTER 2

Beam Dynamics

The design of charged particle accelerators begins with the definition of a coor-

dinate system which reduces what can be a very complicated system in cartesian

coordinates to a curvilinear system which moves along the accelerator with the

so-called ”design particle”. This design particle is the ideal path through the

accelerator, whether start to finish in a linear accelerator or repeatedly around

the ring in a synchrotron. This system is useful when the accelerating system

has been designed well enough such that one would expect that particles that do

deviate from the design orbit do not do so drastically. As such, we are interested

primarily in a set of equations which define the motion of bunches of particles

through an accelerator which account only for small deviations from the design

particle. This will lead us first to design a coordinate system which follows the

beam along the accelerator and then to derive concomitant equations of motion in

that system. The equations of motion are later written in such away that vanish-

ingly small terms can be neglected. After writing down a suitably culled system

of equations we will then transform them into a matrix notation that allows us to

more easily analyze the effect of accelerator subsections such as focusing lattices

or bending magnets.
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2.1 Design Particle

When an accelerator is designed the goal is to connect a particle source to devices

that do something with the particles produced; such as a detector or a focusing

channel that directs the electrons at a tumor in a patient or at another bunch of

particles in a collider. The ”design particle” is used to outline the perfect path

from the source to the application. It is supposed to have a precisely known

position and momentum and is at all times locked to the design orbit. What this

means is, for the design particle on the design orbit, no focusing optics or other

beam control methods are necessary except those that steer the design particle

along the design orbit to the location we desire.

With the Lorentz Force equation, Eq. 2.1, we readily see two methods for

bending a single particle, an electric field ~E or magnetic induction ~B1. For

particles close to the speed of light Eq. 2.1 shows that ~E and ~B are equivalent.

The conversion between the two is such that 1 T = 3 ∗ 108 V m−1. While 1

Tesla magnetic fields are easily created using present technology, 300 MVm−1 is

only now becoming possible to create and at much greater expense [27, 28, 29].

Because of this we rely heavily on magnetic fields to steer the design particle and

we would like to develop a system of equations equally suited to straight lines

and bends. We begin by examining the motion of the design particle in a uniform

magnetic field.

2.2 Particle in a Uniform Magnetic Field

~F =
d~p

dt
= q( ~E +

~v

c
× ~B) (2.1)

1Where choice of units is concerned, the author prefers to work in Gaussian while the
literature prefers SI. This will lead to equations worked in Gaussian but individual quantities
quoted in SI.
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dE

dt
=

d

dt
γmc2 = ~v · ~F (2.2)

We begin by supposing a system in which a particle at time t = 0 with initial

velocity ~v(t = 0) = ~v0 = {0, 0, v0} is moving in a magnetic induction ~B =

{0, B0, 0} which is uniform in space and unchanging in time. Immediately from

Eq. 2.1 and Eq. 2.2 it can be seen that particles in uniform magnetic fields do

not gain energy and that the particle will be locked to the x̂ẑ-plane; there is no

force, Fy, in the ŷ direction. We then write down the equations of motion for the

design particle in the uniform magnetic field:

Fx = γme
dvx
dt

=
evzB0

c
, Fz = γme

dvz
dt

=
evxB0

c
. (2.3)

Taking the time derivative of both equations and substituting for v̇x and v̇z using

Eqs. 2.3, we arrive at:

d2vx
dt2

= −
(
eB0

γmec

)2

vx,
d2vz
dt2

= −
(
eB0

γmec

)2

vz, (2.4)

where we are now free to define the cyclotron frequency as Ω0 ≡ eB0

γmec
and write

the solutions to these differential equations as:

vx(t) = A sin(Ω0t) +B cos(Ω0t), vz(t) = C sin(Ω0t) +D cos(Ω0t). (2.5)

Using the initial velocity as stated above B = 0, D = v0 and the final coefficients

can be found by noting that there is no energy gain, d|v|
dt

= 0, leading to A =

v0, C = 0 and

vx(t) = v0 sin(Ω0t), vz(t) = v0 cos(Ω0t). (2.6)

Integrating these equations in time and defining the initial position of the particle

to be the origin leads to the location of the design particle as a function of time:

x(t) = − v0

Ω0

cos(Ω0t) +
v0

Ω0

, z(t) =
v0

Ω0

sin(Ω0t), (2.7)
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Figure 2.1: The path of a particle in a uniform magnetic induction field.

which is plotted in Fig. 2.1. The key feature of the design particle’s motion in

a uniform magnetic field is its radius of curvature R = v0
Ω0

= γmecv0
eB0

, which leads

us to construct a curvilinear coordinate system similar to a cylindrical polar

coordinate system [30].

2.3 A Curvilinear Coordinate System for Accelerators

With the design trajectory known we are interested in what happens to particles

that follow this trajectory, but not perfectly. We need a coordinate system which

keeps track of deviations from the design trajectory without the mess of a fixed

origin. The previous discussion indicates that a system capable of bends and

straight lines should do well. We restricted the scope of the previous design tra-

jectory discussion to the xz-plane since traditionally linacs and circular machines

are flat. This system is sometimes referred to as the ”beam frame” but it is not

to be confused with a relativistic boost.

We implement a system as shown in Fig. 2.2 where the new coordinate system

is outlined in blue. In this system, a deviation in the xz-plane of a particle from

the design radius of curvature R, away from the center of curvature, is in the x̂
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Figure 2.2: The design particle trajectory (black) with the accelerator curvi-

linear coordinate system (light blue) and a possible real beam particle trajectory

(red).

direction. We have also chosen the the direction of motion of the design particle

to be the ŝ direction, this clears up possible confusion with a traditional cartesian

coordinate system. The restriction of the problem to the xz-plane leaves the ŷ

direction, perpendicular to the plane of the bend, unchanged.

We start by defining the cartesian coordinates in terms of the the new pa-

rameters and derive expressions for infinitesimal steps dsi in our new coordinate

system:

zc = (x+R)cos(θ), xc = (x+R)sin(θ), yc = y, (2.8)

where the subscript c represents cartesian. It is then necessary to compute the

Lamé coefficients as derived from the metric of the new coordinate system [30]:

hi =
√
gii =

√√√√∑
L

(
∂xL
∂xi

)2

; xL ∈ xc, yc, zc; (2.9)

hx = 1, hy = 1, hθ = (x+R). (2.10)
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We are then able to write the differential elements of the new coordinate system,

dsi = hidxi, and the total differential element d~r as:

dsx = dx, dsy = dy, dsθ = (x+R)dθ (2.11)

d~r = dxx̂+ dyŷ + (x+R)dθŝ. (2.12)

Electing now to use the design particle’s progress along the arc, s = Rθ, as op-

posed to its angular progression θ we arrive at an appropriate differential element

for our coordinate system:

d~r = dxx̂+ dyŷ + (1 +
x

R
)dsŝ. (2.13)

The preceding differential, d~r, and the Lamé coefficients provide the tools neces-

sary to analyze a beam moving in the beam frame. It is useful to note at this

point that a particle moving in a straight line has an infinite radius of curvature,

R =∞, which reduces Eq. 2.13 to a standard cartesian right handed coordinate

system. Finally we write down the gradient, divergence and Laplacian in the new

coordinate system:

~∇ψ =
∑
i

x̂i
1

hi

∂ψ

∂xi
(2.14)

~∇ · ~V =
1

1 + hx

[
∂

∂x
([1 + hx]Vx) +

∂

∂y
([1 + hx]Vy) +

∂

∂s
(Vs)

]
(2.15)

~∇ · ~∇ψ =
1

1 + hx

[
∂

∂x

(
(1 + hx)

∂ψ

∂x

)
+ (1 + hx)

∂2ψ

∂y2
+

∂

∂s

(
1

1 + hx

∂ψ

∂s

)]
,

(2.16)

where we have used the relation h = 1/R.

2.4 Equations of Motion

The accelerator coordinate system we have just developed is a rotating coordinate

system (R 6= 0) which means that equations like the Lorentz force equation, when
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Figure 2.3: The rotation of the unit vectors of the curvilinear coordinate sys-

tem. The black line is the reference trajectory, the blue lines represent the local

curvilinear coordinate system at two points during a bend of radius R.

transformed to this new system, show the effects of fictitious forces. We would

like to express the equations of motion in a manner that makes these forces

transparent and easily ignored for the case of straight (non-bending) sections of

beam line. This is particularly useful when one considers that even ostensibly

circular machines are realized using straight sections connected by short, shallow

bends. In addition, we wish to transform the aforementioned equations of motion

from a system dependent on time t to a system dependent on a parameter that

describes the beam’s current position in the accelerator, s.

We begin by working out the transformation of the unit vectors x̂ and ŝ

and use these to write down the position of a particle in the beam frame. We

then convert the particle’s velocity and acceleration, ~̇r and ~̈r, to expressions

dependent on the reference particle position s, instead of t. Finally, we convert

the Lorentz Force equation, Eq. 2.1, using the previously derived relations, to

the new coordinate system including s dependence.

As can be seen in Figure 2.3, as time evolves the accelerator coordinate system

will rotate as ds/dt = v0, taking the unit vectors with it. The transformation of

12



these unit vectors can be derived as follows:

˙̂s =
dŝ

dt
=
dŝ

dθ

dθ

dt
= −x̂

(
d

dt

s

R

)
= −v0x̂

R
, ˙̂x =

v0ŝ

R
. (2.17)

An individual particle’s position in the beam frame can be written in terms of

its absolute position ~r and the position of the reference frame ~r0:

~r − ~r0 = xx̂+ yŷ + zŝ, (2.18)

where z is used to denote the longitudinal offset, in the beam frame, of the particle

of interest from the design particle. By definition all motion of the reference

particle is in the ŝ-direction, giving d~r0 = ds ŝ and ~̇r0 = v0 ŝ. The time derivative

of the equation for the particle’s beam frame position, Eq. 2.18, gives its beam

frame velocity as:

~̇r = ~̇r0 + ẋx̂+ x
v0

R
ŝ+ ẏŷ + żŝ− z v0

R
x̂ (2.19)

~̇r =
(
ẋ− z v0

R

)
x̂+ ẏŷ +

(
1 +

x

R
+
ż

v0

)
v0ŝ. (2.20)

Use of the chain rule to define the time derivative in terms of the reference

particle’s position in the accelerator gives:

ẋ =
dx

dt
=
dx

ds

ds

dt
= v0x

′, (2.21)

where we use the notation d
ds

= ()′ as we are more interested in the evolution of

the beam along the accelerator as opposed to as a function of time. Transforming

a particle’s velocity, Eq. 2.20, to a system dependent on s instead of t, by using

Eq. 2.21 yields:

~v = ~̇r =
(
x′ − z

R

)
v0x̂+ y′v0ŷ +

(
1 +

x

R
+ z′

)
v0ŝ. (2.22)
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Similarly the acceleration of a particle can be derived as:

v̇x
v2

0

= x′′ − 2z′

R
− z

(
1

R

)′
− x

R2
− 1

R

v̇y
v2

0

= y′′

v̇z
v2

0

= z′′ − 2x′

R
− x

(
1

R

)′
− z

R2
,

(2.23)

where the terms dependent on s̈ have been omitted as we have assumed a system

without energy gain, γ̇ = 0.

The Lorentz Force equation is now written in terms of the above derived

velocity and acceleration, in the accelerator curvilinear coordinate system and

with the beam position coordinate s in place of time:

d~p

dt
= γme~̇v = q

(
~v

c
× ~B

)
(2.24)

v̇x =
q

γmec
(vyBz − vzBy)

v̇y = − q

γmec
(vxBz − vzBx)

v̇z =
q

γmec
(vxBy − vyBx) .

(2.25)

Direct substitution of Eqs. 2.22 and 2.23 leads to:

x′′ − 2z′

R
− z

(
1

R

)′
− x

R2
− 1

R
=

q

γmecv0

(
y′Bz − (1 +

x

R
+ z′)By)

)
y′′ = − q

γmecv0

(
(x′ − z

R
)Bz − (1 +

x

R
+ z′)Bx

)
z′′ +

2x′

R
+ x

(
1

R

)′
− z

R2
=

q

γmecv0

(
(x′ − z

R
)By − y′Bx

)
.

(2.26)

2.5 Expansion of the Equations of Motion

The equations of motion of a particle in the accelerator curvilinear coordinate

system, Eqs. 2.26, represent an exact description of a test particle’s motion.
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When building or modeling an accelerator the designer starts with a linearized

version of these equations and moves to higher order effects as necessary. The

nature of beams as a collection of particles which have small deviations from the

design orbit validates this method of system modeling.

We begin by performing an expansion of the magnetic field in terms of the

beam frame coordinates. We then proceed to expand γ, and other quantities con-

taining γ, in terms of the beam frame coordinates and the momentum deviation

δ. Finally the two are combined, the expansions and the equations of motion

derived above, and by collecting terms of similar order the linearized equations

of motion are derived.

2.5.1 Multipole Expansion of the B-Field

Excepting the charge of the beam itself and instances of exotic focusing schemes,

such as plasma lenses [31], the region in which the beam passes is source free. If

we assume a region of static magnetic field, free of electric field, it is possible to

write Ampères law and the divergence of ~B as:

∇× ~B = −∇×∇φB ≡ 0, ∇ · ~B = 0,−∇ · ∇φB = 0, (2.27)

in terms of a potential B = −∇φB.

Before solving the above equation, using the Laplacian as defined for this

coordinate system Eq. 2.16, it is important to note that we wish a system in

which the beam stays in the xs-plane. This demand means that φB(x, y, s) must

be an odd function of the y coordinate2. This restriction is not entirely obvious

or necessary at this point, but neglecting it in lieu of later work only serves to

2Given the Lorentz force law, forces Fy will be proportional to Bx and Bz. The potential
as defined to be odd in y means that Bx,z(y) = −Bx,z(−y) so that forces Fy will always force
particles offset in ŷ back to the xz-plane.
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obfuscate the following derivation and results in terms which result in undesirable

x − y plane coupling. In light of the above it is possible to define the magnetic

potential φB as:

φB(x, y, s) =
∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn

n!

y2m+1

(2m+ 1)!
, (2.28)

where the restriction of y to odd powers enforces our demand that φB be odd in

y. When Eq. 2.28 is substituted into Eq. 2.16 the result is a recursion relation

between the A coefficients:

A
′′

2m+1,n + hnA
′′

2m+1,n−1 − nh
′
A
′

2m+1,n−1 + A2m+1,n+2+

h(3n+ 1)A2m+1,n+1 + h2n(3n− 1)A2m+1,n + h3n(n− 1)2A2m+1,n−1

+A2m+3,n+3hnA2m+3,n−1+3h2n(n−1)A2m+3,n−2+h3n(n−1)(n−2)A2m+3,n−3 = 0.

(2.29)

This recursion relation allows higher order A coefficients to be written in terms of

lower order coefficients. The details of the preceding derivation can be found in

the appendix, the only addendum to the above relation is that when attempting

to derive a relation for particular values of m and n all coefficients with one or

both indexes which are negative are to be set to zero.

While the present discussion focuses on linearizing the equations of motion,

future discussions will mention magnets of higher order, so we shall keep φB terms

up to 4th order:

φB '
(
A1,0 + A1,1x+ A1,2

x2

2!
+ A1,3

x3

3!
+ . . .

)
y+(

A3,0 + A3,1x+ . . .

)
y3

3!
+ . . . . (2.30)

It is now possible to write the components of the magnetic field in terms of these
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A coefficients, by taking the appropriate derivative:

Bx = −∂φB
∂x
' −

(
A1,1 + A1,2x+ A1,3

x2

2!

)
y −

(
A3,1

)
y3

3!

By = −∂φB
∂y
' −

(
A1,0 + A1,1x+ A1,2

x2

2!
+ A1,3

x3

3!

)
−
(
A3,0 + A3,1x

)
y2

2!

Bz = − 1

1 + hx

∂φB
∂s

= − 1

1 + hx

(
A
′

1,0y + A
′

1,1xy + . . .

)
(2.31)

With the expressions for the magnetic field in terms of the A coefficients

and a recursion relation between all the coefficients it is necessary to derive an

expression relating the A coefficients to a real ~B field. To do so we perform a

Taylor expansion of the magnetic induction in the y=0 mid-plane:

By(x, 0, s) ' By

∣∣∣
x=y=0

+
∂By

∂x

∣∣∣
x=y=0

x+
∂2By

∂x2

∣∣∣
x=y=0

x2

2
+ . . . , (2.32)

and compare with Eq. 2.31, leading to:

A1,0 = By(0, 0, s), A1,1 =
∂By

∂x

∣∣∣
x=y=0

, . . . , A1,n =
∂nBy

∂xn

∣∣∣
x=y=0

. (2.33)

It is also possible and advantageous to write the magnetic induction ~B in terms

of dimensionless coefficients, to be consistent with accelerator literature:

By(x, 0, s) = B0[1− nhx+ βh2x2 + γh3x3 . . . ], (2.34)

where the negative sign in front of the n is by convention. Using the previous

three relationships, the A coefficients are now:

A1,0 = By(x, 0, s) = B0,

A1,1 =
∂By

∂x
= −nhB0; n = − 1

hB0

∂By

∂x
,

1

2
A1,2 =

1

2

∂By

∂x
= βh2B0; β =

1

2h2B0

∂2By

∂x2
,

1

3!
A1,3 =

∂3By

∂x3
= γh3B0; γ =

1

3!h3B0

∂3By

∂x3
,

(2.35)
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to list but a few. With these relations available for reference, we can now write

the linearized form of the magnetic field, Eq. 2.31 as:

Bx = −nhB0y,

By = B0(1− nhx),

Bz = B′0y.

(2.36)

2.5.2 Expansion of Gamma

In performing the expansion of the equations of motion for a particle in a magnetic

field, it will be necessary to account for particles with momentum which deviates

from the design momentum. As with the case of a test particle’s position relative

to the design particle, we are most interested in a test particle’s momentum

deviation from design. Our formulation until now also indicates we are interested

in momentum evolution as a function of beam position along the accelerator, as

opposed to time.

Analysis of the vectorial deviation of a test particle’s momentum from the

design momentum shows, by nature of the design momentum being entirely in

the ŝ-direction, that the normalized deviation is given by:

~δp =
~p− p0ŝ

p0

=
px
p0

x̂+
py
p0

ŷ +
pz − p0

p0

ŝ, (2.37)

where the design particle’s momentum has been explicitly shown to be only in

the ŝ direction. Using the conversion described in Eq. 2.21 to change from a time

dependent to s dependent system the individual components can be written:

δ = δpz =
pz − p0

p0

=
γvz
γ0v0

− 1 =
γ

γ0

(
1 +

x

R
+ z′

)
− 1, (2.38)

where Eq. 2.22 has been used for the velocity in the ŝ-direction, vz. If we now

solve Eq. 2.38 for γ0/γ, expanding in the small parameter δ, it leads to:

γ0

γ
=
(
z′ +

x

R
+ 1
) 1

1 + δ
'
(
z′ +

x

R
+ 1
) (

1− δ + δ2 − δ3 + . . .
)

(2.39)
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Particle beams are by definition collections of particles which do not deviate

drastically from the design trajectory. This introduces an asymmetry in the way

in which transverse momentum errors and longitudinal momentum errors are

handled. The former is based on the assumption that any transverse momentum

deviation is small compared to the longitudinal momentum. Stated another way

this means that the change in transverse position of a particle as a function of

the position in the accelerator s is given by:

px
pz
' px
p0

=
dx

dt

dt

ds
= x′. (2.40)

Thus, the vector which makes up the relevant momentum parameters during

beam transport is: {x′, y′, δ}.

2.5.3 Expansion of the Equations of Motion

With the preceding expansions it is now straight forward to write down the

linearized equations of motion, by combining Eqs. 2.26, 2.36 and 2.39, keeping

only the terms linear in the coordinates, to obtain:

x′′ + h2(1− n)x = hδ,

y′′ + nh2y = 0,

z′′ + hx′ + h′x = 0.

(2.41)

Where we have dropped the h′z term as it is effectively nonlinear. To phrase this

another way, in order for this term to be relevant the gradient in the field, h′,

would have to be large compared to the length of the beam, which in practical

situations is not true.
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2.6 Solutions to the Linear Equations of Motion

We begin now to solve the linearized equations of motion derived in Eqs. 2.41. We

do not take up the more general case of when n is a function of s, n = n(s), which

is a form of a Mathieu-Hill equation [29]. A complete survey of beam dynamics

is well beyond the subject of this work. Instead we look at small sections of the

accelerator for which n is not a function of s, so the solutions are those of a simple

harmonic oscillator.

Assuming a beam of minimal energy spread (δ ' 0) the first of Eqs. 2.41 can

be written as

x′′ + h2(1− n)x = 0, (2.42)

with solutions, for n < 1,

x(s) = x0 cos (h
√

1− ns) +
x′0

h
√

1− n
sin (h

√
1− ns),

x′(s) = −h
√

1− nx0 sin (h
√

1− ns) + x′0 cos (h
√

1− ns),
(2.43)

where we have preemptively used the correct coefficients for initial conditions

(x0, x
′
0).

2.6.1 Matrix Formalism

If we are interested in a series of discrete sections of an accelerating system we

would solve for the particle motion by using the result of the first section as

the initial conditions for the next section. This method of propagating initial

conditions through many discrete solutions can be represented through matrix

formalism.

As an example we solve the equation of motion in the x direction, Eq. 2.42,

for the case of a drift: R → ∞, n → 0. The solution can be found through
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integration where the constant of integration is x′0, with the solution x(s) = x′0s.

This conforms to what we might naively expect from applying simple ray tracing

methods from optics. It is worth mentioning that this isn’t a coincidence: this

formalism is in fact identical to optical treatments which use ray tracing. Another

example is the case of a simple quadrupole for which 1− n→ n, the solution to

which is given in Eq. 2.43, when the substitution just outlined is used.

Inspection of the previous examples shows that it is possible to write the

coordinate transform Eq. 2.43 as

MQF =

 cos (h
√
ns) 1

h
√
n

sin (h
√
ns)

−h
√
n sin (h

√
ns) cos (h

√
ns)

 . (2.44)

If we had the situation of a defocusing quadrupole we would have 1− n → −n

so that the solutions could be written

MQD =

 cosh (h
√
ns) 1

h
√
n

sinh (h
√
ns)

h
√
n sinh (h

√
ns) cosh (h

√
ns)

 . (2.45)

The aforementioned drift can be written as

MD =

1 L

0 1

 . (2.46)

There are several resource available which give a detailed accounting of the trans-

fer matrices for different beam line elements, even up to higher orders [29, 27]. We

note here that h
√
n ≡ kβ =

√
B′/(RB0), which we will see later is the betatron

wavenumber.

To handle a series of beam line elements it suffices to apply the appropriate

transfer matrices in the appropriate order. For example, if a particle with initial

conditions (x0, x
′
0) were to traverse and drift of length L1 followed by a focusing

quad and another drift of length L2, its position at the end (xf , x
′
f ) would be
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described byxf
x′f

 = MDMQDMD

x0

x′0

 =

1 L2

0 1

1 0

1
f

1

1 L1

0 1

x0

x′0

 . (2.47)

In this case we have used the thin quadrupole approximation and f is the focal

length of the quadrupole.

This method of analyzing beam transport can be expanded to include all

possible relations between initial states and final states. Specifically this means

that we can model to first order any accelerating system using

xf

x′f

yf

y′f

zf

δf


=



R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66





xi

x′i

yi

y′i

zi

δi


. (2.48)

The elements of this matrix can be derived in the same fashion as those above,

it is simply a matter of keeping track of more elements or examining the physics

of how the momentum deviation δ may affect the position of a particle in the

x̂ direction. As we shall see in the experimental analysis section this matrix is

often block diagonal and comprised exactly of the elements derived earlier.

