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Abstract

Investigations of Low-Mass Star Formation: Simulations and Simulated

Observations

by

Stella Susannah Reber Offner

Doctor of Philosophy in Physics

University of California, Berkeley

Christopher McKee, Co-Chair

Richard Klein, Co-Chair

I investigate the role of gravitation, turbulence, and radiation in forming low-mass

stars. Molecular clouds are observed to be turbulent, but the origin of this turbulence

is not well understood. Using a gravito-hydrodynamics adaptive mesh refinement

(AMR) code, I study the properties of cores and protostars in simulations in which

the turbulence is driven to maintain virial balance and where it is allowed to decay.

I demonstrate that cores forming in a decaying turbulence environment produce

high-multiplicity protostellar systems with Toomre-Q unstable disks that exhibit

characteristics of competitive accretion. In contrast, cores forming in a virialized

cloud produce smaller protostellar systems with fewer low-mass members.

Observations of molecular clouds are limited by projection, resolution, and the

coupling between density and velocity information that is inherent in the molecular

tracers commonly used to map molecular clouds. To compare with observations of

core kinematics and shapes, I post-processs the simulations to obtain dust emission

maps and molecular line information. I demonstrate that some simulated observa-

tions are significantly different in the driven and decaying turbulence simulations,

making them potential diagnostics for characterizing turbulence in observed star-

forming clouds.
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Although forming stars emit a substantial amount of radiation into their natal

environment, the effects of radiative feedback on the star formation process have not

been well studied. I perform simulations of protostars forming in a turbulent molecu-

lar cloud including grey flux-limited diffusion radiative transfer. I compare the distri-

butions of stellar masses, accretion rates, and temperatures in simulations with and

without radiative transfer, and I demonstrate that radiative feedback has a profound

effect on accretion, multiplicity, and mass by reducing the number of stars formed

and the total rate at which gas turns into stars. I also show that protostellar radia-

tion is the dominant source of energy in the simulation, exceeding viscous dissipation

and compressional heating by at least an order of magnitude. Although heating from

protostars is mainly confined within the core envelope, I find that it is sufficient to

suppress disk fragmentation that would otherwise result in very low-mass compan-

ions or brown dwarfs. I compare the simulation results with recent observations of

local low-mass star forming regions and discuss the “luminosity problem.” For future

radiative transfer studies of star formation, I add multigroup radiative diffusion ca-

pability to the ORION AMR code.

Christopher McKee
Dissertation Committee Co-Chair

Richard Klein
Dissertation Committee Co-Chair
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Chapter 1

Overview: Role of Gravity,

Turbulence, and Radiative

Transfer in the Formation of

Low-Mass Stars

Formulating a complete theory of star formation is essential to understanding

the origins of the solar system and its galactic neighborhood. Developing such a

theory remains one of the most challenging and most important goals of astrophysics.

Fundamental physical processes such as gravity, turbulence, radiation, and mag-

netic fields act over a staggering range of scales to assemble stars from molecular gas

that is initially only a few 102 particles per cm−3. These molecular regions are quite

dense by cosmic standards, and they are optically thick to dissociating UV radia-

tion, a requirement to maintain a cool 10 K temperature. In the galaxy, molecular

clouds sizes range from a few pc to 100 pc with observed masses of up to a few 106

M� (Williams & McKee 1997). The molecular cloud environment is regulated by a

combination of supersonic turbulence and gravity (Mac Low & Klessen 2004; McKee

& Ostriker 2007). Due to near equilibrium between turbulence and gravity, star

formation is characteristically slow, such that only a few percent of cloud material

undergoes gravitational instability and collapses to form stars over a dynamical time
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(Wu et al. 2005; Krumholz & Tan 2007).

Star formation is typically divided into two regimes. Low-mass star formation

encompasses masses M∗ ≤ 8M�, while high-mass stars are considered to have masses

M∗ > 8M�. Although low-mass stars far outnumber high-mass stars and comprise

most of the stellar mass budget, high-mass stars are responsible for the majority

of the luminosity output, making them important cosmic beacons. However, high-

mass stars are much rarer, require particularly dense initial conditions, and form in

clouds located fairly distantly from earth (Krumholz & McKee 2008). In this thesis,

we instead focus on the formation of low-mass stars. The many nearby low-mass

star-forming regions have allowed high-resolution observations and detailed study,

supporting the formulation of a generally accepted star formation paradigm.

The early formation process of low-mass stars occurs in several stages. First,

cores of dense gravitationally bound gas develop, seeded by shocks or initial inhomo-

geneities in the cloud. Once these cores reach sufficient mass, they become gravita-

tionally unstable and begin inside-out collapse, a process that is likely modulated by

magnetic fields (Shu et al. 1987; Ward-Thompson et al. 2007). As collapse proceeds,

a protostar forms and gains mass via an accretion disk that channels low angular

momentum gas onto the protostar. After the formation of an efficient accretion disk,

the system launches an outflow, ejecting or entraining ∼ 50% of the incoming mass

along the rotational axis (Matzner & McKee 2000; Alves et al. 2007; Enoch et al.

2008). Deuterium burning begins when the central temperature reaches 106 K. Once

most of the surrounding gas is accreted or expelled, the protostar contracts along

the Hayashi track towards the main sequence where it begins hydrogen burning. At

this point, the remnant circumstellar debris undergoes the complex process that may

lead to planet formation.

Despite this general picture of star formation, many of the details of the process

remain poorly understood. For example, despite the ubiquity of turbulent motions

observed in molecular clouds, both the origin and the maintenance mechanism of tur-

bulence are unknown. Numerical simulations suggest that turbulence decays quickly

(Mac Low et al. 1998; Stone et al. 1998), leading to the quandary of why molecular

clouds do not collapse rapidly into stars. producing a high star formation rate. Var-
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ious sources of turbulent energy have been suggested to solve this problem, however,

debate continues as to whether the turbulence may be driven purely from large scale

processes like shearing, expanding HII regions, and supernova explosions or local

processes such as outflows (Mac Low & Klessen 2004).

The collapse process from pre-stellar cores to protostars is also uncertain. De-

bate continues about the relative importance of magnetic fields (Shu et al. 1987; Li

et al. 2004; Padoan et al. 2007), ambipolar diffusion (Mouschovias 1976, 1977; Hu-

jeirat et al. 2000; Adams & Shu 2007), turbulence (Padoan & Nordlund 2002, 2004),

radiative transfer (Boss et al. 2000; Krumholz et al. 2007b; Bate 2009b), protostellar

outflows (Li & Nakamura 2006; Nakamura & Li 2007), and many other effects.

Despite a large variety of star forming initial conditions, observations indicate

that throughout the galaxy the initial mass function (IMF) of stars is universal

(Chabrier 2005). The similarity extends from 0.1-10 M�, including the typical dis-

tribution peak of ∼ 0.2 M�, suggesting that some fundamental process is at work.

The origin of this common shape remains a mystery, although different authors have

attributed it to turbulent cloud conditions (Padoan & Nordlund 2002, 2004; Hen-

nebelle & Chabrier 2008), thermal physics (Larson 2005), or competitive accretion

of gas onto small seed protostars (Bonnell et al. 1997, 2001; Klessen & Burkert 2000,

2001). Recent observations have demonstrated that the mass function of dense cores

strongly resembles the shape of the IMF for some low-mass star forming regions

(Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2001; Onishi et al. 2002;

Alves et al. 2007; Enoch et al. 2008). A direct mapping between the starless core

mass function and the stellar IMF is complicated by the presence of unbound cores

(Lada et al. 2008), fragmentation of the core into multiple stars (Clark et al. 2007),

and the existence of outflows, which may eject a variable and signficant amount of

the core gas (Matzner & McKee 2000).

Although nearly half of stars are observed to be members of multiple systems

(Lada 2006), no quantitative theory exists to explain the origin, frequency, and

mass ratios of such systems. Fragmentation of cores or circumstellar disks have

been suggested as mechanisms to form multiple systems (Padoan & Nordlund 2002;

Whitworth & Stamatellos 2006; Kratter et al. 2008). The gravitational collapse of a



4

region and the characteristic fragmentation size depend sensitively upon the scale at

which thermal energy is no longer sufficient to support against gravity. This scale,

the Jeans length, depends sensitively on the local temperature and density, and it

is responsible for the onset of gravitational instability. The local gas temperature is

influenced by compressional and accretion heating, molecular chemistry, as well as

by radiation emitted by nearby protostellar sources, posing a challenging problem.

Due to the complexity of the physics involved, simulations serve as a power-

ful research tool for addressing these issues (Klein et al. 2007). Adaptive mesh

refinement (AMR) is particularly well suited to problems of gravitational collapse,

because additional grids are automatically inserted in regions of interest (Truelove

et al. 1998; Klein 1999). Since collapsed objects like protostars fill a relatively small

volume of the grid, AMR is both highly accurate and enormously efficient in both

computational time and memory usage. In contrast, conventional fixed-grid codes

must cover the entire computational domain with a grid sufficiently fine to resolve

the smallest forming structures. Alternatively, Lagrangian N-body methods such as

smoothed-particle hydrodynamics (SPH) are superb at modeling dense regions, fast,

and robust, but they inaccurately render shocks and instabilities, which are essential

for modeling star formation (Agertz et al. 2007).

In this thesis, I perform a series of computational studies to investigate the

role of turbulence, gravity, and radiative transfer in the process of low-mass star

formation. In particular, the latter topic has been largely neglected and yet has

important consequences for understanding the key problems in star formation. I

gauge the importance of these physical processes via simulated observations and

comparisons with observations of local low-mass star-forming regions.

Simulations of star formation typically model turbulence via one of two methods.

In driven turbulence, energy is continually injected through velocity or momentum

perturbations to maintain constant kinetic energy, while decaying turbulence simu-

lations begin with a turbulent velocity field that is allowed to decay. In Chapter 2, I

use the ORION AMR code to model the formation of cores and protostars in molec-

ular clouds with driven and decaying turbulence. I analyze the properties of bound

cores such as size, shape, line width, and rotational energy, and I compare these with
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observations. At high-resolution, I find that different core accretion rates in the two

cases lead to significant differences in protostellar system development. I show that

cores forming in a decaying turbulence environment produce high-multiplicity pro-

tostellar systems with unstable disks that exhibit characteristics of the competitive

accretion model for star formation. In contrast, cores forming in the context of con-

tinuously driven turbulence form smaller protostellar systems with fewer low-mass

members.

Observational information of molecular clouds is obtained via radiation sig-

natures, such as dust and molecular line emission, which comprise an incomplete

picture in scale, wavelength, and perspective. This information may be very distinct

from quantities reported by simulators, complicating comparisons between observa-

tions and computations. In Chapter 3, I model observations of the simulated cores

described in Chapter 2 in the C18O(2 → 1), NH3(1, 1), and N2H
+(1 → 0) molecu-

lar lines. From the simulated observations I measure the line widths of individual

cores, the line widths of the surrounding gas, and the motions of the cores relative

to one another. I find that some of these distributions are significantly different in

the driven and decaying runs, making them potential diagnostics for determining

whether the turbulence in observed star-forming clouds is driven or decaying.

Core shapes potentially reflect molecular cloud properties, such as local turbu-

lence or magnetic field geometry. In Chapter 4, I investigate the shapes of simulated

starless and protostellar cores. I model observations of the cores in dust emission,

including realistic noise and telescope resolution, and I compare to the core shapes

measured in the Orion molecular cloud by Nutter & Ward-Thompson (2007). I show

that the turbulent simulations and the observations have generally high statistical

similarity, with particularly good agreement between simulations and Orion B. Due

to the high level of agreement between the non-magnetic hydrodynamic simulations

and observation, I suggest that the presence of magnetic fields does not strongly

influence core shapes in Orion.

Due to the computational expense and complexity of radiative transfer algo-

rithms, radiative processes have largely been neglected in the field of star formation.

In Chapter 5, I use ORION to simulate low-mass star formation in a turbulent
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molecular cloud including radiative feedback from forming protostars. I compare

the distributions of stellar masses, accretion rates, and temperatures in the cases

with and without radiative transfer, and I demonstrate that radiative feedback has

a profound effect on accretion, multiplicity, and mass by reducing the number of

stars formed and the total rate at which gas turns into stars. I also show that once

star formation reaches a steady state protostellar radiation is by far the dominant

source of energy in the simulation, exceeding viscous dissipation and compressional

heating by at least an order of magnitude. I conclude that calculations omitting

radiative feedback from protstars significantly underestimate the gas temperature,

resulting in excess disk fragmentation that would otherwise result in very low-mass

companions or brown dwarfs.

Observations of young protostars find luminosities that are significantly smaller

than predicted by current theories of star formation (e.g., Kenyon et al. 1990).

In Chapter 6, I investigate the nature of the luminosity problem by comparing a

radiation-hydrodynamics simulation of protostars forming in a turbulent molecular

cloud to protostars observed in the Perseus molecular cloud. I post-process the sim-

ulations to adjust for protostellar outflows, and I demonstrate that the simulation

produces protostellar luminosities that are in reasonable agreement with observa-

tions.

Even the most sophisticated radiation transfer methods currently applied in

star formation require simplifying assumptions due to computational limitations.

In Chapter 7, I review the multigroup approach to the radiative transfer problem.

This approach improves upon the gray method adopted in Chapter 5 by including

frequency information. I present two tests of the three-dimensional AMR multigroup

radiative diffusion method implemented in ORION. I conclude with a discussion of

future applications of multifrequency methods to remaining puzzles in the field of

star formation.
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Chapter 2

Driven and Decaying Turbulence

Simulations of Low-Mass Star

Formation: From Clumps to Cores

to Protostars

Offner, Klein, & McKee, 2008, ApJ, 686, 1174. 1

2.1 Introduction

Contemporary star formation occurs exclusively in dense molecular clouds (MCs).

Such regions exhibit large non-thermal linewidths generally attributed to supersonic

turbulence (Larson 1981). Although debate continues on the origin and character-

istics of this turbulence, it is now recognized that turbulence is a necessary element

of star formation and plays an important role in the shape of the core initial mass

function (IMF), the lifetimes of molecular clouds, and the star formation rate (Mac

Low & Klessen 2004).

Simulations have shown that supersonic turbulence decays with an e-folding

1The Astrophysical Journal, 686, 1174-1194, October, c©2008. The American Astronomical
Society. All rights reserved.
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time of approximately one cloud crossing time if there is no energy input to sustain

it (Stone et al. 1998; Elmegreen & Scalo 2004; Mac Low & Klessen 2004). If turbu-

lence decays as quickly in molecular clouds then star formation must happen rapidly

as the cloud looses turbulent pressure support and undergoes global collapse. In this

senario, star formation occurs on a dynamical timescale and MCs must be transient

dynamic structures (Elmegreen 2000; Hartmann et al. 2001). If however, turbulence

is fed from large scales or protostellar winds, expanding HII regions, and other pro-

cesses provide sufficient energy injection to balance dissipation produced by shocks,

then MCs may arrive at a quasi-equilibrium state (Tan et al. 2006; Krumholz & Tan

2007). Although there are many possible sources for turbulent energy, the dominant

source and the specific characteristics of turbulence remain poorly understood. Re-

cent effort has been directed at this issue and some observations of low-mass star

forming regions, e.g., L1551, find evidence for ongoing turbulence injection in the

form of winds and jets (Swift & Welch 2008). While turbulent support is maintained,

only a small volume of gas will become gravitationally unstable and form stars in a

dynamical time, leading to a low star formation rate and allowing MCs to live for

several dynamical times.

The two different views of cloud dynamics are related to, but distinct from, the

two major approaches to simulating turbulent molecular clouds. The fact that there

are two competing approaches to the simulation of such clouds is a direct reflection

of our lack of understanding of the origin of the turbulence in these clouds (McKee

& Ostriker 2007). In one method, the turbulence is initialized and then allowed

to decay (e.g., Klessen et al. 1998; Bonnell et al. 2003; Bate et al. 2002; Tilley

& Pudritz 2004). The primary problem with this approach is that the turbulence

decays to levels that are much lower than those observed. Advocates of this method

argue that the gravitational collapse that ensues after the decay of the turbulence

can be observationally confused with turbulence (Vázquez-Semadeni et al. 2006), but

it is difficult to see how to maintain a low star formation efficiency if much of the

gas is in a state of gravitational collapse. The other approach to cloud simulation is

to drive the turbulence by perturbing the gas velocity or momentum so that it does

not decay (e.g., Padoan & Nordlund (1999); Gammie et al. (2003); Li et al. (2004);
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Jappsen & Klessen (2005)). This approach allows one to study the processes that

occur at a given level of turbulence, which can be set to match that in a given cloud,

but it suffers from the disadvantage that the driving is unphysical. Thus, turbulently

driven simulations are a good representation of quasi-equilibrium clouds. They can

also be consistent with transient clouds if it is assumed that the simulation box

represents only a small part of the molecular cloud, so that the decay time for the

turbulence is long compared to the dynamical time of the simulation.

The near universal shape of the stellar IMF across diverse star forming environ-

ments has sparked much debate and generated diverse theories. Padoan & Nordlund

(2002) suggest that the functional form of the IMF can be derived from the power

spectrum and probability density function characteristic of supersonic turbulence.

Larson (2005) proposes that the peak of the IMF is set by the Bonnor-Ebert mass at

the minimum cloud temperature, which is related to the dust-gas coupling and gas

cooling efficiency. In the competitive accretion model, Bonnell et al. (2004) invoke

high stellar densities at the centers of clusters to propose that the relative position

of the stars in the gas reservoir determines their mass. In this model, the IMF is

determined by mass segregation, such that low-mass stars form in the lower density

gas at the edges of the cluster, while higher mass stars form in the center, where their

masses can be augmented by the coalescence of smaller protostars. In addressing the

origin of the IMF, numerical simulations have been largely inconclusive in discrimi-

nating between models given that a wide range of conditions (e.g., virial parameters,

resolution, code algorithms, included physics) have all succeeded in reproducing the

IMF shape.

A large amount of computational effort has been directed towards studying self-

gravitating turbulent clouds both with and without magnetic fields (Klessen 2001;

Bonnell et al. 2003; Li et al. 2004). A number of simulations succeed in reproducing

various observed core properties such as the IMF and Larson’s laws (Padoan &

Nordlund 1999; Gammie et al. 2003; Tilley & Pudritz 2004; Li et al. 2004; Jappsen

& Klessen 2005; Bate & Bonnell 2005). However, most simulations lack the resolution

to span the turbulent inertial range to accurately render the evolution of cores into

stars in a cluster environment (Klein et al. 2007).
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In this paper, we perform numerical AMR simulations with our code ORION

to investigate the role of driven and decaying turbulence on low-mass star forma-

tion. We follow the evolution of star forming cores in a turbulent box to show that

turbulent feedback is correlated with the multiplicity of stellar systems, the shape of

the IMF, and the protostellar accretion model. In §2, we discuss the methodology

of ORION and the initial conditions. In §3, we analyze core properties in driven

and decaying turbulence at low-resolution. In §4, we present results from a few

high-resolution studies of the protostellar evolution inside selected cores formed in

the context of driven and decaying turbulence. Finally, §5 contains conclusions. In a

companion paper (Offner et al. 2008, hereafter Paper II) we investigate the effects of

driven and undriven turbulence on the properties of the cores from which the stars

form.

2.2 Calculations

2.2.1 Numerical Methods

Our simulations are performed using the parallel adaptive mesh refinement

(AMR) code, ORION, which uses a conservative second order Godunov scheme to

solve the equations of compressible gas dynamics (Truelove et al. 1998; Klein 1999).

ORION solves the Poisson equation using multi-level elliptic solvers with multi-grid

iteration. Throughout our calculations, we use the Truelove criterion to determine

the addition of new AMR grids (Truelove et al. 1997),

ρ < ρJ =
J2πc2

s

G(∆xl)2
, (2.1)

where ∆xl is the cell size on level, l, and we adopt a Jeans number of J = 0.25.

We insert sink particles in regions of the flow that have exceeded this density on the

maximum level (Krumholz et al. 2004). Sink particles serve as numerical markers of

collapsing regions and also, after sufficient mass accretion and lifetime, protostellar

objects. We impose a merger criterion that combines sink particles that approach

within two grid cells of one another but prohibits nearby objects from merging
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if both have masses exceeding 0.1 M�. This limit divides stars from substellar

objects such as brown dwarfs and has the effect of tracking all significantly massive

objects. Particles that represent temporary violations of the Jeans condition and

have little bound mass tend to accrete little and ultimately merge with their more

substantial neighbors. The combination of sink particles and AMR with the Jeans

criterion allows us to accurately and efficiently continue our calculation to high-

resolution without the time constraints imposed by a large base grid and without

the consequences of artificial fragmentation.

2.2.2 Initial Conditions and Simulation Parameters

Isothermal self-gravitating gas is scale free, so we give the key cloud properties

as a function of fiducial values for the mean number density of hydrogen nuclei, n̄H,

and gas temperature, T . We adopt a characteristic 3D turbulent Mach number,

M=8.4, such that the cloud is approximately virialized:

αvir =
5σ2

GM/R
∼ 1.67. (2.2)

It is then easy to scale the simulation results to the astrophysical region of interest.

For the adopted values of the virial parameter and Mach number, the box length,

mass, and 1D velocity dispersion are given by

L = 2.9 T1
1/2n̄

−1/2
H,3 pc , (2.3)

M = 865 T1
3/2n̄

−1/2
H,3 M� , (2.4)

σ1D = 0.9 T1
1/2 km s−1 , (2.5)

tff = 1.37 n̄
−1/2
H,3 Myr , (2.6)

where n̄H, 3 = n̄H/(103 cm−3) and T1 = T/(10 K) and where we have also listed

the free-fall time for the gas in the box for completeness. For n̄H, 3 ∼ T1 ∼ 1,

the simulation approximately satisfies the observed linewidth-size relation (Solomon

et al. 1987; Heyer & Brunt 2004). For the remainder of this paper, all results will be

given assuming the fiducial scaling values n̄H = 1100 cm−3 and T=10 K, which are

appropriate for the Perseus MC (Paper II), but they may be adjusted to different
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conditions using equations (2.2)-(2.5). In terms of the Bonnor-Ebert mass,

MBE =
1.182c3

(G3ρ̄)1/2
= 4.71

T
3/2
1

n̄
1/2
H, 3

M�, (2.7)

the simulation has a mass of 184MBE. If the Jeans mass is defined as MJ =

ρL3
J , where LJ = (πc2

s/Gρ̄)1/2 is the Jeans length, then MJ = (π3/2/1.18)MBE =

18.9T
3/2
1 /n̄

1/2
H, 3 M�.

Our turbulent periodic box study is comprised of two stages. The first stage

simulates the large-scale isothermal environment of a turbulent molecular cloud with

self-gravity. In this “low-resolution” stage, we only add enough AMR levels to resolve

the shape and structure of collapsing clumps and cores. This first stage has two

parts. First, to obtain the initial turbulent spectrum, we turn off self-gravity and

use the method described in Mac Low (1999), in which velocity perturbations are

applied to an initially constant density field. These perturbations correspond to a

Gaussian random field with flat power spectrum in the range 3 ≤ k ≤ 4 where

k is the wavenumber normalized to kphysL/2π. At the end of two cloud crossing

times, the turbulence follows a Burgers P (k) ∝ k−2 power spectrum as expected

for hydrodynamic systems of supersonic shocks. For the second part, we turn on

gravity and follow the subsequent gravitational collapse for two scenarios. It should

be noted that some workers (e.g., Bate et al. 2002) do not allow self-consistent

turbulent density fluctuations to build up before turning on gravity. Any choice of

initialization for a turbulent, self-gravitating cloud is necessarily approximate, but

in our view it is preferable to have self-consistent density and velocity fluctuations

in the initial conditions. In the simulation that we will refer to with the letter D

(driven), we continue turbulent driving to maintain virial equilibrium, while in the

other, noted with U (undriven), we halt the energy injection and allow the turbulence

to decay.

In the second stage, we select a few emerging cores for further study in each

turbulent box, and we follow their fragmentation and evolution into protostellar

systems at high-resolution using a barotropic equation of state (EOS). We add ad-

ditional grid refinement to the regions we select, which continue to evolve within the

low-resolution context of the box. This method capitalizes on the AMR methodology



Section 2.2. Calculations 13

to achieve a high-resolution study of the development and properties of protostellar

cores with realistic initial and boundary conditions. Following all the cores over a

free-fall time with AMR rather than a subset to the maximum resolution would re-

quire more than a million CPU hours on 1.5 GHz processors. In contrast, our stage

two approach with AMR requires ∼50,000 CPU hours per high-resolution box.

In the first stage, it is reasonable to assume that the low density gas in the

cluster is isothermal and scale-free, reflecting the efficient radiative cooling of the

gas. However, as the gas compresses and becomes optically thicker there is a critical

density at which the radiation is trapped. Ideally, we would directly solve for the

radiation transfer using an appropriate opacity model to accurately determine the

gas temperature at these high densities. However, even approximations such as the

Eddington and diffusion approximations do not sufficiently economize the equations

of radiation transfer such that they are affordable over the resolution and timescales

necessary for this calculation. Consequently, we adopt a bartotropic EOS to emulate

the effect of radiation transfer. The gas pressure is given by

P = ρc2
s +

(
ρ

ρc

)γ

ρcc
2
s , (2.8)

where cs = (kBT/µ)1/2 is the sound speed, γ = 5/3, the average molecular weight

µ = 2.33mH, and the stiffening density ρc is given by ρc/ρ0 = 2.8 × 108. The value

of µ reflects an assumed gas composition of nHe = 0.1nH. The value of the stiff-

ening density determines the transition from isothermal to adiabatic regimes. It

introduces a characteristic scale into the previously scale-free isothermal conditions.

The isothermal scaling relations above remain valid as long as the ratio of stiffening

density to the average box density is presumed to be constant. We chose a value

of the stiffening density, ρc = 2 × 10−13 g cm−3, to agree with the ρ(T ) relation

calculated by Masunaga et al. (1998), who perform a full angle-dependent radiation

hydrodynamic simulation of a spherically symmetric collapsing cloud core. Unfor-

tunately, we sacrifice some accuracy in using the barotropic approximation in lieu

of radiative transfer, since an EOS assumes that gas temperature is a single valued

function of density. Simulations have shown that gas temperature in calculations

using radiation transfer vs. a barotropic EOS can differ by a factor of several and
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potentially produce different fragmentation (Boss et al. 2000; Whitehouse & Bate

2006; Krumholz et al. 2007b).

The low-resolution initial stage uses a 1283 base grid with 4 levels of factors of 2

in grid refinement, giving an effective resolution of 20483. The high-resolution core

study has 9 levels of refinement for an effective resolution of 65, 5363 such that the

smallest cell size corresponds to ∼10 AU for our fiducial values.

2.3 Bound Clump Properties

2.3.1 Clump Definition

At the end of a free-fall time with gravity, we analyze the core properties and

compare the driven and decaying turbulent results. At this time, the large-scale

driven turbulent simulation has 32 sink particles with 14.2% of the total mass ac-

creted. The decaying turbulence simulation has 20 sink particles containing 13.6%

of the mass. Because the sink particles mark collapsing cores rather than individual

protostars at this stage, these percentages should be viewed as an upper limit to the

actual star formation rate. Nonetheless, these numbers are not too much larger than

the the prediction of a 7% star formation rate per free-fall time given by Krumholz &

McKee (2005) for our assumed conditions and neglecting outflows. In the undriven

simulation, the turbulence decays significantly in 1tff and no new sink particles are

formed after ∼ 0.75tff . Without continued driving, there is insufficient energy to cre-

ate the large scale compressions responsible for seeding new cores. After significant

turbulent support is lost, the cloud deviates from virial equilibrium and the gas falls

onto existing over-densities rather than forming new cores.

In presenting the results from the low-resolution simulations, we restrict our-

selves to the analysis of objects that can best be described as “star-forming bound

clumps” (see McKee & Ostriker (2007)), which are generally gravitationally bound

but may form several systems of stars. In the following sections, we will adopt the

terminology “core” to refer to the bound condensations out of which a single proto-

star (i.e., sink particle) or small multiplicity protostellar system forms. Hence, we
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do not apply a Clumpfind algorithm, as described by Williams et al. (1994), which

also captures unbound and transient over-densities. Instead, we define a bound core

as a sink particle with envelope satisfying four criteria. First, the density in the

included cells must exceed the average shock compressions, i.e., ρ ≥ ρ0M1D
2, which

also ensures a single peak for each core. Second, the total mass in the core must

be greater than the local Bonner-Ebert mass, signifying that the core will collapse.

Each cell, i, forming a core must also be individually gravitationally bound to it

such that |Ei
KE| < |Ei

PE|. Finally, the cells included must lie inside a virial radius,

R, such that αvir ≤ 2, where the 1D velocity dispersion, σ, is given by the sum of

the turbulent and thermal components of the gas velocity: σ2 = σ2
NT + c2

s . We vary

the density cutoff by a factor of two and find that changes in the data fits remain

within 1-sigma error. Thus, our results are not overly sensitive to our core definition.

The larger of these cores may eventually form a cluster of stars and may best be

described as star-forming clumps. The smaller cores will likely form only a single

protostellar system. At the low-resolution stage of analysis it is difficult to predict

the outcome, and so the line between star-forming clumps and cores is ill-defined.

Note that in our methodology, the presence of a sink particle does not guarantee

the eventual formation of a protostar, only that the Jeans condition has been ex-

ceeded at some time during the simulation. In each simulation, there are a few sink

particles that do not posses envelopes satisfying these criteria. However, all cores

included in our analysis are defined to be gravitationally bound, collapsing objects

rather than transient overdensities in the flow and hence are predisposed to develop

protostellar systems.

2.3.2 Clump Properties

There are a number of core physical properties that are comparable to obser-

vations, and we investigate these here at 1 tff . Figures 2.1 - 2.5 show the bound

core data plotted with best fit lines. We exclude objects from the fit that have

R =
√

ab ≤ 4∆x, where a and b are the lengths of the major and minor axes.
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Figure 2.1 The figure shows the log of the core masses as a function of log size

(R =
√

ab) for the driven (left) and decaying (right) boxes at 1 tff . The slopes have

fits of 1.03±0.26 and 1.27±0.19, respectively.
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Density Profiles

As plotted in Figure 2.1, we find that compared to cores in run U, the cores

in run D have a slightly flatter trend of M(R) ∝ R, consistent with Bonnor-Ebert

spheres, which are characterized by ρ(r) ∝ r−2.0. In run U, the cores have profiles

that are closer to a free-fall profile, where ρ(r) ∝ r−1.5. Cores that are supported

or collapsing slowly will tend to resemble pressure-confined isothermal spheres (Kirk

et al. 2005; di Francesco et al. 2007) as in run D, where turbulence is providing more

external pressure support. In run U, where the turbulence has decreased significantly,

cores tend quickly to collapse as unbound gas becomes gravitationally attracted to

the largest overdensities. However, the slopes of the cores in the two simulations are

within 1-sigma error due to significant scatter, so that the trends are not significantly

different.

Shape

As shown in Figure 2.2, both distributions of bound cores have similar morpholo-

gies and tend to be mainly tri-axial. It is thought that in the presence of magnetic

fields, which we do not include, cores will flatten along the field lines (Basu & Ciolek

2004). However, ideal MHD simulations by Li et al. (2004) also find that their cores

are mostly prolate and triaxial. In any event, the difficulty of deprojecting observed

cores makes the true shape distribution ambiguous. Run D has median major and

minor aspect ratios of b/a =0.76 and c/a=0.40, while the decaying cores have median

aspect ratios of b/a=0.73 and c/a=0.54. The net medians of the shape distributions

0.58 (D) and 0.52 (U) are similar to those observed for different star-forming regions

which fall in the range 0.50-0.67 (Jijina et al. 1999).

Velocity Dispersion

In Figure 2.3, we plot the velocity dispersion as a function of core size for com-

parison against Larson’s linewidth-size relation. For low-mass star forming regions,

σNT ∝ R0.5 with some sensitivity to core sizes and clustering (Jijina et al. 1999). We

find exponents of 0.54 (D) and 0.19 (U). The slope of run D is within the range of
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Figure 2.2 The figure shows the core aspect ratios for the driven (left) and decaying

(right) boxes at 1 tff . The median aspect ratios for each case are (b/a, c/a) = (0.76,

0.40) and (b/a, c/a) = (0.73,0.54), respectively.
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observed slopes for low-mass regions. Although the scatter in our data appears large,

our χ2 fit slope error is comparable to the range of fit errors (±0.1−±0.19) that Jijina

et al. report. Plume et al. (2000) observed massive cores with a completely flat slope,

and indeed, the cores in run U are more massive with a mean mass of 12 M� versus

8 M� for the driven, but not significantly so (see §3.2.6). The Kolmogorov-Smirnov

(K-S) test quantifies the difference between the empirical distribution functions of

two data sets. A K-S test of the distributions of velocity dispersions indicates defini-

tively that the populations are quite dissimilar at the >> 99% level. The difference

in slope between the two simulations is possibly due to crowding in the decaying

turbulent case caused by insufficient global turbulent support against gravity. Jijina

et al. (1999) showed that clustered objects have a significantly flatter linewidth-size

relation slope. We note that the velocity dispersions in run U, although flatter with

size, are larger, which is consistent with quickly collapsing rather than turbulently

supported cores.

Rotation

Typically, rotational energy makes up only a small fraction of the core gravita-

tional energy. The rotational parameter β is defined as the ratio of the rotational

kinetic energy to the gravitational potential energy. For a uniform density sphere

this can be written:

βrot =
1

3

Ω2R3

GM
(2.9)

Observationally, Ωpos = Ω2
x + Ω2

y is the angular velocity projected in the plane

of the sky, such that βrot,obs = 2
3
βrot. Goodman et al. (1993), studying a selection

of dense cores in NH3, find that βrot,obs is roughly constant as a function of size,

where 2 × 10−3 < βrot,obs < 1.4 with median βrot ∼ 0.02. Observations of dense

cores using N2H
+, which primarily traces n > 105 cm−3, find a similar median value

of βrot,obs ∼ 0.01 (Caselli et al. 2002). For the purpose of comparison, we evaluate

βrot in two ways. First, we follow the convention of the observers and evaluate

βrot,obs by assuming that the cores are projected constant density spheres. Second
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Figure 2.3 The figure shows the log core velocity dispersions as a function of log size

(R =
√

ab) for the driven (left) and decaying (right) boxes at 1 tff . The slopes have

fits of 0.54 ± 0.25 and 0.19 ± 0.11, respectively.
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we sum over all the 3D data to calculate Erot/Egrav. For a singular isothermal sphere,

Erot/Egrav = 1
3
βrot.

Figure 2.4 confirms that βrot for both runs is independent of the core size,

and there is fairly large scatter. The total range of βrot values for observation and

simulation is roughly the same. We find a range of 0.0005 < βrot,obs < 0.2 for the

driven case and 0.006 < βrot,obs < 0.3 for the decaying case. However, overall our

values are a factor of 2 to 4 higher than those found by Goodman et al. Run D has

a lower median βrot,obs ∼ 0.05, while run U has very few low βrot,obs cores and so

has a median βrot,obs ∼ 0.08. When we use the complete gas properties to calculate

Erot/Egrav, we find median values of 0.05 and 0.19 for the D and U cores, respectively.

Jappsen & Klessen (2005) perform gravoturbulent driven simulations of cores and

find a median Erot/Egrav ∼ 0.05, in agreement with our result. The higher βrot,obs

values measured in the cores in the undriven simulation may be a side effect of

reduced turbulent support: Since the U cores are moving more slowly, they may

more easily accrete gas from farther away, which has higher angular momentum 2.

Although a K-S test verifies that the two βrot,obs populations are distinct, neither

is a good match for observation since both have median values that are higher than

observed.

One possible explanation for the factor of 3-5 difference between simulation and

observation is that magnetic fields play a significant role in decreasing core rotation.

A number of recent simulations of isolated rotating magnetized cloud cores have

shown that magnetic braking is an efficient means of outward angular momentum

transport (Hosking & Whitworth 2004; Machida et al. 2004, 2006; Banerjee & Pu-

dritz 2006). The oblate cores formed in the ideal MHD simulation of Li et al. (2004)

show a median βrot,3D similar to ours (Li, private communication), however, all the

cores are supercritical by an order of magnitude.

Another possibility to account for the difference in median β is that observers

typically investigate isolated cores, which are easier to distinguish and analyze but

tend to be less turbulent. However, our study specifically concerns bound cores form-

ing in a turbulent cluster. Using Larson’s laws, we would expect βrot ∝ v2
rot/(GM/R) ∝

2We thank the referee for this comment.
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R/(GM/R) ∝ 1/Σ 'const, where Σ is the cloud column density. However, there is

large scatter and a few examples of clouds with non-constant column density, such

that measurements of βrot could be sensitive to column density differences in various

MCs.

