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Abstract
Orientation Dependence of the Anomalous Hall Effect in &lrémagnets
by
Eric Shawn Roman
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Ivo Souza, Chair

This dissertation describes calculations of the magrtetizdependence of the intrinsic
Hall conductivity in three elemental ferromagnets: iroohalt and nickel. We compare our
calculations with experimental measurements of these alows Hall coefficients, and
we show thatb initio calculations of the anomalous Hall conductivity from therlas-
Luttinger theory explain the observed changes in the anausatall coefficients of these
metals as the magnetization direction is varied.
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Chapter 1

The Hall Effect in Ferromagnets

The Hall effect in normal nonmagnetic metals is proportiamy to the internal mag-
netic fieldB, but in a ferromagnet the Hall effect has an additional gadportional to the
magnetizatiorM . The dependence of the Hall fiel}; on the magnetizatioM can result
in anisotropy of the Hall effect. In recent years, Karplug &attinger’s theory of the in-
trinsic part of the anomalous Hall effect has been used tlmperab initio calculations of
the Hall conductivity in some materials, with fair quantiita agreement with experiments.
In previous work, the variation of the intrinsic Hall condirity with the direction of the
magnetization has not been considered.

The study of the magnetization dependence is interestingefeeral reasons. A recent
review of the anomalous Hall effect expresses a need fandugtudy of the microscopic
mechanisms of the anomalous Hall effect [1]. The intrinsaepus-Luttinger mechanism
is one of the various contributions to the anomalous Halbcetivity. Calculations of this
contribution from first principles, combined with measuests of the Hall coefficients,
allow us to estimate the size of the remaining side-jump &ed scattering contributions.
Interest also arises from more fundamental considergtginese the intrinsic conductivity
is a macroscopic manifestation of a geometric propertyBibey curvature, of the elec-
tron band structure. The geometric effects are sensititleetdine details of the electronic
structure. Early theoretical efforts were hampered dubedack of sufficient accuracy in
the wave functions. The accurate Hamiltonians available finst principles calculation
allows us to gain insight as to how the anomalous Hall effeetsave in realistic systems,
and serve as a complement to model Hamiltonians using Sietpliescriptions of these
materials. A final goal of this work is to serve as a startingipfor future studies of the
magnetization-dependent anomalous Hall conductivitye fitagnetic field orientation is
one of the few parameters that can be easily adjusted by kp#rienents and in theoretical
calculations, and this allows detailed comparisons to beéenb@tweemb initio theory and
experiments. Therefore, this work is expected to be of @steto future theorists calculat-
ing the side-jump and skew scattering contributions, asd & experimentalists studying
anisotropic transport.

This dissertation contains calculations of the intrinsadlidonductivity in the anisotropic



case. We calculate the anisotropy in the intrinsic Hall canigtity for three elemental fer-
romagnets: iron, cobalt and nickel. The anisotropic Hd#@fin these materials has been
studied experimentally, so they are good candidates foearéhical study. Each material
shows different aspects of anisotropy. Hexagonal cobaltabse it is a uniaxial crystal,
shows strong first-order anisotropy in the anomalous Hatldoativity. In cubic crys-
tals, anisotropy appears at third-order in the magnetimaind this is seen clearly in bcc
iron, where the anomalous Hall effect is nearly isotropid, fiiot in fcc nickel, where the
anisotropy is significant. We compare our calculations wetperimental measurements
of these anomalous Hall coefficients. We show @atinitio calculations of the anoma-
lous Hall conductivity from the Karplus-Luttinger theorypain the observed changes in
the anomalous Hall coefficients of these three transitiotalmavhen the magnetization
direction is varied.

The dissertation is organized as follows. In Chapter 1 weuds¢he history and
phenomenology of the anomalous Hall effect (AHE), and deednow to calculate the
anomalous Hall coefficierRs in a conventionaab initio framework. Chapter 2 describes
the anisotropy of the anomalous Hall effect in cobalt cigstahowing how first order
anisotropy manifests itself in hcp cobalt. Chapter 3 dessrihe AHE in bcc iron, where
it is shown that the theoretical anisotropy is small, exptag why anisotropy of the AHC
has never been observed in bcc Fe. Chapter 4 describes therAREwhere the intrinsic
part of the AHE accounts for much, but not all, of the variaianeasured experimentally.
We show that in nickel about half of the discrepancy betweewipus calculations and
measurements of the AHE arise from a theoretical error inibieg the exchange splitting
of thed-bands. We argue that the remainder of the discrepancy batthe AHE predicted
by ab initio theory and that observed experimentally is due to impuBttering terms
which are out of the scope of the Karplus-Luttinger theory.a@hr 5 summarizes our
conclusions and suggests directions for future work.

1.1 Background

In 1879, Hall showed that a nonmagnetic wire carrying a curie a magnetic field
induces a voltage transverse to that field [2]. This phenaménknown as the (ordinary)
Hall effect Hall subsequently found that in ferromagnets, the effeetinost an order of
magnitude larger. The effect in ferromagnets later becamogvk as theanomalous Hall
effect(or extraordinary Hall effect) [3]. The origin of the ordinyaHall effect has been
known to be a consequence of the Lorentz force, but the odfjitne anomalous Hall
effect has been controversial.

A theory of the anomalous Hall effect (AHE) was put forth byrglas and Luttinger
[4], who showed that a Hall current perpendicular to thetele@eld and odd under mag-
netization reversal is established in a ferromagnetictahys a result of the spin-orbit
interaction (SOI). The relationship between the AHE and3f¢ became understood, but
a long debate ensued on whether the relevant SOI is assbevdte the crystalline po-



tential (intrinsic) or with impurity atoms (extrinsic). €asymmetric impurity scattering
of the spin-polarized charge carriers (skew-scatteriegil$ to a linear dependence of the
(transverse) anomalous Hall resistivity; = Ey/ jx on the longitudinal resistivityyy; an
additional scattering process, side-jump, yields the sseangpy O p2, as the intrinsic
Karplus-Luttinger mechanism. For a review see Ref. [1].

Unlike the extrinsic contributions, which depend on theadstof the impurity poten-
tial, the Karplus-Luttinger anomalous Hall conductivig{C) can be evaluated from the
crystal band structure as a Brillouin zone integral [5]:

e d3k
a_ )
%= "R Jy 23 ; frk Quk i » (1.1)

wherefyy is the Fermi-Dirac distribution function arfeh, j; (k) is the Berry curvature tensor
(defined in section 1.4.1). of each cell-periodic spinor Blatate|uy) First-principles
calculations for Fe, Co, Ni [5, 6, 7], STRu@8] and MnsGe;[9] have consistently found
good agreement with room-temperature experiments, esdtalg the importance of the
intrinsic mechanism.

Recent experiments have focused on isolating the differemtributions to the AHE
[10, 9, 11]. Skew-scattering can be separated from the otfeeterms by fitting the mea-
sured anomalous Hall resistivity to the form

PH = aPxx+ bp2,, (1.2)

whereb = og + bSJ. The coefficientsa (skew-scattering) anb (intrinsic plus side-jump)
can be read off a plot gb / pxx Versuspxx, wherepyy is varied through doping or temper-
ature changes. Recent experimental work by Tian has impravélde scaling relationship
(1.2) [11]. Tian varies the diagonal resistivity indepenttieof the temperature and found
the relationshigy = apxxo—|-Bpfxo+ bp2. Recent theoretical work has more rigorously
related the microscopic scattering mechanisms to the aivdy to different orders in the
scattering lifetime, thus providing a better understagdihthe coefficienta andbin (1.2)

[1, 12].