While it is possible to take into account higher order effects in such a formal-

ism, the utility of such a system in relation to the experiments presented in this

work is marginal so a derivation will be left to the references [32].
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2.7 Particle Collections and Beam Moments

We now investigate how this formalism applies to collections of particles. We

define a collection of particles by a distribution function f(~x,~v), where ~x and

~v represent 6D coordinates in phase space. As is traditional for these types of

analyses the distribution functions are considered separable in all 6 coordinates,

that is f(~x,~v) = f(x)f(y)f(z)f(vx)f(vy)f(vz),. Each distribution function is

normalized to unity so that the integral over all space is itself unity,∫ ∞
−∞

d3~x d3~v f(~x,~v) = 1. (2.49)

This means that in order to scale the function to the charge we are interested in

we need only multiply by qNe. It is of course possible to have correlated beams

(and thus correlated distribution functions) but absent a priori reasons to assume

such correlations a thermalized beam which is uncorrelated in the coordinates is

usually assumed.

To characterize these collections of particles, or beams, moments of the dis-

tribution function are taken [33]. Of primary importance are the first and second

moment which give the offset of the beam and the r.m.s. size of the beam. The

moments of a distribution function can be found using

<xn> =

∫
dx xnf(x). (2.50)

We are interested in the evolution of the beam over the course of a section

of the accelerator. To obtain a measure of the beam parameters as a function of

position along the accelerator and using the matrix formalism previously defined

we make use of orbit function techniques. If we know, or can estimate, the beam

distribution prior to some section of our accelerator as a Gaussian the initial
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distribution is given by

f(x, x′) =
1√

2πσx

1√
2πσx′

e
− x2i

2σ2x e
− x′i

2

2σ2
x′ . (2.51)

We find the first two moments for the coordinates (xi, x
′
i) are < x >=< x′ >= 0

and < x2 >= σ2
x , < x′2 >= σ2

x′ , as might have been guessed given the form of

the distributions.

Using the results from the previous section we can write the integrals which

define the calculation of the moments of the final coordinates as,

<xnf> =

∫ ∞
−∞

dxf dx′f x
n
f f(xf , x

′
f )

=

∫ ∞
−∞

dxf dx′f x
n
f f(M · ~xi),

(2.52)

where we have represented the linear transform from the initial to the final posi-

tion using the matrix notation of the previous section, xf = M · ~xi. If we instead

look for the moments of M · ~xi we find

<~xnf> = <(M · ~xi)n> =

∫ ∞
∞

dxi dx
′
i (M · ~xi)n f(xi, x

′
i), (2.53)

which may have been deduced from the previous relation if we note that since

det(M)=1 the Jacobian of the coordinate transform from dxidx
′
i to dxfdx

′
f is

unity.

If we assume the beam is well aligned to the accelerating system, and thus

< x >= 0, then we are most interested in the evolution of the second moments
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along the accelerator,

σ2
f =

∫ ∞
∞

dxi dx
′
i (M · ~xi)2 f(xi, x

′
i) =

∫ ∞
∞

dxi dx
′
i (M · ~xi)2 f(xi, x

′
i)

=

∫ ∞
∞

dxi dx
′
i (M · ~xi) · (M · ~xi)T f(xi, x

′
i)

= M ·

∫ ∞
∞

dxi dx
′
i

xixi xix
′
i

xix
′
i x′ix

′
i

 f(xi, x
′
i)

 ·MT

= M · σ2
i ·MT .

(2.54)

In the last equation σ2
i is the matrix of initial second order moments of the beam.

It is possible to define a beam ellipse by noting that

xT · σ2 · x = σ2
x′x

2 − 2σ2
xx′xx

′ + σ2
xx
′2 = 1, (2.55)

is an equation for an ellipse. The area of this ellipse is π det(σ2).

The propagation of the beam moments can be recast into an oft used notation

credited to Courant-Snyder [34, 35] by setting σ = εT , where ε is a constant and

T is defined as

T ≡

 β −α

−α γ

 . (2.56)

β, α and γ are the so-called Twiss Parameters for which it can be shown that

γ(s)x2 + 2α(s)xx′ + β(s)x′
2

= ε, (2.57)

which is an equation for an ellipse in phase space. Given the relation between the

Twiss parameters and the beam second moment matrix, the Twiss parameters

are seen to evolve along the accelerator as Tf = M ·Ti ·MT . The constant quantity

ε is a measure of the phase space area of the beam, Ap.s. = πε and is called the

beam ”emittance”.

Given the nature of the above distribution functions as infinite it is not prac-

tical in an experimental setting to keep track of all particles. As such, when
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measuring beam parameters in situ it is necessary to define a region of interest.

Typically this involves constraining the parameters to be measured (e.g. β and α)

by requiring the measured ellipses contain 90% of the beam charge. This means

that while Liouville’s theorem states that phase space area is conserved the prac-

tical area of the beam is an ellipse which contains 90% of the charge. Thus the

practical area does grow when the elements in the transport are non-linear. This

growth is due to the fact that the phase space captured by the ellipse contains

gaps. Were we able to distinguish between the populated portions of space and

the vacant portions we would see that the phase space area is conserved. A set

of examples of phase spaces are plotted in Figure 2.4
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Figure 2.4: A set of examples showing (x,x’) phase spaces. a) An example of

a gaussian beam with σx
σx′

= 2. b) The same distribution as a) but after a drift

of 2.5m. c) The same initial phase space as a) but after an rf cavity designed to

kick the beam based on transverse position, f(x′) = e
− 1

2σx′
(x′−0.3 sinx)

.
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Figure 2.5: The change of σx as a function of position z. For this example a

uniform focusing channel has been assumed with wavenumber k. The blue curve

represents the case in which k > ε, the red case is the matched case, where σ2
x = ε

k

and the yellow case is where k < ε.

2.7.1 Evolution of the Distribution

We looks now for a way to describe the evolution of the beam size σx in the

presence of of forces. To begin we look at the change of the σx with z,

dσx
dz

=
1

2σx

d〈x2〉
dz

=
σxx′

σx
,

d2σx
d2z

= −σ
2
xx′

σ3
x

+
σ2
x′

σx
− k2(z)σx,

(2.58)

where we have used x′′ = k2(z)x. As noted in the previous section the determi-

nant of the matrix of beam moments is a constant value, we now write it explicitly

as

det

∣∣∣∣∣∣ σ
2
x σxx′

σxx′ σ2
x′

∣∣∣∣∣∣ = σ2
xσ

2
x′ − σ2

xx′ = ε2. (2.59)
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Figure 2.6: This plot uses the same values as those used in Figure 2.5. The

blue curve represents the case in which k > ε, the red case is the matched case,

where βx = 1
k

and the yellow case is where k < ε.

This relation allows us to rewrite the previous relation as

σ′′x + k2(z)σx =
ε2

σ3
x

. (2.60)

Examples of numerical solutions to this equation are shown in Figure 2.5. We see

that careful selection of beam parameters when in a focusing field with associated

wavenumber k creates a situation in which the beam size does not oscillate. This

branding of the evolution of the beam size while accurate and useful can be a bit

cumbersome to use in practice.

A more straightforward excise in determining the changes of beam size in a

given accelerator lattice is the use of the matrix formalism previously developed,

namely Equation 2.54. As an example we look at the case of a beam in a drift of
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length z, i.e. where k(z)=0. The change in beam size looks like

σf =

σ2
x + zσxx′ + z(zσ2

x′ + σxx′) zσ2
x′ + σxx′

zσ2
x′ + σxx′ σ2

x′

 . (2.61)

If we assume that the beam is not correlated in x-x’ so that σxx′ = 0 we find that

σx(z) =
√
σx(0)2 + z2σ2

x′ = σx(0)

√
1 + z2

ε2

σx(0)4
(2.62)

where in the final expression we have used the emittance to relate beam spread

σx′ to beam size σx. The similarity between the last expression and the evolution

of the beam size of a light beam [36] allows us to write the equivalent beam based

Rayleigh length as

zR,beam =
σ2
x

ε
. (2.63)

Examination of Equation 2.56 shows that this Rayleigh range has already been

defined as βx. We chose to denote β with a subscript here to avoid confusion

with the normalized beam velocity. Equation 2.62 can then be transformed to be

written as an expression defining the evolution the so-called beta function,

β′′x + 2k(z)2βx −
2

βx
= 0. (2.64)

An example of the evolution of the beta function as a function of z in a uniform

constant focusing channel is shown in Figure 2.6.

Understanding these types of oscillations in beam size will prove to be im-

mensely useful in later sections when we discuss the effects of dipole forces and

attempts to contain them using focusing systems.

29



CHAPTER 3

Beam Based Radiation

Radiation generated by charged particle beams is the subject of many theses; be

it undulator, transition or bending. As such, a complete survey of all sources

and their use is well beyond the scope of this thesis. However, there are sources

of beam based radiation used in the course of the experiments presented in this

work which necessitate covering their generation and application. We start with

a survey of the salient details of Transition Radiation [37, 38], including Co-

herent Transition Radiation (CTR). The latter serves as a means of describing

what it means for a radiation source to be coherent. We then move on to Co-

herent Diffraction Radiation (CDR) and Coherent Cherenkov Radiation (CCR)

and their relation to these experiments. Finally we discuss the Kramers-Kronig

relations [39, 40] and their application as a method for deriving the shape of

beams from the spectral content of the radiation generated by beam-structure

interactions.

3.1 Transition Radiation

Simply put, transition radiation is the radiation emitted by a charged particle

as it transitions from one material to another. In the case of beam diagnostics,

optical transition radiation is used to measure transverse beam size and position

by impinging the beam on a metal foil [41, 42]. For the purposes of this thesis
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Figure 3.1: A stylistic representation of the generation of transition radiation.

A free electron (blue) is incident, from the left, on a metal surface (ε2 → ∞),

from vacuum (ε1 = 1). The free particle’s image charge is shown in red.

and the analysis to follow we present a succinct, if less than rigorous, derivation

of transition radiation. The interested reader may find a rigorous derivation in

Ref. [14, 37, 43].

We begin with a physical description of the problem at hand. As shown in

Fig. 3.1 a free particle traveling along the ẑ-axis is incident (from the left) on a

metal surface. Included in the diagram is the free particle’s image charge, shown

in red. When the particle enters the metal it is effectively shielded by the mobile

charges in the conductor thus vanishing from the problem. In essence, the free

charge and image charge collide at the vacuum-metal boundary and annihilate.

This behavior can be modeled by an abrupt change of the velocity of the particle

to zero. Abrupt in this case means any change in velocity that occurs over a

period of time shorter than the formation length of the radiation [44]. With this

in mind, we make the assumption that the stopping time is infinitely short and

that the particle’s velocity is constant for the purposes of analysis.
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To quantify the above description of the source of Transition Radiation, we

write an equation for the energy radiated per unit solid angle per unit frequency

of a charge in motion [14]:

d2I

dωdΩ
=

ω2

4π2c

∣∣∣ ∫ ∞
−∞

qn̂× (n̂× β)eiω(t−n̂·~r(t)/c)dt
∣∣∣2. (3.1)

Following the discussion above and using the diagram in Fig. 3.1, we can write

the velocity of the free particle as β = −βẑΘ(−t) and the image particle as βi =

βẑΘ(−t), where Θ(t) represents the Heaviside step function. The velocities are

written such that the particles annihilate at t=0. As rectilinear motion is assumed

the corresponding particle positions may be written as ~r(t) = βctΘ(−t)ẑ, with

a similar expression for the image charge. Substituting these equations into Eq.

3.1 yields,

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣ ∫ 0

−∞
n̂×(n̂×β)eiωt(1−β cos θ)e−η|t|−n̂×(n̂×βi)eiωt(1+β cos θ)e−η|t|dt

∣∣∣2.
(3.2)

Where the exponential involving η has been added to ensure proper behavior

of the function at ±∞. To be more specific, η should be chosen such that the

variation of e−η|t| with time is much longer than a formation length so it does

not contribute to the integral. Noting that angular terms n̂ × n̂ × β differ only

by a minus sign and are no longer time dependent, they can be pulled out of the

square as β2 sin2 θ. With this in mind we can integrate the above expression and

write:

d2I

dωdΩ
=
e2β2 sin2 θ

4π2c

∣∣∣∣∣
(
eiωt(1−β cos θ)e−η|t|

1− β cos θ − η|t|
+
eiωt(1+β cos θ)e−η|t|

1 + β cos θ − η|t|

)0

−∞

∣∣∣∣∣
2

. (3.3)

Explicitly evaluating the function at the limits of integration, and then taking

η → 0, gives:

d2I

dωdΩ
=
e2β2 sin2 θ

4π2c

∣∣∣∣∣ 1

1− β cos θ
+

1

1 + β cos θ

∣∣∣∣∣
2

, (3.4)
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which after a bit of algebra results in the standard expression for single particle

transition radiation,
d2I

dωdΩ
=

e2

π2c

β2 sin2 θ

(1− β2 cos2 θ)2
. (3.5)

3.2 Diffraction Radiation

We now present a derivation of the radiation generated as a beam passes through

a hole of radius a in an infinite metal sheet. As we will eventually be interested

in the energy radiated per unit frequency we are interested in the fields of the

particle as a function of space and frequency ω, ~E(~x, ω). Once we have those fields

we apply Kirchhoff’s diffraction equation to derive the fields at some distance L

from the hole, due to the beam in the hole. As this derivation contains a lot of

useful expression often used in the field of accelerator physics it will be especially

detailed.

3.2.1 Fields of a Moving Charge

We start with Maxwell’s equations defining the potentials in a vacuum due to a

moving charge as,

~∇2φ− 1

c2

∂2φ

∂t2
= − ρ

ε0

~∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~J

~E = −~∇φ− ∂ ~A

∂t

ρ(~x, t) = qδ(x− x0)δ(y − y0)δ(z − vt)

~J(~x, t) = qvẑδ(x− x0)δ(y − y0)δ(z − vt),

(3.6)
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where q is the charge of the particle and the velocity is in the ẑ direction. We

further define the 4D Fourier transform as,

f̃(~k, ω) =

∫
f(~x, t)e−i

~k·~x+iωtd3~xdt. (3.7)

The system of Equations 3.6 can then be Fourier transformed into a system of

algebraic equations for which the electric field can be written as,

~̃E(~k, ω) =
iq

2πε0

δ(ω − kzv)
ω2

c2
− k2

e−i
~k⊥·~x⊥0(~k − ω

c2
vẑ), (3.8)

where k2 = k2
x+k2

y+k2
z and ~k⊥ ·~x⊥0 = kxx0 +kyy0. We can then write the electric

field in real space as,

~E(~x, ω) =
1

(2π)3/2

iq

2πε0

∫ ∞
−∞

δ(ω − kzv)
ω2

c2
− k2

e−i
~k⊥·~x⊥0(~k − ω

c2
vẑ)ei

~k·~xd3~k (3.9)

~E(~x, ω) =
−iq

v(2π)5/2ε0
ei
ω
v
z

∫ ∞
−∞

kxx̂+ kyŷ + ω
γ2v
ẑ

k2
x + k2

x + ω2

γ2v2

e−i
~k⊥·~x⊥0ei

~k⊥·~x⊥d2~k⊥, (3.10)

in the latter equation we have performed the integration over kz using the delta

function. Given the nature of the problem, as stated above, we are looking for

Eρ(~x, ω). As such we write

Eρ(~x, ω) =
−iq

v(2π)5/2ε0
ei
ω
v
z

∫ ∞
−∞

kxcos(θ) + kysin(θ)

k2
x + k2

x + ω2

γ2v2

eik⊥·(~x⊥−~x⊥0)d2~k⊥ (3.11)

k⊥ · (~x⊥ − ~x⊥0) = k⊥ ·
[
(ρcos(θ)− ρ0cos(θ0))x̂+ (ρsin(θ)− ρ0sin(θ0))ŷ

]
.

(3.12)

If we further perform the d2~k⊥ integral in polar coordinates using kx = k⊥cos(θk)

and ky = k⊥sin(θk) we are left with,

Eρ(~x, ω) =
−iq

v(2π)5/2ε0
ei
ω
v
z

∫
k⊥cos(θk − θ)
k2
⊥ + ω2

γ2v2

eik⊥ρcos(θk−θ)e−ik⊥ρ0cos(θk−θ0)k⊥dk⊥dθk

(3.13)
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Eρ(~x, ω) =
−iq

v(2π)5/2ε0
ei
ω
v
z

∫ ∞
0

dk⊥
k2
⊥

k2
⊥ + ω2

γ2v2

∗∫ 2π

0

dθkcos(θk − θ)eik⊥ρcos(θk−θ)e−ik⊥ρ0cos(θk−θ0).

(3.14)

Performing the θk integral yields,

Eρ(~x, ω) =
q

v(2π)3/2ε0
ei
ω
v
z

∫ ∞
0

dk⊥
k2
⊥

k2
⊥ + ω2

γ2v2

J1

(
k⊥(ρ− ρ0)

)
, (3.15)

and finally the k⊥ integral is performed using [45],∫ ∞
0

xJ0(ax)

x2 + p2
dx = K0(ap), (3.16)

to give

Eρ(~x, ω) =
q

v(2π)3/2ε0
ei
ω
v
z ω

γv
K1

( ω
γv

(ρ− ρ0)
)
. (3.17)

If one repeats the same procedure to attempt to calculate Eθ(~x, ω) the obliq-

uity factor cos(θk − θ) → sin(θk − θ) in Equation 3.14 so that the integral over

θk vanishes. For Ez(~x, ω), k⊥cos(θk − θ)→ ω
γ2v

and one finds,

Eθ(~x, ω) = 0, (3.18)

Ez(~x, ω) =
iqω

(2π)3/2γ2v2ε0
ei
ω
v
z

[
1

ρ− ρ0

− πω

2γv
I0

( ω
γv

(ρ− ρ0)
)

+ L0

( ω
γv

(ρ− ρ0)
)]
,

(3.19)

where I0 is the modified Bessel function of the first kind and L0 is the Struve

function [45]. Of note is the extra factor of γ in the denominator of Ez which

is consistent with the scaling of the fields derived through other methods. This

is the so-called ”pancaking” of the fields of a relativistic charge [14]. For the

experiments conducted in this work γ ∼ 40000 so Ez can be ignored.
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3.2.2 Kirchhoff and Diffraction

We continue now with the generalized Kirchhoff integral for a source on a surface

S1,

Ψ(~x) = − ik
2π

∫
S1

eikRpq

Rpq

(1 +
i

kRpq

)Ψ(~x′)da′, (3.20)

where Ψ(~x) is any given field component (i.e. Ex), S1 is defined using Dirichlet

boundary conditions as the surface on which the initial field Ψ(~x′) is non-zero

and Rpq is the distance between the source and the point of interest. If Rpq is

written as,

~Rpq = ~R− ~r′, (3.21)

then

|Rpq|2 = (~R− ~r′) · (~R− ~r′) = R2 + r′2s− 2~R · ~r′ (3.22)

Rpq = R

√
1 +

r′2

R2
− 2~R · ~r′

R2
. (3.23)

A graphical representation is shown in Figure 3.2. The last equation can be

expanded for r′ � R as,

Rpq ∼ R− ~r′ · n̂+
r′2

2R
− 1

2

(~r′ · n̂)2

R
(3.24)

for n̂ = ~R/R. When used to replace Rpq in the exponential in Equation 3.20 the

first two terms on the right hand side of equation 3.24 represent the Fraunhofer,

or far-field, approximation and all four terms the Fresnel, or near-field, approxi-

mation. Applying the Fraunhofer approximation for the exponential and setting

all other Rpq to R yields

Ψ(~x) = − ik
2π

eikR

R
(1 +

i

kR
)

∫
S1

e−ikn̂·
~r′Ψ(~x′)da′. (3.25)

Some literature uses only the first three terms as the Fresnel approximation.

Since it is an approximation, it is usually user’s choice. The standard procedure
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Figure 3.2: A representation of the handling of ~Rpq, the distance between a

point in the source, q, and the observation point P.

is to pick an approximation which is actually integrable using Kirchhoff’s integral

relation (Equation 3.20) and then to numerically integrate said integral with the

full ~R and check the range of applicability.

As an example, coherent transition radiation collected at FACET is done so

at a distance of 1 m from the source with an aperture of 3.8 cm. The Fresnel

number Nf = a2

λL
is ∼3 so the Fresnel approximation applies. However, the angle

is θ ∼ 0.038 so that the ~r′ · n̂ terms are effectively zero and one would be fine

using the first and third terms only [46].

3.2.3 Diffraction Radiation from a Hole

Using the previous relation and the equation describing the radial fields of an

electron, Eq. 3.51, we can now state the fields ”stripped” from a particle as it

passes through a hole of radius a in an otherwise infinite sheet of metal at z = 0
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source and inspection planes as looking down the ẑ axis.

as,

Eρ(~x, ω) = − ik

(2π)5/2

qω

γv2ε0

eikR

R
(1 +

i

kR
)

∫
S1

e−ikn̂·
~r′K1

(ωρ′
γv

)
(ρ̂ · ρ̂s)da′. (3.26)

In the above relation we have assumed a particle on axis, ρ0 = 0, and ρ̂ · ρ̂s is

defined as the obliquity factor between the field direction at the source, ρ̂s, and

the field direction elsewhere, ρ̂. Figure 3.3 helps elucidate the description. For
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this problem we explicitly define the various vectors as,

ρ̂ · ρ̂s = cos(θs − θ) (3.27)

n̂ = cos(η)ẑ + sin(η)
(
cos(θ)x̂+ sin(θ)ŷ

)
(3.28)

~r′ = ρ′
(
cos(θs)x̂+ sin(θs)ŷ

)
(3.29)

n̂ · ~r′ = ρ′sin(η)cos(θs − θ), (3.30)

so that we can write the Kirchhoff integral as,

Eρ(~x, ω) = − ik

(2π)5/2

qω

γv2ε0

eikR

R
(1 +

i

kR
)

∫ ρ2

ρ1

ρ′dρ′K1

(ωρ′
γv

)
∗∫ 2π

0

dθs cos(θs − θ)e−ikρ
′sin(η)cos(θs−θ).

(3.31)

In the above expression we have purposefully left the limits of the ρ′ integral am-

biguous and will select the limits when discussing the relation between diffraction

radiation and transition radiation. Continuing with the θs integral gives,

Eρ(~x, ω) = − kω
γv2

q

(2π)3/2ε0

eikR

R
(1 +

i

kR
)

∫ ρ2

ρ1

ρ′dρ′K1

(ωρ′
γv

)
J1

(
kρ′sin(η)

)
. (3.32)

The final integral can be written as,∫ ρ2

ρ1

ρ′dρ′K1(αρ′)J1(δρ′) =

δ

α2 + δ2

{
− ρ1J2(δρ1)K1(αρ1) + ρ2J2(δρ2)K1(αρ2)+

ρ1
α

δ
J1(δρ1)K2(αρ1)− ρ2

α

δ
J1(δρ2)K2(αρ2)

}
,

(3.33)

where α = ω/(γv) = k/(γβ) and δ = ksin(η). Rewriting the term outside the

curly braces in the above expression gives,

δ

α2 + δ2
=
β

k

βsin(η)

1− β2cos2(η)
. (3.34)

We can write the final expression as,

Eρ(~x, ω) = − k

γv

q

(2π)3/2ε0

eikR

R
(1 +

i

kR
)

βsin(η)

1− β2cos2(η)
H(α, δ, ρ1, ρ2), (3.35)

where H(α, δ, ρ1, ρ2) represents the function in the curly brackets in Eq. 3.33.
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3.2.4 Energy Radiated in the Far Field

With an expression for the fields radiated by a particle passing through a hole in

a metal sheet in hand we now wish to derive an expression for the energy radiated

per unit solid angle. This will tell us what the distribution will look like on our

detector.

