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degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 2.6: Benchmark calculation of optical phonon mode frequencies at q = 0
for c-Si, and the split singlet and doublet slopes under uniaxial [100]
strain using LDA, PBE and PBEsol. Calculated values are compared
with published theoretical and experimental results. LDA has best
agreement with experiment. . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 2.7: Complete phonon mode analysis at q=0 for cubic CH3NH3PbI3. Here
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man intensity in Å4/amu. . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 4.1: Tetragonal (I4cm) MAPI symmetry of the entire structure and only
the Pb-I cage, calculated using FINDSYM[131, 130]. . . . . . . . . . . 93

xiv



Table 5.1: Calculated values of polycrystalline averages of bulk modulus K (GPa),
shear modulus G (GPa), Young’s modulus Y (GPa) and values of
Young’s modulus at crystallographic directions [100], [010], and [001].
Comparison with previously reported experimental and theoretical re-
sults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xv



ACKNOWLEDGEMENTS

I would like to thank my PhD advisor David Strubbe for his continuous encour-

agement, support, and guidance for last five and a half years; all my lab mates Enrique

Guerrero, Rijan Karkee, Md. Mehdi Masud, Arabi Seshappan, Uday Panta, Mojdeh

Banafsheh, Brad Barker, Tobias Zier, and Rafael Rodrigues Del Grande for valuable

research discussions, help, and support. I would also like to thank my PhD committee

members Prof. Sayantani Ghosh and Prof. Christine Isborn for their valuable comments

and suggestions throughout the entire course of my PhD. I am very grateful to Prof.

Ashlie Martini for accepting me as a PhD student at Martini Lab in the beginning of

my PhD, without which probably, it would not have been possible for me to start my

PhD. I thank the Merced nAnomaterials Center for Energy and Sensing (MACES) for

proving me summer fellowships for research. I thank the supercomputing facilities at

National Energy research Scientific Computing Center (NERSC) and MERCED Cluster

at University of California, Merced for the computational resources.

A good encouraging support system is very important, and it motivates most

during tough times in PhD. I am grateful to my parents who did not get chance to

complete their schooling, but always have encouraged me to study. I am thankful to my

wife Priyanka for being supportive in every way. I also thank Mr. Lenard Rhodes, uncle

whom I met after reaching Merced 6 years back, for all his support, love, guidance and

for showing me a different perspective of life, and considering me as a family member in

his house. I thank Somnath Sinha for guiding me as an elder brother and friend during

my happy and sad times in my PhD life.

I thank my previous teachers Prof. Mallar Ray, Prof. Nil Ratan Bandyopad-

hyay, Prof. G. P. Das, Prof. Syed Minhaz Hosssain for their constant encouragement and

motivation that inspired me to pursue a PhD. I would also like to thank Manoj Saha,

my physics teacher during my bachelors; who taught me not to give up, while almost all

pathways seemed closed for me for doing my master’s. Last but not least, I thank all my

friends (too many to list here) for their unconditional love and support in critical times.

xvi



VITA

2006 B. Sc. in Physics, The University of Burdwan, India

2009 M. Sc. in Applied Physics, Indian Institute of Engineering
Science and Technology, Shibpur, India

2011 M. Tech. in Materials Engineering, Indian Institute of
Engineering Science and Technology, Shibpur, India

2019 M. S. in Physics, University of California, Merced

2022 Ph. D. in Physics, University of California, Merced

FELLOWSHIPS AND AWARDS

NASA-funded Merced Nanomaterials Center for Energy and Sensing (MACES) Summer
Research Fellowship (2018, 2021, 2022)

Dan David Solar Fellowship, University of California, Merced (2018).

2nd prize for poster competition at American Physical Society bridge program, Stanford
University & Google HQ (2018).

PUBLICATIONS

Kuntal Talit and David A. Strubbe, “Stress effects on Raman spectroscopy of cubic
hybrid perovskite: A probe of local strain,” J. Phys. Chem. C, 124, 50, 2020

PRESENTATIONS

Kuntal Talit and David A. Strubbe, “Resolving discrepancies in mechanical properties
of hybrid perovskites: a DFT study”, American Physical Society March Meeting (2022),
contributed talk

Kuntal Talit and David A. Strubbe, “Interplay of structural changes, symmetry and
vibrations in orthorhombic and tetragonal hybrid perovskites under stress”, Molecular
Foundry User Meeting at Lawrence Berkeley National Laboratory (2021), contributed
talk

Kuntal Talit and David A. Strubbe, “Interplay of structural changes, symmetry and
vibrations in orthorhombic and tetragonal hybrid perovskites under stress”, American
Physical Society March Meeting (2021,online due to COVID-19), contributed talk

xvii



Nicholas Lopez, Kuntal Talit, and David A. Strubbe, “The effect of strain on vibrations
in cubic CsPbI3 perovskite”, American Physical Society March Meeting (2021) poster

Kuntal Talit and David A. Strubbe, “Stress effects on vibrational spectra of orthorhom-
bic and tetragonal hybrid perovskites”, Molecular Foundry User Meeting at Lawrence
Berkeley National Laboratory (2020), poster

Kuntal Talit and David A. Strubbe, “Stress effects on vibrational spectra of orthorhombic
and tetragonal hybrid perovskites”, Workshop in Electronic Structure Methods, Univer-
sity of California Merced (2020) poster

Kuntal Talit and David A. Strubbe, “Stress effects on vibrational spectra of orthorhombic
and tetragonal hybrid perovskites”, American Physical Society March Meeting (2020,
cancelled due to COVID-19), contributed talk

Kuntal Talit and David A. Strubbe, “Raman spectroscopy as a probe of local strain in
perovskite solar cells”, American Physical Society March Meeting (2019), contributed
talk

Kuntal Talit and David A. Strubbe, “Stress effects on vibrational spectra of cubic hybrid
perovskite: A probe of local strain”, Molecular Foundry User Meeting at Lawrence
Berkeley National Laboratory (2019) poster

Kuntal Talit and David A. Strubbe, “Raman spectra as a probe of localized strain in
perovskite solar cells”, American Physical Society Bridge Program, Stanford University
and Google HQ. (2018) poster, 2nd prize

Kuntal Talit and David A. Strubbe, ”Density functional theory calculations of hybrid
perovskites for photovoltaics”, American Physical Society Far West Section meeting
(2017) poster

WORKSHOPS

Data Science Challenge, Lawrence Livermore National Laboratory (LLNL) 23rd May -
6th June 2022.

X, the moonshot factory - University of California, Merced Virtual Bootcamp: Machine
Learning 19th Oct. - 22nd, 2020.

32nd Workshop on Recent Developments in Electronic Structure Methods (virtual), Uni-
versity of California, Merced, 1st - 4th Jun. 2020.

San Diego Supercomputer Center Summer Institute: Machine Learning, visualization,
git, jupyter notebook and HPC applications 3rd - 7th Aug. 2020.

BerkeleyGW - A Massively Parallel GW/BSE Code, Hands on training and workshop
which includes lectures on theory, application and computational details of GW and
Bethe-Salpeter calculation for quasiparticles and optical properties of solids, molecules
and nanosystems, 10th - 12th Jan. 2018.

xviii



ABSTRACT OF THE DISSERTATION

Investigation of local strain, symmetry, and elastic properties of
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Hybrid organic metal-halide perovskites are promising materials for next generation solar

cell application. Methylammonium lead iodide (CH3NH3PbI3), sometimes called MAPI,

is one of the favorable perovskites for making solar cells. Most of the research in the last

decade about this material is aimed towards improving its photoconversion efficiency

(PCE) and stability. In this work, I have done a detailed study on the three phases (or-

thorhombic, tetragonal, and cubic) of MAPI to understand how these different phases

behave under stress. The total work is divided into 5 chapters. In chapter 1, I give an

overview on perovskites for solar cell applications and discuss briefly about the theories

that are involved in my calculations. In chapter 2, I investigate the effect of uniaxial

strain on the pseudo-cubic structure and identify the most favorable vibrational modes

to measure local strain using IR and Raman spectroscopy. In chapter 3, I investigate the

same for low-temperature orthorhombic and room-temperature tetragonal phases. In

addition to this, I explained about an improvement I made to the Quantum ESPRESSO

code to enable these calculations. In chapter 4, I discussed how an analytical method

we developed can help to understand hidden symmetries in the tetragonal perovskite

and can be useful for any approximately symmetric structure to use symmetry for spec-

troscopic studies. In chapter 5, the last chapter, I studied the elastic properties of all

three phases in detail and tried to determine the root cause behind the discrepancies in

earlier published results. We also provide accurate reference values and an appropriate

general methodology for elastic properties of metal halide perovskites. This work opens

xix



a way for a standard non-destructive bench-top characterization method to be usable for

analyzing the critical role of local strain in hybrid perovskite photovoltaics. It provides

an analytical method to calculate irreducible representations of vibrational modes for

any approximately symmetric crystal structure which can be helpful for spectroscopic

studies. Calculated detailed elastic properties of metal-halide perovskite will be useful

for future reference for commercial application of perovskites for solar cell and flexible

electronics.
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Chapter 1

Introduction

After the discovery of perovskite (CaTiO3) by Lev Perovski in mid 19th century,

it took a lot of time to realize its importance as solar cell material. It wasn’t until 2009

that Tsutoma Miyasaka first showed that it can be used as light absorber material[70].

Since then, a tremendous amount of work has been done[125] on different perovskites to

improve the photo conversion efficiency of this class of materials and it improved from

3.8% to 25.7% in lab scale[97]. Due to low cost and ease of manufacturing, it attracted

a great attention of the scientific and business community to commercialize it as solar

cell[88]. As per a recent report from NASA, they are trying to build solar panel in

space using electrospraying technique that would be possible to generate a megawatt of

solar power which is more than enough to satisfy a space station’s energy need with just

one liter of perovskite solution[93, 87]. Apart from photo-voltaics, perovskites also have

applications in flexible electronics[39, 81], light emitting diodes[139], lasers[137], spin-

optoelectronic devices[148], luminescent solar concentrators[162] etc. So, the possibilities

are endless, but they have some serious roadblocks. The degradation of these perovskite

materials in ambient conditions makes it harder to use in commercial application. Now

the focus of all the communities is to stabilize these material of a considerable time

range.

1.1 Background and Motivation

The basic mechanism behind a solar cell is simple to understand. The ab-

sorption of incident photons can create electron hole pairs within the material, pro-

1
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vided that the incident photon energy is greater than that of the bandgap. When

these carriers diffuse towards the depletion region it separates the electrons and holes

by the action of the electric field existing at the P-N junction. The concentration of

electron and hole increase in N-type and P-type region and create a forward voltage.

This mechanism is called photovoltaic effect. When a load is connected between these

two terminals, electrons flow from the N-type to P-type side which generates a cur-

rent in the opposite direction as shown in the schematic diagram Fig 1.1. Defects

plays a major role in photovoltaic efficiency. Presence of crystal defects in semicon-

ductors affects the recombination mechanism and lifetime of carriers by creating de-

fects states within the bandgap. Some defect states lie near band edge, but some may

also lie deep within the forbidden gap and can enable a two-step recombination pro-

cess called Shockley-Read-Hall recombination. The recombination rate depends on the

volume density of defects and the energy of the trapping level. This type of recom-

bination is mainly non-radiative and can affect the photo-voltage of the solar cell and

reduce it’s efficiency. So, understanding of defect within the material is important[67].

Figure 1.1: Basic solar cell mechanism.

Commonly used solar cell materials are sili-

con, which we normally see in our roof top,

and III-V semiconductors (GaAs) for space

applications[68]. Besides these two, we also

have CdTe, CIGS, a-Si etc. as solar cell ma-

terials. III-V semiconductors are very expen-

sive and have good photo conversion efficiency

(PCE). Amorphous silicon cells are comparatively cheap, but have low PCE. Si is mod-

erate in both cost and efficiency and hence most widely used. There are recent studies

about a newly invented material, called perovskite, which can lower the cost a consider-

able amount, and still provide the equivalent efficiency as Si solar cells does.

One of the best studied hybrid perovskites is methylammonium lead iodide

(MAPI, CH3NH3PbI3)[59, 60]. Depending on temperature, it exists in three different

phases: cubic (generally reported as pseudo-cubic [27]), orthorhombic and tetragonal

[6] as shown in figure 1.2. At room temperature (∼ 300 K) the crystal structure is

tetragonal, and at high temperature (∼ 330 K and above) the structure turns into cubic.

Theoretical and experimental work has studied the bandgap, bandstructure, and effective

mass [36, 46, 70, 34] and the result suggests local symmetry breaking in the structure[152,
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Figure 1.2: Three different phases of methylammonium lead iodide perovskite (MAPI):

low temperature orthorhombic phase, room temperature tetragonal phase, and high

temperature cubic phase.

85]. Vibrational properties of all three phases have been extensively studied [82, 111,

72, 92, 105, 15, 106, 48]. The IR and Raman spectra of all three phases shows three

distinct regimes of the vibrational frequencies, due to the Pb-I cage at low frequency, the

methylammonium ion at high frequency, and coupled cage-ion modes in between[106].

There are only a few experimental results on vibrational spectroscopy available for the

cubic [82, 92, 111] and tetragonal structures. Qiong Chen et al. has reported that it

is extremely difficult to find Raman spectra for the pristine MAPI as it is very prone

to degradation under the laser illumination, and previously reported results in the low-

energy regime may actually represent degradation products [18].
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1.2 Theoretical Methods

1.2.1 Density Functional Theory

Every material is made out of a large number of atoms, which means more

like 1023 of nuclei and electrons. To get the correct description of the material we need

to solve a quantum many-body problem that is Schrodinger equation (Hψ = Eψ) for

interacting electrons and nuclei. The many-body system is described as a collection of

electrons and nuclei and the many-body hamiltonian can be written as[110, 47]

H = −
∑
i

h̄2

2me
∇2

ri −
∑
I

h̄2

2MI
∇2

RI
−
∑
i,I

ZIe
2

|RI − ri|
+

1

2

∑
i ̸=j

e2

|ri − rj |
+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |

(1.1)

The mass of the nucleus at RI is MI , the electrons have mass me at ri.The

first term is the kinetic energy operator for the electrons, the seconds for the nuclei.

The last three terms described the Coulomb interaction between electron and nuclei,

between electrons and other electrons, and between nuclei and other nuclei. The many-

body wave function in the Schrodinger equation involves coordinates of all the electrons.

For N number of electrons it is a function of 3N variables. Therefore, this approach is

complex and tedious and very difficult to solve. In order to find acceptable approximate

eigenstates, some approximations were made at different levels.

The first steps towards the simplification of the above equation is the Born-

Oppenheimer (B-O) approximation. As ions are much heavier than electrons

((me/MI ≈ 1/1836) for H atoms), they move much slower compared to electrons and

the electrons respond instantaneously to any ionic motion. Hence, the electronic and the

ionic degrees of freedom can be decoupled and the electronic properties can be calcu-

lated for a given configuration of ions. Hartree and Fock both tried to solve this problem

through wave function approach but in Hartree method exchange and correlation is com-

pletely ignored while in Hartree-Fock method exchange interaction is taken into account

but there is no correlation energy.

Hohenberg and Kohn proposed Density Functional Theory[57] (DFT) to deal

with many-body system problems more efficiently. Instead of dealing with wave functions

they considered electron density n(r⃗) which is a function of only three variables (e.g. x,

y, z) to describe the system. Density functional theory is mainly based on two theorems.
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1 The external potential v(r⃗) is a unique functional of electron density n(r⃗). As a

consequence, the total ground state energy E is also a functional of electron density

n(r⃗).

2 The density n(r⃗) which minimizes the total energy E[n] is the ground-state density

and the corresponding energy is the ground-state energy E[n].

In this frame work the total energy functional can be written as

E[n(r⃗)] = ⟨ψ|V |ψ⟩+ ⟨ψ|T + VEE |ψ⟩

=

∫
v(r⃗)n(r⃗)d3r + Ts[n] +

e2

2

∫∫
1

4πϵ0

n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
d3rd3r′ + Exc[n]

(1.2)

Kohn and Sham tried to solve this equation by introducing the electron density

in terms of single particle wave functions as

n(r⃗) =
N∑
i=1

|ψi(r⃗)|2 (1.3)

then we have to solve the below equation[
− h̄2

2me
∇2 + veff(r⃗)

]
ψi(r⃗) = ϵiψi(r⃗) (1.4)

where veff(r⃗) = v(r⃗)+vH(r⃗)+vxc(r⃗). v(r⃗) is the external potential, vH(r⃗) is the

Hartree potential and vxc(r⃗) is the exchange correlation potential as mentioned below.

vH(r⃗) =

∫
e2

4πϵ0

n(r⃗′)

|r⃗ − r⃗′|
d3r′ (1.5)

vxc[n] =
δExc[n]

δn(r⃗)
(1.6)

Equation (1.4) is known as Kohn-Sham (KS) equation[69] and ψi(r⃗), ϵi and

veff are the KS orbitals, KS energies and KS potential, respectively and the correspond-

ing Hamiltonian is called the KS Hamiltonian. The KS equation needs to be solved

self consistently. Here in KS equation, the exchange-correlation potential vcx(r⃗) is still

unknown. We need to make some approximation to solve this problem.

1.2.2 Exchange-Correlation Functionals

Another difficulty with the application of DFT is that the exact form of Exc[n]

is unknown. It is to be noted that this exchange-correlation energy contains (i) kinetic



6

correlation energy, which is the difference in the kinetic energy functional between the

real and the non-interacting system, (ii) the exchange energy, which arises from the

requirement of anti-symmetric nature of fermions, (iii) Coulombic correlation energy,

which arises from the inter-electronic repulsion and (iv) a self-interaction correction.

The first approximation to this exchange-correlation energy was developed by Kohn and

Sham and is known as Local Density Approximation (LDA)[69]. In this approximation

it is assumed that the electron density n(r⃗) varies very slowly in space such that for very

small volume element d3r it can be considered locally uniform. Mathematically it can

be expressed as

ELDA
xc [n] =

∫
ϵxc(n(r⃗))n(r⃗)d3r (1.7)

where ϵxc is the exchange-correlation energy per particle of the homogeneous electron

gas of density n(r⃗).

Another approximation to the exchange-correlation energy is Generalized Gradient Ap-

proximation (GGA)[102]. In this approximation, local variation of density is also ac-

counted by incorporation of the gradient of density∇n(r⃗). Mathematically it is expressed

as

EGGA
xc [n] =

∫
ϵxc(n(r⃗),∇n(r⃗))n(r⃗)d3r (1.8)

For structural optimization we have used both LDA and GGA but for phonon calculation

we have used LDA as it gives fairly good results and also there is a limitation in Quantum-

Espresso for doing Raman calculation using GGA.

1.2.3 Pseudopotentials

Another approximation that makes computation less expensive is the use of

pseudopotentials[47]. In solids, the valence electrons mainly take any part in the proper-

ties like bonding, transport etc. The core electrons barely play any role in these proper-

ties, thus the core electrons can be assumed to remain fully occupied and unchanged in

all atomic environments as if they are frozen and the focus should be on the valence elec-

trons only. This frozen core approximation enormously reduces the computation cost as

the pseudowave function requires a smaller number of plane waves in its expansion than

it would have taken for all electron case. For example, in the case of lead (Pb) we need

to describe only 14 electrons [5d106s26p2] instead of 82 electrons in total. In Fig.1.3 we

can see a pseudo wave function for and the corresponding pseudopotential. In figure 1.3

the dotted lines represents 3s all-electron wave function and potential. A pseudization
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region is defined based on the cut-off radius, rc and within this region the original wave

function is replaced by a smooth wave function, called pseudo-wave function (in solid

grey line) which does not account any variation near the nucleus and out side the cut off

radius always coincide with the actual wave function. In figure 1.3 the lower portion of

the graph within pseudization region represents the pseudopotential for that region and

beyond cut off radius it coincides with the nuclear Coulomb potential corresponding to

the valence electronic charge.

Figure 1.3: Pseudopotential and pseudo wavefunction. rc represents the cut off radius

beyond which pseudopotential matches with the coulomb potential.

1.2.4 Structural Optimization

To understand structural optimization we need to understand Hellman-Feynman

force[33] and how it gets calculated. According to Hellman-Feynman theorem, the deriva-

tive of the total energy with respect to any parameter is equal to the expectation value

of the Hamiltonian with respect to the same parameter.

∂Eλ

∂λ
= ⟨ψλ|

∂Hλ

∂λ
|ψλ⟩ (1.9)

The only assumption here is that |ψλ⟩ is an eigenket of the Hamiltonian Hλ and this

makes the theorem general and independent of any specific system. When λ corresponds

to the nuclear coordinates RI , then we get the Hellman-Feynman force. To calculate

this force we need to calculate total energy, and for that we need to get correct density.

We can start with an initial guess for the density and solve KS equation self consistently
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to get the correct density and total energy of the system as shown in the flowchart (Fig.

1.4) by the internal loop. Once we have the correct density and total energy we can

easily calculate Hellman-Feynman force and make another SCF cycle as mentioned by

the outer loop in the flowchart (Fig. 1.4) to calculate optimized structure.

Figure 1.4: Structural optimization flowchart

1.2.5 Calculation of Normal Modes

Due to atomic vibrations the nuclei get displaced from their equilibrium po-

sitions. The time-dependent position of each nucleus can be expressed as RI(t) =

R0
I + uI(t) where R0

I is the equilibrium position and uI(t) is the displacement. The

equation of motion for each atomic displacement can be written using Newton’s law

MI üI = − ∂E
∂uI

(1.10)
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We can do the Taylor series expansion of the total energy E as

E(R1, · · · , RN ) = E(R0
1, · · · , R0

N ) +
1

1!

∑
I,α

∂E

∂RI,α

∣∣∣
R0

I,α

uI,α+

1

2!

∑
I,j,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
R0

I,αR
0
I,α

uI,αuJ,β

(1.11)

where RI,α denotes the coordinate of the Ith nucleus along α. The first derivative in

this equation gives force on the nuclei at equilibrium position which should be zero.

Therefore we get,

E = E0 +
1

2

∑
I,j,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
R0

I,αR
0
I,α

uI,αuJ,β (1.12)

The second partial derivative of this equation is known as Born-Von Karman force con-

stant and can be written as

KIα,Jβ =
∂2E

∂RI,α∂RJ,β
(1.13)

which is also known as dynamical matrix when normalized with nuclear masses. To get

the normal mode frequencies and eigen vectors we need to solve the secular equation∑
J,β

DIα,Jβ(q)ujβ(q) = ω2
quIα(q) (1.14)

By diagonalizing the dynamical matrix, we can get the phonon modes at q. Quantum

espresso uses DFPT to calculate this dynamical matrix[47].