1.2 The Anomalous Hall Effect

In a magnetic fieldd and magnetizatioM the electric fielck is of a conducting mate-
rial is related to the current densilyby a generalized Ohm'’s law [13]

E = pij (H,M)J;. (1.3)

The antisymmetric part gb defines theHall resistivity. In a crystal with cubic symmetry,
takingJ = JX, andB = BZ, eq. (1.4) reduces to

By = P, (1.4)



wherepy is known as theHall resistivity.
The Hall resistivitypy of a ferromagnetic material follows an empirical relatibips
[13]
PH = RopioH + Ry oM (1.5)

in Sl units, whereH is the macroscopic magnetic field (in A/m) inside the samdlés the
sample magnetization (A/miR, is theordinary Hall coefficientandR; is theextraordinary
Hall coefficient(Ry andRy in Q m/T). Using the constitutive relationship= pipo(H + M)
(1.5) can be written

pH = RoB -+ RspioM (1.6)

whereRs is theanomalous Hall coefficiergiven by
RS: Rl_RO7 (17)

andB is the magnetic flux density inside the material.
The behavior opy asB is increased is shown in figure 1.2.Bfis large B > LpMs),
the magnetization approaches the saturation ligils, and from (1.6) we find:

PH = RoB+RstioMs (B> LigMs). (1.8)

This equation describes a line of sloRgand intercepRsMs, and provides us with a way
to extract the anomalous Hall coefficient from a measurermokpt; in large fields. In the
low B limit (B < HgMs), using the relative magnetic permeabilfty, then we may write
HoM = (1—1/u) B, so thatoy = [Ro+ (1— 1/ ) Rs| B . In a ferromagnety, is large in
small fields, so that

pr = (Ro+Rs)B (B < HoMs). (1.9)

We see that for small fields, we have a line of sléje- Rs.

1.3 Phenomenological description

Before discussing the origins of the anomalous Hall condigtiwe review the phe-
nomenology [14, 15]. Electrical conduction in ferromagristdescribed by a magnetization-
dependent conductivity tensor:

Ji:O'ij(H,M)Ej. (1.10)

We assume that the conductivity tensor componeytsan be approximated by a polyno-
mial in M;

0 2
aij(M) = 6" + al UMy + o2 MpMq + ... (1.12)

We have ignored the terms K, since these describe the orientation dependence of the
ordinary Hall conductivity. In 1.4.2, we discuss the jusafion for using this expansion in
more detail. When we speak nth-order anisotropy, we mean that the expansion in (1.11)
overMp has been carried out teth order.



Figure 1.1: The Hall resistivityy in a ferromagnet is not linear in the magnetic field
strengthB, but also depends on the magnetizatin For small fields B < LigMs), py ~
Ro+ RsB. In large fields B > LpMs) the magnetization saturates gngl ~ RstioMs+ RoB.

(RO + RS) HOMS
RstoMs

PH

/
/‘[ (Ro+ I35)'3
HoMs

The polynomial expansion ik, implies that theo;; 1 ,» are symmetric in all but the
first two indices, so
Oij..p"m...pn... = Oij..pn..pM.... (1.12)

Eq. (1.12) is the first of three symmetry relations that we tos&mplify the form of the
conductivity expansion.

The second symmetry condition on the form of the condugtidgta consequence of
microscopic reversibility, resulting in the Onsager nelat

Gij(M) = gji(—M). (1.13)
This relationship (1.13) implies that the symmetric andsgmbmetric parts obj;

a;(M) = 3(aij(M)+0ji(M)) = 3 (0 (-M) +Gij(-M)) = g(-M) (L1.14)

aj(M) = 3(0ij(M)—aji(M)) =3 (i(-M) = Gij(-M)) = —g{}(~M) (1.15)

are respectively even and odd functions of the magnetizdfio Eqs. (1.14) and (1.15)
imply also that the current densifyis also comprised of both an ev€@hmic currentJ®
and an oddHall currentJ2. The Hall current reads

P =Exo? (1.16)

whereog = (1/2)&j 0. 3% is perpendicular té but not necessarily tM, sinceg® and
M may not be collinear. Sincé: E = 0, the antisymmetric Hall current is dissipationless,



and Joule heating is associated only with the even téfmsven in single crystalsg? || M
only whenM points along certain high-symmetry directions.

The microscopic contribution to the Hall conductivity istisgmmetric (odd), and the
experiments measuring the Hall coefficiétall measure the odd part of the voltage by
reversing the magnetic field. We will not discuss the symimgtart of either the resis-
tivity or the conductivity in this dissertation. Unless ettvise statedp or o refer to the
antisymmetric part.

The third symmetry condition applying to the conductivitysa from the symmetry of
the crystal. The conductivity tensor remains invarianteurttie action of the crystal’s point
group [16, 17]. The action of the point group oris considered in detail in appendix B. If
Ris a representation of a point group symmetryarthen invariance undé® means that

Rai; (M) = detRa;; (M). (1.17)

The direct inspection method may be used to find an invar@m of the conductiv-
ity polynomial, unless the point group contains a 3-foldatmn axis [17]. This method
provides a practical way to reduce the polynomial expantoam manageable form. We
have found it necessary to expagdto fifth order in the magnetization to describe the
conductivity of nickel, requiring us to calculate the synines of a seventh order tensor.

1.3.1 Symmetry and Anisotropy

By introducing the direction cosines and unit vectors;, we expres$! in components
Mi = Maie. The expansion coefficients may then be writtgn: ,» = (1/Mn)Gjjp1_
and we can separate isolate the angular dependence in:(1.11)

0
aij(M) =a +aJap+a apag ... (1.18)

We call the Hall effect in a materi@otropicif, with & a unit vector in theM direction, the
Hall conductivity has the form

gij(M) = g&jkak. (1.19)

In components, (1.19) reads
aip3 = az31=agz12 and (1.20)
ajj.. =0 otherwise (1.21)

When the material is isotropic, (1.16) becondes (o /M)E x M. We defineanisotropyin
the Hall conductivity as any deviation from isotropy. Usthg symmetry conditions (1.12),
(1.13), and (1.17) for a cubic crystal 23 = a»31 = az12. Therefore, to first order iM, a
cubic crystal is isotropic, but to third orderh, cubic crystals can show an anisotropic Hall
conductivity. In a tetragonal or a hexagonal system, symmretations stat@pz; = azio,

S0 anisotropy can appear to first ordeMnn these crystals.



The anisotropy of the Hall effect may also be expressed mg@f spherical harmonics.
The spherical harmonic form of (1.18) is desirable becausealculate the;; (M) appear-
ing on the left hand side of (1.18) at constévii. Thea; are related by ? + a2 + a3 = 1,
implying that the polynomials im; appearing in (1.18) are not linearly independent over
the sphere at constafil|. This linear dependence implies that h’ﬂfé) cannot be de-
termined fromag (M) if M| is held constant. We need linearly independent polynomials
defined over a sphet® | = constant to describe the anisotropyoig .

The spherical harmonic§™ span the set dfth order polynomials on a sphere. We can
expandaij (0, @) in terms of they,™

aij(0,¢) = Zj Z am™™(e,e), (1.22)
where

2T 1
a{”:/o /0\ﬁm(e,(p)aij(e,(p)*sineded(p. (1.23)

and 8 and ¢ are the usual spherical coordinates. Waif real, these relations may be
written in terms of real spherical harmoniC8 andS", defined by

1
(0, 9) = 2 T+ (=)™ = (-)"V2 ReY" (1.24)
S'(6.4) = 50 "= ()™M = (-2 Im " (1.25)
Then (1.22) becomes
o |
aij (6, ) =|; ZO[NQO(G,w)JrBPS“(G,W)], (1.26)
where the coefficienta" andB]" are related to tha" by
a = VoA (1.27)
m _ (_1)m m__:ipm
an = A8 (1.28)
g " = %[A{"JHB{“], (1.29)

and the coefficient&" andB[" are real since;j (6, @) is real.

The C" and §" retain the orthonormality of th&™. Orthogonality is a convenient
property for the discussion of the coefficied(s, as it eliminates the covariance between
terms of different orders ih. This orthogonality guarantees that a least squares values
of the coefficientsA!" at one order of remain constant as we increase the order of the
expansion [18].