Angular Momentum

There is also a substantial difference between the specific angular momentum

in the two cases as illustrated in Figure 2.5. We plot both the 3D total specific

angular momentum of the cores, which is obtained by directly summing the angular

momentum of the individual cells comprising a clump, and the 2D specific angular

momentum, by totaling the projected momentum along a line of sight. In run D,

the specific angular momentum fits, j2D(R) ∝ R1.1 and j3D(R) ∝ R1.9, bracket

the expected j(R) ∝ R1.5 based upon the linewidth, δv ∝ R1/2, and assumption

of virial balance (Goodman et al. 1993; this argument suggests the same value

for both the 2D and 3D cases). The specific angular momentum fits in run U are

more similar but still a little flat, such that j2D(R) ∝ R1.5 and j3D(R) ∝ R1.1.

Because the decaying cores are less turbulent, they will be inclined to have less

angular momentum variation than their driven counterparts. The cores in run D

overshoot the expected relationship for j3D, while the decaying cores undershoot by

a similar amount. In either case, we expect that the simulated angular momenta

is affected by the absence of braking effects from magnetic fields, which we do not

include. Nonetheless, we find that the measured range of j ∼ 1021− 1022 cm2 s−1 to

be consistent with observational estimates, and we find the 2D angular momentum

estimates to be statistically similar to one another, albeit flatter than the measured

j2D ∝ R1.6±0.2 ( Goodman et al. 1993; see Figure 2.5).

Core Mass Function

Measurements of the core mass function (CMF) show that its shape strongly

resembles the stellar IMF (Lada 2006). The high mass end, in particular, seems to

share a similar power law index. As a key characteristic of star formation, the core

and star mass functions for driven and undriven turbulence have been extensively
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Figure 2.4 The figure shows the rotational parameter, β, as a function of size (R =
√

ab) for the driven (left) and decaying (right) boxes at 1 tff . The crosses give the

2D projected value, while the diamonds give the 3D value. For run D, the median β

values are 0.05 (crosses) and 0.05 (diamonds). For run U, the median β values are

0.08 (crosses), 0.19 (diamonds).
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Figure 2.5 The figure shows the log of the core specific angular momentum as a

function of log size (R =
√

ab) for the driven (left) and decaying (right) boxes at 1

tff . The crosses give the 2D projected value, while the diamonds give the 3D value.

For run D, the slopes have fits of 1.91 ± 0.65 (diamonds), 1.14 ± 0.31 (crosses). For

run U, the slopes have fits of 1.14 ± 0.35 (diamonds), 1.50±0.23 (crosses).
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numerically studied. Ballesteros-Paredes et al. (2006) and Padoan et al. (2007) find

a mass function of the form dN/dlog(m) ∝ m−1.3 for cores in driven hydrodynamic

turbulence, even without the presence of self-gravity. Klessen (2001) finds that

both driven turbulence with 1 ≤ k ≤ 2 and undriven turbulence produce a core

spectrum with a similar slope to that of the measured IMF. A number of isothermal

SPH simulations of decaying turbulence have shown agreement with the observed

IMF despite initial turbulent conditions in which a turbulent velocity spectrum is

initialized on a constant density field and then allowed to decay in the presence of

self-gravity (Klessen & Burkert 2001; Bate et al. 2002; Bonnell et al. 2003; Tilley

& Pudritz 2004; Bonnell et al. 2006). In such calculations, the turbulence does

not reach a steady state and the simulated cloud is not virialized as expected from

observations.

For the purpose of comparison, we plot the CMF for the simulations D and U

at 1 tff in Figure 2.6. The two runs produce 30 and 19 bound cores, respectively.

Unfortunately, the statistics at the high mass end are too small to be able to rule

out either distribution on the basis of agreement with the Salpeter slope. Although

the agreement looks better for the driven cores, we find that the mass distributions

are in fact statistically similar according to a K-S test.

Overall, the simulations have statistically different distributions of angular mo-

mentum, rotational parameter, and velocity dispersion. The decline of turbulent

compressions in the undriven run appears to make some significant changes and

cause fewer new condensations to be formed. As turbulent pressure support is

lost, the contracting gas instead falls onto existing cores resulting in less turbu-

lent, more quickly rotating cores than in the driven case. However, it is not possible

to definitively conclude which approach corresponds more closely with observation,

and agreement with a particular observed region may depend upon cloud properties

such as clustering and the magnetic field strength.
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Figure 2.6 The figure shows the sink (dashed line) and core (solid line) mass distri-

butions for the driven (left) and decaying (right) runs at 1 tff . The straight time has

a slope of -1.3.
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2.4 Protostellar Cores at High Resolution

2.4.1 Overview

In this section, we present our computational results for the evolution of the

protostellar systems contained in a few selected cores using 5 or 6 additional lev-

els of refinement. We accomplish our study by inserting a refinement box around

the core of interest before a sink particle is introduced on level 4 so that cells in-

side the box continue to higher densities and refine according to the Jeans criterion,

while cells in the remainder of the simulation refine only to a maximum level of

4 as before. The lengths of the high-resolution boxes are typically 0.25-0.5 pc de-

pending on the size of the enclosed clump. As a result, the boxes contain a region

∼200-2000 times volumetrically smaller than the simulation domain. The total ini-

tial mass in the boxes ranges from 4-12 M�, which easily encompasses the bound

core and all collapsing regions associated with it. In this way, we can perform a

high-resolution study of selected collapsing cores with realistic initial conditions and

consistent boundary conditions taken from the surrounding lower resolution grids

computationally cheaply and efficiently. In each portion of the box, sink particles

are introduced when the corresponding maximum refinement level is reached. At

high-resolution, each sink particle represents a single “protostellar core.” Thus, we

are able to follow the clump fragmentation at high-resolution, without the need to

re-run the entire calculation at that resolution.

We chose six cores for further study. In cases U1a and U1b, we test for conver-

gence by following the same cores at two different resolutions. In cases D2 and U2,

we choose an early collapsing object that is present in both the driven and decaying

simulations to highlight the differences between the calculations. The cores U1, D2,

and U2 have initial bound masses greater than 2.5 M�. We also study two smaller

driven and undriven cores, D3 and U3. By comparing the cases, we observe the effect

of turbulent support on protostellar system development. The physical properties of

the selected cores are given in Table 5.1.

Table 5.2 gives the three dimensionless quantities relating to the box surrounding



Section 2.4. Protostellar Cores at High Resolution 28

each core: M, αvir, and the self-gravity parameter,

µ ≡ M

c3
s/(G

3/2ρ̄1/2)
, (2.10)

where αvir can then be written as

αvir =
5

6

(
M2

µ2/3

)
. (2.11)

These three parameters characterize the amount of turbulence in the core vicinity,

the degree of self-gravitization of the gas, and the extent to which balance is achieved

between the two. Table 5.2 indicates that all the small boxes are subsonic, and thus,

the force of gravity rather than turbulence dominates the gas around the cores.

Note that when we cease driving in run U, the turbulent cascade continues

and the turbulent decay rate is determined by the Mach number and the domain

size as described by Mac Low (1999). At any given time, the effect of the decay

on the cores forming in the high-resolution subdomain depends upon the amount

of turbulent decay in the large box. The 1D velocity dispersion in Table 5.1 is an

indicator of the change in turbulent energy when the core of interest is collapsing.

2.4.2 Convergence Study

Before embarking on further analysis, it is important to show that the results

at the calculation resolution are suitably converged. In particular, it is necessary

to show not only that there is no artificial fragmentation but that the number of

fragments is constant with increasing resolution. For the convergence study we

consider a box in the decaying turbulence run, U1, which encloses a long filament that

collapses to form a number of small over-dense fragments along its length. We run

this calculation with 9 (U1b) and 10 (U1a) levels of refinement, which corresponds

to a minimum cell size of ∼10 AU and 5 AU, respectively. Figures 2.7, 2.8, and

2.9 show the two simulations at 16 kyr, 23 kyr, and 53 kyr, respectively, after the

formation of the first sink particle. Tables 2.3 and 2.4 give the sink particle masses

and the fragment masses at these times. We define the fragments as discrete cores

of bound gas with density greater than 2× 10−16 g cm−3.
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Table 2.1. Low resolution core properties

U1a/U1b D2 U2 D3 U3

Core Mass (M�)a 10.71 5.05 4.32 1.59 2.80

Lmax (pc) 0.45 0.23 0.19 0.03 0.08

Shape 1:0.28:0.05 1:0.37:0.09 1:0.66:0.26 1:0.69:0.60 1:0.78:0.24

vrms (km/s) 0.42 0.32 0.36 0.33 0.45

nave(105cm−3) 1.44 1.08 1.01 4.06 1.25

αvir 1.5 1.12 1.90 1.06 2.24

βrot 0.052 0.025 0.011 0.028 0.047

tff(104yr) 8.9 10.3 10.7 5.3 5.9

M1D
b 2.4 4.9 3.9 4.9 3.0

aMasses for each case when the sink particle is 0.1 M�.

b M1D is the velocity dispersion of the entire box, which is fixed at 4.9 for the

driven cases.
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We find that both resolutions produce the same number of collapsing fragments

and yield a similar collection of sink particles. Most of the fragment masses for the

two resolutions differ by at most a few percent, while sink particle masses may differ

by 50%. At a particular instant in time, discrepancies between the number of sink

particles in the two runs can occur due to several factors. First, the addition of extra

levels allows the higher resolution simulation to collapse for a longer time without

exceeding the Jeans criterion. Thus, a sink particle ultimately forms in both cases

at the same location but at slightly different times. Another possibility is that a sink

particle forms in both simulations at similar locations, but in one it mergers with

a larger neighbor. A final possibility is that the region that collapses in the higher

resolution becomes thermally supported before a sink is formed. In all these cases

the gas physics can be quite similar but the introduction of sink particle can differ

due to small details. For example, at 16 kyr the low-resolution simulation has formed

sink particles in each filamentary fragment with condensation masses ranging from

1.5×10−2 M�−8×10−2 M� (see Table 2.4), while the higher resolution run has not

reached sufficient density for any sink particles to form. This rather odd filamentary

structure is created and confined by the ram pressure of intersecting shocks. The

smallest sink particles formed in the filament later merge as shown in Figure 2.8

when the gas in the filament streams onto the disk-protostar system.

At later times and for small masses the corresponding sink particle properties

differ the most significantly, particularly at the lower mass end as shown in Table

2.3. Due to the intrinsically chaotic and dynamically unstable nature of three or

more body systems, the evolution of the two calculations begins to diverge at late

times. This is unsurprising because not only do the calculations have different AMR

grid structures, but the particle members of the system are introduced at slightly

different times and initial masses. Despite this, the masses and configuration still

show reasonable agreement at 80 kyr.

2.4.3 Influence of Turbulence on Stellar Properties

Interstellar turbulence undoubtedly has a substantial effect on cloud lifetimes

and core creation, however, its relationship with core fragmentation and evolution is
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less certain. The level of turbulence in cores is partially dependent on how much mass

and energy the envelope exchanges with the surrounding turbulent gas. In turn, the

properties of the parent core influence the rate of protostellar core formation and

accretion. If substantial mass continues to fall onto the clump, as in the case of

global contraction, then external flow patterns will impinge upon on the system

development, increasing the accretion rate and possibly causing fragmentation. If

however, the core accretes at a relatively low level in the manner of Bondi-Hoyle

accretion in a turbulent medium then the core will accrete much less over time

(Krumholz 2006; Krumholz et al. 2005a). Protostars forming in such a core limit to

the Bondi-Hoyle accretion rate as the high density gas is depleted.

In cases D2 and D3 we continue turbulent driving to maintain virial equilibrium.

To avoid directly adding artificial perturbations that may affect the core development

or seed new fragmentation, we do not apply any velocity perturbations to the high-

resolution regions inside the refinement box. Thus, the turbulence cascades into the

highly-refined box from the outside in a self-consistent manner. In cases U2 and U3,

the simulation continues without any turbulent injection.

We find striking differences in the protostellar systems formed in the driven

and decaying cores. The most obvious difference between the D and U runs is the

difference in the number and mass of sink particles formed (Table 2.5). For example,

initially the fragmentation of D2 and U2 is similar temporally and spatially, but U2

eventually forms a slightly larger number of objects particularly at small masses as

the level of turbulence in the two simulations diverges. The small D3 core forms a

small stable binary system at early times, whereas U3, which is also fairly small,

fragments into a number of protostellar members.

Despite the modest number of objects, we can compare the protostellar IMF to

the observed IMF via a K-S test, which is accurate for input sets of four or more data

points. A one-sided K-S test compares a given data set with a specified statistical

distribution, in this case, the single star IMF given by Chabrier (2005). We achieve

a best fit by scaling the masses by an adjustable normalization, ε = m∗/msink, where

msink is the mass of the sink particle. Given that this simulation lacks feedback

effects such as outflows and radiation transfer, the sink particle masses represent an
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upper limit and the scaling factor corresponds to an efficiency factor of ε=0.25-0.75

(Matzner & McKee 2000).

Figure 2.10 shows the scaled cumulative distribution function (CDF) for the runs

D2, U2, and U3, where the CDF of the Chabrier is overlaid for comparison. Although

all three runs have a high confidence level of agreement with the measured IMF, the

normalization values and the shapes of the distributions are quite different. For

example, the smaller stellar population of D2 has fewer low-mass objects and hence

has a smaller efficiency scaling factor of ∼ 0.4 with 67% likelihood of being drawn

from the Chabrier IMF. Conversely, U2+U3 distribution contains collections of low-

mass objects and intermediate mass objects, such that the largest disagreement

occurs in the middle of the two populations. A scaling factor of 1.0 gives the best

agreement of 59%. A scaling factor near unity implies that protostellar mass loss

has a negligible effect on the final mass of the star, contrary to some theoretical

expectations (Shu et al. 1987; Nakano et al. 1995; Matzner & McKee 2000). For the

D2 distribution, the largest disagreement occurs at the higher mass end, indicating

that if the protostars continue to accrete mass and no new protostars are formed, then

it is likely that the high probability of agreement with the IMF will be maintained

even as the scale factor shifts to a lower value. The U2+U3 have a larger scale

factor due to the significant number of low mass objects with accretion halted by

dynamical ejection. These objects will be unlikely to accrete much additional mass,

and so we can assume they have reached their final mass. For the undriven runs, the

largest disagreement occurs in the middle of the distribution, indicating a widening

difference between the sub-stellar fixed-mass ejected objects and those that remain

in the gas reservoir and continue accreting. Further running time will more likely

make the gap wider and agreement worse.

The efficiency scale factor is also dependent upon the normalization we have

chosen. The minimum mass that we are able to resolve in these simulations is pro-

portional to the Jeans mass evaluated at the maximum level of refinement. Because

the Jeans mass is inversely related to the density, normalizing the results to a density

higher than our fiducial value of n = 1100 cm−3 will produce lower mass objects and

shift the IMF peak towards lower mass. This will increase the efficiency factor used
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Table 2.2. Turbulent box properties

D/U at t=0 U1a/U1b D2 U2 D3 U3

M3D 8.37 0.71 0.80 0.72 0.38 0.74

µbox 206.82 19.03 10.74 12.41 2.6 4.59

αvir 1.67 0.06 0.11 0.08 0.06 0.16

Note. — The values for the small boxes are determined

using the box length Lsmall=0.25 pc.

to scale the distribution to the universal IMF.

Studying the time evolution of the two simulations shows the origin of the differ-

ent stellar populations. In simulation D2, the initial collapse and core fragmentation

produces three well separated objects that remain fairly far apart. A few additional

objects form, but they do not undergo large gravitational interactions with the pri-

maries, and so they remain within the core and continue accreting. In contrast, in U2

and U3 the lack of global turbulent support causes mass to fall onto the early formed

protostellar cores resulting in contraction of the clump. This causes all the proto-

stars to gravitate towards the core center. As the protostellar proximity increases,

the accretion disks interact and become gravitationally unstable (see discussion in

§ 4.6). Fragmentation ensues. The stellar systems become increasingly dynamically

unstable with the addition of these small latecomers, which rapidly gravitationally

interact with the larger protostars and are thrown out of the high density reservoir of

gas. Their small envelopes are stripped away, thus truncating the accretion process

and effectively fixing their stellar masses (see Figure 2.11). This truncation process

occurs for approximately half of the objects formed in the undriven simulations (see

discussion of brown dwarfs in § 4.5).
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Table 2.3. Stellar Masses (M�)

∆ ta 23 kyr 53 kyr

Resolution 5 AU 10 AU 5 AU 10 AU

0.834 0.705 1.224 0.925

0.000 0.216 0.000 0.369

0.264 0.262 0.571 0.455

0.171 0.175 0.762 0.768

0.000 0.036 0.106 0.141

· · · · · · 0.061 0.036

· · · · · · 0.128 0.180

aTime estimated from formation of the first

sink particle.

Note. — The subscripts 10 (U1a) and 9

(U1b) represent the number of AMR levels.

The sink particle absence in the second row of

the high-resolution column is due to an early

merger (m < 0.1 M� with the neighbor listed

in the first row.)
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Figure 2.7 The figure shows the log column density of a core in the decaying turbu-

lence simulation U1b (left) and U1a (right) with resolution of 10 AU and 5 AU 16

kyr after the formation of the first sink particle.
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Figure 2.8 The figure shows the log column density of a core in the decaying turbu-

lence simulation U1b (left) and U1a (right) 23 kyr after the formation of the first

sink particle.
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Figure 2.9 The figure shows the log column density of a core in the decaying turbu-

lence simulation U1b (left) and U1a (right) 53 kyr after the formation of the first

sink particle.
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2.4.4 Accretion

There are two main accretion paradigms. In both models, star formation be-

gins with the outside-in formation of gravitationally bound cores and their inside-out

collapse. However, the core accretion model proposes that the main protostellar ac-

cretion phase takes place early on and continues until the entire core mass is accreted

or expelled, after which accretion becomes negligible (Shu et al. 1987; Nakano et al.

1995; Matzner & McKee 2000). Thus, the initial core size and subsequent feedback

effects limit the mass of the protostars. In contrast, the competitive accretion model

proposes that stars begin in a cloud as wandering, accreting 0.1 M� seeds, whose

final mass is determined by the protostar’s location in the clump (Bonnell et al. 1997,

2001). Mass segregation is a common feature of this model, such that the largest

mass objects inhabit the region of highest gravitational potential and the smallest

objects inhabit the less dense gas, usually having been ejected from the center by

gravitational interactions.

In our results, there are two accretion phases. Initially, there is a transient

period of high accretion during which the initial infalling gas accretes onto the newly

formed sink particle and gas is depleted from the cells inside the accretion region.

This phase is model independent and occurs while the newly created sink particle

region reaches pressure equilibrium with the surrounding gas. Generally less than

10% of the accretion occurs during this time. During the second phase, the accretion

rate approaches the Shu model for core accretion,

Ṁ∗ = 0.975c3
s/G, (2.12)

Shu et al. (1987), although in most cases the accretion rate is gradually declining.

This solution is valid until the rarefaction wave reaches the core, i.e., when approx-

imately half of the original core mass has been accreted (McLaughlin & Pudritz

1997; McKee & Tan 2002). Following this phase, the accretion rate is expected to

diminish as the density of the surrounding gas decreases. Our simulations end before

the accretion rate definitively declines.

To illustrate the differences between the protostellar systems, we plot the mass

as a function of time for all sink particles, the instantaneous mass accretion rate for
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the first two formed objects, the time-averaged accretion rate, and the total mass in

sink particles as a function of time. The turbulent core accretion and competitive

accretion models describe the evolution of the stellar population in cases D2 and U2,

respectively. In the former case, objects are mainly formed from core fragmentation

with separations larger than 1000 AU. The average accretion onto the protostars

initially agrees with the Shu model but, modulo fluctuations, diminishes over time

as the core mass depletes (Figure 2.12). Meanwhile, the core envelope accretes

according to the Bondi-Hoyle model of turbulent accretion Krumholz et al. (2006b).

For driven turbulent environments the box Mach number remains sufficiently high

such that the core does not gain a substantial amount of mass during the core

dynamical time and the main accretion phase of the forming protostars will be

limited by this time. However, in the decaying turbulent case loss of turbulent

pressure support potentially causes significant additional mass to accrete onto the

core, resulting in a more constant protostellar accretion rate (Figure 2.12, bottom

row). However, the differences in the accretion rates of the most massive objects are

subtle due to the significant fluctuations.

Perturbations to the accretion disks and clumpiness of the infalling gas cause

fairly large variability in the sink particle accretion rate as illustrated in Figure 2.12.

However, we do not observe that most of the mass is deposited in short intervals

by clumpiness in the disk as noted by Vorobyov & Basu (2006), who model 2D axi-

symmetric disks with magnetic fields. The absence of this effect in our calculations

is most likely due to our Cartesian grid geometry and resolution rather than lack of

magnetic fields (Basu, private communication). The r−φ geometry used by Vorobyov

& Basu (2006) is more suitable for disk treatment and has lower numerical viscosity,

which may suppress small-scale clumpiness.

Due to differences in core accretion, the two cases produce very different stellar

populations. In the driven cases, which form fewer objects, protostars accrete more

smoothly and do not undergo strong dynamical interactions with their neighbors.

However, in the decaying cases collapse pushes the protostars to the core center,

where the large number and close proximity of protostars accreting from the gas

reservoir precipitates the ejection of the smallest members. This can be observed in
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Figure 2.12 (U3) as a precipitous drop off in the accretion rate for individual objects

or as flatlining of the object mass (Figure 2.13, bottom row). Differences in object

number are caused by turbulent support, which prohibits or delays collapse and infall.

High accretion causes fragmentation and drives forming objects to the gravitational

center, where dynamical interaction occurs. This close proximity results in object

ejection and destabilization of the accretion disks, leading to new fragmentation. The

differences in accretion rates and stellar population between the two cases support the

intimate connection between the maintenance of turbulence, protostellar accretion,

and stellar population (Krumholz et al. 2005a). In spite of individual accretion

fluctuations, the total accretion of the objects from the core is dominated by the

largest objects, such that the fraction of the core accreted is relatively smooth over

time as shown by Figure 2.14.

2.4.5 Brown Dwarfs

Brown dwarfs (BD), defined as objects with masses M∗ ≤ 0.08M�, are observed

to comprise ∼10-30 % of all luminous objects in star forming regions (Andersen et al.

2006; Luhman et al. 2007). In the Chabrier (2005) IMF, with which we compare, BDs

comprise ∼20% of the total population. Understanding the population, origins, and

connection between planets and hydrogen-burning stars is essential to formulating

a successful theory of star formation. Observations remain particularly ambiguous

concerning the primary formation mechanism of BDs, but a number of theories

exist. Of these, proposals for BD formation by turbulent fragmentation, ejection, or

disk fragmentation have the most potential for generating BDs in sufficient numbers

(Padoan & Nordlund 2004; Reipurth & Clarke 2001; Whitworth & Stamatellos 2006;

Stamatellos et al. 2007). Simulations provide an important vehicle for testing these

theories, and we discuss the BD population of our simulations in this section.

Our driven turbulence high-resolution cores do not produce any sink particles

with final substellar mass, However, this conclusion is sensitive to the assumed con-

stant efficiency scaling factor. If BDs are formed via the same mechanism as stars,

accrete from a disk, and produce outflows (Luhman et al. 2007) then the same ef-

ficiency factor will likely be valid for both stars and BDs in the simulation. In
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Figure 2.10 The figure shows the cumulative distribution function (solid line) at

t=0.26 Myr for D2 (left), U2+U3 (right), where the dotted line is the Chabrier (2005)

IMF fit. The dashed vertical line represents the point of largest disagreement. The

probability that the data are drawn from the Chabrier IMF is 67% and 59% with

efficiency scale factors of 0.4 and 1.0, respectively.
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Figure 2.11 The figures show the sink particle mass as a function of time for runs D2,

D3, U3, and U2 shown clockwise from top left. Each line style represents a different

particle.
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Figure 2.12 The figures show the instantaneous sink particle accretion rate as a

function of time for runs D2, D3, U3, and U2 shown clockwise from top left. Only

the history of the two first forming particles is shown for clarity.
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Figure 2.13 The figures show the averaged sink particle accretion rate for the first two

sink particles as a function of time for runs D2, D3, U3, and U2 shown clockwise

from top left. The average is taken over 10 consecutive timesteps, and the solid

horizontal line indicates the value of c3
s/G.
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Figure 2.14 The figures show the total mass accreted normalized to the initial bound

core mass as a function of time for runs D2, D3, U3, and U2 shown clockwise from

top left.
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contrast, the decaying turbulence cores form BDs comprising 33% of the number of

objects, where the BDs are primarily created by prematurely truncated accretion.

This result agrees with the competitive accretion paradigm. For example, Bate et al.

(2002) find that ∼44 % of the objects that form in their 50 M� decaying turbulent

cloud simulation qualify as BDs. We note that their calculation is initialized with

uniform density and turbulent velocity field, but the turbulence never achieves a

steady relaxed state. Despite this difference, our decaying turbulence runs form

BDs in a similar manner and proportion.

Ideally, we would like to understand the BD population in various star forming

regions as a function of their general properties. The turbulent fragmentation model

predicts an upper limit on the total mass available for the formation of BDs as a

function of the Mach number and average number density (Padoan & Nordlund

2004). According to their model, the total gas mass available to make BDs from

turbulent compressions is 0.4% of the total gas mass or 3.7 M� as a function of our

simulation Mach number and density. If the SFR per free-fall time for the driven

and decaying runs is respectively 14.3% and 13.6% then the total maximum possible

mass in BD due to turbulent fragmentation as a fraction of the actual mass turned

into stars is 2.8% and 2.9%. For comparison, the fraction of the actual luminous

mass turned into BDs according to the Chabrier IMF is ∼2%. Our high-resolution

protostellar systems have a BD mass fraction of 0.0% and 3.2% for D2 and U2 +

U3, respectively, using the efficiency factor from Figure 2.10. However, the turbulent

fragmentation model gives only the maximum fraction of gas that can be converted

to BDs by turbulent compressions and it does not include possible BD formation

in disks (Goodwin et al. 2007). Fragmentation of disks and dynamical ejection

is responsible for all of the BDs in the decaying simulation. Thus, comparison

between the decaying turbulence models and turbulent fragmentation prediction is

misleading.

The absence of BDs in the driven runs is reasonable if BDs actually form via

turbulent fragmentation. In such a process, small low-mass objects form from small

low-mass cores. Since we have not chosen any particularly small cores for high-

resolution study, we would not expect to find many BDs. Thus, scaling to the
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stellar IMF, which has a peak at ∼ 0.2 M�, requires a small efficiency factor. The

core distribution is also constrained by the turbulent resolution. The minimum

expected core mass is the Bonnor-Ebert mass evaluated at the maximum turbulent

gas density. According to the turbulent fragmentation model, this maximum is set

by the probability density function (PDF) of the gas density. The resolution and

Mach number of our simulation yield a density PDF that falls off at ∼ 1.3× 10−18 g

cm−3 or MBE ' 0.2 M�. The minimum mass estimated from this density agrees with

the minimum sink particle mass at the end of a free-fall time at low-resolution. Since

this mass is well above the maximum BD mass, it also explains the low abundance of

low-mass objects at high-resolution in the driven simulation. Moreover, this suggests

that the driven high-resolution IMF distribution is incomplete at the low-mass end

such that scaling to the actual IMF may be optimistic and result in underestimating

the core efficiency factor.

One observational measure of BDs is given by the ratio of low-mas stars to BDs:

R = N(0.08− 1.0M�)/(N(0.02− 0.08). Measurements of local star-forming regions

give a range of RBD ' 2 − 5 (Andersen et al. 2006). For the driven and decaying

simulations, respectively, we find RBD > 7 and RBD = 3.0, although these values

are clearly sensitive to the statistics of our simulations. These ratios represent lower

limits because we have not included radiative transfer, which has been shown to

suppress fragmentation Krumholz et al. (2007b); Whitehouse & Bate (2006). Given

that BD formation via disk fragmentation dominates in the undriven case, it is

unsurprising that these statistics do not agree well with the turbulent fragmentation

model prediction. Overall, we find that the driven BD mass fraction agrees more

closely with the turbulent fragmentation prediction, whereas the undriven BD mass

fraction agrees better with competitive accretion model.

2.4.6 Disk Stability

Analytically, gravitational disk instability is dictated by the Toomre Q param-

eter, which is given by

Q =
csκ

πGΣ
, (2.13)
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Table 2.4. Core mass (M�)

∆ t 16 kyr 23 kyr 53 kyr

Resolution 5 AU 10 AU 5 AU 10 AU 5 AU 10 AU

0.741 0.758 0.997 0.997 1.907 1.905

0.124 0.124 0.280 0.283 0.827 0.806

0.077 0.077 0.177 0.180 0.136 0.191

0.040 0.037 · · · · · · · · · · · ·
0.035 0.033 · · · · · · · · · · · ·
0.291 0.259 · · · · · · · · · · · ·
· · · · · · · · · · · · 0.106 0.036

Note. — Decaying simulation data. Masses include the mass of

the embedded sink particles. The subscripts 10 (U1a) and 9 (U1b)

represent the number of AMR levels. The minimum density of the

gas is ρ = 2 × 10−16 g cm−3. The ’...’ represent cores that have

merged with others and cannot be individually distinguished.
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Table 2.5. Masses of the protostars (M�)

D2 (M�) U2 (M�) D3 (M�) U3(M�)

1.221 1.811 0.639 0.586

1.047 1.002 0.453 x 0.552

1.049 0.933 · · · 0.348

0.490 x 0.223 · · · x 0.114

x 0.382 x 0.131 · · · 0.048

0.329 0.059 · · · x 0.047

0.281 x 0.034 · · · · · ·
0.207 x 0.030 · · · · · ·
· · · x 0.023 · · · · · ·

3

Note. — The larger core masses, D2

and U2, are reported at 260 kyr, while the

smaller core masses, D3 and U3, are reported

at 130 kyr. The x’s represent particles that

are ejected from the system by dynamical in-

teractions. The time of first sink particle for-

mation after the onset of gravity for each of

the cores is 270, 680, 250, and 660 kyr after

the formation of the first sink particle for D2,

D3, U2, and U3, respectively.
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where κ is the epicyclic frequency, and Σ is the surface density. For values of Q . 1,

the disk becomes unstable to gravitational fragmentation. Spiral arms develop for

low Q values and fragmentation ensues when Q approaches 1 from above. This

fragmentation manifests as a density increase at those locations. The early fragmen-

tation in D2 and U2 generally occurs near the disk perimeters, where it is coldest

(see Figure 2.15). In the simulations, sources of disk instability are due to a combi-

nation of perturbations from clumpy infalling gas, gravitational influence of nearby

bodies (i.e., other sink particles), and from actual collisions between disks. Since the

sink accretion radius is racc = 4∆x, we neglect the innermost 4 cells in the analysis.

We define the disk gas where ρ ≥ 2 × 10−16 g cm−3, which agrees fairly well with

disk boundaries determined visually. In general, we find disk radii between 150-300

AU and surface densities of a few g cm−2, values similar to observed properties of

low-mass disks (Williams & Andrews 2006).

Disk stability and the onset of gravitational instability have been shown to be

correlated with the accretion rate of the disk itself (Bonnell 1994; Whitworth et al.

1995; Hennebelle et al. 2004; Matzner & Levin 2005). Higher disk accretion rates

increase the likelihood of disk instability. This fact agrees with our observation that

more disk fragmentation occurs in simulations U2 and U3, where there is larger

infall onto the clump, in contrast to case D2, where disks remain fairly stable. The

level of disk instability is directly visible in the plots of the sink particle accretion

rates (Figure 2.12); very noisy and irregular accretion corresponds to clumping and

disk disturbance. The simulations where sinks have many close neighbors show the

highest rates of disk instability and episodic accretion. Note that in Figure 2.12 of run

U3 the ejection of a companion substantially reduces the accretion rate fluctuations

of the remaining protostar.

There has been considerable recent discourse on the necessary criteria for re-

solving disks and preventing artificial fragmentation (Nelson 2006; Klein et al. 2007;

Durisen et al. 2007). Since we do find that our disks fragment, this is a topic of

concern. Most recent simulations, including ours, have used the Jeans condition

as defined by Truelove et al. (1997) or Bate & Burkert (1997) to set the minimum

refinement of meshes and particles, respectively, in the disk under investigation.



Section 2.4. Protostellar Cores at High Resolution 51

However, Nelson (2006) argues that this criterion is inadequate and inappropriate

for cylindrical disk geometry. Additional possible sources of error in our calculation

may arise from sink particle gravitational softening, numerical viscosity, and the

cartesian nature of the AMR grid. We address these issues here.

In calculating the gravitational sink particle-particle and sink particle-gas in-

teractions, we use a constant softening length 0.5∆xmax, where ∆xmax is the grid

spacing on the maximum level. This is much smaller than both the disk radius and

the size of the accretion region, so it should have little effect on the behavior of the

disk. In general, we find that disk fragmentation tends to occur at the ends of spiral

arms, well away from the center of the disk (see Figure 2.15).

Nelson (2006) requires two specific criteria for adequate disk resolution. The

first is a Toomre condition,

T ≥ ∆xl

λT

, (2.14)

where T is the Toomre number, ∆xl is the cell spacing on level l, and λT is the

neutral stable wavelength defined by:

λT =
2c2

s

QGΣ
. (2.15)

The above criterion is analogous to the Jeans criterion defined in Truelove et al.:

J ≥ ∆xl

λJ

. (2.16)

For our simulations, a disk radius of 200 AU is covered by 20 or 40 cells, which

is fairly marginal resolution, but we will show it is, in fact, sufficient. We plot the

azimuthally averaged density and Toomre Q parameter (equation 2.13) as a function

of radius in Figure 2.16. Density enhancements are correlated with low Toomre Q

in each refinement case. We also plot the right hand sides of equations (2.14) and

(5.12) as functions of radius in Figure 2.17. In all cases, these quantities are under

the fiducial value of 1/4. The excess resolution in the central disk is due to the

requirement that all cells surrounding a sink particle be refined to the maximum

level in order to encompass the accretion region.
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Figure 2.15 indicates the borders between AMR grids, so some disk regions

within 200 AU become derefined, and ∆xl → ∆xl−1. However, these regions still

satisfy the refinement criteria by a good margin as illustrated by Figure 2.16.

The second criterion formulated by Nelson applies specifically to SPH codes.

It postulates the necessity of resolving the disk scale height at the midplane by

four smoothing lengths. Nelson argues that insufficient resolution of the vertical

structure produces errors in the force balance, thus favoring artificial fragmentation.

If we assume a one-to-one conversion between smoothing lengths and grid cells, we

can apply it to our calculation. Figure 2.17 shows azimuthally averaged quantities

for an accretion disk for ∼2.5, 5, and 10 AU maximum resolution. The lowest

resolution run fails to adequately resolve the disk scale height, but we do not see

extra fragmentation. This may be because Nelson formulated and tested his criteria

for SPH rather than grid-based codes. It is also possible that the one-to-one analog of

smoothing length to ∆x is not the correct conversion. However, most disagreement

between the simulations occurs in the inner regions where the artificial viscosity is

high, potentially suppressing fragmentation. In order to determine the cause of the

discrepancy, a more detailed high-resolution investigation of disks is necessary.

Krumholz et al. (2004) presents a careful study of the accretion algorithm we

use in our sink particle methodology. For a Keplerian disk, ORION agrees well

with analytic predictions except when the radius of the disk is comparable to the

Bondi radius, r ∼ rB = GM/c2
s . However, our simulations have r << rB during the

main accretion phase and should be unaffected. Also of concern is the magnitude

of the numerical viscosity, which has the potential to suppress fragmentation if it

is sufficiently high. Using the definition of α viscosity defined in Krumholz et al.

(2004), we can estimate the magnitude of the viscosity as a function of disk radius:

α ' 78
rB

∆x

( r

∆x

)−3.85

(2.17)

' 0.8M1T
−1
10 ∆x2.85

5 r−3.85
150 , (2.18)

where r150 is the radial distance from the central star in units of 150 AU, M1 is

the stellar mass is units of M�, ∆x5 is the cell size in units of 5 AU, normalized to

the maximum level of refinement, and T10 is the gas temperature in units of 10 K.
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This expression is fairly sensitive to the cell size and disk radius. Due to the large

α value in the inner region of the disk, artificial viscosity is likely to significantly

influence the disk properties within the inner 100 AU. Protostellar disks around low-

mass protostars, which are fairly thin and have a low ionization fraction, have been

measured to have viscosities of α ∼ 0.01 (King et al. 2007; Williams & Andrews

2006).