We begin by noting that the total energy radiated per unit solid angle, dW/dΩ,

can be defined as,
dW

dΩ
=

∫ ∞
−∞

dP (t)

dΩ
dt, (3.36)

and the power P (t) as,

P (t) =

∫
~S(t) · d ~A =

∫
R2(~S(t) · n̂)dΩ. (3.37)

In the far field limit the radiation manifests as a plane wave so the time-averaged

Poynting vector ~S(t) can be written

~S(t) =
1

µ0

~E × ~B∗ =
1

2µ0c
~E × (n̂× ~E∗) =

1

2µ0c
| ~E(t)|2n̂ (3.38)

Combining all of the above to arrive at a more useful expression for dW/dΩ gives,

dW

dΩ
=

∫ ∞
−∞

R2

2µ0c
~E(t) · ~E∗(t) dt. (3.39)

To recast the above function of ~E(ω) the Fourier transform is used,

dW

dΩ
=

1

2π

∫ ∞
−∞

dt
R2

2µ0c

∫ ∞
−∞

dω ~E(ω)eiωt ·
∫ ∞
−∞

dω′ ~E∗(ω)e−iω
′t, (3.40)

and the order of integration is reversed to give,

dW (ω)

dΩ
=

∫ ∞
−∞

R2

2µ0c
| ~E(ω)|2 dω, (3.41)

where
d2I

dωdΩ
=

R2

2µ0c
| ~E(ω)|2 (3.42)

40



is the energy radiated per unit solid angle per unit frequency as in the sections

above.

We are now able to write an expression for the energy radiated per unit solid

angle per unit frequency for a particle passing through a hole in a metal sheet as

d2I

dωdΩ
=

k2

γ2v2

q2c

16π3ε0
(1 +

1

k2R2
)

β2sin2(η)(
1− β2cos2(η)

)2H
2(α, δ, ρ1, ρ2), (3.43)

where we note k2

γ2v2
= α2

c2
. If the source is then integrated from ρ1 = 0 to ρ2 = a

which is the case in which a particle enters a region through a metal disc of radius

a, thus the source of radiation is the disc, gives

lim
ρ1→0

αH(α, δ, ρ1, a) = 1 + aαJ2(δa)K1(αa)− aα2

δ
J1(δa)K2(aα), (3.44)

and thus

d2I

dωdΩ
=

q2

16π3cε0
(1 +

1

k2R2
)

β2sin2(η)(
1− β2cos2(η)

)2∗{
1 + aαJ2(δa)K1(αa)− aα2

δ
J1(δa)K2(aα)

}2

.

(3.45)

This is seen to be the same as the case for which a particle leaves the region

of interest through a metal disc of radius a, which ”strips” the fields from the

particle as it leaves. In the case that we further allow ρ2 →∞ the single particle

transition radiation spectrum previously derived is found [47, 48].

If we are instead interested in a particle as it enters or leaves the region of

interest through a hole of radius a in an other wise infinite metal sheet, we take

ρ1 → a and ρ2 →∞ and find

lim
ρ2→∞

αH(α, δ, a, ρ2) = −aαJ2(δa)K1(αa) +
aα2

δ
J1(δa)K2(aα), (3.46)
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Figure 3.4: A selection of angular profiles of transition radiation from an infi-

nite plane (blue), transition radiation from a finite source (red) and diffraction

radiation from a hole (green). The finite source and hole are of the same radius

a. a) Uses parameters similar to those of the experiments reported in this work,

λ = 30 µm, γ = 40000 and a = 3mm. b) is a smaller angular extent of a), to

show the on axis null. c) λ = 30 µm, γ = 40000 and a = 30cm.
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and thus

d2I

dωdΩ
=

q2

16π3cε0
(1 +

1

k2R2
)

β2sin2(η)(
1− β2cos2(η)

)2∗{
− aαJ2(δa)K1(αa) +

aα2

δ
J1(δa)K2(aα)

}2

.

(3.47)

Careful inspection shows that if the sum of the two limits, Equations 3.45 and

3.47, is taken then the factor in the curly brackets falls to unity and the expression

for transition radiation from an infinite source is returned.

A comparison of the three sources of radiation is illustrated in Figure 3.4. We

plot the angular distribution of energy from transition radiation from an infinite

sheet, transition radiation from a disc of radius a and diffraction radiation from

a hole of radius a in an infinite metal sheet. We see that as the surface/hole

gets larger the transition radiation from a finite sized surface approaches that

of an infinite surface and the diffraction radiation energy falls to zero. For this

experiment there are a selection of apertures in the a = 3 mm to 10 mm range.

For the relevant parameters in the experiment performed in this work an energy

per unit frequency from 50% to 99% that of transition radiation from an infinite

sheet is expected.

If the spectral energy density due to a finite bunch is integrated over all

frequencies and all space (see section 3.4) the total CTR energy is expected to

be on the order of 10 mJ for this experiment. With a total beam energy loss

on the order of 150 mJ, multiple apertures producing 10 mJ of energy loss are a

significant source of systematic error that are to be accounted for.
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3.3 Čerenkov Radiation

We continue now with a description of Cherenkov Radiation, which is sometimes

referred to as Čerenkov or Cherenkov-Vavilov radiation [49, 50, 51]. Generally,

Cherenkov radiation is light which is emitted by the excitation of an asymmetric

polarization in a medium with an index of refraction greater than one. Asym-

metric polarization is brought about when a particle or field capable of imparting

a polarization on a given macroscopic media moves faster than the media can

respond.

As a first step we present simple conservation of energy and momentum ar-

guments to arrive at the conditions for which Cherenkov radiation is produced.

We start with the relativistically correct expression for the energy of a particle,

E2 = p2c2 + (mc2)2. Looking at the expression for small changes in energy and

momentum we find that dE = c2~p
E
·d~p = ~v ·~p, with ~v as the particle velocity. Tak-

ing the change in energy and momentum as ~ω and n~ωn̂/c respectively, where

n̂ is the direction of photon emission and n is the index of refraction, the result

is

cos θc =
1

βn
. (3.48)

This is the standard expression used to find the angle of radiation for light emitted

through Cherenkov mechanisms.

In a quantitative treatment we begin as we began the last section, with Equa-

tions 3.6 modified to include a homogenous dielectric media described by dielec-
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tric constant εr,

~∇2φ− εr
c2

∂2φ

∂t2
= − ρ

εrε0

~∇2 ~A− εr
c2

∂2 ~A

∂t2
= −µ0

~J

~E = −~∇φ− ∂ ~A

∂t

ρ(~x, t) = qδ(x− x0)δ(y − y0)δ(z − vt)

~J(~x, t) = qvẑδ(x− x0)δ(y − y0)δ(z − vt).

(3.49)

The analysis proceeds identically to that performed above but for clarity we write

an intermediate equation

~E(~x, ω) =
−iq

v(2π)5/2ε0εr
ei
ω
v
z

∫ ∞
−∞

kxx̂+ kyŷ + ω
v
(1− β2εr)ẑ

k2
x + k2

x + (1− β2εr)
ω2

v2

e−i
~k⊥·~x⊥0ei

~k⊥·~x⊥d2~k⊥,

(3.50)

with a result similar to that found in the previous section,

Eρ(~x, ω) =
q

v(2π)3/2ε0εr
ei
ω
v
zω

v

√
(1− β2εr)K1

(√
(1− β2εr)

ω

v
(ρ− ρ0)

)
. (3.51)

If we now look at the limiting form a K1(x) for x� 1 we find

Eρ(~x, ω) =
q

v(2π)3/2ε0εr

√
π

2(ρ− ρ0)

√
ω

v

√
(1− β2εr)e

iω
v
ze−

ω
v

√
(1−β2εr)(ρ−ρ0).

(3.52)

Thusly, if β2εr < 1, which is satisfied for a particle beam of any velocity in

perfect vacuum, we see that the fields fall off exponentially in ρ so that there

is no radiation. If on the other hand β2εr > 1 the exponent which contains√
(1− β2εr) produces an i and the fields are then seen to radiate away.

If we examine the exponent we find that the radiation is in phase when z −√
(β2εr − 1)ρ is a constant. The switching of (β2εr−1) is deliberate as it assumes

β2εr > 1 and that the i has already been pulled out. Without loss of generality we

can take this constant to be one. We can then show, through a bit of trigonometry
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Figure 3.5: A diagram showing a line of constant phase front (shown in blue)

as derived in Equation 3.52. The red arrow denotes the direction of propagation

of the phase front.

as described by Figure 3.5,

tanα = tan
π

2
− θc = cot θc =

1√
(β2n2 − 1)

, (3.53)

which leads to

cos θc =
1

βn
. (3.54)

Similar calculations can be performed to find the other field components,

which when combined with the expression for the Poynting flux through a cylinder

gives the radiation emitted per unit distance traveled [49],(
dE

dx

)
rad

∝
∫
n>(1/β)

ω

(
1− 1

β2n2

)
dω, (3.55)

the formula derived by Tamm and Frank in 1937 [52].

The particles used in the experiment are accelerated to an energy of 20.35

GeV which means they have a velocity of 99.9999999685% the speed of light. To

put it another way the velocity difference compared to the speed of light is in

the 10th decimal. As air has an index of refraction of 1.000277, this beam will
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Figure 3.6: Diagram represention of the vectors used in the derivation of coher-

ent radiation effects due to bunches of charged particles. In this diagram the red

curved line represents a collection of charges which has a center of mass (red dot)

that moves as ~R(t). The point O represents the origin of our chosen coordinate

system and P the point of observation. A representative particle from the bunch

is shown as a blue dot. The vectors ~x, ~x′ and ~x+ ~x′ are an instance of the vectors

defining the motion of the selected bunch particle. ~ri,j(t) is the vector connecting

the center of mass to the selected particle.

tend to radiate away energy when not in vacuum. If we assume a linear model

for the scaling of index of refraction, 1+P/P0 where P0 is the pressure at STP,

we find that such a beam stops radiating away energy as Cherenkov radiation

at 7.6 ∗ 10−4 torr. Cherenkov radiation in air is the origin of the light used in

detector in the spectrometer in this experiment [53].

3.4 Coherent Radiation

We shall now derive an expression for bunches of particles radiating together. We

shall see that if conditions are ideal the resulting radiation field increases as the

square of the number of particles, N2
p , as opposed to simply Np.
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To begin we start with the expression for energy radiated by a single charge,

Eq. 3.1, and define everything outside of the exponential as G(t):

d2I

dωdΩ
=
∣∣∣ Np∑
i=1

∫ ∞
−∞

G(t)eiω(t−n̂·
~x+ ~x′

i
c

)dt
∣∣∣2, (3.56)

where we have shown explicitly the vectorial relation between the particle of

interest and the observation point, graphically represented in Fig. 3.6. Careful

examination of Fig. 3.6 shows it is possible to write ~x+ ~x′ = ~x+ ~R(t) + ~r(t), so

for clarity we write:

d2I

dωdΩ
=
∣∣∣ Np∑
i=1

∫ ∞
−∞

G(t)eiω(t−n̂·~x
c
−n̂·

~R(t)
c
−n̂·~ri(t)

c
)dt
∣∣∣2. (3.57)

The first two terms in the exponential are the same no matter which particle of

the bunch is chosen, as long as the origin O remains the same, so we rewrite that

term as φ(t). This leaves

d2I

dωdΩ
=

(
Np∑
i=1

∫ ∞
−∞

G(t)φ(t)e−iωn̂·
~R(t)
c e−iωn̂·

~ri(t)

c dt

)
∗(

Np∑
j=1

∫ ∞
−∞

G∗(t)φ∗(t)eiωn̂·
~R(t)
c eiωn̂·

~rj(t)

c dt

)
, (3.58)

where the superscript * represents the complex conjugate and the magnitude has

been written explicitly.

If the individual particle positions, ~ri,j(t), do not change with respect to the

center of mass position ~R(t), the terms involving ~r(t) may be removed from the

integral. What remains is the single particle energy radiated per unit solid angle

per unit frequency. This function can be, for example, the expression given for

transition radiation above in Eq. 3.5. Bundling up the expression for single

particle radiation we arrive at the next step in the derivation:

d2I

dωdΩ
=

Np∑
i=1

Np∑
j=1

e−i
ω
c
n̂·(~ri−~rj) d2I

dωdΩ

∣∣∣∣∣
s.p.

. (3.59)
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The rest of the derivation centers around examination of the double sum term.

That is to say,
Np∑
i=1

Np∑
j=1

e−i
ω
c
n̂·(~ri−~rj) =?. (3.60)

As the sums are over the same physical distribution of particles, if i = j then

the exponential reduces to 1 and the sum to Np. This leaves us to contend with

the sum for all terms for which i 6= j. As the double sum is primarily concerned

with the difference in the location of the two particles under examination ~ri −

~rj, we describe the two most obvious cases: 1) the particles are scattered in

an arbitrarily large region compared to the wavelength of radiation of interest

and 2) the particles are scattered in an arbitrarily small region compared to the

wavelength of interest.

In the first case what results is the phase difference between each photon,

e−i
ω
c
·(~ri−~rj), is such that the sum total of the double sum results in zero. An

example of this is a uniform distribution of particles evenly distributed along a

full wavelength of the radiation of interest. A particle that emits a photon with

a phase φ = π (not to be confused with φ(t) defined earlier, which is the same for

all particles by definition) constructively interferes with a particle which emits

a photon with a phase of φ = 0. Such radiation is called incoherent, and its

magnitude is equal to the radiation due to a single particle times the number of

particles radiating, Np. Evidently, in order for the terms in the double sum for

which i 6= j to matter, the beam must be short compared to a wavelength.

The second case listed above, in which a bunch of particles is distributed

over a region small compared to the wavelength of interest, results in an N2
p

enhancement of the the radiation field. Such radiation is said to be coherent.

Performing a gedanken similar to the one above, we imagine a bunch of particles

infinitely short compared to the wavelength of interest. This results in the phase
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factors, e−i
ω
c
·(~ri−~rj), individually reducing to unity. But how many phase factors

are there? As the sums are to be performed for i 6= j, for i, j ∈ 1...Np, each

particle i (of which there are Np) has a phase factor pairing it with Np − 1 other

particles (from j). This means that there are Np(Np − 1) terms in the double

sum for i 6= j. Add to this term the result from the i = j case and the N2
p result

is evident.

To be more explicit in the derivation of the energy radiated by a bunch of

charged particles we now derive an expression for the energy radiated for a charge

bunch which is not readily described by either of the above two cases. To do so

we begin by defining:

d2I

dωdΩ
=

(
Np + [Np(Np − 1)]f(ω)

)
d2I

dωdΩ

∣∣∣∣∣
s.p.

(3.61)

f(ω) ≡ 1

Np(Np − 1)

Np∑
i=1

Np∑
j 6=i

e−i
ω
c
n̂·(~ri−~rj). (3.62)

This formulation of the problem of coherence allows us to state the ”degree of

coherence” by calculating f(ω), which returns the expected incoherent expression

for f(ω) → 0 and coherent expression for f(ω) → 1. Explicit calculation of

f(ω) would prove difficult for systems in which Np → ∞, so we resort to an

ensemble averaging technique used commonly in plasma physics [54]. We define

a distribution of point like particles as Ni(~r) = 1
Np

∑
i δ(~r − ~ri) = fi(~r) + δNi(~r).

In this unfortunate notation, fi(~r) is not the same as f(ω) but they are related.

Specifically fi(~r) is the distributionfunction of the particle bunch in real space.

The distribution function represents the smooth part ofNi while δNi(~r) represents

the spiky nature of Ni which is due to the discrete nature of the particles.

In the limit that the number of particles becomes extremely large, the sums

written above can be converted to integrals. Using the definition of Ni(~r) allows
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us to write:

1

Np

〈
Np∑
i=1

e−i
ω
c
n̂·~ri

〉
=

〈∫
R3

e−i
ω
c
n̂·~rNi(~r)d

3~r

〉
=

∫
R3

e−i
ω
c
n̂·~rfi(~r)d

3~r. (3.63)

Where we have taken advantage of the fact that the ensemble average of the spiky

function is zero, 〈δNi(~r)〉 = 0. Writing the double sum from the expressions above

using this same method yields:

1

N2
p

〈 Np∑
i=1

e−i
ω
c
n̂·~ri

Np∑
j=1

ei
ω
c
n̂·~rj

〉
=

∫
R3

d3r

∫
R3

d3r′e−i
ω
c
n̂·(~r−~r′)

〈
Ni(~r)Nj(~r

′)
〉
.

(3.64)

Explicitly writing out the ensemble average on the right hand side of the previous

equation gives:

〈Ni(~r)Nj(~r
′)〉 =

〈
(fi(~r) + δNi(~r))(fj(~r

′) + δNj(~r
′))
〉
, (3.65)

= fi(~r) ∗ fj(~r′) + fi(~r) ∗
〈
δNj(~r

′))
〉

(3.66)

+ fj(~r
′) ∗
〈
δNi(~r)

〉
+
〈
δNi(~r) ∗ δNj(~r

′))
〉
.

The second and third elements of Eq. 3.66 are identically zero. The fourth term,

the product of the two spiky functions, can be shown to vanish in the limit of

large numbers of particles [33]. This leads to,

1

N2
p

〈 Np∑
i=1

e−i
ω
c
n̂·~ri

Np∑
j=1

ei
ω
c
n̂·~rj

〉
=

∫
R3

d3r

∫
R3

d3r′e−i
ω
c
n̂·(~r−~r′)fi(~r)fi(~r

′), (3.67)

and as fi(~r) is a probability density function and thus necessarily positive and

real, f ∗i (~r) = fi(~r), giving,

1

N2
p

〈 Np∑
i=1

e−i
ω
c
n̂·~ri

Np∑
j=1

ei
ω
c
n̂·~rj

〉
=

∣∣∣∣∣
∫
R3

d3re−i
ω
c
n̂·~rfi(~r)

∣∣∣∣∣
2

. (3.68)

Returning now to Eqs. 3.61 and 3.62, we see that

1

N2
p

〈 Np∑
i=1

e−i
ω
c
n̂·~ri

Np∑
j=1

ei
ω
c
n̂·~rj

〉
=

1

Np

+
Np(Np + 1)

N2
p

〈 Np∑
i=1

Np∑
j 6=i

e−i
ω
c
n̂·(~ri−~rj)

〉
.

(3.69)
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Equating the last two equations, and taking Np >> 1, leads to the final result,

f(ω) =

〈 Np∑
i=1

Np∑
j 6=i

e−i
ω
c
n̂·(~ri−~rj)

〉
=

∣∣∣∣∣
∫
R3

d3re−i
ω
c
n̂·~rfi(~r)

∣∣∣∣∣
2

. (3.70)

What we see is that the degree of coherence of a bunch of particles is the square of

the Fourier Transform of the distribution function of the beam. Examination of

f(ω) in the limits that the bunch length goes either infinitely short or infinitely

long shows that, as expected, as the bunch length becomes shorter the beam

becomes more coherent,

f(ω)→

 1 as σz → 0

0 as σz →∞.
(3.71)

Specifically f(ω) allows one to describe the degree of coherence of the radiation

generated in a given process.

3.5 Kramers-Kronig and Pulse Reconstruction

Now that we have a description of the frequency content of radiation generated

from various sources, we seek to find a way to use that spectral content to generate

a profile of what the radiation source might look like. Phase retrieval problems

such as these are studied in detail due to their applicability in optics [55] and

have been of interest for at least 60 years [56]. The experiments presented in

this work are specifically concerned with the one dimensional phase retrieval

problem, which in general is considered hopeless [57, 58, 59]. It has, however,

been shown that under certain circumstances [60, 61, 62, 63] some details of the

source distribution are retrievable.

We begin with a description of the problem of phase retrieval and a deriva-

tion of the Kramers-Kronig relations. We then outline the limits of such phase
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retrieval attempts as applied to Coherent Transition Radiation (CTR) and show

heuristically that some details of the radiation source are recoverable.

3.5.1 Phase Retrieval

Given the relatively slow response time of most detectors, on the order of a pi-

cosecond [64], in order to measure the temporal profile of a light pulse which is

shorter than the response time of the detector other techniques, such as auto-

correlation, are necessary [65]. Such techniques suffer from the fact that they do

not give any phase information, only spectral intensity. We are thus interested in

trying to recover the phase information from the spectral intensity or show that

the phase wasn’t necessary for the measurements we wish to make.

In its most general form the so called one dimension phase retrieval problem1

can be initiated with a function which is complex in the time domain, such as

E(t) = E0e
−iωt, so that the Fourier transform is written as,

f(ω) = r(ω)eiφ(ω) =

∫ ∞
−∞

ρ(t)eiψ(t)eiωt dt, (3.72)

where the magnitude and phase of the functions in both domains have been

explicitly written out. The question arises as to whether one can determine

f(t), or f(ω), given only r(ω). A proof of lack of uniqueness of a Fourier inverse

determined using r(ω) = |f(ω)| follows directly from comparison of two functions

with the same spectral intensity r(ω) but different spectral phases φ(ω),

h(t) =
1

2π

∫ ∞
−∞

r(ω)e−iωt dω

g(t) =
1

2π

∫ ∞
−∞

r(ω)eiφ(ω)e−iωt dω.

(3.73)

1There is no phase retrieval problem in two dimensions [66], but that is beyond the scope
of this text.
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From this it is easily seen that r(ω) = |h̃(ω)| = |g̃(ω)| but that h(t) 6= g(t),

so that r(ω) = |f(ω)| is insufficient to completely determine f(t). The result

obtained from using r(ω) alone is ambiguous, and infinitely so. In retrospect this

may have been entirely obvious given the relationship between the magnitude

and phase of complex numbers. That is to say, a point on the complex plane is

defined by a magnitude and phase, the use of magnitude alone produces a circle.

This type of analysis can be extended to the discrete Fourier transform,

Fk ≡
N−1∑
n=0

fne
i 2πk
N
n =

N−1∑
n=0

fnz
n, (3.74)

where fn are a series of data points. Use of the Fundamental Theorem of Algebra

[67] states that a polynomial of one variable of degree n has n roots, so it may be

written as a product of those roots, Fk =
∑N−1

n=0 an(z − zn). It is easily seen that

an arbitrary phase added to the mth root, (z− zm)→ (z− zm)eip, does not effect

the magnitude |Fk|, so that we are again left with an ambiguity when attempting

to use |Fk| to determine fn [68].

3.5.2 A Kramers-Kronig Derivation

If the response of a system, H(t), to a stimulus f(t) is written in typical Green’s

function format as

H(t) =

∫ ∞
−∞

G(t− t′)f(t′)dt′, (3.75)

and the Fourier Transform [69] of the Green’s function and the stimulus term are

given as,

G(t− t′) =
1√
2π

∫ ∞
−∞

eiω(t−t′)G(ω) dω

f(t′) =
1√
2π

∫ ∞
−∞

eiω
′t′f(ω′) dω′,

(3.76)
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with their inverse transforms given by2,

G(ω) =
1√
2π

∫ ∞
−∞

e−iω(t−t′)G(t− t′) dt

f(ω) =
1√
2π

∫ ∞
−∞

e−iω
′tf(t) dt,

(3.77)

it follows then that

H(ω) = G(ω)f(ω). (3.78)

It is thus seen that the response of a system in the Fourier domain is a mere

product of the Green’s function and the stimulating function. If G(ω) is analytic

[70] in the upper half of the complex plane it follows from Cauchy’s Integral

Theorem [30] that, ∮
G(ω′)

ω′ − ω
dω′ = 0, (3.79)

which through application of the residue theorem gives,

G(ω) =
1

iπ
P

∫ ∞
−∞

G(ω′)

ω′ − ω
dω′. (3.80)

If G(ω) is now split into real and imaginary components we then arrive at one

version of the Kramers-Kronig relations:

Re[G(ω)] =
1

π
P

∫ ∞
−∞

Im[G(ω′)]

ω′ − ω
dω′

Im[G(ω)] = − 1

π
P

∫ ∞
−∞

Re[G(ω′)]

ω′ − ω
dω′.