1.2.6 IR and Raman Calculation

Infra-red spectroscopy

Infra-red spectroscopy is a powerful technique to characterize materials. It

is extensively used to characterize molecular functional groups and different kinds of

molecular vibrations like bond stretching, wagging etc. When an infra-red light incident

on a material, part of it get absorbed by the material and part of it get transmitted.

Incident frequencies that matches with the vibrational frequencies (IR active) of the

material get absorbed. For a vibrational mode to be IR active it must be associated

with changes in dipole moment.

Molecular dipole moment is a function of nuclear coordinates. Therefore, we can Taylor

expand the dipole moment as

µα = µ0α+
∑
αm

(
δµα
δQm

)
0

Qm + higher order terms (1.15)
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where the second term is responsible for IR absorption. Here subscript 0 denotes that the

quantity is evaluated at equilibrium condition, Qm is the normal coordinate associated

with the mth mode and α represents Cartesian coordinate. The IR intensity for the mth

mode is given by

IIRm ∝
∑
α

| δµα
δQm

|2 (1.16)

Using the definition of Born effective charge, the intensity can be calculated as[110]

IIRm =
∑
α

∣∣∣∑
Iβ

Z∗αβ
I Uβ

I (m)
∣∣∣2 (1.17)

Here α and β are the x, y, z coordinates, I is the atom index, and Z∗ is the Born effective

charge.

Raman spectroscopy

Raman spectroscopy has very useful and diverse applications. It can be used

as a fingerprinting technique for molecules and helps to characterize materials in solid

state by identifying the phonon modes. It is used in the pharmaceutical industry to

identify active pharmaceutical ingredients and their polymorphic forms. It has a wide

variety of application in biology and medicine. It is aslo used in non-destructive test-

ing, for example, to analyze old painting and chemical composition of historical doc-

uments. It is used to detect explosive from a safe distance and can also be used for

cancer detection. In addition, it can be used to measure strain in materials[22, 134].

Figure 1.5: Raman scattering[67]

When a monochromatic light

(photon) with frequency ω is incident on a

system, most of it gets transmitted with-

out much change, in addition to that,

some of the radiation get scattered with

change in frequencies (ω′). Such scatter-

ing with a change in frequency is called Raman scattering. It is mainly a two photon

process where one photon comes in and the other goes out. In this case, the incident

photon scatter inelastically by the crystal with creation or annihilation of a phonon as

shown in the schematic diagram (Fig.1.5).

Raman effect depends on change of polarizability of the system with respect to

atomic vibration. If we consider the polarizability to be a function of nuclear coordinates,
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then the variation of the component in polarizability tensor with vibrational coordinates

can be written as a Taylor series

αij = (αij)0 +
∑
k

(
∂αij

∂Qk

)
0

Qk +
1

2

∑
k,l

(
∂2αij

∂Qk∂Ql

)
QkQl + · · · (1.18)

where (αij)0 denotes the value of αij at equilibrium configuration. Qk and Ql are normal

coordinates of vibration at frequencies ωk and ωl. To get the first order Raman spectra

we can neglect the 2nd order term in Taylor expansion. If we consider a harmonic

vibration for some Kth mode as Qk = Qk0 cos(ωkt + δk) and the incident radiation as

E0 cosωt then the induced electric dipole moment can be written as

µ(1) = α0E0 cosωt+
1

2

(
∂αk

∂Qk

)
0

E0Qk0 cos(ωt+ ωkt+ δk)+

1

2

(
∂αk

∂Qk

)
0

E0Qk0 cos(ωt− ωkt− δk)

(1.19)

Here we can see that the linear induced dipole moment µ(1) has three components with

different frequencies. The first term with same frequency ω as the incident radiation is

for Rayleigh scattering. The second term with frequency ω + ωk represents anti-Stokes

line and third term with frequency ω − ωk represents the Stokes line.

Quantum Espresso calculates the normal modes through DFPT as discussed

earlier and then it make use of group theory to find out which modes will be Raman

active based on the symmetry. As we know that, if the irreducible representation of a

certain vibrational mode have a basis in x2, y2, z2, xy, yz, xz or any linear combination

of them then those modes are Raman active. To calculate the Raman intensity, it use

the Plackzek approximation[16, 71].

Iν ∝
∣∣∣ei · ←→Aν · es

∣∣∣2 1

ων
(nν + 1) (1.20)

where ei and es are the polarization of the incident and scattered radiation. nν =

[exp(h̄ων/kBT )− 1]−1, T is the temperature.

Aν
lm =

∑
kγ

∂3ϵel

∂El∂Em∂ukγ

W ν
kγ√
Mγ

(1.21)

Here ϵel is the total electronic energy of the system. El and Em are the lth and mth

Cartesian components of the uniform electric field, ukγ is the displacement of the γth

atom in the kth direction, Mγ is the atomic mass and W ν
kγ is the orthonormal vibrational

eigenmode ν. The third order derivative[71] is calculated by taking the second order
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derivative of the DFT density matrix with respect to electric field and then by using

Hellmann-Feynman theorem

∂3ϵel

∂El∂Em∂ukγ
= 2Tr

{(
∂2ρ

∂El∂Em

)
∂vext

∂ukγ

}
(1.22)

Here vext is the external ionic potential and ρ is the DFT density matrix.

1.2.7 Grüneisen Parameter

Grüneisen parameter is an important property of a material that characterizes

the anharmonic nature of a solid. For several reasons, such as, strain, temperature etc.,

volume of a material may change and as a consequence the dynamics of the crystal lattice

may change. Grüneisen parameter describes the change in the materials vibrational

properties due to the change in its volume. Each vibrational mode behaves differently

to external perturbations like strain or temperature. When Grüneisen parameter is

considered for each mode of vibration it is known as mode-Grüneisen parameter. It can

be expressed as γi = − V
ωi

∂ωi
∂V where γi is the mode-Grüneisen parameter for mode i with

frequency ωi and V is the equilibrium volume. for small strains it can also be expressed

as[134]

γi = − 1

ωi

∂ωi

∂ϵ
(1.23)

where ϵ is the strain. The macroscopic Grüneisen parameter is the weighted average of

all the mode-Grüneisen parameters and also related to the thermal expansion via the

below equation

γ =

∑
i γicv,i∑
i cv,i

=
αKT

cvρ
(1.24)

where cv,i represents the heat capacity for ith mode, α is the volume thermal expansion

coefficient, KT is the isothermal bulk modulus and ρ is the density.

1.2.8 Group Theory and Character Table

Symmetry is a very important property of any material such as molecule or

crystal and group theory is the tool that helps to determine the symmetry. Vibrational

and electronic spectroscopy use the molecular symmetry extensively. Although majority

of the large molecules and solids does not have any symmetry but they might have local

symmetries which may be useful. I am not going to discuss the details of group theory or

character tables as they are available is any good text book related to symmetry.[54, 25]
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I will clarify some of the terms and equations that are used in this work which will serve

as a quick reference to follow this work.

A symmetry operation is an operation that moves a molecule or crystal

structure into a new orientation which is equivalent to its original one and a symmetry

element is a point, line or a plane with respect to which the symmetry operation is

performed. There are five kind of symmetry operations; (1) Proper rotation (Cn), (2)

reflection (σ), (3) improper rotation (Sn), (4) inversion (i), and (5) identity (E). Cn is a

counter clockwise rotation of 2π
n about an axis. The rotation axis with the largest n is

called the principle axis. An object that has a Cn axis must have 0 or n perpendicular

C2 axis. A mirror plane that is perpendicular to the principle axis is called a horizontal

mirror plane and the reflection through this plane is called σh. Similarly, vertical (σv)

and dihedral (σd) reflections are through planes that are parallel to the principle axis.

An inversion (i) is an operation that transform the (x, y, z) to (−x,−y,−z). An object

can have either 0 or 1 inversion center. Improper rotation (Sn) is a rotation followed

by a reflection through the plane perpendicular to the axis of rotation. A C4 rotation

followed by a σn reflection will create an improper S4 rotation, example CH4 molecule.

A point group describes all the valid symmetry operations for a molecule

that makes the the conformation unchanged after the operation. It also has to obey all

the rules of a mathematical group as described in the books.[54, 25] Each symmetry

operation can be represented by a 3 × 3 matrix that can transform a set of (x, y, z)

coordinates of a molecule or crystal system and is called transformation matrix. The

symmetry operations are explained for C2h point group in figure 1.6. The reducible

representation (Γ) is nothing but the trace of these transformation matrices as shown

in figure 1.6.

The reducible representation can be further decomposed into its corresponding

irreducible representations using group theory and the result can be shown in a

tabular form which is called character table. The character table has its own properties

and rules to follow. If two symmetry operations are identical they form a class. The total

number of symmetry operations are called order (h) of the point group. The number

of irreducible representations should be equal to the number of classes in the character

table. There must be one representation that is totally symmetric (all character are +1).

The mathematics of decomposition of reducible representation in to its corresponding

irreducible representations are explained in chapter 4. The character table for C2h point
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Figure 1.6: Transformation matrices (E, C2z, i, and σh) involved in C2h point group and

its reducible representation.

group is given in figure 1.7.

Figure 1.7: Character table of C2h point group

Looking at the symmetry of the wave functions and the irreducible represen-

tations it is easy to understand which modes will be IR active and which one will be

Raman active. In the above case, Au and Bu will be IR active and both Ag and Bg will

be Raman active.

1.2.9 Calculation of Elastic Tensor

When an external force is applied on a material it deforms, but it regains its

primary shape whenever the force is withdrawn. This phenomenon is called elasticity.

The applied force per unit area is called stress and change in length per unit length is

known as strain. Within elastic limit, stress is proportional to strain which is also known
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as Hooke’s law. Stress and strain are both tensor quantity. For an anisotropic material,

if the crystal orientations are in different directions from one grain to another, when

force is applied on such material, different amount of strain produced within each grain

and we get strain inhomogenity or stress inhomogenity across the grain boundaries and

also throughout the material. Sometimes these stress-strain inhomogenities can cause

damage to the material. So, understanding of strain and elasticity is important. If σij

represents the stress tensor and ϵkl represents the strain tensor then as per Hooke’s law

we can write

σij = Cijklϵkl (1.25)

where Cijkl is known as the stiffness tensor. It is a 4th rank tensor. The indices i, j, k, l

can take values from 1-3 or x,y,z which makes 81 components for Cijkl. Due to symmetry

in stress (Cijkl = Cjikl) and in strain (Cijkl = Cijlk) these 81 components drop down

to 36 independent components. In contracted notation we can write the stress-strain

equation as 

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6


(1.26)

Since, Cij = Cji , it drops this 36 independent component down to 21 compo-

nents. So, the stiffness matrix is symmetric around the diagonals. Based on the crystal

symmetry, these 21 independent components can further be reduced. For example, cubic

structure has 4 three-fold rotational symmetry, which brings it down to 3 independent

stiffness constants C11, C12 and C44. For a crystal structure which does not have much

symmetry, we need to calculate all 21 stiffness constants.

We know that elastic strain energy is the energy spent by the external force in

deforming an elastic body. This energy divided by the volume is called energy density. It

can be shown that the energy density is related to strain and stiffness constants through

the equation[67]

U =
1

2

6∑
λ=1

6∑
µ=1

Cλµϵλϵµ (1.27)
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Here 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = zx and 6 = zy. Using equation (1.27) we will

be able to calculate all the Cij . Using any of the two equations (eqn-1.25 and eqn-1.27)

the full stiffness tensor can be calculated.



Chapter 2

Stress Effects on Vibrational

Spectra of a Cubic Hybrid

Perovskite: A Probe of Local

Strain

This work is adapted with permission from [138]. Copyright 2020 American

Chemical Society.

2.1 Abstract

Inhomogeneous strain may develop

in hybrid organic metal-halide perovskite thin

films due to thermal expansion mismatch with

a fabrication substrate, polycrystallinity or

even light soaking. Measuring these spatially

varying strains is difficult but of prime impor-

tance for understanding the effects on carrier

mobility, non-radiative recombination, degra-

dation and other optoelectronic properties. Local strain can be mapped using the shifts

in vibrational frequencies using Raman or infrared microscopy. We use density func-

tional theory to investigate the effect of uniaxial strain on the vibrations of pseudo-cubic

17



18

methylammonium lead iodide (CH3NH3PbI3), and identify the vibrational modes most

favorable for local strain mapping (86 cm−1, 97 cm−1, 1457 cm−1, and 1537 cm−1)

and provide calibration curves. We explain the origin of the frequency changes with

strain using dynamical matrix and mode eigenvector analysis and study strain-induced

structural changes. We also calculate mode Grüneisen parameters, giving information

about anharmonicity and anisotropic negative thermal expansion as recently reported

for other phases. Our results provide a basis for strain mapping in hybrid perovskites to

further the understanding and control of strain, and improve stability and photovoltaic

performance.

2.2 Introduction

Organic-inorganic hybrid perovskites are promising materials for next-generation

solar cell applications.[49] They have a direct bandgap, [36, 145] high absorption coefficient-

[126] long diffusion length,[133, 156] and large carrier mobility[150] which make them

favorable for PV applications. In the last 10 years the record photoconversion effi-

ciency (PCE) has increased drastically from 3.8% [70] to 25.2%.[97] Owing to other

benefits like ease of bandgap engineering,[26, 80] flexibility for use in portable electronic

devices,[158] tunability of transparency to light for tandem cells,[7] and suitability for

mass production[120] with a cheaper cost, perovskites have been the object of great in-

terest in the solar cell industry recently. There are also other non-PV applications of per-

ovskites, e.g. spin-optoelectronic applications,[107] luminescent solar concentrators,[95]

and light-emitting diodes. [66]

Despite these favorable properties, hybrid perovskites suffer from serious in-

stability due to moisture,[96] heat[21] and light,[62] which hinder their commercializa-

tion as solar cells. Although different encapsulation techniques can help to eliminate

the moisture issue,[73, 78] degradation due to unavoidable exposure to heat and light

is still a challenge that needs to be addressed. Different studies have suggested that

strain plays an important role in both degradation and photovoltaic performance of

perovskites.[99, 94, 163, 29, 161, 10, 143, 61, 164, 127] This strain arises in thin films

via substrate thermal expansion mismatch, epitaxial lattice mismatch,[19] phase transi-

tions, grain structure, and composition inhomogeneities, creating both global and local

strain.[61] Strain within the lattice can affect the carrier dynamics,[164] defect concen-

tration, non-radiative recombination,[61] bandgap[161] etc. and decrease the PCE of the
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device. Strain can also decrease the activation energy of ion migration within the ma-

terial which accelerates its degradation.[163] Slow photocurrent degradation caused by

deep trap states has been attributed to polarons, consisting of strain and reorientation of

the organic ion, which form under light soaking.[94] On the other hand, light soaking can

also create lattice expansion which reduces residual strain within the lattice and help to

increase efficiency.[143] High compressive strain (more than 1% for cubic CH3NH3PbI3)

can also be responsible for structural phase changes.[29, 161] To understand all these

strain-induced behaviors, we need to understand the structural and vibrational changes

due to strain.

In this work, we study as a benchmark system the pseudo-cubic phase of methy-

lammonium lead iodide (MAPI, CH3NH3PbI3),[59, 60] one of the best studied hybrid

perovskites. Depending on temperature, MAPI exists in three different phases: or-

thorhombic at low temperature (T < 161.4 K), tetragonal at room temperature (161.4

K < T < 330.4 K) and cubic (or pseudo-cubic)[27] at high temperature (T > 330.4 K).

Both orthorhombic and tetragonal structures are based on
√

2×
√

2× 2 supercells of the

cubic structure with four times the number of atoms in the unit cell.

We have chosen to begin with a study of the high-temperature cubic phase

due to its simpler structure. Further work will study the orthorhombic and tetragonal

structures, which clearly have their own individual characteristics. The cubic phase can

be considered as a reference to describe the structures of the other phases.[27] It is not

only significant at high temperatures, but also it can be stabilized at lower temperature

in quantum dots via ligands on the surface,[122] use of other organic cations [153] such

as formamidinium, or substitution of Br for I.[124] Generally cubic phases are found to

have higher PCE than the other phases.[160] Due to the strong resemblance between the

cubic, tetragonal, and orthorhombic phases’ vibrational properties, particularly in the

mid-frequency range,[15] we believe this work also gives insight into those phases.

Vibrational properties of all three phases have been extensively studied.[82,

111, 72, 92, 105, 15, 106, 48, 76] The infrared (IR) and Raman spectra of all three

phases show three distinct regimes of the vibrational frequencies, due to the Pb-I cage

and coupled cage/methylammonium (MA) ion modes at low frequency, and MA ion

at medium and high frequency.[106] There are only a few experimental results on vi-

brational spectroscopy available for the cubic structure[82, 92, 111, 76]. Others have

argued that there is no Raman activity of the low-frequency PbI cage modes for cubic
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MAPI[18] or cubic MAPbBr3,[84] based on the symmetry argument given for CsPbCl3

and SrTiO3.[27] Observation of small but nonzero Raman activity in this regime was

attributed to disorder.[18] However, even in a perfectly ordered cubic MAPI crystal

the fact that we have different atomic coordinates from CsPbCl3 means that the PbI

cage phonon modes (by hybridization with the MA ion modes) can have other irre-

ducible representations that are Raman active, as indeed we demonstrate in this work.

Measurement of low-frequency Raman has been attributed to light-induced degradation

products,[18] but our results suggest the validity of at least some measurements in this

regime, demonstrated by the agreement in frequencies in Fig. 2.2.

The detailed behavior of vibrational modes under applied tensile and com-

pressive strain for these materials has not been studied. A high-pressure study of

MAPbBr3[84] showed only broad features in the cubic phase in the low-frequency re-

gion, and clear peaks occurring after phase transition to tetragonal. However the related

macroscopic Grüneisen parameter γ, and the related thermal expansion, have been stud-

ied. For the tetragonal structure, a negative thermal expansion coefficient was measured

along the [001] direction (c-axis).[40, 55] For the cubic structure, the Grüneisen parameter

was calculated and measured in previous studies[40, 15] but not along all three crystal-

lographic axes. γ (including the individual mode Grüneisen parameters, also known as

phonon deformation potentials[3]) are of fundamental interest as a probe of anharmonic-

ity, which is quite strong in perovskites[28, 165] and relates to phonon-phonon scattering

and thermal transport.

Using strain effects on vibrations to measure local strain can help us to un-

derstand the material degradation and its performance instability. To measure local

strain within a material, we want to focus on a length scale ∼ µm or below. Most

of the experiments done so far to measure strain in perovskites have used grazing in-

cidence X-ray diffraction (GIXRD), normal XRD[121, 143, 164, 163] or the substrate

curvature method [121] which probe large areas. Scanning XRD has been used for more

local mapping, but requires a synchrotron.[61] Another standard non-destructive tech-

nique used to characterize perovskites and other semiconductor thin films is Raman

spectroscopy.[108] Raman microscopy, in which small areas are probed, can be used to

measure the stress distribution within a material. This is a well established technique for

crystalline Si (c-Si) in the semiconductor industry,[22] and is used for 2D materials.[115]

It can even be used in hydrogenated amorphous silicon, a disordered material with very
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broad peaks, as we showed in a previous theory-experiment collaboration.[134] This

method has resolution on the µm scale, or even down to nanometers with tip-enhanced

Raman spectroscopy.[135] Synchrotron-based IR microscopy has also been used for local

mapping of strain and related structural changes.[83, 128]

In this paper, we analyze vibrations under compressive and tensile strain for

cubic CH3NH3PbI3 and determine the calibration data needed to gauge local strain.

The paper is organized as follows. In section II we detail our computational methods of

structural optimization, calculation of normal mode frequencies and theoretical frame-

work to understand frequency shifts in terms of perturbations of the dynamical matrix

and mode eigenvectors. In section III, we discuss the behavior of phonon modes under

uniaxial strain, understand the different behaviors in terms of structural changes and

dynamical matrix analysis, find the best possible modes to probe local strain using Ra-

man spectroscopy, and calculate the Grüneisen parameter and compare to other theory

and experimental data. In section IV, we conclude and present the four best modes for

measuring strain using Raman or IR spectra.

2.3 Methods

2.3.1 Computational Details

For structural optimization and phonon mode calculations we have used den-

sity functional theory (DFT) and density functional perturbation theory (DFPT) [9]

as implemented in Quantum ESPRESSO (version 6.1)[43, 44, 8]. The Brillouin zone

is sampled using a half-shifted 6×6×6 Monkhorst-Pack grid with an energy cutoff of

100 Ry for the wave-functions. Atomic positions are optimized until the total force per

atom is smaller than 1 meV/Å; for the initial variable-cell relaxation, a 0.5 kbar stress

convergence threshold is used. The Local Density Approximation[101] (LDA) with the

Perdew-Wang (PW) parametrization[104] is used for the exchange-correlation poten-

tial for all the calculations. Scalar relativistic Optimized Norm-Conserving Vanderbilt

(ONCV) pseudopotentials[53] are used which treat Pb 5d orbitals as valence. All the

pseudopotentials are taken from Pseudō Dōjō[146] (NC SR ONCVPSP v0.4) with stan-

dard accuracy. We have not considered spin-orbit coupling as it does not have much

effect on interatomic interactions near equilibrium.[15]

The initial structure is taken from the work of Brivio et al.,[52, 15] with the



22

cation oriented close to the [100] direction, which was found to be slightly favored in

molecular dynamics. It can be difficult to obtain an optimized exact cubic structure of

MAPI without distortion to other phases.[36] Some experiments show the structure as

cubic,[151] others pseudo-cubic.[6, 132] Experimental work reports the fast reorientation

of the CH3NH+
3 ion and also the rotation of CH3 and NH3 groups along the C-N axis,

and these rotations and reorientation are extremely fast (∼14 ps).[75] These motions can

make a cubic symmetry averaged over space and time, but obviously cannot be captured

in a static DFT calculation, which instead represents a single local snapshot. A periodic

calculation imposes an artificial long-range order, but our dynamical matrix calculations

suggest that this does not have an important effect on the vibrational properties (Sec.

3.3), consistent with the conclusion of Leguy et al.[76] that dynamical disorder broadens

peaks in MAPI but does not shift them significantly. Local asymmetry in the structure

along with spin-orbit coupling has been calculated to cause splitting and an indirect

gap.[152, 85] A theoretical study showed that changes in the c/a ratio are coupled to

the orientation of the CH3NH+
3 ion.[99] Our structural optimization makes the structure

pseudo-cubic, in agreement with other calculations.[99, 15] As in standard DFT calcu-

lations, our lattice is at zero temperature, and the high temperature at which the cubic

phase is observed does not enter into the calculations.