In the resolution study, we find that all disks form exactly two fragments at the

same radial locations where Q ∼ 1. Convergence of the disk density distribution

and number of fragments is our main concern. The averaged quantities are slightly

different in the three cases, although the general trends are the same. In the lower

resolution case the fragmentation is less pronounced, however, this is because sink

particles are already present at these locations. It is certainly true that the fragments

are not well resolved at the lowest resolution, and we are only marginally resolving

the disks. Serious study of accretion disks requires much higher resolution than we

adopt in this paper and is best studied in cylindrical or polar coordinate geometry

to minimize the effects of numerical viscosity and Cartesian cell imprinting.

Given that observations suggest star-forming cores typically produce 2-3 stars

(Goodwin & Kroupa 2005), the large number of objects produced in the high-

resolution decaying simulations seems somewhat anomalous. However, the issue of

initial multiplicity is not well constrained. The protostellar multiplicity is more diffi-

cult to determine directly than multiplicity among field stars due to the difficulty of

detecting small obscured objects, some of which may have separations below the re-

solvable limit. Systems with more than two bodies are unstable and decay through

gravitational interactions ultimately decreasing the multiplicity of stellar systems

over time. We witness exactly this behavior in the decaying turbulence protostellar

systems, which expel low-mass members.

Nonetheless, it is likely that a few of these small fragments are numerical prod-

ucts, resulting from our EOS. For example, Boss et al. (2000) and Krumholz et al.

(2007b) both find that fragmentation is sensitive to thermal assumptions and the

inclusion of radiative transfer, since heating tends to enhance disk stability. Price &

Bate (2007) show that magnetic fields tend to suppress and delay both fragmenta-
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Figure 2.15 The figure shows the log column density (g cm−2) of an accretion disk

in run D2 with ll levels of refinement. Two fragments have formed at the edges of

the spiral disk structure. The solid white lines denote grid boundaries.

tion and spiral disk structure. It is probable that inclusion of radiative feedback and

magnetic fields would suppress some of the small objects that we find in the undriven

runs. However, the absence of these objects in the driven simulations indicates a

striking difference in the accretion rate, system stability, and fragmentation history

with turbulent feedback.

2.5 Conclusions

In this paper we use turbulent simulations with AMR to illustrate distinctions

between driven and decaying turbulence. Despite identical initial conditions in the
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Figure 2.16 The figure shows azimuthally averaged disk properties as a function of

log radius (AU) for a disk with ∼ 2.5 AU (top), 5.0 AU (middle) and 10.0 AU

(bottom) resolution. The left plots show log ρ for a edge -on view of the disk. Plots

on the right show log Q vs. log r. The central region corresponding to the sink

particle accretion region is excluded from the plots.
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Figure 2.17 The figure shows azimuthally averaged disk properties as a function of

log radius (AU) for a disk with ∼ 2.5 AU (top), 5.0 AU (middle) and 10.0 AU

(bottom) resolution. The first column shows plots of J (dashed line) and T (solid

line) vs. log r, where the horizontal line marks the fiducial value of 0.25. The second

column shows the number of cells in the disk vertical scale height as a function of

log r. The solid line is the required resolution of the vertical scale height according

to the Nelson criterion and the dashed line is our resolution. The central region

corresponding to the sink particle accretion region is excluded from the plots.
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two simulations, we find significant differences between the two cases after one free-

fall time. Our simulations neglect the effect of magnetic fields, which are poorly

observationally constrained and occupy a place of ambiguous but potentially large

importance (Crutcher 1999). Our simulations also lack radiation transfer, instead

relying on the barotropic approximation, which may affect the core fragmentation

and protostellar multiplicity in our results.

We find that the properties of the cores in driven and decaying turbulence

at low-resolution are not sufficiently different to completely dismiss one turbulent

environment. This is in part due to the large scatter in our results. For example, we

find that the cores in the different environments have similar shapes and mass-size

relations. However, we find that cores in the driven simulation have less rotational

energy, which is in better agreement with observations (Goodman et al. 1993; Caselli

et al. 2002). The linewidth-size relation of the cores forming in driven turbulence

is also closer to the observed relation for low-mass regions (e.g., Jijina et al. 1999),

while the linewidth-size relation of cores in the decaying simulation is flatter. We find

that driven turbulence produces a greater number of cores than decaying turbulence

with the potential for new star formation occurring longer than a single dynamical

time. In contrast, the decaying simulation stops forming new condensations before

one global free-fall time.

The largest differences between the two cases are apparent at high-resolution.

We show that our high-resolution simulations are converged and that the resolution

is sufficient to capture core fragmentation, despite being marginal for determining

the detailed properties of disks. We find that the presence or absence of global

virial balance has only a subtle influence on individual accretion rate of the largest

object forming in the core at least for the first few core free-fall times. However,

the protostars forming in a decaying turbulence environment show clear signs of

competitive accretion such that a protostar’s accretion rate is tied to its dynamical

history and and its location in the clump. This supports the results of Krumholz

et al. (2005b) who show that simulations exhibiting competitive accretion do so

because of lack of a source of turbulence.

The loss of turbulent feedback in the decaying run affects the dynamic behav-
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ior of the forming protostars, resulting in significant disk fragmentation, and BD

formation by ejection. This leads to overproduction of BDs in comparison to the

observed IMF (Chabrier 2005). In contrast, the driven simulations form few BDs,

which can be understood in the context of the turbulent fragmentation model for star

formation, which predicts BDs to mainly form from small, highly compressed cores.

Observations of low-mass star forming regions do not find large velocity differences

or significant spatial segregation between BDs and low-mass objects as obtained in

the decaying simulation.

While our simulations of driven and decaying turbulence show some statistically

significant differences, particularly in the production of brown dwarfs and core ro-

tation, the uncertainties are large enough that we are not able to conclude whether

observations favor one or the other. However, in Paper II we use simulated line

profiles to estimate core velocity dispersions and centroid velocities, and we find

that decaying turbulence leads to highly supersonic infall onto protostars, which has

not been observed. Our results thus give some support to the use of driven tur-

bulence for modeling regions of star formation, but a conclusive determination of

which approach is better awaits larger simulations with the inclusion of magnetic

fields, protostellar outflows, and thermal feedback.

Acknowledgements

We thank P.S. Li, M. Krumholz and R. Fisher for helpful discussions and sugges-

tions. Support for this work was provided under the auspices of the US Department

of Energy by Lawrence Livermore National Laboratory under contacts B-542762

(S.S.R.O.) and DE-AC52-07NA27344 (R.I.K.); NASA ATP grant NNG06GH96G

(CFM and RIK); grant AST-0606831 (CFM and RIK); and National Science Foun-

dation under Grant No. PHY05-51164 (CFM and SSRO). Computational resources

were provided by the NSF San Diego Supercomputing Center through NPACI pro-

gram grant UCB267; and the National Energy Research Scientific Computer Center,

which is supported by the Office of Science of the U.S. Department of Energy under

contract number DE-AC03-76SF00098, though ERCAP grant 80325.



59

Chapter 3

The Kinematics of Molecular

Cloud Cores in the Presence of

Driven and Decaying Turbulence:

Comparisons with Observations

Offner, Krumholz, Klein, & McKee, 2008, AJ, 136, 40401

3.1 Introduction

The origin of the stellar initial mass function (IMF) is one of the most impor-

tant problems in astrophysics. Since the discovery of supersonic linewidths in star

forming regions, understanding turbulence has been crucial for developing the theo-

retical framework for molecular cloud (MC) evolution, core formation, and the IMF.

Ongoing debate in this field concerns whether the formation and destruction of MCs

is dynamic and non-equilibrium (e.g., Elmegreen 2000; Hartmann et al. 2001; Dib

et al. 2007) or slow and quasi-equilibrium (Shu et al. 1987; McKee 1999; Krumholz

et al. 2006a; Krumholz & Tan 2007; Nakamura & Li 2007). The former mode would

1The Astronomical Journal, 136, 404-420, July, c©2008. The American Astronomical Society.
All rights reserved.
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be characterized by transient turbulence, dissipating quickly on timescales compa-

rable to the cloud lifetime so that giant MCs are destroyed within ∼ one dynamical

time. The latter case corresponds to regenerated turbulence, perhaps injected by the

formation of the cloud, protostellar outflows, H II regions, external cloud shearing or

supernova blastwaves, that is sufficiently strong to inhibit global gravitational col-

lapse over many dynamical times. As shown by Offner et al. (2008a) and Krumholz

et al. (2005a), the presence or absence of turbulent feedback directly relates to the

physical mechanism of star formation and determines whether stars form by the

formation and collapse of discrete protostellar cores (Padoan & Nordlund 2002; Mc-

Kee & Tan 2002) or competitive accretion (Bonnell et al. 2001). In the turbulent

core model, the cloud remains near virial equilibrium on large scales and collapse

occurs only locally in cores that are created and then mass-limited by the initial

turbulent compressions. In the competitive accretion model, turbulence generates

the initial overdensities, but without turbulent support, the cores are wandering ac-

creting seeds, competing for gas from the cloud, limited only by the size of the MC

as a whole.

There have been a number of recent observational papers investigating starless

and protostellar core velocity dispersions, envelopes, and relative motions (André

et al. 2007; Kirk et al. 2007; Muench et al. 2007; Rosolowsky et al. 2008; Walsh

et al. 2004), quantities that provide important clues about the core lifetimes and

evolution, and about the turbulent state of the natal MC. All of these results, which

include observations of a range of star forming regions in different tracers, indicate

that observed low-mass cores have approximately sonic central velocity dispersions,

at most transonic velocity dispersions in their surrounding envelopes, and relative

motions that are slower than the virial velocity of the parent environment. Such

results potentially contradict core properties measured in simulations in collapsing

clusters exhibiting competitive accretion (Ayliffe et al. 2007; Klessen et al. 2005;

Tilley & Pudritz 2004).

In this paper we analyze the simulations described in Offner et al. (2008a),

which follow the evolution of an isothermal turbulent molecular cloud with and

without continuous injection of energy to drive turbulent motions. These simula-
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tions use the adaptive mesh refinement (AMR) code ORION (Truelove et al. 1998;

Klein 1999). The goal of our present work is to explore differences between cores

forming in these two environments and to provide predictions of their properties for

observational comparison. For this purpose, we simulate observations of our cores

using dust continuum and molecular lines, with realistic telescope resolutions. Un-

like earlier comparisons of isothermal self-gravitating simulations with observations

(Ayliffe et al. 2007; Klessen et al. 2005; Ballesteros-Paredes et al. 2003), we perform

more detailed radiative post-processing in order to simulate more accurately syn-

thetic observations of our data. We also compare these observational measures for

both driven and decaying turbulence, which has not previously been investigated.

Keto & Field (2005) obtain post-processed simulated line profiles of several common

tracers modeled with a non-LTE radiative transfer code and find good agreement

with observed isolated cores. However, their initial conditions are simple 1D non-

turbulent hydrostatic models and they halt the calculations when the central cores

velocity exceeds the sound speed. Further, we report core-to-core centroid velocity

dispersions of the simulated cores, which has not previously been studied in turbulent

simulations. Work by Padoan et al. (2001) comparing observed large-scale gas mo-

tions with 1283 fixed-grid isothermal, non-self-gravitating, MHD simulations found

good agreement with the gas centroid velocity dispersion-column density relation.

In our higher resolution simulations, we instead focus on the smaller physical scales

of self-gravitating cores and their observed properties, and we neglect the effects of

magnetic fields.

In section 2, we describe our simulations in detail. Section 3 contains the meth-

ods of data analysis we use to simulate observations of our AMR data. In section

4, we present our results on the central core dispersions, relative motions, and dis-

persions of the surrounding core envelopes. In section 5 we present quantitative

comparisons with observational data. Finally, section 6 contains our conclusions.
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3.2 Simulation Parameters

As described in Offner et al. (2008a), our two simulations are periodic boxes

containing an isothermal, non-magnetized gas that is initially not self-gravitating.

We first drive turbulent motions in the gas for two box crossing times, until the

turbulence reaches statistical equilibrium, i.e., the power spectrum and probability

density function shapes are constant in time. We adopt a 1D Mach number of 4.9

(3D Mach number of 8.5). At the time gravity is turned on, which we label t=0, our

two simulations are identical. In one simulation energy injection is halted and the

turbulence gradually decays, while in the other turbulent driving is maintained so

that the cloud remains in approximate virial equilibrium. The initial virial parameter

is defined by
5σ2

1DR

GM
= αvir ' 1.67, (3.1)

where σ1D is the velocity dispersion, M is the cloud mass, and R = L/2 is the cloud

radius. We use periodic boundary conditions and 4 levels of refinement, which corre-

sponds to an effective 20483 base grid for an equal-resolution, fixed-grid calculation.

Isothermal self-gravitating gas is scale free, so we give the key cloud properties

as a function of fiducial values for the number density of hydrogen nuclei, n̄H, and gas

temperature, T . It is then easy to scale the simulation results to the astrophysical

region of interest. For the adopted values of the virial parameter and Mach number,

the box length, mass, and 1-D velocity dispersion are given by

L = 2.9 T1
1/2n̄

−1/2
H,3 pc , (3.2)

M = 865 T1
3/2n̄

−1/2
H,3 M� , (3.3)

σ1D = 0.9 T1
1/2 km s−1 , (3.4)

tff = 1.37 n̄
−1/2
H,3 Myr , (3.5)

where we have also listed the free-fall time for the gas in the box for completeness.

These equations are normalized to a temperature T1 = T/10 K and average

hydrogen nuclei number density n̄H,3 = n̄H/(1×103 cm−3). For the remainder of this

paper, all results will be given assuming the fiducial scaling values of n̄H = 1.1× 103

cm−3 and T = 10 K (Perseus) or n̄H = 2.0× 104 cm−3 and T = 20 K (ρ Ophiuchus;
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see §5) and assuming a mean particle mass of µ=2.33mH. These conditions place ρ

Ophiuchus slightly above the observed linewidth-size relation (Solomon et al. 1987;

Heyer & Brunt 2004):

σ1D = 0.5

(
L

1.0pc

)0.5

km s−1, (3.6)

where L is the cloud length (we assume that Perseus lies on this relation–see §3.5).

Note that this relation differs somewhat from the relation given by Heyer &

Brunt (2004) since the length scale determined from a Principal Component Analysis

is smaller than the actual size of the region being sampled (see McKee & Ostriker

2007). These parameters may be adjusted to different conditions using equations

(3.2)-(3.5). However, once we simulate an observation of the data for a given tracer,

the scaling is fixed. Using these units, the minimum cell size is ∼ 90 AU and 280

AU for ρ Ophiuchus and Perseus, respectively.

In the simulations, we introduce sink particles in collapsing regions that violate

the Jeans condition (Truelove et al. 1997) at the finest AMR level (Krumholz et al.

2004), where we adopt a Jeans number of J = 0.25. Cores that contain sink particles

are analogous to observed protostellar cores, which contain a central source, while

cores without sink particles can be considered prestellar. This distinction is an

important one in some cases and we discuss some differences in the two simulations

in §3.4. Note that due to our resolution and neglect of protostellar outflows, the sink

particles represent a mass upper limit for any potentially forming protostar.

3.3 Analysis

Since our goal in this paper is to contrast the simulations and compare them

with observations, we must attempt to replicate an observer’s view of our simula-

tion. Observations of core kinematics, such as those of André et al. (2007, henceforth

A07), Kirk et al. (2007, henceforth K07), and Rosolowsky et al. (2008, henceforth

R08), generally trace the gas mass using dust continuum data and obtain velocity in-

formation by observing the same region in one or more molecular tracers. We process

our simulations using a rough approximation of these techniques as follows. First,

we select a fiducial cloud distance of either 125 pc, corresponding to the distance
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to the Ophiuchus MC, or 260 pc for comparisons with the Perseus MC. Second, we

select an appropriate telescope resolution of 26” or 31” FWHM, corresponding to

0.02 pc and 0.04 pc at our adopted distances, and approximate the telescope beam as

Gaussian in shape. We perform all line fits assuming 0.047 km s−1 velocity resolution

per channel. Increasing the velocity resolution further has little effect on the line

fits. For simplicity we adopt the same resolution for observations in dust continuum

and in all molecular tracers. Our fiducial resolution is typical of observations of core

kinematics (e.g., A07, K07, R08).

For the dust continuum observations, since our gas and dust are isothermal and

the simulation domain is everywhere optically thin at typical observing wavelengths

of ∼ 1 mm, the dust intensity emerging from a given pixel is simply proportional

to the column density in that pixel. We therefore define a dust continuum map by

computing the column density and convolving the resulting map with the beam. To

avoid introducing unnecessary and artificial complications, we neglect observational

uncertainties in the conversion from an observed dust continuum intensity to a col-

umn density, and assume that the column density can be reconstructed accurately

except for beam smearing effects. We identify cores by finding the local maxima di-

rectly from the column density data. In the analysis, we consider only local maxima

with peak columns greater than 0.1 of the global maximum column of the smeared

data. This cutoff corresponds to ∼ twice the mean smeared column density.

To model molecular line observations, we choose three representative lines, the

J = 2 → 1 transition of C18O, J = 1 → 0 transition of N2H
+, and the NH3(1, 1)

transition, which have critical densities of 4.7×103 cm−3, 6.2×104 cm−3, and 1.9×103

cm−3, respectively. (For this calculation and all the others presented in this paper,

we use molecular data taken from the Leiden Atomic and Molecular Database2,

Schöier et al. 2005). These lines are often used in observing core kinematics because

they span a range of densities and, with the exception of C18O along the densest

sightlines, are generally optically thin in low-mass star-forming regions. We discuss

the issue of optical depths in more detail in § 3.5.2.

We generate a position-position-velocity (PPV) data cube from our simula-

2See http://www.strw.leidenuniv.nl/∼moldata
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tions in each of these lines using a two step procedure, which combines elements of

Krumholz et al. (2007a) and Krumholz et al. (2007b). The first step is to compute

the emissivity as a function of density. Since, as we shall see, the density-dependence

of the molecular emission has important consequences, we cannot assume that these

species are in local thermodynamic equilibrium (LTE). Instead, we assume that the

gas is in statistical equilibrium, that it is optically thin, and that radiative pumping

by line photons is negligible. Note that the advection time of the gas is large com-

pared to the molecular collisional and radiative time scales, which are on the order

of a few years for the mean density of our simulations. Thus, the gas reaches statis-

tical equilibrium essentially instantaneously relative to the gas motion. Collisional

excitation dominates over radiative excitation or de-excitation by line photons along

lines of sight where the density is above the transition critical density. Since we are

particularly interested in the high density regions of the cores, we need not consider

radiative pumping in our analysis. However, we do include radiative excitation and

de-excitation due to the cosmic microwave background, since this can be significant

for lines at very low frequencies such as NH3(1, 1).

For a molecule like C18O with no hyperfine structure, under these approxima-

tions the fraction fi of molecules of a given species in bound state i is given by the

equations of statistical equilibrium

∑
j

(nH2qji + Aji + BjiICMB)fj =

[∑
k

(nH2qik + Aik + BikICMB)

]
fi∑

i

fi = 1, (3.7)

where nH2 is the molecular hydrogen number density, qij is the collision rate for tran-

sitions from state i to state j, A and B are the Einstein coefficients for this transition,

and ICMB is the intensity of the cosmic microwave background radiation field (which

is simply the Planck function for a 2.73 K blackbody) evaluated at the transition

frequency. In this expression we adopt the convention that the summations run over

all bound states, the spontaneous emission coefficient Aij = 0 for i ≤ j, that Bij is

the stimulated emission coefficient for i > j, the absorption coefficient for i < j, and

is zero for i = j, and that qij = 0 for i = j. For molecules with hyperfine structure,
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we show in Appendix 3.7 that with some additional approximations equation (3.7)

continues to hold provided that the rate coefficients qij, Aij, and Bij are understood

as statistically-weighted sums over all the hyperfine sublevels of states i and j.

For molecules without hyperfine structure, the net emission minus absorption

of the background CMB produced by a parcel of gas along the line of sight is then

given by

jij − χijICMB =
hνij

4π
XnH × [fi(Aij + BijICMB)− fjBjiICMB], (3.8)

where χij is the extinction of the CMB due to resonant absorption, νij is the tran-

sition frequency, X is the abundance of the species in question relative to hydrogen

nuclei, and nH is the number density of hydrogen nuclei. Physically, this quantity

represents the net radiation intensity added by transitioning molecules over and

above what one would see at that frequency due to the CMB alone, under the as-

sumption that the line is sufficiently thin that the CMB dominates the intensity at

that frequency. It is the intensity one will observe in a line after subtracting off the

continuum. In the case of a molecule with hyperfine structure, under the standard

assumption that the hyperfine sublevels are populated in proportion to their statis-

tical weight (see Appendix 3.7), the intensity produced by a single transition from

level i, hyperfine sublevel α to level j, hyperfine sublevel β is given by

jiαjβ − χiαjβICMB =
hνiαjβ

4π
XnH[

fi
giα

gi

(Aiαjβ + BiαjβICMB)− gjβ

gj

fjBjβiαICMB

]
, (3.9)

where giα is the statistical weight of hyperfine sublevel α, gi =
∑

α gi is the summed

statistical weight of all the hyperfine sublevels of state i, and the combination of

subscripts iαjβ indicates the frequency or radiative coefficient for transitions from

level i, hyperfine sublevel α to level j, hyperfine sublevel β. If one neglects the very

small differences in frequency between the different hyperfine transitions (i.e., one

takes νiαjβ ≈ νij independent of α and β) and sums equation (3.9) over hyperfine

substates α and β, then it immediately reduces to equation (3.8) provided that the

rate coefficients are understood to be statistically-weighted sums of the individual

hyperfine transition coefficients (per equations 3.20 - 3.22). Thus equation (3.8) gives
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the total intensity summed over all hyperfine components. In either the presence

or absence of hyperfine splitting, to compute the intensity from our simulations, we

solve the system of equations (3.7)-(3.7) for our fiducial temperature T for a wide

range of molecular densities nH2 and tabulate the quantities (jij − χijICMB)/X or

(jiαjβ − χiαjβICMB)/X as a function of nH2 .

The second step to generate the PPV cube from the simulation data is to com-

pute the emergent intensity in each pixel in each velocity channel using our tabulated

net emission function. The specific emissivity minus absorption of the gas at a fre-

quency ν is (jij−χijICMB)φ(ν) or (jiαjβ−χiαjβICMB)φ(ν), in the absence or presence

of hyperfine splitting, where φ(ν) is the line shape function. To determine φ(ν), we

assume that the molecules in each cell have a Maxwellian velocity distribution with

dispersion σv =
√

kBT/m, where m is the mass of the emitting molecule. For this

velocity distribution, the line shape function for a fluid with bulk velocity v is

φ(vobs; v) =
1√
2πσ2

ν

exp

[
−(v − vobs)

2

2σ2
ν

]
, (3.10)

where an observation at velocity vobs is understood to mean an observation at fre-

quency ν = (1−vobs/c)νij and where σν = (σv/c)νij. For optically thin emission with

no hyperfine structure at an observed velocity vobs, a cell of length ∆x contributes

a specific intensity above the continuum of

Iν = (jij − χijICMB)∆xφ(vobs; v), (3.11)

where jij and χij are functions of the cell density nH and φ(vobs; v) is a function

of the cell velocity v. The intensity averaged over a velocity channel that covers

velocities in the range v0 ≤ vobs ≤ v1 is

〈Iν〉chan = (jij − χijICMB)
c∆x

4(v1 − v0)νij

×
[
erf

(
v1 − v√

2σv

)
− erf

(
v0 − v√

2σv

)]
. (3.12)

We compute the channel-averaged specific intensity along each line of sight by sum-

ming 〈Iν〉chan over all the cells, each with its own velocity v, along the line of sight.

The final step in constructing our PPV data cube is that we take the summed in-

tensity computed in this way and smear each velocity channel using our Gaussian

beam.
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In the case of molecules with hyperfine structure, the equations are identical

except that the subscripts ij are replaced by iαjβ, and we note that, since the

hyperfine components are closely spaced in frequency, multiple components may

contribute significant intensity at the same frequency. However, in the observations

to which we wish to compare our simulations, kinematic information is generally

obtained by fitting one or more well-separated individual hyperfine components (e.g.,

A07, K07, although see R08, who use a more complex procedure). Thus, in practice

it is generally not necessary for our purposes to consider more than a single hyperfine

component. For optically thin emission in hyperfine components with no significant

line overlap, this means that the procedures for molecules with and without hyperfine

splitting are the same.

Our procedure determines the emission only up to the unknown abundance X,

which in reality will depend on the emitting species and on the density and tempera-

ture, and probably also the thermal and density history, of a given fluid element. For

example, observations show that in the densest cold regions CO and its isotopomers

will be depleted, while the abundance of N2H
+ stays roughly constant (Tafalla et al.

2004a,b). In order to approximate this effect, we adopt a simple depletion model for

each of the chemical species that we simulate. For C18O, we assume an abundance of

X = 10−7 molecules per H2 molecule with depletion occurring at nH2 = 5×104 cm−3

(Tafalla et al. 2004a). For N2H
+, we adopt X = 10−10 with depletion at nH2 = 5×107

cm−3 (K07; Tafalla et al. 2002). Although depletion in nitrogenous species is not

generally observed, it is assumed that N2 begins to disappear at number densities

nH2 > 106 cm−3 (Walmsley et al. 2004). For the NH3 measurements we compare to

in Perseus, we use X = 10−8 (Rosolowsky, private communication) with assumed

depletion at the same density as N2H
+.

We use these procedures to produce dust continuum / column density maps

and PPV cubes for each of our three molecular lines. To increase our statistics,

we generate data sets for each cardinal direction at t = tff , and we treat the three

orientations as independent observations. Figure 3.1 shows a dust continuum map

in one particular orientation.
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3.4 Results

In the decaying simulation, at 1tff we identify a total of 109 cores, 54 of which

can be considered protostellar due to the presence of a sink particle within 0.1 pc

of the core center. In the driven simulation, we find 214 cores, 92 of which are

protostellar. A large central point mass can have a significant effect on the core

gas motion, so we separate out the ‘starless’ cores for comparison. The relative

number of starless cores to protostellar cores varies from star-forming cloud to cloud

depending upon the advancement of star formation in the region. The ratios of

prestellar to protostellar cores that we find in our simulations are similar to the

ratios observed in Perseus and Ophiuchus (Young et al. 2006; Enoch et al. 2006). In

these simulations, the larger number of cores in the driven run is significant because

the ongoing turbulence creates more new condensations, which also collapse more

slowly.

For the sake of clarity, we will refer to the centroid velocities of the cores as

the “first moments” and the velocity dispersions through the core centers as the

“second moments.” Thus, in the following sections we will describe the measured

distributions of the first and second moments and report the dispersion of the first

moments (i.e., the core-to-core velocity dispersion). We define transonic velocities

as those falling in the range cs ≤ σ ≤ 2cs, while supersonic dispersions have σ > 2cs.

3.4.1 Central Velocity Dispersions

In this section, we investigate the distribution of second moments (central non-

thermal velocity dispersions through the core centers) in N2H
+, a measure that is

useful for determining the level of turbulence and infall motion within the core. The

total dispersion along the line of sight is given by

σLOS =
√

σ2
NT + σ2

T, (3.13)

where σT =
√

kBT/m, and σNT is the non-thermal component that we discuss here.

We compute σLOS in the simulations by fitting a Gaussian to the spectrum

through the core center and then deriving the second moment, σNT, from equation
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Figure 3.1 The images show the decaying (left) and driven (right) log column den-

sities (g cm−2) ‘observed’ at a distance of 260 pc with beam size of 31”.

Table 3.1. Central velocity dispersion median and mean for the two environments

and core types at 1.0tff in N2H
+ normalized to the conditions in Perseus.

Decaying Driven

All Prestellar Protostellar All Prestellar Protostellar

Ncores 109 55 54 214 122 92

Median σNT/cs 1.0 0.6 2.9 1.1 0.9 2.1

Mean σNT/cs 2.2 0.6 3.8 1.8 1.2 2.7
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(3.14). Table 3.1 gives the median and means of σNT/cs. We plot the total distribu-

tion in Figure 3.2 and the prestellar and protostellar distributions in Figures 3.3 and

3.4, respectively. The core populations appear fairly similar in the two simulations,

although there is evidence of the elevated turbulence in the driven simulation. Since

the cores are created by turbulent compressions in both environments, at early times

they should have similar second moments. However, at late times, as the cores col-

lapse and form protostars the distributions are more dissimilar. Indeed, from Figure

3.4 we can see that the protostellar distributions are much broader and less peaked

than the prestellar ones. The decaying protostellar core population has almost twice

as many cores in the tail (σNT > 4cs) of the distribution, while the protostellar driven

population is dominated by cores with σNT < 4cs.

To better characterize the differences between the two simulations, we perform

a Kolmogorov-Smirnov (K-S) test comparing each of the core distributions. The K-S

statistic gives 1 minus the confidence level at which the null hypothesis that the two

samples are drawn from the same underlying distribution can be ruled out, e.g., a

K-S statistic of 0.01 means that we can reject the hypothesis that the two samples

were drawn from the same distribution at the 99% confidence level. We find that the

net driven and decaying velocity dispersion populations have a K-S statistic of 18%,

meaning that we can rule out the hypothesis that they were drawn from the same

population only with 82% confidence. Individually, there is large disagreement in

both the protostellar populations (4× 10−2%) and prestellar core populations (2%).

The difference between the protostellar populations in the two simulations is

partially associated with the mass differences between the sink particles: The de-

caying simulation has a median sink mass that is approximately twice that of the

driven simulation such that it has correspondingly larger accretion rates that are

associated with higher velocity dispersions.

3.4.2 Core Envelopes and Surroundings

The velocity dispersions of the gas surrounding the central column density max-

ima yield information about the relative motion between core and envelope, and may

also reveal the presence of shocks or strong infall that could limit core boundaries.
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Figure 3.2 Fraction f of all cores binned as a function of second moments (non-

thermal velocity dispersion), σNT, for a simulated observation of Perseus using N2H
+.

The distribution on the left shows the cores in the decaying turbulence enviornment,

while the distribution on the right gives the cores in the driven turbulence enviorn-

ment.

Typically, observers find only small differences in velocity between the core and the

surrounding gas envelope, which rules out dynamical pictures of core accretion in

which protostars may strongly gravitationally interact with their neighbors (K07).

In addition, although shocks are postulated to be the origin of the original density

compression, close observations have not revealed strong confining shocks surround-

ing the cores. Generally, our simulations produce prestellar cores that agree with

the expectations from observations. However, the decaying protostellar cores exhibit

supersonic internal velocities that are not observed in the comparison star-forming

regions.

In order to compare the two environments observed with three common tracers,

C18O, N2H
+, and NH3, we calculate the velocity dispersion through each pixel along

the line of sight. Figures 3.5 and 3.6 show the velocity dispersion of each pixel in the
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Figure 3.3 Fraction f of starless cores binned as a function of second moments (non-

thermal velocity dispersion), σNT, for a simulated observation of Perseus using N2H
+.

The distribution on the left shows those cores in the decaying turbulence enviorn-

ment, while the distribution on the right gives the cores in the driven turbulence

enviornment.
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Figure 3.4 Fraction f of protostellar cores binned as a function of second moments

(non-thermal velocity dispersion), σNT, for a simulated observation of Perseus using

N2H
+. The distribution on the left shows the cores in the decaying turbulence env-

iornment, while the distribution on the right gives the cores in the driven turbulence

enviornment.

vicinity of a single prestellar and protostellar core for decaying turbulence, which

represent typical examples of each type from our sample, overlaid with contours

of integrated intensity. The large number of cores in our sample makes comparing

the populations by eye on an individual basis difficult. In order to consolidate the

data sets for each environment, we bin the pixels by radial distance from the core

center. We define 20 logarithmic bins that range from 0.005 pc to 0.1 pc in projected

distance from the core center and then average together the velocity dispersions of

all pixels that fall into a given bin, including all prestellar or protostellar cores in

each case. The result is a single averaged core for each tracer and environment. We

have plotted this averaged velocity dispersion as a function of distance from core

center in Figures 3.7 and 3.8 for starless and protostellar cores, respectively.

There are several interesting points that may be noted from these plots. First,
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gas sampled by low density tracers (e.g., C18O) around prestellar cores has a higher

velocity dispersion than that sampled by higher density tracers. This is reasonable

given that the lower-density gas is further from the core center and generally more

turbulent. Before collapse ensues, the cores have typically not developed strong high

density peaks as is evident in Figure 3.5. This difference between lower and higher

density tracers has been frequently exploited observationally to distinguish between

the dense core and surrounding envelope (e.g., K07; Walsh et al. 2004). Second,

Figure 3.7 shows that the starless cores forming in the driven simulation tend to have

a higher average velocity dispersion than those in the decaying simulation. This is

mainly apparent in the tracer C18O, which traces the more turbulent core envelope.

Most importantly, the average prestellar velocity dispersion for both cases and for

all tracers are approximately sonic. Even the lowest density tracer, C18O, remains,

on average, below 2cs for the range of column densities in the core neighborhood.

Finally, we note that there is only a small increase in the dispersion with increasing

radius. This is consistent with observations by Barranco & Goodman (1998) and

Goodman et al. (1998) who find that the velocity dispersion of the cores on the scale

of ∼ 0.1 pc is approximately constant, with a small increase near the edge of this

region of “coherence.” The magnitude of the dispersion suggests that starless cores

forming in a turbulent medium are not strongly confined by shocks in the range of

densities that are traced by observers.

In contrast, some of these conclusions do not hold for protostellar cores when

strong infall is evident. As shown in Figure 3.8, protostellar cores exhibit significantly

higher average velocity dispersions than the prestellar counterparts. The tracers of

the protostellar cores behave differently as well. Due to strong infall predominantly

in the densest gas, the higher density tracers, N2H
+ and NH3, show higher veloc-

ity dispersions than C18O, which indicates that the lower density envelope remains

transonic.

There is also a clear difference between the protostellar cores in the two environ-

ments. Those cores in the driven environment have transonic to slightly supersonic

velocity dispersions in all tracers that do not vary significantly with distance from

the core center, which is consistent with the coherent core structure observed. This
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indicates that the cores still have residual turbulent pressure support at a global

free-fall time and collapse more slowly. The protostellar cores in the decaying tur-

bulence environment, lacking this support, have shorter lifetimes and proceed more

quickly to collapse and develop much higher, supersonic, central velocity dispersions

in N2H
+ and NH3 as the cloud gas collapses. However, at large radii the velocity

dispersion of the protostellar cores in the decaying enviroment matches the velocity

dispersion of cores in the driven environment. A similar time-dependent trend is

obtained in decaying simulations by Ayliffe et al. (2007).

In summary, prestellar cores forming in driven turbulence have average disper-

sions of <∼ 1.5cs in all tracers, and this dispersion is either flat or slowly decreas-

ing with increasing radius. In contrast, cores in decaying turbulence show small

(σNT < 1.0cs), flat dispersions for prestellar cores, but large and radially decreasing

dispersions for protostellar cores. This is most likely due to infall of unbound gas

from large distances at late times, which is a signature of competitive accretion. We

do not observe this in the driven run because the cloud gas dispersion is too high for

Bondi-Hoyle accretion to be efficient over large distances (Krumholz et al. 2006b).

The dispersions we obtain for the cores and their surrounding envelopes are

somewhat dissimilar to those obtained by Klessen et al. (2005) in SPH simulations.

As we do, Klessen et al. investigate the velocity dispersions of cores forming in an

isothermal, large-scale driven turbulent environment. In their study, they derive

clump properties when only 5% of the mass is in cores or at ∼ 0.4tff , a much earlier

time than we use. However, even for prestellar cores with driving, they frequently

find strong supersonic shocks with σLOS ∼ 3− 5cs bounding the cores, which is thus

far not supported by observations. In lieu of a simulated observation, they use a

column density cutoff to make the dispersion estimates. We find that we obtain

higher velocity dispersions calculating the velocity dispersion directly as Klessen et

al. do rather than fitting the line profile in the manner of observers. The reason for

the difference is that in some cases the spectra resemble a fairly narrow peak, which

is well fit by a Gaussian, surrounded by a much broader base around the 10% level.