(3.81)

Through simple demands that G(t− t′) be a real function, which it should be if

the response to a real stimulus f(t′) is to be real, it can be shown that G(−ω) =

G∗(ω). This means that Greal(−ω) = Greal(ω) and GIm(−ω) = −GIm(ω) and,

Re[G(ω)] =
2

π
P

∫ ∞
0

ω′Im[G(ω′)]

ω′2 − ω2
dω′

Im[G(ω)] = −2ω

π
P

∫ ∞
0

Re[G(ω′)]

ω′2 − ω2
dω′.

(3.82)

2When solving for the Principal Value in the above expression it is necessary to briefly return
to definition of the G(ω), Equation 3.77. Care should be taken that causality is always obeyed,
so that if ω = ωR + iωI and t− t′ < 0 that the contour is closed in the lower half of the complex
plane.
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Figure 3.7: An example of a Kramers-Kronig reconstruction of a time-

bandwidth limited Gaussian pulse of σt = 100 fs. The input pulse and phase

are shown in blue and the minimum phase reconstruction is shown in red. For

the top set a window 100 σt wide was divided up into 4000 points for this re-

construction. For the bottom the window was 8 σt wide and divided into 4000

points.
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3.5.3 Transition Radiation, Bunch Shapes and Phase Retrieval

Despite a previous section outlining that phase retrieval in one dimension is

understood to be impossible, we now show heuristically that some details of a

radiation pulse can be determined from the spectral content of the radiation

alone, under certain circumstances. Starting from Eq. 3.61 we note that in the

one dimensional limit the bunch form factor f(ω) reduces to,

f(ω) =

∣∣∣∣ ∫ ∞
−∞

f(z)e−i
ω
c
z dz

∣∣∣∣2 =

∣∣∣∣F̂ (ω)

∣∣∣∣2, (3.83)

the magnitude squared of the Fourier Transform. The natural log of the Fourier

components of the pulse distribution is taken giving

ln(F̂ (ω)) = ln(r(ω)) + iφ(ω), (3.84)

where F̂ (ω) = r(ω)eiφ(ω) has been used. The Kramers-Kronig relations may be

applied such that a minimum phase approximation can be determined using,

φmin(ω) = −2ω

π
P

∫ ∞
0

ln(r(ω))

ω′2 − ω2
. (3.85)

Using the above equation an approximation to the generating pulse can be derived

by performing the inverse Fourier transform using r(ω) and φmin(ω).

Figure 3.7 provides an example of the process of minimum phase reconstruc-

tion for a time-bandwidth limited Gaussian pulse. For such a pulse the expected

phase is constant and zero as the Fourier transform of a Gaussian pulse is purely

real. The deviations visible in the figure are due to machine limits in calculating

Fourier coefficients and the cut-offs due to the inability to numerically calculate

out to infinity. The ”actual” phase and the reconstructed phase appear to agree

well for most frequencies up to a constant phase offset. This is confirmed by the

similarity in the reconstructed pulse when compared to the input pulse.
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The above analysis indicates that despite the limitations of a theoretically

irretrievable phase and the limitations that exist in making an actual measure-

ment, a fair reproduction of a Gaussian beam is possible. This close agreement

can be explained by arguments involving the locations of the zeros of the Fourier

transform in the complex plane [60, 71]. We expand on a single Gaussian at-

tempt with a reconstruction of a pair of Gaussian pulses of identical width, but

uneven in amplitude and offset, Figure 3.8. We see that while the details of the

pulses are qualitatively correct the order in which the pulses are recovered is not.

A minimum phase approximation gets the qualitative bunch shapes correct but

will always place the large bunch first. Thus, absent other information, it is not

possible to determine the order of arrival of the bunches.

Next we show that when attempting to reconstruct a single Gaussian that

the phase is almost irrelevant, Figure 3.9. The agreement in Figure 3.9.c is

unsurprising in that a Gaussian offset from zero has linear phase, in the Eq. 3.84

representation. For the last case, Figure 3.9.d, it can be seen that if the radiation

were to have an interesting phase function φ(ω), but Gaussian spectral intensity,

the minimum phase reconstruction would still return a Gaussian.

If one tries to reconstruct a series of Gaussians of equal amplitude and dura-

tion but of non-periodic spacing, the minimum phase approximation fails, Figure

3.10. This is to be expected as it violates the previously stated criterion that a

minimum phase reconstruction works as long as the weak bunches follow strong

ones [60]. It is noted, but not shown, that the minimum phase reconstruction of

identical and periodically spaced Gaussian pulses does appear to work.

Finally, we attempt a minimum phase reconstruction of a selection of non-

symmetric and non-Gaussian bunches to illustrate the limits of the process, Fig-

ure 3.11. From these demonstrations it is obvious that in general the minimum
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Figure 3.8: A reconstruction of a pair of Gaussians of equal width σt=100 fs but

offset by some 600 fs, and the initial pulse is one fifth the amplitude of the trailing

pulse. Shown in the top frame is the original pulse in blue and the reconstruction

in red. The bottom left shows the spectrum and the bottom right the phases of

the two pulses.

phase reconstruction cannot provide any information about the head-tail order,

even for fairly asymmetric bunches. It does seem to return an appropriate mea-

sure of the beam lenth. Furthermore, for certain symmetric shapes like square

pulses the method does not recover the proper pulse length.

When attempting to reconstruct a bunch profile from Coherent Transition Ra-

diation care must be taken as the methods used to measure the radiation’s tem-

poral profile, such as autocorrelation, naturally broaden the pulse as measured.
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Furthermore, autocorrelation techniques always return a symmetric profile even

when the input profile is not symmetric. These broadening and symmetrizing

effects must be kept in mind when attempting to use a phase retrieval technique

on data to obtain information about the initial pulse. A deeper discussion of

these and other challenges can be found in the references, specifically References

[60, 61, 64].

A final note on the subject of using transition radiation as a bunch length

diagnostic that should be mentioned is that the spectrum of the emitted light

has a necessary cut off at the plasma frequency of the metal used to generate the

radiation. Furthermore, the form factor f(ω) as derived is a function purely of

the physical extent of the beam so we do not expect effects like frequency-position

correlations, or chirps, which might add additional ambiguity to the minimum

phase reconstruction.
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Figure 3.9: A comparison of the reconstructed pulses using user defined phases,

but the spectrum from a single seed Gaussian of σt=100 fs with an offset of

τ = 4σt. a) The minimum phase approximation as described by Lai and Sievers

[60, 61]. b) Zero phase is assumed. c) A linear phase is used. d) A cosine plus

an offset is in phase is input. For all plots the blue curves represent the original

function and the red the minimum phase reconstruction.
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Figure 3.10: A comparison of the reconstructed pulses using user defined phases,

but the spectrum from three Gausisan of identical σt = 100 fs, but offsets from

zero of τ1 = 400 fs,τ2 = 800 fs,τ3 = 1400 fs. a) The minimum phase approximation

as described by Lai and Sievers [60, 61]. b) Zero phase is assumed. c) A linear

phase is used. d) A cosine plus an offset is input. For all plots the blue curves

represent the original function and the red the minimum phase reconstruction.
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Figure 3.11: A comparison of the reconstructed pulses using asymmetric or

non-Gaussian shapes. a) Is an asymmetric gaussian where the first half is a

Gaussian of width σt = 100 fs and the second half is of width σt = 400 fs. b) the

same as a) but reversed in time. c) A square pulse with a width of 300 fs. d) A

square pulse with a width of 500 fs. As before, blue represents the original pulse

and red the minimum phase reconstruction.
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CHAPTER 4

Wakefields and Accelerators

Accelerator physicists are looking for technologies to increase the average gra-

dient in new systems past the present limit of ∼20 MVm−1 [72] in traditional

room temperature copper structures. The end goal of such research is not only

reduction in size of present accelerating complexes, from kilometers to a kilo-

meter or less, but for the creation of high energy, compact beam sources that

pave the way for the next generation of radiation sources which operate in bands

heretofore difficult to access, such as terahertz [25] and x-rays [18].

In this section we explore the use of novel devices called wakefield accelerators

that utilize a drive-witness configuration to transfer energy from the drive beam

to the witness beam. Such structures are capable of sustaining fields in the region

of >1 GVm−1 in the case of dielectrics and >10 GVm−1 [26] in the case of plasmas

[1, 2]. In this section we derive some of the more common relations used when

describing wakefield accelerators.

Any structure that can effectively add energy to a passing particle beam by

definition also effectively removes energy from the beam; good accelerators are

good decelerators. Such a simple statement, otherwise known as beam loading,

gave rise to the study of wakefields in accelerating structures. The first of these

important relations presented here is the relationship between the voltage excited

in a structure by a passing beam and the voltage ”seen” by the passing beam. This

relation is known as fundamental theorem of beam loading or fundamental theorem

64



ε

θ
Re[V]

V
e

V
b2

~

V
b1

~

V
b1+

V
b2

~ ~

Figure 4.1: A phasor diagram representing the wakefield system under study in

this section. The quantity Ṽb1 represents the beam induced voltage after the first

pass through the system, whereas Ṽb2 is that same voltage after n oscillations,

less a small quantity of phase Θ.

of wakefields. We follow this with a derivation of the Panofsky-Wenzel theorem

which will set constraints on what our wakefields must look like in order to best

accelerate beams of finite size. Next, we provide a few remarks about the nature

of superposition and wakefields generated by bunches of particles and finally we

discuss transformer ratios and their importance in wakefield accelerators.

4.1 The Fundamental Theorem of Wakefields

We seek to show that the field seen by a particle is one half the beam-induced

voltage in the structure. In doing so we follow the method as demonstrated by

Wilson using energy conservation [73].

We start by asserting the energy stored in the structure as:

W = αV 2, (4.1)

where V is the cavity voltage. We allow that the field seen by the particle is
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some fraction of the beam induced cavity voltage Vb, Ve = fVb. We further allow

that the phase of the field seen by the particle differs from the phase of the

beam-induced voltage by some quantity ε. We next assume that after an initial

pass through the structure the beam then passes through the structure again;

the mechanism for steering the particle back through the structure is assumed to

be lossless but otherwise arbitrary. The time it takes the particle to again enter

the structure is assumed to be some integer number of oscillations of the mode

in question plus another component Θ < 2π, and that the structure is lossless

such that the magnitude of the beam-induced voltage created on the first pass is

preserved.

Beginning with Eq. 4.1 we find the stored energy after the second pass through

the structure is:

W = α(Ṽb2 + Ṽb1)2,

= 2V 2
b α(1 + cos θ)

(4.2)

where a tilde is used to denote a complex quantity and Vb is the magnitude of

the beam-induced voltage.

Next we derive and expression for the energy lost by the particle:

∆u = qVe + qVe + qVb cos(Θ− ε),

= qVb(2f + cos(Θ− ε))
(4.3)

where the first term on the right hand side is the energy lost during the particle’s

first trip through the structure and the remaining two terms are the energy lost

during its second trip. We see here explicitly the beam-induced voltage remaining

in the structure after the first pass through the structure. Energy conservation

demands that Eqs. 4.2 and 4.3 be equal given no other source of energy or energy

loss in the system as described. We then collect terms with the same functional
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dependence on Θ; Θ is the only quantity which may be varied by the user and

thus its behavior is not determined by the wakefield structure in question,

(2αVb − 2qf) + (2αVb − q cos ε) cos Θ− q sin ε sin Θ = 0. (4.4)

To satisfy the above equation all non-theta terms must simultaneously vanish

giving:

Vb =
qf

α
,

Vb =
q cos ε

2α
,

0 = qsinε.

(4.5)

The last of Eq. 4.5 requires that ε = 2πn, for n ∈ Z, requiring the beam-induced

voltage and the field seen by the particle to be in phase. The 2n + 1 terms are

omitted as they would involve the particle take energy from a structure which

initially is stated to contain none. Combining the first two equations of Eqs. 4.5

and making use of cos(2πn) = 1 yields f = 1
2
. Thus the field seen by the particle

is half the beam-induced voltage Vb.

4.2 Panofsky-Wenzel Theorem

Next we seek to show that for accelerating systems that have a clear boundary

where the interaction with the particle beam is terminated there is no longitudinal

variation in the transverse momentum kick if there is no transverse variation in

the longitudinal kick. This relation is most often referred to as the Panofsky-

Wenzel theorem [74]. While its definition can be rather verbose it serves a key

roll in accelerator physics in that when building an accelerating structure one

typically does not want to induce longitudinally varying transverse momentum

kicks in the beam while accelerating it.
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To begin we start with the Lorentz force acting on a particle moving along the

ẑ-axis at constant velocity, a very good assumption for relativistic beams (v ' c),

d~p

dt
= e

(
− ~∇φ− 1

c

∂ ~A

∂t
+
~v

c
× (~∇× ~A)

)
(4.6)

where we have immediately written the Lorentz force in terms of potentials.

Rewriting the last term on the right hand side of Eq. 4.6 yields the convective

derivative which can be converted to the total time derivative,

d~p

dt
=e

(
− ~∇φ− 1

c

∂ ~A

∂t
+ (

~̃v

c
· ~∇ ~̃A)− (

~v

c
· ~∇) ~A

)
d~p

dt
=e

(
− ~∇φ− 1

c

d ~A

dt
+ (

~̃v

c
· ~∇ ~̃A)

)
d

dt

(
~p+

e

c
~A

)
= e~∇

(
v

c
Az − φ

)
,

(4.7)

where the ∼ is used in place of the Hestenes overdot, which can be confused for

the time derivative. Using Eq. 4.7 we now separate the momentum kicks into

transverse and longitudinal parts.

d

dt

(
~p+

e

c
~A

)
⊥

= e~∇⊥
(
v

c
Az − φ

)
d

dt

(
~p+

e

c
~A

)
z

= e
∂

∂z

(
v

c
Az − φ

)
.

(4.8)

If we integrate from the beginning of the interaction to the end, and remember

that the interaction is terminated at both ends such that the fields (and their

potentials) vanish at those points we are left with:

∆p⊥ = e~∇⊥

t′∫
0

dt

(
v

c
Az − φ

)

∆pz = e
∂

∂z

t′∫
0

dt

(
v

c
Az − φ

)
.

(4.9)
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If the longitudinal derivative of the transverse kick is taken and the transverse

derivative of the longitudinal kick we arrive at the final form of the Panofsky-

Wenzel theorem,
∂

∂z
∆p⊥ = ∇⊥∆pz. (4.10)

4.3 Superposition of Wakes

We are now interested in the wakefield generated not just by a single driving

charge but by a collection of charges. Traditional derivations of superposition

center around the longitudinal wakefield function Wz, defined as:

Wz(s) =
1

LQ

L∫
0

dz Ez(z,
z + s

c
), (4.11)

where s represents the distance of the test particle behind the driving charge

Q. We will take a slightly different approach in that we are interested in the

longitudinal electric field itself, Ez. The difference between the two is that the

wakefield function Wz gives the integrated voltage gain per unit charge and unit

length of the entire structure of length L, whereas the electric field Ez gives the

instantaneous voltage per unit length.

We begin by noting that for the systems of interest, time and position are

related as one would expect, vbdt = dz, which is to say that the transverse

velocity of the particles is negligible. This relation allows us to switch at liberty

quantities that vary in time or position. With this in mind we write the electric

field due to a driving charge Q at a distance s behind the driving charge as:

Ez(z, s0, t0) =
1

Q

z∫
−∞

ds′ Ez(z − s′ − s0,
z

vb
− t0)Qδ(s′ − z), (4.12)

where t0 and s0 are arbitrary phase factors which allow us to pick an origin of

our choosing. For example, selecting as our origin a Galilean frame which moves
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with the driving particle Q, Ez can be written as a function of s only. The Ez

under the integral is the single particle longitudinal electric field response of the

device, for example the field in a radio frequency cavity or due to a plasma wave.

The above relation for the electric field behind a driving particle of charge Q

can be expanded to N number of charges Q as:

Ez(z, si) =
1

Q

z∫
−∞

ds′ Ez(z − s′ − s0,
z

vb
− t0)Q

N∑
i=1

δ(s′ − si). (4.13)

At this point it behooves us to rewrite this sum over all N discrete charges Q to

obtain an integral relation for the electric field due to a distribution of particles.

This is done so as to avoid subjecting ourselves to the tedium of keeping track of

N equations. To do this we write the sum of delta functions as [54]:

N(s) =
N∑
i=1

δ(s− si) ≡ f(s) + δN(s) (4.14)

where f(s) is a smooth function defined as the ensemble average of N(s) and

δN(s) represents the spiky nature of our true discrete distribution,

〈N(s) = f(s) + δN(s)〉 → 〈N(s)〉 ≡ f(s), (4.15)

with 〈〉 representing the ensemble average. For such a system it is natural to

assume that the resulting electric field will also be composed of a smooth part

and a discrete noisy component, Ez = Ez(z) + δEz(z).

With these definitions in hand it is now possible to write the electric field of

a sum of discrete particles as:

Ez(z) + δEz(z) =

z∫
−∞

ds′ {Ez(z− s′, 0) + δEz(z− s′, 0)}{f(s′) + δN(s′)}, (4.16)

where we have chosen our origin to follow the particle at the center of our discrete

set such that z now represents an absolute position relative to this center particle

70



and the integral takes care of the phase differences of other driving particles.

Using Eq. 4.15, it can be seen that the linear cross terms involving either δEz

or δN will vanish when an ensemble average is taken, leaving only the term

quadratic in the noisy terms and the smooth functions:

Ez(z) =

z∫
−∞

ds′
(
Ez(z − s′, 0)f(s′) + 〈δE(z − s′)δN(s′)〉

)
. (4.17)

Since the relative fluctuations of the mean in the noisy function δN are pro-

portional to N−1/2 and the fluctuations of the electric field δE are proportional,

through Poisson’s equation, to N−1/2, the second term on the right hand side of

Eq. 4.17 vanishes as N → ∞. As such, for large systems of particles the term

quadratic in fluctuations can be ignored. In the end we are left with the field of a

bunch of particles being equal to the convolution of the single particle field with

the distribution of the bunch,

Ez(z) =

z∫
−∞

ds′ Ez(z − s′) f(s′). (4.18)

4.4 Transformer Ratio

The peak transformer ratio, R, is defined as the absolute value of the ratio of the

max gradient seen by a witness beam to the max gradient seen by a drive beam,

R =
Ew,gain
Ed,loss

=
E+

E−
. (4.19)

For the purposes of this text we will also be interested in the average transformer

ratio, that is to say the average gradient of the witness compared to the average

gradient of the drive beam. The average transformer ratio takes into account

any possible effects due to beam shape and is much more easily measured than

the peak transformer ratio. Further distinctions are made between the unloaded
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Figure 4.2: An example of an unloaded peak transformer ratio calculation.

Red is the normalized beam profile, blue the normalized single mode structure

response. For this example we have used a Gaussian beam of r.m.s beam size σz

= 30 µm and a kz of 8300 m−1, the same as the parameters of the experiments

performed in this work. The peak decelerating field is found to be E+ = 0.97

and E− = 0.85, resulting in R = 1.155.

transformer ratio and the loaded transformer ratio, the later of which contains

effects due to the witness beam, the former does not. We are interested in systems

with high transformer ratios [75], and how to ensure such high transformer ratios.

We strive to be clear about which one we refer to as much as possible.

As an initial example we start with Equation 4.18 where f(s′) is a Gaussian

distribution and Ez(z−s′) is equal to E0cos
(
kz(z−s′)

)
for a single mode structure.

Ez,wake =

∫ z

−∞
E0cos

(
kz(z − s′)

) e− s′2

2σ2z

√
2πσz

ds′, (4.20)
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Figure 4.3: An example of a loaded peak transformer ratio calculation. Red is

the normalized beam profile, blue the normalized single mode structure response

of the drive beam only and green the structure response to both beams. For this

example we have used a Gaussian beams of r.m.s beam size σz = 30 µm and a

kz of 8300 m−1, the same as the parameters of the experiments performed in this

work. For this example the average transformer ratio is Ravg = 0.1.

which when integrated gives:

Ez,wake =
E0

4
e−

1
2

kz(2iz+kzσ2
z)
{

1 + Erf

[
z − ikzσ2

z√
2σz

]
+

e2ikzz

(
1 + Erf

[
z + ikzσ2

z√
2σz

])}
.

(4.21)

If the above equation is extremized the peak transformer ratio is found to be,

R = 1.155, well in line with the requirement that for symmetric bunches the

transformer ratio can be shown to be no greater than R = 2 [76, 77]. When Eq.
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4.21 is evaluated in the limit that σz → 0 and z = 0 then

Ez,wake →
E0

2
. (4.22)

This is exactly what one would expect for a single particle (delta function) [31] and

results in an unloaded, peak transformer ratio of R=2. Evidently the symmetric

function which maximizes the transformer ratio is a delta function.

If we now include the witness beam as well as the drive beam, the result is

shown in Figure 4.3, where we have used

Ez,wake =

∫ z

−∞
E0cos

(
kz(z − s′)

){ e
− s′2

2σ2z

√
2πσz

+
1

5

e
− (s′−s0)

2

2σ2z

√
2πσz

}
. (4.23)

The expression for the resulting field is a bit too cumbersome to write out, or

interpret as written, so we will be satisfied with numerical calculation of the

average transformer ratio resulting in R =0.1.

Such abysmal transformer ratios can be improved upon if we consider distri-

butions which are not symmetric. We can further improve the situation if we

consider witness beams with peak currents that are much lower than the drive

beams. We consider next the case of a non-symmetric beam, a triangular or

”ramped” beam profile,

f(s) =
2

N2λ2
sΘ(s)Θ(Nλ− s), (4.24)

where Nλ is the length of the ramp in wavelengths and Θ(s) the Heaviside Step

function. Performing the necessary integrals leads to a peak unloaded transformer

ratio

R =
2πNsin(kzz)

1− cos(kzz)
= πN, (4.25)

that is proportional to the length of the beam. An example of a drive-witness set

up using a ramped beam can be found in Figure 4.4.
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Figure 4.4: An example of using a ramped beam to drive a wake in a single

mode structure with a drive bunch length of L = 2λ. The drive beam is shown in

red, the witness in green and the resulting wake in blue. In this case the ramped

beam is two periods long resulting in an unloaded peak transformer ratio of R =

2π. The witness beam is a gaussian beam of r.m.s. length σz = 30µm and a total

charge which is 1% that of the drive beam. For this configuration the average

transformer ratio is Ravg = 4.76

When comparing Figure 4.3 and 4.4 bear in mind that while the drive bunches

have the same total charge the witness beams do not. This was the point of the

exercise, in order to improve the effective transformer ratio of a drive-witness

setup you need a shaped drive bunch and a relatively low charge (or low cur-

rent) witness bunch. Furthermore, it is worth noting that the ratio of the peak

currents of the drive bunches is ten-to-one times greater in the Gaussian shaped

beam example, due to the same charge contained in a much shorter beam. This

density difference results in a ratio for the peak unloaded accelerating gradients
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of Eramp/EGauss = 0.16. If your accelerating system is charge constrained you

can improve the transformer ratio of your wakefield accelerator, and thus the

efficiency, but at the cost of needing a longer drive-witness interaction to get the

same final energy exchange.

A further complication of the above systems is the nonuniform gradient through-

out the bunches. This means a sustained interaction will effect the bunch energy

spread and the bunch shape via dispersive elements [6, 78]. As such we are in-

terested in a bunch profile which results in uniform decelerating field in the drive

bunch, thus changing the bunch average energy but not the inter-particle energy.