The coefficientsA" of (1.22) feature prominently in the subsequent discussidhe
anisotropy in the Hall conductivity. Since tfB" can be expressed in terms of tAg for
the systems studied here, there is little to gain by consigéhem separately. In this work,
we find the paramete" using a least squares fit ofj (8, ¢) over a suitably defined grid
over 8 andg. The details are given in the subsequent chapters.

The A", like their Cartesian counterparts th,i? are related by the symmetry condi-

tions (1.12), (1.13), and (1.17). The relations betweenﬁfﬁand thea1 can be derived
by first constructing a polynomial expansion in Cartesianrdimates Wlth the expected
symmetries, and then transforming this polynomial intoesmal harmonics using (1.23).
These relationships are described in detail in appendix Bh&Ve derived expressions for
0ij (6, ) up to fifth order (= 5) in a to describe the conductivity of cubic systems.

As an example, consider an isotropic system. From (1.28}g{hn an isotropic system
are given by

O23 = Q12301 (1.30)
031 = Q12302 (1.312)
O12 = a1230s. (1.32)

From the definitions of the real spherical harmonics, we I@ye- \/3/(4ma;, St =

\/3/(4m)az, andC? = /3/(2m)as. Substituting the isotropy expression (1.20) in terms
of A", we find

g3 = AIC{(6,0) (1.33)
o = BiSi(6,9) (1.34)
o2 = C{C1(6,9), (1.35)
with
Al = Bl = i61;]_2 (1 36)
V 37 123 |
A = /%am = (V2/2)A]. (1.37)

In hcp crystals, the orientation dependence is given tad thider by the expansion by
(see Appendix B)

03 = AICL(6,9)+AKCE(6,9) (1.38)
o1 = ASH(O,9)+AISi(6, ) (1.39)

whereCi (8, @) andSn (6, @) are real spherical harmonics. Becauasgis independent of
@, while 0,3 and gz, have respectively cosine and sine dependerm@andM share the
same azimuthal angle, and their polar-angle mismatch epieddent ofp.



1.3.2 Experimental Geometry of the Anomalous Hall Effect

When discussing the isotropic Hall effect, it is conventidiwause coordinates where
the coordinate axes are placed along orthogonal directiefised by the primary current,
the direction of voltage measurement, and the magnetic. fielor the anisotropic Hall
effect, we can choose only two of these three directionsetoi the coordinate axes. We
define thex-axis as the primary current direction. In experiments whbe Hall voltage
is fixed, and measured independently of the magnetic fieislchnvenient to define the
axis as the direction along which the voltage is measureelxperiments where the voltage
measurement is rotated with the magnetic field, it is coraugrto define thg’-axis as the
normal to thex-axis andB. In our ab initio calculations, the magnetic field direction is
varied directly, so the second convention is also usefuretecally.

The Hall effect, being described by an antisymmetric tensay also be expressed
by a Hall resistivity (pseudo)-vectdk, defined bypi; = &jkAk. This vectorA is used by
several authors to discuss anisotropy [19, 15]. This ve&tdescribes the Hall resistivity
by

E=JxA. (1.41)
In this section, we relata the usual Hall resistivityy, in both coordinate systems.

We introduce a laboratory coordinate system, as shown indidw2. The primary
currentJ is fixed in thex-direction, the Hall voltage is measured in tpelirection, and
the z-direction is perpendicular to bothandy. From (1.41), the induced electric field

always lies in theyzplane, perpendicular td, even if the material is anisotropic. The Hall
resistivity p, defined by

PH = (1/E-§=(1/NIXA -§=—-2.A, (1.42)

measures only part of the total Hall fiel sinceE may have a component aloég

In the alternativey’Z system, we choosg andZ as shown in figure 1.3. In thigZ
systemy’ = (B x X)/Bis a unit vector in thezplane, and’ = X x y’ completes the triad.
The unit vecto’ is the projection oB perpendicular to the curredt= JX, soZ lies along
ByYy + B,z. We may then writd8 = B, 7'+ B&. Expressingde in terms ofy’ andz’, we have:

E=JAy +3A/Z. (1.43)

The Hall fieldE remains in the/Z-plane, orthogonal td.
When the Hall resistivity is isotropicA is parallel toB for all directions ofB, or
E = pnJ x B. In the primed coordinateg = p1JxBpY’, so thatEx = E; = 0. The induced

Hall field E lies entirely alongf’, andEy = RyBzJ. In terms ofA, we see that, for an
isotropic material

A, = R4By (1.44)
Ay = O (1.45)
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Figure 1.2: Laboratory coordinate system for anisotropgsneements. Thedirection is
defined to be the direction of the primary currénil he direction of voltage measurement,
perpendicular td, defines thg-direction. A third directiorz = X x § completes the triad.

4B

X

Anisotropy in the resistivity has two chief consequenceastFa second component of
the Hall resistivityA, appears, perpendicular both iand to the usual Hall field x B.
SecondA, can depend on each componenBofif we measured the Hall voltage along
y in figure 1.3, the Hall resistivity could change in magnituea function oB. With
this observation, we see that we can quantify the anisotwbghe Hall effect usingdy and
Ay. The deviation oA, from O, and the deviation 0%, from its average are independent
measures of the Hall effect anisotropy.

In general,E in an anisotropic material has components that are bothepergular
(alongy’) and parallel (along’) to the magnetic field. The componegy is no longer
independent of the direction &, but can change & is rotated. The componeR, is no
longer zero, and implies the existence of a nonzero voltagasored along the direction
normal toJ and alongB.

1.3.3 The Intrinsic Conductivity and the Hall Coefficient

To compare our calculations of the Hall conductivityto the Hall coefficienRs, we
must invert the conductivity tensor, find the correspondingsymmetric components of
the resistivity tensopij (M ), and calculate the resulting Hall fiellin the laboratory coor-
dinate system. We use the following expression for the coindty, where the subscripts
refer to the crystal coordinate system.

1/p11 012(M) —031(M)
oM)=| —012(M) 1/p2  023(M) (1.46)
031(M)  —023(M)  1/p33

No attempt has been made to compensate for other magnstmesifects in the estimates

of Rs. Published experimental values have been used for therbhgesistivityp;; and for
the saturation magnetizatiavis, since these quantities are difficult to evaluate from first
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Figure 1.3: Alternative/Z-coordinates constructed by placing thaxis along the mag-
netic fieldB. These coordinates are convenient theoretically, sinealitection ofB is
known. The dotted components shown below vanish if the Higteis isotropic.

principles. In the chapters that follow, we present first divect calculations otr, and
convert toRs when comparing with measurements. For an example, see3able

The symmetry relationships discussed above for the coivityct also apply to the
Hall resistivity py. The permutation symmetry (1.12), Onsager relations J1dr®i point
group symmetry (1.17) have exactly the same formr i6 replaced withp, and therefore
the tensors obey the same relationships. For example, distivity tensor may be broken
into a symmetric and antisymmetric parts, and by analagi (1it20) we can define an
isotropic Hall resistivitypij (M) = &k pH 0k, in analogy with (1.19).

1.4 Microscopic Contributions to the Anomalous Hall Ef-
fect

There are three main contributions to the anomalous Hatledtivity in ferromagnets.
Karplus and Luttinger showed the existence of a scattaridgpendenintrinsic mecha-
nism Later, Smit found a second mechanism for the anomalouscHaductivity, theskew
scattering mechanispcaused by scattering in the presence of spin-orbit cogplm1970,
Berger found an additional contribution to the anomaloud etaiductivity, theside-jump
mechanismarising from the displacement of the center of a wave pd@kgt Smit argued
that the intrinsic contribution vanishes, and controversgtinued as to which mechanism
caused the anomalous Hall effect [21, 22].