The equilibrium structural parameters are reported in Table 2.1. More detailed

information, including results with different functionals, are reported in Table 2.5, along

with bandgaps in Table 2.4 and the LDA bandstructure in Fig. 2.12 in agreement with

previous work.[46] Optimized crystallographic angles α, β and γ are 90◦, 88.8◦ and 90◦

respectively. Pb-I-Pb angles are 164.65◦, 163.46◦ and 173.92◦ along a, b and c axes,

respectively. The C-N bond-length is found to be 1.47 Å with average C-H and N-

H bond lengths of 1.1 Å and 1.05 Å. Due to the pseudocubic lattice, off-centering of

the Pb atom, cation orientation, and distortion of the Pb-I cage, the structure has no

symmetry,[27] even when we checked the structure without the CH3NH+
3 ion or with the

H atoms removed. Our final relaxed cation orientation has the C-N bond lying in the

(010) plane, at an angle of 23.3◦ to the a-axis ([100] direction).

Before applying strain to the structure, the convergence of the phonon fre-

quencies with respect to the k-grid and phonon self-consistency threshold are checked,

and all the calculations are done using phonon self-consistency threshold 10−16 to avoid

imaginary frequencies at the Γ point. We compared different functionals (PBE,[102]
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Table 2.1: Optimized cell parameters for cubic CH3NH3PbI3 from DFT energy min-

imization and comparison with previous studies using DFT/PBEsol, [15, 52] powder

neutron diffraction (PND)[151] and single crystal XRD methods [132].

a (Å) b (Å) c (Å) α (deg.) β (deg.) γ (deg.)

DFT/LDA 6.163 6.115 6.267 90.00 88.80 90.00

DFT/PBE 6.499 6.410 6.532 90.00 88.66 90.00

DFT/PBEsol 6.291 6.248 6.378 90.00 88.64 90.00

DFT/PBEsol[15, 52] 6.289 6.229 6.374 90.00 88.74 89.99

PND (352 K)[151] 6.317 6.317 6.317 90.00 90.00 90.00

XRD (400 K)[132] 6.311 6.311 6.316 90.00 90.00 90.00

PBEsol[103] and LDA[101]) and found only small changes in mode frequencies at q = 0.

For low-frequency phonons, the pattern is LDA>PBEsol>PBE whereas for medium

(800–1600 cm−1) and high (2900–3200 cm−1) frequencies it is LDA<PBEsol<PBE with

most deviation at high frequencies, as shown in Fig. 2.1. For this comparison, we have

performed the variable-cell relaxation using the same functional used to calculate the

phonon frequencies.
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Figure 2.1: Comparison of q = 0 phonon frequencies calculated with different functionals

showing good agreement across the low- and mid-frequency ranges, and some deviations

at high frequencies.

For reference, we performed similar calculations for the well studied case of c-Si

(Fig. 2.11) and the result follows the same low frequency pattern LDA>PBEsol>PBE

that we have found in cubic MAPI. We apply uniaxial strain in the [100] direction and

plot frequency changes, as the three degenerate optical phonons are split into a doublet

and singlet. Results are shown in Table 2.6 and Fig. 2.11. LDA in fact has the best
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agreement with experiment[100, 2] for both frequency and slope, in this case; PBEsol is

similar, but PBE is more different.

Moving now to the effect of strain on cubic MAPI, we applied up to 1% uni-

axial compressive (negative, in our convention) and tensile (positive) strain along the

three crystallographic directions [100], [010] and [001] to the optimized zero-strain struc-

ture. Shear strains were not calculated as they generally have a smaller effect on the

frequencies[22], and are less commonly found in thin films. We considered results up

to ±0.4% strain where the changes in frequency with the applied strain are typically

at least 1 cm−1, which is generally measurable in Raman spectroscopy.[92] Strain more

than ±0.4% gives more signal-to-noise ratio, but more modes also become nonlinear. To

make sure that this strain range is appropriate for studying linear responses, we have

also computed the elastic constants by applying isotropic, tetragonal, and trigonal strain

to the cubic MAPI lattice and thereby calculating elastic constants C11, C12 and C44

following the procedure based on a quadratic fit of total energy[47]. Within the range

of ±0.4%, our result with LDA shows reasonable agreement with previously published

results (Table 2.2). Note that we have separately calculated each diagonal element of the

elastic constant tensor, and found some differences between them due to the pseudocubic

lattice and lack of symmetry, whereas previous reports appeared to assume perfect cubic

symmetry and calculated only C11 and C44.[29, 31]

Table 2.2: Calculated values of elastic constants in GPa for cubic CH3NH3PbI3.

C11 C22 C33 C44 C55 C66

LDA (this work) 38.1 40.5 38.7 2.8 2.5 3.7

PBE[31] 27.1 - - 9.2 - -

PBEsol+vdW[29] 35.4 - - 6.1 - -

PBEsol[29] 30.9 - - 3.2 - -

Having confirmed reasonable results for LDA on phonon frequencies and elastic

constants, we are using LDA for all our strain and phonon calculations as Quantum

ESPRESSO can only provide Raman intensities for LDA.[71] The code’s ASR=crystal

setting is used to enforce the acoustic sum rule (ASR) and make the acoustic modes ex-
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actly zero.[90] For each mode, we have calculated the uniaxial mode Grüneisen parameter

for [100], [010] and [001] crystallographic directions using the slope of the frequency ver-

sus strain graph, with the formula γi = − 1
ωi

dωi
dϵ , where ϵ is the applied strain and ωi is

the frequency of mode i[134]. By taking the weighted average over all the modes, we

have calculated the temperature-dependent Grüneisen parameter γ =
ΣiγiCv,i

ΣiCv,i
. This is

connected to the macroscopic property of the material by the relation γ = αKT
Cvρ

where

α is volume thermal expansion coefficient, KT is isothermal bulk modulus, Cv is heat

capacity at constant volume and ρ is the density.[147] Raman intensities are calculated

using the approach of Lazzeri et al.[71] and IR intensities computed from Born effective

charge tensors which are calculated as the variation of macroscopic polarization with the

atomic displacement using the modern theory of polarization[32, 9].

2.3.2 Theoretical frame-work for the frequency change

To obtain the normal mode frequencies, we solve the secular equation[9] given

below: ∑
J,β

DIα,JβuJβ = ω2uIα (2.1)

where I, J denote atoms within the unit cell; α, β represent x, y and z directions; DIα,Jβ

is the dynamical matrix of the system; and uIα represents the mode eigenvector. The

dynamical matrix can be expressed as

DIα,Jβ =
1√

MIMJ

( ∂2E

∂RIα∂RJβ

)
(2.2)

where E is the total energy of the system, RI denotes the position vector of atom I, and

MI denotes mass of atom I. For non-strained condition, the normal-mode frequency ω

will be represented as ω0. To treat the variation of ω with strain, we write ω2 as

ω2 =
∑
Iα,Jβ

u∗IαDIα,JβuJβ (2.3)

Strain can be treated as a perturbation to the vibrational properties of the ma-

terial. The perturbation changes the dynamical matrix as well as the mode eigenvectors

of the system, as given in equations (2.4) and (2.5) (up to quadratic order):

Dϵ
Iα,Jβ = D0

Iα,Jβ +
∑
l,m

∂DIα,Jβ

∂ϵlm
ϵlm +

1

2

∑
l,m,l′,m′

∂2DIα,Jβ

∂ϵlm∂ϵl′m′
ϵlmϵl′m′ + · · · (2.4)
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uϵJβ = u0Jβ +
∑
l,m

∂uJβ
∂ϵlm

ϵlm +
1

2

∑
l,m,l′,m′

∂2uJβ
∂ϵlm∂ϵl′m′

ϵlmϵl′m′ + · · · (2.5)

Since the mode eigenvectors are real in our case at q = 0, we can use u∗Iα = uIα.

If we apply the perturbed dynamical matrix with perturbed eigenvector to equation (2.3),

we can calculate the change in frequency as

ω2
ϵ − ω2

0 =
∑
Iα,Jβ

∑
l,m

{
u0Iα

(
∂DIα,Jβ

∂ϵlm

)
u0Jβ

}
ϵlm+

∑
Iα,Jβ

∑
l,m,l′,m′

{
1

2
u0Iα

(
∂2DIα,Jβ

∂ϵlm∂ϵl′m′

)
u0Jβ +

(
∂uIα
∂ϵlm

)
D0

Iα,Jβ

(
∂uJβ
∂ϵl′m′

)
+

2u0Iα

(∂DIα,Jβ

∂ϵlm

)( ∂uJβ
∂ϵl′m′

)
+ u0IαD

0
Iα,Jβ

( ∂2uIα
∂ϵlm∂ϵl′m′

)}
ϵlmϵl′m′ + · · ·

(2.6)

The above equation can be used to find the change in frequency[22] due to strain ϵ as

∆ω ≈ ω2
ϵ − ω2

0

2ω0
(2.7)

For silicon, a simple matrix equation for the Raman-active transverse optical (TO) modes

has been theoretically derived[3, 38] and experimentally verified,[38] but for the pseudo-

cubic perovskite the secular equation is more complicated as it has five different types of

atoms and has no symmetry or degeneracy. Instead, to analyze this situation, we have

considered changes in eigenvectors with strain, as well as the changes in the dynamical

matrices to clearly understand which atomic interactions contribute significantly to the

changes in phonon frequencies, as detailed in section 3.3.

2.4 Results and Discussion

2.4.1 Behavior of phonon modes under uniaxial strain

Calculated normal modes at q = 0 of cubic CH3NH3PbI3 show three distinct

frequency regions – low (20-350 cm−1), medium (850-1600 cm−1) and high (2900-3200

cm−1) – as described for cubic as well as orthorhombic and tetragonal structures in previ-

ous studies.[15] Low-frequency modes are mainly due to the vibration of PbI6 octahedra

and some coupling between the PbI6 octahedra and CH3NH+
3 ion, while the medium

and high frequency modes involve the vibration of the CH3NH+
3 ion. Since pseudo-cubic

MAPbI3 does not have any symmetry,[27] it is not possible to assign spectral activity to
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any particular mode using group theory. All modes show both IR and Raman activity

to some degree.
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Figure 2.2: Comparison of calculated Raman and infrared frequencies. (a) Comparison

of Raman spectrum convolved with 1 cm−1 Lorentzian broadening, with calculation of F.

Brivio et al. [15] (b) Similar comparison for IR spectra. (c) Comparison of our calculated

frequencies with published theoretical[15] and experimental results: IR in Luan et al.,[82]

Raman in Qiu et al.[111] and Nakada et al.,[92] and THz in Leguy et al.[76]

Our ab initio IR and Raman results are shown in Fig. 2.2. Calculated Γ-point

phonon modes are convolved with 1 cm−1 Lorentzian broadening and compared with the

calculations of F. Brivio et al..[15] The difference in results are primarily due to our use of

LDA and their use of PBEsol, as expected from Fig. 2.1. Calculated frequencies match

well with published theoretical results,[15] and experimental measurements from THz at

low frequencies [76] and Raman[92, 111] and IR[82] at medium to high frequencies.

We have 12 atoms in our unit cell for cubic CH3NH3PbI3, which gives 36 phonon
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Figure 2.3: Frequencies of modes which approach or cross under strain, giving rise to

parabolic or irregular behavior in frequency vs. strain.

modes, of which 3 have exactly zero frequency according to the ASR. For the other 33

modes we plotted frequency vs. applied strain (both compressive and tensile). Different

patterns are noticed for different modes. Some of them are linear, some are parabolic, and

some are neither (Fig. 2.4). For comparison, c-Si shows linear changes for small strain,

and a splitting of degeneracy (Fig. 2.11). Given the much more complicated structure of

the perovskite and lack of symmetry (hence no degeneracy), more complex behavior is

observed. Low-frequency modes (27.97 cm−1, 28.3 cm−1, 34.92 cm−1 and 35.81 cm−1),

which closely approach other modes under strain, show the parabolic pattern expected

for an avoided crossing in phonons (or electronic bands), along with mixing and exchange

of eigenvector character on either side of the crossing. The modes which approach or

cross under strain are shown in Fig. 2.3. Using the eigenvectors as a guide, in a few

cases we found crossing of modes under strain, and therefore relabeled the modes to

maintain a continuous character. Other modes with irregular behavior show even more

mixing between modes, in a non-perturbative way, which we attribute to strong coupling

to structural changes as discussed in Sec 3.2. Those modes where the frequency change

is mostly linear can be categorized into four different categories: i) slopes of [100] and

[010] strain are of same sign while slope of [001] is opposite sign (e.g. 143.6 cm−1,

3053.38 cm−1), ii) slopes of [010] and [001] strain are of same sign while slope of [100]

is of opposite sign (e.g. 908.09 cm−1, 1403.54 cm−1), iii) slopes of [100] and [001] strain

are of same sign while slope of [010] is of opposite sign (e.g. 20 cm−1, 34 cm−1) and

iv) all slopes have same sign for [100], [010] and [001] strains (e.g. 97.4 cm−1, 312.59

cm−1). The number of modes falling under different slope categories are given in Table
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Figure 2.4: Typical patterns for frequency changes with applied compressive and tensile

strain in three crystallographic directions [100], [010] and [001]. (a) Deep kink at zero

strain for [010] and [001] but otherwise almost linear. (b) Parabolic pattern for [100]

and [010] uniaxial strain. (c) Linear pattern. (d) Erratic pattern, neither linear nor

parabolic.

2.9 and the frequency change pattern for most of the modes is linear. There are some

modes for which the slopes are almost the same for two different directions. For example,

97.4 cm−1 has Pb-I-Pb bending perpendicular to both [100] and [001], giving rise to the

same slopes for these strain directions. For 1365.3 cm−1, symmetric umbrella type C-H

bending has components in all directions and has comparable behavior for [100] and [010]

strain directions. These behaviors indicate approximate symmetries of particular modes

despite the lack of overall symmetry. In Fig. 2.4, we provide four representative modes’

frequency vs. strain patterns.

To understand these behaviors, we plotted eigenvectors (displacement patterns)

for each mode, contributed by each atom in the unit cell as |uI | =
√

(u2Ix + u2Iy + u2Iz)

; those for the chosen four representative modes are given in Fig. 2.5. We noticed
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Figure 2.5: Contributions of each atom in the eigenvectors for each of the representative

modes presented in Fig. 2.4. Uniaxial strains are in the (a) [010], (b) [100], (c) [001], and

(d) [001] directions, showing connections between parabolic or other nonlinear frequency

behavior in (a) and (b) with significant changes in mode character, while (c) has little

character change and linear frequency behavior, and (d) anomalously has little character

change but erratic frequency behavior which will be explained in 2.4.2.

that the change in frequency with strain is linear when the eigenvector does not change

appreciably but the dynamical matrix does, as the effect of 2nd order change in dynamical

matrix comes in only at 2nd order (Eqn. 2.6). Due to the lack of symmetry, the dynamical

matrix elements always have a change with strain in this system. On the other hand,

if the eigenvector does change, we can have some non-linear effect in the frequency

change which can be understood from the second-order part of Eqn. 2.6. In most cases,

the dynamical matrix change is large enough to produce effects beyond quadratic. For

example, Fig. 2.4(a) shows a kink at zero for the frequency for both [010] and [001]

strain while for [100] strain it is almost linear (parabolic under compressive strain). We
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can see that the change in mode eigenvector for the corresponding mode shows a drastic

change at zero for strain along [010] direction (Fig. 2.5(a)) and the mode’s character

is a combination of translation of the CH3NH+
3 ion along [001] direction and Pb-I-Pb

rocking mode. Fig. 2.4(b) shows parabolic frequency changes for [100] and [010] strain

which can be understood from the changes of the eigenvector and close approach with

another mode (Fig. 2.5(b)). This mode is a combination of CH3NH+
3 ion libration in the

[010] direction and a Pb-I-Pb rocking mode. In Fig. 2.4(c) we can see that the frequency

change is linear and if we check the corresponding change in eigenvector (Fig. 2.5(c)) we

can see that there are very little change with strain which as per Eqn. 2.6 will produce a

linear pattern. The mode character for this mode is libration and spin (all the H atoms

attached to C and N are rotating in the same direction) of CH3NH+
3 ion, and Pb-I-Pb

bending. Finally, in Fig. 2.4(d) we found that the frequency change pattern is irregular

despite the very little change in atomic contributions to the eigenvector (Fig. 2.5(d)).

This is because the x, y and z components for C, N and H are changing irregularly with

strain even though the sum of squares over the Cartesian directions is constant for each

atom. This is a pure molecular mode with symmetric C-H and N-H bending with C-N

stretch. We find that generally C-H and N-H vibrations are associated with nonlinear

changes in the mode character under strain. We will see by structural and dynamical

analysis that C-H, N-H vibrations are important for most of the frequency change under

strain. Corresponding plots for all modes are given in Fig. 2.27-2.33.

2.4.2 Structural Changes under uniaxial strain

While highly symmetric structures such as c-Si do not have internal parameters

that can change with strain, in hybrid perovskites, the structure evolves under applied

strain, which can play a role in vibrational changes. The significant changes are a sign

of the anharmonicity of MAPI. Lengths of bonds parallel to strain are changed most,

but those perpendicular to the direction of strain are also affected. For example, the

Pb-I bond length along [100] changes most for strain along [100] but Pb-I bond lengths

along other two perpendicular directions, such as along [010] and [001] are also changing

as shown in Fig. 2.6(a). This change in bond lengths in the perpendicular direction to

the strain is more prominent when the strain is acting perpendicular to the direction of

the methylammonium ion which is close to [100] (Fig. 2.24). The Pb-I-Pb bond angles

also change with applied strain: they decrease with compressive strain acting parallel to
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Figure 2.6: Change in Pb-I bond length and Pb-I-Pb bond angle in cubic MAPI for

uniaxial [100] strain, showing fairly linear relationships, and a buckling of the Pb-I cage.

These are the six Pb-I bonds, labeled by the crystal direction of the bond, and three

Pb-I-Pb angles along [100], [010] and [001] directions respectively.

the bond angle and increase when it is acting perpendicular to the bond angle as can

be seen in Fig. 2.6(b). Pb-I-Pb bond angle which is along [100] decrease, and those

along [010] and [001] directions increase for compressive strain along the [100] direction.

Similar behavior is found in a theoretical study for tetragonal structure where the Pb-

I-Pb bond angle which is parallel to the strain direction increases for tensile strain and

decreases for compressive strain, but the Pb-I-Pb bond angle perpendicular to the strain

direction increases for compressive strain and decreases for tensile strain.[161] There

are almost no changes (<0.007%) in the C-N bond length but the N-H bond length

(along [001]) decreases with compressive strain (Fig. 2.20). This reduction in N-H

bond length supports the idea that compressive strain may be useful to stabilize the

material.[157, 116]

The CH3NH+
3 ion, which lies in the (010) or xz-plane also rotates with an

increasing angle with respect to the [100] direction or a-axis under compressive strain

and a decreasing angle under tensile strain (Fig. 2.17), with changes of up to 1.5◦ over

our strain range which is related to the change in c/a ratio[99] as mentioned in Sec. 2.1.

Rotation is largest for [010] strain. This may be due to the fact that the CH3NH+
3 ion

lies in the (010) plane perpendicular to [010]. Rotation of CH3NH+
3 is also reported for
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tetragonal structure under compressive strain.[161] The distances of C and N with their

nearest Pb and I change with strains and the discontinuity in the I-N, I-C, N-Pb and C-

Pb distances gives an indication why we see certain kinks or irregularities in the Raman

shift vs strain graphs. For example, mode 128.01 cm−1 shows kinks in the frequency

change pattern (Fig. 2.27-2.33) where C-H and N-H are showing asymmetric bending

modes with libration of the MA ion within the Pb-I cage, which is affecting the C-Pb and

I-N distances most. Similarly, for 1023.57 cm−1, we see that the irregularity is greater

for [010] and [001] strain than [100]. We have further analyzed these changes in terms

of the dynamical matrix in the next section. Full plots of structural parameters with

each direction of strain are in Fig. 2.24-2.17, and all atomic coordinates and phonon

eigenvectors of relaxed strained structures are provided in the Supporting Information.
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Figure 2.7: Dynamical matrix for strain along [010] direction. (a) Change in dynamical

matrix for compressive strain (ϵ = −0.004). (b) Dynamical matrix at zero strain. (c)

Change in dynamical matrix at tensile strain (ϵ = 0.004). Symbols in both the axes

represent atoms and their coordinates. For example, within H(N) block, H3z denotes

the z coordinate of the third H attached to N.

2.4.3 Change in dynamical matrix due to uniaxial strain.

To understand the different behaviors of the phonon modes under strain, we

have analysed the dynamical matrix of each strained structure according to Section 2.2.
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We have calculated the changes in dynamical matrices and plotted the results as heat-

maps in Fig. 2.7(a) and 2.7(c) to understand which changes in interatomic interactions

are most significant for the vibrational frequency changes under strain and how they

relate to the different linear/parabolic/irregular pattern observed. Fig. 2.7(b) shows

the dynamical matrix for the unstrained lattice. Note that these plots are symmetric

about the diagonal and the scales are different for the strained and non-strained cases.

The largest elements are in the C, N, H block due to lighter masses (see Eqn. 2.2).

Diagonal elements are generally larger than off-diagonal elements, as can be seen at Fig.

2.7(b). It can be also seen that changes due to compressive strain are more than those

of tensile strain, which can be understood based on the typical curve of energy vs. bond

length, e.g. the Morse potential. Since Pb and I are heavier than C, N and H, Pb-I

interactions will be significant most for low frequency modes. It can be noticed that

there are very small interactions between H atoms and their nearest Pb or I atoms (Fig.

2.7(b)) which gives an indication that van der Waals interactions are of minor importance

for vibrations of the cubic structure which is also supported by a previous study.[64] We

have calculated also the dynamical matrix for a 2× 2× 2 supercell, and found that the

matrix elements are significantly smaller when the two atoms are in different primitive

cells. This indicates that the artificial long-range order in our periodic structure does

not make much difference in the vibrational properties compared to the true dynamical

disorder.

From the change in dynamical matrix in Fig. 2.7(a) and Fig. 2.7(c), we can see

that the component of Pb-I interactions change most when it is parallel to the direction

of strain. For example, the Pby-Iy interaction changes most for [010] strain whereas

Pbx-Ix and Pbz-Iz interactions change most for [100] and [001] strains respectively (Fig.

2.13-2.14). We have already seen in the structural changes that Pb-I bond length is

affected most when the stretches are along the direction of polarization of the bond. It

is clear from Fig. 2.7(a) and Fig. 2.7(c) that Pb-I modes are significantly affected due

to strain. It can also be seen that I-N coupling (lower left and upper right) is important

and greater than I-C coupling which is due to the electrostatic interaction between the

MA ion and the cage. These interactions play a significant role in the frequency shifts

and are important for the medium and high frequency regions.