The magnitude of this extra spread is reduced substantially at the higher densities

as traced by N2H
+, and it is likely neglected in the fits performed by observers due
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Figure 3.5 The upper plot gives average velocity dispersion versus radius for a de-

caying starless core at 1tff . The images below show a simulated observation in C18O

(left) and N2H
+ (right). Contours indicate integrated intensity where each contour

is a 10% linear change from the peak specific intensity in that tracer. The gray scale

shows velocity dispersion, σNT/cs, and the circle indicates the FWHM beam size.
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to the inherent low-level noise in the actual spectra. Another possibility for the

difference is the difficulties of SPH in rendering shocks and instabilities, particularly

shear flow instabilities (Agertz et al. 2007), that are likely to be present in any

compressible turbulent simulation and may seriously affect accuracy. However, the

extent that this may contribute to the high dispersions found by Klessen et al. is

unclear.

3.4.3 Relative Motions

Observers frequently evaluate an intensity-weighted mean velocity, or first mo-

ment, along the line of sight through the core center. While the second moments are

indicative of infall motions, the first moments represent the net core advection. The

dispersion of the first moments indicates how much the cores move relative to one

another. Observations find that the dispersion of first moments is generally smaller

than the velocity dispersion of gas that is not in cores, although how much so varies

from region to region. For example, A07 conclude that the first moment dispersion

is sub-virial by a factor of ∼ 4 in ρ Ophiuchus. K07 find that first moment dispersion

of starless cores in Perseus is sub-virial by a factor of ∼ 2, which does not rule out

virialization.

In order to get an unbiased distribution for comparison, it is necessary to sub-

tract out any large gradients in the sample of first moments. Thus, for each region

we fit V = V0 + ∇V · x as a function of position, x. Generally, this turns out to

be a fairly small correction, but the net effect is to decrease the dispersion of first

moments relative to the gas.

We plot the distribution of first moments for all cores in both environments

in Figure 3.9, and we plot the distributions for prestellar and protostellar cores

separately in Figure 3.10. In these, we normalize to the “measured” gas dispersion

and correct for the velocity gradient in the box. The dashed line is a Gaussian with

the same dispersion as the core distribution. For reference, we also plot a Gaussian

with the gas dispersion. Note that in the driven simulation the dispersion inferred

from virial arguments and the time-dependent gas dispersion are the same, because

by definition we fix the total kinetic energy to maintain virial balance. However, for
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Figure 3.6 The upper plot gives average velocity dispersion versus radius for a decay-

ing protostellar core at 1tff . The images below show a simulated observation in C18O

(left) and N2H
+ (right). Contours indicate integrated intensity where each contour

is a 10% linear change from the peak specific intensity in that tracer. The gray scale

shows velocity dispersion, σNT/cs, and the circle indicates the FWHM beam size.
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Figure 3.7 The figures show the averaged dispersion of the prestellar cores binned

over distance from the central core, where D denotes driven and U denotes undriven

turbulence.

the decaying simulation, the time-dependent gas dispersion is lower than would be

derived from a virial argument using the total gas mass and cloud size.

As before, we use K-S tests to characterize similarity in the populations, which

we report in Table 3.2. A K-S test indicates that driven and decaying distributions of

the net first moments agree with 56% confidence, while the prestellar and protostellar

core first moments agree with 40% and 13% confidence. This is significant enough to

imply that the early core motions are not widely different in the two environments,

with the largest difference occurring between the protostellar first moments. Com-

paring these distributions with a Gaussian dispersion at the gas dispersion yields

good agreement for the distributions of the prestellar driven cores (54% confidence)

and protostellar decaying cores (56%), but low agreement for the other distributions.

In general, low agreement may be because the first moment distributions, although

having a similar dispersion to the gas in some cases, are not well represented by a

Gaussian distribution.
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Figure 3.8 The figures show the averaged dispersion of only the protostellar cores

binned over distance from the central core, where D denotes driven and U denotes

undriven turbulence.
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In Table 3.3, we list the first moment dispersions, both corrected and uncor-

rected for large linear gradients. We find that the corrected net core dispersion for

the driven and decaying cores are both sub-virial relative to the gas dispersion. Pre-

vious simulations have shown that the dispersion of first moments becomes sub-virial

towards higher gas densities (Padoan et al. 2001), so the result is not unexpected.

One interesting difference between the simulations is that the decaying protostellar

cores are approximately virial, while the prestellar driven cores are approximately

virial. The former suggests that as the cloud loses turbulent support and tends

toward global collapse, that either the core interactions increase or that the cores

retain some memory of their natal gas dispersion. The inertia of the cores implies

that their velocity dispersions will tend to decay more slowly than that of the gas as

a whole. This is a potentially testable signature of the competitive accretion model

(Bonnell et al. 2001). In the latter case, the prestellar cores may still be forming

out of the shocked gas and hence may still have similar motions. In general, the

sub-virial dispersion of the cores may imply that they are not scattering sufficiently

frequently to virialize within the formation timescale. Elmegreen (2007) reasons that

if cores form at the intersection of two colliding shocks, then their initial dispersion

should be on average less than the gas dispersion. Overall, our results imply that the

forming cores are at least somewhat sensitive to the actual dispersion of the natal

gas.

3.5 Observational Comparisons

3.5.1 Scaling to Observed Regions

In this section, we compare our simulated observations with three selections of

cores observed in three standard molecular tracers in two different low-mass star-

forming regions, ρ Ophiuchus (primarily L1688) and the Perseus MC. This compar-

ison cannot be precise for several reasons: First, the cloud is isolated, whereas our

simulation is a periodic box; second, we are using a single simulation with given val-

ues of the virial parameter and the Mach number to compare with clouds that have
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Figure 3.9 Fraction f of all cores binned as a function of first moments, Vcent, for a

simulated observation using N2H
+ normalized to the large-scale gas dispersion. Vg,

at t = tff . The distribution on the left shows the cores in the decaying turbulence

environment, while the distribution on the right gives the cores in the driven tur-

bulence environment. The dashed line is a Gaussian with the same dispersion as

the data while the dot-dashed line is a Gaussian with the gas velocity dispersion

(Vg = 2.2cs, Vg = 4.9cs, for the decaying and driven simulations, respectively).

somewhat different values of each of these parameters; and, finally, our simulation is

isothermal, whereas the temperature is observed to vary in the clouds. Furthermore,

the actual cloud is magnetized, whereas our simulation is purely hydrodynamic. A

variety of possible comparison strategies is possible. We have chosen to use the same

mean density in the box as in the cloud, and to make the simulation temperature

agree approximately with the typical temperature observed in the cloud cores. The

size and mass of the simulation box then follow from equations (3.2) and (3.3). With

this approach, the Jeans mass will be about the same in the simulation and in the

cloud, but the size and mass of the overall cloud will generally differ between the

two.
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Figure 3.10 Fraction f of prestellar cores (top) and protostellar cores (bottom) binned

as a function of first moments, Vcent, for a simulated observation using N2H
+ normal-

ized to the large-scale gas dispersion, Vg. The distribution on the left shows those

cores in the decaying turbulence enviornment, while the distribution on the right

gives the cores in the driven turbulence enviornment.
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A07 observed 41 starless cores in ρ Ophiuchus, clustered in a region of area 1.1

pc2, and made maps of 26 of them using the tracer N2H
+ (J = 1 → 0). The total

gas mass in this region with extinction greater than 15 magnitudes is estimated to

be ∼ 615 M� (Enoch, private communication; Enoch et al. 2007) with peak column

densities of NH2=1-8×1023 cm−2 (Motte et al. 1998). The star-forming area of ρ

Ophiuchus is roughly circular with radius R ' 0.6 pc; the mean density and column

density are therefore n̄H ' 2 × 104 cm−3 and NH = 5 × 1022 cm−2. As discussed

above, we then adopt this density for our simulation. To fix the temperature, we

first note that dust temperatures in the prestellar cores range from 12-20 K (A07).

On the scale of the entire L1688 cloud, the temperatures as measured by 12CO and

13CO lines are 29 K and 21 K, respectively (Loren 1989a; in his notation, this region

is R22). We therefore adopt T = 20 K for the simulation. equations (3.2) and

(3.3) give L = 0.9 pc and M = 550 M� for the simulation box, comparable to,

although somewhat less than, the observed values. The total velocity dispersion

measured from the 13CO line is 1.06 km s−1 (Loren 1989b), which lies above the

standard linewidth-size relation (eq. 3.6). The corresponding 1D Mach number is

M1D = 3.9, slightly less than the value 4.9 in the simulation. The virial parameter

of the cloud is 1.25, also slightly less than the simulation value of 1.67.

For Perseus, K07 report central velocity dispersions and centroid velocities mea-

sured from C18O and N2H
+ pointings for 59 prestellar and 41 protostellar cores. R08,

also making pointed observations of Perseus, obtain velocity dispersions and centroid

velocities for 199 prestellar and protostellar cores using NH3 (2,2), NH3 (1,1) and

C2S (2,1). They adopt a dust temperature of 11 K, which is slightly lower than

the assumed temperature of 15 K used by K07. In comparison to ρ Ophiuchus, the

Perseus star-forming region is much larger, 5 pc × 25 pc, resembles a long chain

of clumps with typical column densities of NH2 ∼ 3 × 1022 cm−2, and contains a

total mass of ∼ 18,500 M� (Kirk et al. 2006). Using the total mass and assuming a

cylindrical geometry (L = 25 pc and R = 2.5 pc), we obtain n̄H = 1.1 × 103 cm−3,

which we adopt for the simulation. We also assume that Perseus is approximately

in the plane of the sky; if it were randomly oriented then the expected value of the

longest side of the cloud would be 50 pc. We adopt a temperature of 10 K, since
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Table 3.2. K-S statistics for the driven and decaying core first moments (centroid

velocities) corrected for large velocity gradients and the gas.

D: All D: Starless D: Proto Gas: M1D=4.9

U: All 56% 23% 44% 2 %

U: Starless 68% 40% 89% 54%

U: Proto 53% 54% 13% 1 %

Gas: M1D=4.9 14% 14 % 56% -

Note. — D = driven, U = undriven

Table 3.3. Dispersion of first moments (centroid velocities) normalized to the

large-scale gas dispersion.

All Protostellar Prestellar

D U K07 R08 D U K07 D U A07 K07

σV/σg
a 0.89 0.97 1.62 1.50 0.73 1.04 1.31 1.00 0.90 0.75 1.81

σVcor/σg
b 0.80 0.82 1.02 0.98 0.66 0.92 0.98 0.89 0.73 0.46 1.03

Note. — D = driven, U = undriven, K07 = Kirk et al. (2007), R08 =

Rosolowsky et al. (2008), A07 = André et al. (2007)

aUncorrected for linear gradients

bCorrected for linear gradients
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Table 3.4. Total optical depth τ through core centers for each normalization and

simulated tracer.

Perseus ρ Ophiuchusa

τtot
b median min max median min max

C18O 0.51 0.08 2.46 0.35 0.14 1.05

N2H
+ 0.71 0.07 8.91 7.27 1.72 29.44

NH3 8.37 0.10 63.49 46.59 10.61 228.73

a Optical depths are reported for the distribution of star-

less cores only.

bτtot is the sum of the optical depths through line center

for each hyperfine transition. For N2H
+ and NH3 with 7

and 18 hyperfine transitions, respectively, the optical depth

is significantly reduced and generally optically thin for indi-

vidual transitions.

this is characteristic of the prestellar cores (R08). equations (3.2) and (3.3) then

imply that the simulation box has L = 2.8 pc and M = 825 M�, which is a rela-

tively small piece of the total cloud. Since we are simulating only a small part of the

Perseus cloud, we estimate the velocity dispersion in actual molecular gas from the

average linewidth-size relation (eq. 3.6 for L = 5 pc), which gives σ = 1.1 km s−1

and M1D = 5.9. In comparison, our simulation box scaled to the Perseus average

number density is less turbulent and only half the length of the shorter dimension.

This difference in Mach number and cloud side yields a virial parameter for Perseus

of α ' 1, which is about 60% of the value of our simulation box.
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3.5.2 Optical Depths

In our analysis we make the assumption that the line transitions are optically

thin. This approximation is observationally validated for both the N2H
+ and NH3

transitions. For example, according to K07 the total optical depth, τtot ∼ 0.1− 13,

where τtot is the sum of the optical depths for each hyperfine transition. Thus, the

average optical depth for a given N2H
+ hyperfine line is τ̄ = τtot/7 ∼ 0.01 − 2, so

that the majority of the lines are at least marginally optically thin. In particular,

the isolated 101-012 hyperfine component used for velocity fitting has an optical

depth of τtot/9, and is therefore optically thin in all but the very densest cores. A07

report similar N2H
+ total optical depths of τtot ∼ 0.1 − 30 for ρ Ophiuchus, while

R08 find τtot ∼ 0.4− 15 for NH3. However, the NH3 (1,1) complex has 18 hyperfine

components so that most of the lines are at least marginally optically thin. For

comparison, we report the total optical depth in our simulations for all three tracers

in Table 3.4. We derive the optical depth for a given line by solving for the level

populations as described in §3.3. Once these are known, the opacity in each cell for

photons emitted in the transition from state i to state j is

κ = nX
fjBjiφ(vobs; v)

4π(v1 − v0)νij

, (3.14)

where n, v, and X are the number density, velocity, and molecular abundance in

the cell, Bji and νij are the Einstein absorption coefficient and frequency of the

transition, and the observation is made in a channel centered at velocity vobs that

runs from velocity v1 to v0. The optical depth is given simply by computing this

quantity in every cell, multiplying by the cell length to obtain the optical depth

of that cell, and then summing over all cells along a given line of sight. As the

table shows, for the most part the average hyperfine transition is optically thin in

all tracers. The main exception is cores traced by NH3 in ρ Ophiuchus, which are

marginally optically thick. As a result, we do not present results for NH3 using the

higher density ρ Ophiuchus scaling; the core velocity dispersion maps in Figures 5-8

are normalized to Perseus.

In all other cases even the strongest hyperfine components have optical depths

of order unity, and comparison with more detailed radiative transfer modeling than
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Figure 3.11 Cumulative distribution function showing the total fraction f of cores

with second moments, σNT, less than or equal to the x coordinate value for simulated

observations of ρ Ophiuchus and Perseus in N2H
+ and NH3. The legends indicate

by first letter whether the distribution is taken from K07, A07, R08, Undriven simu-

lation, or Driven simulation. The tracer is also indicated when two different tracers

are used.
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we perform indicates this is unlikely to significantly affect our results. For example,

Tafalla et al. (2002) model the emission and transfer of the same N2H
+ and NH3

lines in a sample of starless cores in Taurus and Perseus whose conditions are similar

to those produced by our simulations. They study the interplay between hyperfine

splitting and radiative trapping by analyzing the two limiting cases of negligible

radiative trapping (which we assume) and neglect of hyperfine splitting (which max-

imizes radiative trapping). They find that the difference in the level populations

they compute under these two assumptions is only a few tens of percent, a level of

error comparable to that introduced by uncertainties in the collision rate coefficients.

We expect the errors introduced by our optically thin assumption to be comparable.

3.5.3 Comparison of Second Moments

Observationally, the second moments of cores are predominantly subsonic in

MCs, apparently independent of the amount of turbulence. For example, A07, mea-

suring second moments in ρ Ophiuchus, find all values are smaller than 2cs with an

average σNT/cs = 0.5. Likewise, K07 report similar measurements for cores observed

in Perseus, finding an average of σNT/cs= 0.7 with a maximum value of 1.7. Both our

simulations find marginally sub-sonic distributions of second moments with slightly

larger means than the observations (see Table 3.1). In comparison, protostellar cores

are observed to have a somewhat broader distribution of second moments. K07 find

that the protostellar cores in Perseus have a mean second moment of 1.1cs and a

maximum of 2.3cs. The protostellar objects that we observe in our driven simulation

tend to have transonic second moments while in the decaying simulation they are

supersonic.

We use a K-S test to compare the distribution of second moments for each

of the simulation core populations with the observed core populations. We give

the results in Table 3.5. Note that the A07 sample is comprised of only prestellar

cores, while R08 observe both starless and protostellar cores but do not distinguish

between them. Figure 3.11 shows the cumulative distribution functions of the core

populations for some of the simulations and observations. Although the medians

of some of the second moment distributions are fairly similar, K-S tests of the core
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Table 3.5. K-S statistics for the driven and decaying core second moments

(velocity dispersions) compared to the observational collections of cores using the

appropriate cloud normalization and simulated tracer.

Sample Cloud D U

Starless ρ Ophiuchus (A07) 8x10−4% 2%

Perseus (K07) 2% 2x10−2%

Protostellar Perseus (K07) 2x10−4% ...

All Perseus (K07) 1x10−3% 8x10−4

Perseus ( R08) 1% ...

populations show significant disagreement in some cases. Overall, the distribution

of second moments for the driven run is closer to observations of Perseus, while the

decaying run is a better match for the ρ Opiuchus prestellar second moments.

The physical origin of the poor agreement between the simulations and observa-

tions appears to be that the simulated protostellar second moment distributions in

either case do not have sufficiently narrow peaks. The protostellar cores in the sim-

ulations are regions of supersonic infall, which contradict the observations showing

at most transonic contraction. Although the decaying simulation has a larger pop-

ulation of high dispersion protostellar cores, both simulations show almost equally

bad agreement with the observations. Tilley & Pudritz (2004), performing smaller

decaying turbulent cloud simulations at lower resolution with self-gravity, analyze

the linewidths of their cores using a similar simple chemical mode. They also find a

number of cores with greater than sonic central linewidths. There are two possibil-

ities for the discrepancy between the observed protostellar cores in our simulation

and those observed in Perseus. In reality, forming stars are accompanied by strong

outflows that may eject a large amount of mass from the core, leading to efficiency

factors of εcore =0.25-0.75 (Matzner & McKee 2000). Such outflows reduce the mass

of the forming protostar by the same amount. Since we do not include outflows, we
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Figure 3.12 Cumulative distribution function showing the total fraction f of cores

with first moments, Vcent, less than or equal to the x coordinate value for simulated

observations of ρ Ophiuchus and Perseus in N2H
+ and NH3. Each line is normalized

to the appropriate large-scale gas dispersion, Vg, either as measured (simulations) or

as derived from the linewidth-size relation in equation (3.6). The legend format is

similar to Figure 3.11.

naturally expect our sink particles to overestimate the forming protostellar mass by

this factor. This will also effect the maximum infall velocity, characterized by the

second moment through core center. If we adopt a sink particle mass correction of

1/3 (Alves et al. 2007), then the infall velocity will decrease by a factor of
√

3. This

correction substantially reduces the number of protostellar cores with supersonic

second moments from 53% and 70% to 23% and 39% for cores in the driven and

decaying simulations, respectively. This correction brings the driven core sample

closer in agreement with measurements by R08 and K07. Pressure support from

magnetic fields, which we do not include, could also retard collapse and decrease the

magnitude of the infall velocities. However, the importance of magnetic effects is

difficult to assess without further simulations.
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Table 3.6. K-S statistics for the driven and decaying core first moments (centroid

velocities) compared to the observational collections of cores using the appropriate

cloud normalization and simulated tracer.

Sample Cloud D U

Starless ρ Ophiuchus (A07) 0.5 % 6%

Perseus (K07) 48% 12%

Protostellar Perseus (K07) 6% 85%

All Perseus (K07) 0.8% 7%

Perseus (R08) 7% 3%

3.5.4 Comparison of First Moments

When comparing the distributions of first moments, we first subtract out any

large gradients in the sample as discussed in §4.3. This is particularly important

when comparing to a large elongated cloud such as Perseus. We then shift the

distributions so that median centroid velocity falls at 0 and normalize the distribution

to the bulk gas dispersion. For Perseus, we infer the bulk gas velocity dispersion for

our simulation is σ = 1.1 km s−1 by assuming the cloud falls on the linewidth-size

relation and satisfies equation (3.6) with L equal to the transverse size of the cloud.

For ρ Ophiuchus, we adopt the 13CO line velocity dispersion of σ = 1.06 km s−1

(Loren 1989b).

In contrast, we find better agreement between simulations and observations for

bulk core motions. In Table 3.6, we report the K-S agreement for the first moments

of the observations and simulations. Since the simulations themselves are statisti-

cally similar to one another, both of the first moment distributions generally either

agree or disagree with the observed population. Except in the case of the N2H
+

driven data for ρ Ophiuchus and the NH3 decaying data, the velocity-corrected data

are fairly statistically similar to the observations. This suggests that the first mo-
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ment distributions do not strongly depend upon the details of the turbulence. In

Figure 3.12, we have plotted the cumulative distribution function of some of the first

moment distributions for comparison. The net core distributions show substantial

overlap for both simulations and observated regions. The main source of disagree-

ment with observations is the generally larger dispersions of the first moments in

the simulations. In particular, the dispersion of the prestellar core first moments

is a factor of ∼ 2 larger than the that found by A07 in ρ Ophiuchus. However,

because both simulations display sub-virial core-to-core velocity dispersions, we con-

clude that a sub-virial dispersion of first moments is not necessarily an indicator of

global collapse.

In some cases, the direct dispersion of the gas may be poorly observationally

constrained and so a virial argument is used to infer the gas dispersion. We find that

normalizing the distributions to the virial gas dispersion rather than the measured

gas dispersion produces a significantly different result for the decaying simulation.

Since the cloud gas is becoming more quiescent with time, the actual gas dispersion

is sub-virial at late times. Thus, relative to the virial gas dispersion the decaying

dispersion of first moments appears twice as sub-virial.

3.6 Discussion and Conclusions

We use isothermal AMR simulations to investigate the kinematics of cores in

environments with and without driven turbulence. We simulate observations of

these cores in the tracers C18O, N2H
+, and NH3 for the star-forming regions ρ

Ophiuchus, 125 pc distant, and Perseus, 260 pc distant, with beam sizes of 26” and

31”, respectively. From the differences between cores in the two environments and in

conjunction with observational results, we are able to draw a number of important

conclusions, some of which are relevant for observationally distinguishing between

driven and decaying turbulence in star-forming clouds.

We find that in both simulated environments the prestellar second moment dis-

tribution is fairly narrow and peaked about the sound speed. Significant broadness of

the protostellar second moment distributions is due to strong infall, such that many
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cores have central dispersions exceeding 2cs. Despite these commonalities, a K-S test

indicates that the driven and decaying prestellar and driven and decaying protostel-

lar populations are dissimilar to one another. In contrast to the second moments, a

K-S test indicates that the first moment distributions in the two environments have

some overlap: 13% confidence for protostellar cores and 44% confidence for prestellar

cores. This similarity is an indication that the bulk core advection is decoupled from

the gas motions inside the core. The similarity of the K-S tests suggests that core

first moments are not a good method for distinguishing the two environments.

Examining the gas dispersion in the core neighborhoods reveals interesting dif-

ferences in the two simulations. We find that by the end of a global free-fall time the

averaged velocity dispersion increases strongly towards the core center for decaying

protostellar cores. However, for decaying prestellar cores and all driven cores this

trend is fairly flat or slightly increasing. Thus, for both phases the driven cores are

coherent, similar to observed cores (Kirk et al. 2007; Barranco & Goodman 1998;

Goodman et al. 1998), while the supersonic velocities observed in decaying protostel-

lar cores are inconsistent with observations. Thus, investigating the radial dispersion

of protostellar cores may make it possible to discriminate between clouds with and

without active turbulent energy injection.

We find that the majority of the combined prestellar and protostellar distri-

bution of second moments for both environments are below 2cs, which agrees with

the results of A07 and K07. However, neither prestellar core distribution shows a

significant confidence level of agreement with the observations.

As shown in Table 5, we obtain sub-virial dispersions of the first moments

for both total core populations like A07, however our core-to-core dispersions are

approximately a factor of 2 closer to virial. Although both runs produce sub-virial

core-to-core dispersions, we have not shown that either driven turbulence or the small

virial parameter of decaying turbulence can produce αvir as small as that found by

A07.

One interesting finding is that the protostellar cores in the decaying run have

a core-to-core dispersion that is higher than the gas dispersion measured after a

free-fall time. This is a result of the significantly larger dispersion of the protostellar
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cores compared to the prestellar cores, which may be a result of either increased

scattering or of memory of the natal higher dispersion gas. This is in contrast to

the driven prestellar cores, which have nearly the same dispersion as the gas, and

the driven protostellar cores, which have a sub-virial dispersion. Thus, comparing

the starless and protostellar core first moment dispersion to the net gas dispersion

is potentially a means for distinguishing the two environments.

An effect that we cannot rule out is the importance of magnetic fields, which

we do not treat in our simulations. In addition to seeding the initial clump mass

spectrum, the turbulence in our simulations provides support against the cloud’s

self-gravity, a role that could be filled by either sustained turbulence or magnetic

fields or both. The very small number of cores observed with supersonic second

moments indicates that these cores are collapsing very slowly, a condition that we

find is promoted by turbulent support but not throughout the entire core collapse

process. At present, little computational work has been done to study line profiles

for turbulent cores with magnetic fields. Tilley & Pudritz (2007) present central

line profiles for a few cores formed in self-gravitating magneto-hydrodynamic cloud

simulations but do not have good statistics. Our simulations also neglect protostellar

outflows, which may have an effect on the total core mass and hence the velocity

dispersion of the infalling gas in the core center.

Another possible source of the quantitative disagreement between observations

and our simulations is geometry. Periodic boundary conditions may do a poor job

representing whole, pressure confined molecular clouds. Certainly, the Perseus star-

forming region is more filamentary than round. Further, the cloud Mach numbers

for both regions are somewhat uncertain, and it may be necessary to match the

Mach number of the simulation to the cloud more exactly to get better quantitative

agreement.

Overall, we find that the driven simulation agrees better with the cores in

Perseus, while the decaying simulation agrees slightly better with the prestellar cores

in ρ Ophiuchus (our data do not include protostellar cores there). Our results indi-

cate that the decaying simulation produces a population of protostellar cores with

supersonic velocity dispersions that is largely inconsistent with the observations of
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protostellar cores in Perseus. To reach a firmer conclusion on the validity of driven

or decaying turbulence will require more complete data on a larger sample of clouds

as well as simulations that allow for magnetic fields, outflows, and thermal feedback

from the protostars.
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3.7 Appendix: Statistical Equilibrium for

Molecules with Hyperfine Structure

As discussed in Tafalla et al. (2002) and Keto et al. (2004), hyperfine splitting

in a molecule introduces two complications on top of the standard calculation of

statistical equilibrium. First, hyperfine splitting of a transition reduces its optical

depth by breaking the line into multiple components. The frequency separation

between the components means that photons generated by a transition from level

iα to level jβ, where the Roman index refers to the parent level and the Greek to
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its hyperfine sublevel, have a reduced probability of being resonantly absorbed by

molecules in state j that are not in hyperfine sublevel β. Under our assumption that

all components are optically thin, however, this effect is not significant. We discuss

the extent to which this approximation holds, and how our results might be modified

in cases where it fails, in § 3.5.2.

A second, practical complication is that collision rate coefficients between dif-

ferent hyperfine sublevels are generally unknown. Only the total rate coefficients

summing over all hyperfine states are known. This makes it impossible to perform a

true statistical equilibrium calculation without introducing additional assumptions,

the most common of which is that the individual hyperfine sublevels are simply pop-

ulated in proportion to their statistical weights. Observations along some sightlines

show that this approximation generally holds for NH3 and that deviations from it

for N2H
+ are only of order 10% (Tafalla et al. 2002; Keto et al. 2004).

Under the assumption of an optically thin gas, the equation of statistical equi-

librium for a molecular species with hyperfine structure is∑
j

∑
β

(nH2qjβiα + Ajβiα + BjβiαICMB)fjβ

=

[∑
k

∑
β

(nH2qiαkβ + Aiαkβ + BiαkβICMB)

]
fiα (3.15)∑

i

∑
α

fiα = 1, (3.16)

where a set of four subscripts iαjβ indicates a transition from state i, hyperfine

sublevel α to state j, hyperfine sublevel β. The assumption that the hyperfine

sublevels are populated in proportion to their statistical weight then enables us to

write

fiα =
giα

gi

fi, (3.17)

where giα is the statistical weight of sublevel iα, gi =
∑

α giα is the total statistical

weight of all hyperfine sublevels of level i, and fi =
∑

α fiα is the fraction of molecules

in any of the hyperfine sublevels of level i. If we make this substitution in equations
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(3.15) and (3.16), then they become∑
j

∑
β

[
(nH2qjβiα + Ajβiα + BjβiαICMB)

gjβ

gj

]
fj

=

[∑
k

∑
β

(nH2qiαkβ + Aiαkβ + BiαkβICMB)
giα

gi

]
fi (3.18)∑

i

fi = 1. (3.19)

If the hyperfine sublevels of state i are populated in proportion to their statistical

weight, then the total transition rate from all hyperfine sublevels of state i to any of

the sublevels of state j are given by

qij ≡
∑

α

∑
β

giα

gi

qiαjβ (3.20)

Aij ≡
∑

α

∑
β

giα

gi

Aiαjβ (3.21)

Bij ≡
∑

α

∑
β

giα

gi

Biαjβ. (3.22)

Now note that (3.18) represents one independent equation for each state i and each

of its hyperfine sublevels α. If we fix i and add the equations for each hyperfine

sublevel α, then equation (3.18) simply reduces to

∑
j

(nH2qji + Aji + BjiICMB)fj =

[∑
k

(nH2qik + Aik + BikICMB)

]
fi, (3.23)

the same as the equation for an optically thin molecule without hyperfine splitting,

provided that the rate coefficients are understood to be summed over all hyperfine

sublevels.
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Chapter 4

The Shapes of Molecular Cloud

Cores in Simulations and

Observations

Offner & Krumholz, 2009, ApJ, 693, 914 1

4.1 Introduction

A successful theory of star formation must explain certain basic characteristics

of the early stages of cores and stellar natal conditions. One property of interest is

the shape distribution of starless and protostellar cores, which is likely related to the

the initial conditions of star formation such as the local turbulent, the magnetic field

configuration, and core collapse timescale (see review by McKee & Ostriker 2007).

Strong magnetic fields in the early stages of core formation may either support gas

perpendicular to the field lines yielding a distribution of oblate cores (Mouschovias

1976) or compress the cores into a prolate geometry (Fiege & Pudritz 2000). The

former argument assumes predominantly poloidal magnetic fields, whereas the latter

work includes a toroidal field component resulting in a helical field geometry. Inde-

pendent of magnetic fields, prolate cores may also arise as an artifact of filamentary

1The Astrophysical Journal, 693, 914-921, March, c©2009. The American Astronomical Society.
All rights reserved.
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cloud geometry, in which cores fragment at intervals according to the characteristic

Jeans length of a cylinder (Hartmann 2002).

Recent large-scale turbulent simulations with and without magnetic fields tend

to find distributions of cores that contain predominantly triaxial cores when viewed

in 3D (Klessen & Burkert 2000; Gammie et al. 2003; Basu & Ciolek 2004; Li et al.

2004; Offner et al. 2008a). In contrast, simplified numerical studies including am-

bipolar diffusion find triaxial cores with an inclination towards oblateness (Basu &

Ciolek 2004; Ciolek & Basu 2006). Observations of molecular cloud cores in various

star forming regions tend to find projected core aspect ratios, q = a/b, around 2:1

(Myers et al. 1991; Jijina et al. 1999; Nutter & Ward-Thompson 2007), but com-

parison of these observations with simulations is hampered by the projection of the

observed cores onto the plane of the sky. Some authors have presented analytic

work attempting to overcome this difficulty by “de-projecting” the observed cores

statistically. For example, Ryden (1996), assuming axisymmetry, finds that cores are

significantly more likely to be randomly oriented prolate objects than oblate objects.

Tassis (2007, henceforth T07) utilizes a maximum-likelihood method to generate a

distribution of ellipsoid axial ratios. He uses two base probability distribution func-

tions and finds that oblate or triaxial cores agree well with observations of cores in

Orion (Nutter & Ward-Thompson 2007, hereafter NWT), results which are insensi-

tive to the assumed underlying distribution. Overall, T07 finds that prolate cores

are rare, and his method rules out a uniform distribution of oblate, prolate, and

triaxial cores with greater than 99% confidence.

Our study is complementary to this previous work, but we perform the core

shape comparison in the observational domain rather than the theoretical one. This

has a significant advantage over alternative approaches, because it allows us to re-

alistically simulate the effects of finite telescope resolution and sensitivity, and to

reduce the simulated observations and fit core shapes using the same methods used

for the real data. In this paper, we post-process simulations in this manner and com-

pare with the dataset of Orion reported by NWT, who collate and reanalyze various

SCUBA observations of the Orion A and B North and South molecular cloud com-

plexes. They report the masses and sizes for 393 cores. Consequently, this dataset
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not only concerns an interesting and well-studied region, but it is also sufficiently

large for meaningful statistics.

In section 4.2, we describe the details of the simulations and post-processing.

We consider simulations where turbulence is continually driven and where it is al-

lowed to decay. In section 4.3, we present comparisons between the simulations and

observations and compare with T07. In section 4.4, we summarize our conclusions.

4.2 Simulated Observations

As described in Offner et al. (2008a,b), our two simulations are periodic boxes

containing an isothermal, non-magnetized gas that is initially not self-gravitating.

After driving turbulent motions in the gas for two box crossing times, self-gravity is

turned on. In one simulation energy injection is halted and the turbulence gradually

decays, while in the other turbulent driving is maintained so that the cloud satisfies

energy equipartition. A sink particle is introduced when the Jeans condition is ex-

ceeded on the finest AMR level, where the cell spacing is ∆x=200 AU (Krumholz

et al. 2004). Since isothermal self-gravitating gas is scale free, it is easy to normalize

the simulations to the conditions observed in Orion using the thermal Jeans length

and thermal Jeans mass (see scaling relations in Offner et al. 2008b). For the simula-

tion normalization, we adopt a gas temperature of T = 20 K (NWT). We choose a gas

density of ρ = 9.74×10−21 g cm3 (number density of hydrogen nuclei nH = 4.2×103

cm−3), corresponding to a simulation box length of 2 pc. At this density, the typical

box column density is NH = 2.6× 1022 cm−2, close to the measured central column

density of the Orion B cloud, NH = 2.8 × 1022 cm−2 (Maddalena et al. 1986; John-

stone et al. 2001). Although Maddalena et al. (1986) observe a much larger region

than the individual north and south complexes in Orion A and B, column densities

are observed to be roughly scale-independent (Larson 1981; Heyer et al. 2008) (al-

though it has been argued that this is a selection effect – e.g., Ballesteros-Paredes

& Mac Low 2002). Thus, our normalization is consistent.

We pause at this point to add a caveat about our normalization: our box size

is smaller than the individual Orion A and B North and South complexes, which
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have projected sizes of ∼ 3 − 4 pc. Equivalently, our simulation contains a smaller

number of total thermal Jeans masses of gas than the entire Orion A and B North

and South complexes. The justification for this is that the periodic geometry of the

simulation enables us to model a piece of the cloud rather than the entire cloud.

As long as we have the correct mean density, the behavior of structures that are

much smaller than the box size such as cores should not depend on the size of the

simulation box. Indeed, the similarity between the results for driven and decaying

turbulence, and the insensitivity of our results to our assumed density normalization

(see below), seem to support the hypothesis that small-scale structure is insensitive

to such large-scale features as the total box size and the number of thermal Jeans

masses it contains. However, establishing this point definitively would require a suite

of simulations with varying total sizes but the same resolution, and such a study is

unfortunately too computationally costly to perform. We therefore simply caution

readers on this point and proceed.

We run the simulations with gravity for a global free-fall time, tff , and we

compare with the observations at 1
2
tff and 1tff . The column density of the two

simulations at 1tff is displayed in Figure 4.1. At these times, the Mach number,

M, is 8.4 for the driven simulation and M = 5.3, 4.5 for the decaying simulation.

For the driven simulation, this corresponds to half the Mach number of the larger

Orion A and B regions that we compare with (Maddalena et al. 1986). However, it

is unlikely that the high Mach number flow regions will have a significant effect on

the details of the cores, which are generally subsonic to transonic.

It is possible to convert the simulation column density to an observed intensity

using the relation

Iν = NHΩmbµHκνBν(Tcloud), (4.1)

where Iν is the flux density per beam at frequency ν, Ωmb is the solid angle subtended

by the beam, µH is the mean mass per H atom, κν is the dust opacity at frequency

ν, and Bν(T) is the Planck function (Enoch et al. 2007). We set ν=850 µm to

match the observations of NWT, and following them we adopt κ850 = 0.01 cm2g−1.

Note that equation (4.1) assumes that the gas is optically thin at 850 µm. The

densest sightline through the simulation has a column density of Σ = 0.6 g cm−2 or
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τ850=0.06, which is safely optically thin.

