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Abstract 
In philosophy of science, Neo-mechanists argue that 
explanations are only successful when formulated in terms of 
the behaviors of discrete decomposable components that 
constitute the system of interest. This approach to explanation 
implicitly denies the significance of non-linear interactions in 
structuring the behavior of complex cognitive systems. 
Recently, Neo-mechanists have claimed that JAS Kelso and 
colleagues have begun to favor neo-mechanistic explanations 
of neuroscientific phenomena; particularly in the application 
of the neural field model to rhythmic coordination behaviors. 
We will argue that this view is the result of a failure to 
understand dynamic systems explanations and the general 
structure of dynamic systems research. Further, we argue that 
the explanations cited are in fact not neo-mechanistic 
explanations. In this paper, we will show that these neo-
mechanists have misunderstood the work by Kelso and 
colleagues, which blunts the force of one of their arguments. 
 

Keywords: Explanation; Dynamic systems; Mechanism; 
HKB; Neural Field Model; Tripartite Scheme; Neuroscience 

Introduction 
Many scientists have some criteria for deeming some 
findings as explanatory and others as useful but not 
explanatory, though these criteria are rarely formalized. 
Attempts at defining a simple account of explanation in 
terms of necessary and sufficient conditions have often 
come up short. In the philosophy of science, a theory of 
explanation, referred to as the neo-mechanist approach, has 
been developed in terms of a particular understanding of 
mechanisms in scientific investigations. In the context of 
cognitive science, Neo-mechanists (Bechtel and 
Abrahamsen 2005; Craver 2007; Bechtel 2009, 2011; 
Kaplan and Bechtel 2011; Kaplan and Craver 2011) argue 
that in order for a claim to be an explanation in cognitive 
science it must reveal something about the decomposable 
mechanisms of a cognitive system. As part of their 
arguments, they claim that JAS Kelso and colleagues 
working on cognitive systems are shifting away from 
dynamic systems explanations of cognitive and behavioral 
phenomena in favor of neo-mechanistic explanation of 
neuroscientific phenomena (Kaplan and Bechtel, 2011; 
Kaplan and Craver 2011). We will argue that this view is 
the result of a failure to understand dynamic systems 
explanations and the general structure of dynamic systems 
research, and that the explanations by Kelso and colleagues 
cited are in fact not neo-mechanistic explanations. We will 

not, in this very short paper, offer a full defense of 
dynamical models as genuine explanations. Here, we will 
simply show that these neo-mechanists have misunderstood 
the work by Kelso and colleagues, which blunts the force of 
one of their arguments. 

Our paper will proceed in three parts. First, we will 
briefly describe neo-mechanisms and what we will call “The 
Scott Freaking Kelso Argument”. Second, we will outline 
the basic methodology of one form of dynamic systems 
research. In this section our aim is to clarify the structure 
and formulation of dynamic systems models in the context 
of Synergetics in order to distinguish this strand of dynamic 
systems research from neo-mechanistic theories. Third, we 
will examine the role of the neural field model in dynamic 
systems research (Jirsa and Haken, 1996; Jirsa et al. 1998; 
Jantzen et al. 2009). This work has been cited as a 
supposedly clear example that dynamic systems researchers 
ultimately depend on neo-mechanistic explanations to make 
their models explanatory (Kaplan and Bechtel 2011; Kaplan 
and Craver 2011). We will show that the neural field model 
is a dynamic systems model, and thus, application of the 
neural field model is continuous with dynamic systems 
theory not contrary to it.  