To find a suitable beam distribution function we can rewrite Equation 4.18,

making use of the convolution theorem for the Laplace transform, as,

f̂(s) =
L{Ew(z)}
L{Ez(z)}

, (4.26)

where L{} represents the Laplace transform and Ew = Ez,wake. If we had our

druthers we would first insist that the gradient in a drive bunch of length L be

constant,

Ew(z) = E0

(
Θ(z)−Θ(z − L)

)
, (4.27)

Êw(s) =
E0

s
(1− e−sL), (4.28)

Êz(s) =
sE0

s2 + k2
(4.29)

so that the required beam distribution function is,

f(z) =
1

2πi

∫ γ+i∞

γ−i∞

(1− e−sL)

s2
(s2 + k2)eszds = k2L. (4.30)

This is just a ramped beam (inside the beam L→ z) so that we arrive at R = πN

again, where N is L/λ. In some sense it is remarkable this guess even produced

a distribution which makes any sense. By requiring the decelerating wake be
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Figure 4.5: The response of a single mode system to a doorstop beam distribu-

tion. The red represents the beam distribution and blue the system response.

constant we are demanding that Ew(z = 0) = E0 when by definition it should be

zero.

If we instead insist [79] that Ew(z) = E0(1− e−αz),

Êw(s) =
α

s2 + sα
, (4.31)

f(z) =
−k2 + k2zα

α
+
e−zα (k2 + α2)

α
(4.32)

the transformer ratio is seen to be R = 2πN when α → ∞, a twofold increase

over the simple ramped beam case. This distribution turns out to resemble a

ramped beam with a delta function on its nose and is awfully difficult to produce

in practice. For practical purposes the beam most often used is the ”doorstop”
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Figure 4.6: The wake excited by a Gaussian beam in a two mode structure.

The exciting beam shown in red is the same as that used in previous figure with

r.m.s. size σ = 30 µm, the wake is again shown in blue. For this example the

ratio of the fundamental to the secondary mode is A/B = 2 and the secondary

wavenumber k2 = 3 ∗ k1. The unloaded peak transformer ratio for this system is

R = 1.35.

distribution,

f(z) =
2

L(2 + kL)

{
Θ(z)Θ(L+

π

2k
− z) + k(z − π

2k
)Θ(z − π

2k
)Θ(L+

π

2k
− z)

}
,

(4.33)

a uniform distribution for a quarter period followed by a ramp, see Figure 4.5.

Such a distribution has an unloaded transformer ratio which approaches R ∼

2πN , the theoretical value for the ideal distribution, and is relatively straightfor-

ward to produce in situ.

Finally we examine the case for a Gaussian beam in a multimode system for
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which,

Ez,wake(z) = E0

∫ z

−∞
f(s)

(
A cos

(
k1(z − s)

)
+B cos

(
k1(z − s)

))
ds. (4.34)

A and B are the ratio constants for the excitation of the different modes, with

wave numbers k1 and k2. An analytic solution for the transformer ratio of this

system is too long to write down, so we are content in showing that the multimode

nature of the system can improve the transformer ratio through example, Figure

4.6. For this example the unloaded transformer ratio improves from R = 1.155

to R = 1.35. Such improvements will be important later when we discuss the

results of the experiments outlined later in this work.
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CHAPTER 5

Dielectric Structures as Accelerators

In preparation for the experiment described in future sections, we wish to con-

struct a theoretical model which describes the problem at hand. Specifically, we

wish to solve Maxwell’s Equations for an annularly symmetric dielectric lined

waveguide that has modes which can couple to a relativistic particle beam. We

begin by solving Maxwell’s equations for a waveguide containing a linear dielec-

tric material, an example of which is shown in Figure 5.1. We then move on

to a derivation of the various parameters observed in experiment, such as the

beam-structure coupling parameters.

Due to the scope of the problem at hand it is necessary to focus on solutions

less general than possible. As such, we desire only solutions to Maxwell’s Equa-

tions for which the phase velocity of the waves in the vacuum channel of the

waveguide are equal to the velocity of the particles exciting the wave, vφ = βc.

Since the beam-stucture coupling is mediated by the longitudinal electric field,

Ez, the Transverse Electric modes (TEmn) are ignored, leaving the Transverse

Magnetic (TMmn) and Hybrid Electromegnetic (HEMmn) modes. Furthermore,

due to the boundary conditions at work in the problem, as outlined below, it is

seen that the TM modes are only allowed when m = 0 [80, 81, 82, 83].

When the solutions for a particular waveguide are known we can then derive

expressions, usually integral relations, which describe the beam-structure inter-

action. We intend to calculate the relevant measurable parameters examined in
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Figure 5.1: A cartoon representation of the experiment performed in this thesis.

The top part of the dielectric, shown in grey, has been cut away. The dielectric is

coated with a copper cladding to define and contain the mode, shown in orange.

The beam is represented as an ellipsoid in blue. As the particle beam traverses

the structure is couples to the longitudinal electric field of the modes supported

in the structure and gives up energy to those modes, shown here is the wakefield

Ez as calculated using VORPAL for an on axis beam.

the experiment described in later sections of this work. As the expressions for the

parameters can be complicated relations of non-elementary functions and the re-

sulting functions, if they exist and can be written down, are often not elucidating,

we confine ourselves to numerical calculation where necessary.

81



Figure 5.2: A drawing of the boundaries used to solve Maxwell’s Equations for

a dielectric lined waveguide. The dielectric capillary has an inner radius of a and

an outer radius of b, the annulus of which is filled with a dielectric of relative

permittivity εr. The outer shell, at ρ = b, is coated with a metal (mostly copper)

and is assumed to be a perfect conductor for the purposes of this work.

5.1 An outline of the problem

The solution to the problem at hand necessitates solving Maxwell’s Equations for

the system presented in Figure 5.2. As the symmetry of the problem suggests,

cylindrical coordinates are to be used. As such we begin be writing down the

sourceless Maxwell’s equations,

~∇× ~E = iω ~B ∇ · ~E = 0 (5.1)

~∇× ~B = −iµεω ~E ∇ · ~B = 0 (5.2)

where a harmonic e−iωt time dependence has been assumed. Combining the above

equations using the usual relations for solving for the wave equation one arrives

at: (
∇2 + µεω2

)
~E = 0(

∇2 + µεω2
)
~B = 0.

(5.3)
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As we are interested in solution which propagate with the particle beam down

the waveguide we write the solution in the ẑ direction as eikzz, leaving(
∇2
⊥ + µεω2 − k2

z

)
~E = 0(

∇2
⊥ + µεω2 − k2

z

)
~B = 0,

(5.4)

where ∇2
⊥ represents the Laplacian operator in the transverse directions. This

Laplacian can be written for cylindrical coordinates as

∇2
⊥Φ =

1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂θ2
. (5.5)

If a separation of variables is performed, assuming the coordinates are unrelated

and taking into account the assumptions previously made we arrive at,

∂2Q(θ)

∂θ2
+m2Q(θ) = 0

∂2R(ρ)

∂ρ2
+

1

ρ

∂R(ρ)

∂ρ
+ (k2

⊥ −
m2

ρ2
)R(ρ) = 0,

(5.6)

where k2
⊥ ≡ µεω2−k2

z . It is important to note that k2
⊥ depends on the permittivity

and permeability of the material under examination. That is to say that as we

have two different materials, vacuum and dielectric, we need two different k2
⊥.

In the vacuum region we demand that the phase velocity of the wave be

equal to the phase velocity of the beam, kz = ω
vφ

= ω
βc

, and thus the transverse

wavenumber is imaginary and is written as k⊥ → ik. The tranverse wavenumber

in the the dielectric, k⊥ → κ, is left as a free parameter:

−k2 =
ω2

c2
− k2

z in vacuum channel

κ2 = µεω2 − k2
z in dielectric

(5.7)

With this change of k⊥ from real to imaginary the solutions in the vacuum channel

transform into modified Bessel functions Im and Km. The two equations can be
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combined, along with the definition of kz = ω
βc

, to arrive at

k =
κ

γ
√
εrβ2 − 1

ω =
βcκ√
εrβ2 − 1

,

(5.8)

where εr is the dielectric coefficient of the material used to line the waveguide

wall.

The solution to the first equation in 5.6 is Q(θ) = e−imθ, where m must be in

integer if the field is to be single valued when the entire azimuth is used.

Finally what remains is to solve for R(ρ) using the geometry of the problem

at hand. We start with the usual ansatz:

Rm(ρ) =


AIm(kρ) +BKm(kρ) if ρ ≤ a

CJm(κρ) +DNm(κρ) if a ≤ ρ ≤ b,

(5.9)

where immediately we write B = 0 as Km is not physical as ρ → 0, and follow

the usual process of manually satisfying the boundary conditions.

Before proceeding with the satisfaction of the boundary conditions we note

that it is possible to write four of the six field components in terms of the remain-

ing two [14]. In this case we elect (as is customary) to solve for ~Ez and ~Bz, noting

that the other components of the field can then be found using the relations:

~Et =
i

k2
⊥

[
kz ~∇⊥Ez − ωẑ × ~∇⊥Bz

]
~Bt =

i

k2
⊥

[
kz ~∇⊥Bz + µεωẑ × ~∇⊥Ez

]
.

(5.10)

This splits the solutions to the waves in the dielectric lined waveguide into three

distinct groups: Transverse Electric modes TEmn for which Ez = 0, Transverse

Magnetic modes TMmn for which Bz = 0 and Hybrid Electromagnetic modes

HEMmn which allow Ez & Bz 6= 0 simultaneously.
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As a final remark prior to beginning specific solutions, we point out that it

can be shown [14, 17] that,

∂Bz

∂n

∣∣∣∣∣
S

= Ez

∣∣∣∣∣
S

= 0, (5.11)

are both necessary and sufficient conditions for satisfaction of all the boundary

conditions at a dielectric-perfect conductor interface, where S represents evalua-

tion at the interface.

5.2 The Transverse Magnetic TM0n modes

For the case in which m = 0 Eqs. 5.10 can be seen to separate into two different

categories. These are the aforementioned Transverse Magnetic and Transverse

Electric modes. As we are interested only in modes which the beam can couple

to via the longitudinal electric field, Ez, we concern ourselves with the TM0n

modes, for which Bz = 0.

Examining Eqs. 5.10 for the case in which Bz = m = 0 we see that the only

two transverse field components which exist are Er and Bθ which are given by

the relations:

Eρ =
ikz
k2
⊥

∂Ez
∂ρ

Bθ =
iµεω

k2
⊥

∂Ez
∂ρ

Eρ
Bθ

=
c

εrβbeam
.

(5.12)

The relation between the two has been explicitly included to indicate that there

remains only one boundary condition to solve for in addition to those required

of Ez. While a more general solution can written which provides the TM0n

solutions under the right circumstances the author finds it illuminating to start

85



with a simpler system. The more general case can be found in the section on

HEMmn modes. We continue by writing out Ez and Eρ for the case in which

Bz = m = 0, using Eq. 5.9,

Ez = R0(ρ)e−i(kzz+ωt)

Eρ =
ikz
k2
⊥

∂R0(ρ)

∂ρ
e−i(kzz+ωt),

(5.13)

and then writing the the system of equations which comprise the relevant bound-

ary conditions,

∆Ez

∣∣∣∣
ρ=a

= 0 , ∆Ez

∣∣∣∣
ρ=b

= 0 , ∆Dρ

∣∣∣∣
ρ=a

= 0. (5.14)

The preceding boundary conditions form a set of coupled equations which are

then used to solve for the dispersion relation of the system via the determinant.

Specifically, as the system of equations can be written as a homogenous set of

equations the determinant of the system must be zero if there is to be a non-trivial

solution [84], 
I0(ka) −J0(κa) −N0(κa)

0 J0(κb) N0(κb)

1
k
I
′
0(ka) 1

κ
J
′
0(κa) 1

κ
N
′
0(κa)



A

C

D

 = 0, (5.15)

∣∣∣∣∣∣∣∣∣
I0(ka) −J0(κa) −N0(κa)

0 J0(κb) N0(κb)

1
k
I
′
0(ka) 1

κ
J
′
0(κa) 1

κ
N
′
0(κa)

∣∣∣∣∣∣∣∣∣ ≡ 0. (5.16)

For the purposes of this section the ()
′

is a derivative with respect to the total

argument of the function under examination.

The determinant for the TM0n modes can then be written as

I1(ka)

kI0(ka)
=
εr
κ

N1(κa)J0(κb)− J1(κa)N0(κb)

N0(κa)J0(κb)− J0(κa)N0(κb)
, (5.17)
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Figure 5.3: A graphical solution to the transcendental equation given in Eq.

5.17. The left-hand side of the equation is shown in blue while the right-hand

side is shown in red and the orange dots represent the intercepts between the two

and thus the solutions to the dispersion relation. For this plot the inner radius

of the structure is a = 225 µm and the outer radius is b = 320 µm while the

dielectric constant εr = 3.8, corresponding to one of the structures used in an

experiment described later.

a transcendental equation which is solved to find the discrete solutions κ0n allowed

by the system. Solutions to the transcendental equation can be found graphically

by plotting the two sides of the above equation, as shown in Figure 5.3, where

each orange dot is a solution κ0n.

Before we continue a choice must be made as to which direction the beam

travels. As the author likes to integrate from −∞ to∞, the beam will be assumed

to move from right to left. The means that we can now write the explicit functions
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Figure 5.4: The fields present in the structure due to the excitation of the

TM01 mode, normalized to Ez. Of note is the relative flatness of Ez in the

vacuum channel. The parameters used as the sam as with Fig. 5.3, the boundary

between the vacuum and the dielectric at a = 225µm is marked with a dashed red

line. While Dr is shown with a solid red line, cBθ (in yellow) covers it completely.

which describe Ez as:

Ez(ρ) = E0e
−i(kzz+ωt)


I0(kρ) if ρ ≤ a

I0(ka)N0(κρ)J0(κb)−J0(κρ)N0(κb)
N0(κa)J0(κb)−J0(κa)N0(κb)

if a ≤ ρ ≤ b,

(5.18)

where C and D have been eliminated in favor of A and A has been relabeled E0,

a term which describes the absolute magnitude of the fields in the structure. The

subscripts for κ0n and k0n have been suppressed in the above equation. With the

values of κ0n which satisfy the dispersion relation for the TM0n modes in hand,

we are now free to plot the field distributions as a function of ρ. The reader

is reminded that the modes have an m number of 0, so they look the same for

any given angle θ around the axis of symmetry ẑ. Of particular interest to the
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experiment described later is that the longitudinal electric field for the TM0n

modes are only mathematically a function of ρ in the vacuum channel. For the

parameters used in this experiment Ez differs by one part in a million from ρ = 0

to ρ = a. Envoking the Panofsky-Wenzel theorem this means that ∂pz
∂ρ
≈ 0, so

any transverse forces which do arise must be free of the longitudinal coordinate

z. The fields for the TM01 mode are shown in Fig. 5.4.

5.2.1 Beam-Mode Coupling

With the fields in a given TM0n mode described by Eqs. 5.18 and 5.10 it is now

possible to solve for the coupling of a specific particle beam distribution to a

particular mode, E0. To do so it is necessary to write a conservation law for

energy in the beam-mode system [14],

−
∫
V

~J · ~E d3x =

∫
V

[
∂u

∂t
+ ~∇ · ~S

]
d3x, (5.19)

where J is the beam current, u = 1
2
( ~E · ~D + ~B · ~H) is the energy stored in the

field and ~S = ~E × ~H is the Poynting vector.

We begin by solving for the single particle coupling to the mode and make

use of the expressions derived in Section 4.3 to expand to a bunch of particles.

As such, the current for a single particle can be written as:

~J = −evzδ(ρ− ρ0)
δ(θ − θ0)

ρ
δ(z − vzt)ẑ, (5.20)

where we are specifically allowing for a particle which is off axis with initial coor-

dinates (ρ0, θ0) and the particle is assumed to have a vanishingly small transverse

velocity. As the waves excited in the structure travel at the speed of light down

the waveguide, by definition, we perform a Galilean change of frame into the
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beam’s frame, ζ = z + vzt, of Eq. 5.19 and 5.20,

−
∫
V

~J · ~E d3x =

∫
V

[( ∂
∂t

+ vz
∂

∂ζ

)
u− ~∇ · ~S

]
d3x

~J = −evzδ(ρ− ρ0)
δ(θ − θ0)

ρ
δ(ζ)ẑ.

(5.21)

Noting that in the beam frame u 6= f(t), the ∂
∂t

term on the right-hand side of

the first of the above equations can be dropped. Making use of the Divergence

theorem for the transverse portion of the term involving the Poynting Vector

yields:

−
∫
V

~J · ~E d3x =

∫
V

[
− ∂Sz

∂ζ
+ vz

∂u

∂ζ

]
d3x−

∫
C

~S⊥ · n̂ d2x⊥, (5.22)

where C represents a contour in the plane of the problem shown in Figure 5.2. If

the integral over the contour C is evaluated at a point inside the perfect conductor

surrounding the structure the last term in the above equation vanishes. Finally

the partial derivative with respect to ζ can be integrated out and we are left with,

−
∫
V

~J · ~E d3x =

∫
A

[
− Sz + vzu

]
d2x⊥, (5.23)

where A is the surface in the plane perpendicular to the particle motion, at the

particle location, ζ = 0.

The integral comprising ~J and ~E is now performed, for which the particle is

assumed to be in the vacuum channel,

evzE0I0(kρ0) = −E2
0

∫
A

[
Sz − vzu
E2

0

]
d2x⊥, (5.24)

where the constant common E0 has been removed from all field terms in the

Poynting vector Sz and field energy density u. Now solving for E0 gives the

single particle coupling to the TM0n modes as,

E0 = −evzI0(kρ0)
1∫

A

[
Sz−vzu
E2

0

]
d2x⊥

. (5.25)
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Figure 5.5: An example of a beam distribution where the beam is offset along

the x̂-axis by σ
2
.

It is noted that this expression conforms to that derived in Reference [85] where

objections were made concerning the definition of a group velocity for the modes

in the structures used in this work. Contrary to said objections if we assume

arguendo that such a definition for the group velocity exists and is defined as is

usually so for waveguides [14, 17, 84, 86], the resulting expression for E0 returns

the same coupling parameter as in Equation 5.25.

To calculate the wakefield due to an electron beam it is necessary to use the

beam’s distribution function such as

f(ρ, θ, ζ) =
Ne√
2πσz

e
− ζ2

2σ2z ∗ 1

2πσ2
ρ

e

−ρ2+2ρρoffCos(θ)−ρ
2
off

2σ2ρ , (5.26)

where an offset along the x-axis of magnitude ρoff has been assumed, see Figure

5.5. Next we use Equation 5.25 to calculate the single particle-mode coupling

parameter and perform the superposition integral of all Ne particles in the dis-
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tribution which gives (as in Section 4.3),

Ez = E0Ne

∫ z

−∞
dse−ikz(z−s) 1√

2πσz
e
− s2

2σ2z

∫ a

0

∫ 2π

0

ρdρdθ
I0(kρ)

2πσ2
ρ

e

−ρ2+2ρρoffCos(θ)−ρ
2
off

2σ2ρ .

(5.27)

Performing the integral over θ gives,
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Figure 5.6: The response of a single mode structure to a gaussian bunch (in

red) of finite length. The total structure response Ez is shown in blue, while

the first derivative is shown in yellow. For this plot the r.m.s bunch length of

the beam was 50 µm and the dimensions for the structure were a = 225 µm

and b = 320 µm. The magnitude of the beam current and the derivative of

the longitudinal electric field Ez have been scaled and are representative of their

structure only.

Ez = E0Ne

∫ z

−∞
dse−ikz(z−s) 1√

2πσz
e
− s2

2σ2z

∫ a

0

ρdρ
I0(kρ)

σ2
ρ

e

−ρ2−ρ2off
2∗σ2ρ I0(

ρoffρ

σ2
ρ

).

(5.28)
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If the beam size is assumed to be much smaller than the radius of the structure,

σρ � a, then the ρ integral can be integrated analytically (from 0 to ∞) [45] to

give

Ez = E0Ne

∫ z

−∞
dse−ikz(z−s) 1√

2πσz
e
− s2

2σ2z e
k2σ2ρ

2 I0(kρoff ), (5.29)

If it is further assumed that the offset ρoff is on the order of an r.m.s. beam size

σρ the underlined component in the above equation reduces to unity, leaving us

with,

Ez = E0Ne

∫ z

−∞
dse−ikz(z−s) 1√

2πσz
e
− s2

2σ2z . (5.30)

This result is unsurprising as we may have expected it given the longitudinal

electric field Ez is constant across the vacuum gap, q.v. Figure 5.4. For the TM0n

modes a particle which is on axis couples equally as well as a particle which is off

axis, but still in the vacuum channel. Continuing on with the evaluation of the

coupling of a beam to the TMon modes, Eq. 5.27, we evaluate the most recent

integral and find,

Ez(z) =
E0Ne

2
e−ikzze−

k2zσ
2
z

2

[
1 + Erf(

z√
2σz
− ikzσz√

2
)

]
. (5.31)

The above integral evaluated in the case that z � σz returns Ez ' E0Ne, that

is to say that the maximum field behind the bunch is simply the single particle

field times the number of particles.

5.3 The Hybrid Electromagnetic HEMmn modes

We now concern ourselves with the modes present in the structure when m 6= 0,

the so-called Hybrid HEMmn modes. To avoid the confusion possible when using

an admixture of complex solutions to solve a separable equation we resort to using

real functions except for the wake-like solution describing propagation along the

waveguide. This will require and anstaz with 9 unknowns, 8 for the boundary
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conditions and one for the definition of κ. As in the last section we will leave one

coefficient as a free parameter which defines the coupling from particle to mode.

The defining fields Ez and Bz can be written as,

Ez(r, θ, z, t) = e−i(kzz+ωt)


Im(kr)

(
A cos(mθ) + F sin(mθ)

)
if r ≤ a{

CJm(κr)−DNm(κr)

}
cos(mθ + φ) if a ≤ r ≤ b,

(5.32)

Bz(r, θ, z, t) = e−i(kzz+ωt)


Im(kr)

(
B cos(mθ) +H sin(mθ)

)
if r ≤ a{

QJm(κr)− PNm(κr)

}
cos(mθ + ψ) if a ≤ r ≤ b.

(5.33)

We once again apply the boundary conditions at ρ = b,

∆Ez

∣∣∣∣
ρ=b

= 0 , ∆
∂Bz

∂ρ

∣∣∣∣
ρ=b

= 0, (5.34)

and ρ = a

∆Ez

∣∣∣∣
ρ=a

= ∆εEr

∣∣∣∣
ρ=a

= ∆Eθ

∣∣∣∣
ρ=a

= 0 , ∆Bz

∣∣∣∣
ρ=a

= ∆Br

∣∣∣∣
ρ=a

= ∆Bθ

∣∣∣∣
ρ=a

= 0

(5.35)
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and arrive at the following matrix which defines the dispersion relation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −kz
k
T cos (mθ + φ)

(
I′m(ka)
Im(ka)

+ εrk
κ
V
T

)
0 − ω

kc2
T cos (mθ + φ)

(
I′m(ka)
Im(ka)

+ εrk
κ
V
T

)
− mω
k2c2a

Im(ka)
sinmθ

mω
k2c2a

T

(
cos (mθ+φ) cos (mθ)

sin (mθ)
− εrk2

κ2
sin (mθ + φ)

)
mkz
k2a

Im(ka)
sinmθ

−mkz
k2a

T

(
cos (mθ+φ) cos (mθ)

sin (mθ)
− k2

κ2
sin (mθ + φ)

)
mω
k2a

Im(ka)
sinmθ

−mω
k2a
W

(
cos (mθ+ψ) cos (mθ)

sin (mθ)
− εrk2

κ2
sin (mθ + ψ)

)
mkz
k2a

Im(ka)
sinmθ

−mkz
k2a

W

(
cos (mθ+ψ) cos (mθ)

sin (mθ)
− k2

κ2
sin (mθ + ψ)

)
0 −kz

k
W cos (mθ + ψ)

(
I′m(ka)
Im(ka)

+ k
κ
U
W

)
0 ω

k
W cos (mθ + ψ)

(
I′m(ka)
Im(ka)

+ k
κ
U
W

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(5.36)

Where

T (κ,m) = Nm(κa)− Nm(κb)

Jm(κb)
Jm(κa)

W (κ,m) = Nm(κa)− N ′m(κb)

J ′m(κb)
Jm(κa)

V (κ,m) = N ′m(κa)− Nm(κb)

Jm(κb)
J ′m(κa)

U(κ,m) = N ′m(κa)− Nm(κb)

Jm(κb)
J ′m(κa).