In order to facilitate comparison with NWT, we post-process the simulation

data to have noise and resolution comparable to the SCUBA data. In each projection

direction, we integrate along the line of sight and convolve the column density image

with a beam of 14” resolution. We assume that the simulated cloud lies at a distance

of 400 pc, which is the average distance adopted by NWT. To each pixel in the

smoothed image, we add a Gaussian noise distribution with σNWT = 20 mJy beam−1,

correlated over the FWHM size of the beam. This reproduces the coarser pixel

resolution noise inherent in the SCUBA data.

Having generated a simulated column density map, we analyze the data using

the same procedure outlined in NWT, which we describe in the following steps. First,

from the post-processed simulation data, we generate a large-scale structure map by

convolving the data with a beam size of 1’. Second, we subtract this map from the

high resolution version to remove large-scale structure and make core identification

easier. Third, we define cores as density enhancements within 3σNWT contours that

contain a peak above 5σNWT. With few exceptions, core shapes are generally ellip-

tical. Finally, we fit an ellipse around each peak and match to the 3σNWT contours

“by eye” guided by a sample eye-fit from NWT (D. Nutter, 2008, priv. comm.). An

automated fitting algorithm would clearly be preferable to the “by eye” procedure

from the standpoint of reproducible comparison between different samples and au-

thors. However, after experimenting with several options we were unable to find an

algorithm that adequately reproduced the fits from NWT, while we were able to do

so reasonably well by eye. Since the goal of this paper is to compare to the observed

sample, we use by eye fits. Based on the elliptical fits we assign each core an axis

ratio q. We identify cores that contain a sink particle within 0.05 pc of their core

center as “protostellar cores”, while cores that do not contain a sink particle are

“starless”. In the sample of Orion cores, the protostellar cores are identified with

the Spitzer IRAC camera.

Figure 4.2 shows one projection through the simulation domain for the driven

run, along with the bounding ellipses for all the cores we identify in that projection.

For comparison, the unprocessed driven column density is shown in the right panel
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of Figure 4.1. To improve the statistics, we include cores from maps in each cardinal

direction of the simulation. The Kolmogorov-Smirnov (K-S) test provides a good

statistical measure of the agreement of two distributions (Press et al. 1992). It

derives 1 minus the confidence level at which the null hypothesis that the two were

drawn from the same underlying distribution can be ruled out2. In the remainder

of the paper, we report the quantity 1 minus the confidence level multiplied by a

factor of a 100 to give a percentage. Using a K-S test, we find that core samples from

different lines of sight are consistent with being drawn from the same distribution

(K-S statistics ∼ 50%). This implies that the core ratios in the three projections are

statistically indistinguishable, so our procedure of treating each orientation as an

independent sample is consistent. The agreement among the orientations also shows

that fitting by eye is reasonably reproducible.

We verify that the distribution of core ellipses is not strongly dependent on the

details of the normalization by comparing the ellipses in the fiducial case with core

samples assuming σ = 0.5σNWT, and σ = 2σNWT. This is equivalent to adopting

the same contour level while changing the average density of the simulation by a

factor of 2. Figure 4.3 shows the fiducial distribution of axes ratios and the two

distributions with different contours. We find that the new axis ratio distributions

are consistent with being drawn from the same distribution at 99% and 17% con-

fidence, respectively, when comparing samples of equal number. Using a lower or

higher contour level respectively increase or decreases, respectively, the number of

cores in the population by ∼30%.

2Formally, the two-sided K-S statistic we use is computed as follows. Consider two sets of N
and M measurements of some quantity x (in our case x is the axis ratio, and the two sets of
measurements are the simulated and observed values). Let FN (x) and GM (x) be the cumulative
distribution functions for those measurements, i.e., FN (x) is the fraction of the N measurements
that yield a value less than or equal to x, and similarly for GM (x). The K-S statistic is then
defined as DN,M = supx|FN (x)−GM (x)|, i.e., the maximum distance between the two cumulative
distribution functions. Kolmogorov’s Theorem then states that we can reject the null hypothesis
that FN (x) and GM (x) were drawn from the same parent distribution with a confidence level α if√

NM/(N + M)DN,M > Kα, where Kα is defined implicitly by the equation 1−α = Pr(K ≤ Kα)
and Pr(K ≤ x) ≡ 1− 2

∑∞
i (−1)i−1e−2i2x2

. Intuitively, α gives the probability that we could have
measured a value of DN,M as large as we did if FN (x) and GM (x) were actually drawn from the
same parent distribution. The smaller α is, the less likely that our samples would have produced
such a large DN,M if the samples were drawn from the same parent distribution.
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Figure 4.1 Logarithm of the column density, Σ, for one projection of the decaying

(left) and driven(right) simulations at 1tff .

4.3 Data Comparison

In Table 1 we report a summary of the statistical properties of our cores, in-

cluding the size of the sample, the absolute sizes of cores, and their aspect ratios.

We compute these properties for all cores, for the actual Orion data, and for both

the driven and undriven simulations at our two sample times t = 1
2
tff and t = tff .

In each case we report properties both for the entire population of cores regard-

less of whether they contain stars and for the starless and protostellar populations

separately.

4.3.1 Core Sizes

In this section, we compare the physical sizes of the simulated and observed

cores, where the lengths of the semi-major and semi-minor axes are given in Table

4.1. Generally, we find that the medians of the net distribution of simulated core sizes

are ∼ 20% smaller. Whereas the simulated starless core sizes are fairly similar to
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Figure 4.2 Column / flux density for one projection of the post-processed driven

simulated cores at 1tff . The image includes noise and beam-smearing. The 3σNT

contours are marked in black and the fitted ellipses are overlaid in white.
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observation, the observed protostellar core sizes are much larger than their simulated

counterparts. This discrepancy is likely an artifact of the sink particle accretion

algorithm: once a core forms a sink particle the surrounding gas is accreted more

quickly and to higher masses without losses from outflows, so that the reservoir

of bound gas around the sink particle is rapidly depleted. It is also possible that

magnetic fields, which we neglect, play a significant role in supporting the protostellar

envelopes, thus slowing the collapse process and contributing to the larger sizes of

the observed protostellar cores.

As shown in Figure 4.4, the simulation core size distributions have smaller dis-

persions than the observation. Although some of the difference can be attributed

to the smaller sizes of protostellar cores, the smaller core sample and simulation

domain size may also contribute. The minimum core size is most likely set by the

observation resolution.

We can compensate for the rapid depletion of gas in the outer parts of proto-

stellar cores if we adopt a significantly lower estimate of the telescope noise (σ ∼
0.2σNWT) and thus a lower contour threshold for defining cores. This has the ef-

fect of making the protostellar cores somewhat larger while leaving the starless sizes

mostly unchanged, so that the overall size distribution is in better agreement with

the observations. Using this lower noise level does not significantly alter the core

shape distribution, however, which suggests that the discrepancy in core sizes is not

significant for the purpose of determining core shapes. We therefore proceed with

our analysis using the real telescope noise level, σ = σNWT.

4.3.2 Overall Shape Distributions

As shown in Table 4.1, we find similar means and medians for the shape distri-

butions. The characteristic mean falls around q = 0.6 − 0.7. The maximum aspect

ratio is also very similar in all the cases, around 4:1, and the most elongated core is

starless. In the simulations, core elongation is a result of the initial filamentary gas

structure out of which the cores form. It is the remnant of the turbulence rather

than a signature of magnetic fields.

We next characterize the similarity of the distributions by using a K-S test. One
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Figure 4.3 Number of cores as a function of axis ratio q = b/a along a single projection

for cores defined using the fiducial σNT , 2σNT, and 0.5σNT at 1tff .

Figure 4.4 The sizes of major axis, a, in units of 100 AU for the total, starless, and

protostellar cores, from left to right, at 1tff .
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Table 4.1. Core axis ratio b/a minimum, median, and mean and median core

sizes.

All

Oa D1
b D 1

2

c U1
d U 1

2

e

Ncores 393 161 152 78 66

Minimum b
a

0.24 0.22 0.23 0.18 0.23

Median b
a

0.66 0.68 0.58 0.65 0.65

Mean b
a

0.67 0.66 0.61 0.66 0.62

Median a100
f 100 76 84 80 92

Median b100
f 64 48 48 52 56

aObserved Orion molecular cloud cores

(NWT)

bDriven turbulence simulation at 1tff

cDriven turbulence simulation at 1
2
tff

dUndriven turbulence simulation at 1tff

eUndriven turbulence simulation at 1
2
tff

fMedian projected semi-major (a) and semi-

minor (b) size in units of 100 AU.
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Table 4.2. Core axis ratio b/a minimum, median, and mean and median core

sizes.

Starless Protostellar

Oa D1
b D 1

2

c U1
d U 1

2

e O D1 D 1
2

U1 U 1
2

Ncores 286 114 103 45 50 107 47 49 33 16

Minimum b
a

0.24 0.22 0.23 0.18 0.23 0.34 0.23 0.26 0.28 0.66

Median b
a

0.66 0.66 0.55 0.68 0.57 0.68 0.68 0.74 0.79 0.76

Mean b
a

0.66 0.64 0.56 0.58 0.57 0.68 0.68 0.73 0.77 0.80

Median a100
f 96 88 88 80 104 120 64 68 72 64

Median b100
f 64 54 48 48 56 76 48 48 52 48

aObserved Orion molecular cloud cores (NWT)

bDriven turbulence simulation at 1tff

cDriven turbulence simulation at 1
2
tff

dUndriven turbulence simulation at 1tff

eUndriven turbulence simulation at 1
2
tff

fMedian projected semi-major (a) and semi-minor (b) size in units of 100 AU.
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interesting aspect of the Orion dataset is that we can rule out the possibility that the

separate Orion A and B populations originate from the same parent population with

> 95% confidence. This disagreement is caused by the higher fraction of elongated

cores in Orion B. The physical difference between the North and South regions are

otherwise not large: both are sites of high-mass star formation, both have similar

average column densities (Maddalena et al. 1986), and the patches surveyed are

roughly the same size. However, Orion A has a 25% larger velocity dispersion, 5.1

km s−1 as measured in CO (Maddalena et al. 1986). The magnitude of this difference

is a useful number to bear in mind when characterizing the extent of agreement or

disagreement with the simulations. In comparison, the driven and decaying samples

are consistent with being drawn from the same parent population at 88% and 66%

confidence for 1tff and 1
2
tff , respectively.

We note that the K-S statistic is somewhat influenced by the size of the dis-

tribution being compared. For example the smaller the samples, the more likely

the test will conclude two samples are consistent with being drawn from the same

distribution. In general we find if we always compare distributions of the same size

(by randomly selecting cores from the larger distribution), K-S agreement rises by

5− 10%.

Table 4.3 shows the K-S statistics for comparisons of the axis ratios in Orion to

each of the simulations. Overall, the decaying turbulence simulation agrees better

with the Orion populations, although both simulations have fairly high agreement

with Orion B. Given the uncertainties in the normalization and the disagreement

between the Orion A and B samples, we consider agreement greater than 10% to be

encouraging. Interestingly, the disagreement of the driven population is determined

mainly by the disagreement of ellipses in one particular projection at 1tff , which has

an overabundance of elongated cores. Minus the cores in this projection, the driven

sample agrees with ∼ 17% confidence at this time. Figure 4.5 shows the cumulative

distribution function of the core shapes for the observations and two simulations.
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Table 4.3. K-S agreement of simulations with Orion for net populations

Orion

Oa,btotal (%) A (%) B (%)

D1
c 2.3 1.2 32.9

D 1
2

0.03 .004 3.7

U1
d 25.2 18.0 67.7

U 1
2

3.8 1.0 16.0

aObserved Orion molecular cloud

cores (NWT)

bComparison of Orion A with

Orion B gives a K-S statistic of 4.6%.

cDriven turbulence simulation

dUndriven turbulence simulation
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Figure 4.5 Cumulative distribution function of the total, starless, and protostellar

shape distribution, from left to right, at 1tff .

4.3.3 Starless and Protostellar Core Shapes

K-S agreement for starless and protostellar cores is compared in Table 4.4. We

find similar agreement with the Orion data for both the driven and undriven starless

core shapes at 1tff . In contrast with the observational data, which has a high level

of agreement between the Orion starless and Orion protostellar core shapes (∼ 60%)

the driven starless and driven protostellar core shapes are only moderately similar

(∼13%), while the decaying starless and decaying protostellar core shapes are quite

dissimilar (∼ 0.02%). This is illustrated in the second and third panels of Figure 4.5,

which show the undriven starless distribution of shapes significantly to the left of the

Orion distribution, while the undriven protostellar distribution falls to the right. As

a result, the individual simulation starless and protostellar shape distributions can be

much less similar to the observed cores than the net simulation shape distribution

(see U1 in Table 4.3 and 4.4). One caveat of this comparison is that the actual

goodness of agreement depends not only upon agreement between the net shape

distributions but upon the agreement between the individual starless and protostellar
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shapes and observations. Figure 4.5 suggests that, particularly for the decaying case,

the K-S test may overestimate the overall similarity to observed cores. Observational

data bears out the similarity of the distributions of starless and protostellar shapes

(Myers et al. 1991; Jijina et al. 1999). In the decaying simulation, the difference

is likely due to the more rounded protostellar cores, which are experiencing strong

collapse (Offner et al. 2008b).

In Figure 4.6 we plot the number of starless cores as a function of axis ratio,

q. For comparison, we also plot the T07 maximum-likelihood curves drawn from

normal and beta distributions. In spite of the larger variation in the simulation

data (due to the smaller sample size), the simulation data also appears to follow

the curves reasonably well. Offner et al. (2008a) report that the protostellar cores

in both simulations are mainly trixial, with some preference for prolateness over

oblateness. To investigate the 3D shape distribution of the starless cores, which

were not examined in Offner et al. (2008a), we first triangulate the 2D projected

positions to identify the 3D coordinates of the core center. By setting a minimum

density cutoff for cells within 0.1 pc of the core center, we define the gas contained

in the core. We adopt a density cutoff of the minimum of nH = 2 × 104 cm−3 and

0.2 nHpeak, where protostellar cores generally satisfy the former and starless cores the

latter. Unlike the core definition in Offner et al. (2008a), we do not require that the

gas be bound. We apply principle component analysis to the set of cells comprising

each core to identify the eigenvalues of the cardinal axes (Jolliffe 2002). As shown in

Figure 4.7, the cores for both simulations are predominately triaxial. The remaining

cores are preferentially prolate. However, the ratio of the number of prolate to oblate

cores in 3D is somewhat sensitive to the chosen cutoff density. These results appear

to be inconsistent with the claim of T07 that the observed core axis distribution

implies that prolate cores are rare while oblate cores are more common.

4.3.4 Time Dependence of Core Shapes

We find less K-S agreement between the Orion core shapes and the simulated

cores at 1
2
tff . The origin of the disagreement is mainly due to the smaller mean

axes ratios in both the driven and decaying cases as illustrated in Table 4.1. The
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Figure 4.6 Histrogram of starless cores ratios q = b/a at 1tff . Results from T07

derived assuming underlying beta and normal distribution for core ratios have been

overlaid. The error bars shown on each bin reflect
√

N counting statistics. The bins

for each sample are centered at the same values of q, but the plotted points have

been offset slightly to the left or right to allow the error bars to be distinguished.
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Table 4.4. K-S agreement of simulations with Orion for starless and protostellar

populations

OaStarless (%) O Protostellar (%)

D1
bStarless 1.2 D1 Proto 20.7

D 1
2

Starless 2.2×10−5 D 1
2

Proto 2.5

U1
cStarless 1.2 U1 Proto 2.9

U 1
2

Starless 0.04 U 1
2

Proto 0.4

aObserved Orion molecular cloud cores NWT

bDriven turbulence simulation

cUndriven turbulence simulation

Figure 4.7 Plot of the 3D core aspect ratios c/a vs. b/a at 1tff . The dashed lines

indicate the boundary between prolate, triaxial, and oblate cores, from left to right.
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difference between starless cores and protostellar cores is also more pronounced at

this time since the starless cores in both simulations are more elongated and the

agreement between the observed and simulated starless distributions is much worse

than for the protostellar core distributions. This may be because the simulated

protostellar cores are necessarily located in regions of the flow that are dominated

by gravitational effects. In contrast, at early times the shapes of starless cores

are more strongly influenced by turbulence rather than gravity and so they appear

more elongated and filamentary. This suggests that gravitational fragmentation, in

addition to turbulence, significantly influences core shapes.

4.4 Conclusions

Overall, we find a high level of similarity between observations of core axis ra-

tios in Orion and simulations of core formation in a self-gravitating, non-magnetized

turbulent medium, with either driven or decaying turbulence. We find the best agree-

ment occurs after one dynamical time. The similarity extends from the mean and

median core axis ratios to the distributions of starless and protostellar core shapes.

We obtain good agreement despite the absence of magnetic fields in the simulations,

which may indicate that the local magnetic field in Orion is not strongly influencing

the core shapes. This is supported by both turbulent magnetic simulations such

as those by (Ballesteros-Paredes & Mac Low 2002) and observations that find the

shapes of high density structures are not strongly correlated with the magnetic field

direction (Ballesteros-Paredes et al. 2007). Moreover, we find that a population

of cores that is intrinsically triaxial, but with a tendency to be more prolate than

oblate, can produce an observed distribution of core axis ratios consistent with what

is seen in Orion.

The axis ratio distributions are also quite similar in the simulations with driven

and decaying turbulence. In fact, we find that the shape distributions of Orion A

and Orion B are often more dissimilar (4.6% K-S statistic) to each other than to the

simulations. This indicates that the level of turbulence does not play a significant

role in determining core shapes. Both simulations compare with larger confidence
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to the Orion B core sample, although in terms of statistics, the decaying simulation

has slightly better agreement with the total Orion sample of cores.

Increasingly large and complete observational data sets invite important com-

parisons with simulations, which could shed light on both the theory of star formation

and details of the molecular clouds we observe. Our results provide a cautionary note

that such comparisons should preferably be done by projecting from simulations into

the observational domain, including realistic sensitivities and resolutions. Further

simulations concerning the effects of magnetic fields, combined with more detailed

simulated observations, would be a beneficial future direction of research.
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Chapter 5

The Effects of Radiative Transfer

on Low-Mass Star Formation

Offner, Klein, & McKee, Krumholz, 2009, ApJ, accepted. 1

5.1 Introduction

On large scales molecular clouds are generally observed to have limited tem-

perature variations, a characteristic that results from the high efficiency of radiative

cooling at typical cloud densities. Consequently, simulations of molecular clouds

frequently assume constant gas temperature, a convenient approximation for inves-

tigations of gas-dynamics, turbulence, and gravitational collapse (Gammie et al.

2003; Bonnell et al. 2003; Li et al. 2004; Tilley & Pudritz 2004; Vázquez-Semadeni

et al. 2008). However, an isothermal assumption necessarily neglects the influence

of heating due to gas compression, accretion, and stellar sources.

The importance of the local gas temperature to the star formation process is

motivated analytically when considered in combination with gravity. The character-

istic fragmentation scale for self-graviting gas of density, ρ, and sound speed, cs, is

1The Astrophysical Journal, c©2009. The American Astronomical Society. All rights reserved.
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given by the Jeans length:

λJ =

√
πc2

s

Gρ
∝
(

T

ρ

)1/2

. (5.1)

Thus, for lower temperatures, gas is prone to gravitational instability at lower den-

sities. In rotating self-gravitating disks, the criterion may be phrased in terms of the

local column density Σ:

Q =
κεcs√
πGΣ

∝ T 1/2, (5.2)

where the onset of gravitational instability occurs as the Toomre parameter, Q, ap-

proaches one and κε is the epicyclic frequency. Cold protostellar disks more readily

develop spiral structure and become Toomre unstable, influencing protostellar ac-

cretion and driving fragmentation (Kratter et al. 2008). Overproducing low-mass

objects or brown dwarfs in the stellar initial mass function is one side-effect of in-

creased fragmentation (Bate 2009b; Krumholz et al. 2007b).

Gas eventually becomes optically thick at densities orders of magnitude above

the molecular cloud mean, and radiative cooling is no longer efficient. To investigate

this transition, Masunaga et al. (1998) modeled a spherically symmetric core col-

lapse including angle-dependent multi-frequency radiative transfer, resolving scales

down to the accretion shock. They halted the calculation at the end of the first

collapse phase, prior to the dissociation of H2 and before protostellar feedback com-

mences. The authors reported a characteristic transition density of ∼ 10−13 g cm−3

for initially 10 K gas, above which the temperature increased with increasing den-

sity. In many turbulent simulations rudimentary heating due to gas compression is

frequently represented using an equation of state (Li et al. 2003; Bate et al. 2003;

Bate & Bonnell 2005; Jappsen & Klessen 2005; Bonnell et al. 2006; Offner et al.

2008a; Clark et al. 2008; Bate 2009a). Although such an equation typically fits a

more exact radiative transfer solution like that reported by Masunaga et al. (1998), it

neglects the instantaneous mean free path, multi-dimensional effects, dust chemistry,

and time dependence of stellar sources. In fact, the subsequent paper, Masunaga

& Inutsuka (2000), demonstrated that gas temperatures may become significantly

warmer as a result of protostellar feedback and that the temperature distribution is

quite sensitive to the accretion luminosity.
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To compromise between physics and computational expense, a few hybrid meth-

ods include heating by solving explicit diffusion approximations, estimating the in-

stantaneous radiative cooling, or extrapolating from previously tabulated tempera-

tures (Stamatellos et al. 2007; Banerjee & Pudritz 2007; Bonnell & Rice 2008). Such

methods are computationally cheaper and reproduce radiative heating for simple

geometries. However, the suitability of these approximations is unclear for radiative

problems involving clustered star formation in a turbulent medium, where the prob-

lem is highly non-linear, involves complex geometry, and the column density may not

be a good indicator of the cooling rate. In addition, many of these approaches also

neglect heating by stellar sources, which are crucial as we will show in this paper.

The unknown accuracy of radiation approximations and the deficiencies in handling

temporal and spatial variations motivates our use of a full radiative transfer method,

albeit one based upon the gray flux-limited diffusion approximation.

Relatively few authors have pursued 3D calculations including radiative trans-

fer. These authors always adopt the flux-limited diffusion approximation and assume

that the radiation field is frequency-independent, i.e., gray. By modeling star forma-

tion with gray flux-limited diffusion (GFLD), it has been shown that a barotropic or

polytropic equation of state (EOS) can underestimate the true heating at high den-

sities even for simple, non-turbulent collapse problems (Boss et al. 2000; Whitehouse

& Bate 2006). The issue of radiative feedback is particularly acute for high-mass

stars, which emit prodigious luminosities while forming (Krumholz 2006; Krumholz

et al. 2007b, 2009). To explore this point, Krumholz et al. (2007b) contrasted sim-

ulations of collapsing, turbulent high-mass cores using an isothermal EOS to those

using GFLD radiation transfer. The authors demonstrated that simulations with ra-

diative transfer are able to produce a massive star formed from gas accretion, while

barotropic or isothermal calculations may only produce a massive star via mergers

of many smaller bodies. Comparisons of the temperature distribution, assuming a

barotropic EOS in lieu of radiative transfer, showed significant underestimation of

the volume of heated gas and a much lower local maximum gas temperature.

In the regime of low-mass star formation, Bate (2009b) modeled several small

clusters forming low-mass stars with the SPH radiative transfer method developed
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by Whitehouse & Bate (2006). The author compared these with previous published

simulations using identical initial conditions and a barotropic EOS. The calculations

including radiation transfer showed a substantial decrease in the number of brown

dwarfs from 50% of the number of objects to < 10%. This agrees with the prediction

of Matzner & Levin (2005), who assert incorrect disk fragmentation may produce

brown dwarfs if irradiation is not included. Accretion luminosity, which is emitted at

the protostellar surface, generates a significant portion of the luminosity during the

early stages of protostar formation. Indeed, Bate (2009b) found increased heating

and fewer brown dwarfs at higher resolution but reported little difference in the final

stellar distribution for resolutions of 0.5 AU versus 5.0 AU. Since 0.5 AU is much

larger than protostellar radii, significant accretion heating was neglected. As Bate

(2009b) also neglected deuterium burning, the calculations represent a lower limit

on the effects of radiative feedback.

In this paper, we model the formation of low-mass stars in a turbulent molecular

cloud including GFLD using the ORION adaptive mesh refinement (AMR) code. We

address the issue of radiative feedback, including all the important energy sources,

and how it influences low-mass star formation. Our study differs from previous work

in that we use source terms to account for accretion luminosity down to the stellar

surface and include a stellar evolutionary model (Tan & McKee 2004). We contrast

a GFLD simulation to one without radiative transfer. We also perform a less time

evolved calculation with resolution eight times higher to characterize the dependence

of the solutions with and without radiative transfer on resolution. We describe our

method in §5.2. In §5.3, we compare and contrast the four simulations. We discuss

caveats to our method in §5.4 and summarize our conclusions in §6.3. Comparisons

to observations will appear in a subsequent paper.
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Figure 5.1 Log gas column density of the RT (left) and NRT (right) simulations at

0.0, 0.25, 0.5, 0.75, 1.0 tff . The log density weighted gas temperature for the RT is

shown in the center. The color scale for the column density ranges from 10−1.5−100.5

g cm−2 and 10 − 50 K for the gas temperature. Animations of the left and right

panels, as well as color figures, are included in the online version.
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5.2 Methodology and Initial Conditions

5.2.1 Numerical Methods

For the purpose of comparison, we perform two calculations with identical res-

olutions and characteristic parameters. The first, which we denote RT, includes

radiative transfer and feedback from stellar sources. The second, henceforth NRT,

uses an EOS to describe the thermal evolution of the gas. We perform both simula-

tions using the parallel AMR code, ORION. ORION utilizes a conservative second

order Godunov scheme to solve the equations of compressible gas dynamics (Truelove

et al. 1998; Klein 1999):

∂ρ

∂t
+∇ · (ρv) = 0, (5.3)

∂(ρv)

∂t
+∇ · (ρvv) = −∇P − ρ∇φ, (5.4)

∂(ρe)

∂t
+∇ · [(ρe + P )v] = ρv∇φ− κRρ(4πB − cE), (5.5)

where ρ, P , and v are the fluid density, pressure, and velocity, respectively. The total

fluid energy is given by e = 1/2ρv2 + P/(γ − 1), where γ = 5/3 for a monatomic

ideal gas2. The total radiation energy density is denoted by E, and B is the Planck

emission function. ORION solves the Poisson equation for the gravitational potential

φ using multi-level elliptic solvers with multi-grid iteration:

∇2φ = 4πG[ρ +
∑

n

mnδ(x− xn)], (5.6)

where mn and xn are the mass and position of the nth star.

ORION solves the non-equilibrium flux-limited diffusion equation using a parabolic

solver with multi-grid iteration to determine the radiation energy density (Krumholz

et al. 2007c):

∂E

∂t
−∇ · ( cλ

κRρ
∇E) = κPρ(4πB − cE) +

∑
n

LnW (x− xn), (5.7)

2Most of the volume of the domain is too cold to excite any of the H2 rotational or vibrational
degrees of freedom, and thus the gas acts as if it were monatomic.
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where κR and κP are the Rosseland and Planck dust opacities, and Ln is the lumi-

nosity of the nth star. W is a weighting function that determines the addition of

the stellar luminosity to the grid (see Appendix A for details of the star particle al-

gorithm). The flux-limiter is given by λ = 1
R
(coth R− 1

R
), where R = |∇E/(κRρE)|

(Levermore & Pomraning 1981).

We assume that the dust grains and gas are thermally well-coupled, an ap-

proximation we discuss further in Section 4.2. We obtain the dust opacities from a

linear fit of the Pollack et al. (1994) dust model, which includes grains composed

of silicates, trolites, metallic iron, organics, and H2O ices. For gas temperatures

10 ≤ Tg ≤ 350 K, the linear fit is given by:

κR = 0.1 + 4.4(Tg/350) cm2 g−1, (5.8)

κP = 0.3 + 7.0(Tg/375) cm2 g−1. (5.9)

These fits give κR = 0.23 cm2 g−1 and κP = 0.49 cm2 g−1 at the minimum simulation

temperature, 10 K. Work by Semenov et al. (2003) explores the effect of dust com-

position, porosity, and iron content on the Planck and Rosseland average opacities.

For the different models, they find a spread of more than an order of magnitude

in the opacity at 10 K. The simplest model, based upon the assumption that dust

grains are homogenous spheres, produces the lowest value for the Rosseland opacity,

κR ' 0.02 cm2 g−1, while the most porous and non-homogenous grain models pro-

duce 10 K opacities as large as κR ' 0.7 cm2 g−1. For temperatures above 100 K,

the different dust models are more converged and the opacities are generally within

a factor of 2. As a result, the temperature range from 10 K to 100 K is the most

sensitive to dust assumptions. In this range, homogenous models increase roughly

quadratically with temperature, while fluffier grain models increase linearly. Our

opacity fits are then close to the mean value of κR = 0.16 for the Semenov et al.

(2003) models, although this value is more representative of porous and aggregate

grains. As a result, our dust model is reasonable for the higher density regions of

n & 107 cm3 typical of protostellar cores, but we may overestimate the dust opacity

in the lower density cold gas by as much as a factor of 10.

In studies of low-mass star formation, it is reasonable to neglect pressure exerted
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by the radiation field on the dust and gas. This is because the advection of radiation

enthalpy is small compared to the rate the radiation diffuses through the gas:

∇ ·
(

3−R2

2
vE
)

∇ ·
(

cλ
κRρ
∇E

) � 1, (5.10)

where R2 = λ + λ2R2 is the Eddington factor.

Without radiative transfer, the energy exchange term in (5) disappears, and we

close the system of equations with a barotropic EOS for the gas pressure:

P = ρc2
s +

(
ρ

ρc

)γ

ρcc
2
s , (5.11)

where cs = (kBT/µ)1/2 is the isothermal sound speed, γ = 5/3, the average molecular

weight µ = 2.33mH, and the critical density, ρc = 2× 10−13 g cm−3. The value of µ

reflects an assumed gas composition of nHe = 0.1nH. The critical density determines

the transition from isothermal to adiabatic regimes, and we adopt a value to agree

with the full angle-dependent 1D radiation-hydrodynamic calculation by Masunaga

et al. (1998) that agrees with the collapse solution prior to H2 dissociation.

We use the Truelove criterion to determine the addition of new AMR grids so

that the gas density in the calculations always satisfies:

ρ < ρJ =
J2πc2

s

G(∆xl)2
, (5.12)

where ∆xl is the cell size on level l, and we adopt a Jeans number of J = 0.25 (Tru-

elove et al. 1997). In the case with radiative transfer, it is important to adequately

resolve spatial gradients in the radiation field. Radiation gradients are primarily

associated with collapsing regions hosting a star but are not covered by the Jeans

gravitational criterion. We find that we adequately resolve the radiation field and

avoid effects such as grid imprinting by refining wherever ∇E/E > 0.25. Although

the simulation box and gas behavior is periodic, we adopt Marshak boundary condi-

tions for the radiation field. This allows the radiation to escape from from the box

as it would from a molecular cloud.

We insert sink, or star, particles in regions of the flow that have exceeded the

Jeans density on the maximum level (Krumholz et al. 2004). These particles mark



Section 5.2. Methodology and Initial Conditions 128

Figure 5.2 Histogram of the gas temperatures weighted by volume fraction for RT

at 0.0, 0.5, 0.75, and 1.0 tff .

collapsing regions and also represent protostellar objects. In the simulation with

radiative transfer, the particles act as radiative sources, and they are endowed with

a sub-grid stellar model. We describe the details of this model and its implementation

in Appendix B. By construction, stars that approach within eight cells are merged

together. Small sink particles, such as those generated by disk fragmentation, tend

to accrete little mass and frequently merge with their more substantial neighbors

within a few orbital times.
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5.2.2 Initial Conditions

We chose a characteristic 3D turbulent Mach number, M=6.6, and assume that

the cloud is approximately virialized:

αvir =
5σ2

GM/R
' 1. (5.13)

The initial box temperature is T = 10 K, length of the box L = 0.65 pc and the

average density is ρ = 4.46× 10−20 g cm−3, so that the cloud satisfies the observed

linewidth-size relation (Solomon et al. 1987; Heyer & Brunt 2004). The total box

mass is 185 M�.

To obtain the initial turbulent conditions, we begin without self-gravity and

apply velocity perturbations to an initially constant density field using the method

described in Mac Low (1999). These perturbations correspond to a Gaussian ran-

dom field with flat power spectrum in the range 1 ≤ k ≤ 2 where k = kphysL/2π is

the normalized wavenumber. At the end of three cloud crossing times, the turbu-

lence follows a Burgers power spectrum, P (k) ∝ k−2, as expected for hydrodynamic

systems of supersonic shocks. We denote this time t = 0. We then turn on gravity

and follow the subsequent gravitational collapse for one global freefall time:

t̄ff =

√
3π

32Gρ̄
= 0.315 Myr, (5.14)

where ρ̄ is the mean box density. We continue turbulent driving in the simulations,

using a constant energy injection rate to ensure that the turbulence does not decay

and the cloud maintains approximate energy equipartition.

The calculations have a 2563 base grid with 4 levels of factors of 2 in grid

refinement, giving an effective resolution of 40963, where ∆x4 = 32 AU. In section

3.2, we describe the results of a high-resolution core study using 7 levels of refinement

for an effective resolution of 65, 5363 and minimum cell size ∆x7 = 4 AU. Generally,

the calculations run on 128-256 CPUs.
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Figure 5.3 The magnitude of the heating rate due to all stellar sources, viscous

dissipation, and gas compression at the times shown in Figure 5.1.
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Figure 5.4 The gas temperature as a function of distance from the source for all

sources in the RT simulation at 1.0 tff . The sources are separated into two plots

for viewing, where the earlier forming sources are on the left. The line indicates

T ∝ r−1/2.
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5.3 Results

5.3.1 Radiative Transfer and Non-Radiative Transfer Com-

parison

In order to quantify the effects of radiative feedback on low-mass star forma-

tion, we compare a simulation including radiative transfer with a non-radiative one

using an EOS. The latter simulation is essentially isothermal throughout since the

highest density allowed by the Truelove criteria at the fiducial maximum AMR level

corresponds to ρ ' 5× 10−15 g cm−3. With the adopted EOS, gas of this density is

not heated above 11 K.

Images of the two simulations at different times are shown in Figure 5.1. Al-

though the simulations use identical forcing patterns applied at the same Mach

number, the details of the turbulence differ as the two calculations have slightly

different time steps and turbulent decay rates. Both calculations begin at t = 0

with a centrally condensed region that forms the first stars, an imprint of the large

wavenumber driving. Once gravity is turned on, we continue driving the simulations

with the same energy injection rate, yielding 3D Mach numbers of 7.0 and 8.6 at 1 tff

for the NRT and RT calculations, respectively. Because gravitational collapse causes

non-turbulent velocity motions, we chose to fix the energy injection rate rather than

the total kinetic energy. Thus, the root-mean-squared gas velocity no longer exactly

indicates the total turbulent energy, and the Mach number increases above the ini-

tial value. In Tables 5.1 and 5.2, we list the properties of the stars formed in each

calculation at 1tff .