Neo-Mechanism and the SFK Argument 
For the past 20 years, there has been a consensus among 
philosophers of science that mechanistic explanation is 
important in the life sciences. Bechtel and Richardson 
(2010) defined neo-mechanistic explanation as explanation 
that involves decomposing some phenomenon into 
component operations, and then localizing those component 
operations in physiological structures of organisms. These 
component operations are taken to produce or to be 
responsible or to account for the phenomena. 
Decomposition involves developing a model of a system’s 
behavior by identifying discrete component parts and their 
linear, or weakly non-linear, interactions. While it cannot be 
argued here, non-linearity in a system is not trivial. 
Genuinely non-mechanistic descriptive and explanatory 
strategies are required to capture features of non-linear 
interactions that are otherwise unavalible to neo-mechanistic 
paradigms of explanation. Many of these non-linear features 
are at the center of debates over emergence in natural 
systems, though these debates are outside the scope of the 
current project. Localization involves mapping those 
discrete components and interactions onto features of a 
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physical system (Bechtel and Richardson, 2010). It is 
important to recognize that the just the application of any 
type of model to a physical system is not a neo-mechanistic 
explanation. The model must be decomposable, i.e. consist 
of discrete components and primarily linear couplings.1 We 
acknowledge that neo-mechanistic approaches to physical 
systems provide an important style of explanation in 
biology, neuroscience, psychology, and cognitive science. 
However, neo-mechanistic explanation will be ineffective 
for systems that are not decomposable or nearly 
decomposable, due to, for example, high degrees of 
nonlinearity and thus must be augmented by other 
explanatory approaches (Bechtel and Richardson, 2010). 
For this reason, we think that both approaches are useful in 
distinct contexts. Recently, however, proponents of neo-
mechanistic explanation have argued that explanations in 
the life science just are neo-mechanistic explanations. This 
has been argued in one of two ways: either it is argued that 
non-mechanistic explanations are not really explanations, or 
it is argued that apparently non-mechanistic explanations are 
in fact neo-mechanistic explanations. Many neo-mechanists 
make both arguments (e.g., Kaplan and Craver 2011, 
Kaplan and Bechtel 2011, Bechtel 2011, Bechtel and 
Abrahamsen 2010).   

As noted above, here we will address one argument that 
non-mechanistic explanations are not genuine explanations.  
(We address other arguments elsewhere.) Here is a quote 
from Kaplan and Craver 2011, 

Many proponents of dynamic systems theory 
such as Kelso now appear to recognize the 
importance of mechanistic explanation. After 
developing the HKB model, Kelso and colleagues 
began researching how this behavioral regularity 
results from features of the underlying organization 
of component neural systems and their dynamics 
(see, e.g., Schöner and Kelso 1988; Jirsa et al. 
1998; Jantzen et al. 2009). Kelso and colleagues 
(Jirsa et al. 1998) recently proposed a neural field 
model connecting the observed phase shift 
described by HKB to the underlying dynamics of 
neural populations in motor cortex.  

We call this the “Scott Freaking Kelso Argument” (SFK). It 
also appears in Kaplan and Bechtel (2011). The basic 
rhetorical move is that dynamical models are so obviously 
not genuine explanations the way neo-mechanistic models 
are that even Scott Freaking Kelso is pursuing neo-
mechanistic explanations. Compare an equally false claim: 
“Many evolutionary biologist such as Richard Dawkins now 
appear to recognize Jesus Christ as their personal savior.”  
Although, we would never recommend this to introductory 

1 We believe some confusion enters philosophical debates of 
explanation because many scientists use the term ‘mechanism’ to 
refer to the claim that features of the model map onto features of a 
physical system. We do not take issue with this usage, since 
common usage does not pre-theoretically eliminate the possibility 
that macro-level patterns of system behavior could constrain 
micro-level patterns of behavior.  

logic students as a valid argument, its rhetorical force is 
undeniable. If even the pioneers of dynamical modeling in 
the cognitive sciences—the people who understand them 
better than anyone else—don’t believe that dynamical 
models are genuine explanations, we probably shouldn’t 
either. Crucially, the SFK argument depends upon whether 
the neural field model (Jirsa et al 1998) really is an attempt 
to “transform a merely descriptive model into a mechanistic 
one”. In the remainder of this paper, we argue that it is not. 

Dynamic Systems and the Tripartite Scheme 
Dynamic systems theory may be used to refer a family of 
research orientations that model the behaviors of non-linear 
systems over time using differential equations. Our focus in 
this paper is on Synergetics, as exemplified in the widely 
discussed Haken-Kelso-Bunz (HKB) model and structured 
by what Kelso calls the Tripartite Scheme (Kelso, 1995; 
Haken et al, 1985). The Tripartite Scheme involves a three 
part approach to dynamic systems models (See Figure 1). 
The three parts are the boundary constraints, the collective 
variable, and the coordination components.2 Each part of the 
Tripartite Scheme provides a distinct representation of the 
system and behavior of interest but, crucially, no part is 
independent of the others. 