The intrinsic and side-jump mechanisms each predict a adivity that is independent
of the impurity concentration. Consequently, for both mei$ras,Rs 0 p?, wherep is the
diagonal resistivity. On the other hand, the skew scatieriachanism predicts thRt U p.
Early experiments tried to distinguish these mechanismabying the diagonal resistivity,
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either with temperature or with impurity concentration determine the exponent in the
relationRs = apP®. Early log-log plots ofRs versusp show that the dependenBe [ p1-9
for Fe andRs O p1#2 for Ni [4]. These findings show that the intrinsic and sideju
mechanisms dominate for iron, but that in nickel the skewitesdag mechanism is also
important.

Rs = askewdxx + (Oside— jump+ Uintrinsic)PEX (1.47)

When the sample is highly conductive,is small, and the skew scattering dominates the
anomalous Hall effect. At higher temperatures, wpes large, it is the side-jump and in-
trinsic scattering terms that dominate. This is seen gléanickel. Volkenshtein measured
the anomalous Hall conductivity far < 100 K, and found thaRs [ p at these tempera-
tures, but measurementsRyin nickel atT > 300 K show thaRs 0 p? for sufficiently high
temperatures [23, 24]. The impurity (side-jump and skewtsdag) terms are difficult to
calculate, but the intrinsic conductivity can be calculidt®m first principles.

1.4.1 Origin of the Intrinsic Hall Conductivity

The ordinary Hall coefficient can be understood from the &goa of motion for a
Bloch electron in a solid [25]:

Ak = —eE(r)—ef xB(r) (1.48)
. OEq(k)
b= — (1.49)

Strictly speaking, (1.49) is valid only in crystals with hotime-reversal and inversion
symmetry. The full form of (1.49) contains an additionahtg®6, 27], so that the complete
semiclassical equations of motion for a Bloch electron are

Ak = —eE(r)—ef xB(r) (1.50)
. n k .
At = dE(?IE )—ﬁkxbn(k), (1.51)
where
b (k) = 0 x (Unk [iD| i) (1.52)

and thejunk) are the periodic parts of the wave functions

|Gric) = €5 k). (1.53)

The quantityb, (k) is a vector identified with the antisymmetric part of the @itwe tensor
Qn,j(k), where thep-th component is given blgn p(K) = €pqrQqr (k).

The group velocity gains a contribution from the termhk x by(k). This contribution
is known as theanomalous velocityrom its relationship to the anomalous Hall effect.
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Whenb, = 0, egs. (1.50) and (1.51) reduce to their usual forms (1.48)(&.49). The
similarity between the anomalous velocity tefik x bp(k) appearing in (1.50) and the
Lorentz termef x B(r) appearing in (1.51) has motivated many authors to desbyjlzes
a magnetic field acting ik-space. The anomalous Hall effect follows as a direct result
of adding the anomalous velocity to the semiclassical Batamtheory of transport in a
metal. The off-diagonal components of the conductivitysterinclude a contribution from
the anomalous velocity given by
€ d3k
%00="F Joz (2707 ; frk €pgrbn.r (K). (1.54)

The expression (1.54), or equivalently (1.1) was first cetilsy Karplus and Luttinger [4].
For this reason, it is called the Karplus-Luttinger expi@ssSince (1.54) depends only on
the band structure of the material, and not the impurity eatration, it is known as the
intrinsic conductivity

The symmetry of the crystal determines whethgfk) contributes to the anomalous
Hall conductivity [27]. In crystals with time-reversal symetry, (1.51) implies thdin(—k) =
—bn(k). With by(k) odd ink, and f,(k) even ink, the Brillouin zone integral in (1.1)
vanishes. Therefore, if the Hamiltonian of the system istmversal invariant, the to-
tal intrinsic anomalous Hall conductivity vanishes. In atgyn with inversion symmetry,
(1.51) implies thab,(k) = bp(—k). Therefore, when the Hamiltonian is invariant under
both time-reversal and inversion symmetry(k) = O everywhere in the Brillouin zone.

The anomalous velocity term is related to the Berry curvatdirine bands. Defining
the Berry connection

an(K) = i{unk | Ok |unk), (1.55)
then the Berry curvature is given by
bn(k) = Ok x an(k). (1.56)
From perturbation theory, these definitions can be expdessa sum over all bands:
. Vamp(K)
anpk) =iy — ) 1.57
PlO=1 2 B0 - Bl (57

and

bnp(K) = —2R2Im n; parVoma(k Vimnr (k) (1.58)

n [Em(k) —En(k)]?
whereVmni(k) = (Umi|Vi (K) [Unk) -

1.4.2 Phenomenological Description of the Karplus-Luttinger Contri-
bution

The expansion (1.11) is usually justified by assuming a vEdiglor expansion obj;
in M, but it is not clear that the Karplus-Luttinger formula (latimits such an expansion.
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The Fermi-Dirac function is discontinuous at the Fermi ggeand the Berry curvature is
singular at points of degeneracy in the Brillouin zone. Weehdtle reason to expect that
the conductivity is even a continuous function of the maigagébn, let alone sufficiently
differentiable to admit a Taylor expansion that convergésldy over allM.

Although it's tempting to dismiss these issues as forneajtve should remain aware of
them in light of the following findings: First, singularigen the Berry curvature comprise
about half of the total intrinsic Hall conductivity in thal3netals [7]. Second, previous
calculations ofo in SrRuQ; found thato is varies erratically as a function of the Fermi
level [8]. Finally, it has been argued that in some materilaés Fermi surface changes
topology under rotations of the magnetization [28]. Giviea flarge variation o€, seen
previously in the vicinity of the Fermi level, we must be savhat cautious in assuming
smooth variation otr asM rotates [6].

We can appeal to the Stone-Weierstrass theorem to showuttaes expansion exists
over an intervals wherg is a continuous function iM. Standard theorems from Fourier
analysis show that, & is square integrable over the sphere, then the sphericaldmac
expansion converges i, so we don't need to rely on the use of Taylor's theorem to
justify the expansion. The calculations@fin subsequent chapters make it evident that the
polynomial expansion is valid to within numerical limits.

1.5 First-Principles Calculations of the Intrinsic Anoma-
lous Hall Conductivity

1.5.1 Density Functional Theory

The electronic structure of a material, neglecting nucheations, is described by the
Hamiltonian [29].

R -, &2 e 7 e2 S
h(r) =T +Vion +Vcouumb= - — » Uf — 2
ion oulum m i; [ jzlizl“?j —I’ 2 i— 27& |I’.

. (1.59)

Eq. (1.59) is not solved directly, but further refined by aeseof approximations. The
Hohenberg-Kohn theorem shows that the ground state soltdi¢l.59) is a functional of
the electron density. The Kohn-Sham formalism enables usngtruct a single-particle
Hamiltonian with the same charge density as the interastistem, at the expense of intro-
ducing an unknowmxchange-correlatiopotential, which must be approximated. Finally,
the ionic Coulomb potential is replaced by a pseudopotetatiptovide both faster conver-
gence of the valence electron wave functions and to intr@edpm-orbit coupling.

The basic variable in the fully relativistic Kohn-Sham farkation is the density matrix:
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o is a spin index, thali(r, o) are the two components of a single-particle spinor wave
functions, andf is the occupancy of the stafie The charge density is then given by:

n(r) =S fgr' (1, 0)uh(r, o). (1.61)

Eq. (1.60) is usually written in terms of the particle deysitr) and the magnetization
densitym(r)
1
p(r,0,0") = S [N(1)1 +m(r)-§ (1.62)
where the operatd® = 0yX + 0yy + 0,2 and theg; are the 2< 2 Pauli spin matrices.
The functiongy; satisfy

HZ
<_?n|:|2 + ;VSCf(r7 g, OJ)) LM (r7 G) = Ei l,Ui (ra U) (163)
whereVgc¢(r, 0, d’) is theself-consistent potentialVe can expresgs.¢(r,o,d’) as
: n(r’) .,
Vsci(r,0,0") = Vexi(r) +e2/ | dr’ + V(1) — Ugm(r) - Bxc(r). (1.64)

The first term on the right-hand side of (1.64) is éxternal potentiglwhich in our calcu-
lations is the pseudopotential from the ionic core. The sdd¢erm is known as thidartree
potential The last two terms are given by

Bxc(r) == _DmExc (165)
=
Vaol1) = 252, (1.66)

where Ey¢ is the exchange-correlation functional (discussed in2).5Both the Hartree
potential and the exchange-correlation potential aretfanals of the charge densityr),
S0 (1.63) and (1.60) are a pair of nonlinear equations that brisolved both for the wave
functionsy; and the charge densityr).