(5.37)

After a prodigious amount of algebra two relations are found. First, in order for

the mode numbers κ to not be a function of θ we must have φ = ψ ± π
2
. For the

remainder of this work we shall take φ = ψ + π
2
. Second, the dispersion relation

is found to reduce to

m2γ4β2(ε2 − 1)2

κ4a2
=

(
I ′m(ka)

kIm(ka)
+
εr
κ

V

T

)(
I ′m(ka)

kIm(ka)
+

1

κ

U

W

)
, (5.38)

which agrees with the relation derived through other methods [82, 85]. It is noted

that if m = 0 the term with Γm = V
T

yields the TM0n modes and the term with
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Πm = U
W

the TE0n modes. An example plot showing the solutions to the above

dispersion relation is shown in Figure 5.7 and the fields are plotted in Figure 5.8.

Finally the equations for the longitudinal fields can be written

Ez(ρ, θ, z, t) = E0 cos (mθ + φ)e−i(kzz+ωt)∗
Im(kρ) if ρ ≤ a

αm

{
Jm(κρ)Nm(κb)−Nm(κρ)Jm(κb)

}
if a ≤ ρ ≤ b,

(5.39)

Bz(ρ, θ, z, t) = −B0 sin (mθ + φ)e−i(kzz+ωt)∗
Im(kρ) if ρ ≤ a

ηm

{
Jm(κρ)N ′m(κb)−Nm(κρ)J ′m(κb)

}
if a ≤ ρ ≤ b,

(5.40)

with

αm ≡
Im(ka)

Jm(κa)Nm(κb)− Jm(κb)Nm(κa)
, (5.41)

ηm ≡
Im(ka)

Jm(κa)N ′m(κb)− J ′m(κb)Nm(κa)
. (5.42)

Once again ()′, the prime, indicates differentiation with respect to the entire

argument. The relationship between E0 and B0 can be found by examining the

boundary condition for Eθ at ρ = a. The Eθ boundary condition at ρ = a gives,

−1

k2

[
−mkz
a

E0Im(ka) + ωkB0I
′
m(ka)

]
=

1

κ2

{
−mkz
a

E0αm[Jm(κa)Nm(κb)−Nm(κa)Jm(κb)]

+ ωκB0ηm[J ′m(κa)N ′m(κb)−N ′m(κa)J ′m(κb)]

}
,

(5.43)

Which cleans up to

mkz
aω

E0

B0

(
1

k2
+

1

κ2
) =

{
I ′m(ka)

kIm(ka)
+

Πm

κ

}
(5.44)
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Figure 5.7: A plot of Equation 5.38 and its solutions. The blue line represents

the left hand side of the dispersion relation and the red line marks zero. The

orange dots are the first four values of κmn which satisfy the dispersion relation.

For this plot a=225 µm, b = 320 µm and εr=3.8.

with

Γm =
J ′m(κa)Nm(κb)−N ′m(κa)Jm(κb)

Jm(κa)Nm(κb)−Nm(κa)Jm(κb)
=
V

T
(5.45)

Πm =
J ′m(κa)N ′m(κb)−N ′m(κa)J ′m(κb)

Jm(κa)N ′m(κb)−Nm(κa)J ′m(κb)
=

U

W
. (5.46)

The traverse fields can be derived using the waveguide field relations previous

derived in Eq. 5.10.
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indicates the change from vacuum to dielectric a ρ = a, where εr = 3.8. These

are the fields at their maximum, they are not all necessarily in phase.

5.3.1 Beam-HEMmn mode coupling

With the values of κmn known all that is left is to determine the beam-mode

coupling, which can be done using Equation 5.25,

E0(ρ, θ) = −evz
1∫

A

[
Sz−vzu
E2

0

]
d2x

Im(kρ) cos (mθ + φ) = EcIm(kρ) cos (mθ + φ),

(5.47)

where ρ and θ are the location of the particle coupling to the wake and Ec is the

single particle to field coupling coefficient. To obtain the total expected coupling

we need to sum over all the particles, including their coupling parameter, result-

ing in an integral over the distribution function. For example, the longitudinal
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electric field for the beam distribution used in Equation 5.26 is given by,

Ez(ρ, θ, z) = cos (mθ + φ)Im(kρ)

∫ z

−∞
dse−ikz(z−s) e

− s2

2σ2z

√
2πσz

∗

∫ a

0

ρ′dρ′
∫ 2π

0

dθ′E0Im(kρ′) cos (mθ′ + φ)
e−

ρ20
2σ2

2πσ2
e−

ρ′2

2σ2 e
ρ′ρ0 cos θ′

σ2 ,

(5.48)

where σ is the r.m.s beam size in the transverse dimension, σz the beam size in

the longitudinal direction, k the vacuum channel transverse wave number, kz the

longitudinal wave number and ρ0 is the offset of the beam along the x̂-axis. For

this derivation we will take φ = 0 so as to align the modes with the x̂ axis. The

θ′ integral can be completed by converting the cos (mθ′) term into exponentials

and using the Jacobi-Anger expression, but it is more clear to use the identity

[45], ∫ 2π

0

cos (mθ′)e
rr0
σ2

cos θ′dθ′ = 2πIm(
rr0

σ2
). (5.49)

Next, if the beam radius σ is small compared to the structure radius a, then the

radial integral can be performed as∫ ∞
0

ρe−
r2

2σ2 Im(kρ)Im(
ρρ0

σ2
) = σ2e

σ2

2
(k2+

ρ20
σ4

)Im(kρ0). (5.50)

Using these two identities gives the longitudinal electric field as

Ez(ρ, θ, z) = Ec cos (mθ)Im(kρ)e
σ2k2

2 Im(kρ0)

∫ z

−∞
ds e−ikz(z−s) e

− s2

2σ2z

√
2πσz

. (5.51)

The integral over s can be shown to be∫ z

−∞
dse−ikz(z−s) e

− s2

2σ2z

√
2πσz

=
1

2
e−ikzze−

k2zσ
2
z

2

[
1 + Erf(

z√
2σz
− ikzσz√

2
)

]
. (5.52)

Finally the expression for the longitudinal electric field can be written as

Ez(ρ, θ, z) =
Ec
2

cos (mθ)Im(kρ)Im(kρ0)e
σ2k2

2
− k

2
zσ

2
z

2 e−ikzz∗[
1 + Erf(

z√
2σz
− ikzσz√

2
)

]
.

(5.53)
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For later use this equation is written as

Ez(ρ, θ, z) = Ẽz(z, ρ0) cos (mθ)Im(kρ). (5.54)

5.3.2 Transverse Forces

We now take a look at the forces on a symmetric beam with a simple offset from

the center of the dielectric lined waveguide. Such an example is by no means

exhaustive but a treatment of all sources of beam instabilities is beyond the

scope of this work [87]. The forces on particles in the fields in dielectric lined

waveguides can be derived from the Lorentz Force equation, assuming a beam

velocity ~v = vẑ,

~F

q
= ~E + v0ẑ × ~B,

Fρ
q

= Er − v0Bθ,

Fθ
q

= Eθ + v0Br.

(5.55)

To calculate the forces then we must return then to the equations for the fields

as a function of Ez and Bz, Equation 5.10. Using these relations and the relation

which sets the phase match between the waves in the guide and the beam, kz = ω
v0

,

the forces are found to be

Fρ =
−iq
k2

[(
kz −

ωv0

c2

)
∂Ez
∂ρ

+
1

ρ

(
ω − kzv0

)
∂Bz

∂θ

]
= − iq

kz

∂Ez
∂ρ

,

Fθ =
−iq
k2

[
1

ρ

(
kz −

ωv0

c2

)
∂Ez
∂θ

+

(
ω − kzv0

)
∂Bz

∂ρ

]
= − iq

kzρ

∂Ez
∂θ

.

(5.56)

This can be shown the agree with the forces as derived by use of the Panofsky-

Wenzel theorem, Equation 4.10. The relation ω − kzv0 is identically zero in the

vacuum channel, we are looking for modes for which kz = ω/v0.

If the forces are converted to their cartesian coordinate equivalents, where it

is noted that x̂ is the vector between the center of the dielectric lined waveguide

100



and the center of the bunch distribution, then the forces can be written as

Fx =
−iq
kz

Ẽz(z, ρ0)

(
kI ′m(kρ) cos2 (mθ) +

m

ρ
Im(kρ) sin2 (mθ)

)
Fy =

−iq
kz

Ẽz(z, ρ0)

(
kI ′m(kρ) cos (mθ) sin (mθ)− m

ρ
Im(kρ) cos (mθ) sin (mθ)

)
.

(5.57)

5.3.2.1 Monopole Forces

We examine now the forces due to the first TM mode for which m = 0. Furthure-

more, for the structures used in this experiment kρ� 1 so that an expansion of

the Bessel functions can be performed giving

Fx = −iqkz
2γ2

ρẼz(ρ0, z),

Fy = 0.

(5.58)

5.3.2.2 Dipole Forces

Next we look at m = 1 while holding on to the approximation that kρ� 1 and

find the dipole forces to be

Fx = − iqk
2kz

Ẽz(ρ0, z),

Fy = 0.

(5.59)

The m = 1 modes are shown to act as a dipole force in the direction of offset

from the structure axis and are not a function of position.
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Figure 5.9: The forces in a quartz structure with a=150 µm and b = 200 µm.

The black dashed line represents the beam distribution used to excite the wakes.

The distribution is modeled to have parameters similar to those which are used in

this experiment, σρ = σz = 30µm and an offset of 30 µm. The longitudinal force

of the TM01 mode is shown in blue, the longitudinal force for the HEM11 mode

is shown in red and the transverse force associated with the the HEM11 mode

is shown in yellow. As we have elected to offset the bunch in the x̂ direction the

transverse forces are entirely in the x̂ direction.

5.3.2.3 Quadrupole Forces

Examining now the m = 2 mode with the same condition that kρ � 1 we see

that

Fx = −iqkz
4γ2

ρẼz(ρ0, z),

Fy = 0.

(5.60)
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Figure 5.10: The transverse wakefields at the center of the bunch, z=0 m. The

pure dipole nature is evident. Also note that the field acts in the direction of the

beam offset; it tends to increase offsets, not reduce them.

It is evident that an offset in the structure produces a quadrupole force in only

one direction and of a magnitude which is half that of the monopole forces. This

analysis can be continued and it will show that to all orders there are only ever

forces in the direction of offset.

An example of the forces in a dielectric structure, keeping only the TM01 and

HEM01 fields, is shown in 5.9. As the position of the drive bunch determines the

orientation of the fields, the forces in the drive bunch are seen to be defocusing
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and will be so no matter how the the drive bunch moves. The regions behind the

drive bunch which would seem to indicate defocusing are only defocusing while

the bunch sits on the same side of the origin as the drive bunch. This indicates

there are regions in the wakefield that are accelerating and focusing for both

positively and negatively charged witness bunches. The transverse fields, shown

Figure 5.10, as mentioned above are not a function of position and are a pure

dipole so if the witness bunch passes through the origin the forces will switch sign

and continue to push the witness beam toward the structure wall. This effect is

related to a set of instabilities called the ”Beam Break-Up” instability, or BBU

[87] which we shall discuss next.

5.4 Beam Break-Up Instability

Beam Break-Up occurs when an off-axis bunch drives a wakefield which has a

dipole component. The dipole component, due to the nature of the fields, affects

the back of the beam while leaving the head of the beam undisturbed. To be more

explicit, the real part of Ẽz is Eq. 5.59 is zero at the front of the bunch: particles

do not feel self deflecting forces. This leads not only to a difference in head-tail

dynamics but in certain circumstances to an unstable growth in the motion of

the back of the bunch. We start with a general treatment of beam break-up

instabilities and then move on to specific instances relevant to the cylindrical

structures used in the experiments contained in this work. We shall see that

if left unchecked these dipole modes introduce very strong constraints on the

alignment of the beam to the structure.

As an illustration of a beam break-up instability we start with a simple two

particle problem where the source of the transverse wakefield, F⊥ = W⊥〈x〉, is a

function of the average offset of the particles but is otherwise left arbitrary. As
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a general rule, any axially symmetric structure will produce a dipole mode if the

beam is allowed to move off axis. If the beam is in a continuous focusing channel

it will execute betatron oscillations such that the transverse position of the first

particle x1(s) is given by x1(s) = x0 cos kβs, where s is the position along the

accelerator as defined in Chapter 2. We then define the equation of motion of

the second, trailing, particle as

x′′2 + k2
βx2 =

W⊥
γmc2

x1(s) =
W⊥
γmc2

x0 cos kβs. (5.61)

The solutions so this equation is

x2(s) = x0 cos (kβs) +
W⊥
γmc2

x0

2kβ
s sin (kβs). (5.62)

The position of x2(s) is seen to grow along the accelerator such that is is possible

to define a growth parameter

Γ =
W⊥
γmc2

1

2kβ
, (5.63)

which naturally depends on the source of the wakefield.

5.4.1 Beam Centroid Motion Along the Structure

To get a gauge as to why beam break-up is important we now derive an expression

for the motion of the centroid of the beam in the structure. For this section we

shall assume all offsets are in the x̂ direction only so that ρ → x. We begin by

rewriting Eqs. 5.71 and 5.59 as

Fx =
ik

2kz
|eEc|e

k2zσ
2
ρ

2γ2 I1(kx0)

∫ z

−∞
dp e−ikz(z−p)f(p), (5.64)

where we have changed the variable of integration from s to p so as not to confuse

it with the position along the accelerator. We have also left the longitudinal

distribution function undefined. In order to be clear about the direction of the
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forces we have left no doubt about the presence of implicit minus signs in terms

such as qEc.

It is noted here that the beam is to give up energy to the structure through

the Lorentz force, Fz = qEz, where Ez is given by Eq. 5.72. Furthermore, if the

real part of Ez is positive over the region of the beam, which is generally the case

for bunches shorter than the wavelength of interest, then Fz ∝ −|eEc|.

The case for which the longitudinal beam distribution is a Gaussian is shown

in Figure 5.9. As a more concrete example we elect to use a square pulse for the

beam distribution. Such a distribution is described by the function

f(z) =
1

L
Θ(
L

2
− z)Θ(z +

L

2
), (5.65)

where z is the coordinate in the beam frame, L is the length of the beam and

Θ(z) is the Heaviside step function. This means that Fx is now given by

Fx =
ik

2kz
|eEc|e

k2zσ
2
ρ

2γ2 I1(kx0)
1

ikzL

[
1− eikz(z+L

2
)

]
. (5.66)

The real part of the transverse force is now

Fx =
k

2k2
zL
|eEc|e

k2zσ
2
ρ

2γ2 I1(kx0)

[
1− cos (kz(z +

L

2
))

]
, (5.67)

which shows a force which is defocusing over the length of the bunch. If we

make the approximation that kx0 � 1, an extremely safe approximation for the

structures used in this thesis, it can be shown that the average force on the bunch

is

〈Fx〉 =

∫ ∞
−∞
f(z)dz

k2

2k2
zL
|eEc|e

k2zσ
2
ρ

2γ2 x0

[
1− cos (kz(z +

L

2
))

]
,

〈Fx〉 =
1

2γ2L
|eEc|e

k2zσ
2
ρ

2γ2 x0

[
1− sinc(kzL)

]
.

(5.68)

Where, from the definition of k, k2/k2
z = 1/γ2 has been used. There are two

immediate consequences of the above expression. The first is that higher energy
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beams do not deflect as fast as lower energy beams. The second is that by

reducing kzL � 1 the average force is reduced as well. For the parameters used

in this experiment kz ≈ 13251 m−1 and L ≈ 70 µm, so that kzL ≈ 0.92 and

1 − Sinc(0.92) ≈ 0.13. A length of 70 µm has been used as it is the value for

which the average transverse force on the bunch is the same as that of a Gaussian

beam constructed using the parameters used in this experiment.

Continuing in this line of thinking, if we assume that the bunch doesn’t change

energy we can make an estimate for the distance along the accelerator it takes

for the beam to move a beam width. To do so we rewrite the force as

〈Fx〉 = γmc2d
2x

ds2
=

1

2γ2L
|eEc|e

k2zσ
2
ρ

2γ2 x0

[
1− sinc(kzL)

]
,

x′′0(s)− k2
Sx0 = 0,

k2
S ≡

|eEc|
2γ3mc2L

e
k2zσ

2
ρ

2γ2

[
1− sinc(kzL)

]
.

(5.69)

The beam parameters for the experiments performed in this work are e → Nee

with Ne = 1.87 ∗ 1010, γ = 40000, |Ec| = 8 ∗ 107, L = 70 µm, kz = 13251 m−1,

σρ = 30µm, which leads to kS of 7.37m−1. This means that if a bunch starts out

at x(0) = x0 = σρ = 30µm and moves to x(s) = 2 ∗ σρ, it does so at s = 20cm.

As a reminder, the radius of the structures used in this experiment are 150-

225 µm. A shift of 30 µm represents a large fraction of the clear aperture we

are trying to contain the beam within. This says nothing of the fact that a

beam-structure axis alignment of better than 30 µm is a difficult, however not

impossible, undertaking in practice. There is also the issue of our prior calcu-

lations examining the centroid of the beam; the effects at the back of the beam

will be worse on average! We therefore need a method to make alignment to the

structure and transport along the structure much more forgiving.
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5.4.2 Improving Transport Using External Focusing

The force we are looking to counter is a dipole force related to the lowest trans-

verse mode (HEM11) excited when a beam is injected off-axis in a cylindrically

symmetric dielectric structure. Keeping in mind that the condition of off-axis

injection occurs in error, the use of a dipole corrector magnet will not work.

Since the magnitude of the transverse wakefield is proportional to the offset in

the structure we would like a corrector which applies a stronger correction as the

beam moves farther off axis. A quadrupole magnet, discussed in Chapter 2, does

exactly this.

If we assume a quadrupole magnet system which is perfectly smooth in its

focusing strength and axially aligned with the dielectric structure in question we

can write down the equations of motion for the tail particle, following Eq. 5.62

as,

x2(s) = x0 cos (kβs) +
k2
S(z2)x0

2kβ
s sin (kβs),

Γ =
k2
S(z2)x0

2kβ
,

(5.70)

in which we have included explicitly the fact that kS is to be taken at the x2 parti-

cle position z2. Equation 5.67 can be used to find kS. What we see immediately is

that with the beam parameters decided, all that remains is to select a quadrupole

strength for which k2
β = B′/(Bρ) 1. In order to reduce the growth rate of the

instability the gradient in the magnetic field must be increased. What we also

notice is that as the beam decelerates the gradient will have to be decreased if

we wish the growth factor Γ to stay constant.

If we again use beam parameters pertinent to the experiments discussed later

in this work and assume a magnetic field gradient on the order of 500 T/m [88]

1Bρ is called the magnetic rigidity and can be calculated using the formula Bρ = 333P0

T-m where P0 is entered in GeV/c.
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we calculate a growth parameter of Γ = 0.027. This means that after a meter, for

locations where s = kβ(nπ+π/2), we can expect the excursions of the tail of the

beam to be on the order of 2.7 cm, after starting at 30 µm. For the structures

used in this experiment this growth is clearly unacceptable. An exact solution to

the problem of beam break-up is the subject of much debate. Next, we provide a

brief look at this debate through examining how to select structure parameters.

5.4.3 Optimizing Structure Parameters

In addition to controlling the rate of beam motion off axis by providing external

focusing it is possible to tailor the structure parameters to provide preferential

excitation of the TM01 mode over the HEM11 mode. We shall see this requires

the careful selection of structure parameters keeping the bunch length of the beam

in mind. To begin we analyze the effect of bunch length on the excitation of the

different modes in the structure and use the results to make decisions concerning

which structure parameters to change and how.

We start our analysis by restating the longitudinal electric field for a given

mode as

Ez(ρ, θ, ζ) = Ẽz(ζ, ρ0) cos (mθ)Im(kρ). (5.71)

where Ẽz can be defined as

Ẽz(ζ, ρ0) =
Ec
2
Im(kρ0)e

σ2rk
2

2
− k

2
zσ

2
z

2 e−ikzζ
[
1 + Erf(

ζ√
2σz
− ikzσz√

2
)

]
, (5.72)

where we keep in mind that all the parameters which are not coordinates or beam

parameters are a functions of the mode in question. This means that things like

kz → kz01 for the TM01 and kz → kz11 for the HEM11 mode, and so on.

Using the requirement that kz = ω
βc

in the vacuum channel of the waveguide

and the dispersion relation in the vacuum channel −k2 = ω2

c2
− k2

z = −k2z
γ2

the
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forces can be rewritten as,

Fz = −eEz(ρ, θ, ζ),

Fx =
ie

2γ
Ẽz(ρ0, ζ).

(5.73)

As we will show later, it is possible to design a system where only the two lowest

modes dominate, so we have kept only the two dominant modes. If we expand

the Bessel functions in the small parameters I0 → 1 and I1(kρ)→ kρ/2 and also

look only along the x̂ axis, so θ → 0. This leaves us with

Fz(ζ) = −eEc
2
e
σ2rk

2
z

2γ2
− k

2
zσ

2
z

2 e−ikzζ
[
1 + Erf(

ζ√
2σz
− ikzσz√

2
)

]
,

Fx(ρ0, ζ) =
ieEckz

8γ2
ρ0e

σ2rk
2
z

2γ2
− k

2
zσ

2
z

2 e−ikzζ
[
1 + Erf(

ζ√
2σz
− ikzσz√

2
)

]
.

(5.74)

We note here that the coupling parameter Ec01 for Fz is not proportional to

γ while Ec11 for Fx is proportional to γ2 so that the forces as written here are

not a function of γ.

To get an idea of how the forces change as a function of σz for a given structure

we now restrict ourselves to the case in which the beam distribution function does

not evolve as the beam traverses the structure. For longer structures this is not a

very good assumption, but for a first approximation it will suffice. To implement

this assumption we integrate the forces over the bunch and arrive at,

〈Fz〉 = −eEc
2
e
σ2rk

2
z

2γ2 PR(kz, σz),

〈Fx〉 =
eEckz
8γ2

ρ0e
σ2rk

2
z

2γ2 PI(kz, σz),

(5.75)

where PR and PI are defined as,

PR(kz, σz) = e−
k2zσ

2
z

2

∫ ∞
−∞

dζ Re

[
e−ikzζ

[
1 + Erf(

ζ√
2σz
− ikzσz√

2
)

]]
1√

2πσ2
z

e
− ζ2

2σ2z ,

P I(kz, σz) = −e−
k2zσ

2
z

2

∫ ∞
−∞

dζ Im

[
e−ikzζ

[
1 + Erf(

ζ√
2σz
− ikzσz√

2
)

]]
1√

2πσ2
z

e
− ζ2

2σ2z .

(5.76)
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Figure 5.11: PR(kz, σz) (blue) and PI(kz, σz) (red) for the beam and structure

parameters used in the experiments performed in this work are shown on the right.

On the left is shown a set of more optimized parameters for the FACET beam.

σz is allowed to vary to show the relative change in the beam-mode coupling.