Given the success of analyzing vibration separately[106] (lattice and ion), one

might think that the lattice strain will not affect the MA ion, but this turns out not to
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be true. Among the hydrogens attached to C, or the hydrogens attached to N, there are

significant changes with strain in the interactions, which explain the behaviors of some

of the high frequency modes. Modes that have a large component of C-H, N-H stretch

have higher slopes in the high frequency region, whereas in the low frequency region

large Pb-I stretch or bend with C-H, N-H stretch is associated with large slope. C-H,

N-H asymmetric stretch or CH3NH3 spin and torsion are found to have high slopes. It

is found that slope values are high in the low and high frequency region and small in

the medium frequency region. It is also found that the slope values are typically higher

when the strain is perpendicular to the direction of the MA ion (along [010] and [001])

and lower when its along the direction of the MA ion i.e. along [100]. We attribute

this asymmetry to the orientation of the C-H bonds: two of the C-H and N-H bonds

lie closer to [010] than to [100], giving greater effects from [010]; one C-H and one N-H

bond lie parallel to [001], and these bond lengths are affected most by [010], and also

show the greatest effects of any C-H or N-H bonds in any strain direction (Fig. 2.20,

2.19). Therefore the strain effects on the MA ion, and its interactions with the cage, are

greatest when we apply strain along [010] and [001].

IR and Raman intensities are much higher in the high frequency region than in

the low or mid-frequency regions, and are mainly contributed by C-H and N-H stretches.

From our full phonon analysis, shown in Table 2.7, we found that low-frequency modes

are mainly due to Pb-I-Pb vibration with translation or libration mode of the MA ion.

The mid-frequency modes mainly consist of C-H and N-H asymmetric bending with some

spin or twist. The high-frequency modes are mainly symmetric and asymmetric stretch

of C-H and N-H bonds of the methylammonium ion. For all the modes, IR intensity

vectors are lying in the plane, either in xz (100) or in xy (001) plane. Modes which

have high slopes in all three directions – among them, high frequency modes (3053.38

cm−1, 3058.42 cm−1, 3161.71 cm−1) – are both highly IR- and Raman-active while low

frequency modes (27.97 cm−1, 65.02 cm−1, 85.82 cm−1) are less IR- and Raman-active.

Modes involving libration and translation of the CH3NH+
3 ion and Pb-I-Pb bending have

high slopes along [100] direction while modes having high slope in [010] show C-H and

N-H stretch in CH3NH+
3 ion.
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Figure 2.8: Frequency vs. strain for the best modes for IR/Raman microscopy to probe

local strain, showing linear changes for robust calibration.

2.4.4 Best modes to probe local strain in cubic CH3NH3PbI3

An appropriate mode for strain mapping with IR/Raman microscopy should

have i) a large IR or Raman intensity, for ease of detection; ii) a linear frequency change

with strain, for simple and unique relation of frequency to strain; iii) a large slope for

frequency vs. strain, for sufficient signal-to-noise ratio in measuring frequency shifts;

and finally, iv) a small change in frequency with respect to cation orientation, ensuring

the validity of our results in the presence of cation rotations at elevated temperature.[27]

A difficulty in checking these frequency changes with cation orientation is that

phonon calculations are not very meaningful except from a relaxed structure, and only a

few cation orientations are stable.[15, 152] We took our zero-strain structure and rotated

the cation close to the [111] direction, and relaxed the structure. The result is 0.01 eV

higher in energy, and has the cation in the xz plane, with the C-N bond at an angle of

113.9◦ (compared to 23.3◦ for our main data set) with respect to [100] direction. From a

phonon calculation, we find some mode frequency changes due to the CH3NH+
3 rotation,
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Figure 2.9: Mode eigenvector vs. strain for the best modes for IR/Raman microscopy to

probe local strain, showing little change in mode character (except for (a)), associated

with robust linear changes vs. strain.

typically by a few wavenumbers. We may expect this variation to be a contribution to

heterogeneous broadening of Raman peaks as ions rotate thermally. Indeed Nakada et

al. report larger peak widths for high- and low-frequency modes than for mid-frequency

modes, for all 3 crystal phases,[92] in accordance with our results for frequency changes

with ion rotation. The high- and low-frequency modes change most while the mid-

frequency modes change less due to the CH3NH+
3 rotation. This is because the mid-

frequency region is mainly symmetric/asymmetric bending modes of the MA ion which

are not affected much by rotation of the MA ion, whereas stretching modes at high and

low frequency are the ones that change more when the distances change between the MA

ion and the Pb-I cage. For this reason, the same modes that have large frequency changes

with ion rotation have large slopes with strain. Full results are shown in Table 2.7. If

the mode frequency changes by a significant amount due to rotation of the molecule, our
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static result may have a larger error, and the predicted frequency shifts due to strain will

be less reliable. Therefore, we need to focus on those modes for which frequency change

due to rotation of the MA ion is minimal.

After this analysis, we can identify the best modes for IR or Raman microscopy

for probing local strain.[22, 134] We note 4 suitable modes, whose properties are detailed

in Table 2.3 and whose displacement patterns are shown in Fig. 2.15. A combination

of all 4 modes can be used together for better precision, or even to find a best fit to

3 directions of uniaxial strain. Two are low-frequency Pb-I modes and two are mid-

frequency molecular modes. The frequency changes vs. strain are shown in Fig. 2.8

and the eigenvectors vs. strain are shown in Fig. 2.9, exhibiting little change in mode

character and a robust linear frequency change. Each of these modes has all slopes

positive or all slopes negative. In the case of triaxial strain or when cation rotations

wash out directional dependence, the average of the three uniaxial slopes would be the

appropriate slope according to Eq. 2.6. Having all uniaxial slopes with the same sign is

convenient, because the three directions will reinforce each other rather than cancelling

out, as could happen when the slopes have different signs. The IR and Raman intensity

for these 4 modes show only moderate changes with strain (Fig. 2.16-2.18) as for c-

Si optical modes,[22] which we expect would not cause any problem for experimental

measurement. We find another mode at 1365.3 cm−1 that has favorable properties with

reasonable Raman intensity to probe local strain (Fig. 2.27-2.33); however it is not

observed in experiment. The reason may be limitations of our model. Our structure is

pseudocubic rather than cubic, and our calculation is static and done at 0 K at which

this is not the stable phase. As a result, this mode may in fact lose its Raman activity

due to dynamic average symmetry in the real high-temperature structure.

There is a final point to consider in assessing experimental feasibility. To be able

to measure strain by Raman shifts, we need to obtain a frequency shift that is higher than

the experimental resolution. For typical strain[29, 161] of 1% we can expect to obtain

shifts -3.8 cm−1, -3.5 cm−1, 0.75 cm−1 and 1.57 cm−1 for the favorable Raman modes at

85.8 cm−1, 97.4 cm−1, 1457.1 cm−1 and 1537.4 cm−1, respectively based on the average

slopes in Table 2.3. Experimentally measured full widths at half maximum (FWHMs)

for Raman spectra[111, 82, 92] around the low-frequency modes are 8 cm−1, 10 cm−1,

and 18 cm−1, and for the mode at 1460 cm−1, the FWHM is around 35 cm−1. One

contribution to FWHM can be strain itself – inhomogeneous strain distributions within
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the Raman focus will result in broadening.[154] Although these FWHMs are high, peak

shifts can be resolved less than 1 cm−1, as seen for the temperature-dependent Raman

shifts measured by Nakada et al.[92] and in Strubbe et al.[134] on a-Si:H, because fitting

of Gaussian peaks allows determination of differences in peak centers to much greater

precision than the FWHM. Temperature dependent frequency shifts were measured for

MAPI by Nakada et al.[92] and they were able to measure shifts less than 1 cm−1 which

is well within the expected shifts from 1% strain in case of our cubic structure. One

contribution to the temperature-dependent frequency shift is thermal expansion which

is a sign of significant effect of anharmonicity. Our results show that this is a relatively

minor contribution because our predicted shifts due to thermal expansion are much less

than the shifts reported by Nakada et al.,[92] in accordance with results of Bonini et al.

for graphite.[13]

Finally, note that the deviation between calculated and measured frequencies

for these modes is larger than expected strain shifts. Due to this unavoidable systematic

difference, we would recommend use of our calculated slopes to infer relative strains in a

sample, rather than by direct comparison of experimental frequencies to our calculated

frequencies.[134]

2.4.5 Calculation of mode Grüneisen parameter

The uniaxial mode Grüneisen parameter is calculated using the slope of the

frequency vs strain curve for each mode (Fig. 2.10), as done in a-Si.[134] Pb-I vibrations

at lower frequency have significant values, whereas CH3NH+
3 ion vibrations at higher fre-

quency have much smaller values. One of the reasons for the low values at high frequency

is the high frequency itself, as we divide the slope with the mode frequency, although

some high-frequency modes do have large absolute slopes. To connect to macroscopic

properties, we calculate the Grüneisen parameter, as the weighted average over all the

modes using the Bose-Einstein formula for heat capacity. In distinction to F. Brivio

et al.,[15] we are using uniaxial strain, and we include only modes at q = Γ, because

of the conceptual problem in the quasiharmonic approximation of how to handle the

imaginary frequencies.[23] Also, due to dynamical disorder [76], which is not included in

our calculation, the phonon bandstructure away from q = Γ may be less accurate or lose

some of its meaning without periodicity. The imaginary frequencies are indicative of the

fact that the cubic structure is not the most stable phase at T = 0, and were observed
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Table 2.3: Best modes for IR or Raman microscopy to probe local strain.a

Calc.

Freq.

(cm−1)

Expt.

Freq.

(cm−1)

IR

Int.

Raman

Int.

Avg.

slope

(cm−1)

Slope

[100]

(cm−1)

Slope

[010]

(cm−1)

Slope

[001]

(cm−1)

Mode

Characters

85.8 86.68[111] 4.77 193.2 -379.87 -334.8 -127.8 -677.0

CH3NH+
3 libration

CH3NH+
3 translation

Pb-I-Pb bending

Pb-I asym. stretch

97.4
94.0[82]

98.0[92]
5.53 20.2 -348.77 -140.8 -772.7 -132.8

CH3NH+
3 libration, spin

Pb-I-Pb bending

1457.1 1460.0[92] 5.65 138.9 75.5 63.2 74.8 88.5

C-N stretch

N-H sym. bending

C-H asym. bending

no Pb-I vibration

1537.4 1582.0[92] 7.48 15.6 157.33 79.2 302.3 90.5

C-H asym. bending

N-H asym. bending

no Pb-I vibration

aAbsolute IR intensity is in (D/Å)2/amu and Raman intensity in Å4/amu.

in previous work.[15] They occur around q=R and q=M, and are not reduced by strain

(Table 2.8). Our calculated values of the directional Grüneisen parameter at 330 K (the

transition temperature to tetragonal) for strain along [100], [010], and [001] are 1.06,

2.10, and -0.51, respectively, for an average of 0.88. The isotropic value reported by F.

Brivio et al.,[15] averaged over temperature, was 1.6. We expect the difference is due to

the handling of Brillouin zone integration, as well as their calculation via quasiharmonic

thermal expansion rather than mode Grüneisen parameters. This result shows a direc-

tional dependency of the Grüneisen parameter that suggests an unusual negative thermal

expansion along [001] direction for cubic MAPI, due to the negative value. While the

existence of cation rotations at 330 K experimentally complicate the physical interpreta-

tion of this result, it connects to previous studies reporting that tetragonal perovskites

have a negative thermal expansion coefficient along the [001] or c-axis,[40, 55] which is

perpendicular to the direction of polarization of the CH3NH+
3 ion and also the largest

lattice vector, in both cubic and tetragonal structures.

2.5 Conclusion

We have comprehensively studied the structural and vibrational properties of

cubic CH3NH3PbI3 under uniaxial strain. By analysing the dynamical matrix of the
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Dashed lines in red, green and blue represent Grüneisen parameter calculated at 330

K for different uniaxial directions. Thick dashed line in violet represents the average

Grüneisen parameter.

system under each strain we are able to identify the interactions which contribute signif-

icantly to the frequency changes due to applied strain. The phonon modes have frequency

changes under strain, which can show linear, parabolic, or irregular patterns. Linear is

associated with change in dynamical matrix but no change in mode eigenvector with

strain, while parabolic is associated with changes in both dynamical matrix and mode

eigenvector, in accordance with a perturbative analysis. Irregular patterns are due to

large changes in mode eigenvector due to discontinuous structural changes, which are a

sign of anharmonicity. These changes give insight into the interplay between structure,

strain, and vibrations, and show approximate symmetries for some modes. We find that

not only the Pb-I bond lengths but also the Pb-I-Pb bond angles change under strain,

showing a buckling of the Pb-I lattice. Decrease in N-H bond length under compressive
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strain may be connected to the increased stability under compressive strain. We also

find that the cation rotates with respect to the lattice under strain. We have identified

4 modes that are promising for IR or Raman microscopy measurement of local strain, as

done in other semiconductors and even amorphous Si which has broad peaks. Results on

the mode Grüneisen parameters and macroscopic Grüneisen parameters give insight into

anharmonicity and directional negative thermal expansion. Our study of the cubic phase

is relevant not only to high temperatures but also to cubic phases stabilized by ligands or

other cations. Our results are expected to be similar in many respects to results for the

tetragonal and orthorhombic phases, particularly in the mid-frequency range where the

spectra are similar, and these phases will be the subject of future publications. We look

forward to experimental work to confirm these results with uniform strain, and employ

our calibration for strain mapping. Our work opens the way for a standard bench-top

characterization method to be usable for analyzing the critical role of local strain in

hybrid perovskite photovoltaics.
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2.7 Supplementary Information

Figure 2.11: Benchmark calculation of the change in optical phonon frequency of c-

Si under uniaxial strain along [100], with different DFT functionals. Applied strain

breaks the degeneracy of the phonon mode making doubly degenerate (dotted) and

singly degenerate (solid) modes.

Figure 2.12: Bandstructure for cubic CH3NH3PbI3 using LDA.

Table 2.4: Bandgap at different k-points using different functionals.

Functional Used
Bandgap in eV

R M

LDA 1.478 2.225

PBE 1.769 2.353

PBEsol 1.525 2.217
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Table 2.5: Relaxed structure parameters for cubic CH3NH3PbI3 using different function-

als. Lattice parameters and bond lengths in Å and angles in degrees

a b c α β γ Pb-I Pb-I-Pb C-H N-H C-N

Initial Structure 6.288 6.228 6.374 90.003 88.744 89.986

3.250

3.078

3.215

3.174

3.140

165.151

167.237

172.011

1.099

1.100

1.100

1.047

1.047

1.042

1.481

Functional

LDA 6.163 6.115 6.267 90.004 88.803 89.998

3.090

3.120

3.173

3.156

3.090

3.046

163.458

164.652

173.920

1.101

1.101

1.100

1.048

1.048

1.043

1.471

PBE 6.499 6.41 6.532 90 88.657 90.001

3.444

3.227

3.227

3.075

3.328

3.234

166.715

169.170

171.133

1.093

1.093

1.093

1.038

1.037

1.038

1.493

PBEsol 6.291 6.248 6.378 89.999 88.645 90

3.146

3.146

3.238

3.085

3.220

3.171

166.527

168.411

172.732

1.099

1.099

1.098

1.044

1.041

1.044

1.482

Table 2.6: Benchmark calculation of optical phonon mode frequencies at q = 0 for c-Si,

and the split singlet and doublet slopes under uniaxial [100] strain using LDA, PBE and

PBEsol. Calculated values are compared with published theoretical and experimental

results. LDA has best agreement with experiment.

Method
lattice constant ω singlet slope doublet slope

Å cm−1 cm−1 cm−1

LDA 5.394 514 -426 -551

PBE 5.469 503 -430 -526

PBEsol 5.431 510 -422 -546

LDA[134] 5.38 514 -424 -547

Exp’t - 520±0.584[100] -481±20[2] -601±20[2]
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Table 2.7: Complete phonon mode analysis at q=0 for cubic CH3NH3PbI3. Here IR

intensity is in (D/Å)2/amu units and Raman intensity is in Å4/amu units as given by

Quantum ESPRESSO. ∆ω denotes change in frequency due to rotation of the CH3NH3

cation inside the Pb-I cage. Raman shift pattern includes all three directions [100], [010],

and [001].

Mode
Freq.

(cm−1)

IR

Int.

Raman

Int.

Depol.

ratio

CH3NH3

vibration

Pb-I cage

vibration

4 20 0.19 15.25 0.75 translation Pb-I-Pb bending

5 27.97 0.16 303.36 0.15 libration Pb-I-Pb rock

6 28.3 0.42 133.24 0.32 libration, translation Pb-I-Pb bend

7 34 0.22 22.73 0.74 translation Pb-I-Pb rock

8 34.92 0.1 142.34 0.13 translation Pb-I-Pb rock

9 35.81 0.44 438.19 0.74 libration, translation Pb-I-Pb rock

10 65.02 0.47 18.64 0.32 libration, asym bend no vibration

11 71.65 0.87 3.42 0.75 libration, asym bend Pb-I-Pb bending

12 85.82 4.77 193.24 0.75 libration, translation
Pb-I-Pb bending

Pb-I asym stretch

13 90.4 6.13 72.27 0.58 libration, translation
Pb-I-Pb rock,

Pb-I stretch

14 97.4 5.53 20.2 0.75 libration, spin Pb-I-Pb bending

15 101.37 0.46 20.37 0.26 translation Pb-I-Pb rock (only I)

16 128.01 0.94 28.75 0.64 libration, asym bend no vibration

17 136.9 0.08 26.56 0.75 spin no vibration

18 143.6 1.81 1.1 0.75 libration, asym bend no vibration

19 312.59 0.01 38.31 0.75 twist, spin no vibration

20 875.68 1.39 535.87 0.75 asym bend no vibration

21 908.09 1.57 9.96 0.75 asym bend no vibration

22 1023.57 0.25 85.7 0.45 symm bend, C-N stretch no vibration

23 1208.95 0.59 629.1 0.73 Libration, asym bend no vibration

24 1227.42 0.05 19.45 0.75 libration, asym bend no vibration

25 1365.29 0.53 222.7 0.72
C-N stretch

C-H symm bend
no vibration

26 1403.54 0.94 82.24 0.75 C-H, N-H asym bend no vibration

27 1412.6 0.28 77.6 0.69 C-H, N-H asym bend no vibration

28 1457.05 5.65 138.87 0.62

C-N stretch,

N-H symm bend,

C-H asym bend

no vibration

29 1523.94 3.74 198.71 0.57 C-H, N-H asym bend no vibration

30 1537.41 7.48 15.64 0.75 C-H, N-H asym bend no vibration

31 2943.14 0.11 1603.63 0.04
C-N stretch,

C-H, N-H symm stretch
no vibration

32 3036.04 3.48 1128.95 0.75 C-H, N-H asym stretch no vibration

33 3045.84 0.4 1394.65 0.73 C-H, N-H asym stretch no vibration

34 3053.38 15.1 4577.19 0.59 C-H, N-H asym stretch no vibration

35 3058.42 44.03 668.93 0.75 C-H, N-H asym stretch no vibration

36 3161.71 12.7 2757.26 0.51
C-H, N-H asym stretch,

large N-H stretch
no vibration
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Table 2.7: (continued).

Mode
Freq.

(cm−1)

Slope

[100]

Slope

[010]

Slope

[001]
Raman Shift Pattern ∆ω

4 20 22.5 -323.83 129.83 linear 1.66

5 27.97 -108 -141.33 215.83 parabolic, mixed 2.19

6 28.3 44.5 109.33 -63 parabolic, mixed -1.06

7 34 42.5 -121.5 125.33 linear 1.26

8 34.92 -92 -104.5 28.5 parabolic, mixed 1.58

9 35.81 -8 -11.67 -17.83 parabolic, mixed -0.68

10 65.02 -203.33 -449.83 204 mixed 6.15

11 71.65 -352.17 -263.33 42.83 linear 5.63

12 85.82 -334.83 -127.83 -677 linear 1.51

13 90.4 -482.33 -237.83 -308.67 linear -4.42

14 97.4 -140.83 -772.67 -132.83 linear 0.43

15 101.37 -197 -257.83 -264.83 mixed -3.27

16 128.01 -133.33 -91.33 58.17 mixed 4.5

17 136.9 -136.5 65.83 623.5 mixed 13.04

18 143.6 -164.67 -394 161.33 linear 3.72

19 312.59 31 160 440 linear 7.13

20 875.68 34 -23.67 166.17 mixed 2.19

21 908.09 -20.67 103.67 123.5 linear 2.43

22 1023.57 -25.17 -52 9.67 mixed 0.08

23 1208.95 22.67 -43.83 88.17 linear 0.98

24 1227.42 6.17 123.67 83.83 linear 1.39

25 1365.29 85.67 84 34.83 linear -0.73

26 1403.54 -11.5 44.17 95.83 linear 1.86

27 1412.6 33.67 -10.5 105.5 linear 1.36

28 1457.05 63.17 74.83 88.5 linear 0.01

29 1523.94 56.33 -87.33 72 linear 0.82

30 1537.41 79.17 302.33 90.5 linear 0.43

31 2943.14 103.17 77.5 -29.33 linear -2.3

32 3036.04 140 172.17 -76.67 linear -3.24

33 3045.84 61.83 88.67 -57.5 linear -1.94

34 3053.38 148.67 449 -304.5 linear -6.05

35 3058.42 170.83 547.67 -328.5 linear -6.43

36 3161.71 -199.33 -966.67 -482.67 mixed -4.15
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Table 2.8: Comparison of phonon modes at q=0, R, and M. Modes at R and M are

imaginary at zero strain condition, as well as under compressive and tensile strain at

this level.