The solution of these equations is usually accomplishec@elf-consistencproce-
dure. First, a trial densitg(r) is constructed, and\&.s is calculated from the trial density.
Next, (1.63) is solved for the wave functiogis. Once a set of, have been found a new
trial density is constructed from (1.62), and the procedapeats until a chosen termina-
tion criteria is reached. The final self-consistent chamyesiyn(r ) may then be saved and
used as an input to calculate other electronic properties.

1.5.2 The Local Spin Density and Generalized Gradient Approxima-
tions

The exchange-correlation functiorgl. accounts for much of the electron-electron in-
teraction of the material. Although the exact exchangeetation functional, i.e. one that
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reproduces the ground state density of the exact many-badhyiltbnian (1.59), can be

shown to exist, the exact functional is unknown, and we nessint to the use of an approx-
imation. Many approximate exchange-correlation poténeaist. The local spin density

approximation and the generalized gradient approximatreramong the most commonly
used approximations. We have chosen to use the Perdew-Bunkzerhof (PBE) parame-

terization of the generalized gradient approximation far ¢alculations of the anomalous
Hall conductivity.

1.5.3 Plane Wave Pseudopotential Method

In this section we describe the plane wave expansion of tha¥&ham equations and
describe the approximation of the external potential dudeaonic cores by an equivalent
pseudopotential

Although it would seem that the correct Hamiltonian for atwistic calculation of the
band structure is the Dirac equation, Kleinman [30] showned the relativistic effects can
be modelled with the use of a relativistic pseudopotentia a non-relativistic Hamilto-
nian. One can solve the Dirac equation for a spherical paiemind from this solution
construct an approximate pseudopotential for use in a al@atiristic Hamiltonian of the
form (1.63). This method is accurate to ordef in the fine-structure constant. Defining
the spin-averaged and spin-orbit parts of the pseudopatent

W) = 55 M) ~W(m)] (1.67)
and 10 _
V) = 5 M0+ (0] (1.68)
the ionic pseudopotential is written
VB0 = 310 [VEAnL -5+ + (174 (1.69)

Translational symmetry of the electronic wave functionsisolid implies that they
satisfy Bloch’'s theorem
Wrk = exp(ik - 1) unk (1) (1.70)
whereun(r) is periodic inr, andk is a vector, andh is an index identifying then-th
eigenfunction. The density matrix may then be written as

p(r’ g, OJ) = Z fnkw;]kk(ra U)Wnk((r)» Gl)v (171)

The spinor wave functions above are expanded in terms oéplaves,

o a(k+G)exp(iG-r)
Wric(r) —eXp('k‘r)g< b(k+G)exp(iG-r) )

whereG is a vector in the reciprocal lattice

(1.72)
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1.5.4 Wannier Functions

The success of our attempt to calculate the anomalous Hadlumivity from first prin-
ciples depends on our ability to calculate tklerivatives in (1.55) and our ability to
perform the integration over the Brillouin zone in (1.1). Wdugh thek-derivatives can be
evaluated using a sum over all states in (1.58), the compuogdtcost of this scheme makes
it prohibitive for studying all but the simplest systems. Wh¥ao used this approach in an
early calculation of the Hall conductivity, a more efficisgheme was introduced by Wang
et al. in 2006. In their scheme, the Wannier representasi@miployed as an intermediate
representation to calculate the terms appearing in (1.&)h&Ve employed this scheme in
our calculations of the anomalous Hall conductivity. Wealdk® the scheme in detail in
this section.

Conventionally, the Wannier functiorng(r) are defined by

@(r —R) = é/de’k exp(—ik - R) Wne, (1.73)

where ik is the n-th eigenfunction of the Hamiltonian [31]. This definitiomes not
specify a uniquen, for a given Hamiltonian. The phases of tipgc are not defined, and
the band index is not well defined at points of degeneracy in the Brillouin eoiwWe
can combine these two statements by saying that the Wanmietidns fail to be gauge
invariant under &-dependent unitary transformation

Wi (r) = Umn(K) . (1.74)

This gauge dependence makes the numerical constructioraphiéf functions difficult,
since a numerical formulation depends on the rapid connergef the inverse transform

Yk = Zqon(r —R)exp(ik-R), (1.75)

which requires theg, to converge rapidly withR, so that the sum oveR can be truncated
without introducing appreciable error. In other words, wguire a gauge condition that
localizesgn(r).

Marzari and Vanderbilt described such a localization ctowlifor a group of bands
separated by a band gap (e.g. the valence bands of an inyuatd termed the resulting
Wannier functiongmaximally localizedWannier functions. Souza et al. later removed
the gap condition and provided a practical scheme for catitig the (partially-occupied)
Wannier functions in a metal, by generalizing the definitjdry3) so that thepx are no
longer eigenfunctions of the crystal Hamiltonian, but bdsnctions spanning a subspace
of the eigenfunctions. Thesgy are a basis chosen to span the eigenstates lying within
an energy windovEnin < En < Emax The basis states defining the Wannier functions are
written ul, and the Hamiltonian eigenstatesujs.
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1.5.5 Wannier Interpolation

Theul span a subspace of thf,. This property allows us to use tof. as a basis set
with which to interpolate operators over this subspace éi@mple, by interpolating the
Hamiltonian, we can interpolate the energy bands of thetallysThe two basis sets are
related a unitary transformation

Uk = 3 Umn(K) bl (1.76)
m

where thel (k) are determined by the localization condition. The matrengnts of an
operatorO in this basis are then

oW (k) =U (k)oM) (k)u T (k) (1.77)
where the matrice®(k) are defined by the matrix elements
Omn(k) = (Umic|O(K)|Uni) - (1.78)

Now we define 1
OWI(R) = N Zexp(—ik :R)OW (k). (1.79)

The sum in (1.79) is a discrete Fourier transform, where ribegration is taken over the
Brillouin zone, in analogy with the continuous transform In43). The localization in the

construction of thei, ensures that the sum converges to the integral. Once weataicu
OW)(R), we can then calculate

oW (k') = Zexp(ik ‘RIOW(R). (1.80)

wherek’ is an arbitrary point in the Brillouin zone. The advantage sing (1.80) to
evaluate an operator is that tIGISW)(R) need only be calculated once, and then (1.80)
may be used to evalua@(W)(k’) at an arbitrank-point. The Hamiltonian in the smooth
basisH™W) is no longer diagonal, since these smooth basis functiansiatr required to
be eigenfunctions ofl. To construct eigenfunctions of the Hamiltonian in the sthoo
basis, it is necessary to find matridg¢k) which diagonalizeH) at each poink’ by a
transformation

H™ (k") =UT(KYHW) (KU (K) (1.81)

whereH ) is a diagonal matrix. The final steps in evaluating the irdathmatrix elements
of an operator are to calcula@.(W)(k’) in (1.80), and then transform the operator into the
basis diagonalizingl, using the matriced (k') in (1.82):

o)k =uT(k"HOW) (KU (K'). (1.82)
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This procedure is called/annier interpolatiopsince by (1.79), th®W)(R) are the matrix
elements of Wannier functions constructed from smooth Bfaobtions.