For the above equations Re[] and Im[] represent the real and imaginary parts

of the functions they contain. This ensures that the average forces described

by Equation 5.75 are always real. Examples of PR and PI are shown in Figure

5.11. Here we show that by varying the bunch length it is possible to increase

performance. By designing the system this way the optimum does not require

pushing to shorter and shorter beams, thus introducing the difficulties of multi-

mode excitation.

Aside from attempting to optimize cylindrical structures it should be men-

tioned that other geometries have favorable qualities which recommend them to

use over cylindrical structures. As shown in Figure 5.12 there is no direct advan-

tage to moving to thinner walls in a structure, the frequencies move together with

the HEM11 mode, always of lower frequency and thus longer wavelength. This

means that bunch length tuning cannot be used to preferentially excite the TM01

mode over the HEM11 mode. The advantage of cylindrical structures is that

they are more easily excited, thus produce larger gradients with which to transfer

energy. This also means that they more readily produce undesirable transverse
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Figure 5.12: The variation of the TM01 frequency f01 and the HEM11 frequency

f11 with a change in b/a. As shown here there is no advantage to be gained by

moving to thinner walls. The frequencies of the two modes move together with the

HEM11 mode always of lower frequency and thus longer wavelength. Selective

excitation of the HEM11 mode is thus not possible.

forces.

An alternative to cylindrical structures can be found in slab symmetric struc-

tures [89, 4, 6]. If we consider the transverse wave number as a sum of squares of

the two transverse coordinates, while maintaining our demand that mode travels

down the dielectric structure with a phase velocity equal to that of the beam, we

may write the dispersion relation (Eq. 5.7) as

k2
x + k2

y =
k2
z

γ2
. (5.77)

It is then seen that if we allow the energy of the particle to become very great we

must have k2
x ≈ −k2

y. If slab (or cartesian) symmetry is used and the x̂ direction
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is taken to be extremely large then kx → 0. In this situation then ky must also

be zero and via the Panofsky-Wenzel theorem there are no traverse wakes. Taken

to a slightly more realistic extreme it can be shown that systems where the beam

has a very pronounced aspect ratio σy � σx will have marked reduced transverse

forces when compared with the cylindrical case [89].

There are additionally, other structure worth exploring such as Photonic Band

Gap structures [90], dielectric woodpile structures [91] as well as slab symmetric

structures which use a Bragg layer as a boundary, instead of metal [92].

5.5 Computational Methods and 3D PIC simulations

To complement the measurements to be made it was both necessary and desirable

to calculate the spectrum excited in a given structure as well as the energy lost,

due to a particular beam shape. As the exact beam parameters do not admit a

tractable set of equations to calculate such absolute quantities simulations were

used to fill in the information gaps. To that end a Mathematica [93] and Matlab

[94] program were written to solve for the modes of a given structure and the

beam’s coupling to those modes in 1D. This required essentially solving the pre-

viously mentioned transcendental equation in search of the κmn wave numbers of

the structure and applying the superposition of wakes to a measured longitudinal

bunch profile, Eq. 4.18. In addition a 3D PIC code VORPAL [95] was used to

completely capture all possible 3D effects.

An example of such 3D simulations is shown in Figure 5.13. The plot shows

a VORPAL simulation compared to a Mathematica simulation, and the two are

seen to agree quite well. After extensive testing it was determined that VORPAL

simulations were computational expensive and time intensive for results that were
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Figure 5.13: A VORPAL simulation showing the expected wakefield (blue)

from a beam using parameters measured during experiment. The beam profile

(red) is a reconstruction using Kramer-Kroenig techniques of Coherent Transi-

tion Radiation generated at a titanium foil at the interaction point and passed

through a Michelson interferometer. (black) Theoretical wakefield calculated in

Mathematica using the beam re-construction distribution mentioned above.

more easily obtained through other methods. To that end, VORPAL is only used

when testing new physical scenarios and to assist in developing them in much

faster custom codes.

This specific example shown in Figure 5.13 are the simulations run for the a

= 225 µm, b =320 µm case. Here we see that the Cherenkov radiation excited
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is comprised of two modes. The large amplitude oscillation is the TM01 mode

while the ”kinks” that give the electric field its dogtooth appearance is the TM02

mode. For this simulation the beam was assumed to be on axis and thus should

not excite the HEM modes. This should be compared with the relative strength

of the modes as measured in Figure 6.5.
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CHAPTER 6

Experiment

The goal of the experiment was to test the limits of dielectric lined waveguides

as accelerators. Specifically we were looking to expand on previous work [26]

by showing that these structures are capable of handling sustained fields very

close to the breakdown limit, or failing that, the structures support fields well

in excess of what is considered nominal for conventional accelerating structures.

As an accelerating system a structure which only briefly holds large gradients

before needing to be replaced is not very useful. What we show here is that these

structures are capable of handling gradients in excess of 1.35 GVm−1, a greater

than factor of 50 improvement over the standard S-Band copper RF structures.

These fields were sustained for many hours at a repetition rate of 10 Hz, or many

tens of thousands of pulses.

We start with an overview of the Facility for Advanced aCcelerator Exper-

imental Tests (FACET) at SLAC National Laboratory. We follow this with a

description of the experiments themselves and the methods for structure fabrica-

tion. Finally we describe the data analysis and results in detail.

6.1 FACET

The FACET facility at SLAC was developed for the testing of Plasma Wakefield

Acceleration (PWFA) using the high-energy, high-current beams produced by
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Figure 6.1: An aerial photograph of the FACET facility at SLAC.

the SLAC linac. The facility makes use of the first 2 kilometers of the SLAC

linac which were left vacant after elementary particle experiments were ceased at

SLAC in favor of x-ray production by the Linac Coherent Light Source (LCLS)

[18]. An aerial photograph of the facility extent is show in Figure 6.1.
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Table 6.1: A table of common beam parameters found at FACET. These num-

bers are for both electrons and positrons.

Parameter Value Unit

Beam Energy 20.35 GeV

Charge 3 nC

Beam Size @ IP 30x30 µm

β-function 0.15x2.0 m

Bunch Length 20+ µm

FACET is capable of producing both electrons and positrons in bunches as

small as σx×σy×σz = 30×30×20µm containing upwards of 19 billion particles.

This represents peak currents in excess of 45 kA, by far the largest in the world.

As the devices tested in this experiment produce fields proportional to the current

(Equation 5.31), FACET represents a unique opportunity to examine the physics

of beams and structures under incredibly intense fields. A list of common beam

parameters found at FACET is shown in Table 6.1

6.2 Structure Parameters

The selection of structure parameters was performed in two stages. To begin with

generous allowances were made for clear aperture passage of the beam through

the structure. The standard gauge is to ensure the structure diameter is 10 times

the beam r.m.s width. For a beam with an r.m.s width of σr =30 µm this means

using structure of at least 300 µm inner diameter. We started the experiments

with 450 µm as they offer 15 σr clearance and so were very forgiving in terms
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of testing alignment procedures and model verification. For model verification it

was critical to ensure that structure impact was eliminated as a source of error

during model verification.

Once the model used to describe the experiments was confirmed we then

moved to longer and smaller structures. As was outlined above, the longitudinal

forces experienced by the beam are proportional to a−2, so in order to reach

incredibly high fields it is necessary to go as small as possible. To that end

structures as small as 100 and 200 µm inner diameter were also tested. However

these structures were extremely difficult to align and thusly suffered catastrophic

loss of metallic coating and dielectric damage. As will be evident when discussing

the alignment procedure, these structures were always unlikely to provide useful

gradient details. They were introduced to beam anyway in order to set a standard

for how beam impact or extremely high field damage manifested in the present

group of structures.

Before we move on to the experimental description we remark that these

structures are usually spoken of in terms of inner diameter, outer diameter and

length. This means that we refer to the first structure listed in Table 6.2 as

450/640, 1 cm long. A list of all the structures used to present quantitative data

in this work is given in Table 6.2.

6.3 Experimental Description

The essential goal and procedures for the experiment are very straight forward.

Align a very small dielectric lined waveguide to the particle beam and measure

the beam energy after the interaction point, both with and without the structure

in the beam path. An additional measurement is performed which measures the
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Table 6.2: The structure parameters used in the experiments presented here.

Inner Diameter a [µm] Outer Diameter b [µm] Length [cm] Material

450 640 1 SiO2

450 640 10 SiO2

400 600 15 Quartz

300 400 15 Quartz

modes excited in the structure by measuring the frequency content of the coherent

Cherenkov radiation (CCR) produced in the structure. Thusly the experiment

is said to progress in two parts. First, measuring the change in beam energy

is said to account for the beam side of the beam-structure interaction. Second,

measuring the mode content of the radiation generated is said to quantify the

structure side of the beam-structure interaction. In this way it is possible to

eliminate sources of systematic error by checking the results against one another.

A graphical representation of the experiment is shown in Figure 6.2.

Due to limitations in the apparatus used in this experiment, the experiment

is further divided into two different structure regimes: short and long structures.

Specifically, the detectors used to characterize the radiation left behind the beam

as a wakefield have a maximum measurable energy of 5-6 millijoules. The shorter

structures are expected to produce around 10 mJ of CCR in addition to∼10 mJ of

diffraction radiation from all apertures in the system. The longer structures used

in this experiment are capable of producing upwards of 500 mJ of radiation. This

magnitude of radiation is easily enough to saturate the detectors. In contrast the

beam energy is on the order of 60 J (at 20.35 GeV), so that in order to measure

a 10 mJ shift in the beam energy we would require the ability to differentiate
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Figure 6.2: A graphical representation of the experiment. a) The beam arrives

from the bunch compression system and is focused down by the final focus system

and transported through the experimental chamber known as the ”Kraken”. The

beam is then recaptured by the quadrupoles of the spectrometer system and

passed through a dipole magnet which separates the particles by energy. A sample

of what an image on the beam looks like after the spectrometer is shown in c).

A close up of the in vacuum system inside the Kraken is shown in b).

a mean energy difference of ∼3 MeV between the nominal and beam-through-

structure cases. In contrast, for the longer structures an energy shift of 500 mJ

leads to a mean energy difference of 167 MeV, which is much easier to measure.

The stages of the experiment are conducted as follows. First, the spectral

content of the radiated wakefield generated in a one centimeter long structure is

measured. This verifies the model of the beam-structure interaction through in-
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spection of the modes excited by the passing electron beam. Second, the spectral

content of the radiation generated using a ten-centimeter structure is measured

and the average energy loss of the electron beam after passing through the struc-

ture is measured. This measurement bridges the gap between the two regimes in

that both the radiation and the beam energy are measurable. Finally, after the

model has been verified using the shorter structures, the beam is sent through

a fifteen-centimeter long structure and the average change of beam energy is

measured.

It is worthwhile to note at this point that the experiment is chiefly concerned

with the energy given up by an electron beam to a dielectric lined waveguide.

There was no witness beam available for the experiments performed in this work.

The system however can still be fully characterized and the accelerating gradient

behind the bunch can be inferred via the Fundamental Theorem of Beam Loading.

As it is customary to speak in terms of accelerating gradient, we will endeavor

to avoid confusion by mentioning when we speak of decelerating as opposed to

accelerating gradient.

6.3.1 Beam Energy Change

To perform the experiment an electron beam generated in the SLAC injector and

damping system and is accelerated to an energy of 20.35 GeV. It is then com-

pressed longitudinally in a W-chicane [96] and passed to the final focus system

for FACET. This focusing system sets the beam size and focal parameters of the

electron beam through the interaction point. After passing through the interac-

tion point the beam passes through a hole in the collecting off-axis paraboloid

and is captured by a series of quadrupole magnets, ostensibly set to an imaging

condition. Then the beam is passed through a dipole spectrometer magnet which
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disperses the particles based on their energy. The beam then passes through a

Cherenkov air gap in which the Cherenkov radiation generated by the beam is

imaged. The Cherenkov radiation imaging system is calibrated using the base

line energy of the linac, measured magnetic field parameters and against other

energy measurements made in dispersive sections upstream of the interaction

point. The Cherenkov radiation generated here is not to be confused with the

radiation generated in the structure. This system is many meters away from the

structure which is at the interaction point and the source is the extremely small

difference of the index of refraction between air and vacuum. For this system the

bend direction is the y direction, thusly we will chiefly be interested in the R33

and R34 elements of the transfer matrix when discussing sources of error in the

measurement.

The calibration of the spectrometer system is measured to be 15 MeV/pixel,

with a physical pixel width of 25 µm. As the r.m.s energy spread of the beam is

measured to be around σE=300 MeV the beam is seen to span approximately 120

pixels at 6 σE width. Since we are interested in a measurement of the average, or

centroid, energy of the beam we are left in essence with performing the Middle

Riemann Sum approximation to the first moment of the distribution function.

The error to such an approximation is given by

Error ≤ M2(b− a)3

24n2
, (6.1)

where b-a is the span of the integral approximated by the sum, n is the number of

sub intervals in the approximation and M2 is the maximum of the absolute value

of the second derivative of the function being integrated. For these calculations

it suffices to assume the energy spread is well approximated by a Gaussian so

that M2 = σ−2
e , (b-a) = 6σE and n=120. As a result the error in measuring

the average energy of the beam is expected to be less than or equal to 0.2 MeV.
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This represents ∼10% of the smallest measurement made using the spectrometer.

Furthermore, as outline below it is small compared to the energy jitter due to

other sources in the linac and thusly shall be ignored.

The true challenge of the measurements presented here is the differentiation

in average energy of a population of measurements which is subject to varia-

tions in the average energy for reasons other than the structure’s presence in the

beam path. These can include things like klystron interruption or general feed-

back manipulation. As the specific correction used depends on the properties of

the measurement we wish to make, these effects will be taken into account and

discussed during the presentation of individual measurements.

6.3.2 Mode Content of Cherenkov Radiation

Table 6.3: The frequency of the lowest four modes supported by the structures

in this experiment. It is possible to have lower frequencies for small structures as

in the 400/600 case due to changes in the ratio of outer/inner diameter b/a (see

Figure 5.12) and changes to structures based on manufacturing tolerances.

Size [µm] TM01 [GHz] TM02 [GHz] HEM11 [GHz] HEM12 [GHz]

450/640 420 1240 372 625

400/600 392 1120 342 573

450/640 700 2140 632 1070

Figure 6.2.b) gives a visual account of the experimental layout for measuring

the radiated wakefield. For this aspect of the experiment the radiated wake-

field left by the beam in the structure is collected by an impedance matching

horn and launched into free space. After traveling a distance of approximately
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15 centimeters the radiation is collected and collimated by an off-axis parabolic

mirror which completely subtends the solid angle represented by the launching

horn. From there the radiation is transported to a scanning Michelson inter-

ferometer where an interferogram of the radiation is produced. A Fast Fourier

Transform (FFT) of the interferogram is performed and the frequency content of

the wakefield is obtained. Since the structure only supports very specific modes,

c.f. Figure 5.7, the modes excited in the structure are in general unambiguous.

This is not to say that the polarization of the modes was observed, just that

the spectrum of each mode is distinct such that given a measured frequency the

mode excited is obvious. While attempts to measure the polarization of Coher-

ent Transition Radiation generate have proven successful [97], the devices used

are extremely sensitive and prone to damage unless the source is extremely well

characterized. Thusly, such measurements have been left for a later date.

An exception to the previous statement regarding the ambiguity of mode

observation is made for the case in which the TM01 and HEM11 modes are very

close to one another in frequency space. In such a case, as we will see in the

Results section of this work, it is possible for a relatively weak HEM11 mode to

be masked in the bandwidth of the TM01 mode.

6.4 Structure Fabrication

The procedure for producing the structures leverages previous work [82] and

knowledge gained from work on other projects [98]. The process begins by pur-

chasing off-the-shelf silicon dioxide and quartz capillaries. The structures are

cleaved to lengths appropriate to fitting in the machines used later in the fab-

rication process and cleaned using acetone and methanol. The capillaries are

then transferred to a physical vapor deposition system and a 30 nm seed layer of
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aluminum is deposited on the bare fibers followed by 500 nm of copper.

The seed layer of aluminum is necessary as the enthalpy of formation of alu-

minum oxide is lower than that of silicon dioxide, so bonds between the capillaries

and the aluminum form readily. In contrast the enthalpy of formation for copper

oxide is higher than that of silicon dioxide, so energy would be required to keep

the bond stable [99]. While this is not the complete picture as the bond mixes

silicon-oxygen-aluminum it does provide an explanation for the flaking and poor

adhesion observed when attempting to deposit copper directly on silicon dioxide

[100].

After the initial layer of 30 nm of aluminum and 500 nm of copper are vacuum

deposited the capillaries are dipped in acetic acid to etch back the outer 10 nm of

oxidation generated when the structures are removed from the deposition system

and then dried in a pressurized nitrogen environment. The structures are then

transferred to a 3D printed plating fixture and submerged in a sulfate-based

copper electroplating bath and copper is further deposited to 15-50 µm thick.

After electroplating the structures are transferred between various chemical baths

to remove any remaining salts and chemicals. The structures are then dried in a

vacuum desiccator, a picture of which is shown in Figure 6.3.

When dry the structures are aligned and mounted on a silicon wafer and an

acetone soluble photoresist is used to hold them in place. The photoresist also

provides support during the cutting process which helps prevent shatter of the

structures. The structures are then cut to size using a diamond saw. This allows

cutting to better than millimeter accuracy and leaves a flat, clean surface which

is necessary for adequately coupling radiation out of the structure. After cutting,

the photoresist is removed with acetone and several alternating chemical baths

which leave the structures residue free.
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Figure 6.3: A picture of the a set of structures drying in a vacuum desiccator.

The method of production is not unique to each size structure so that they can

all be produced efficiently at the same time. Observable on the left side of the

image is the uncoated ends which were covered during deposition and plating to

hold the structures in place. These uncoated ends will be later cut off.

6.5 Structure Alignment

The alignment of the structure to the beam is a multistep process that makes

use of a five-axis stage mounted on two orthogonal ”long haul” stages. The long

haul stages are used for gross alignment and quickly moving the structures in and

out of the beam path. Once aligned it takes approximately 30 seconds to switch

between structure in and structure out of the beam path. This fast switching is

helpful in allowing us to interleave measuring sections so that systematic errors

due to feedbacks and other effect like heat during time of day can be eliminated.

The ability to align such small structures as used in this experiment to an

electron beam is a technical challenge solved by persistent effort. Many years

of trial and error has lead to the following recipe for alignment. First the beam

vector through the interaction region is taken. To do this it suffices to mark the

beam position both upstream and downstream of the interaction point. Next, the

beam is shut-off, or sent elsewhere, and a laser of appropriate Rayleigh length

is aligned to the beam location marks. The structure is then aligned to the
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laser where laser beam quality and over all transmission are checked, an example

showing the result at the end of this step is shown in Figure 6.4. Finally, the

beam is returned to the interaction area and its location relative to the previous

recorded location is checked. If the beam vector is still on, or close, to the vector

used to align the structure, the structure is moved into the beam path.

Laser
Structure

Figure 6.4: An example picture showing the alignment laser through one of

the 10 cm structures used in this experiment. This image was taken of the

downstream (radiating) surface of the structure.

To ensure beam is adequately transported through the structure integrated

current transformers (ICT) are monitored during the experiment. Data is col-

lected on ICTs both before and after the structure and also compared between

structure in the beam path and structure out of the beam path. Furthermore,

if a beam were to impact the structure, or its holder, the radiation generated is
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visible on Panofsky Long Ion Chamber (PLIC) radiation detectors [101] in the ex-

perimental hall. Beam-structure impacts are also observable on the spectrometer

screen, after impact the beam shape is heavily distorted due to emittance degra-

dation. All three methods of loss detection showed no loss of electrons during

transport through the structure.

During the experiment it was necessary to verify the integrity of the structures

to ensure the energy loss of the beam was due to the generation of a wakefield

capable of acceleration. Prior experiments showed two methods of damage to

dielectric wakefield structures [26]. The first is loss of the metal coating due to

ablation. To ensure the structures retained their metal cladding a high resolution,

long focal length optical diagnostic was used to monitor the state of the structures;

bright flashes are visible when the metal coating is blown off the structures.

The second damage mechanism is damage to the dielectric itself, described as

browning and cracking. These two events were shown to affect the ability of the

structures to transport light [26]. In case of dielectric damage a relative change

in Cherenkov radiation signal would be expected due to disruption of the TM01

mode and the guiding in the structure. Furthermore, a change in signal would also

be expected for a structure that is no longer capable of transporting the desired

modes along the structure due to a loss of the metal coating. No such changes

in Cherenkov signal were observed. Additionally, when the structures lose their

metal coating light from the alignment laser leaks through the structure walls

whereas an intact tube appears opaque. The alignment lasers transverse profile

is expected to change when transported through a tube with a damaged dielectric.

No such distortions in metal coating or laser profile were observed. This leads

us to conclude that a wakefield capable of acceleration was present for all data

collected during this experiment.
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6.6 Data Analysis and Results

6.6.1 Coherent Cherenkov Radiation

We start our discussion of the results with the measurements made of the mode

content of the radiation generated in the structure. A summary of the finding

is shown in Figure 6.5. Figure 6.5.a) shows what a typical autocorrelation trace

looks like for this experiment. In this case the plot shown is for a 1 cm long 450

µm/640 µm structure. Below that in b) is the spectral content of the trace shown

in a). Directly observable is the TM01 at 422 GHz and the TM02 at 1.27 THz.

This is the genesis of the use of these structures as sources of radiation in the

THz regime. Figure 6.5.c) shows the spectral content of the radiation generated

in a 10 cm long 450 µm/640 µm structure.

What the figure illustrates is two-fold. First, the fact that the radiation pulse

length is proportional to the length of the structure means we would expect a

smaller bandwidth for a longer structure. The length of the pulse is expected to

be

Lr = Ls
(1− βg)
βg

, (6.2)

where Ls is the length of the structure and βg the group velocity of the mode

normalized to the speed of light. This manifests itself as the spectral narrowing

of the TM01 mode in Figure 6.5.c). The second observation is an illustration of

the effect discussed earlier in which the longer structures make it more difficult

to make a spectral measurement. In this case the energy is high enough to cause

clipping of the waveform which results in signal leakage and the apparent loss of

the TM02 mode. This is all despite the fact that the total energy radiated into

the TM02 is increased by a factor of 10. Figure 6.5.d) shows the spectral content

of the radiation generated as the beam passes through a 10 cm long 400 µm
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steel structure. This is used as a control test and shows the broadband radiation

present at 1 THz in all three cases is a product of some element in the beam path

other than the dielectric lined waveguide.

Our earlier discussion of transition and diffraction radiation showed that both

of these types of radiation should be smooth functions which are continuous to

zero frequency. Thus, if radiation shown in Figure 6.5.d) is indeed related to

either transition or diffraction radiation there is yet another effect that causes

the spectrum of this particular radiation to truncate, while allowing the modes

in the dialectic structure to pass. As the radiation around 1 THz does not shift

with a change between dielectric structure and cylindrical waveguide it is not

thought to be related to simple cylindrical TM modes.