Mode No.

q=0

zero strain

cm−1

q=M

zero strain

cm−1

q=R

zero strain

cm−1

q=R

comp. strain 0.004

cm−1

q=R

tensile strain 0.004

cm−1

1 0 -17 -18 -18 -17.7

2 0 23.1 -8.2 -8.6 -7.6

3 0 27.1 33.2 33.4 33.1

4 20 28.5 38.2 38.2 38.1

5 28 35.2 40.5 40.9 40.2

6 28.3 35.5 43.8 43.8 43.7

7 34 46.9 63.4 64.6 62.9

8 34.9 65.9 71.6 73 70.5

9 35.8 73.3 79.7 80.2 78.9

10 65 82.1 83 84.8 81.5

11 71.7 85 88.5 88.7 88.3

12 85.8 87.8 103.1 103.9 102.5

13 90.4 105.9 106.5 107 105.9

14 97.4 117.9 117.2 118.3 116.1

15 101.4 124.9 127.2 127.8 126.7

16 128 126.7 128.3 129.1 127.6

17 136.9 138.2 140.6 141.1 140

18 143.6 150.3 149.4 150.1 148.9

19 312.6 315.7 313.5 313.3 313.6

20 875.7 877.5 872 871.9 872.1

21 908.1 911.5 909.4 909.4 909.4

22 1023.6 1022.9 1023.6 1023.7 1023.4

23 1209 1205.6 1205.9 1205.8 1206

24 1227.4 1232.1 1232.5 1232.5 1232.4

25 1365.3 1363 1365.1 1364.7 1365.3

26 1403.5 1403.7 1405.8 1405.8 1405.8

27 1412.6 1411.1 1412.1 1412 1412.2

28 1457.1 1454.7 1458.1 1457.9 1458.2

29 1523.9 1520.8 1525.5 1525.3 1525.7

30 1537.4 1540 1541.7 1541.4 1542

31 2943.1 2942.9 2942.9 2942.5 2943.4

32 3036 3038.5 3038.5 3038 3039

33 3045.8 3042.6 3042 3041.4 3042.3

34 3053.4 3048.5 3048.4 3047.9 3048.8

35 3058.4 3076.5 3074.8 3074 3075.2

36 3161.7 3161.1 3161.1 3162.2 3160.7
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Figure 2.13: Dynamical matrix for strain along [100], [010] and [001] directions. (a)

Change for compressive strain (ϵ = −0.004). (b) Dynamical matrix at zero strain. (c)

Change for tensile strain (ϵ = 0.004). Symbols in both the axes represent atoms and

their coordinates. For example, within H(N) block, H3z denotes the z coordinate of the

third H attached to N.
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Figure 2.14: Same as Fig. 2.13 but with different scales to understand the changes in

atomic interaction within the ion itself.
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Figure 2.15: Displacement patterns for four most suitable modes to probe local strain

with IR/Raman microscopy.

Table 2.9: Number of modes falling under different slope patterns for uniaxial strain

along [100], [010] and [001].

slope character non linear step linear linear with kinks linear parabolic

strain along [100] 0 0 8 21 4

strain along [010] 4 4 7 17 1

strain along [001] 2 1 9 21 0
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Figure 2.16: Change of IR intensity with uniaxial strain, for 4 best possible modes for

experimental measurement.

Figure 2.17: Change in orientation of the methylammonium ion. Angle is that between

the C-N bond and the x-axis, [100] direction.



52

Figure 2.18: Change of Raman intensity with uniaxial strain for 4 best possible modes

for experimental measurement.

Figure 2.19: Change in C-H bond length due to uniaxial strain.
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Figure 2.20: Change in N-H bond length due to uniaxial strain.

Figure 2.21: N-Pb distance changes due to uniaxial strain. Iodine atoms are numbered

in ascending order of N-I distances.
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Figure 2.22: C-Pb distance changes due to uniaxial strain. Pb atoms are numbered in

ascending order of C-Pb distances.

Figure 2.23: Pb-I-Pb bond angle changes due to uniaxial strain.

Figure 2.24: Pb-I bond length changes in each direction of uniaxial strain.
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Figure 2.25: C-I distance changes due to uniaxial strain. Iodine atoms are numbered in

ascending order of C-I distances.
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Figure 2.26: N-I distance changes due to uniaxial strain. Iodine atoms are numbered in

ascending order of N-I distances.
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Figure 2.27: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.28: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.29: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.30: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.31: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.32: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.
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Figure 2.33: Mode eigenvector vs. strain, and frequency vs. strain, for each of the three

crystallographic directions.



Chapter 3

Interplay of structural changes,

symmetry and vibrations in

orthorhombic and tetragonal

hybrid perovskites under stress

3.1 Abstract

Despite perovskite solar cells’ rapid rise in photoconversion efficiency, their com-

mercialization is facing issues due to stability problems. Factors such as moisture, heat

and illumination, cause degradation which can be mitigated by encapsulation techniques.

Another important factor is local stress which may develop in organic metal-halide per-

ovskites, affecting optoelectronic properties and playing a major role in their performance

and stability. Previously we have studied the high-temperature pseudo-cubic phase of

CH3NH3PbI3. In this work, we studied the low-temperature orthorhombic and room-

temperature tetragonal phases, analyzing vibrations under uniaxial strain with density

functional perturbation theory. We have classified modes which show linear, quadratic

and non-linear shifts with strain and also found the best modes for inferring strain using

IR and Raman spectroscopy. Considering exact and approximate symmetries, we have

analyzed changes in the structural parameters, phonon displacement patterns, and dy-

namical matrices, to understand changes in frequency from a perturbative approach. We

found I-N interactions play a significant role in the change of vibrational modes under

64
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strain. Our study gives insight into the interaction between strain, structural changes

and vibrational modes to help understand photovoltaic performance and degradation.

3.2 Introduction

In the last decade, the photo conversion efficiency of hybrid organic-inorganic

perovskites has skyrocketed (from 3.8%[70] to 25.2%.[97]). This improvement in PCE

makes them a promising material for next generation solar cell application.[49] Apart

from that they also have some of the good qualities that are required for a solar cell[36,

145, 126, 133, 156, 150]. The main drawback that is hindering its large scale commercial

application is their instability[96, 21, 62] which also improved a lot over the years.[73, 78]

One of the reasons of its instability is light itself[62] and another reason is strain.[99, 94,

163, 29, 161, 10, 143, 61, 164, 127] The strain may develop in the material by many ways

such as epitaxial lattice mismatch[19], thermal expansion mismatch with the substrate,

phase transitions, grain boundaries, compositional inhomogenities, light soaking etc.[29,

161, 61, 143] We need to understand the interplay between structural changes, symmetry

and vibrations under strain to understand the root cause behind degradation of these

materials.

In previous work we have studied in detail the high-temperature pseudo-cubic

phase[138]. In this work we study the room temperature tetragonal phase and the low

temperature orthorhombic phase.[27] There is similarity in phonon density of states

between these three structures (Figure 3.1). In the low frequency range we can see the

coupled vibrations of the PbI6 octahedra and CH3NH+
3 ions whereas in the mid and

high frequency range the vibrations are mainly due to the MA+ ion. This similarity in

the mid and high frequency regions in the phonon density of states suggests that the

behaviour of the ortho and tetra MAPI phonon modes under strain will be similar to

that of the cubic one as the main contribution to the pnonon modes in these two regions

are from the MA+ ions. As there are 4 MA+ ions in orthorhombic and tetragonal MAPIs

whereas one MA+ ion in cubic, In the mid and high frequency regions we expect the

phonon modes to come in a set of 4 for each phonon mode of the cubic one. Strain in the

material can cause a shift in the phonon mode frequencies and these shifts can be helpful

to measure localized strain in MAPI perovskites using Raman and IR spectroscopy.[138]

To calibrate these frequency shifts with respect to strain we need to plot frequency Vs

strain graphs. We have calculated the Raman and IR spectra for both orthorhombic
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Figure 3.1: Comparison of phonon density of states for cubic, tetragonal and orthorhom-

bic MAPIs. Phonon density of states is multiplied by 4 for cubic structure to compare

with the equivalent orthorhombic and tetragonal MAPIs.

and tetragonal phases and profile all the phonon mode shifts under uniaxial strain. We

have analyzed the strain induced structural changes and also analyzed the dynamical

matrix to understand which inter-atomic interactions are playing major roles in the

phonon mode shifts under uniaxial strain. We have calculated and compared the mode

Grüneisen parameter for these two modes and compared the result with cubic phase.

Finally, we provide the best Raman and IR modes that will be helpful to measure local

stress in orthorhombic and tetragonal MAPIs using Raman and IR spectroscopy.

3.3 Methods

3.3.1 Computational details

Density functional perturbation theory (DFPT)[9] as implemented in Quantum

ESPRESSO (version 6.4.1)[43, 44, 8] is used for phonon mode calculations. The Local

Density Approximation[101] (LDA) with the Perdew-Wang (PW) parametrization[104]

is used for the exchange-correlation potential for all the calculations. Scalar relativis-

tic Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials[53] are used which

treat Pb 5d orbitals as valence. All the pseudopotentials are taken from Pseudō Dōjō[146]

(NC SR ONCVPSP v0.4) with standard accuracy. Spin-orbit coupling is not considered

for the calculation as it does not have much effect on interatomic interactions near

equilibrium.[15]. The Brillouin zone is sampled using a half-shifted 5×4×5 (for or-
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thorhombic) and 5×5×4 (for tetragonal) Monkhorst-Pack grid with an energy cutoff of

100 Ry for the wave-functions. Atomic positions are optimized until the total force per

atom is smaller than 1 meV/Å; for the initial variable-cell relaxation, a 0.5 kbar stress

convergence threshold is used. We compared different functionals (PBE, PBEsol and

LDA) and also checked the effect of Grimme-D2 van der Waals correction for structural

optimization of both the structures. The equilibrium structure parameters are reported

in table 3.1. PBEsol and PBE+vdW and LDA gives fairly good estimates compared to

experimental lattice parameters. A few more things that we have noticed are 1) Pb-I

bond length is over estimated in PBE whereas it is underestimated in LDA. PBEsol and

PBE+vdW gives fair results compared to experiment. The overall Pb-I bond length is

higher in orthorhombic and tetragonal then cubic structure. 2) PBE and PBEsol be-

haves similarly while estimating Pb-I-Pb bond angle. It can seen that the average bond

angle is lowest for orthorhombic structure and highest for cubic structure which gives an

indication that as the temperature decreases the Pb-I-Pb buckling increases especially

in the ab plane. 3) For C-H and N-H bond lengths, LDA> PBEsol> PBE> PBE+vdW.

4) C-N bond length reduced in the following order, tetragonal < orthorhombic < cu-

bic. Though PBE with van der Waals correction works best for structural and elastic

parameter calculations, LDA without van der Waals correction can still be good to cal-

culate phonon modes, IR and Raman intensities[105] and quantum ESPRESSO can only

calculate Raman intensity for LDA.

3.4 Results and Discussion

3.4.1 Structure Details

Depending on temperature, MAPI exists in three different phases: orthorhom-

bic at low temperature (T < 161.4K), tetragonal at room temperature (161.4K < T <

330.4K), and cubic (or pseudo-cubic) at high temperature (T > 330.4K). Both or-

thorhombic and tetragonal MAPI structures are
√

2×
√

2× 2 supercell expansion of the

cubic lattice (Figure 3.2).

Orthorhombic MAPI is reported to have D2h point group symmetry[15] whereas

the experimental structure of the tetragonal MAPI is reported to have D4h point group[4,

151]. There are previous studies that report most stable structures of orthorhombic and

tetragonal MAPIs based on molecular dynamics and DFT calculations[112, 15]. In the
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Figure 3.2: Crystal structure of (a) orthorhombic, (b) tetragonal (used in theory), and

(c) tetragonal (experimental[4]) MAPIs. All the structures are shown along their largest

crystallographic directions.

low temperature phase the alignment of all four MA+ ions are properly ordered and

static. This helps to make the structure exactly symmetric. For room temperature

phase, the orientation of MA+ ions are no longer static, it rotates fast (ps) which makes

the whole alignment disordered. Although the experiment measures the structure to be

exactly symmetric due to the fractional occupation of MA+ ions but for our computa-

tional purpose, we have to use the MA+ ion orientation in a particular snapshot of the

various possible orientations which brakes all the symmetry of the structure. Quarti et al.

have come up with some possible structures of tetragonal MAPIs which are stable.[112]

The initial structures for this work are taken from the work of Brivio et al.,[15]. The

tetragonal structure is also reported as one of the most stable structures in Quarti et

al.[112] Our calculated structural lattice parameters are shown in table (3.1). Our cal-

culated phonon modes are compared with the experimental and theoretical results as

shown in figure 3.3.

3.4.2 Crossing mode problem and solution

When the mode frequencies are degenerate or close it becomes harder to un-

derstand or predict which mode at one strain corresponds to another mode at another

strain. Some modes that looks like they should cross other modes at some point are

seemed to bend in a way that that prohibits the crossing. This problem is what we

called ”crossing mode problem”. If we overlook this problem, we might end up getting

wrong results. The problem of some crossing modes for orthorhombic MAPI are shown

in figure (3.5a). We have looked into this problem with great detail and tried to solve
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Table 3.1: Comparison of lattice parameters for tetragonal and orthorhombic structures.

Tetragonal MAPI

Method
Lattice parameters

in (Å)

Bond lengths

in (Å)

Bond angle

in degree

a b c Pb-I C-H N-H C-N Pb-I-Pb

LDA 8.520 8.520 12.624

3.145

3.104

3.143

3.112

3.183

3.134

1.0997

1.1007

1.1009

1.0487

1.0428

1.0480

1.4679

1.4678

178.064

178.060

153.805

144.102

152.285

146.777

PBE 8.937 8.938 13.188

3.247

3.367

3.245

3.236

3.185

3.304

3.232

1.0930

1.0924

1.0929

1.0319

1.0391

1.0396

1.0398

1.0393

1.0321

1.4927

1.4926

150.775

157.878

155.737

152.984

172.844

172.854

PBESol 8.709 8.710 12.844

3.176

3.169

3.215

3.131

3.198

3.236

1.0981

1.0986

1.0985

1.0980

1.0987

1.0455

1.0450

1.0385

1.0446

1.0449

1.0385

1.4808

1.4809

150.502

154.402

156.137

148.199

173.136

173.119

PBE+vdW 8.674 8.674 12.886

3.132

3.251

3.201

3.183

3.205

3.243

1.0927

1.0942

1.0939

1.0929

1.0937

1.0939

1.0367

1.0376

1.0333

1.0380

1.0392

1.0330

1.4911

1.4911

152.686

153.818

145.133

141.863

178.662

178.635

Expt.[6] 8.855 8.855 12.446

Expt.[151] 8.806 8.806 12.713

3.172

3.174

3.178

157.920

180.000

PBE+vdW-DF[42] 8.940 8.940 12.980

PBE+vdW-DF[42] 9.060 8.770 12.910

PBEsol[15] 8.700 8.720 12.830

Orthorhombic MAPI

LDA 8.191 12.464 8.841

3.137

3.133

3.134

1.1004

1.1011

1.0478

1.0456

1.0456

1.469
147.861

167.956

PBE 8.572 12.933 9.331

3.255

3.265

3.256

3.265

1.0927

1.0930

1.0377

1.0371
1.494

152.586

166.820

PBESol 8.363 12.652 9.073

3.181

3.188

3.181

1.0986

1.0989

1.0430

1.0438
1.482

151.255

167.803

PBE+vdW 8.404 12.757 8.843

3.195

3.199

3.209

1.0932

1.0937

1.0334

1.0390
1.492

145.135

167.434

Expt.[109] 8.861 12.659 8.581

Expt.[6] 8.836 12.580 8.555

Expt.[151] 8.866 12.629 8.577

3.197

3.187

3.187

150.750

161.940

PBE+vdW-DF[42] 9.070 12.800 8.770

DFT/PBEsol[15] 9.040 12.660 8.350

PZ81/LDA[149] 8.678 12.387 8.318

optB86b+vdW-DF[149] 8.831 12.648 8.570
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Figure 3.3: Comparison of calculated phonon mode frequencies with experimental

Raman[92], IR[48] and theoretical[15] results for tetragonal MAPI.

Figure 3.4: Comparison of similar phonon modes for three phases of MAPIs. For tetrag-

onal and orthorhombic they are in a set of 4 for each mode in the cubic for mid and

high frequency regions. Symmetric C-N stretch can be seen for Ag and B3g whereas

asymmetric C-N stretch for B1u and B2u.

it. As we can see in figure (3.5a) that IR and Raman intensities have suddenly changed

by a large amount for some of the modes which indicates that some mode which was

IR/Raman active suddenly become IR/Raman inactive and vice versa. This is not the

actual situation that happen for these modes when we apply strain and these are the

modes that have the crossing mode problem. Because the symmetry of the structure does

not change with the range of strains that we used, all the mode symmetries also does not

change and hence this sudden activity/inactivity of IR or Raman modes should not hap-

pen. This means we should not make certain assumptions without proper understanding

of the quantum ESPRESSO ph.x and dynmat.x output.
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(a) Crossing mode problem assuming modes do not reorder in frequency with strain.

(b) actual crossing modes after using irreducible representations from updated code to connect modes.

Figure 3.5: Crossing mode problem and solution for orthorhombic MAPI structure.
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The reason we end up with these crossing mode problem is the wrong under-

standing of the dynmat.x output. Quantum Espresso uses ph.x to calculate phonon mode

frequencies and mode irreducible representations by calculating the dynamical matrix

DIα,Jβ and diagonalizing it. In its dynmatrix.f90 code it applies the acoustic sum rule

(ASR[12]) to the calculated dynamical matrix and does not recalculate the mode irre-

ducible representations. This process change some of the mode frequencies a little bit

and the sorted output makes it difficult to identify which mode shifted up or down as

we can see in figure (3.6) for mode 14 and 15. The incorrect assumption is that the

mode frequency will be in the same order in the ph.x and dynmat.x output which is

not. For a single phonon calculation this does not matter much as all we need are the

mode frequencies and the mode eigenvectors but for a special case where the minute

change in frequency, and the order matters to identify which mode shifted up or down

such as in our case, it is important identify the modes. If we directly use the result form

the dynmat.x output for all the modes to check the change in frequency with respect to

strain we end up something like figure (3.5a).

Figure 3.6: Quantum ESPRESSO 6.4.1 code output (first 18 phonon modes) using (a)

ph.x and (b) dynmat.x. for orthorhombic MAPI.

This is a problem that can occur not only for perovskites but for any material

which has degenerate or close to degenerate modes. There are two ways we can solve this

problem. One is, we recalculate the mode characters after the application of ASR in the

dynmat.x code and print it on the output for each mode as it is printed in the ph.x output

which needs dynmat.f90 code modification. The other solution is to look at the IR and

Raman intensity patterns for the entire range of strain and identify the crossing modes
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Figure 3.7: Quantum ESPRESSO 6.4.1 code output of dynmat.x after implementation

of our code modification. Last two columns are the results of our modified code.

manually and update accordingly. The first method will be helpful for all the materials

that has a perfect symmetry but for those materials that does not have exact symmetry

we have to follow the second solution. We have modified the dynmat.f90 code and

implemented our code to solve the crossing mode problem for orthorhombic MAPI. The

output of the dynmat.x code after our modification in shown in figure (3.7). We can see

that the mode irreducible representations are calculated and printed for each mode which

solves the problem discussed above. We can see a “?” for the irreducible representations

for the first three modes which is because they are the acoustic modes where each mode

eigenvector can be represented by the linear combinations of eigenvectors of the other

two modes, so there is no single irreducible representation. We have used the modified

version of the code for some other materials and waiting to merge with the main code

after some more tests. As the theoretical tetragonal MAPI structure does not have any

exact symmetry we have used the other method to do the crossing mode adjustment.

3.4.3 Dynamical matrix analysis

Dynamical matrix for tetragonal and orthorhombic structure are given in figure

3.8. To make it comparable to the cubic one, we have arranged all the atoms for each

methylammonium ion together. Now, they look like replica of four times of the cubic

one which can be understood from the fact that the unit cell of both the structures

are 4 times of the unit cell of cubic structure. Four deep squares in tetragonal and

orthorhombic structure represents the 4 CH3NH+
3 ions. Two MA+ ions that lies in a

plane perpendicular to the largest lattice vectors are put next to each other. It can be
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Figure 3.8: Comparison of dynamical matrices between cubic, tetragonal and orthorhom-

bic MAPIs.

seen that the interaction between two CH3NH+
3 ions in the plane (perpendicular to the

largest lattice vector) is more through the NH3 part of the ion. There is less interaction

between two MA+ ions in different planes (parallel to the largest lattice vector). The

interaction between the Pb-I cage and the ion is more through the NH3 part of the ion.

Hydrogens attached to carbon in the MA+ ion are interacting more with the I than

hydrogens that are attached to the nitrogen of the MA+ ion. I-N interaction is stronger

than I-C interaction. The changes in dynamical matrices due to compressive and tensile

strains are given in the supplementary information (Fig.3.14, 3.15).

3.4.4 Different patterns of phonon mode shifts under uniaxial strain

The MAPI unit cells for orthorhombic and tetragonal structures are 4 times the

cubic structure and both of them has 48 atoms per unit cell which makes 144 phonon

modes for each of the structure. The first three of these 144 modes are the acoustic

phonon modes. We have calculated all the phonon mode frequencies at Γ point (i.e.

q = 0) only. We have classified the frequency shift patterns mainly into three categories:

linear, parabolic, and non-linear. The perturbation of the dynamical matrix and mode

eigenvectors due to strain is responsible for such parabolic and non linear patterns pat-

terns in the frequency shifts.[138] The mode mixing for the parabolic patterns can be

seen in figure (3.9). It can be seen that the mode mixing is more for the parabolic modes.

To identify the modes with linear, parabolic, and non linear frequency shift patterns we

have used linear and parabolic fitting. There are 144 modes in three different directions
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Figure 3.9: Mode mixing for orthorhombic structure can be seen for strain along [100]

direction and for tetragonal structure for both [100] and [010] directions.

for two different structures that makes the total of 1728 curve fitting. For the purpose of

this work we have calculated the frequency shifts for strain range -0.01 to 0.01 but for the

pattern and the slope calculation we considered the strain range from -0.004 to 0.004 so

that we can compare the same with the cubic structure. It is not feasible to look at such

high number of the fitting manually and check. So, we have calculated relative squared

error (RSE) for each fitting and from this we calculated R2=(1-RSE) as the goodness of

fit. Those modes for which the R2 value for linear fit is greater than 0.99, we considered

them as linear and if R2 >0.99 for parabolic fit and the improvement over the linear fit

is greater than 0.005, we marked them as parabolic. In figure 3.10 and figure 3.11 we

have shown how we calculated R2 for orthorhombic and tetragonal MAPIs. It can also

be seen that for tetragonal structure the frequency shift patterns are identical for [100]

and [010] strains. This is due to the approximate structural symmetry. For each phase

we have calculated the number of linear and parabolic modes and the percentages are

given in table 3.2. We can see that the number of linear modes are high in the [001]

direction for all three structures and the cubic structure has parabolic modes only for

the [010] uniaxial strain.

To find out best possible modes for Raman and IR spectroscopy to measure

local strain in orthorhombic and tetragonal MAPIs we need to find out modes that are

linear with high average slopes and good Raman and IR intensity. For uniaxial strain

along three crystallographic axes [100], [010] and [001] we have calculated the slopes
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Table 3.2: Percentage of linear and parabolic modes for uniaxial strains along [100],

[010], and [001] for cubic, tetragonal and orthorhombic MAPIs.