The final steps of the Wannier interpolation procedure masnbdified for the Berry
connectioran(k), since the derivative on the right-hand side of (1.55), af@r directly on
the basis functions. The necessary modifications are thescim detalil in ref. [6]. Such a
guantity no longer obeys the relationship (1.82), but mdteontains an additonal term

a) (k) = UT(k)a™) (k)U (k) +iU T (k) (OkU (k). (1.83)

The same considerations apply to the Berry curva@gpq(K), resulting in the transfor-
mation law

Qpq(k) =9 (UT (25" ()U (k) ) — 0 (UT(K)ap" ()U (k) ) =ilU T (k)3pU (K), U T (k)3qu ()
(1.84)
The Wannier interpolation procedure is implemented a®Wedl First, we use a cal-
culate a self-consistent Hamiltonian, using a full plane/evhasis set. Second, we use
this self-consistent Hamiltonian to calculate the Blochctionsu,, on a coarse grid over
k-space. We then construct Wannier functions fromuke using the localization crite-
ria to ensure that the matric€&"V) (R) decay quickly withR. Finally, we use (1.80) to
recalculate the band structure on a dense grid on the Brillpome. The advantage of us-
ing the interpolation procedure (from a small set of Blochiestg as opposed to directly
calculating the eigenfunctions of the self-consistent Htaman at eactk is speed. The
sum in (1.80) can be evaluated almost 1000 times faster tiwiterative diagonalization
of the self-consistent Hamiltonian can be performed fohdacThe dense Brillouin zone
integrations needed to integrate the Berry curvature in) (hdke Wannier interpolation
the only feasible method for accurate studies of the intiasomalous Hall conductivity.
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Chapter 2
Cobalt

Parts of this chapter have been published in ref. [32].

In this chapter, we present a detailed first-principlesystfdhe orientation dependence
of the intrinsic AHE in Co. Anisotropy in the AHE has been measlin single crystals of
the ferromagnetic elements (hcp Co [24], hcp Gd [33], fcc Mi][Bnd bcc Fe [34]), and
more recently in ferromagnetic compounds [35, 36, 37]. @nthieoretical side there has
been little progress beyond the basic phenomenologicaligéen. To our knowledge, the
only attempt at a microscopic model has been the tight-bondiudy of Ref. [35]. Because
the AHC is very sensitive to fine details in the band strucf6re3, 6], a quantitativab
initio theory of anisotropy is highly desirable. It is also not a@ms that the phenomeno-
logical description of magnetocrystalline anisotropy,[18] applies to the AHC given by
Eq. (1.1). The Berry curvature undergoes strong and rapidti@ns ink-space, with sharp
peaks and valleys from avoided crossings near the Fermii[[gy8, 6]. It has been ar-
gued that such behavior cannot be described perturbafvgland that it often gives rise
to a complex or even irregular behavior of the AHC as a fumctib exchange splitting
and Fermi level position [8]. This raises the possibilitgttkhe orientation dependence of
o may also not be smooth. We find instead that in hcp Co it is stlaigemarkably
smooth, and can be described by a phenomenological powessxpansion. The calcu-
lated anisotropy accounts for the experimental obsemsiimboth single crystals (angular
dependence) and polycrystalline films (angular average).

2.1 The Hall conductivity in hcp crystals

In this section we first present the phenomenological expars the anomalous Hall
conductivityg? of an hcp ferromagnet to third order in powers of the magagonM, and
for fixed magnitude oM we re-express it in terms of= 1 andl = 3 spherical harmonics.
The orientation dependence@f(M) can be described phenomenologically by expanding
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in powers of the direction cosinds; } of M [14, 15]:
O-izji<m) = @jjpAp+ ajjpgrAphqQr + ... (2.1)

Herem = ayX + ayy + a2 is the unit vector along the spin magnetizatign and it is
assumed that the magnitudeMfis independent of orientation, as is the case for hcp Co to
a very good approximation. Crystal symmetry and other c@mattbns reduce the number
of independent coefficients in Eq. (2.1). They are tabul&edhe hcp structure to third
order in Ref. [14]:

3 2 2

0f = apa101 + a3111(07 + A105) + az12330105 (2.2)
3 2 2

051 = ap3102 + 6123111(02 + 0201) + az1230203 (2.3)
2 2 3

05 = a12303 + A12119 0301 + 0305) + 8123305 (2.4)

The uniaxial nature of the hcp structure implegi # ajo3, producing a misalignement
betweeno? andM to first order in the expansion.

There are six coefficients in Eq. (2.2), the number needeésoribec? to third order
as a function of the orientatioand magnitude ofM. For fixed magnitude, the angular
dependence requires only four independent parametershwahne conveniently chosen as
the coefficients of an expansion in orthonormal real sphEharmonics defined in (1.24),
resulting in

o2 = AICL(6, p) + ASCI(6, ) (2.5)
03 = A1SH(8, ¢) + A3S}(6, ) (2.6)
of = A2CY(8, @) + A3CI(6, ). 2.7)

Using the conventions of appendix B to define the real spadnarmonics, the coefficients
are given by

2 /m
A= 5 \/; (5a123+ 2812113+ 3812333 (2.8)
1 2 /m
Al=-%\/3 (52231 + 31233+ 4@23111) (2.9)
0 4 /m
A= = 7(312113— a12333) (2.10)
4 |21
1 = —_—— — J—
A3 =~/ 51 (8s1233— Bza110). (2.11)

The four coefficientsAl, Al, A, and A} were obtained from a least-squares fitting
to the first-principles calculations @t = 0. The rather good fit and, more generally, the
smooth orientation dependence of the calculated intriABIC seen in Fig. 2.1 should be
contrasted with the oscillatory behavior found when scagithe chemical potential [8].
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The comparatively less dramatic angular dependence cahapebe rationalized by noting
that the zero-spin-orbit limit is the same regardless ofrttegnetization direction (e.qg.,
same crossings between Fermi surface sheets).

To characterize the anisotropy we wrié as

0% = omh + 090 + 0y, (2.12)

wheref andg are respectively the polar and azimuthal anglelslef Mm. In macroscop-
ically isotropic systems such as polycrystafs|| M, i.e.,0g = 0, = 0.

2.2 Resistivity and Conductivity in hcp crystals

The comparison between the calculated Hall conductiviresd the measured Hall re-
sistivities requires inverting the resistivity tensor.rfo= 0 and6 = 11/2 the vectorss?
andM are parallel. It then suffices to consider the componengsasfdo in the orthogonal
plane. The X 2 in-plane resistivity matrix reads

P11 P12
= 2.13
P ( —P12 P22 ) ’ (2.13)
with inverse 1
1 P22 —pP12
o= = ) 2.14
P P11P22+ PZ, ( P12 P11 ) @14

For 6 = 0 this yields the familiar relation between the Hall condtitt o = oyy, the Hall
resistivity p® = pyy, and the longitudinal resistivitgyy:
Px ae=0
of=— L = Zpyngp(z ) (2.15)
PxxPyy+ Piy  Pix T Py Pix
where we usegy, = pyy andp? < pxx. For 8 = 11/2 the in-plane resistivity is anisotropic
(pyy # Pz and thus

a_ PU6=m/2) p*6=r1/2)

Oy ™~ = ) (2.16)
PyyPzz PxxPzz
Dividing Eq. (2.15) by Eq. (2.16) yields the relation
0*(0=0) _ p*(6=0)

Since the diagonal resistivity is not isotropf@; # Pxx, and (2.17) shows that the ratio of
two Hall conductivities does not equal the ratio of the cepanding Hall resistivities, but
has the additional factq;;/ pxx. In an isotropic crystalp,,/pxx = 1, so the two ratios are
equal. If we use the room-temperature values for hcp Co from[B&f, p,z= 10.280x
10-%Q cm andpxx = 5.544x 107°Q cm, then(p,;/ pxx) ~ 1.85. Therefore, after rotating
6 from theab-plane to thec-axis, the ratio of the Hall conductivities is8b times the ratio
of the corresponding Hall resistivities.
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2.3 Method

We have carried out fully-relativistic band-strucutreatdétions for hcp and fcc Co at
the experimental lattice constants o¥4 and 668 bohr respectively, using thantum
ESPRESSO code [39]. The pseudopotential was generated using sipgleameters as in
Ref. [7]. The plane-wave basis cutoff for the expansion ofuwaknce wave functions
was set at 140 Ry, and the PBE generalized-gradient approinf@éd] was used for the
exchange-correlation functional. The self-consistewntugd state was obtained using a
16 x 16 x 16 Monkhorst-Pack mesh [41] é&fpoints and a fictitious Fermi smearing [42]
of 0.02 Ry for the Brillouin-zone integration. The calculativas initialized with the spin
magnetization pointing along a specified direction; whefr@nsistency was achieved
using a convergence threshold of £Ry for the total energy, the final cell-averaged mag-
netization was found to be parallel to the initial magndima Because of the spin-orbit
interaction, the spin density(r) is not strictly collinear within the crystalline cell. In pc
Co we find| [, d3 o(r)| = 3.20ug, while [,,,d3r|o(r)| = 3.53ug (both values are in-
dependent of the spin magnetization direction to the givaui@acy). Hence it was not
necessary to impose an energy-penalty constraint td fiuring the energy minimization.