Temperature Distribution

At t = 0, the RT simulation is nearly isothermal and gas temperatures, are

distributed between 10-11 K (Figure 5.2). Evaluated at the mean box density, the

gas is quite optically thin with an average optical depth though the box of τL =

L× κRρ = 0.65 pc× 4.46× 10−20 g cm−3 × 0.2 cm2 g−1 ∼ 0.02. Since the box is so

transparent, the gas cools very efficiently. Small temperature variations arise in the
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Table 5.1. RT protostar properties at 1 tff

m (M�) ṁf (M� yr−1)aṁf,2500 (M� yr−1)b ¯̇m (M� yr−1)cL (L�) Age (Myr)d

1.52 4.2× 10−9 1.1× 10−7 8.7× 10−6 7.2 0.18

0.45 2.0× 10−8 3.9× 10−8 4.0× 10−6 0.9 0.11

0.09 1.4× 10−7 1.3× 10−7 8.0× 10−7 0.3 0.11

2.91 8.1× 10−7 1.7× 10−5 2.9× 10−5 177.5 0.10

0.35 5.6× 10−7 2.0× 10−7 3.5× 10−6 1.3 0.10

2.21 6.0× 10−7 4.2× 10−6 2.4× 10−5 45.2 0.09

1.54 4.0× 10−6 7.5× 10−6 1.7× 10−6 74.6 0.09

1.17 9.8× 10−6 1.7× 10−5 1.4× 10−5 69.4 0.09

0.43 1.2× 10−6 2.8× 10−6 6.0× 10−6 8.6 0.09

0.48 3.2× 10−6 7.2× 10−6 6.9× 10−6 19.4 0.08

0.65 1.6× 10−6 9.9× 10−6 1.1× 10−5 12.9 0.08

0.80 5.7× 10−6 1.7× 10−5 1.5× 10−5 67.6 0.06

0.33 2.1× 10−5 2.2× 10−5 2.3× 10−5 79.1 0.02

0.06 4.7× 10−6 5.1× 10−6 7.4× 10−6 3.9 0.01

0.01 3.0× 10−6 1.1× 10−5 8.6× 10−6 0.8 0.003

aInstantaneous final accretion rate.

bAccretion rate averaged over the last ∼ 2500 yrs.

cMean accretion rate averaged over the protostar lifetime.

dAge calculated from the time of particle formation.
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Table 5.2. NRT protostar properties at 1 tff

m (M�) ṁf (M� yr−1)a ṁf,2500 (M� yr−1)b ¯̇m (M� yr−1)c Age (Myr)d

3.92 7.2× 10−6 1.2× 10−5 2.2× 10−5 0.15

4.77 1.6× 10−6 2.7× 10−5 2.6× 10−5 0.15

2.91 1.0× 10−5 1.2× 10−5 2.6× 10−5 0.11

4.84 2.1× 10−5 2.3× 10−5 4.4× 10−5 0.11

0.66 2.5× 10−7 2.7× 10−7 7.6× 10−6 0.09

1.13 1.3× 10−5 1.3× 10−5 2.1× 10−5 0.05

0.66 8.9× 10−7 9.0× 10−7 1.2× 10−5 0.05

0.55 9.3× 10−7 1.0× 10−6 1.1× 10−5 0.05

0.71 5.9× 10−6 5.6× 10−6 1.4× 10−5 0.05

1.32 1.2× 10−5 1.4× 10−5 7.8× 10−5 0.02

0.08 2.7× 10−5 6.6× 10−6 5.9× 10−6 0.02

0.49 1.1× 10−5 1.1× 10−5 3.6× 10−5 0.02

0.26 5.0× 10−6 1.2× 10−5 2.0× 10−5 0.02

0.04 5.8× 10−6 1.1× 10−5 2.8× 10−6 0.02

0.02 2.6× 10−9 1.1× 10−8 1.2× 10−6 0.02

0.12 1.3× 10−6 1.5× 10−6 9.3× 10−6 0.02

0.04 2.7× 10−6 2.7× 10−6 4.2× 10−6 0.01

0.01 8.6× 10−12 5.5× 10−12 1.8× 10−6 0.01

0.09 6.4× 10−6 5.1× 10−6 1.3× 10−5 0.01

0.14 1.9× 10−5 1.9× 10−5 2.3× 10−5 0.01

0.02 2.7× 10−6 7.0× 10−6 5.5× 10−6 0.01

0.05 2.4× 10−5 1.5× 10−5 1.6× 10−5 0.01

aInstantaneous final accretion rate.

bAccretion rate averaged over the last ∼ 2500 yrs.

cMean accretion rate averaged over the protostar lifetime.

dAge calculated from the time of particle formation.
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Figure 5.5 The average gas temperature at 0.8 tff and 1.0 tff as a function of density.

The error bars give the temperature dispersion in each bin. The dashed line is a

least-sqares fit of equation (5.11) which returns ρc and γ. The dot-dashed line plots

equation (5.11) with the original parameters: ρc = 1 × 10−13 g cm−3 and γ = 1.67.

The power law density-temperature relation from Larson (2005) is also plotted.

initial state due to the distribution of strong shocks. For reference, gas compressed

by a Mach 10 shock at 10 K will undergo net heating of < 0.1 K during a time step.

Qualitatively, the change is so small because the radiative cooling time is a factor of

∼ 103 smaller than the time step.

Under the influence of gravity, collapsing regions begin to become optically thick,

where individual cells at the maximum simulation densities reach optical depths of

τ ' 3 when T = 100 K. Figure 5.2 shows the evolution of the gas temperature dis-

tribution over a freefall time. There are three processes that result in heating. First,

there is the direct contribution from the protostars, which we add as a source term

in the radiation energy equation. Second there is heating due to viscous dissipation,

which is given by:

ėvis = −(σ′ · ∇) · v, (5.15)

where σ′ is the viscous stress tensor, σ′ = η(S− 2
3
I∇·v) and S = ∇v+(∇v)T (Landau

& Lifshitz 1987). We assume that the dynamic viscosity η = ρ|v|∆x/Reg, where the

Reynolds number, Reg ' 1, at the dissipation scale. However, turbulent dissipation

occurs over a range of the smallest scales on the domain, where the largest amount
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of dissipation occurs on the size scale of a cell. Thus, we expect this formula to be

uncertain to within a factor of two. Third, the net heating due to gas compression

is given by:

ėcomp = −P (∇ · v); (5.16)

the heating is negative (i.e., cooling occurs) in rarefactions. Figure 5.3 shows the

heating contributions summed over the entire domain. At t = 0, the only source

of heating is turbulent motions. The figure demonstrates that after star formation

commences protostellar output rather than compression is responsible for the ma-

jority of the heated gas, and at 1tff protostellar heating dominates by an order of

magnitude relative to viscous dissipation and four orders of magnitude relative to

gas compression. Viscous dissipation dominates the heating prior to star formation.

After star formation is underway, viscous dissipation occurs in the protostellar disks.

In contrast, turbulent shocks then contribute very little to the total.

Figure 5.2 shows the evolution of the gas temperature distribution over a freefall

time. The amount of heated gas (T > 12 K) increases with the number of stellar

sources from 0.06% of the volume for one protostar at 0.5 tff to ∼ 4% at 1 tff . The

corresponding mass fractions of the heated gas are slightly higher at 0.3 % and 5%,

respectively. As we have seen in the previous figure, most of this heating is directly

related to the protostars, and it comprises a relatively small volume filling fraction.

The temperature distribution as a function of distance from the sources is shown

in Figure 5.4. As illustrated, heating is local and occurs within ∼ 0.05 pc of the

protostar. Since the remainder of the cloud remains near 10 K, additional turbu-

lent fragmentation is not affected by pre-existing protostars. However, radiative

feedback profoundly influences the evolution of the protostars, accretion disks, and

stellar multiplicity as we will show (see sections 5.3.1.2-3.1.3). Our temperature pro-

files are qualitatively similar to those of Masunaga & Inutsuka (2000), who model

1D protostellar collapse with radiative transfer. During the formation of the low-

mass protostar, Masunaga & Inutsuka (2000) also find that heating above 10 K is

confined within 0.05 pc of the central source and that significant variation in tem-

perature occurs as a function of density and time. Additional studies using GFLD

(Whitehouse & Bate 2006) or approximate radiative transfer methods (Stamatellos
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Figure 5.6 The distribution of masses (star + disk) for the two simulations at 1.0 tff .

The solid and dashed-cross lines indicate the NRT and RT simualtions, respectively.

et al. 2007; Forgan et al. 2009) find similar heating beyond that expected from a

barotropic EOS.

Due to temperature variation with both density and time, we find that the

gas temperature is poorly represented by a single EOS with characteristic critical

density and γ. Figure 5.5 shows the distribution of cell temperatures as a function

of cell density. For reference, we also plot our fiducial EOS for the NRT simulation

as well as the EOS presented by Larson (2005). We find that many cells at lower

densities are heated due to close proximity with a source. In fact, for both the EOS

described in section 5.2, which only includes the heating due to gas compression,

and the Larson (2005) EOS, none of the cells are predicted to heat much above the

initial 10 K temperature.
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Nonetheless, at any given time a representative EOS can be formulated by fitting

the mean grid cell temperature binned as a function of density. Figure 5.5 shows a

least-squares fit of the temperature data for two different times. The magnitude of

the error bars is given by the standard deviation of the temperatures in each density

bin. Because such an equation fits the average temperature, there is necessarily a

large scatter as illustrated by the error bars. The two fits return different effective

critical densities and gamma values. Thus, a single EOS results in a large fraction

of cells unavoidably at the wrong temperature.

Since accretion luminosity is predominantly emitted at the stellar surface, a low

simulation resolution, when not augmented for the missing source contribution, can

significantly neglect a large part of the heating (e.g., Bate 2009b). Typical pre-main

sequence protostellar radii are expected to range from 3-5 R� for low-mass stars

(Palla & Stahler 1993; Robitaille et al. 2006). Thus, the temperature at a distance,

r, from an emitting source, L∗, is given by:

T =

(
L∗

4πσBr2

)1/4

, (5.17)

where σB is the Stefan-Boltzman constant, and the gas distribution is assumed to be

spherically symmetric. Then the difference in accretion luminosity for a simulation

with minimum resolution of Rres = 0.5 AU versus a simulation resolving down to

the stellar surface at R∗ = 5 R� is given by:

∆L =
Gmṁ

Rres

×
(

Rres

R∗
− 1

)
' Gmṁ

Rres

× (20). (5.18)

Thus, the actual accretion luminosity at the higher resolution is a factor of 20 larger!

Since we adopt a stellar model to calculate the protostellar radii self-consistently, we

include the entire accretion luminosity contribution down to the stellar surface in

our simulations. From (5.18), the difference in luminosity corresponds to a factor of

(20)1/4 or ∼ 2 underestimation of the gas temperature. Nonetheless, this estimate

is conservative since it does not include the additional luminosity emitted by the

protostar, which may become significant during the Class II and late Class I phase.

Thus, we expect the simulation of Bate (2009b) may overestimate the extent of small

scale fragmentation and BDs formed in disks.



Section 5.3. Results 139

Figure 5.7 The figures show the distribution of particles formed as a function of

mass for the RT(left) and NRT(right) simulations (solid line). These include the

particles that are merged, where the total particle number with final masses greater

than 10−3 M�is 23 and 251, respectively. The dashed lines show the distributions of

stellar masses at the final time output.

Stellar Mass Distribution

The large temperature range in the RT simulation has a profound effect on the

stellar mass distribution. Figure 5.6 depicts the total mass of the star-disk systems

in each simulation, were we define the surrounding disk as cells with ρ > 5× 10−17 g

cm−3. We find that this cutoff selects gas within a few hundred AU of the protostars,

visually identified with the disk, while excluding the envelope gas. Increased thermal

support in the protostellar disk acts to suppress disk instability and secondary frag-

mentation in the core. In contrast, protostellar disks in the NRT calculation suffer

high rates of fragmentation. Most of these small fragments are almost immediately

accreted by the central protostar, driving temporarily large accretion rates onto the

central source. If we define the star formation rate per freefall time as

SFRff =
Ṁ∗

M/t̄ff

, (5.19)

(Krumholz & McKee 2005) then the total star formation rate in the NRT simulation

is 13% versus 7% in the RT simulation. Thus, the RT SFRff is almost half the

NRT value and agrees better with observations (Krumholz & Tan 2007). Since the
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simulations have the same numerical resolution, thermal physics must be directly

responsible. In the RT simulation, cores containing protostars experience radiative

feedback that slows collapse and accretion.

Due to the small number statistics, we do not directly compare with the shape of

the observed initial mass function. Accurate comparison is also problematic because

many of the late forming protostars are still actively accreting. As shown in Table

5.1, by 1tff in the RT case, about a third, or 5 of the protostars, have accretion rates

that are at least 5 times smaller than their individual mean accretion rate, indicating

that the main accretion phase has ended. Adopting an efficiency factor of εcore = 1
3

to account for mass loss due to outflows (Matzner & McKee 2000; Alves et al. 2007;

Enoch et al. 2008), we find that the mean protostellar mass of these protostars is

m̄ = 0.4 M�, which is comparable to the expected mean mass of the system initial

mass function of ∼ 0.5 M�(Scalo 1986; Chabrier 2005).

The dynamics of close bodies and embedding gas are difficult to accurately

resolve inside a small number of grid cells, so we merge particles that pass within 8

cells. Without this limit, some of the small fragments would dynamically interact

with the central body and be ejected from the stellar system. These brown dwarf

size objects are commonly produced in simulations that do not include a merger

criterion, typically in larger numbers than are observed in the stellar IMF (e.g.,

Bate et al. 2003; Bate & Bonnell 2005; Bate 2009a). As a result, the simulation IMF

only resolves wide binaries with separations > 300 AU.

Figure 5.7 shows a histogram of all created fragments in both simulations, in-

cluding the final mass of the objects that are merged. Due to the low-resolution

of the disks in the simulations, ∼ 10 cells, the many small bodies shown in the

NRT distribution indicate numerical disk instability rather than small bodies form-

ing from gravitational collapse. The large number of particles that are created in the

NRT case is directly related to the nearly isothermal EOS. Gravitational instability

in disks results in filamentary spiral arms. If the gas is isothermal, the filaments

undergo indefinite collapse irrespective of the numerical resolution (Truelove et al.

1997, 1998; Larson 2005; Inutsuka & Miyama 1992). In a numerical calculation, this

means that all the cells along a filament exceed the Jeans criterion nearly simul-
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taneously and trigger refinement. Once the maximum refinement level is reached,

sink particles are introduced in cells with densities violating the Truelove criterion

(Truelove et al. 1997). Since our sink particle algorithm is formulated to represent

a collapsing sphere, it is not well suited to filament collapse. Kratter et al. (2009, in

preparation) have addressed this issue in their predominantly isothermal simulations

by transitioning from an isothermal to an adiabatic EOS once the density reaches

a factor of four below the density at which sink particles are created. This has the

effect of forcing filaments to fragment into quasi-spherical blobs prior to sink parti-

cle creation, thereby allowing the collapsing objects to be faithfully represented by

point-like sink particles. At higher resolution, the barotropic nature of our EOS is

invoked and so much of this fragmentation disappears (see Section 5.3.2). Similarly,

in radiative calculations filamentary collapse is halted by heating due to radiative

feedback, so that fragmentation is described by spherical rather than filamentary

collapse. For either representation of heating, although numerical fragmentation in

filaments is restricted, physical fragmentation may yet occur.

The creation and fragmentation of filaments in the simulations is a result of

gravitational instability driven by rapid accretion. The criterion for the onset of

instability is similar to the classic Toomre Q < 1 condition, slightly modified by the

non-axisymmetry of the instabilities and the finite scale height of the disks, which is

a result of turbulence driven by the accretion. This sort of gravitational instability

has been investigated by Kratter et al. (2008, 2009 in preparation), who point out

that the presence or absence of instability depends largely on the accretion rate onto

the disk. The rate of mass transport through an α disk is

ṁ = 3

(
α

Q

)
c3
s,disk

G
, (5.20)

where Q is the Toomre parameter for the disk and cs,disk is the sound speed within

it. Gravitational instabilities produce a maximum effective viscosity α ∼ 1. At early

times, we find that the accretion rate from a core onto the disk forming within it can

be� c3
s,core/G, where cs,core is the sound speed in the core. If the sound speeds in the

disk and core are comparable, cs,disk ∼ cs,core, as is the case in the low-resolution NRT

simulation, then the disk can only deliver matter to the star at a rate∼ c3
s,core/G while
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still maintaining Q > 1. As a result matter falls onto the disk faster than the disk

can deliver it to the star, and the disk mass grows, driving Q toward 1 and producing

instability and fragmentation, as illustrated by the NRT simulation. Conversely, if

the disk is warmed, either by radiation or by a switch from an isothermal to an

adiabatic equation of state, then cs,disk > cs,core and the rate at which the disk can

deliver gas to the star increases. If the disk is sufficiently warm then it can process

all the incoming material while still maintaining Q > 1. As a result the disk does

not fragment, as is seen in both the low- and high-resolution RT simulations and

in high-resolution NRT simulation. This shows that the fragmentation in the low-

resolution NRT simulation is indeed numerical rather than physical in origin, and

that it is a result of the density-dependence of the equation of state rather than of

the resolution directly.

This analysis also sheds light on the importance of numerical viscosity. Krumholz

et al. (2004) show that in the inner few cells of disks, numerical viscosity can cause

angular momentum transport at rates that correspond to α & 1. However, as the

analysis above shows, increasing α tends to suppress fragmentation rather than en-

hance it. We find that fragmentation is more prevalent in the low-resolution NRT

simulation than the high-resolution one, which is exactly the opposite of what we

would expect if numerical angular momentum transport were significantly influencing

fragmentation. Therefore we conclude that numerical angular momentum transport

is not dominant in determining when fragmentation occurs in our simulations.

In isothermal calculations, the issue of filamentary collapse is a problem for

all sink particle methods and it is not unique to grid-based codes. Due to the

filamentary fragmentation in the NRT case, we prefer to merge close particle pairs in

the simulations rather than follow their trajectories. Note that particles are inserted

with the mass exceeding the Truelove criterion rather than the net unstable mass in

the violating cells. Particles created within a discrete bound mass typically gain size

quickly. Most particles formed in the unstable disk regions form in a spiral filament

and do not have significant bound mass, so the particle mass is tiny when they are

accreted by the central object. However, if several small particles are created within

the merging radius each time step around a particular protostar, their merging can
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significantly increase the instantaneous accretion rate. As illustrated by the figure,

there are only a handful of objects that form and approach within a merging radius in

the RT simulation, whereas the NRT simulation produces a plethora of such bodies.

Bate (2009b) finds a similar reduction in protostar number with the addition

of radiative transfer. As in our calculation, the final number of stars including

radiative transfer is sufficiently small that a statistical comparison with the IMF

is problematic. Instead, we base our comparison on the mean stellar mass. Using

a resolution of 0.5 AU, Bate (2009b) finds m̄ ∼ 0.5 M�, which does not include

outflows or any scaling factor accounting for their presence. Adopting a scaling factor

of εcore = 1/3 would produce a mean of m̄ ∼ 0.2 M�, lower than our RT mean mass

and the mean mass of either the system or individual stellar initial mass function

reported by Chabrier (2005). However, in Bate (2009b) a number of the protostars

are continuing to accrete and have not reached their final mass. In addition, Bate

(2009b) demonstrates that the mean stellar mass increases as calculations approach

higher resolution and include a larger portion of the accretion luminosity. This result

is most likely because disk fragmentation decreases as the gas becomes hotter, thus

increasing accretion onto primary objects. It is possible that if Bate (2009b) had

included all the accretion and stellar luminosity, the mean mass obtained would be

closer to the value we find.

Observations suggest that BDs compose ∼ 30% of the total population of clus-

ters (Andersen et al. 2006). Despite the merger criterion we adopt, the NRT calcu-

lation produces a significant number of BDs, > 30% sans scaling with εcore, resulting

in a slightly lower mean mass than the RT run. In comparison, Bate et al. (2003)

find that approximately half of the objects formed are BDs, resulting in a mean mass

of ∼ 0.1 M�. This result persists for barotropic calculations modeling more mas-

sive clusters with superior resolution (Bate 2009a). Calculations using a modified

EOS that includes effects due to the internal energy and dissociation of H2, ion-

ization state of H, and approximate dust cooling find increased disk fragmentation,

leading to numerous BDs (Attwood et al. 2009). Thus, the overproduction of BDs

in non-radiative simulations substantiates the importance of radiative transfer and

feedback from protostars in accurately investigating fragmentation and the initial
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Figure 5.8 The accretion rate, Ṁ , as a function of time for the first forming object

in the RT (left) and NRT (right) simulations. We average both simulations over 1

kyr for consistency.

mass function.

Accretion Rates

As indicated by the Toomre criterion given by equation (5.2), the local gas

temperature is key to the stability of disks. Clumpiness in the disks is directly

reflected in the variability of the protostellar accretion rate. Figure 5.8 shows the

accretion rates for the two first-forming protostars in each calculation as a function

of time. The RT protostellar accretion in the left panel illustrates that once a

protostar has accreted most of the mass in the core envelope, its accretion rate

diminishes significantly. Protostars in both simulations show evidence of variable

accretion on short timescales. However, the accretion bursts in the NRT simulation

may vary by an order of magnitude, while in the RT case variability is generally

only a few. Disk clumpiness may be magnified due to dynamical perturbations by

nearby companions. For the cases shown, the RT protostar is single, while the

NRT protostar has several companions. Similar variability to the NRT protostellar

accretion rate is also observed by Schmeja & Klessen (2004). In their turbulent

isothermal runs, Schmeja & Klessen (2004) show that the magnitude of the initial

particle accretion rate is comparable to our calculations at ṁ ∼ few× 10−5 M� yr−1



Section 5.3. Results 145

Figure 5.9 The plot shows the distribution of average accretion rates (crosses) as a

function of final star mass at 1 tff . The horizontal line indicates the Shu (1977) ac-

cretion rate c3
s/G at 10K. The dashed and dot-dashed lines indicate the age weighted

fit of the average accretion rates for the RT and NRT runs, respectively.
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with variability by factors of 5-10. However, the reported accretion rates appear to

significantly decrease within 0.1 Myr.

In principle, a sizable amount of the protostellar mass may be accreted during

the periods of high accretion. We define a burst as an increase of 50% in the accretion

rate over 1000 years, where mergers of another protostar of mass m > 0.1 M� are

excluded. Using this metric, the NRT protostars accrete from 0-13 % of their mass

during the bursts with a median of 5%. The RT protostars accrete 0.0-9 % of their

mass during bursty accretion with a median amount of 1%. Thus, variable accretion

is not significant. Our data analysis is limited by the coarse level time step of ∼ 100

yrs, so that accretion rate variability on shorter timescales will not be resolved in

the analysis. For comparison, Vorobyov & Basu (2006), modeling the formation

and accretion history of a protostar in two-dimensions, find that > 50 % of the

protostellar mass is gained in short intense accretion bursts. In their simulations,

accretion occurs smoothly until t ' 0.15 Myr, where variability on timescales < 100

yrs begins, corresponding to accretion of ∼ 0.05 M� clumps. Although their time

resolution is finer, sampling at longer time increments, as in our calculation, is

unlikely to miss persistent cyclical variability of four to five orders of magnitude

in accretion rate. We find that when the stellar mass is about half the final mass,

large variability in the RT accretion rates is rare, while it is more common in the

NRT case. RT protostars with ages comparable to t ' 0.15 Myr experience the

most variable accretion occurring over 1-2 orders of magnitude. However, by this

time, the majority of the envelope mass has been accreted and accretion rates are

¯̇m ∼ 10−7 M� yr−1, so that accreting significant mass is unlikely.

In Vorobyov & Basu (2009), the authors demonstrate that simulations with a

stiffer equation of state and warmer disk exhibit variability over at most two orders

of magnitude. This finding is more consistent with our results, and it supports the

differences in accretion we find between the NRT and RT calculations. However,

bursty accretion due to disk instability also depends upon the core rotation and

the rate at which mass is fed into the disk from the envelope(Vorobyov & Basu

2006; Boley 2009). Thus, we expect that radiative effects alone cannot completely

determine accretion behavior. Since the disks in our low-resolution calculations



Section 5.3. Results 147

are not well resolved, it is possible that we may not be able to resolve the disk

clumpiness observed by Vorobyov & Basu (2006). Their innermost cell is placed at

5 AU, which is comparable to the cell size in our high-resolution runs, however, they

adopt logarithm spacing to concentrate cells in the inner region of the disks. We

note that their method also includes an approximate treatment of magnetic fields

that could influence their results and which we neglect in our calculations.

Figure 5.9 shows that the NRT simulation exhibits slightly higher average accre-

tion. Note that we subtract the accretion spikes caused by significant mergers. The

mean accretion rate over the protostars lifetime for the final protostars is ∼ 1×10−5

M� yr−1 versus ∼ 6 × 10−6 M� yr−1 for the RT run. Without the added thermal

support from radiation feedback and with increased fragmentation, the NRT pro-

tostars accrete their envelope mass more quickly. However, the protostars in both

calculations satisfy the same accretion-mass relationship, with accretion increasing

approximately linearly with star mass. Using a least-squares fitting technique, we

obtain power-law relationships ¯̇m ∝ m0.92 and ¯̇m ∝ m0.64 for the RT and NRT data,

respectively, which have χ2 values of 67.6 and 18.0.3We include masses m ≥ 0.1

M�in the fit and weight the data by the ages of the protostars. Thus, young proto-

stars with only a short accretion history are weakly weighted. As Figure 5.9 shows,

there is a significant amount of scatter about the fits. Schmeja & Klessen (2004)

find a similar trend between the mean accretion rate and final masses for protostars

forming in their isothermal driven turbulence simulations.

The apparent correlation between stellar mass and average accretion rate occurs

because protostars forming in more massive cores tend to be more massive and also

have higher accretion rates. McKee & Tan (2003) derive a self-similar solution for

the accretion rate where the pressure and density each have a power-law dependence

on r, such that ρ ∝ r−kρ and P ∝ ργP ∝ r−kP , where γP = 2kP /(2 + kP ) and

kρ = 2/(2 − γP ). Although the simulated cores are not self-similar, it is possible

to fit a power-law to the pressure of the core envelope in most cases. Both RT and

NRT cores have exponents in the range kP ' 0− 5 at a few thousand AU from the

3The χ2 value for the fit is given by: χ2 =
∑N

i=1
yi−A−Bxi

σ2
y

, where yi are the age-weighted
accretion rates, xi are the masses, A and B are the fit coefficients, and σy is the standard deviation
of the yi values.
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Figure 5.10 The plot shows the system multiplicity for the two calculations, where

N is the number of stellar systems, and the plot is normalized to the total number

of systems. The multiplicity on the x-axis is the number of stars in each system.

protostar, with an average value of kP ∼ 1 or kρ = 1.5. McKee & Tan (2003) show

that the accretion rate is then:

ṁ∗ = 5.5× 10−6φ∗A
1/8, k

1/4
P ε1/4

core

(
m∗f

1 M�

)3/4

×
(

Ps,core/kB

106 K cm−3

)
(

m∗

m∗f

)3(2−kρ)/[2(3−kρ)]

M� yr−1, (5.21)

where m∗f is the final stellar mass , Ps,core is the core surface pressure, φ∗ and A are

order unity constants describing the effect of magnetic fields on accretion and the

isothermal density profile, respectively. Since we weight the fit by the protostellar

age, this selects for the case where m∗ ' m∗f . Assuming that Σcl is roughly constant,

ṁ∗ ∝ m
3/4
∗f , that is similar to the slopes produced by the least-squares fit.
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Multiplicity

The number of stars with stellar companions is an important observable that

may directly relate to the initial conditions of star-forming regions. Among the pop-

ulation of field stars, most systems are single with the number of systems containing

multiple stars increasing as a function of stellar mass (Lada 2006). Young pre-main

sequence stellar populations are observed to contain more multiple systems than

field stars suggesting that the multiplicity fraction evolves over time (Duchêne et al.

2007). Unfortunately, the initial stellar multiplicity is challenging to directly mea-

sure due to the difficulty of resolving close pairs and limited sample sizes (Duchêne

et al. 2007). The two dominant effects influencing multiplicity are fragmentation and

N-body dynamics. While fragmentation in a collapsing core may result in multiple

stars, systems with three or more bodies are dynamically unstable, causing higher-

order stellar systems to rapidly lose members. Multiple stellar systems can also

occur via stellar capture, a mechanism most applicable to high-mass stars forming

in very clustered environments (Moeckel & Bally 2007). Goodwin & Kroupa (2005)

suggest that that observed higher-order multiple systems are initially members of

open stellar clusters rather than arising from the fragmentation of a single core. In

general, the number of such systems is observed to be small, with only 1 in every 50

systems in the field having at least four members (Duquennoy & Mayor 1991).

The RT and NRT calculations present very different pictures of the initial stellar

multiplicity. The large differences in temperature and fragmentation have a signif-

icant effect on the fractions of stars in single and multiple systems. As shown in

Figure 5.10, the majority of stars formed in the RT calculation are single, while in

the NRT calculation the majority of stars live in systems with 2 or more stars. This

is mainly due to continued disk fragmentation rather than long-lived stable orbital

systems. The field single star fraction (SSF), defined as the ratio of the number of

primary stars without a stellar companion to the total number of stellar systems, is

observed to be ∼ 70% (Lada 2006)4. The RT calculation produces an SSF of 0.8

+0.2/−0.4, while the NRT calculation has an SSF of 0.6 ±0.4, where the uncertainty

is given by the poisson error. Due to the resolution of our calculation, we can only

4The SSF does not include brown dwarfs in estimating multiplicity.



Section 5.3. Results 150

Figure 5.11 The plot shows the total luminosity as a function of time for three stars

in the RT simulation. The accretion luminosity contribution is shown by the dashed

line, and the masses are 1.5, 0.45, and 0.35 M�, respectively. The bottom plot shows

the total luminosity including all the protostars.

capture wide binary systems of r > 300 AU. However, a number of protostars have

undergone significant mergers, which we define as those in which the smaller mass

exceeds 0.1 M�. We find that about a third of the stars in the RT simulation and

a tenth of stars in the NRT simulation have experienced significant past mergers.

Assuming that these would have resulted in multiple stellar system revises the SSF

values to 0.5±0.3 and 0.6±0.4, respectively. Unfortunately, this is a very uncertain

estimate as we have small statistics, and we cannot know whether the systems with

significant mergers would have resulted in bound or unbound systems in the absence

of the mergers.
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Figure 5.12 The plot shows the distribution of luminosities (crosses) in the RT sim-

ulation as a function of final star mass at 1.0 tff . The crosses, stars, and diamonds

refer to stars undergoing variable core deuterium burning, undergoing steady core

deuterium burning, or reaching the zero-age main sequence.
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Stellar Feedback

Our model includes accretion luminosity and a sub-grid stellar model estimat-

ing the contribution from Kelvin-Helmholz contraction and nuclear burning (see Ap-

pendix 5.7) The stellar model includes four evolutionary stages. The earliest stage

occurs when the protostar begins burning deuterium within the core at a sufficient

rate to maintain a constant core temperature. Once the initial deuterium in the

core is depleted, burning occurs at the rate that new matter convects inwards; this

is the steady core deuterium state. In the third stage, the star burns the deuterium

remaining in the outer layers of the protostar. Finally, the star ceases contracting

and reaches the zero-age main sequence (ZAMS).

Figure 5.11 shows the luminosity as a function of time for three different pro-

tostars. At early times, accretion dominates the luminosity, and variability in ac-

cretion is strongly reflected in the total luminosity. At late times, accretion slows

and Hayashi contraction begins to make a substantial contribution. In general, the

total luminosity summed over all the stars is dominated by those protostars with

the highest accretion rates. For these young sources, the stellar luminosity is quite

small in comparison to the accretion luminosity. Thus, the last panel in Figure 5.11

shows that for all times, accretion luminosity is the main source of luminosity.

For comparison, luminosity due to other physical processes such as compression

and viscous dissipation is small (see Figure 5.3). Figure 5.12 shows the final luminos-

ity as a function of source mass. The luminosity increases roughly linearly with mass

but has a fairly large scatter. As indicated on the plot, two of the stars have reached

the ZAMS, which was due to increased accretion resulting from significant mergers.

Even in this low-mass stellar cluster, there are individual stars with contributions

larger than the net viscous dissipation. This demonstrates that any heating due to

viscous dissipation is exceeded by modest protostellar feedback.

5.3.2 Resolution and Convergence

The AMR methodology allows flexibility in both the depth and breadth of

resolution. An insufficient amount of resolution may give inaccurate results, so it is
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Figure 5.13 From left to right, the images show the log density, log radiation tem-

perature, Tr = (Er/a)1/4, and log gas temperature for an RT protostellar system at

∼ 0.6 tff followed with dx = 4 AU resolution (top) and dx = 32 AU (bottom). The

image is 0.03 pc on a side, where we denote the star position with a black cross.

The color scale ranges are given by 10−19− 10−14 g cm−3, 1− 100 K, and 1− 100 K,

respectively.
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important to gauge the sensitivity of the result to the resolution. The large scope

of the problem and the expense of the radiative transfer methodology limits the

depth or maximum resolution of our calculation, where the RT calculation cost is

∼ 70,000 CPU hrs on 2.3 GHz quad-core processors. To quantify the effects of

resolution on the solution, we run second RT and NRT calculations that evolve the

first formed object to a resolution eight times higher than the overall calculation.

We run these simulations for 0.12 tff after the formation of the protostar. We adopt

a fixed number of cells for the closest resolved approach between two particles, so

that the high-resolution simulations have a merging radius of 32 AU, a factor of eight

smaller than the low-resolution cases.

High-Resolution Study with Radiative Feedback

The high-resolution and low-resolution calculations both form single objects

with stable, thermally supported disks. Figure 5.13 shows a comparison of the

densities, temperatures, and radiation fields. The effective radiation temperature

differs by only a few percent outside the inner cells of the low-resolution calculation.

In both cases, the gas and radiation temperatures are well coupled such that Tgas '
Trad. However, the gas in the high resolution case is more centrally concentrated,

and the disk radius appears smaller. At the final time, the high-resolution star has

accreted 0.54 M�, while the low-resolution case has reached 0.50 M�. During the

course of the run, the lower resolution case forms a few fragments in the disk, which

are almost immediately accreted by the primary, while in the high-resolution case,

no additional particles are formed.

Figure 5.14 shows a comparison of the accretion and luminosity as a function

of time. Accretion is generally smooth, and the rates are generally within a factor

of two. The luminosity in the low-resolution run has slightly larger variation, but

the two approach a similar value at later times. Although there are deviations in

the history between the two runs, the evolution is not significantly different at the

higher resolution. Certainly, even higher resolution is preferable for investigation of

disk properties, but our main result–that radiative feedback is important to the for-

mation of low-mass stars–is insensitive to the simulation resolution. High-resolution
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Figure 5.14 The plot shows the accretion rate and luminosity as a function of time

for the first formed star in the RT calculation and the same object followed with

dx = 4 AU resolution. Temporal bins of 1kyr are used.

radiation-hydrodynamics simulations of low-mass disks including irradiation confirm

that such disks, with properties similar to ours, are stable against fragmentation (Cai

et al. 2008). Gravitational instability is expected to occur only in the regime where

the mass of the disks is comparable to the stellar mass (Cai et al. 2008; Stamatellos

& Whitworth 2008, 2009).

High-Resolution Study with a Barotropic EOS

This higher resolution non-radiative study achieves maximum densities > 5 ×
10−13 g cm−3, several times higher than the barotropic critical density. Consequently,

dense gas is heated to temperatures of ∼ 20−25 K. During the time we compare the

non-radiative simulations, both the high-resolution barotropic calculation and the

first collapsing core in low-resolution NRT calculation form a similar mass primary
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object with protostellar disk (see Figure 5.15). However, the low-resolution NRT

system experiences significantly more fragmentation. We find that the protostellar

disk in the NRT case fragments during approximately half of the time steps, while in

the higher resolution barotropic case fragmentation occurs very rarely, taking place

in less than <0.1% of the time steps.

Since the low-resolution NRT disks are essentially isothermal, we conclude that

heating due to the barotropic approximation is largely responsible for decreasing the

number of fragments. In contrast, the higher resolution disks are heated to ∼ 20 K.

However, this is still significantly less heating than in the RT case, and we find that

numerical instability is not suppressed completely even with high-resolution. The

radiative high-resolution case experiences no disk fragmentation, underscoring our

conclusion that radiative feedback is crucial to representing fragmentation or lack

thereof in the star formation process.

Despite different merger radii, in both non-radiative cases all of the fragments

are eventually merged with the primary protostar so that the end result in both

calculations is a single protostar. This suggests that the fragmentation taking place

at low-resolution is largely numerical rather than physical. We emphasize that both

significantly higher resolution than we use and additional physics are required to

study accretion disk properties.

Convergence

The minimum breadth of resolution is determined by the Truelove criterion.

Due to the radiation gradient refinement criterion we apply to resolve the radiation

field, at 1 tff the RT simulation has ∼ 80 % more cells, generally concentrated

near the protostars, than the NRT calculation. This extra refinement improves the

resolution regions near protostellar sources. Inverting (5.12) yields an expression

for the effective Jeans number for each cell as a function of density, resolution, and

sound speed:

Jeff =
(ρG)1/2∆xl

csπ1/2
. (5.22)

As shown in Figure 5.16, the RT simulation is shifted to lower Jeff , where the vast

majority of cells in both calculations are resolved to better than Jeff = 0.1. The
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Figure 5.15 The images show the log density (left) and log gas temperature (right)

for a NRT protostellar system at ∼ 0.5 tff followed with dx = 4 AU resolution (top)

and dx = 32 AU (bottom). The image is 0.03 pc on a side, where we denote the

star position with a black cross. The color scale ranges are given by 10−19− 10−14 g

cm−3 and 1− 50 K, respectively.
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Figure 5.16 Histogram of the effective Jeans number, Jeff at 1.0 tff . The solid and

dashed lines indicate the NRT and RT simulations, respectively. Each histogram is

normalized to the total number of cells.

choice of base grid resolution guarantees that Jeff is typically much smaller than

J for most of the cells on the domain. We use a fiducial value of J = 0.25 to

trigger additional refinement in both simulations, so no cell has Jeff exceeding 0.25.