If the pulses are assumed to be square pulses, the resulting bandwidth is a

sinc function with a full-width-at-half-maximum bandwidth, for a given mode,

equal to fFWHM = 3.8/(πT ), where T is the length of the pulse in time. Such an

estimate leads to a calculated bandwidth in the TM01 of 20 GHz (5%) in the the

1 cm length case and 2 GHz (0.5%) in the 10 cm case. Disagreement with the

measured values of 14.6 % and 6.6 % are seen to be the result of a more detailed

model necessary when calculating the bandwidth. From the autocorrelation alone

it is seen that a decay constant that behaves like e−αt is necessary. Moving then

to a ramped pulse profile the full-width-at-half-maximum bandwidth of the TM01

mode is expected to be 76 GHz (18%) for the 1 cm case and 7.6 GHz (1.8%) for

the 10 cm case. In both calculations the theoretical pulse length of 62 and 620

ps is used. The agreement is now seen to be much more reasonable. In order to

properly resolve the bandwidth in the 10 cm case the Michelson interferometer

would have to scan for a much longer range, thus increasing the resolution of the

fast Fourier transform.
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Figure 6.5: A sample of autocorrelation and spectral plots for several structure

geometries. a) Shows an autocorrelation trace generated by a 1 cm long 450

µm/640 µm structure. b) Is the spectral content of the autocorrelation shown in

a). Of note is the TM01 excited at 422 GHz and the TM02 at approximately 1.27

THz. c) Show the spectral content of a 10 cm long 450 µm/640 µm structure.

d) Shows the spectral content of the radiation generated when the beam passes

through a 10 cm long 400 µm steel structure, i.e. no dielectric.
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Examination of Table 6.3 shows that the HEM11 mode is expected to be very

close to the TM01 mode, so much so as to be inside the bandwidth of the TM01

mode. The resolution of the existence of the HEM11 mode is through looking

for the HEM12 mode and at the beam deflection downstream. Furthermore,

theory and simulation shows that energy coupled into the HEM modes is three

orders of magnitude smaller than into the TM modes, when using a reasonable

offset. This means that even if the modes were excited they are unlikely to be

observable in the spectrum of the modes excited in the structure. Knowing this

we look instead for movement of the beam on non-intercepting Beam Position

Monitors (BPMS) and on the spectrometer screen. As no motion for the 450/640

case is observed it is safe to assume all energy loss is into the TM01 and TM02

modes. We examine the specific cases of HEM excitation for the smaller bore

structures in the energy loss section.

6.6.2 Minimum Phase Reconstruction of the Coherent Cherenkov

Wakefield

With the spectral composition of the radiation as generated in the wakefield

known, it is possible to perform a minimum phase reconstruction of the pulse.

This allows a view inside the structure at the pulse shape and field profile. While

similar, this is not to be confused with the wake potentials [102]. An integral

over the wake is not performed, thusly any slippage that may occur due to the

differing group velocities for differing modes is not taken into account.

The reconstruction for the previously shown spectral data from the 1 cm a =

450 µm, b = 640 µm structure is shown in Figure 6.6. Here we have also added
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Figure 6.6: A plot showing the reconstruction of the 1 cm data previous de-

scribed is shown in black. A fit to the data using Equation 6.3 is shown in red,

while the resulting attenuation parameter α1 for the TM01 mode is plotted in

dashed blue.

a plot showing a three cosine fit using the function

fit(z) = C1 cos (k1z + φ1)e−α1z +C2 cos (k2z + φ2)e−α2z +C3 cos (k3z + φ3)e−α3z.

(6.3)

The results of the fit are shown in Table 6.4. It is seen that the first and last

entries correspond to the wavelengths expected from theory (c.f. Table 6.2). The

center point is the beam related radiation discussed in the previous section.
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Table 6.4: The parameters resulting from a fit to the minimum phase recon-

structed data using Eq. 6.3. The first and last match quite well the theoretically

expected wavelengths for the TM01 and TM02 modes.

C λ [µm] φ [rad] α [1/m]

1 12500 738 -0.125 227

2 7500 258 4.97 632

3 5400 235 4.65 256

Of interest in the fit data are the attenuation parameters α. The model for a

given waveguide system is, up to a factor of two [17, 103],

dP

dz
= −αP. (6.4)

For a waveguide the rate of loss dP/dz can be calculated using a model of the

field at the dielectric-metal boundary [14] including the expressions derived in

Chapter 5. The result for the TM0n modes of interest here is found to be

dP

dz
=
ω3δε2rα0

4µ0κ2c4
(Y1(κb)J0(κb)− J1(κb)Y0(κb))2. (6.5)

where α0 is the mode parameter as defined in Eq. 5.41 and δ is the skin depth

of the metal, defined as

δ =

(
2

µ0ωσ

)1/2

, (6.6)

with σ the conductivity of the metal which comprises the coating.

When these calculations are performed for the modes in question and the loss

tangent of quartz is taken into account [104] the resulting expected parameters

are α1=40-70 m−1 and α2=327-360 m−1, where the range indicates pure copper

for the lower value and pure aluminum for the upper, σCu = 5.8 ∗ 107 [S/m] and
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σAl = 3.8 ∗ 107 [S/m]. This range allows exclusion of uncertainly in aluminum

thickness as a source of losses which are not accounted for. In the case of the

TM02 mode the losses are dominated by the loss tangent in the dielectric material.

The sources for discrepancy between the measured and theoretical losses are

uncertain. We ignore for a moment the possibilities of systematic errors in the

measurement and expound on some observations made during experiment. First,

the environment in the experimental chamber in close proximity to the beam

is resplendent with radiation sources. In radioactive environments, both silicon

dioxide and quartz are subject to conversion from relatively translucent materials

to an opaque material which is called ”smoky quartz”. This is a result of breaking

the bonds between the silicon and the oxygen, causing the material to turn black.

Traditional uses for quartz and silicon dioxide are as transmissive optics, for such

a use smoky quartz is useless and is relatively unstudied. Additionally, as shown

in Figure 6.6, the total pulse length is on the oder of 5.5 mm whereas the expected

length is 18mm. The apparent abrupt cut-off cannot entirely be attributed to

increased loss parameter alone. Finally, the applicability of the Drude model [105]

to systems involving very high frequency radiation is not as well understood as

for standard radio frequency structures.

6.6.3 Beam Energy Loss

With the modes excited in the structures examined we now move on to an analysis

of the energy lost by the beam as it traverses the structure. To reiterate, the

histograms that will be shown here are a result of binning the average energy of

individual beams.

For this measurement the spectrometer was set to an imaging condition. In

the language of Chapter 2 this means that the R33 and R34 elements are much
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Figure 6.7: A histogram showing the average energy of the electron beam. The

blue represents beam centroid energy measurements taken with the structure in

the beam path and red represents no structure in the beam path, the difference is

50.9 ± 0.78 MeV . The black lines mark the means of the respective measurements

and the yellow dashed lines the 95% confidence interval. The difference between

the two data sets is 50.9 ± 0.78 MeV, leading to a total energy loss of 152 ± 2.3

mJ per electron bunch.

smaller than the R36 element so that dispersion dominates the beam’s position

on the spectrometer screen.

We begin with the ”transition” structure for which both the CCR spectrum
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Figure 6.8: Example data showing the electron beam energy profile both with

and without the structure. a) shows the beam after having passed through the

dielectric waveguide. b) shows the beam with no structure in the beam path. c)

shows the projection of the two images on to the energy axis.

and the energy loss can be reasonably expected to be measured. This is the case

of a structure made of SiO2 with parameters a = 450 µm, b = 640 µm and a

length of 10 cm. The result of the measurement is shown in Figure 6.7. For this

measurement 1400 shots were taken with the structure in the beam path and 1000

without, providing a reference measurement. What we show is an average energy

change of 50.9 ± 0.78 MeV, which for a 10 cm long structure corresponds to a

decelerating gradient of 509 ± 7.8 MVm−1. If the fundamental theorem of beam

loading is applied an accelerating gradient of around 1 GVm−1 can be expected.

This can be compared with the simulation for such a structure as shown in Figure

5.13 which shows an average decelerating gradient of approximately 509 ± 7.8
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MVm−1 and a peak accelerating gradient of approximately 1 GVm−1.

The measured energy loss of the beam of 149 mJ is compared with the value

expected through simulation and theoretical calculations of 130 mJ. The extra

sources of loss are seen to be due to diffraction radiation at the entrance and

exit of the structure. Thus the values measured are is close agreement with both

simulation and theory.

Figure 6.8 shows an example of what the beam looks like on the spectrometer

in both cases. For the examples presented the difference in average energy is 38

MeV. A comparison of the two individual measurements can be used to infer the

quality of the beam after transport through the structure. In this case the beam

is seen to be virtually unchanged and thus it is safe to say that its emittance

has been preserved. Furthermore, information collected at the time from Beam

Position Monitors (BPMs) indicates that any deflection of the beam that may

have occurred is below measurement capabilities. The measurement system is

capable of measuring the beam position to an accuracy of one third of a beam

width, or 10 µm.

Next we discuss the measurements made of 15 cm quartz structures with

parameters a = 400 µm and b = 600 µm. These structures allow us to make a

comparison with the previously measured slighty larger bore structures and still

admit relatively easy alignment. They are a step toward very small bore, high

field structures. The result of the average, or centroid, energy measurement, as

described above, are shown in Figure 6.9. A list of the modes excited and the

calculated energy deposited into each mode is show in Table 6.5.

A plot of the calculated wakefield is shown in Figure 6.10. Here we see that,

given the bunch length to σz = 45 µm, the wakefield excited is multimode, so

that while the peak decelerating gradient is 800 MVm−1 the peak accelerating
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Figure 6.9: A histogram showing the raw average energy of the electron beam

with and without the a/b = 400/600 µm structure. The blue represents beam

centroid energy measurements taken with the structure in the beam path and red

represents no structure in the beam path, the difference is 120 MeV. The black

lines mark the means of the respective measurements and the yellow dashed lines

the 95% confidence interval. An algorithm that uses BPM data to correct for

transverse kicks in the beam indicates a total energy difference of 84 ± 2.34 MeV

in 15 cm, which leads to a gradient of 560 ± 15.6 MVm−1.

gradient is expected to be 1.3 GVm−1. The deviation from the Fundamental

Theroem of Beam Loading is due to the multimode nature of the wakefield. For
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Table 6.5: A list of the TM modes excited and the expected energy deposited

into each mode for the 400/600 µm, 15 cm experiment.

TM01 TM02 TM03

λ [µm] 763 267 154

Energy [mJ] 194 47 2.6

each given mode the theorem applies, the combination of modes adds in effects

due to wavelength and phase differences.

For this measurement the spectrometer was not set to imaging, due to ge-

ometric constraints in the experimental hall. This means that in terms of the

transport matrix the elements R33 and R34 cannot be ignored in favor of R36.

Given the nature of the measurement in that we are looking for small changes

in average energy of the beam these effects must be taken into account. Quanti-

tatively we can realistically expect beam kicks in the transverse dimension that

approach 100 MVm−1, depending on offset, c.f. Eq. 5.69. A relative transverse

kick or momentum change of 20 MeV/c for a beam of energy 20.35 GeV/c is an

angle y′ of 1 mrad. Thus even a relatively small transverse momentum kick and a

modest non-zero R34 can lead to large apparent energy shift on the spectrometer.

The transport matrix for the spectrometer for this measurement is found to

be

R =


−12.72 7.134 0 0

−0.95 0.48 0 0

0 0 −0.82 0.27

0 0 −0.42 −1.09

 . (6.7)

Where this matrix is fashioned as is typical for transport systems, specifically to
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Figure 6.10: The calculated wakefield behind the electron bunch used in the

400/600 µm, 15 cm experiments. The wakefield is shown in red and the electron

beam distribution is shown in blue. The electron beam has been scaled to fit

the plot. For this measurement the beam had a length of approximately σz= 45

µm, short enough to excite the first three TM0n modes. This means that the

wakefield behind the electron bunch is subject to interference in the sum of the

wake fields so while the decelerating gradient tends to peak of 800 MVm−1 and

an average of 540 MVm−1, the peak accelerating gradient behind the bunch is

expected to be around 1.3 GVm−1.

operate on the the following state vector,

~x0 =


x

x′

y

y′

 . (6.8)

What we see is that even a very small kick in the x̂ direction will be amplified by
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a factor of 13 in position on the spectrometer. Thusly even small kicks will show

up as offsets and more importantly the variation of the forces along the bunch

(Equation 5.72) will show up as structure in the x̂ direction due to the non-zero

R12 element. These problems also will present, but to a lesser degree, in the ŷ or

energy measuring direction.

To account for the systematic difficulty present in this measurement a non-

intercepting Beam Position Monitor (BPM) is used to measure the offset of the

beam with and without the structure in the beam path. As the BPM is after

a dispersive element, the change in its focal properties with energy must also

be taken into account. Concretely, we may write the difference in the measured

position on the spectrometer screen as

x2−x2,struct = M11(E1)x1−M11(E2)x1,struct+M12(E1)x′1−M12(E2)x′1,struct, (6.9)

where the subscript 2 is the position of the beam on the BPM and 1 is the

position just after the structure, which is not measured. What is known is that

before the structure the beam position is identical in both cases. In this case we

represent the transport matrix between the structure and the BPM as M. This is

in contrast to the transport matrix from the structure to the spectrometer screen,

which is R. This can be incorporated into the analysis via a simple model which

takes the motion of the beam in the transverse direction into account.

Solving for the change in angle of the bean after it has traversed the structure

gives

x′1 − x′1,struct +
M11(E2)

M12(E2)
(x1 − x1,struct) =

1

M12(E2)
(x2 − x2,struct) +

∆M11

M12(E2)
(x1) +

∆M12

M12(E2)
(x′1),

(6.10)

where

∆M11 ≡M12(E2)−M12(E1), (6.11)
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with equivalent expressions for the other terms. All that remains is to model

the behavior of the beam in the structure. To do so we return to Chapter 5 and

note that the forces in the transverse direction are proportional to the offset in

that direction. This leads to a relation between the offset x and the angle x′ of

x1,struct = x0 +(∆x′/L)z2 in which ∆x′ = x′1,structure−x′1 is the total angle change

over the course of the structure and L is the length of the structure. We are then

able to perform the substitution (x1 − x1,struct) = −∆x′L, which gives,

x′1 − x′1,struct
(

1 +
M11(E2)

M12(E2)
L

)
=

1

M12(E2)
(x2 − x2,struct) +

∆M11

M12(E2)
x1 +

∆M12

M12(E2)
x′1.

(6.12)

This then is a function that gives us a measure of the angle and offset after the

structure as a measure of only the relative shift in the beam position on the

BPM. A further assumption which is made is that the beam is otherwise on the

nominal beam trajectory. That is to say that the second and third terms on the

right hand side of the above equation can be ignored. It is also noted that the

difference between E1 and E2 is so small that using the ”uncorrected” value for

E2 or the ”corrected” value makes no difference.

The remaining task is to determine how the usage of the BPM affects the error

in the measured energy. This can be done by taking a simple sum of squares of

the standard deviations of each measurement [106],

σT =
√
σ2
E + σ2

BPM (6.13)

The contribution due to the BPM, σBPM is calculated using

σBPM =

∣∣∣∣ R34

M12 + LM11

σy,BPM
15

25

∣∣∣∣ = 23MeV. (6.14)

Where σy′ is the measured r.m.s. deviation in the position of the beam at the

BPM and the fraction 15/25 is the measured calibration of the spectrometer.
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Figure 6.11: A histogram showing the raw average energy of the electron beam

with and without the a/b = 300/400 µm structure. The blue represents beam

centroid energy measurements taken with the structure in the beam path and red

represents no structure in the beam path, the difference is 300 MeV. The black

lines mark the means of the respective measurements and the yellow dashed lines

the 95% confidence interval. An algorithm that uses BPM data to correct for

transverse kicks in the beam indicates a total energy difference of 202 ± 2.97

MeV in 15 cm, which leads to a gradient of 1347 ± 19.8 MVm−1.

This means that the standard deviation of the mean of the histogram, for the
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case of the beam traveling through the structure, is found to be

σT√
N

=

√
38.32 + 232

√
N

=
44.7√
1400

MeV = 1.9MeV. (6.15)

This is seen to still be extremely small, owing to the number of data points

collected. Finally then the measured energy loss of the beam in the structure

is found to be 84 ± 2.34 MeV, where the error bars are defined as the 95%

confidence interval.

We now turn our attention to the last energy loss measurement made using

an a = 300 µm, b = 400 µm structure which is 15 cm long. This data is shown in

Figure 6.11. The analysis proceeds identically to that which was just described

for the previous structure. In the end we find that the measured gradient is 1347

± 19.8 MVm−1. This represents a gradient more than 50 times larger than is

present in conventional RF accelerators.

Table 6.6: A list of the TM modes excited and the expected energy deposited

into each mode for the 300/400 µm, 15 cm experiment.

TM01 TM02 TM03

λ [µm] 428 140 80

Energy [mJ] 478 140 8

At this point evoking the fundamental theorem of beam loading may seem

prudent but the beam used to excite the wakes for the last data set was extremely

short, σz = 20 µm. This means that the wakefield contains many modes, so it is

difficult to say through rules of thumb what gradient to expect behind the beam.

A plot of a simulation of the wakefield is shown in Figure 6.12. What is shown

is that the wakefield is multimode and thus subject to destructive interference
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Figure 6.12: The calculated wakefield behind the electron bunch used in the

300/400 µm, 15 cm experiments. The wakefield is shown in red and the electron

beam distribution is shown in blue. The electron beam has been scaled to fit the

plot. For this measurement the beam had a length of approximately σz= 20 µm,

short enough to excite the first three TM0n modes. This means that the wakefield

behind the electron bunch is subject to interference in the sum of the wake fields

so while the decelerating gradient tends to peak of 2 GVm−1 and an average of

1.33 GVm−1, the peak accelerating gradient behind the bunch is expected to be

around 3 GVm−1.

between the modes. This interference leads to a peak accelerating gradient of 5

GVm−1

Of qualitative interest is the broadening of the jitter in the average energy

of the beam. Comparison of the data taken with various structures in the beam

path (blue histograms) in Figures 6.7, 6.9, 6.11, shows that as the structures
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get longer and smaller bore the energy given up by the beam to the wake fields

is much more sensitive to variations in the beam parameters. For example, the

energy given up is proportional to charge squared with a multiplicative factor

which depends on the transverse dimensions of the structure, the coupling factor.

Given the charge of the beam (3 nC) the energy extracted for the smaller bore

structures is on the order of 600 mJ. As of the publication of this document the

most THz energy measured is approximately 4 mJ, also at FACET. This radiation

is produced via transition radiation off a foil, so is inherently broadband, unlike

the radiation produced using the structures in these experiments which is quite

narrowband, as discussed above.
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CHAPTER 7

Conclusion

We have shown here decelerating gradients on the order or 1.35 GV/m. This

represents over a 50 fold improvement in sustainable gradient when compared

with conventional radio-frequency accelerators. When the Fundamental Theorem

of Beam Loading is invoked the expected accelerating gradient can be expected

to be greater than 2 GV/m. This is seen to be of the order of magnitude of recent

plasma based experiments [2, 3] which understandably are creating a great deal

of excitement in the field of accelerator physics. The measurements made in

this work represent only what is the current step in the evolution of dielectric

wakefield accelerators and much remains to be done.

First, the wakefield behind the drive bunch must be probed using a witness

bunch. The reconstruction of the wake using a minimum phase approximation is a

first, typical advanced acceleration structures do not admit such reconstructions,

but the proof of the pudding is in the eating and a direct measurement of the wake

potential behind the drive beam is necessary. Furthermore, the use of cylindrical

structures in this experiment are seen as a means to an end. In this case we

wished to show that dielectric structures can support gradients which make them

competitive with other nascent technologies, not necessarily that the geometry

used is the best for the job. Slab symmetric and other exotic structures, as

discussed earlier, are seen to have very desirable properties. Demonstration of

sustained gradients in dielectric structures in excess of a GV/m will hopefully spur
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investigation of other geometries and increase activities centered around dielectric

structures as sources of both high-energy particles and high-energy THz.

The potential applications of the high energy THz possible in the structures

described and tested in this work are diverse. Narrowband terahertz sources

are ”crucial to high-resolution spectroscopy” [107]. The especially high-energy

possible in the system presented here is especially after for the investigation of

semiconductors [108, 109]. There is, however, much work to be done before such

a system as used here could be used experimentally for other work. The absolute

energy extracted and transported to a given plane must be measured. More

so, the sources of losses must be accounted for before truly large energy THz

radiation pulses can be brought to experiments.
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APPENDIX A

A.1 Derivation of A2m+1,n Coefficients Recursion Relation

φB(x, y, s) =
∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn

n!

y2m+1

(2m+ 1)!
(A.1)

∇2φ(x, y, s) =
∂2φ

∂x2
+

h

1 + hx

∂φ

∂x
+
∂2φ

∂y2
+

1

(1 + hx)2

∂2φ

∂s2
− h

′
x

(1 + hx)3

∂φ

∂s
= 0 (A.2)

(1 +hx)3∂
2φ

∂x2
+h(1 +hx)2∂φ

∂x
+ (1 +hx)3∂

2φ

∂y2
+ (1 +hx)

∂2φ

∂s2
−h′x∂φ

∂s
= 0 (A.3)

∂φ

∂x
=

∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn−1

(n− 1)!

y2m+1

(2m+ 1)!
(A.4)

∂2φ

∂x2
=

∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn−2

(n− 2)!

y2m+1

(2m+ 1)!
(A.5)

∂2φ

∂y2
=

∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn

(n)!

y2m−1

(2m− 1)!
(A.6)

∂φ

∂s
=

∞∑
m=0

∞∑
n=0

A
′

2m+1,n(s)
xn

(n)!

y2m+1

(2m+ 1)!
(A.7)

∂2φ

∂s2
=

∞∑
m=0

∞∑
n=0

A
′′

2m+1,n(s)
xn

(n)!

y2m+1

(2m+ 1)!
(A.8)

Proceeding to derive the five pieces of the above Laplacian gives:

h
′
x
∂φ

∂s
= h

′
∞∑
m=0

∞∑
n=0

A
′

2m+1,n(s)
xn+1

(n)!

y2m+1

(2m+ 1)!

= nh
′
∞∑
m=0

∞∑
n=1

A
′

2m+1,n−1(s)
xn

(n)!

y2m+1

(2m+ 1)!

(A.9)
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If we use the restriction that the coefficients are not allowed to have negative

indexes and indexes which produce powers of x or y which are not physical (i.e.

1
x
) we can extend all sums to n=0 and m=0 and write:

h
′
x
∂φ

∂s
= nh

′
∞∑
m=0

∞∑
n=0

(
nh
′
A
′

2m+1,n−1(s)

)
xn

(n)!

y2m+1

(2m+ 1)!
(A.10)

We can then do the same for all components of the Laplacian.

(1 + hx)
∂2φ

∂s2
= (1 + hx)

∞∑
m=0

∞∑
n=0

A
′′

2m+1,n(s)
xn

(n)!

y2m+1

(2m+ 1)!

=
∞∑
m=0

∞∑
n=0

(
A
′′

2m+1,n(s) + nhA
′′

2m+1,n−1(s)

)
xn

(n)!

y2m+1

(2m+ 1)!

(A.11)

(1 + hx)3∂
2φ

∂x2
= (1 + 3hx+ 3h2x2 + h3x3)

∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn

(n)!

y2m+1

(2m+ 1)!

=
∞∑
m=0
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n=0

(
A2m+1,n+2(s) + 3hnA2m+1,n+1(s)

+ 3h2n(n− 1)A2m+1,n(s) + h3n(n− 1)(n− 2)A2m+1,n−1(s)

)
∗

xn
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(A.13)
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h(1 + hx)2∂φ

∂x
= h(1 + 2hx+ h2x2)

∞∑
m=0

∞∑
n=0

A2m+1,n(s)
xn−1

(n− 1)!

y2m+1

(2m+ 1)!

=
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m=0
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)
xn

(n)!

y2m+1

(2m+ 1)!

(A.14)

Since the Laplacian is defined to be equal to zero, all identical elements from

across the above 5 terms can be dropped leaving, after some collection of like

coefficients:

A
′′

2m+1,n + hnA
′′

2m+1,n−1 − nh
′
A
′

2m+1,n−1 + A2m+1,n+2+

h(3n+ 1)A2m+1,n+1 + h2n(3n− 1)A2m+1,n + h3n(n− 1)2A2m+1,n−1

+A2m+3,n+3hnA2m+3,n−1+3h2n(n−1)A2m+3,n−2+h3n(n−1)(n−2)A2m+3,n−3 = 0.

(A.15)
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