For each spin magnetization direction we froze the selsistent potential and per-
formed a non-self-consistent calculation of the lowest2Bf6r fcc Co) Bloch eigenstates
and eigenvalues over a ¥010 x 10 uniformk point mesh including th& point. From
these, maximally-localized Wannier functions were theleuwdated using the method of
Refs. [43, 44], as implemented in thennier90 code [45]. For both fcc and hcp Co we
chose 18 WFs per atom, covering thep, andd characters and both spins. During the
disentanglement step used to select the Wannier subspdda¢dupper limit of the “outer
energy window” was set at 41.4 eV above the Fermi level. Adtest up to 11.4 eV above
the Fermi level were kept in the subspace by setting the fienergy window” accord-
ingly. The maximally-localized Wannier functions sparmihe resulting subspace were
then calculated by minimizing the spread functional [43heTunctional minimization
procedures carried in both steps (subspace selection aalizktion) were initialized by
projecting onto trial orbitals of the same type as used in ¢for bee Fe: thredyg d-like
orbitals and sisp*d? hybrids per spin channel and per atom.

The AHC was calculated using (1.1). Thepace integral of the Berry curvature was
carried out using a Wannier-interpolation scheme [6] to @anefficiently the Brillouin
zone over a 12% 125x 125 uniformk-point mesh (20& 200x 200 for fcc Co), with a 5
5 x 5 adaptively refined mesh around the points where the matgdtithe Berry curvature
exceeded 132. The magnetic circular dichroism (MCD) spectrum was comglitea
similar manner [46] on the same interpolation mesh useddimutating the AHC.
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Figure 2.1: Evolution of the components of the anomalou$ ¢tadductivity parallel 6y,)
and perpendicularf) to the magnetization [EqQ. (2.12)] 8% is tilted by 8 from thec-axis
towards thea-axis. The solid lines are fits to the first-principles datgdascribed in the
text. The left and right insets shows respectively( 11/2, @), andoy(6,0).

2.4 Results

The AHC of hcp Co was calculated for several orientations efdbll-averaged mag-
netization in theac-plane p = 0). The tilting angled was increased from QM || c-axis)
to 7/2 (M || a-axis) in steps ofit/32, and for each step the vecta?(6, @) was calcu-
lated. Fig. 2.1 contains the numerical results;(6,0) and gg(60,0) are shown in the
panels, while the insets contain additional data which carsfithe absence of (or very
weak) basal-plane anisotropy. The vectafsandM start out parallel, but asl begins to
tilt away from thec-axis g2 lags behind ¢y < 0), and they become parallel again upon
reaching the basal plane. The AHC is strongly anisotropgcreasing in magnitude by
a factor of 487116~ 4.1 betweerf = 0 and6 = 11/2. This is in reasonable agreement
with the ratio of 2.93 measured in single crystals at 290 K.[2dhile strong, the angular
dependence af? is smooth, and can be described by Egs. (2.5-2.7). A leastreq fitting
to the data yields, in S/cr#) = 9515, Al = —204.1, A = 1.2, andA} = 38.4, producing
the solid-line curves in Fig. 2.1.
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2.5 The Hall Conductivity in Polycrystalline Films

According to the spin-fluctuation model [47, 48], the thekrmeerage(o?)T as a func-
tion of the polar and azimuthal anglésand ¢ of (M)t is given by Eq. (2.5), with the
coefficientsA" therein replaced by

_ - M(T) 1(14+1)/2
ATT) = A7) ||
This “I (1 + 1) /2 power law” model was used to generate the plot in the insEig4.

We evaluate al = 0 the orientational averagef,, = (o?- ) of the anomalous Hall
conductivity at T=0 from the data in Fig.2.1, findiiatj, = 226 S/cm. The value afg,
can also be obtained from the fitted coefficients in Eq. (EXpressingh interms ofl = 1
spherical harmonics and invoking the orthonormality ctiodj one finds

o, — Ag — ZA%
poly 2\/3—7_[

where on the right-hand side we have used the value® aind Al. The good agree-

ment between the two values confirms the validity of the phemwlogical expansion.

Eq. (2.19) is valid to all orders in the spherical-harmonipansion. If the nonlinear terms

in Eq. (2.2) are smallcflg';‘oly can be estimated from the single-crystal AHC evaluated at

6 = 0 and6 = /2 only:

(2.18)

=221Scm, (2.19)

Tfoly = %O’m(O) - gam(n/Z) =2389cm, (2.20)
whereon(8) = 02 - .

We now turn to the comparison with the measurements on patadiine films [10].
The films were magnetized along the growth direction by ariegfield; assuming ran-
domly oriented crystallites, each with a bulk-like Hall cemt densityJ?(0, @), the net
Hall current density in the films can be estimated by perfagran orientational average:
(J#) = E x (0?). Becauser? displays azimuthal isotropy, it suffices to average Eq.2R.1

over O for fixed ¢. The average oby vanishes (see Fig. 2.1), resulting in an isotropic

AHC (0?) = (om)rM of magnitudeoS,, = 0"/2 Om(60)sin6d6 = 226 S/cm. This should
be compared with the value= 205 S/cm obtained in Ref. [10] by fitting the experimental
data to Eqg. (1.2). The experiment does not discriminate éetmhe intrinsic and side-jump
components ob, but the close agreement with the calculatgg), reinforces the conclu-
sion [10] that the former dominates. Table 2.1 summarizesctmparison between our

calculations and experiments.

2.6 Discussion

The anomalous Hall conductivities of single crystals maiged along thec anda
axes can be calculated from the experimental resistiviliés take the room-temperature
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Figure 2.2: Upper panel: MCD spectrum for two magnetizatimaations. Lower panel:
Cumulative contribution to the AHC from the spectrum abovergphw. The circles
denote the AHC calculated directly from Eq. (1.1). Inset: Qiative contribution to the
self-rotation part of the orbital magnetization from thesfpum belowhw.

Table 2.1: Anomalous Hall conductivity?| = g, in S/cm for selected high-symmetry
orientations of the magnetization in hcp and fcc Co. The AH@aYcrystalline samples
is calculated as an orientational average (see text).

Co Oirientation Calc. Expt.
hcp c-axis 481 683 [24]
ab-plane 116 232 [24]

Polycrystal 226 205 [10], 275 [23]
fcc [001] 249
[110] 218
[111] 234
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anomalous Hall resistivities from Fig. 2 of Ref. [2433(8 = 0) = 2.5 x 1078Q cm and
p3(8 = 1m/2) = 0.853x 10-8Q cm. Since the corresponding longitudinal resistivities ar
not given in that work, we use the room-temperature valums fRef. [38],0,,= 10.280x
10-%Q cm andpyx = 5.544x 10-°Q cm. Plugging these numbers into (2.16) and 2.17 we
find the values given in Table 2.&2(6 = 0) ~ 813 S/cm andd(8 = 11/2) ~ 150 S/cm.
Given the disparate experimental sources used to obtain, ttteese numbers should be
taken as approximate.