MAPI Phase

Percentage

of linear modes

Percentage

of parabolic modes

[100] [010] [001] [100] [010] [001]

Cubic 41.67 30.56 38.89 0.00 5.56 0.00

Tetragonal 42.36 40.97 68.06 5.56 4.17 2.78

Orthorhombic 36.81 38.89 54.86 4.17 2.08 2.08

Figure 3.10: Classification of modes into linear, parabolic, and nonlinear based on the R2

value for uniaxial strains along [100], [010], and [001] direction in orthorhombic MAPI.

for all the three phases and compare (Figure 3.12). We can see that for mid and high

frequency regions all the modes of orthorhombic and tetragonal structure comes in a set

of 4 (Figure 3.4), as mentioned earlier. To filter out best modes we have used the strain

range form -0.004 to +0.004 and for linearity and good slope we choose those modes for

which R2 > 0.98 with absolute average slope value greater than 100. These modes are

further filtered for good Raman and IR intensities. We select those modes which has

Raman intensity greater than 30 Å4/amu and IR intensity greater than 3 (D/Å)2/amu.

The best modes for all the three phases can be seen in figure 3.13. One good thing for

all the best modes is that the slopes are either all positive or all negative which makes

the average slope value better.
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Table 3.3: Best modes for IR and Raman microscopy to probe local strain in tetragonal

MAPI. Absolute IR intensity is in (D/Å)2/amu and Raman intensity in Å4/amu.

Freq.

(cm−1)

IR

Int.

Raman

Int.

Slope

[100]

(cm−1)

Slope

[010]

(cm−1)

Slope

[001]

(cm−1)

Avg.

slope

(cm−1)

Mode Characters

Best Raman modes

112.74 0.84 34.59 -255.67 -253.83 -228.33 -245.94
asym. CH3-NH3

vibration, libration

147.84 3.15 50.20 -314.17 -320.17 -152.83 -262.39
asym. CH3-NH3

vibration, libration

149.61 1.18 228.70 -345.33 -349.50 -193.50 -296.11
asym. CH3-NH3

vibration, libration

1027.95 0.71 113.83 -131.33 -130.00 -50.67 -104.00

C-N stretch,

sym. CH3-NH3

vibration

1027.96 0.19 25.10 -142.33 -144.50 -56.67 -114.50

C-N stretch,

sym. CH3-NH3

vibration

1028.48 0.63 57.78 -136.50 -135.83 -44.67 -105.67

C-N stretch,

sym. CH3-NH3

vibration

1028.60 0.32 248.89 -137.83 -137.67 -51.00 -108.83

C-N stretch,

sym. CH3-NH3

vibration

1531.04 4.14 199.22 90.33 90.83 138.83 106.67

asym. CH3-NH3

vibration,

large NH3 vibration

1537.95 0.32 49.03 87.17 87.00 143.50 105.89

asym. CH3-NH3

vibration,

large NH3 vibration

Best IR modes

79.68 8.88 15.75 -244.17 -243.00 -352.17 -279.78
asym. CH3-NH3

vibration, libration

81.45 14.68 7.49 -246.00 -245.00 -120.67 -203.89
asym. CH3-NH3

vibration, libration

82.19 4.61 4.99 -155.67 -154.17 -457.33 -255.72
asym. CH3-NH3

vibration, libration

147.84 3.15 50.20 -314.17 -320.17 -152.83 -262.39
asym. CH3-NH3

vibration, libration

1531.04 4.14 199.22 90.33 90.83 138.83 106.67

asym. CH3-NH3

vibration,

large NH3 vibration
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Table 3.4: Best modes for IR and Raman microscopy to probe local strain in orthorhom-

bic MAPI. Absolute IR intensity is in (D/Å)2/amu and Raman intensity in Å4/amu.

Freq.

(cm−1)

IR

Int.

Raman

Int.

slope

[100]

(cm−1)

slope

[010]

(cm−1)

slope

[001]

(cm−1)

avg

slope

(cm−1)

Mode Characters

Best Raman modes

60.63 0.00 423.68 -186.00 -51.67 -139.17 -125.61

Pb-I bend,

CH3-NH3 libration,

translation

105.60 0.00 120.64 -207.33 -109.33 -205.17 -173.94

Pb-I stretch,

asym. CH3-NH3

vibration, libration

153.21 0.00 20.05 -543.17 -221.83 -152.17 -305.72
CH3-NH3 spin,

libration

1397.86 0.00 497.04 80.50 172.67 144.67 132.61
asym. CH3

vibration

1410.00 0.00 2281.33 102.50 113.33 142.67 119.50

sym. NH3,

asym. CH3

vibration

1531.53 0.00 172.07 90.67 72.50 191.00 118.06
asym. CH3-NH3

vibration

Best IR modes

75.82 5.63 0.00 -256.83 -388.83 -273.67 -306.44

Pb-I-Pb bend,

Pb-I stretch,

asym. CH3-NH3

vibration, libration

79.74 11.29 0.00 -132.00 -342.50 -152.17 -208.89

Pb-I-Pb bend,

Pb-I stretch,

asym. CH3-NH3

libration, translation

80.05 16.32 0.00 -113.00 -633.67 -199.33 -315.33

Pb-I-Pb bend,

Pb-I stretch,

asym. CH3-NH3

vibration, libration

81.54 4.67 0.00 -104.50 -181.00 -144.33 -143.28

Pb-I-Pb bend,

Pb-I stretch,

asym. CH3-NH3

vibration, libration

85.04 6.21 0.00 -292.17 -166.00 -202.67 -220.28

Pb-I-Pb bend,

Pb-I stretch,

asym. CH3-NH3

vibration, libration

1398.29 7.33 0.00 79.50 180.83 144.00 134.78 asym. CH3 vibration

1407.02 8.13 0.00 100.00 113.00 158.00 123.67
sym. NH3,

asym. CH3 vibration
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Figure 3.11: Classification of modes into linear, parabolic, and nonlinear based on the

R2 value for uniaxial strains along [100], [010], and [001] direction in tetragonal MAPI.

3.5 Conclusion

We have done a detail study of strain-induced structural changes (Supp info.)

and phonon mode shifts under uniaxial strain for orthorhombic and tetragonal MAPI

and compared the results with the cubic one. We found that for mid and high frequency

phonon modes we get a set of 4 modes in case of ortho- and tetra- MAPIs for each mode in

cubic structure. This is also supported by the similarity in their phonon density of states.

The degenerate and close to degenerate modes of tetragonal and orthorhombic MAPIs

shifts under uniaxial strain and and sometimes cross each other which is confusing from

the standard output of Quantum ESPRESSO. For that reason we have modified the code

and implemented our modification to resolve crossing mode problem. This modification

will be helpful for any material. From dynamical matrix analysis we confirmed that I-N

interaction plays major role for mode shifts under uniaxial strain. Analyzing linearity,

slopes and intensities for IR and Raman for each mode, we reported the best possible

modes for both of these structures that will be helpful to measure local strain in these

material using IR and Raman spectroscopy.
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Figure 3.12: Calculated slopes for each mode for three different phases for uniaxial strains

along [100], [010], and [001].

Figure 3.13: Best modes to probe local strain in cubic[138], tetragonal and orthorhombic

MAPIs.
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3.7 Supplementary Information

Figure 3.14: Dynamical matrix of orthorhombic MAPI for strain along [100], [010] and

[001] directions. (a) Change for compressive strain (ϵ = −0.004). (b) Dynamical matrix

at zero strain. (c) Change for tensile strain (ϵ = 0.004). Symbols in both the axes

represent atoms and their coordinates. For example, within H(N) block, H3z denotes

the z coordinate of the third H attached to N.
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Figure 3.15: Dynamical matrix of tetragonal MAPI for strain along [100], [010] and

[001] directions. (a) Change for compressive strain (ϵ = −0.004). (b) Dynamical matrix

at zero strain. (c) Change for tensile strain (ϵ = 0.004). Symbols in both the axes

represent atoms and their coordinates. For example, within H(N) block, H3z denotes

the z coordinate of the third H attached to N.
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Figure 3.16: Change in Pb-I bond length in orthorhombic MAPI due to uniaxial com-

pressive and tensile strain along [100], [010], and [001] directions.

Figure 3.17: Change in Pb-I bond length in tetragonal MAPI due to uniaxial compressive

and tensile strain along [100], [010], and [001] directions.
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Figure 3.18: Change in Pb-I-Pb bond angle in orthorhombic MAPI due to uniaxial

compressive and tensile strain along [100], [010], and [001] directions.

Figure 3.19: Change in Pb-I-Pb bond angle in tetragonal MAPI due to uniaxial com-

pressive and tensile strain along [100], [010], and [001] directions.
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Figure 3.20: Change C-N, C-H, and N-H bond lengths in tetragonal MAPI due to uniaxial

compressive and tensile strain along [100], [010], and [001] directions. This figure clearly

shows that the methylammonium ions inside the Pb-I cage get affected due to stress.

Figure 3.21: Comparison of mode-Grüneisen parameters for uniaxial strain along [100],

[010], and [001] directions.



Chapter 4

Probing The Hidden Symmetry

in Tetragonal CH3NH3PbI3

Perovskite

4.1 Abstract

The assignment of exact space group

to tetragonal CH3NH3PbI3 perovskite structure

is experimentally challenging and well debated.

In experiment the rotation of the CH3NH+
3 ions

within the Pb-I cage is averaged over space and

time to measure symmetry but it is hard to get

any exact symmetry of the structure for a static

density functional theory calculation. Due to

this lack of symmetry, it is not possible to cal-

culate any exact irreducible representation for its vibrational modes. In this work we

have developed a methodology to calculate the hidden symmetry of this quasi-symmetric

tetragonal structure using group theory which can be helpful for spectroscopic study. We

have also shown that the overall symmetry can be better explained with lower symmetry

subgroups such as I4cm and C2v of the I4/mcm space group. Our methodology can also

be useful to find symmetry and approximate mode irreducible representation for any

approximately symmetric material.

87
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4.2 Introduction

Hybrid organometallic perovskites are one of the most researched material for

solar cell application in last decade. There are more than sixteen thousand research

documents published between 2009 to 2019 regarding perovskite solar cell.[125] A huge

amount of research has been done towards low-cost fabrication, increasing the photo-

conversion efficiency, making active layer materials etc. But in-depth understanding

about some fundamental aspects is still missing. The exact symmetry of tetragonal

methylamonium lead iodide (MAPI) is one of them. There is still debate about the

space group symmetry of the tetragonal MAPI. Some reports suggest that the structure

is ferroelectric or polar having quasi I4cm space group symmetry[132, 155] while others

have found tetragonal MAPI structures that are antiferroelectric or anipolar in nature,

having quasi I4/mcm space group symmetry[109, 151, 35](figure 4.1) There are also

report that identified the space group as I4/m[6]. There are experiment that reports the

structure to have space groups I422 and P42212 which are subgroups of I4/mcm.[4]

It is important to know the symmetry of the tetragonal structure because two

different structures (I4cm and I4/mcm) have different electronic properties. I4/mcm is

a centrosymmetric structure with inversion symmetry and theoretically it should not

produce Rashba splitting in the bandstructure while I4cm is a non-centrosymmetric

structure without the inversion symmetry and it produce significant Rashba splitting.[36]

Any reported significant Rashba splitting in case of I4/mcm structure is incorrect and

may be it is due to their incorrect structural relaxation.[36] The energy difference between

a quasi I4cm and a quasi I4/mcm structure is very small (0.1 eV) and they can coexist in

a single crystal with domains of altering tilting directions which can further dynamically

interchange into each other at room temperature crossing some energy barrier that caused

due to the specific interaction between the MA+ ion and the inorganic cage[112]. Another

reason might be when the material goes through phase transition from cubic to teragonal

structure due to temperature changes, it loses some symmetry elements which gives rise

to twinning along the lost symmetry element.[14] In experiment, we mainly get the

overall symmetry of the whole crystal, but sometimes the unit cell might have different

symmetry due to such twinning within the crystal.

In case of the experimental structure, each MA+ ion is statistically distributed

with a fractional occupation of 25% for each of 4 orientation.[4] This arrangement gives

the experimental structure proper symmetry. To do any theoretical calculation we must
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take a snapshot of multiple possible orientations of the MA+ ion and at that moment we

lose all the symmetry. Quarti et al., has done a detailed study of the tetragonal structure

and found that a set of polar structures (I4cm) are more stable than the apolar (I4/mcm)

ones.[112] The most stable structure reported in their study is a polar structure with I4cm

space group symmetry and this structure is used by other works[15, 30] and incorrectly

mentioned as I4/mcm.

Figure 4.1: Tetragonal MAPI with different spacegroup symmetries: (a) I4cm (C4v)

structure, (b) experimental structure (D4) (c) I4/mcm (D4h), having the full symmetry

of the tetragonal structure.

In case of low temperature orthorhombic structure, 4 MA+ ions in the unit cell

are static which gives it a perfect D2h symmetry whereas for high temperature cubic

symmetry, the random spinning of the MA+ ion within the cage makes the structure

pseudo-cubic. For room temperature tetragonal structure, the average over space and

time of this random spinning makes this structure a quasi-I4cm or quasi-I4/mcm. So, the

tetragonal MAPI does not have any exact symmetry. We want to see if symmetries such

as I4cm or I4/mcm is enough to explain the structure or there are any low symmetry sub-

groups that elucidates the symmetry better for this tetragonal structure. To identify the

hidden symmetry in the structure we have checked the symmetry from different aspects:

(a) symmetry in the structure, (b) symmetry in the vibrational modes, (c) symmetry in

the elastic tensor (or stiffness matrix), (d) symmetry in dielectric tensor, (e) symmetry

in the electro-optic tensor, (f) symmetry in the dynamical matrix, (g) symmetry in the

Born effective charge, and (h) symmetry in the Raman tensor. Depending on the result

we classify the lower symmetry subgroups that explains the symmetry in the tetragonal
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structure better.

For any crystal structure that has exact symmetry vibrational modes can be

classified according to irreducible representations, but this can not be done when the

structure does not have any symmetry. In this work, we have developed a method to

calculate the approximate irreducible representation of the vibrational modes for an ap-

proximately symmetric structure. We use the nearby exact symmetry of the crystal struc-

ture and its character table as our input and use group theory to calculate approximate

characters in the character table and thereby calculate the irreducible representations of

the vibrational modes. We have calculated the contributions of irreducible representa-

tions for each phonon mode of tetragonal MAPI which can be helpful for spectroscopic

studies. As a test of our methodology, we have also calculated the same for perfectly

symmetric orthorhombic MAPI and TiO2 and it gives correct irreducible representations

for both the systems compared with quantum espresso results. Our methodology can be

useful to calculate hidden symmetry and approximate mode irreducible representations

for any approximately symmetric structure.

4.3 Computational method

We have studied two different tetragonal structures, one is quasi-I4cm[15] and

the other is quasi-I4/mcm[77]. We did a full structural relaxation of both the ini-

tial structures using local density approximation[101] (LDA) with the Perdew-Wang

(PW) parametrization[104] for the exchange correlation potential. We have used scalar

relativistic optimized norm-conserving Vanderbilt (ONCV) pseudopotentials[53] from

Pseudō Dōjō[146]) (NC SR ONCVPSP v0.4) with standard accuracy. Half shifted 5×
5× 4 Monkhorst-Pack grid is used for Brillouin zone sampling along x, y, and z direc-

tions of the crystallographic axes with energy cutoff of 80 Ry for the wave functions.

Variable-cell relaxation is done using a 0.5 kbar stress convergence threshold keeping

total force per atom less than 1 meV/Å. Before deep diving into the symmetry of the

tetragonal structure we have compared different functionals and compared the structural

parameters. PBE with Van Der Waals corrections using Grimme-D2 gives best result

for structural parameters compared to the experimental results but we have chosen LDA

because the Raman intensity can only be computed using it in QUANTUM-Espresso

and earlier report suggests that LDA without van der Waals correction can still be good

to calculate Raman and IR frequency and intensity for orthorhombic MAPI.[105] We
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have calculated the stiffness matrix by applying uniaxial strain to these two structure

and calculating the stress tensor using quantum ESPRESSO. The method of calculat-

ing stiffness tensor is given in detail in chapter 5. The dielectric and the electro-optic

tensor is calculated using quantum ESPRESSO ph.x code which uses density functional

perturbation theory to calculate these tensors.

4.4 Theory to calculate irreducible representations

Our tetragonal structures in this work does not have any exact symmetry and

hence no irreducible representations for their vibrational modes. we can still calculate

the approximate mode irreducible representations using help of group theory. The well

known formula for decomposition of reducible representation into its corresponding irre-

ducible representations is given in equation (4.1)[54]. The number of times the irreducible

representation Γj appears in the reducible representation is given by aj , where h is the

order of the point group, Ck denotes a class in the point group, Nk is the number of

elements in Ck and χ(Γj)(Ck) represents the character of the irreducible representation

Γj for a symmetry operation in class Ck.

aj =
1

h

∑
k

Nk[χ(Γj)(Ck)]∗χ(Ck) (4.1)

The second orthogonality rule for the columns of the character table is given in equation

(4.2)

∑
j

[χ(Γj)(Ck)]∗χ(Γj)(Ck′) =
h

Nk
δkk′ (4.2)

For k = E (identity operation), Nk = 1. So we can rewrite equation (4.2) as∑
j

[χ(Γj)(E)]∗χ(Γj)(Ck′) = hδEk′ (4.3)

χ(Γj)(E) = 1 for A or B (non degenerate) irreducible representation, χ(Γj)(E) =

2 for E (doubly degenerate) and χ(Γj)(E) = 3 for T (triply degenerate) irreducible

representations.
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Multiplying equation (4.1) with χ(Γj)(E) and summing over j we get∑
j

χ(Γj)(E)aj =
1

h

∑
k

∑
j

χ(Γj)(E)[χ(Γj)(Ck)]∗χ(Ck)

=
1

h

∑
k

hδEk′χ(Ck)

= χ(E)

(4.4)

It is interesting to note that when we sum over the contributions (aj) of all

irreducible representations for any mode, it turns out exactly 1 for non degenerate mode,

2 for doubly degenerate, and 3 for triply degenerate modes. To make the sum 1 for all

the modes we have to divide χ(E) by 2 for for doubly degenerate, and by 3 for triply

degenerate modes.We have used equation 4.1 to calculate aj and then use equation 4.4

to find out the proportion of irreducible representations for each mode.

4.5 Results and Discussion

4.5.1 Symmetry in the crystal structures

To check the initial symmetry of the structures we have used FINDSYM[131,

130]. The result is given in table 4.1. As we already know that the theoretical structure

does not have any symmetry due to the different orientations of the MA+ ions within

the structure, we have removed all the MA+ ions from the I4cm structure and checked

the symmetry of the Pb-I cage only structure. With some tolerance with respect to the

lattice and the atomic positions, we found that the Pb-I cage still holds the D4h point

group symmetry. One thing to notice here is that the Pb-I cage and the whole structure

both have symmetry Cs which is a subgroup of D4h, even with low tolerance values. We

will come back to this point while explaining phonon mode symmetries. For the I4/mcm

structure, even with low tolerance values, the predicted symmetry by FINDSYM is C2v

which is a symmetry of an orthorhombic structure and lower in symmetry than D4h.

This gives an indication that the tetragonal symmetry may be well explained using some

lower symmetry subgroups of D4h.

4.5.2 Symmetry in elastic tensors

We have calculated the full stiffness tensor for both of our quasi-I4cm and the

quasi-I4/mcm structures. The results are shown in figure 4.2. For tetragonal (I) crystal
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Table 4.1: Tetragonal (I4cm) MAPI symmetry of the entire structure and only the Pb-I

cage, calculated using FINDSYM[131, 130].

Tetragonal

MAPI

Tolerance

in lattice (Å)

Tolerance in

atomic positions (Å)

Calculated

symmetry

Complete

Structure

0.001 0.001 no symm.

0.2 0.2 Cs

0.5 0.5 Cs

Pb-I cage

only

0.01 0.01 Cs

0.01 0.1 Cs

0.1 0.1 Cs

0.1 0.2 C2h

0.1 0.3 C2v

0.1 0.4 D4h

system[89] we should have C11 = C22, C33, C44 = C55, C66, C12, and C13 = C23. The

stiffness tensor for quasi-I4cm structure is closely following the tetragonal (I) symmetry,

except there are small off diagonal values because the structure is not exactly symmetric.

For stiffness tensor of I4/mcm structure all the diagonal values are different and C13 is

not same as C23. This is not even close to tetragonal (I) symmetry, it is more like

orthorhombic symmetry as can be seen in figure 4.2. Applying symmetry rotations that

belongs to D4h point group to the stiffness matrix it is possible to quantify how each

symmetry is obeyed by the stiffness matrix of both the structures. The method for

applying such rotations to the stiffness matrix is explained in chapter 5.

4.5.3 Symmetry in dielectric tensors

We have calculated the electronic (ϵ∞) and electronic+ionic contribution (ϵ0)

of the dielectric tensor for our tetragonal MAPI structures (Fig. 4.3). For a perfectly

symmetric tetragonal structure we should have only the diagonal values with (ϵ11 =

ϵ22). These off-diagonal values are also an indication that the structure is not properly

symmetric. Although, the off diagonal are close to zero for I4/mcm structure, I4cm

structure obeying the tetragonal symmetry better than I4/mcm. The dielectric tensor

for the I4cm structure also obeys S4, D2d, C4, C4v, D4 and D4h point group symmetries

and for I4/mcm structure, the dielectric tensor obeys C2v, D2, and D2h point group

symmetries.
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Figure 4.2: Stiffness matrix calcuculated for quasi-I4cm and quasi-I4/mcm structures

and compared with the tetragonal-(I)[89] and orthorhombic symmetry.

4.5.4 Symmetry in electro-optic tensor

We have calculated the non-linear electro-optic tensors χ(2)[36] for both quasi-

I4cm and quasi-I4/mcm structures. The calculated values are in Rydberg atomic units.

Our structures are not perfectly symmetric, so it is not guaranteed that electro-optic ten-

sors will vanish. For quasi-I4/mcm structure all the values are close to zero except high

value at χ
(2)
zzz, ≈ 30.19. For I4cm structure it does not vanish, which is a clear indication

that our quasi-I4cm structure is non-centrosymmetric and we have further checked all

the symmetries that χ(2) for a non-centrosymmetric structure should obey[123]. We see

that χ
(2)
zzz = 22.73 is large compared to other values. χ

(2)
xxx ≈ χ

(2)
yyy ≈ 3.125 which are

supposed to be zero for all tetragonal symmetries. Doing some further analysis we found

that Cs, C4 and C4v, and D4h point groups are compatible with nonzero χ
(2)
zzz.

4.5.5 Symmetry in Born Effective Charge

The Born effective charge Zαij is calculated for both I4cm and I4/mcm struc-

tures using quantum espresso. The detail of the theory is given in chapter 1. Here α is
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Figure 4.3: Dielectric tensor (ϵ∞) which is static with only electronic contribution and

(ϵ0) which is static with electronic and ionic contribution, for quasi-I4cm and quasi-

I4/mcm structures.