Cells in the highest Jeff bin are exclusively found on the maximum AMR level, and

they are generally at the highest gas densities. These cells, many located in the

disks around the protostars, are at the same resolution in both calculations. Thus,

the fragmentation results of the RT and NRT calculations are not dissimilar due

to differences in effective resolution but are solely a result of differences in thermal

physics.
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5.4 Simplifying Assumptions

These numerical calculations neglect a number of arguably crucial physical pro-

cesses in low-mass star formation. In this section, we discuss the implications for

our results.

5.4.1 Chemical Processes

Dust Morphology

Our dust model neglects the evolution of dust grains due to coagulation and

shattering. In cold dense environments, such as protostellar disks, the aggregation

of dust grains may significantly increase grain sizes on timescales as short as 100

years (Schmitt et al. 1997; Blum et al. 2002). Observations of Class 0 protostars

indicate significant evolution of the dust size distribution at average densities of

n ' 107 cm−3 by the Class 0 phase (Kwon et al. 2009). Since we adopt a single dust

model for the entire domain, we are likely to either overestimate or underestimate

dust grain size in different regions.

To examine the effect of the dust model on gas temperature, we repeat the

turbulent driving phase (without gravity) using a conservative model more typical

for non-aggregate dust grains:

κR = 0.015(T 2
g /110) cm2 g−1 for Tg ≤ 110 (5.23)

κP = 0.10(T 2
g /110) cm2 g−1 for Tg ≤ 110. (5.24)

Using this model, we find that shocked gas may be heated as high as 18 K after a

crossing time. In comparison, gas in the fiducial case is only heated to ∼11 K at the

same densities (see Figure 5.2 for the temperature distribution due to the fiducial

dust opacity model). However, the extent of the additional heating is quite small

since only 0.003% of the mass is heated above 11 K and thus differs from the fiducial

case. This suggests that the simulations may underestimate the gas temperature

in low density regions outside of cores (nH < 107) where the dust distribution is

not expected to evolve due to coagulation. Significant discrepancy between the gas

temperatures of the two models is mainly confined to a small number of cells and is
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mitigated by the importance of molecular cooling in these regions, which we discuss

in Section 4.1.2.

Gas Temperature at Low Density

To simplify the dust-gas interaction, we assume that dust and gas are perfectly

collisionally coupled such that their temperatures are identical. In molecular clouds,

there can be significant variation between the dust and gas temperatures. For exam-

ple, dust in close proximity to stellar sources is radiatively heated, while in strongly

shocked regions of the flow, dust acts as a coolant for compressionally heated gas.

Below we will discuss both the regime where dust cooling dominates, i.e., Tg > Td,

and where molecular cooling dominates, i.e., Td > Tg.

When the gas is shock-heated, the perfect coupling approximation remains valid

as long as the rate of energy transfer between the gas and dust is balanced by the

cooling rate of the dust. The dust cooling per unit grain area by photon emission is:

F (a, Td) = 4 < Q(a, Td) > σBT 4
d , (5.25)

where Td is the dust temperature, a is the grain size, and < Q(a, Td) > is the Planck-

averaged emissivity (Draine & Lee 1984). Then for an ensemble of grains with dust

opacity, κP , the dust cooling is given by:

n2Λd ' 4κP ρσBT 4
d (5.26)

' 9× 10−21

(
nH

1.6× 104 cm−3

)(
Td

10 K

)6

ergs cm−3s−1. (5.27)

In equation (5.27), we substitute Equation (7.3) for κP and assume that Tg ∼ Td.

The rate at which energy is transferred from the gas to the dust is given by:

nΓd = 9× 10−34nH
2T 0.5

g

[
1− 0.8e

“
− 75K

Tg

”]
× (5.28)

(Tg − Td)

(
σd

2.44× 10−21 cm−3

)
' 7.3× 10−24

(
nH

1.6× 104 cm−3

)2(
Tg

10 K

)3/2 [
1− 0.8e

“
− 75K

Tg

”]
(

1− Td

Tg

)
erg cm−3 s−1,
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where we adopt σd = 2.44 × 10−21 cm−2 for the dust cross section per H nucleus

(Young et al. 2004). For a gas temperature of 10 K the exponential term is very

small, so we neglect it in the following equation. Equating these expressions and

solving for the gas density at which heating and cooling balance gives:

nH ' 2× 107

(
Td

10 K

)6(
Tg

10 K

)−3/2(
1− Td

Tg

)−1

cm−3. (5.29)

Thus, we demonstrate that the dust and gas are well coupled as long as the gas

densities are sufficiently high.

However, even in regions where the dust and gas may not be well coupled,

molecular line cooling is important. For gas densities in the range nH = 103 − 105

cm−3, CO is the dominant coolant. For these densities, the cooling rate per H,

Λ/nH, is approximately constant with density at fixed temperature. To compare to

the magnitude of dust cooling consider a 2 km s−1 shock that heats the gas above 100

K. The cooling rate at 100 K is given by n2Λmol ' 5× 10−27nH ergs cm−3 s−1, where

we adopt the cooling coefficient from Neufeld et al. (1995). The characteristic cooling

time is ∼ 1000 yrs at the average simulation density, which is approximately half

the cell-crossing time of such a shock, implying that molecules cool the gas relatively

efficiently. Since the shock temperatures on our domain are limited by our resolution,

which is much larger than the characteristic cooling length, post-shock temperatures

do not surpass 20 K. In this regime, the dust cooling for perfect dust-gas coupling

is at least an order of magnitude larger than the estimated molecular cooling. As

a result, we likely under-estimate the temperatures in low-density strongly shocked

gas in comparison to similar shocks in molecular clouds.

In the regions near protostars, the perfect coupling assumption is valid provided

that gas heating by dust is balanced by molecular cooling. This case is discussed by

Krumholz & McKee (2008), where the authors demonstrate that the dust and gas

temperature remain within a degree provided that:

Td − Tg '
3.5× 105

nH

K (5.30)

for gas temperatures around 10 K. For higher gas temperatures around 100 K, we

adopt the molecular cooling coefficient above and find that the dust and gas are well
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coupled provided nH exceeds ∼ 2 × 108 cm−3. Number densities of this magnitude

are exceeded in collapsing cores, so that regions near protostars are guaranteed to

have well-coupled dust and gas.

Thus, gas temperatures in our RT simulation are fairly accurate for densities

larger than the average density, but they may be underestimated by a factor of ∼ 2

in strong shocks when the molecular cooling rate is much smaller than the imple-

mented dust cooling rate. Since gas heating suppresses fragmentation, our results

may actually overestimate the amount of fragmentation. Consequently, our finding

that radiative feedback reduces fragmentation would generally be strengthened by a

better treatment of the thermodynamics.

5.4.2 Magnetic Fields

Observations indicate the presence of magnetic fields in nearby low-mass star-

forming regions (Crutcher 1999). However, the magnitude of the fields and their

importance in the star formation process remain uncertain. Observations by Troland

& Crutcher (2008) suggest that the energy contributed by magnetic fields on core

scales is subdominant to the gravitational and turbulent energies. On smaller scales,

magnetic fields are believed to be associated with disk accretion and the generation

of protostellar outflows (Shu et al. 1994; Königl & Pudritz 2000).

Numerical simulations have demonstrated that the presence of magnetic fields

may suppress disk fragmentation by supplying additional pressure support (Machida

et al. 2008; Price & Bate 2007, 2008). We find that the inclusion of radiative transfer

has a similar stabilizing influence on disks.

5.4.3 Multi-frequency Radiative Transfer

Due to the expense of the calculations, we adopt a gray radiative transfer flux-

limited diffusion approximation. By averaging over angles and frequencies to obtain

the total radiation energy density, we sacrifice the direction and frequency informa-

tion inherent in the radiation field. As discussed in Krumholz et al. (2009), these

approximations touch on several competing effects that influence the radiation spec-
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trum. Since radiation pressure is negligible for low-mass stars, it does not affect the

gas dynamics. Instead, our main consideration is the extent to which radiative heat-

ing may differ for a more sophisticated radiative treatment. As we have discussed

in previous sections, the gas temperature and corresponding thermal pressure alone

have a significant relationship with accretion and fragmentation.

The first effect to consider is a more exact treatment of dust opacity, which is

strongly frequency dependent in the infared and increases towards lower wavelengths

(e.g., Ossenkopf & Henning 1994). Since long-wavelength radiation has a lower

optical depth, in a multi-frequency calculation the longest wavelengths would be able

to escape the core. Anisotropies in the radiation field may also facilitate cooling.

Radiative beaming, for example via an outflow cavity, may allow photons to escape

along the poles (Krumholz et al. 2005a). Thus, both these effects will likely decrease

the temperature in protostellar cores.

The gray radiative transfer method also assumes that the radiation field is

thermalized, producing a Planckian radiation spectrum everywhere. Although this

is a fair assumption in opaque regions where the number of mean-free-paths is large,

it fails in optically thin regions. Since thermalization softens the radiation spectrum,

the assumed Planck spectrum is likely to under-predict the heating rate.

Since the net affect of the approximations is somewhat unclear, comparison

with more sophisticated radiative treatments would be ideal. However, there have

been no 2D or 3D non-gray simulations of low-mass star formation. To date, the

most thorough investigation of protostellar formation is presented by Masunaga &

Inutsuka (2000). These spherically symmetric simulations follow the formation of

0.8 and 1.0 M� protostars. At radii of 60 AU, they find temperatures ranging

from 20-250 K during the main accretion phase, while we find Tmax ∼ 90 K. Their

maximum protostellar luminosity is 25 L�, which is entirely due to accretion. A

few of the protostars in the RT simulation have higher masses and higher maximum

luminosities, but the gas temperature distributions on average appear similar (see

Figure 5.4). However, the disparity in maximum temperature may be attributable to

either differences in the radiation schemes or initial conditions and geometry. Future

work will investigate the effects of 3D multi-frequency radiative transfer on low-mass
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star formation.

5.5 Conclusions

We perform gravito-radiation-hydrodynamic simulations to explore the effect

of radiation feedback on the process of low-mass star formation. We compare our

calculation with a similar one using an approximately isothermal equation of state

in lieu of radiative transfer. We find that the inclusion of radiative transfer has

a profound effect on the gas temperature distribution, accretion, and final stellar

masses.

We confirm the finding of Bate (2009b) that additional heating provided by ra-

diative transfer stabilizes protostellar disks and suppresses small scale fragmentation

that would otherwise result in brown dwarfs. However, we also find that the vast

majority of the heating comes from protostellar radiation, rather than from com-

pression or viscous dissipation. Thus calculations that neglect radiative feedback

from protostars, either because they use approximations for radiative effects that

are incapable of including it (e.g., Bate et al. 2003; Clark et al. 2008) or because the

explicitly omit it (e.g., Bate 2009b), significantly underestimate the gas temperature

and thus the strength of this effect. More generally, we find that, due to significant

variations in the temperature with time, no scheme that does not explicitly include

time-dependent protostellar heating is able to adequately follow fragmentation on

scales smaller than ∼0.05 pc.

We find that due to the increased thermal support in the protostellar disks,

accretion is smoother and less variable with radiative feedback. However, we show

that for low-mass star formation the heating is local and limited to the volume within

the protostellar cores. As a result, pre-existing sources do not inhibit turbulent

fragmentation elsewhere in the domain.

We find that the mean accretion rate increases with final stellar mass so that

the star formation time is only a weak function of mass. This is inconsistent with

the standard Shu (1977) picture, but it is qualitatively consistent with the McKee &

Tan (2003) result for the turbulent core model, where the star formation time varies
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as the final stellar mass to the 1/4 power.

The magnitude and variability of protostellar luminosity is of significant obser-

vational interest. If accretion contributes a substantial portion of the total luminosity

emitted by young protostars, then upper limits for protostellar accretion rates can be

inferred directly from the observed luminosity. This may give clues about the forma-

tion timescale and the accretion process while the protostars are deeply embedded

and cannot be directly imaged. In a future paper we will examine the ”luminosity

problem” and compare with embedded Class 0 and Class I protostars.

Our larger NRT and RT simulations are performed at a maximum resolution

of 32 AU, so it is possible that a few of our cores form stars that otherwise would

have become thermally supported or turbulently disrupted in a higher resolution cal-

culation. Thus, higher resolution calculations would be desirable for further work.

Although we find that the inclusion of radiative transfer has a similar impact as

magnetic fields on fragmentation and accretion, simulations examining the inter-

play of magnetic fields and radiative transfer are important. To asses the accuracy

of our radiative transfer approximations, further simulations with multi-frequency

treatment in multi-dimensions with improved dust modeling are also necessary.
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5.6 Appendix A: The Star Particle Algorithm

In this appendix we describe the details of our “star particle” algorithm we use

to represent protostars. Appendix 5.6 describes how the star particle algorithm func-

tions within the larger ORION code, while Appendix 5.7 describes the protostellar

evolution code that we use to determine the luminosities of our stars. This division

is useful because, from the standpoint of the ORION code, a star particle is char-

acterized by only four quantities: mass, position, momentum, and luminosity. The

luminosity is determined by the protostellar evolution model outlined in Appendix

5.7 that is attached to each star particle, but the only output of this model that is

visible to the remainder of the code is luminosity.

In a calculation using star particles, we add a set of additional steps to every

update cycle on the finest AMR level, so that the cycle becomes

1. Hydrodynamic update for gas

2. Gravity update for gas

3. Radiation update, including stellar luminosity

4. Star particle update

(a) Sink particle update

(b) Stellar model update

Steps (1) – (3) are the ordinary parts of the update that we would perform even

if no star particles were present. In steps (1) and (2) star particles have no direct

effect (since they do not interact hydrodynamically, and we handle their gravitational

interactions with the gas in an operator split manner in step (4a).

In step (3), star particles act as sources of luminosity, as indicated in equation

(5.7). We implement this numerically as follows: let Ln and xn be the luminosity
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and position of star particle n. Our code uses the Krumholz et al. (2007c) radiation-

hydrodynamic algorithm, in which we split the radiation quantities into those to

be handled explicitly and those to be handled implicitly. We therefore write the

evolution equation to be solved during the radiation step as

∂q

∂t
= fe−rad + fi−rad, (5.31)

where q = (ρ, ρv, ρe, E) is the state vector describing the gas and radiation in a

cell, the explicit update vector fe−rad is the same as in the standard Krumholz et al.

algorithm (their equation 52)5, and the implicit update is modified to be

fi−rad =


0

0

−κPρ(4πB − cE)

∇ ·
(

cλ
κRρ
∇E

)
+ κP(4πB − cE) +

∑
n LnW (x− xn).

 . (5.32)

Here W (x − xn) is a weighting function that depends on the distance between the

location of the cell center x and the location of the star xn. The weighting function

has the property that the sum of W (x− xn) over all cells is unity, and that W (x−
xn) = 0 for |x−xn| larger than some specified value. For the computations we present

in this paper we use the same weighting function as we use for accretion (equation

(13) of Krumholz et al. 2004). However, we have experimented with other weighting

functions, including truncated Gaussians, top-hats, and delta functions, and we find

that the choice makes very little difference because radiation injected into a small

volume of the computational grid almost immediately relaxes to a configuration

determined by diffusion. With this modification to fi−rad, our update procedure is

the same as described in Krumholz et al. (2007c).

Step (4a) is the ordinary sink particle method of Krumholz et al. (2004), so we

only summarize it here and refer readers to that paper for a detailed description and

the results of numerous tests. We first create new particles in any cell whose density

5Note that our notation here differs slightly from that of Krumholz et al. (2007c), in that we
follow the standard astrophysics convention in which κ is the specific opacity, while Krumholz et al.
(2007c) follow the radiation-hydrodyanmic convention in which κ is the total opacity. As a result,
any opacity κ that appears in the Krumholz et al. (2007c) equations is replaced by κρ here.
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exceeds the Jeans density on the maximum AMR level (i.e., where equation (5.12)

is not satisfied.) Next we merge star particles whose accretion zones, defined to be 4

cells in radius, overlap. This ensures that we combine multiple sink particles created

in adjacent cells that simultaneously exceed the Jeans density, or multiple sink par-

ticles created in the same cell during consecutive time steps. Then we transfer mass

from the computational grid onto existing sink particles. Accretion happens within

a radius of 4 cells around each sink particle. The amount of mass that a sink particle

accretes is determined by fitting the flow around it to a Bondi flow, reduced to ac-

count for an angular momentum barrier that would prevent material from reaching

the computational cell in which the sink particle is located. The division of mass

accreted among cells inside the 4-cell accretion zone is determined by a weighting

function. The accretion process leaves the radial velocity, angular momentum, and

specific internal energy of the gas on the computational grid unchanged (in the frame

co-moving with the sink particle), and it conserves mass, momentum, and energy

to machine precision. Next we calculate the gravitational force between every sink

particle and the gas in every cell using a direct 1/r2 force computation (since the

number of particles is small), and modify the momenta of the sink particles and the

momenta and energies of the gas cells appropriately. Finally we update the posi-

tions and velocities of each sink particle under their mutual gravitational interaction,

using a simple N-body code. Forces are again computed via direct 1/r2 sums.

Once the sink particle update is complete, we proceed to update the protostellar

evolution model that is attached to each star particle.

5.7 Appendix B: Protostellar Evolution Model

Step (4b) of the update cycle described in Appendix 5.6 involves advancing the

internal state of each star particle. The primary purpose of this procedure is to

determine the stellar luminosity for use in step (3). We determine the luminosity

using a simple one-zone protostellar evolution model introduced by Nakano et al.

(1995) and extended by Nakano et al. (2000) and Tan & McKee (2004). The model

has been calibrated to match the detailed numerical calculations of Palla & Stahler
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(1991, 1992), and it agrees to ∼ 10%. The numerical parameters we use for the

calculations in this paper are based on this calibration, but we note that after we

began this work Hosokawa & Omukai (2009) published calculations suggesting that

slightly different values would improve the model’s accuracy. We recommend that

Hosokawa & Omukai’s values be used in future work.

Before diving into the details of the numerical implementation, it is helpful to

give an overview of the model. The model essentially treats the star as a polytrope

whose contraction is governed by energy conservation. The star evolves through a

series of distinct phases, which we refer to as “pre-collapse”, “no burning”, “core

deuterium burning at fixed Tc”, “core deuterium burning at variable Tc”, “shell

deuterium burning”, and “main sequence”. The “pre-collapse” phase corresponds to

the very low mass stage (m . 0.01 M�) when the collapsed mass is not sufficient to

dissociate H2 and produce second collapse to stellar densities (Masunaga & Inutsuka

2000). During this phase the object is not yet a star. “No burning” corresponds

to the phase when the object has collapsed to stellar densities, but has not yet

reached the core temperature Tc ≈ 1.5× 106 K required to ignite deuterium, and its

radiation is powered purely by gravitational contraction. During this phase the star is

imperfectly convective. The next stage, “core deuterium burning at fixed Tc”, begins

when the star ignites deuterium. While the deuterium supply lasts, core deuterium

burning acts as a thermostat that keeps the core temperature fixed and the star fully

convective. Once the deuterium is exhausted, the star begins the “core deuterium

burning at variable Tc” phase, during which the core temperature continues to rise.

The star remains fully convective, and new deuterium arriving on the star is rapidly

dragged down to the center and burned. The rising core temperature reduces the

star’s opacity, and eventually this shuts off convection in the stellar core, beginning

the “shell deuterium burning” phase. At the start of this phase the star changes to

a radiative structure and its radius swells; deuterium burning continues in a shell

around the radiative core. Finally the star contracts enough for its core temperature

to reach Tc ≈ 107 K, at which point it ignites hydrogen and the star stabilizes on

the main sequence, the final evolutionary phase in our model.

In the following sections, we give the details of our numerical implementation
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of this model.

5.7.1 Initialization and Update Cycle

When a star is first created, its mass is always below 0.01 M� and thus in the

“pre-collapse” state. We do not initialize our protostellar evolution model until the

mass exceeds 0.01 M� – prior to this point star particles are characterized only by

a mass and have zero luminosity. On the first time step when the mass exceeds

0.01 M�, we change the state to “no burning”. Thereafter each star particle is

characterized by a radius r, a polytropic index n, and a mass of gas from which

deuterium has not yet been burned, md. We initialize these quantities to

r = 2.5R�

(
∆m/∆t

10−5 M� yr−1

)0.2

(5.33)

n = 5− 3

[
1.475 + 0.07 log10

(
∆m/∆t

M� yr−1

)]−1

(5.34)

md = m, (5.35)

where ∆t and ∆m are the size of the time step when the star passes 0.01 M� and

the amount of mass accreted during it. If this produces a value of n below 1.5 or

greater than 3.0, we set n = 1.5 or n = 3.0. These fitting formulae are purely

empirical calibrations designed to match Palla & Stahler (1991, 1992). The choice

of n intermediate between 1.5 and 3.0 corresponds to imperfect convection.

Once a star particle has been initialized and its state set to “no burning”, during

each time step we perform the following operations:

1. Update the radius and the deuterium mass

2. Compute the new luminosity

3. Advance to the next evolutionary phase

We describe each of these operations below.
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5.7.2 Evolution of the Radius and Deuterium Mass

Once a star reaches the “main sequence” evolutionary phase, we simply set its

radius equal to the radius of a zero-age main sequence star of the same mass, which

we compute using the fitting formula of Tout et al. (1996) for Solar metallicity.

Before this point we treat the star as an accreting polytrope of fixed index. For such

an object, in a time step of size ∆t during which the star gains a mass ∆m, the

radius changes by an amount ∆r given by a discretized version of equation (5.8) of

Nakano et al. (2000):

∆r = 2
∆m

m

(
1− 1− fk

agβ
+

1

2

d log β

d log m

)
r − 2

∆t

agβ

( r

Gm2

)
(Lint + LI − LD) r (5.36)

Here ag = 3/(5− n) is the coefficient describing the gravitational binding energy of

a polytrope, β is the mean ratio of the gas pressure to the total gas plus radiation

pressure in the star, fk is the fraction of the kinetic energy of the infalling material

that is radiated away in the inner accretion disk before it reaches the stellar surface,

Lint is the luminosity leaving the stellar interior, LI is the rate at which energy must

be supplied to dissociate and ionize the incoming gas, and LD is the rate at which

energy is supplied by deuterium burning.

In this equation we adopt fk = 0.5, the standard value for an α disk. For β,

the low-mass stars we discuss in this paper have negligible radiation pressure and

so β = 1 to very good approximation. In general, however, we determine β and

d log β/d log m by pre-computing a table of β values for polytropes as a function

of polytropic index n and mass m, and then interpolating within that table. For

n = 3 interpolation is unnecessary and we instead obtain β by solving the Eddington

quartic

P 3
c =

3

a

(
kB

µmH

)4
1− β

β4
ρ4

c , (5.37)

where Pc and ρc are the central pressure and density of the polytrope (which are

also stored in a pre-computed table as a function of n), and µ = 0.613 is the mean

molecular weight for fully ionized gas of Solar composition.

For the luminosity emanating from the stellar interior we adopt

Lint = max (Lms, LH) , (5.38)
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where Lms is the luminosity of a main sequence star of mass m, which we compute

using the fitting formula of Tout et al. (1996) for Solar metallicity, and LH = 4πr2σT 4
H

is the luminosity of a star on the Hayashi track, with a surface temperature TH =

3000 K. For the luminosity required to ionize and dissociate the incoming material

we use

LI = 2.5 L�
(∆m/∆t)

10−5 M� yr−1
, (5.39)

which corresponds to assuming that this process requires 16.0 eV per hydrogen

nucleus. The deuterium luminosity depends on the evolutionary stage. In the “pre-

collapse” and “no burning” phases, LD = 0. In the “core burning at fixed Tc”

phase, we set the deuterium luminosity to the value required to keep the central

temperature at a constant value Tc = 1.5×106 K. This is (equation (5.13) of Nakano

et al. 2000)

LD = Lint + LI +
Gm

r

∆m

∆t

{
1− fk −

agβ

2

[
1 +

d log(β/βc)

d log m

]}
, (5.40)

where βc = ρckBTc/(µmHPc) is the ratio of gas pressure to total pressure at the

center of the polytrope. In all subsequent phases, deuterium is burned as quickly as

it is accreted, so we take

LD = 15 L�
(∆m/∆t)

10−5 M� yr−1
, (5.41)

which corresponds to assuming an energy release of 100 eV per gram of gas, ap-

propriate for deuterium burning in a gas where the deuterium abundance is D/H =

2.5 × 10−5. Finally, we update the mass of material that still contains deuterium

simply based on LD. The change in unburned mass is

∆md = ∆m− 10−5M�

(
LD

15 L�

)(
∆t

yr

)
. (5.42)

5.7.3 Computing the Luminosity

From the standpoint of the rest of the code, the only quantity of any consequence

is the luminosity, since this is what enters as a source term in step (3). The luminosity

radiated away from the star consists of three parts:

L = Lint + Lacc + Ldisk, (5.43)
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where Lint is the luminosity leaving the stellar interior as defined above, Lacc is

the luminosity radiated outward at the accretion shock, and Ldisk is the luminosity

released by material in traversing the inner disk. These in turn are given by

Lacc = faccfk
Gm∆m/∆t

r
(5.44)

Ldisk = (1− fk)
Gm∆m/∆t

r
, (5.45)

where fk = 0.5 as defined above, and facc is the fraction of the accretion power

that is radiated away as light rather than being used to drive a wind. Although we

do not explicitly include a protostellar outflow in this calculation, we take facc =

0.5 so that we do not overestimate the accretion luminosity by assuming that the

all the accretion power comes out radiatively rather than mechanically. Thus, we

assume a total radiative efficiency of 75%. Although this value is consistent with x-

wind models (Ostriker & Shu 1995), neither x-wind or disk-wind models definitively

constrain the total conversion of accretion energy into radiation, and we treat this

as a free parameter.

5.7.4 Advancing the Evolutionary State

The final pieces of our protostellar evolution model are the rules for determining

when to change the evolutionary state, and for determining what happens at such

a change. Our rules are as follows: if the current state is “no burning”, then at the

end of each time step we compute the central temperature by numerically solving

the equation

Pc =
ρckBTc

µmH

+
1

3
aT 4

c , (5.46)

where Pc and ρc are determined from the current mass, radius, and polytropic index.

If Tc ≥ 1.5× 106 K, we change the evolutionary state to “core burning at fixed Tc”

and we change the polytropic index to n = 1.5.

If the current evolutionary state is “core burning at fixed Tc”, then we check to

make sure that md ≥ 0 after we update the unburned deuterium mass with equation

(5.42). If not, then the deuterium has been exhausted and we change the state to

“core burning at variable Tc”.
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If the current state is “core burning at variable Tc”, we decide whether a ra-

diative zone has formed by comparing the luminosity being generated by deuterium

burning, LD, to the luminosity of a zero-age main sequence star of the same mass,

Lms. We switch the state to “shell deuterium burning” when LD/Lms > frad = 0.33.

At this point we also change the polytropic index to n = 3 and increase the radius by

a factor of 2.1, representing a swelling of the star due to formation of the radiative

barrier.

Finally, if the state is “shell burning”, we compare the radius r at the end of

every time step to the radius of a zero-age main sequence star of the same mass.

Once the radius reaches the main sequence radius, we switch the state to “main

sequence”, our final evolutionary state.
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Chapter 6

Luminosity Distributions of

Low-Mass Protostars: Comparison

with Observations

6.1 Introduction

Low-mass protostars are typically divided into four observational classes that

can roughly be mapped to evolutionary stages (Andre et al. 2000). Class 0 protostars

are both dim and heavily obscured by a dusty envelope, such that most of the

radiation falls in the sub-mm band. During the Class I phase the protostar, while still

embedded, becomes less obscured and may be surrounded by a thick circumstellar

accretion disk. By the Class II phase, the now pre-main sequence star has accreted

or expelled most of the initial envelope mass. The remaining gas lies in thin accretion

disk surrounding the star. Signatures of outflows may be apparent during both the

Class I and Class II phases. During Class III, accretion finishes and the remaining

debris disk begins the planet formation process.

These classes are observationally distinguished using the bolomentric temper-

ature of the observed spectral energy distribution (Enoch et al. 2009). However,

cataloguing sources and definitively mapping them to a physical stage is compli-

cated since edge-on Class II protostars may be misclassified as Class I (Robitaille
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et al. 2006). More simply, measurements of the mm emission as a proxy for the

envelope mass can be used to distinguish between embedded, i.e., Class 0 and Class

I objects, and non-embedded, Class II objects.

The majority of the accretion process occurs while the protostar is deeply em-

bedded. Consequently, the high extinction and significant radiation reprocessing

during the Class 0 and Class I phases hinder detailed study and the protostellar

properties are poorly constrained. However, if accretion contributes a substantial

portion of the total luminosity, then upper limits for the accretion rates may be

inferred directly from the observed luminosity. This gives clues about the formation

timescale and the accretion process while the protostars are deeply embedded and

cannot be directly imaged. As a result, the magnitude and variability of protostellar

luminosity, particularly during for the earliest classes, is of significant observational

interest.

For a source accreting at Ṁ∗ with mass M∗ and radius R∗, the luminosity

generated via accretion is given by:

Lacc = facc
GM∗Ṁ∗

R∗
, (6.1)

where facc is the fraction of the total accretion energy converted to radiation ver-

sus absorbed by the star or channeled into an outflow (McKee & Ostriker 2007).

Standard protostellar properties and lifetimes suggest that many sources have lower

accretion rates as inferred from their luminosity than expected (Enoch et al. 2009;

Evans et al. 2009). This discrepancy, first noted by Kenyon et al. (1990), is generally

referred to as the “luminosity problem.”

Most recently, Enoch et al. (2009) reports a mean protostellar luminosity of ∼
2 L�, which corresponds to a final mean stellar mass given by:

M∗ ' Ṁ∗tacc = 0.41

(
Lbol

2.0 L�

)(
M̄∗

0.25 M�

)−1(
facc

0.75

)−1(
R∗

3.0 R�

)(
tacc

0.4 Myr

)
M�,

(6.2)

where all the luminosity is derived from accretion. A lifetime of ∼ 0.5 Myr is derived

from the observed number of Class 0, I, and II objects (Evans et al. 2009). However,

the lifetime decreases to ∼ 0.4 Myr when the observations are corrected for extinc-

tion. If the mean final stellar mass is 0.5 M�, then the mean stellar mass over its
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formation, M̄∗, is half the final mass or ∼ 0.25 M�. This estimate apears reasonable

given that the mean mass of the system IMF is ∼ 0.5 M� (Chabrier 2005). How-

ever, this picture is simplified by assuming that sources have constant luminosity

over the duration of the embedded phase and that all luminosity derives from ac-

cretion, which may significantly decrease the estimates. Source confusion in which

edge-on Class II protostars are misclassified as Class I may also lower the embedded

lifetime. Many late Class I or early Class II sources lack detectable mm emission,

which suggests that they are no longer embedded within an envelope. Such sources

likely have significantly diminished accretion rates such that their luminosity output

is dominated by the stellar contribution (White & Hillenbrand 2004; Muzerolle et al.

1998).

Some authors have suggested that the large spread in observed source lumi-

nosities may be attributed to variability in accretion (Kenyon et al. 1990; White &

Hillenbrand 2004; Evans et al. 2009). For example, Evans et al. (2009) find that

if protostars spend 7% of their Class I lifetime in a high-accretion phase, then it

is possible to form a 0.7 M� star. However, this analysis also neglects the stellar

luminosity. Star formation models including both stellar luminosity and accretion

luminosity generally estimate significantly higher bolometric luminosities than ob-

served (Young & Evans 2005). Evans et al. (2009) find that the Myers et al. (1998)

formation model including the stellar contribution compares favorably with obser-

vations. However, the authors assume a somewhat contrived accretion proscription,

where accretion decreases exponentially with time.

In this chapter, we investigate the nature of the luminosity problem, by com-

paring a radiation-hydrodynamics simulation of protostars forming in a turbulent

molecular cloud (see Chapter 5) to observations of low-mass protostars. In section

6.2 we compare to recent observations of embedded protostars obtained by Enoch

et al. (2009). Section 6.3 contains conclusions.
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6.2 Comparison to Observations

In this section, we directly compare our radiative transfer (RT) simulation with

Enoch et al. (2009), henceforth E08, who report observations of embedded protostel-

lar sources in three low-mass star-forming regions. All three clouds have similar mean

protostellar luminosities of a couple L�. We confine our comparison to protostars in

the Perseus molecular cloud, which has the best statistics.

6.2.1 Simulation Model

We begin by constructing a simple expression to estimate the dependence of

the total luminosity on various parameters, including the core efficiency and binary

fraction, which are fixed in our simulation. We write this expression as a function

of the simulated values that have been calculated self-consistently using the McKee

& Tan (2003) model, which we use as a sub-grid model to describe the evolution of

the protostellar properties as a function of mass. Although the simulation neglects

outflows and it is limited by resolution, these effects can be included during post-

processing.

Observations of starless cores indicate that the core mass function shares a

similar shape with the stellar mass function but is shifted to higher masses by a

factor of three (Alves et al. 2007; Enoch et al. 2008). This difference is generally

interpreted as an efficiency factor reflecting the amount of gas launched and entrained

in outflows (Matzner & McKee 2000). Since we do not include stellar winds, we

adopt εcore = 1
3
, which acts to reduce both the simulated protostellar masses and

instantaneous accretion rates. We also consider the effect of unresolved close binaries

on the luminosity. For example, two equal mass stars accreting at a combined

accretion rate of Ṁ∗ have half the luminosity of a single star with the same total

mass and accretion rate. Low-mass stars observed in binaries have a distribution of

mass ratios that peaks around 2:1 (Mazeh et al. 2003). Since the accretion luminosity

is proportional to the mass squared, this suggests an average binary correction factor

of

fbin =
(M2

1 + M2
2 )

M2
tot

=
(2

3
Mtot)

2 + (1
3
Mtot)

2

(Mtot)2
' 0.56 (6.3)
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for those protostars with a close companion. We include this correction for all proto-

stars in the RT simulation that have undergone a major merger (M > 0.1M�) during

their evolution. We adopt a value of facc = 0.75 from Tan & McKee (2004), which is

directly included in the simulation accretion luminosity. The luminosity generated

as the protostar contracts along the Hayashi track, L∗, must also be included in the

total luminosity, where L∗ = 4πσBr2T 4
s . While post-processing, we adopt Ts = 3000

K for all protostars, since this is the minimum stable surface temperature. We es-

timate the stellar radius assuming a mass of εcoreM with an average accretion rate

of ¯̇M = 1 × 10−6 M� yr−1. The protostellar radius estimated by the simulations

depends upon the time-history of the accretion rate. For simplicity, we adopt the

average accretion rate for the post-processing, and we find that in fact this radius,

reff , is not overly sensitive to the value of the mean accretion rate, ¯̇M , varied by a

factor of 10. A simple estimation of the luminosity including these factors is then

given by:

Lacc,∗,bin = ε2
corefbinaryLacc,sim +

(
reff( ¯̇M, εcoreM, fbinary)

r(Ṁ,M, 1)

)2

L∗,sim, (6.4)

where Lacc,sim and L∗,sim denote the simulation accretion luminosity and stellar lu-

minosity, respectively. There are two dominant competing effects: a lower core

efficiency factor works to reduce the luminosity, while a smaller protostellar radius

increases it. With the fiducial values, the net effect is to reduce the RT protostellar

luminosities by a factor of ∼ 5.

For most of the early protostellar formation, the accretion luminosity is an

order of magnitude larger than the stellar luminosity. Once accretion diminishes to

. 10−7 M� yr−1, the stellar luminosity may surpass the accretion luminosity (Offner

et al. 2009).

6.2.2 Comparison

Since observations can give no direct information about protostellar masses

or radii, we instead use the envelope mass for comparing sources. To derive the

simulation envelope masses, we use the E08 beam size of 31” at 1.1 mm, which
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corresponds to a physical diameter of ∼ 0.04 pc at 250 pc. If we use an envelope

mass of 0.1 M� to distinguish between Class I and Class II sources, then we find that

two protostars in the simulation are no longer deeply embedded and would therefore

be considered Class II objects. We exclude these from the data comparison. The

remaining protostars correspond to Class 0 and early Class I objects.