The boundary constraints define the system and behavior 
to be observed by defining the initial conditions of system’s 
behavior and defining the relevant variables and parameters. 
In the HKB model as applied to rhythmic finger 
coordination, the initial conditions are defined as the 
oscillations of an individual’s left and right index fingers at 
a particular frequency. The relevant variables and 
parameters include changes in oscillation frequency, 
changes in amplitude, spatial orientation, etc… The 
boundary constraints define the range in which the system 
of interest is observed. Changing the boundary constraints, 
changes the system of interest. Generally, dynamic systems 
models are sensitive to changes in both initial and 
parametric values. For example, given a specified 
parameterization the initial conditions may determine 
whether the system exhibits chaotic or non-chaotic 
behavior. Likewise, changes in the parameters can result in 
different bifurcations as well as distinct patterns of behavior.  
Thus, the same limbs or cluster of neurons may have certain 
coordination dynamics under one set of boundary 
constraints and different coordination dynamics under a 
different set of boundary constraints.   

The collective variables characterize the coordination 
dynamics of the system and its behavior. The collective 
variables represent a relationship(s) between the 
coordination components. The representation of the system  

2 There is some variation in the terms Kelso and colleagues use 
across publications to describe these parts: boundary constraints 
are sometimes referred to as task constraints and the collective 
variable is sometimes referred to as the order parameter. 
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Phenomena Pattern Dynamics 
 
 

Initial conditions: 
     e.g., oscillate fingers in a given fashion… 
Non-specific parameters: 
     e.g., change frequency, spatial orientation… 

 
 
 

 
 
 

Φ = 0 or ±𝜋 
 

𝑏/𝑎 
 

 
 

Characterizes coordinated states, 
e.g., relative phase(φ) 

 
 
 

 
 

𝑉(𝜙) = −𝑎 cos(𝜙)− 𝑏 sin(2𝜙) 

   
 

nonlinearly coupled oscillators 
 

 
�̈�1 + 𝑓(𝑥1, �̇�1) = 𝐺(𝑥1, �̇�1;𝑥2 , �̇�2) 
�̈�2 + 𝑓(𝑥2, �̇�2) = 𝐺(𝑥2, �̇�2; 𝑥1, �̇�1) 

 
Figure 1: Tripartite Scheme for rhythmic finger coordination. Adapted from Kelso (1995). 
 
provided by the collective variable is a low dimensional 
description of the behavior of a high dimensional dynamic 
system. While the system of interest may be highly 
complex, the behaviors of the system will be modeled by the 
collective variable in terms of relatively few patterns, 
determined by the energy requirements to maintain those 
patterns. The collective variable modeled as the relative 
phase of the left and right fingers: 

𝑉(𝜙) = −𝑎 cos(𝜙) − 𝑏 sin(2𝜙) 
describes bimanual coordination as a function of the energy 
required (𝑉(𝜙)) to maintain coordination at relative phase 
(𝜙) . This equation predicts critical slowing near phase 
transitions and hysteresis effects that are observed in 
bimanual coordination tasks. In doing so, it provides a 
model of the system’s behavior in terms of its energy 
dynamics; the system settles into low energy behaviors 
unless it is forced to do otherwise. Significantly, while a 
collective variable typically characterizes relatively large 
scale/slower features of system, they constrain the behavior 
of smaller scale/faster features of the system. In synergetics, 
this is called an ‘enslaving principle’ and plays an important 
role in explanation of certain types of systems. It is 
important to note that neo-mechanists often overlook this 
and other features of the theory underlying the use of 
dynamic systems models for explanation.  

The coordination components are defined by sets of 
coupled differential equations that describe the energetic 
constraints on the components that are coordinated. When 
the boundary constraints define the system as a coupled pair 
of oscillators, the coordination components model the 
energetic constraints governing the individual oscillators  

 

 
and their coupling. In the HKB model, the coordination 
components are individually oscillating fingers, described as  
nonlinearly coupled oscillators. It is not possible to 
accurately define the behavior of either component 
independently of the other in the context of the boundary 
constraints because of the coupling between the oscillators. 
In traditional mechanistic terms (Wimsatt, 2007; Bechtel 
and Richardson, 2010), the system is at best minimally 
decomposable, if not non-decomposable, which is to say 
that it is not subject to neo-mechanistic explanation. The 
behavior of each component is determined as strongly, or 
more strongly, by the state of other coordination 
components that make up the system than by its own 
intrinsic dynamics. The use of the term ‘component’ in this 
case is not identical to its use in neo-mechanistic  
descriptions of systems. The individual equations and 
variables that describe the coordination components do not 
map onto neo-mechanistically defined lower level 
components of a system. Instead, the variables and 
parameters are defined in terms of energy expenditure. Neo-
mechanists, of course, do not claim that HKB is a neo-
mechanistic equation.  Rather, they would say that it is a 
mere description of data. 