(a) I4cm

(b) I4/mcm

Figure 4.4: Born effective charge tensor symmetry

the atom index and i, j represents the x, y, and z coordinates. If the structure obeys the

symmetry perfectly then equation 4.5 returns zero because the born effective charge also

obeys the symmetry. We have calculated the deviation from symmetry of born effective
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charge tensor (figure 4.4). Here we can see that the symmetries that belongs to the same

class gave same value for the deviation of symmetry. This can be understood from the

fact that those symmetries are related σd for I4cm and σv for I4/mcm which obeyed

almost perfectly. √
(
∑
αij

|Zαij −
∑
α′i′j′

Mii′Mjj′Mαα′Zα′i′j′ |2) (4.5)

4.5.6 Symmetry in Raman Tensor

(a) I4cm

(b) I4/mcm

Figure 4.5: Raman tensor symmetry

Raman tensor Rijkα is calculated using density functional perturbation theory

as implemented in quantum ESPRESSO. The theory is explained in chapter 1. Here

we have checked how much symmetry is obeyed by the Raman tensor for each structure

by calculating the deviation from symmetry using equation 4.6. The result is plotted

in sorted order for both I4cm and I4/mcm structures. Here also, we can see that the

symmetries that belongs to the same class gave same result. The reason is same as

explained for Born effective charge symmetry.
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√
(
∑
ijkα

|Rijkα −
∑

i′j′k′α′

Mii′Mjj′Mkk′Mαα′Rα′i′j′k′ |2) (4.6)

4.5.7 Symmetry in Dynamical Matrix
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Figure 4.6: dynamical matrix symmetry

The dynamical matrix Ds
iαjβ is calculated using the density functional pertur-

bation theory as discussed in chapter 1. To check the symmetry of the dynamical matrix

with respect to all the symmetry operations we have calculated the deviation of symme-

try using equation 4.7. The result shown in figure 4.6. Similar trend that the symmetries

that belongs to the same class gave same result is also true in this case.

√
(
∑
ijαβ

|Ds
iαjβ −

∑
i′j′α′β′

Mii′Mαα′Mjj′Mββ′Ds
α′i′j′β′ |2) (4.7)

4.6 Symmetry in Vibrational Modes

We have built a methodology using group theory that will help us to calculate

approximate vibrational mode symmetries for a crystal structure that is not perfectly



98

Figure 4.7: Approximate phonon mode symmetry calculation flow chart.

symmetric but a close one. The main process is explained in the form of a simple flow

chart (Fig. 4.7). We started with the I4cm structure. We have relaxed the structure using

as mentioned in the computational method section. Density functional perturbation

theory (DFPT) is used to calculate the phonon modes at q=0. Acoustic sum rule (ASR)

is applied using the dynmat.x code as implemented in quantum ESPRESSO. We have

taken the position coordinates of the relaxed structure and its calculated phonon mode
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vectors as input. The closest symmetry of the structure we considered is I4/mcm (or

D4h point group), because this is the highest symmetry in tetragonal structure and if we

calculate this once, we can always get results for I4cm as it is a subgroup of I4/mcm.

From the character table of D4h, we get all the symmetry operations (16 in our case)

and the target irreducible representations[41]. From the space group we find all the

fractional translations that are involved. We have constructed all the 3 × 3 rotational

matrices (Mαβ) and the fractional translation vector (⃗t) to apply on the original atomic

positions (r⃗) of the crystal unit cell as r′α =
∑3

β=1Mαβ(rβ + tβ) where α and β denotes

the x, y, and z directions. To make the calculations simple, we started with the Pb-I cage

only. Because the orientation of the MA+ ions in the structure breaks the symmetry.

and Pb-I cage still holds the D4h point group symmetry within certain tolerance values

(table 4.1). After removing the MA+ ion from the structure, we have applied all the

symmetry operations on the structure and find out the swapped atoms. When we apply

rotation to the crystal structure, if for example, a carbon atom (C1) take place of another

carbon atom (C2), we say C1 and C2 are swapped atoms of each other with respect

to that rotation. Vibration modes should obey certain symmetry operations based on

the symmetry of the crystal structure. We apply the symmetry transformation to the

vibrational mode Cartesian vectors and calculate the projection of the transformed mode

vector to the original one for each atom and the value will give us the character value χ

corresponding to that symmetry class for that mode. The equation for calculating the

projection is

χ(Ck) =
∑

i,i′,α,β

UiαMαβ(Ck)Ki,i′(Ck)Uiβ (4.8)

where i and i′ denotes the atom index of the original and transformed atoms respectively,

Ki,i′(Ck) denotes the matrix that transforms i to i′ and Uiα denotes the mode vector for

atom i in direction α, Ck denotes the symmetry class for which χ is been calculated.

To calculate the character we need the mode eigenvector for that particular

mode. Its important to note that the phonon mode vectors that directly come out of

the Quantum ESPRESSO dynmat.x code output is normalized to 0.1 and not normal-

ized with the corresponding atomic masses and hence are not orthogonal to each other,

they are just mode displacement vectors. To make these modes orthogonal mode eigen-

vectors we need to normalize them with corresponding atomic masses. This means we

need to multiply each mode eigenvector with the corresponding mass of the atom and

then normalize them to 1. Our method should work fine even if we do not normalize
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these modes with respect to mass but we normalized them properly before doing further

calculations because this will help up later to find the degeneracy in the modes later.

Once we remove the MA+ ions we need to re-normalize the mode vectors (U⃗i) for Pb

and I as U⃗i(normalized) = U⃗i√
(
∑N

i=1|U⃗i|2)
where i is the atom index and N is the total

number of atom after removing all the MA+ ions. We calculated the value of χ for all

symmetry classes and for each mode of the tetragonal MAPI. As our structure is not

exactly symmetric, we did not expect to get integer values for χ for all the symmetry

classes, in fact our calculated values are in fractions. So, we need to find a different way

rather than checking character table for a direct match as we have already mentioned in

the flowchart(Fig.4.7).

For each phonon mode we have calculated χ(Ck) for all symmetry class Ck

belonging to the point group D4h and prepared a table which we call calculated character

of modes because it is like a character table but with character values in fractions rather

than in integers as we normally see in a character table. Each row of this calculated

character of mode table is treated as a reducible representation and we decompose them

into the irreducible representations using group theory (Eqn. 4.1).

We noticed that the sum of contributions of all the irreducible representations

become 1 for all the modes. We gave a theoretical explanation why this occurs using

group theory (Eqn. 4.4). If we just sum up the contributions (aj) for all irreducible

representations we end up getting sum as 2’s and 3’s for doubly degenerate or triply

degenerate modes which is a problem because in that case the contribution of irreducible

representations for each mode does not sum up to one, which makes it hard to compare

between all the modes. We have studied it further by decomposing the degenerate modes

into a possible combination of two symmetrized non-degenerate modes by looking at how

the basis function (x,y) transforms with different symmetry operations and repeated

the same calculations for calculating aj and this time it gave the sum as 1 but our

symmetrized combination is just one of the many possible permutations of how (x,y) basis

can transform under the symmetry operations. It become even harder when the character

value become imaginary in some cases, for example, in the character table for C3 point

group the degenerate irreducible representation is a symmetrized combination of 1, e
i2π
3 ,

and e−
i2π
3 . The above problem is known as the doubling problem[17]. In our formulation

of equation (4.4) we just have to divide the sum by 2 for the doubly degenerate mode

as χ(Γj)(CE) = 2 and this makes the sum of all the irreducible representations for each
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mode (including the degenerate ones) as 1. So, we decided not to split the degenerate

mode.
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(a) I4cm (Pb-I cage only)
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(b) I4cm complete sructure
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(c) I4/mcm complete structure

Figure 4.8: Contributions of different irreducible representations for each mode in (a)

Pb-I cage only structure of I4cm symmetry, (b) full I4cm structure, and (c) full I4/mcm

structure calculated considering the highest symmetry D4h of the tetragonal structure.

The contribution of irreducible representations for each mode of Pb-I cage is

shown in figure 4.8(a). Because the mid and high frequency modes does not have much

Pb-I vibrations its not enough to get irreducible representations for all the modes of

tetragonal MAPI just using only Pb-I cage. It also indicates that the high frequency

modes are purely molecular modes. We need to consider the molecular vibrations if we

want to calculate the irreducible representations correctly for mid and high frequency
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modes. We decided to keep the C and N of the MA+ ion with the Pb-I cage and not

consider the H atoms which are randomly oriented anyway and hard to track after the

rotational symmetry operation on the structure as they are more in number and close

to each other in space. So, swapped H atoms is very hard to calculate or identify. Our

reason of not considering H is also supported by the idea that, for orthorhombic MAPI

we are able to calculate exact irreducible representations for each mode even without

considering the H atoms in the structure and we have also checked that the contribution

of the H atoms in each mode eigenvectors for both orthorhombic and tetragonal structure

looks similar and the H mainly affects the high frequency modes (figure 4.9). We followed

the same process as we mentioned earlier for Pb-I cage and calculated the contributions

of the irreducible representations for phonon modes of both I4cm and I4/mcm tetragonal

MAPIs. The result is given in figure 4.8(b,c). We can see that for low frequency modes,

both Pb-I cage-only calculation and the entire structure (except H) give similar result,

for mid frequency region the molecular modes change the irreducible representations that

are coming from Pb-I only. It can be also seen that some modes obey the symmetry

better than the others.

Figure 4.9: Contribution of norm of the vibrational mode eigenvectors for orthorhombic

and tetragonal MAPIs.

Almost all the modes have some contributions from Eg and Eu representations.

These are the degenerate representations. we have to identify which modes are purely

degenerate. to do this we make a criteria where the sum of the contributions from

Eg and Eu is greater than 80% of the total representations for any mode, and if the

mode frequency are close to each other we considered those pair of consecutive modes

as degenerate. The squared sum of the mode irreducible representation (χ2) for any
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particular class Ck should be equal to the total number of modes (
∑N

1 χ2
Ck

= N), in

our case that is 144. For doubly degenerate modes, instead of χ2 we need to take the

sum of 2× (|χ1 +χ2| − 1)2 because in the symmetrized combination of degenerate mode

it is possible that for a particular class Ck the χ(Ck) can be 1 and -1 which makes the

total as zero in degenerate representation. The result is given in figure 4.10. For a

symmetry operation, that the structure perfectly follow, the squared sum will be 144

(=the total number of modes). We can see that some of the symmetry operations such

as C4, C
′
2, S4, σv, and σd are followed better over others. To avoid the arbitrary criterion

of 80% and need to use D4h, we can use some sophisticated mathematical techniques.

We can construct the overlap matrix Sµ,ν =< uµ|uν > (This is basically the matrix we

constructed for E) and use it to make things orthogonal. P =< uµ|S−1M |uν > now is

the matrix that we can use. Here M is the rotational matrix for a symmetry operation.

For non degenerate modes we will get only diagonal values in P whereas for degenerate

modes we can see off diagonal values which will indicate which modes are degenerate to

each other. But this method is having some issues when we remove hydrogen atom from

the structure. We are working on it to see if there are any other way we can calculate

this.

To consider whether the vibrational modes of the ostensibly I4/mcm structure

in fact obey the I4/mcm symmetry or some other subgroup, we have looked into the

symmetry operations that are followed better by the structure and based on that we

can get an idea. For example, we can see that σd is obeyed better than rest of the

operations. So subgroup Cs can be a better fit. To check it even more rigorously, we

have calculated the contribution of irreducible representations of vibrational modes based

on each subgroup. We ranked each subgroup based on a value (RG) as given in equation

4.9.

RG =
∑

modes(ν)

∑
irrep(i)

µ2ν,i (4.9)

Here µ2ν,i is the contribution of the irreducible representation i for mode ν. The sum

should be equal to or less than the total number of modes, which is 144 in our case but

will be less as our structure is not properly symmetric. This is because for a perfect

irreducible representation of a mode, the maximum value of µν,i can be 1.

As a test case of our analytical method, we checked orthorhombic MAPI whose

modes are all non degenerate and TiO2 which has some doubly degenerate modes. Our



104

E C4(1) C4(2) C2 C ′
2(1) C ′

2(2) C ′′
2(1) C ′′

2(2) i S4(1) S4(2) σh σv(1) σv(2) σd(1) σd(2)
Symmetry

0
20
40
60
80

100
120
140
160

Sq
ua

re
d 
su

m

144.0

70.141 70.141
60.015

78.948 78.977
67.324 67.559 66.048

85.836 85.836

62.972
75.329 75.212 76.172

143.786

(a) I4cm

E C4(1) C4(2) C2 C ′
2(1) C ′

2(2) C ′′
2(1) C ′′

2(2) i S4(1) S4(2) σh σv(1) σv(2) σd(1) σd(2)
Symmetry

0
20
40
60
80

100
120
140
160

Sq
ua

re
d 
su

m

144.0

79.569 79.569
66.939

74.001 69.608
80.875 80.855 76.891

83.095 83.095
73.923

143.68

72.882
82.781 83.052

(b) I4/mcm

Figure 4.10: The squared sum of the mode characters (χ2 for non degenerate modes and

2 × (|χ1 + χ2| − 1)2 for doubly degenerate modes for each symmetry class over all the

phonon modes of tetragonal MAPI.

method is able to calculate the mode irreducible representations for these two exactly

symmetric structure (Figure 4.12) comparable to the quantum ESPRESSO ph.x output

of the more irreducible representations. We are able to calculate the irreducible repre-

sentations exactly even without considering the hydrogen atoms in the structure. Our

result for orthorhombic structure also suggests that we should be able to calculate mode

irreducible representation of tetragonal structures without considering the H atoms.

4.7 Conclusion

In this work we tried to find out the hidden symmetry in tetragonal MAPI

structure which otherwise mainly known to be either quasi-I4cm or quasi-I4/mcm in

theoretical calculations. Looking at different aspects of the symmetry, we find that the
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Figure 4.11: Rank of subgroups based on obeyed symmetry operation.

quasi-I4cm structure obeys I4cm symmetry better than other subgroups of I4/mcm but

the quasi-I4/mcm structure obeys C2v subgroup symmetry better compared to other

subgroups of I4/mcm. We developed a methodology to calculate irreducible represen-

tations of the vibrational modes for these quasi structures which otherwise would not

have been possible to calculate. Our methodology can be useful to calculate irreducible

representations for any quasi symmetric material, for example doped structure, poly-

crystalline material or even amorphous material and be helpful to understand IR and

Raman spectroscopy. Our detailed analysis of each symmetry operations that belongs to

the highest tetragonal symmetry (D4h) reveals that there is not much difference between

these two structures with respect to centrosymmetricity. After considering all possible

lower symmetry subgroups of I4/mcm, we found that C4v or I4cm is the symmetry that

represents tetragonal (I) structure and can be used to compare with the experimental

structure.
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(a) TiO2

(b) Orthorhombic MAPI

Figure 4.12: Contribution of irreducible representations for (a) TiO2 and (b) orthorhom-

bic MAPI without considering the H atoms in the structure, calculated using our ana-

lytical method. All the mode frequencies are in cm−1
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Chapter 5

Mechanical Properties of

Orthorhombic, Tetragonal, and

Cubic CH3NH3PbI3 Hybrid

Perovskites: A Comparative

Study

5.1 Abstract

The mechanical properties of hybrid perovskite materials are important for

the behavior of flexible devices, resistance to fracture, epitaxial growth, surface ener-

getics of quantum dots, and induction or relief of stress in thin films due to thermal

expansion and phase changes. These issues are particularly salient for solar cells in

space applications. Nonetheless few studies are available on the mechanical properties of

CH3NH3PbI3 (MAPI). Experimental results are only available for the room-temperature

tetragonal phase, which have significant variation. Results from density functional the-

ory (DFT) are available for all three phases but have even larger discrepancies from

each other and from experiments. To bring order to the confusion in the literature, we

have studied the elastic properties of all three phases in detail with DFT calculations.

We have examined the effect of different aspects such as structure, exchange-correlation

107



108

functionals, van der Waals corrections, pseudopotentials, and other considerations in cal-

culation methodology. Our results provide accurate reference values and an appropriate

general methodology for elastic properties of metal halide perovskites.

5.2 Introduction

Recent research in hybrid organometallic perovskites have created a new av-

enue for making low cost, low temperature, easy to make photovoltaic devices with pho-

toconversion efficiencies (PCE=25.7%[97]) comparable to its rival silicon. One hand

suitable optoelectronic properties such as direct bandgap [36, 145], high absorption

coefficient,[126] long diffusion length[133, 156] and high carrier mobility[150] make per-

ovskites a promising candidate for solar cell, but on the other hand they suffer from

serious degradation problems[96, 21, 62] which hinder their commercialization as solar

cells. Mainly, the presence of oxygen[5] and moisture[96] rapidly accelerates the degra-

dation in perovskites. However, these factors are not a concern in the vacuum of space.

On top of that, high specific power (23 kW/kg)[63], low temperature easy in-situ fab-

rication in space[86], high defect tolerance[129] and lower cost per payload[86] are the

prime reasons perovskite has gained attention for space applications.[144, 159] Beside

having such benefits, it has to face some extra challenges in space. For example, it has

to go through rapid temperature changes (roughly 300 K) within few hours, withstand

high energy charged particle radiation[74], and face heavy mechanical damage due to

space debris travelling at a speed of 10 km/s.[91]

Lots of research has been done to improve its photo conversion efficiency and

stability but few research is available related to its mechanical properties which is utmost

important for making a commercial solar cell for Earth or for space applications. Out of

that few available research on mechanical properties, there are disagreements between

theoretical as well as experimental results (table 5.1). There are many reasons that may

affect the values of Cij parameters of the stiffness matrix and thereby the elastic prop-

erties calculated based on it. Method of calculation, exchange correlation functionals,

k-point sampling, energy cutoff for the plane wave, lattice parameters etc. can affect

the values of Cij in many ways. But there is a possibility of another reason behind such

discrepancy which is wrong calculation. For example, most of the Cij values and cal-

culated elastic modulus as reported by Diao et al.[24] are far away from other reported

calculations. They used supersoft pseudopotential which is supposed to be wrong. They
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have also used increased number of empty bands and smearing to accelerate structural

optimization which is not necessary. Their reported lattice parameter for orthorhombic

structure seems same as reported in Feng et al., paper[31] and it appears they have not

optimized the structure correctly which is also visible with the negative value reported for

C66. Their reported tetragonal structure parameter also same as cubic which is wrong.

Young’s modulus calculated in this paper differ more than 5 times as reported in other

papers. Another paper by Ali et al.,[1] reports the formula wrong for calculating shear

modulus GV using Voigt approximation. Although the reported value for GV appears to

be correct using correct formula. When we calculated the Young’s modulus (Using Hill

approx. [56]) based on the Cij parameters reported in Feng et al., paper, we found the

result little different (reported 15 GPa, calculated 11.29 GPa). With all these reports

its worth to dig deeper into the issue and before going any further it is most important

that we use correct formula to calculate all these parameters and report clearly.

As part of our research, we have studied the mechanical properties of all three

phases of MAPI in detail to find an agreement and root cause for the disagreement

between different theoretical as well as experimental results (table 5.1). There is no

experimental result available so far for cubic and orthorhombic structures reporting me-

chanical properties except high temperature tetragonal phase.[117, 113, 79, 20] Mainly

nanoindentation technique has been used to calculate Young’s modulus at different crys-

tal surfaces. We have found one study that uses AFM to measure elastic modulus.[79]

Theoretical results are available for all three phases but differ widely amongst each other

and with experiments.[117, 31, 24, 65, 1, 119] We are doing a systematic study to under-

stand and point out the reasons behind such discrepancy of earlier published results. We

have done DFT calculations on all the three phases and calculated the whole stiffness

Cij and compliance matrices Sij . With the help of compliance matrix and the matrix

rotation method[140] we have calculated elastic modulus at certain directions which are

reported in the experiments.[117, 136, 113, 79, 20, 117]

5.3 Methods

5.3.1 Computational Details

We have investigated mainly three different structures, pseudo-cubic[138], tetrag-

onal and orthorhombic[15]. The orthorhombic structure is exactly symmetric having
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Table 5.1: Calculated values of polycrystalline averages of bulk modulus K (GPa), shear

modulus G (GPa), Young’s modulus Y (GPa) and values of Young’s modulus at crys-

tallographic directions [100], [010], and [001]. Comparison with previously reported

experimental and theoretical results.

Structure

Polycrystalline average

(Hill approx.)
Young’s

Modulus

[100]

GPa

Young’s

Modulus

[110]

GPa

Young’s

Modulus

[112]

GPa

Method

Bulk

Modulus

GPa

Shear

Modulus

GPa

Young’s

Modulus

GPa

Orthorhombic

20.22 7.69 20.48 20.18 14.25 16.31 DFT-LDA

14.76 6.45 16.88 15.33 12.92 13.89 DFT-PBE

17.072 7.136 18.79 17.981 13.478 14.672 DFT-PBEsol

16.70 6.59 17.48 14.96 13.55 14.54 DFT-PBE+vdW-GD2

16.70 6.87 18.13 14.95 13.71 14.99 DFT-PBE+vdW+HK

15.87 6.64 17.48 17.95 12.91 13.93 DFT-PBE+vdW-GD3

15.41 6.58 17.27 15.92 13.33 14.42 DFT-PBE-TM

18.10 3.60 15.00 - - - DFT-PBE+vdW[31]

40.42 49.10 104.85 - - - DFT-PBE-supersoft[24]

16.76 7.32 19.17 - - - DFT-PBEsol[1]

15.45 6.59 17.31 - - - DFT-PBE[1]

Tetragonal

20.33 6.84 18.45 14.80 31.61 15.84 DFT-LDA

13.14 5.33 14.08 10.39 23.62 14.75 DFT-PBE

17.07 5.76 15.53 14.90 24.79 13.02 DFT-PBE+vdW-GD2

13.20 7.00 17.70 - - - DFT-PBE[117]

12.20 3.70 12.80 9.27 22.67 7.60 DFT-PBE+vdW[31]

36.07 6.32 - 22.63 20.86 20.86 DFT-PBE[24]

25.61 11.91 30.94 79.91 79.89 79.83 DFT-PBE[65]

- - - 10.4±0.08 - 10.7±0.05 Nanoindentation[136]

13.90 5.40 - 14.3±1.7 - 14.0±2.0 Nanoindentation[113]

- - - 15.14 - - SPM/AFM[79]

- - 16.5±1.973 - - - Nanoindentation[117]

- - - 20±1.5 - - Nanoindentation[20]

Cubic

18.90 6.05 16.40 - - - DFT-LDA

16.40 16.40 22.20 - - - DFT-PBE+vdW[31]

54.08 2.93 - - - - DFT-PBE-supersoft[24]

14.70 7.00 18.10 - - - DFT-PBE-ultrasoft[119]
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D2h point group symmetry but the tetragonal structure does not have any symmetry

on an atomistic level, though experimental measurement can show D4h point group

symmetry as discussed in chapter 4. We checked the effect of different exchange cor-

relation functionals (LDA[104], PBE[102], and PBEsol[103]) and used scalar relativis-

tic optimized norm-conserving Vanderbilt (ONCV) pseudopotentials[53] from Pseudō

Dōjō[146]) (NC SR ONCVPSP v0.4) with standard accuracy. We have also used a

Troullier-Martins[142] pseudopotential for PBE to compare with the ONCV result. Dif-

ferent half-shifted Monkhorst-Pack grid (depending on the structure) is used for Brillouin

zone sampling with energy cutoff of 80-100 Ry for the wave functions. Variable-cell re-

laxation is done using a 0.5 kbar stress convergence threshold keeping total force per

atom less than 1 meV/Å. We have compared different Van der Waals correction schemes

(Grimme-D2[50], Grimme-D3[51], TS[141]) as available in Quantum ESPRESSO. The

applied strain range for this calculation is between -0.1 to +0.1.