Figure 6.1 shows the Perseus Class 0 and Class I bolometric luminosities re-

ported by E08 and the estimated RT luminosities as a function of envelope mass. For

reference, we plot the accretion luminosity, Lacc, the total stellar and accretion lumi-

nosity, Lacc,∗, and the net luminosity corrected for significant mergers, Lacc,∗,bin. We

find a mean accretion luminosity of 3.9 L�, which is almost twice the observed mean.

We quantify the similarity of the two distributions using a two-variable Kolmogorov-

Smirnov (K-S) test. Comparing the net accretion and protostellar luminosities with

the bolometric luminosities, we find a K-S statistic of 0.17. Some of the disagree-

ment may be due to the lack of resolution of close binaries. If we assume that all the

stars with past mergers greater than 0.1 M� are in fact two stars with a 2:1 mass

ratio that would be distinguishable observationally, then the K-S statistic increases

to 0.22. Adopting a higher core efficiency of εcore = 0.5 decreases the agreement to

0.05.

In our simulations, the mean protostellar mass at the final time is ∼ 0.4M�,

which includes objects that are still actively accreting and reflects the expected core

efficiency (Offner et al. 2009). In comparison, the Chabrier (2005) system stellar

IMF gives a mean final mass of ∼ 0.5 M� for small clusters with maximum stellar

mass of a few solar masses.

We have shown that our simulations can reproduce the observed luminosity

distribution reasonably well assuming a typical core efficiency factor. However, it

is also interesting to ask the question in reverse: How well do the accretion rates

inferred from observed luminosities using equation (6.1) compare to the true accre-

tion rates produced in our simulations? We plot the accretion rates inferred from

the observed bolometric luminosities and the RT instantaneous accretion rates as a

function of envelope mass in Figure 6.2. The observational accretion rates are de-

rived using equation (6.1), where we assume that all objects have mass of 0.25 M�,
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averaging over their accretion history, and radius of 3 R�. For the largely uncertain

distribution of stellar masses and significant span of accretion rates, a wide range

of protostellar radii are possible. To our knowledge, a mass averaged value for the

mean stellar radius has not been rigorously calculated, although stellar radii of 3-5

R� are typically derived in 1D evolutionary models of low-mass pre-main sequence

stars (Palla & Stahler 1993; Robitaille et al. 2006). Our code model reproduces the

Palla & Stahler (1993) results fairly well, although it tends to underestimate the

stellar radii for M < 0.3 M� by ∼ 30 %. This occurs because Palla & Stahler (1993)

assume that the protostellar radii limit to a fixed value of 2.5 M� for arbitrarily small

masses. We plot the post-processed values for the radii in Figure 6.3 as a function

of the gas envelope mass. We expect the derived observational accretion rates are

uncertain to within a factor of ∼ 2.

We find that the youngest protostars in our simulation have accretion rates

that are on average slightly higher than observed. For example Enoch et al. (2009)

estimate that typical Class 0 and Class I accretion rates are 1− 2× 10−6 M� yr−1,

while we find an average rate of ∼ 4×10−6 M� yr−1. As a result, the K-S statistic for

all the sources compared with observation is 0.004, while comparison with only the

first forming 7 RT sources gives a K-S statistic of 0.09. In general, the RT luminosities

agree better observationally than the RT accretion rates, since the RT simulation

accretion rates for the youngest protostars are clustered around Ṁ ∼ 10−6 − 10−5

M�yr−1. Observations of sources with envelope masses of Menv ∼ 1 M� appear

to have a larger dispersion of accretion rates, assuming that the luminosity is due

entirely to accretion. However, the observational accretion rates should be considered

very approximate since the actual protostellar masses, radii, and evolutionary stages

are unknown.

The RT simulation supports the idea that accretion dominates the luminosity

for young (e.g., Class 0) sources, while stellar luminosity dominates once protostars

have accreted most of their envelopes (e.g., Class II). Consequently, assuming that

nearly all of these observed sources are dominated by accretion luminosity is likely

a good approximation (Offner et al. 2009). Although we are thus able to get reason-

able agreement with observed luminosities, this agreement is somewhat sensitive to



Section 6.3. Conclusions 182

both the protostellar radius and the binary fraction of stars formed in the simulation.

Due to uncertainties in the protostellar evolutionary model, the estimated luminos-

ity may be uncertain to within a factor of ∼ 2 or ∼ 4 depending upon whether

accretion or stellar luminosity dominates the total. Since we do not resolve pairs

with separations of less than 300 AU, we also cannot conclude whether the mergers

would have otherwise resulted in close binaries or unbound neighbors that would be

observationally resolved. We note that the Spitzer IRAC band has a beam resolu-

tion of ∼ 500 AU in Perseus, which is larger than our stellar separation resolution,

such that existing close binaries present in the observational sample are similarly

unresolved.

6.3 Conclusions

We find that for a reasonable core efficiency factor, the RT simulation produces

protostellar luminosities that are in reasonable agreement with observations. The

agreement is further improved by accounting for mergers of large protostars, which

cannot be followed at our resolution. Although our luminosities do tend to be slightly

systematically higher than the observed ones, we do not conclude that a significant

luminosity problem exists.

We find less good agreement between inferred accretion rates and simulation

accretion rates. This comparison is complicated by the need to assume a fixed

radius for the observed protostars. Since the actual observed protostellar properties

such as mass and radius are poorly constrained, it is unsurprising that the observed

and simulated accretion distributions are dissimilar.

The main uncertainty in our comparison is the degree to which protostellar

winds affect accretion. The fiducial efficiency factor effectively lowers the simulation

luminosities by a factor of ∼ 5. Without this correction factor, the simulations would

over-predict the observed luminosities. Further simulations which self-consistently

include the effects of winds are necessary to for future studies.
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Figure 6.1 The figure shows the RT luminosities as a function of envelope mass.

The luminosity due to accretion, accretion plus stellar, and accretion and stellar

corrected for binaries is given by the crosses, stars, and diamonds, respectively. The

bolometric luminosity of Class 0 and Class I sources observed in Perseus by E08 is

given by the triangles and squares, respectively.
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Figure 6.2 The figure shows the instantaneous RT accretion rates as a function of

envelope mass (crosses). The accretion estimated from the bolometric luminosity of

Class 0 and Class I sources observed in Perseus by E08 is given by the triangles and

squares, respectively.
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Figure 6.3 The figure shows the protostellar radius as a function of envelope mass.

The crosses indicate the RT simulation values without correction. The diamonds

indicate post-processed values for the same protostars assuming that εcore = 1
3
.
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Chapter 7

Multigroup Radiative Transfer

7.1 Introduction

Radiative processes pose a complex, nonlinear physics problem. Obtaining the

solution for time-dependent, three-dimensional conditions can be extremely compu-

tationally challenging. This intractability essentially demands the introduction of

various approximations to the radiative transfer equation in order to obtain a solu-

tion. The adaptive mesh refinement (AMR) gray radiative transfer method derived

by Krumholz et al. (2007a) and used by Offner et al. (2009) is a precursor and

simplification of the multigroup method discussed in this chapter. In section 7.2,

we review the multigroup approach to the radiation transfer problem, which is de-

scribed thoroughly in Shestakov & Offner (2007). In section 7.3, we present tests of

the multigroup diffusion method implemented in ORION. In section 7.4, we discuss

the future application of multifrequency methods to problems in star formation.

7.2 Equations

The multigroup diffusion (MGD) equations stem from a discretization of the

multifrequency radiation energy equations. For a static medium where radiation

pressure is negligible, these equations are given by (Mihalas & Weibel-Mihalas 1999):

∂tuν = ∇ · c/(ρκν)∇uν + c ρ κν (Bν − uν) , (7.1)
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ρ ∂te = −c ρ

∫ ∞

0

dν κν (Bν − uν) , (7.2)

where uν and e represent the spectral radiation energy density and specific thermal

energy, respectively. The former quantity is a function of position, time, and fre-

quency, ν, while e is a function of the density, ρ, and gas temperature, T , quantities

which also depend on position and time. Here, κν is the opacity, and Bν is the

Planck function, which is given by:

Bν =
(8π h/c3) ν3

e
hν
kT − 1

erg sec−1 cm−3 Hz−1 , (7.3)

where c is the speed of light and h and k are the Planck and Boltzmann constants,

respectively. Since the evolution of the density is determined by hydrodynamics,

it remains fixed during the solution of the transfer equations. Equations (7.1-7.2)

are obtained in the diffusion limit by assuming that the gas is optically thick, which

suppresses the directional dependence of the radiation intensity. In the limit that the

gas becomes optically thin, a flux-limiter is used to correct the equations and obtain

the appropriate radiation propagation speed. Equation (7.1) must be solved for each

frequency of interest, where the frequencies are coupled together via equation (7.2).

The solution of the equations must be iterated until the gas temperature as well as

the radiation energies has converged.

To sufficiently model the radiation spectrum, a large number of frequencies

may be required, incurring a prohibitive computational cost. However, the number

of equations can be reduced by discretizing the frequency domain into G frequency

spans, νi, or groups of frequencies (Shestakov & Offner 2007). For example, the

energy in each group is denoted:

ug( x, t) =

∫
g

uν =

∫ νg

νg−1

dν uν . (7.4)

Equations (7.1-7.2) can then be integrated over each frequency span to obtain

the MGD equations:

∂tug = ∇ · c/(ρκg)∇ug + c ρ κg (Bg − ug) , (7.5)

ρ ∂te = −c ρ
G∑

g=0

κg (Bg − ug) , (7.6)
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where Bg is the Planck function integrated over the gth group and κg is the av-

erage opacity for the group. In comparison, the gray radiation diffusion equation,

a further simplification of equation (7.5), is essentially a one-group system that is

derived by integrating over all frequencies (Krumholz et al. 2007a). For a frequency-

independent opacity, the MGD equations and the gray equations produce identical

results, independent of the number of groups. In the limit of many groups, the MGD

solution approaches the more exact multifrequency solution. The MGD equations

thus bestow significant computational advantage, allowing the user to concentrate

groups in interesting regions of the frequency domain, while covering low radiation

energy density regions of the spectrum more coarsely.

Although many methods for solving these equations have been previously con-

structed, recently Shestakov & Offner (2007) implemented a 3D multigroup flux-

limited radiative diffusion method within an AMR framework. Implemented in

the AMR ORION code, this method enables multi-physics simulations including

radiation-hydrodynamics, gravitation, and point mass sources with an unprece-

dented amount of resolution and accuracy. The actual method and implementation

utilizing pseudo transient continuation (PTC) have been described in great detail

by Shestakov & Offner (2007) and will not be repeated here.

7.3 Test Problems

Characterizing the accuracy of a scheme is an integral and informative part of

code development. Verification of radiation transfer methods is particularly chal-

lenging because exact analytic frequency-dependent solutions simply do not exist.

Historically, benchmark testing occurs through comparison with solutions generated

by previous codes or via trivial problems that do not fully evaluate the method.

Recently, Shestakov & Bolstad (2005) obtained a semi-analytic solution to the 1D

multifrequency diffusion problem by replacing the Planck function with the more

tractable Wien function. This solution constitutes a rigorous test for multigroup

and multifrequency methods. In addition, the substitution of the radiation emission

function is simple to implement without modifying the underlying scheme. Unfor-
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tunately, analytic tests for multifrequency radiation-hydrodynamics remain nonexis-

tent, so we test ORION by investigating a classic shock-tube problem and comparing

to known physical limits. We describe and present the results of these two tests in

the following subsections.

7.3.1 Wien Diffusion Test

The initial conditions for the Wien diffusion test consist of a gas with constant

density, ρ0, along a 1D extent with initially zero radiation field (Shestakov & Offner

2007). The gas temperature is initialized to T0 for 0 ≤ x ≤ x0 and 0 elsewhere.

At t = 0 gas is heated in a region near the origin such that the gas and radiation

fields are out of equilibrium. The opacity of the gas is given by κ = κ0(ν/ν0)
−3 cm2

g−1, where the configuration is optically thick for most frequencies. As the state

evolves with time, energy diffuses into the cold region while the gas and radiation

fields equilibrate. Thus, the problem tests the frequency dependent diffusion of the

radiation field as well as the energy transfer due to the gas and radiation coupling

equation.

In order to derive a semi-analytic solution to the multifrequency equations,

Shestakov & Bolstad (2005) replace the Planck function (equation 7.3) with its form

in the limit that hν >> kT . Thus, equation (7.3) reduces to the Wien function:

Wν = (8π h/c3) ν3e
−hν
kT ergs s cm−3. (7.7)

The choice for the opacity conveniently eliminates the coefficient frequency depen-

dence in the product κWν ∝ e(−hν/kT ). This expression is then easy to integrate, so

that equations 7.1 -7.2 can be evolved semi-analytically.

As described in Shestakov & Bolstad (2005), the Wien diffusion problem can be

written in terms of dimensionless parameters describing length, time, and radiation

energy densities, respectively:

l0 =
ν3
0

κ0
, x0 = l0√

3
, t0 = l0

c
u0 = 8πh

nu3
0/c3

, E0 = T 4
0 ,

where the characteristic frequency is given by ν0 = kT0/h and e = cvT , where

the specific heat capacity for an ideal gas is cv = 9.99 × 107 ergs K−1 g−1. As a
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consequence, the solution is conveniently independent of the initial choices for T0,

κ0, and ρ0. For running the test with ORION, we adopt fiducial values of T0 = 100

eV, κ0 = 7.40× 1038 cm−1 s−3, and ρ0 = 1.82× 10−5 g cm−3. These correspond to a

characteristic length and time of x = 2×105 cm and t0 = 1.16×10−5 s, respectively.

Although the derivation of the analytic solution assumes that the initial radiation

energy density on the domain and gas temperature at x > x0 are exactly zero, we

set these to small floor values that are negligible compared to the solution.

To model the frequency evolution, ORION uses 64 groups that span 0.0 ≤
hν ≤ 1500.0 eV with spacing that increases incrementally by a factor of α = 1.1.

The lowest span width is ∆ν0 = 0.05 eV. The frequency limits are chosen based on

the characteristic minimum and maximum temperatures in the problem, where the

integral of the emission function evaluated at these temperatures over the frequency

range must include most of the energy, i.e., for the Wien function:∫ ∞

0

W (ν, Tmax)dν '
∫ νmax

ν0

W (ν, T0)dν. (7.8)

The adopted group structure contains more than 99.98% of the energy for the ex-

pected range of temperatures.

We adopt a symmetry boundary condition for the left domain boundary at

x/x0 = 0. The right boundary at x/x0 = 4 uses an outflow boundary condition,

which allows the radiation to propagate freely out of the domain. We verify that the

solution is not affected by the placement of the boundary edge for solution times on

the order of t0.

In Figure 7.1, we show the ORION solution of the gas temperature and radia-

tion energy density at t = 1.0 t0 with the analytic solution overlaid. The solution is

sufficiently accurate that the predicted and actual solutions are indistinguishable by

eye. For reference, the bottom two panels in Figure 7.1 show the relative error in the

two quantities. The ORION solution is generally accurate to better than one part

in 1000, with the worst agreement occurring just to the right of the initial gas tem-

perature discontinuity, which corresponds to the location of the largest temperature

gradient. The radiation energy density, which is inherently diffusive, is an order of

magnitude more accurate in this region.
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Figure 7.1 The top images show the normalized gas temperature, T , and total radi-

ation energy density, E, as a function of position at t = 1.0 t0. The crosses indicate

the semi-analytic solution derived by Shestakov & Bolstad (2005). The bottom plots

show the relative error in the two quantities as a function of position.
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The net radiation energy density derived by ORION is given by the sum of the

energies contained in all frequency groups. As shown in Figure 7.1, the individual

group energies have widely different solutions depending on the typical mean-free

path of the group. By 1 t0, the few highest frequency groups have propagated past

the edge of the domain. However the energy in these groups is tiny in comparison

to the solution by construction, so the accuracy is not compromised. As illustrated

in Figure 7.1, the peak of the energy spectrum occurs in the groups 40-48, where

hν ' kT0.

7.3.2 Colliding Flows Test

Despite the power of the Wien diffusion test to directly validate the accuracy

of multifrequency radiative transfer methods, it is nonetheless limited to a static

medium. It is also important to check the veracity of the radiation solver within the

framework of a multi-physics problem. In the colliding flows test, we examine the

outcome of a strongly shocked flow in the optically thin and optically thick limits

of the radiation regime. When the gas is optically thin, efficient cooling occurs and

the gas acts as if it were isothermal. When the gas is optically thick, the shocked

gas cools slowly such that the gas behaves adiabatically. In these two regimes, we

can compare to the analytic purely hydrodynamic solution for strong shocks with

effective values of γ = 1.001 and γ = 5/3, respectively.

ORION solves the radiation-hydrodynamic equations of compressible gas dy-

namics (Truelove et al. 1998; Klein 1999; Krumholz et al. 2007b):

∂ρ

∂t
+∇ · (ρv) = 0, (7.9)

∂(ρv)

∂t
+∇ · (ρvv) = −∇P, (7.10)

∂(ρe)

∂t
+∇ · [(ρe + P )v] = −κRρ(4πB − cE), (7.11)

∂ug

∂t
−∇ · ( cλ

κR,gρ
∇ug) = κP,gρ(4πBg − cug). (7.12)

These equations are leading-order accurate in v/c provided that radiation pressure

terms are negligible, which is indeed true in our problem.
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Figure 7.2 The image shows the normalized radiation energy density in selected

frequency groups, Eg, as a function of position at t = 1.0 t0. The frequency increases

with increasing group number, where the group boundaries are given by: 0.58 eV

< ν0 < 0.68 eV; 1.79 eV < ν0 < 2.0 eV; 4.58 eV < ν0 < 4.9 eV; 10.0 eV < ν0 < 11.1

eV; 22.1 eV < ν0 < 24.4 eV; 50.0 eV < ν0 < 52.9 eV; 104.1 eV < ν0 < 113.9 eV;

204.0 eV < ν0 < 222.4 eV. Note that the line pattern repeats, so that the first and

last two consecutive groups share the same pattern. Of these, the last two groups

can be distinguished by their high diffusivity.
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For ease of comparison, we adopt the characteristic physical values used by

Whitehouse et al. (2005). The initial flow conditions consist of 1D slab with uniform

density, ρ0 = 1× 10−10 g cm−3, and length, x0 = 2× 1015 cm. The gas and radiation

temperatures are fixed at T = 1500 K, where the effective radiation temperature

is defined as Tr = (E/a)0.25. The gas with x ≤ x0/2 has an initial velocity of

v0 = cs = 3.2 × 105 cm s−1, while the gas with x > x0/2 has an initial velocity of

v0 = −3.2 × 105 cm s−1. The opposing flow causes a strong shock to immediately

form at the domain center. We use inflow boundary conditions at the domain edges,

so that gas continually enters the grid with velocity ±v0.

We examine the solution for the opacities κ = 40.0, 0.4, 4.0 × 10−3, and 4.0 ×
10−5 cm2 g−1, where the two extremes recover the adiabatic and isothermal limits,

respectively. We use Ncells = 100 cells with width dx = 2× 1013 cm. For the group

structure, we use 8 groups logarithmically spaced to cover the frequency range from

0 ≤ hν ≤ 1500 eV. Since the opacity is constant, this is not a challenging multigroup

problem, but it serves to demonstrate that the ORION radiation-hydrodynamcs

scheme is working properly.

Neglecting the complexity of the radiative transfer, an analytic solution may

be obtained from the hydrodynamic jump conditions as a function of the ratio of

specific heats, γ. Solving for the shock speed gives:

s =
(γ − 3)v0 +

√
(γ + 1)2v2

0 + 16c3
s

4
. (7.13)

The density behind the shock, ρ1, is given by:

ρ1 = ρ0(1 + v0/s). (7.14)

This corresponds to a pressure, P1, given by:

P1 = P0

(γ + 1)ρ1

ρ0
− (γ − 1)

(γ + 1)− (γ − 1)ρ1

ρ0

. (7.15)

The gas temperature inside the shocked region, T1, is then:

T1 = T0

(
P1ρ0

P0ρ1

)
. (7.16)
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Figure 7.3 The images show the normalized gas density (left) and temperature (right)

as a function of position at t = 1.0× 109 sec where κ0 = 4× 10−5 cm2 g−1 and Ncells

= 100. The analytic solution for γ = 1.001 is shown by the dashed line in the top

two panels, while the analytic solution for γ = 5/3 is shown by the dashed line in

the bottom panels.
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As gas continues to amass behind the shock, the thickness of the central region of

post-shock gas increases as ∆x = 2s× t.

Figure 7.3 shows the solution obtained by ORION with the analytic solution

overlaid for the limits where the gas is optically thick or optically thin. ORION,

even with this fairly minimal resolution, reliably reproduces the solution in the two

limits as expected. The intermediate solutions show the progression between the two

cases. In particular, the marginally optically thin κ = 100κ0 calculation exhibits a

solution that does not agree well with either the analytic isothermal or adiabatic

cases, which is to be expected. The other opacity values render the gas sufficiently

optically thick or thin to be effectively adiabatic or isothermal, respectively. The

temperature bump that appears at the origin in the very optically thick case is a

product of wall-heating.

There are several interesting differences in the shock-tube solution reported

by ORION and the published solution by Whitehouse et al. (2005) using an SPH

radiative transfer method. Most obviously, ORION renders the shock jumps more

accurately with only ∼ 3 cells across the discontinuity, while the SPH method, using

the same parameters and resolution, requires ∼ 10 cells. Presumably, Whitehouse

et al. (2005) could achieve similar shock resolution by using three times the number of

particles. This difference is unsurprising given that higher-order Godunov methods

generally have superior shock-capturing to SPH methods, which are more diffusive

(Klein et al. 2007). However, due to the low numerical dissipation of the scheme,

ORION exhibits small amplitude oscillations of a few percent behind that shock

for the κ = 4.0, 0.4 cm2 g−1 cases, which are apparently absent in the SPH results.

Whitehouse et al. (2005) observe more substantial wall-heating, which first becomes

noticeable for κ = 4 × 10−3 cm2 g−1. In contrast, ORION exhibits no wall-heating

for κ = 4× 10−3 cm2 g−1, and for κ = 4× 10−5 cm2 g−1, the magnitude of the effect

is half that of the SPH method.

Figure 7.4 shows the density and gas temperature for κ = 4 × 10−5 cm2 g−1

with four times higher resolution. Except for the few cells located in the shock, the

relative error is generally smaller than 10−2. The solution shows a small amount of

ringing inside the shock, which can be reduced by increasing the numerical diffusion
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Figure 7.4 The top images show the normalized gas density and temperature as a

function of position at t = 1.0× 109 sec with κ = 4× 10−5 cm2 g−1 and Ncells = 400.

The analytic solution for γ = 1.001 is shown by the dashed line. The bottom plots

show the relative error in the two quantities as a function of position.
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coefficient.

7.4 Future Work: Applications of Multifrequency

Radiative Transfer to Star Formation

7.4.1 Overview of Past Work

To date, no 3D multifrequency hydrodynamic studies of either high-mass or low-

mass star formation have been completed. The dearth of such studies is a testament

to the difficulty and computational expense of the radiative transfer problem. Past

modeling has instead sacrificed dimensionality or introduced approximations such as

the gray flux-limited diffusion approximation discussed in Chapter 5. Nonetheless,

the conclusions of past work have hinted that non-axisymmetric frequency-dependent

radiative transfer modeling may be crucial for understanding unsolved problems in

star formation, including the formation process and mass limit of massive stars, core

fragmentation, and stellar multiplicity.

The most thorough investigation of low-mass star formation including multifre-

quency radiative transfer is presented by Masunaga et al. (1998) and Masunaga &

Inutsuka (2000). The two successive papers modeled the collapse of a spherically

symmetric cloud through the formation of a protostar and accretion of the initial

envelope. Their method solves the full angle-dependent and frequency-dependent

transfer equation without any diffusion approximation. In Masunaga et al. (1998),

the authors continued the calculation only through the first collapse phase (hydrogen

molecules are not dissociated). They varied the initial mass, temperature, and dust

opacity to investigate the role of these parameters on the solution. They demon-

strated that the radius, R ∼ 5 AU, and mass, M ∼ 0.05 M�, of the first core

are independent of the initial temperature and density. In Masunaga & Inutsuka

(2000), the calculation is continued from the birth of the protostar through the ter-

mination of the main accretion phase. This second set of calculations illustrate that

the luminosity peaks just after the formation of the protostar and declines with the

accretion rate towards late times for an initially homogeneous cloud. The authors
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argue that the homogeneous cloud reproduces the observations more accurately than

hydrostatic initial conditions.

The high fidelity of the radiation transfer method used by Masunaga et al. guar-

antees that the temperature and density distributions are obtained with good ac-

curacy. However, disks and wind cavities, which cannot be represented in 1D, play

an important role in the star formation process (Shu et al. 1987). The calculations

also neglect the production of nuclear energy, which would begin to be significant in

comparison to the accretion luminosity towards the end of the main accretion phase.

Yorke & Sonnhalter (2002) modeled the formation of a high-mass star using

2D axi-symmetric multifrequency radiative-hydrodynamic calculations. They found

that the existence of lower density regions generated by core rotation and aligned

with the rotational axis facilitated the escape of radiation, promoting accretion along

the plane of the disk. Ultimately Yorke & Sonnhalter (2002) found that this flash-

light effect alone was not sufficient to overcome radiation pressure in the high-mass

case, and accretion was halted by radiation pressure at ∼ 42M�. However, they

demonstrated that a multifrequency approach allowed nearly twice as much mass to

accrete onto the star as an identical simulation using a GFLD method.

As discussed in Krumholz et al. (2009), multifrequency treatment in 3D may

influence and improve the radiation spectrum over a gray approach in several ways.

Although low-mass star formation is insensitive to radiation pressure effects, radia-

tive beaming, for example via an outflow cavity, may allow photons to escape along

the poles (Yorke & Sonnhalter 2002; Krumholz et al. 2005a). This may lead to

significantly lower temperatures in the accretion disk. As we have discussed in pre-

vious chapters, the gas temperature and corresponding thermal pressure alone have

a significant relationship with accretion and fragmentation, so that multifrequency

treatment may produce a qualitatively different result every for low-mass stars.

MGD studies are also important because the gas and dust become opaque at

high frequencies, while remaining transparent at low frequencies due to the frequency

squared opacity dependence in the far infared. As a result, the spectrum may have

significant deviations from a black-body form. Approximations, such as GFLD,

adopt Planck or Rosseland averaged opacities, which integrate the dust opacity over
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all frequencies. The Rosseland opacity represents a weighted average that accounts

for some of this frequency-dependent effect. However, the calculation assumes a

thermal spectrum, so that the average is likely to incorrectly estimate the opacity in

the cases where the thermalization assumption fails. In optically thick regions with

a large numbers of photon scatterings, a Planckian radiation spectrum is a good

approximation. However, this may not be true within the dust-destruction radius or

inside an outflow cavity.

The net affect of radiation approximations on star formation studies remains

unclear, particularly in the 3D case where the problem geometry is the most complex.

Thus, 3D multifrequency simulations are important to our understanding of both

low-mass and high-mass star formation.

7.4.2 Multigroup Modifications for Modeling Star Forma-

tion

In addition to multigroup radiative transfer, there are several additional details

that must be implemented for modeling low-mass star formation problems.

Radiative Sources

It remains computationally unrealistic to resolve the collapse of gas from cloud

densities of 102 cm−3 to stellar interior densities of > 1022 cm−3 in 3D and evolve

the subsequent protostellar evolution for a significant fraction of its formation. A

typical solution to this problem involves replacing the unresolved gas mass with a

point particle. Among star formation methods, the most sophisticated of these sink

particles advect within the grid, accrete gas, and include sub-grid protostellar models

to represent stellar evolution (Krumholz et al. 2004, 2009).

Within the MGD framework, star particles serve as frequency-dependent radia-

tive source terms. Thus, the diffusion equation, 7.5, with stellar sources becomes:

∂tug( x, t) = ∇ · c/(ρκg)∇ug + c ρ κg (Bg − ug) +
∑

i

Lg,iδ(x− xi), (7.17)

where Lg,i is the luminosity of the ith particle in group g at position xi. This term
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is independent of ug and Tg and, like ρ, remains constant throughout the iterations.

To facilitate convergence, the source radiation is not injected into a single cell, but

added to the grid within a volume of 83 cells weighted by a gaussian distribution.

The ORION sub-grid stellar model we adopt is based upon Tan & McKee (2004).

It is straightforward to modify the model to derive the radiation energy added to

each radiation group rather than the integrated luminosity. The Tan & McKee

(2004) model consists of two main components, namely, the accretion luminosity,

and the stellar luminosity due to deuterium and nuclear burning. Thus, the change

in radiation energy per timestep in each group is the sum of these contributions:

Lg,i = Lacc,g,i + L∗,g,i.

The accretion luminosity for a protostar of mass M∗ accreting at Ṁ∗ with radius

R∗ is given by:

Lacc = facc
GM∗Ṁ∗

R∗
, (7.18)

where facc indicates the fraction of accretion energy radiated by the protostar rather

than used to drive an outflow; we adopt facc = 0.75 (McKee & Ostriker 2007).

The radiation due to accretion is emitted at the stellar surface behind the accretion

shock. The protostellar surface is well-within the dust destruction radius, rd ∼ 1 AU

(Chakrabarti & McKee 2005), and the emitted radiation spectrum may significantly

deviate from a Plankian. However, our treatment of this term is simplified since

the cell resolution is generally much larger than rd. Thus, for r > rd the accretion

photons are absorbed and re-emitted by the dust at some effective temperature

producing a more thermal spectrum. Most species of dust typically sublimate around

∼ 1100 K (Pollack et al. 1994; Semenov et al. 2003), and therefore we adopt Td =

1100 K for the temperature of the thermalized spectrum of the accretion luminosity.

The accretion component of the group luminosity can then be described by:

Lacc,g,i = Lacc,i

∫
g
B(ν, Td)dν

B(Td)
. (7.19)

The second component of the net luminosity is stellar. Happily, stars emit as

near perfect black bodies, which can be described as a function of an effective surface

temperature, Teff . We obtain the stellar luminosity from the Tan & McKee (2004)

model, which records the amount of deuterium in the protostar and self-consistently
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models the deuterium burning as a function of time. This model also includes Kelvin-

Helmholz contraction, and it connects smoothly to the zero-age main-sequence lu-

minosity and radius once all the deuterium is depleted. Consequently, the stellar

component of the group luminosity is given by:

L∗,g,i = L∗,i

∫
g
B(ν, Teff )dν

B(Teff )
. (7.20)

During the early stages of star formation, the protostar is deeply embedded in an

optically thick dusty envelope, so that all the luminosity generated by the protostar

is heavily processed. After the embedded phase, which lasts ∼ 5 × 105 yrs (Evans

et al. 2009), accretion diminishes and the stellar component dominates the total

luminosity (White & Hillenbrand 2004). At these later stages, our approximation

using an assumed Td may break down since the optical depth through most sightlines

is small. However, once the main accretion phase has ended, the accretion luminosity

will contribute only a small part of the radiation spectrum.

In the event of calculations with very high frequency resolution, B(ν, Teff ) can

be directly replaced by tabulated stellar spectra (Kurucz 1999). However, for our

purposes the blackbody assumption is adequate given that frequency resolution will

be coarse and the stellar radiation will be strongly processed by the surrounding

protostellar envelope.

Dust Chemistry

Dust grains found in molecular clouds play an important role in heating and

cooling the gas. In dense regions near protostars, the dust and gas are collisionally

coupled so that radiatively heated grains may directly transfer energy to the gas.

In shock heated regions, dust serves as important cooling agent (Offner et al. 2009).

Dust grains post-processes the radiation field in crucial ways, as we discussed in the

previous section, emitting primarily in the infrared.

The grain size distribution and chemical composition are both important to

calculating the absorbed and emitted wavelengths of radiation. Much work has been

devoted to estimating optical coefficients and opacities calculated from various sizes,

shapes, and mixtures of graphite and silicate grains (e.g., Draine & Lee 1984; Pollack
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et al. 1985, 1994; Semenov et al. 2003). In the range 10 µm ≤ λ ≤ 3 mm, most models

agree that the dust opacity goes as a strong powerlaw with frequency, κ ∝ ν2 (Draine

& Lee 1984). GFLD methods typically skirt this issue by adopting averaged dust

opacities as a function of the local density and gas temperature (Pollack et al. 1985).

With MGD, we include this frequency dependence explicitly to more accurately

capture the evolution of the radiation field and the gas temperature.

For a small number of groups, a complicated dust model is unnecessary since

we cannot resolve fine structure in frequency space. Thus, we adopt the simplest

model for the opacity:

κ = κ0

(
ν

ν0

)2

, (7.21)

where κ0 = 0.54 cm2 g−1 per unit mass of gas (Chakrabarti & Whitney 2007). Equa-

tion (7.21) has been normalized to an opacity twice that of the diffuse interstellar

medium (e.g., Weingartner & Draine 2001) to account for icy grain mantles. For

calculations involving a large number of groups such that the far-infrared spectrum

is well resolved, the simple opacity power-law can be replaced by detailed opacity

tables such as those published by Ossenkopf & Henning (1994). These opacities are

also calculated as a function of gas density from n = 105−108 cm−3 typical of molec-

ular cloud cores. Changes in the opacities as a function of density reflect evolution

of the dust grain distribution due to coagulation and shattering of dust grains.

7.4.3 Future Work

MGD is an important step for better modeling and understanding star forma-

tion, however further physics and additional advances are necessary for a complete

computational picture.

In the short term, multifrequency modeling of high-mass star formation in 3D

will be possible with the addition of radiation pressure terms to the MGD method.

Recent GLFD studies with explicit treatment of radiation pressure have shown that

although radiation pressure plays an important role in the formation of high-mass

stars, it cannot halt accretion and limit the final stellar mass (Krumholz et al. 2009).

Such studies will need to be revisited with more accurate multifrequency radiation
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treatment and dust modeling, which can be accomplished with further extension of

the MGD method.

Finally, the MGD method described in this chapter nonetheless relies on the

flux-limited diffusion approximation. A Monte-Carlo radiative transfer approach is

currently the most promising for following both the frequency and angle-dependence

of the radiation field in both optically thick and thin regimes. Currently, such meth-

ods are commonly used for static modeling and post-processing (Whitney et al.

2003; Robitaille et al. 2006; Chakrabarti & Whitney 2007; Stamatellos & Whitworth

2005). However, adequate sampling of the probability distributions requires that

the number of photons be comparable to the number of grid-points (Chakrabarti

& Whitney 2007). Even with parallelization, these methods currently remain too

time consumptive to be feasible within a time-advanced operator-split framework.

In the future, clever modifications will be necessary in addition to increases in com-

putational performance for full Monte-Carlo radiative transfer simulations of star

formation.
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Walsh, A. J., Myers, P. C., & Burton, M. G. 2004, ApJ, 614, 194

Ward-Thompson, D., André, P., Crutcher, R., Johnstone, D., Onishi, T., & Wilson,

C. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil, 33–46

Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296

White, R. J. & Hillenbrand, L. A. 2004, ApJ, 616, 998

Whitehouse, S. C. & Bate, M. R. 2006, MNRAS, 367, 32

Whitehouse, S. C., Bate, M. R., & Monaghan, J. J. 2005, MNRAS, 364, 1367

Whitney, B. A., Wood, K., Bjorkman, J. E., & Cohen, M. 2003, ApJ, 598, 1079

Whitworth, A. P., Chapman, S. J., Bhattal, A. S., Disney, M. J., Pongracic, H., &

Turner, J. A. 1995, MNRAS, 277, 727

Whitworth, A. P. & Stamatellos, D. 2006, A&A, 458, 817

Williams, J. P. & Andrews, S. M. 2006, ApJ, 653, 1480

Williams, J. P., de Geus, E. J., & Blitz, L. 1994, ApJ, 428, 693

Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166

Wu, J., Evans, II, N. J., Gao, Y., Solomon, P. M., Shirley, Y. L., & Vanden Bout,

P. A. 2005, ApJ, 635, L173

Yorke, H. W. & Sonnhalter, C. 2002, ApJ, 569, 846

Young, C. H. & Evans, II, N. J. 2005, ApJ, 627, 293

Young, K. E., Enoch, M. L., Evans, II, N. J., Glenn, J., Sargent, A., Huard, T. L.,

Aguirre, J., Golwala, S., Haig, D., Harvey, P., Laurent, G., Mauskopf, P., &

Sayers, J. 2006, ApJ, 644, 326



BIBLIOGRAPHY 218

Young, K. E., Lee, J.-E., Evans, II, N. J., Goldsmith, P. F., & Doty, S. D. 2004,

ApJ, 614, 252