Applying the Scheme to the Brain 
Once several models of a system are developed at different 
scales of description, the models can be treated as 
coordination components for new scales of description 
(Potochnik and McGill, 2012). In the context of dynamic 
systems research the goal of comparing and coordinating 
models is to discover the extent to which a system’s  

Boundary Constraints 

Collective Variable 

Coordination Components 
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Figure 2: Tripartite Scheme for an application of the neural field equation to rhythmic coordination experiments (Jirsa and Haken, 1997; 
adapted from Kelso, 1995). 

 

 
 
behavior is governed by the energetic constraints of the 
system at different scales of description. Notably, this is 
where dynamical models gain their explanatory force 
(Kaplan and Craver, 2011). Related models, i.e. models that 
are related to the same phenomena, are examined to 
determine if there are boundary constraints that can be 
applied to the coordination components of both models to 
produce equivalent collective variables. It must then be 
shown that the selected boundary constraints can be applied 
within the models such that they consistently map onto the 
system of interest. When a system’s behavior(s) can be 
modeled at a variety of scales such that each model has the 
same collective variable, we can take this as evidence that 
across these scales the system’s behavior is governed by the 
same energetic constraints. This means that regardless of the 
small-scale physical stuff that makes up the system, an 
explanation of the system’s behavior must include an 
account of the energetic constraints or enslaving principles 
that the system is subject to. This would be a clear case of a 
thoroughly dynamical system. Representing such a system 
in neo-mechanistic terms may be useful for some types of 
interventions on the system, but it wouldn’t necessarily add 
to our understanding of why the system does what it does. 
In fact, since such a system is at best minimally 
decomposable, any neo-mechanistic explanation of the 
system’s behavior would be lossy, an over-simplification of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the dynamic systems model already provided. This is 
because a mechanistic model necessarily ignores the effects 
of non-linear coupling both in defining the system’s 
components and defining the system’s behavioral modes.  

We have, so far, focused on the structure of a dynamic 
systems approach to modeling and explaining systems of 
interest. We can now apply this understanding to recent 
work relating the neural field model to rhythmic 
coordination behaviors. A number of studies have shown 
that the dynamic models that describe various scales of 
activity related to rhythmic finger movements are equivalent 
(Jantzen et al, 2009; Jirsa and Haken, 1996; Jirsa and  
Haken, 1997; Jirsa et al, 1998). V.K. Jirsa and H. Haken 
developed a dynamic systems model of the electromagnetic 
activity in the brain called the neural field model (Jirsa and 
Haken, 1996; Jirsa and Haken, 1997; Jirsa et al, 1998). 
Recently, neo-mechanists (Kaplan and Bechtel 2011; 
Kaplan and Craver 2011) argue that the neural field model 
is mechanistic.  However it should be clear that it is not neo-
mechanistic from a careful reading of the model in the 
context of the Triparte Scheme. Further, Jirsa and Haken 
make this clear when they state, “The [collective variables] 
are determined and created by the cooperation of 
microscopic quantities, but at the same time the [collective 
variables] govern the behavior of the whole system” (Jirsa 
and Haken, 1996, p960).  That is, the behavior of the 

Phenomena Pattern Dynamics 
 
 

Initial conditions: 
     e.g. Neural field under periodic stimulation  
             during rhythmic motor activity… 
Non-specific parameters: 
     e.g. change frequency, spatial mode, neural    
             sheet dynamics, … 

 
 
 

 
 

Φ = 0 or ±𝜋 
 
 

𝜔𝑖/2Ω, etc… 
 
 

 
 

Characterizes coordinated states, 
e.g., relative phase(φ) 

 
 
 

 
 

𝑉(𝜙) = −𝑎 yst2

xst
cos(𝜙) − 𝑏 cos(2𝜙) 

   
 