5.3.2 Theoretical Frame-work

Idea of Calculating Stiffness Constants

As we have mentioned in the introduction section about large discrepancies in

reported mechanical properties of CH3NH3PbI3 hybrid perovskites, it is important that

we clearly mention all the formulas and techniques that we have used to calculate them.

A very well known formula to calculate stiffness constants is Hooke’s law which states

that within elastic limit, stress is proportional to strain and mathematically expressed as

σij = Cijklϵkl. Here σij is the stress and ϵkl is the strain and Cijkl is the stiffness constant,

i, j, k, and l represents the Cartesian directions x, y, and z. Cijkl is a 4th rank tensor

and has 81 elements but due to the symmetry in stress (Cijkl = Cjikl) and symmetry

in strain (Cijkl = Cijlk) it reduces to 36 elements which further reduces to 21 due to

the equivalence of the partial derivative (Cijkl = ∂2E
∂ϵkl∂ϵij

= ∂2E
∂ϵij∂ϵkl

= Cklij). Due to

the symmetry in the crystal system, the independent components of the stiffness tensor

even further reduce from 21 to 3 for cubic, 9 for orthorhombic and 6 for tetragonal-(I)

crystal system. To calculate the elastic and mechanical properties for different MAPI

structures we need to calculate all the independent components of the stiffness tensor

first. There are two different methodology by which this can be done: (a) by calulating

the stress tensors directly using quantum ESPRESSO code for different applied strains

and using a linear fit, (b) by calculating the change in energy density of the system for
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applied strains and doing a quadratic fit. We have done both and give a comparison

of result in our result and discussion section. For the purpose of this work we used the

second method, (change in energy density) as most of the previously published paper

have reported their calculated values of elastic properties using this method.

The Taylor expansion of total internal energy E of a crystal can be written as

E(V, ϵ) = E(V0) + V0

(∑
i

∂E

∂ϵi
ϵi +

1

2

∑
i,j

∂2E

∂ϵi∂ϵj
ϵiϵj

)
+O(ϵ3) (5.1)

Here V0 and V denotes the volume of the unstained and strained crystal respectively.

ϵi is the strain in the ith direction. ∂2E
∂ϵi∂ϵj

is also known as stiffness constant Cij of the

crystal. The change in energy density can be expressed as U = E(V,ϵ)−E(V0)
V0

. The idea

behind calculating Cij coefficients is that we will strain the structure in some specific

directions and calculate the change in energy density. From the quadratic fitting of the

change in energy density vs ϵ graph we can calculate the stiffness constant. The values

for i and j ranges between 1 to 6 where indices defined as: 1 ≡ xx, 2 ≡ yy, 3 ≡ zz, 4 ≡
yz, 5 ≡ zx, 6 ≡ xy in Voigt notation.

How to Strain the Crystal: Strain Tensors

Every crystal structure has its own lattice parameters (i.e. lattice vectors a⃗ =

axî+ay ĵ+azk̂, b⃗ = bxî+ by ĵ+ bzk̂, and c⃗ = cxî+ cy ĵ+ czk̂) and all the atoms in the unit

cell can be expressed in the coordinates of the crystal lattice vectors. So, any strain to

the lattice vectors automatically applies to the entire system including the atoms. The

way we applied strain to the structure is given in the equation below. Different strain

tensors used for the calculation are given in figure (5.1).
ϵxx ϵxy ϵxz

ϵyx ϵyy ϵyz

ϵzx ϵzy ϵzz



ax bx cx

ay by cy

az bz cz

 =


a′x b′x c′x

a′y b′y c′y

a′z b′z c′z

 (5.2)

Calculation of different elastic parameters

After each structure is deformed using the strain tensor as discussed above, we

need to relax the ions of these deformed structures keeping the lattice parameter fixed.

This process is done using Quantum ESPRESSO. Each deformed, relaxed structure is
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Figure 5.1: Different strain tensors used to calculate the full stiffness tensor and other

mechanical properties. Out of these nine strain tensors a,b and c represent uniaxial

strain, e,f, and g represent shear strain and h, i, and j represent biaxial strain.

used to calculate total energy of the system. Once we have it, we can calculate the

change in energy density (U) using equation (5.1) which in short can be written as

U =
1

2

6∑
i=1

6∑
j=1

Cijϵiϵj (5.3)

Using the 9 different strain tensors as mentioned in Figure (5.1) we can calculate

9 independent stiffness constants (Cij) using equation (5.3). For C11, C22, and C33 we can

use uniaxial strains as shown in figure 5.1(a, b, c) and directly use quadratic fitting to the

equation. To calculate C44, C55, and C66 we need to apply shear strain as shown in figure

5.1(e, f, g). We purposefully used η
2 instead of η for the cross terms of ϵ because there will

be 4 terms in the summation and it keeps the final equation simple as U = 1
2Ciiη

2. For

C12, C13, and C23 we need to apply biaxial strain as given in figure 5.1(h, i, j). Applying

these strains will make the energy density equation as U = 1
2(Cii + Cjj − 2Cij)η

2,

values of i, j are 1,2, and 3. Using the quadratic fitting and with previously calculated

results of Cii and Cjj we can calculate the values of Cij . Once we calculate all the

independent components of the stiffness tensor for orthorhombic and tetragonal MAPIs,

we can calculate the compliance tensor which is nothing but the inverse of the stiffness

matrix. Using the stiffness and compliance matrix we can calculate elastic properties
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such as Young’s modulus (E), bulk modulus (K), shear modulus (G), Poission’s ratio

(ν) using Voigt, Reuss, and Hill approximations[56] which give macroscopic averages for

polycrystalline materials. All the corresponding formulas are mentioned below.

Voigt approximation:

KV =
1

9
(C11 + C22 + C33) +

2

9
(C12 + C13 + C23) (5.4)

GV =
1

15
(C11 + C22 + C33 − C12 − C13 − C23) +

1

5
(C44 + C55 + C66) (5.5)

νV =
3KV − 2GV

6KV + 2GV
(5.6)

EV =
9KVGV

3KV +GV
(5.7)

Reuss approximation:

KR =
1

(S11 + S22 + S33) + 2(S12 + S23 + S13)
(5.8)

GR =
15

4(S11 + S22 + S33)− 4(S12 + S23 + S13) + 3(S44 + S55 + S66)
(5.9)

νR =
3KR − 2GR

6KR + 2GR
(5.10)

ER =
9KRGR

3KR +GR
(5.11)

Hill approximation:

GH =
1

2
(GV +GR) (5.12)

KH =
1

2
(KV +KR) (5.13)

EH =
9KHGH

3KH +GH
(5.14)

Universal anisotropic index[114]:

AU = 5
GV

GR
+
KV

KR
− 6 ≥ 0 (5.15)
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Calculation of elastic modulus at different crystallographic directions

To calculate Young’s modulus (E) at any given direction [hkl], we can use the

compliance matrix and equation 5.16[98] for orthorhombic structure. sometimes it can

be seen as used with little mistake[118] where S11 is missing from the equation. For

cubic symmetry, equation 5.16 will reduce to equation 5.17[58].

1

Ehkl
= l41S11 + 2l21l

2
2S12 + 2l21l

2
3S13 + l42S22 + 2l22l

2
3S23 + l43S33 + l21l

2
3S44 + l21l

2
3S55 + l21l

2
2S66

(5.16)

1

Ehkl
= S11 − 2

(
S11 − S12 −

1

2
S44

)
(l21l

2
2 + l21l

2
3 + l22l

2
3) (5.17)

There is another way in which we do not need such formulas (eqn. 5.16, 5.17) for

any particular crystal system instead we can use the stiffness matrix and transform it

accordingly using some orthogonal transformation matrices as given in equation (5.18).

C∗
ijkl = ΩipΩjqΩkrΩlsCpqrs (5.18)

These orthogonal transformation matrices (Ω) can be simple rotation matrices. It is to

keep in mind that this transformation rule applies to Cpqrs which is a 3×3×3×3 matrix

but we have already made it a Cαβ matrix which is a 6×6 matrix. So, this transformation

rule is not directly applicable to our calculated stiffness tensor. The transformation law

is derived in detail for Cαβ in [140]. We have used the methodology given in this book

to calculate rotated stiffness matrix. We constructed a general rotation matrix

Ω =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (5.19)

To transform the stiffness matrix we have done the below mathematical operation[140]

C∗ = KCKT (5.20)

where

K =

K1 2K2

K3 K4

 (5.21)
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K1 =


Ω2
11 Ω2

12 Ω2
13

Ω2
21 Ω2

22 Ω2
23

Ω2
31 Ω2

32 Ω2
33

 (5.22)

K2 =


Ω12Ω13 Ω13Ω11 Ω11Ω12

Ω22Ω23 Ω23Ω21 Ω21Ω22

Ω32Ω33 Ω33Ω31 Ω31Ω32

 (5.23)

K3 =


Ω21Ω31 Ω22Ω32 Ω23Ω33

Ω31Ω11 Ω32Ω12 Ω33Ω13

Ω11Ω21 Ω12Ω22 Ω13Ω23

 (5.24)

K4 =


Ω22Ω33 + Ω23Ω32 Ω23Ω31 + Ω21Ω33 Ω21Ω32 + Ω22Ω31

Ω32Ω13 + Ω33Ω12 Ω33Ω11 + Ω31Ω13 Ω31Ω12 + Ω32Ω11

Ω12Ω23 + Ω13Ω22 Ω13Ω21 + Ω11Ω23 Ω11Ω22 + Ω12Ω21

 (5.25)

Once we have the rotated stiffness tensor, we calculate the compliance matrix and thereby

calculate the elastic modulus along the rotated crystallographic direction.

5.4 Results and Discussion

There are discrepancies in reports about calculated and measured mechanical

properties as mentioned earlier in the introduction section. In the beginning of our

investigation we have checked the difference in elastic properties calculated using two

different methods: (a) by calculating the energy density and quadratic fit (b) by calcu-

lating the stress tensor and linear fit. PBE exchange correlation functional with ONCV

pseudopotential is used for calculation of method comparison. The Brillouin zone is

sampled using 5× 4× 5 half-shifted Monkhorst-Pack grid with energy cutooff of 100 Ry

for the wave functions. The methods are clearly explained in the theoretical framework.

We have calculated the full stiffness tensors and the elastic modulus such as Young’s

modulus, bulk modulus, and shear modulus using Voigt-Reuss-Hill approximations for

orthorhombic MAPI and the results are shown in Fig. (5.2). The calculation of stiffness

constant C11 is given in Fig. (5.2(a,b)). The difference for all the 9 independent stiffness

constant for orthorhombic MAPI is given in Fig. (5.2(c)). It can be seen that the calcu-

lated elastic parameters directly from the stress tensor are little higher for most of the
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cases but the differences between two methods are much smaller than experimental error

bar and theory discrepancies. So, the difference in calculation methodology for elastic

properties calculation does not matter much. For the rest of our calculation, we have

used the change in energy density method to compare with previously published results.

Figure 5.2: Elastic properties calculated for orthorhombic MAPI structure using two dif-

ferent methodologies. (a) Calculation of C11 using the change in energy density method.

(b) Calculation of C11 using the full stress tensor method. (c) comparison of different

parameters calculated using two different methods as mentioned in (a) and (b).

We have mentioned in our theoretical framework how to calculate Young’s

modulus at a particular crystallographic direction in two different ways. The reason

we choose to transform the stiffness matrix first and then calculate the elastic modulus

on the rotated stiffness matrix is that we do not need to know the exact formula for

any particular crystal system. An incorrect assumption of cubic symmetry where the

structure is not exactly cubic but a pseudo cubic (as we have seen in chapter 2), simpli-

fication of equation 5.16 to equation 5.17 will end up giving wrong result as can be seen

in figure 5.3(a). We can get the compliance matrix from the transformed stiffness matrix
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Figure 5.3: (a) Calculation of elastic modulus in (110) plane for orthorhombic MAPI

using the general stiffness matrix rotation method and using formula for wrongly assumed

symmetry of the structure. (b) 3D profile of the elastic modulus for cubic, tetragonal

and orthorhombic MAPIs using ELATE.[37]

and calculate the elastic modulus just using general formula (E11 = 1/S11) where E11 is

the elastic modulus along the rotated x axis of the crystal system. This general method

works for any system. It is even more helpful when we have an approximately symmetric

structure rather than an exact one. Using the general method we also lower the chance

of using wrong formula for the incorrect assumption of symmetry as in some works. We

have calculated the elastic modulus profile in the (110) plane of orthorhombic MAPI

using the general method and then used the general formula (Eqn. 5.16) but with cubic

symmetry. The result can be seen in Fig. 5.3(a). The incorrect assumption of symmetry

may lead to a very different, wrong result. One more thing to be noticed in this figure is

that it is symmetric in 4 quadrants of the (110) plane and 0-900 is enough to understand

the elastic modulus profile in the plane. For rest of our results we have shown variation

of elastic modulus data for this range only. Once we have the stiffness tensor for a system

we can draw a 3D profile of the elastic modulus using ELATE[37]. It can be seen that

the Young’s modulus is higher parallel to the Pb-I-Pb bond and highest along the largest

lattice parameter. Tetragonal MAPI has highest value of Young’s modulus among the

three phases.

To investigate different aspects of calculating elastic parameters we choose or-

thorhombic MAPI as it has exact symmetry (for theoretical calculation). The outcome

is similar for cubic and tetragonal structures. The effect of different functionals and

pseudopotentials on the orthorhombic MAPI structure and on its elastic modulus is

shown in Fig.5.4(a). We can see that lattice parameters and Pb-I bond lengths are un-
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derestimated by LDA and overestimated by PBE and the corresponding elastic modulus

profile in (110) plane (Fig. 5.4a(ii)) shows the opposite which is expected. PBEsol stays

in-between in both the cases. The exchange correlation functionals play a major role in

calculating the correct structure. Bokdam et al. has done a detailed study based on RPA

and find that strongly constrained and appropriately normed (SCAN) functional is the

best for calculating correct structures for hybrid perovskites.[11] We have not studied

SCAN functionals in this work but this can be good point to check in the future work.

We also looked at effect of different pseudopotentials. We compared the results between

Figure 5.4: Effect of (a(i,ii)) different functionals , (a(iii)) pseudopotentials , (b) Van der

Waals schemes, and (c) k-point sampling on structural parameters and elastic modulus

for orthorhombic MAPI. The lines that compare the theoretical calculations with the

experimental results are from [109, 6, 151]

ONCV (from pseudodojo[146]) and Troullier-Martin (from Quantum Espresso[45]). The

result looks similar, only slight difference in the elastic properties but that can be under-
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stood from their calculated structures which are slightly different too. (Fig. 5.4a(i,iii)).

The effect of Van der Waals correction to the exchange correlation functional improve

the structural parameters. It affects the elastic modulus mostly along [110] and [010]

as shown in figure 5.4b(iii). The alignment of the MA+ ion are in the (110) plane in

the orthorhombic structure, this makes all the H atoms are out of this plane and along

[110]. The interaction of the H atoms attached to the N of the MA+ ion interacts more

with the I of the Pb-I cage. This interaction affects most due to the Van der Waals

correction. Among different available schemes of Van der Waals correction, Tkatchenko-

Scheffler (TS) calculates the Young’s modulus higher than average values. Grimme-D3

does not improve the elastic modulus much from the normal PBE one and Grimme-D2

affects most along the largest direction < 010 > of the crystal. The many body disper-

sion (MBD) correction is by construction more accurate than pairwise Van der Waals

interactions. This can be studied and checked as a future work. k-point sampling plays

a crucial role in calculating elastic modulus at particular directions (Fig. 5.4c). We

have seen that high k-point sampling (10× 8× 10) makes a difference around 1 GPa in

elastic modulus along [110] and [111] directions and no change along [010]. Although

high k-point sampling has significant effect in calculating elastic modulus at a particular

direction, it does not have much effect on lattice parameters calculated using (5× 4× 5)

k-point grid which is sufficient for converging the total energy by usual criteria. High

k-point sampling also does not affect the poly crystalline averages of the elastic modulus

(Fig. 5.5a). One hand, we know that PBE with Van der Waals correction (Grimme-D2)

gives good result, but we need to have high k-point sampling along with high energy

cutoff which needs more computation time, on the other hand if we use ultrasoft pseu-

dopotential we can use lower energy cutoff values for planewave basis set. It will be

useful to check the effect of ultrasoft pseudopotential on mechanical properties and to

see if it can save some computation time without sacrificing the accuracy. In addition

to that, some different methodology such as projector augmented wave (PAW) and all-

electron methods should also be useful to check as they affects the mechanical properties

of hybrid perovskites. The spin orbit coupling does not effect the structural parameter

and hence expected not to make any difference in the calculation of elastic properties

but it will be good to check that.

Our calculated results for both orthorhombic and tetragonal MAPI structures

are summarized in figure 5.5. We can see that some of the reported elastic parameters
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Figure 5.5: Comparison of our calculated elastic properties with the published theoretical

results: Feng et al.[31], Diao et al.[24], Ali et al.[1], Khellaf et al.[65], and experimental

results: Sun et al.[136], Rakita et al.[113], Liao et al.[79], Rathore et al.[117], Spina et

al.[20]

are way higher than the rest of the values which may very well happen for wrong struc-

ture or wrong structural optimization. It can be seen that LDA overestimates and PBE

underestimates all the elastic properties. PBEsol gives better values for elastic modulus

but PBE with Grimme-D2 Van der Waals correction gives the best result. With high

k-points elastic modulus improves in certain directions but it does not improve that

much for the poly-crystalline averages. We can also see that no experimental results

are available in case of orthorhombic structure to validate the result. Since PBE with

Grimme-D2 vdw correction with high k-point works best, we used the same for tetrag-

onal structure and validate our results with the experimentally available results (Figure
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5.5(b)). Although, we used the same parameters as used by Feng et al., our results looks

better in agreement with the experimental one.

5.5 Conclusion

Research about elastic properties of perovskites are very important for appli-

cations at large scale. It is strange that after a decade of perovskite research for solar

cell applications we have very few reports available that studied the elastic properties of

MAPIs and they too have discrepancies among their results. In this study we have done

a detail analysis about different aspects of the theoretical calculation to understand the

root cause of this discrepancy. We found that elastic properties are sensitive to the initial

structure. Van der Waals correction to the exchange correctional functional plays a key

role for orthorhombic and tetragonal structure. PBE with Grimme-D2 Van der Waals

correction with high k-points works best for calculating elastic properties. One thing to

note here is that use of high k-points does not affect the poly-crystalline averages that

much but takes a lot of computational time. We have to keep in mind about the trade

off between computation time and accuracy and high k-points should be used only in

case of elastic modulus calculation at some specific direction.
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Chapter 6

Summary and Outlook

Methylammonium lead iodide (MAPI) is the most studied material for next

generation solar cell applications. A lot of research has been focused to improve its

photo conversion efficiency (PCE), and stability. As part of my research, I studied local

strain, symmetry and elastic properties of MAPI using density functional theory.

We have systematically studied the structural and vibrational properties of low

temperature orthorhombic phase, room temperature tetragonal phase and high tem-

perature cubic phase of CH3NH3PbI3 under uniaxial strain. We identify those atomic

interactions that are mostly responsible for frequency changes due to uniaxial strain by

analyzing the dynamical matrix. Our perturbative analysis of the dynamical matrix with

mode eigenvector explains the reason behind different frequency change patterns due to

uniaxial strains. Our analysis about the change in the bond length and bond angles due

to strain explains the behavior and stability of these phases under strain. Calculated

mode-Grüneisen parameter and its thermodynamic average gives an idea of anharmonic-

ity in each phase of this material. Our calculation identifies the best possible IR and

Raman modes for all three phases which can serve as a guide for measuring local strain

using experiment. This work opens the way for standard bench-top characterization

method to be usable for analyzing the critical role of local strain in hybrid perovskite

photovoltaics.

While studying the frequency shifts under uniaxial strain for the degenerate

and close to degenerate modes of tetragonal and orthorhombic MAPIs we noticed that

sometimes they cross each other which is confusing to resolve by just looking at the

standard quantum ESPRESSO output. We have done a little modification of the code

123
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that enables such calculations with much ease and without any confusion. This modified

code can be helpful for any other phonon mode calculation under strain.

Among the three phases of MAPI perovskite, room temperature tetragonal

phase is the most studied material for solar cell applications and yet the actual sym-

metry is well debated. In theoretical calculations there are possibility of different quasi

symmetric structures (quasi-I4cm or quasi-I4/mcm). Since the structure is not exactly

symmetric, its not possible to calculate the the irreducible representations for its vibra-

tional modes. We developed a methodology using group theory that is able to prove the

hidden symmetry in the teragonal MAPI structure and can be useful to calculate irre-

ducible representations for any quasi symmetric material. This method can be helpful

for spectroscopic study for other materials with approximate symmetry.

In last one decade, there has been a huge amount of research done to improve the

photo conversion efficiency and stability of perovskite material for solar cell application

but the mechanical properties which are crucial for commercial large scale applications,

seems understudied. Among the very few reports that are available for mechanical

properties of CH3NH3PbI3, there are discrepancies among their results. Our detail

theoretical calculation of elastic and mechanical properties of CH3NH3PbI3 shed light

on some specific problems that might have caused such discrepancies. It also gives

calculated values of different elastic paramers that can be used as a benchmark for

future theoretical and experimental research.
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and Aron Walsh. Lattice dynamics and vibrational spectra of the orthorhom-
bic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B,
92(14):144308, 2015.
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