Nonlinearly coupled oscillators, 
e.g. Neural sheet amplitude with sensory 

and auditory inhomogeneities 
 

𝑥10 = �− 1
2

(𝑦0 + 𝑦1) + 1
4
𝜖 cos 2𝜙�𝑥10 − 𝐵 �1

2
𝑥102 +

2(𝜖̃ − 𝜖02)𝑦202 � 𝑥_10  
𝑦20 =

�− 1
2
𝑦0 + 1

4
𝜖𝜖0(1 + 𝑐𝑜𝑠2𝜃) − 𝜖𝜖0𝜔0�

8Ω
𝑠𝑖𝑛2𝜃� 𝑦20 −

𝐵 ��1 + 𝜖0
2
� 𝑥102 + 2

2
(1 + 2𝜖02)𝑦202 � 𝑦20  

Boundary Constraints 

Collective Variable 

Coordination Components 
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components alone is not responsible for and does not 
explain the behavior of the system. Instead, the components 
make up the system, and the system constrains the behavior 
of the components. The neural field model is a dynamic 
systems model of pulse to wave and wave to pulse 
behaviors of neural populations (See Figure 2). In the study 
we will look at, one cited by Kaplan and Bechtel and 
Kaplan and Craver, the neural field model is applied to the 
neocortex, which is modeled as a medium represented by a 
one dimensional closed surface (Jirsa et al, 1997). This 
medium (neural sheet) consists of neural ensembles 
characterized by two state variables, waves of extracellular 
fields and intracellular fields that correspond to pulses. The 
field model is thus a model of energy transfer and 
conversion through a medium. The model’s boundary 
constraints are defined in terms of excitatory and inhibitory 
pulse and wave amplitudes (Jirsa and Haken, 1996). The 
parameterization of the model is based on the electrical 
properties of the neuron ensembles as well as their spatial 
scale and connectedness in the neocortex. The coordinated 
components are the neural sheet and inhomogeneities in the 
neural sheet. The inhomogeneities are the result of neural 
ensembles coupled to brain and body areas outside the 
neural sheet and map on to traditional functional brain areas. 
The coupling between the neural sheet and inhomogeneites 
is accomplished through the neural field equation which is 
derived from the wave-pulse and pulse-wave conversions 
that take place within neural sheet. When the coordination 
components are coupled by the neural field equation, the 
system’s mode can be calculated. The collective variable is 
defined in terms of the energy distribution patterns of the 
system (Jirsa et al, 1998; Jirsa and Haken, 1997).3 The 
energy distribution patterns can be thought of as the pattern 
of ripples in a puddle at a particular moment. According to 
the neural field model, the behavior of the system is 
explained and described by stable distribution patterns of 
wave and pulse fields in the neural sheet. Thus, the neural 
field model is a model of the energy dynamics of the 
system. At the neural population scale of description, the 
neural field model explains the system’s behavior according 
to the distribution of energy throughout the system.  

In studies by Jirsa, Fuchs, and Kelso (1998) and Jirsa and 
Haken (1996) the neural field model is applied to neural 
imaging work done in rhythmic finger coordination 
experiments.  A participant is subjected to an auditory 
stimulus while asked to perform a rhythmic tapping task. 
During the study, the participant’s neural activity is 
recorded using a SQUID array. In these studies three 
inhomogeneities are modeled in the neural sheet. These map 
onto the auditory cortex, and the motor and sensorimotor 
brain areas. The sensorimotor area is defined as a subset 
neural population in the neural sheet that is driven, in part, 
by the movements of the finger it is coupled to. The motor 
area is defined as a subset neural population in the neural 
sheet whose behavior drives finger movements. The 

3 This is referred to in the research as the system’s “spatial 
mode.” 

auditory cortex is defined as a subset neural population that 
is driven by an acoustic stimulus. Despite the reference to 
traditional functional brain areas, it is important to recognize 
that these areas do not play a neo-mechanistic role in the 
system. Due to the structure of the neural field model, none 
of the inhomogeneities can be adequately defined 
independent of the neural sheet it is imbedded in, including 
the states of the other inhomogeneities. Thus, they are at 
best minimally decomposable within the model, which is 
insufficient for neo-mechanistic explanation. An analogy 
may help. Returning to the puddle, if we attempt to model 
three drops of water falling simultaneously into a small 
puddle of water, the ripple patterns produced by any 
individual drop could not be modeled without also modeling 
the other drop and the relevant properties of the puddle. The 
neural field model represents the neural sheet and functional 
brain areas in a similar way. Significantly, within certain 
boundary constraints, the system’s behavior isn’t 
characterized by the behavior of any particular 
inhomogeneity or aspect of the neural sheet. Its behavior is 
characterized by the energy distribution patterns of the 
neural sheet with embedded inhomogeneities. Stretching the 
metaphor, the behavior isn’t characterized by the individual 
drops of water; rather it’s characterized by the pattern of 
waves in the puddle.   

Put back in terms of cognitive science, there is no sense in 
which the activity of the neural field produces, explains, 
determines or accounts for the rhythmic tapping behavior.  
Instead, the boundary conditions determine the tapping 
behavior, which determines the coordination pattern 
described by the neural field model. The neural field theory 
is an application of the Tripartite Scheme, in which the 
tapping task is a boundary condition, the collective variable 
models cortical coordination patterns, and the coordination 
components are coupled inhomogeneities.  The neural field 
theory is a dynamical model just as the HKB model is.  The 
fact that it is, in part, a dynamical model of the brain does 
not make it a neo-mechanistic model. As noted above, the 
application of a model to a physical system is insufficient to 
make it a neo-mechanistic model. The model must also be 
decomposable according to the neo-mechanist account. If a 
neo-mechanist wishes to discard the condition of 
decomposability, then she does so at the cost of discarding 
the feature of neo-mechanistic explanations that makes them 
distinct from more general accounts of naturalistic 
explanation. In a general account of this type a researcher 
develops a model of a system’s behavior and maps that 
model onto a physical system without remainder. We take it 
that our discussion of the Tripartite Scheme and the neural 
field model has gone at least some distance towards 
showing that dynamic systems explanations fit this more 
general account of explanation. The explanation of the 
phenomena of interest is embodied in the model and not the 
application of the model to some set of components and 
relations in a system of interest. However, we acknowledge 
that much more work needs to be done, and in part has been 
done, to show that this is sufficient to justify the claim that 
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dynamic system’s explanations really are explanatory 
without reference to neo-mechanist methods.  

Applying the neural field model to brains does not require 
adopting a neo-mechanistic account of explanation. In fact, 
once the neural field model is applied at the neural ensemble 
scales and the Tripartite Scheme is elaborated, the results 
can be compared and coordinated with other scales of 
description. This is what Kelso and his colleagues have been 
up to for the past couple of decades. The example just given 
has been a part of a larger body of work to show that the 
collective variable for rhythmic coordination behavior at the 
neural ensemble scale is equivalent to the collective variable 
for rhythmic coordination behavior at the finger behavior 
scale (Jantzen et al, 2009; Jirsa and Haken, 1996; Jirsa and 
Haken, 1997; Jirsa et al, 1998). Doing this is a part of 
determining the extent to which the rhythmic coordination 
behaviors depend on energy dynamics. This is distinct from 
the neo-mechanist project of determining the extent to 
which rhythmic coordination behaviors depend on discrete 
input and output control of hierarchically ordered and 
discrete components. Given the success of Kelso and his 
colleagues with respect to this project, the dynamics systems 
position is increasingly plausible (Jantzen et al, 2009; Jirsa 
and Haken, 1996; Jirsa and Haken, 1997; Jirsa et al, 1998).  
More importantly for current purposes, the SFK argument 
loses its force entirely.  It is simply inaccurate to claim, as 
Kaplan and Bechtel and Kaplan and Craver do, that recent 
work on the neural field by Kelso and colleagues is 
mechanistic in character.  Scott Freaking Kelso has been 
publishing articles about the brain for nearly two decades at 
this point, but explaining features of the brain is not 
identical to explaining neo-mechanistically.  

Conclusion  
In this paper, we have sought to set straight some 
misconceptions about the neural field theory. In particular, 
we have sought to clarify the role of the Tripartite Scheme 
in structuring the methodology and investigative questions 
of dynamic systems researchers. Contrary to the claims of 
some neo-mechanists, dynamic systems researchers have 
not had resort to neo-mechanistic methodologies or 
explanatory strategies. Instead, dynamic systems researchers 
have continued to engage and study cognitive systems using 
the methodologies and explanatory strategies of dynamic 
systems theory. This has resulted in research that spans and 
connects scales of descriptions and that defies traditional 
reductive and neo-mechanistic understandings. Kelso and 
his colleagues have continued to expand their understanding 
of the role of dynamic systems theory in cognitive systems 
over the years and they have done so without relying on 
neo-mechanistic models.  
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