Next we discuss the origin of the strong anisotropy. The AHEraxial crystals is
anisotropic to first order in an expansion in powers of the metigation (see Appendix B)
while in cubic crystals anisotropy appears only in thirder[19], and is expected to be
much weaker. For example, the AHC of fcc Co changes by lessi@&mas a function
of the magnetization direction (Table 2.1). Perhaps morpr@ing is the fact that the
AHE in hcp Co appears to be considerably more anisotropiclibémthe magneto-optical
spectrum [49] and the orbital magnetization [50, 51]. Thismiriguing because the three
phenomena are related by linear sum rules [52], and henseterpy appears at the same
order.

The sum rules readwtimo?), = (11/2)0%(w = 0) and (Imo?), = (nec/ﬁ)Mgge,
where(f), = [y f(w)dw. 0?(w = 0) is the dc AHC; at finite frequencies® acquires
an imaginary part which describes the differential absonpof right and left circularly-
polarized light, or magnetic circular dichroism (MCD). Thestisum rule expresses the
AHC in terms of the first inverse moment of the MCD spectrum. $&eond relatesl gg
the “gauge-invariant self-rotation” part of the orbital gmetization [52], to the zero-th
spectral moment.

The absorptive part ofi(w) is plotted in the upper panel of Fig. 2.2 f6r= 0, 11/2.
The lower panel showsi (w) = 2 [ L im gy (') dw'. FOr wmax— o (in practice we
US€Wmax= 7 V) AAH (0) = am(w = 0), so thatA;H (w > 0) is the cumulative contribution
to the AHC from optical transitions abowe While for either orientation there are sizeable
contributions to the AHC up tav ~ 3.5 eV, its orientation dependence is concentrated
below 0.3 eV. At these low frequencies the MCD spectrum chausggn betweer® = 0
and@ = /2. This difference gets magnified in the AHC via the invenssfiency weight
factor, producing the bifurcation below 0.3 eV of the tAff* (w) curves. All frequencies
are equally weighted in the orbital moment sum rule, whicla assult is more isotropic.
This is seen in the inset, where we pBRR(w) = Z\’Lngcfo"’lm o3(w)dw/, the cumulative
contribution beloww to the gauge-invariant self-rotation per atom.

The origin of the low-frequency anisotropy can be seen in Ei§. The upper panel
displays the energy bands for the two magnetization doestiRotatingV from thec-axis
to thea-axis in the presence of the SOI turns various band crossitgsvoided crossings
and vice-versa. When this occurs close to the Fermi level threyBeirvature alongvi
can flip sign in the process, while retaining a large magmituthis is what happens near
the L-point, as seen in the middle and lower panels, where we-pfdt - m for the two
orientations Qx x = (1/2) &k 3 n frkQnk,jij is the total Berry curvature &j. The sensitivity
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order of 16 A2,
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Figure 2.4: Evolution ofo? as the magnetization is rotated in the plane, plotted as
o2(cosB) and gg(sinB). Inset: Anisotropy ratiw2(6 = 0)/c2(6 = 11/2) versus the re-
duced magnetization, according to the spin-fluctuationehothe dotted line denotes the
approximate location of the hepfcc transition.

of the AHC to changes in the electron states rigamay also be understood from the fact
thatg? can be recast as a Fermi surface integral [7, 53], whereaslital magnetization
truly depends on all occupied states.

How can the spiky behavior @@y be reconciled with the smooth angular dependence
displayed byo?(6) in Fig. 2.1? According to the phenomenological expansios) (22 [
M; to leading orderi(= x,y,2). This will be the case for the AHC given by Eq. (1.1)
provided tha), ; O M; at eactk. This proportionality holds reasonably well even around
strong resonance peaks, judging from the comparison ir2E3gbetweerf)y calculated at
0 = /4 and ath = 0, 11/2.

2.7 Temperature Dependence of the Anomalous Hall Con-
ductivity

We end with a discussion of temperature effects. The AHClhatdnges as the Fermi-
smearing temperature in Eq. (1.1) is varied from 0 K to 300 i§.(E.1). This agrees with
the constancy of the coefficiehtof polycrystalline films in the range 78-350 K [10]. The
angular dependence of the AHC can also give rise to a temyerdépendence, via long-
wavelength thermal fluctuations in [9]. According to this model, io?(T = 0) changes
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linearly with M; upon rotatingM, thencg?(T) = [M(T)/M(0)]o®(T = 0). This model as-
sumes that the magnetization thermally fluctuates abouasy axis. The applicability of
this model to ferromagnetic Co is questionable, since iotarg spin waves in ferromag-
nets show correlations, rather than simple thermal flucingt but this simple model does
seem to explain the temperature dependence igQén[9].

Fig. 2.4 shows that in hcp Ca2 depends linearly oM, while the g?(My) curve is
significantly nonlinear (note thatl/Al| > |AJ/A9)). As a result, the-axis AHC should
decrease witlT faster thanM(T), producing an increase with temperature of the ratio
02(6 = 0)/02(6 = m/2). An estimate of the magnitude of this effect can be obtained
using the t(1 4+ 1)/2 power law” [47, 48] for the coefficientd™(T) (see section 2.5 for
details). The result, shown in the inset of Fig. 2.4, is a 1igbaase between 0 K affd.
This is a sulfficiently large effect that is should be obselevab principle, but in practice it
is preempted by the phase transformation into the fcc strectt 695 K, well belowl; =
1400 K. The AHC of polycrystalline Co has been found to drophatticp—fcc transition
temperature from- 1320 S/cm to~ 660 S/cm [54]. These values seem inconsistent with
Table 2.1.

2.8 Conclusions

In summary, we have shown by means of first-principles catmns that the intrinsic
mechanism for the AHE describes quantitatively the obsksteong angular dependence
in hcp Co single crystals. The key role of near-degeneracessa the Fermi level was
elucidated, and the AHE of polycrystalline Co films was repicet by averaging the
single-crystal Hall conductivity over all magnetizatiomattions. Further experimental
and theoretical studies of the orientation dependencesoAHE are needed. For example,
very little is known about the anisotropy of the skew-saatggcontribution [37].
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Chapter 3

lron

In this chapter we discuss the anomalous Hall effect in bmt. iivao [5] evaluated the
Karplus-Luttinger expression for the anomalous Hall cantigtity of (GGA) iron, with the
magnetization is alon{01], and found a conductivity of 751/8m, agreeing in sign and
magnitude with measurements performed by Dheer of 1029nS Since iron is a cubic
material, symmetry considerations show that the anisgtodghe Hall conductivity ap-
pears at 3rd-order in the magnetization, so we expect tlsetmapy of bcc iron to be small,
and this has been confirmed by measurements. In refs. [55h&6uthors were unable to
observe any anisotropy of the anomalous Hall coefficieotdgin other measurements [34]
found a large anisotropy. Here we present first-principkdsutations of the anisotropy,
and compare these calculations with measurements. Owlatdns show that the intrin-
sic anomalous Hall conductivity is almost isotropic. Theidgon from isotropy is too
small to have been measured by the experiments of refs. 5, 5

3.1 Method

The anomalous Hall effect calculations for iron were perfed using density func-
tional calculations in the Perdew-Burke-Ernzerhof (PBE)apaaterization of the gener-
alized gradient approximation (GGA) [40]. A relativistiomm-conserving pseudopoten-
tial was used to model the ionic core of the iron atom. Seiffsistent calculations were
run usingQuantum ESPRESSO [39] version 4.0.5 with an energy cutoff of 160 Ry over a
16 x 16 x 16 k-point grid. The calculation was performed in the primaitbcc unit cell
using the experimental lattice constant o4%ay. The magnetization is varied by setting
the initial direction of the magnetization for each run, alldwing the system to relax.
The magnetization direction at the end of the self-consistalculation differs from that
of the starting magnetization by less than a degree. A sepsedf-consistent calculation
is required for each orientation of the magnetization.

An 8 x 8 x 8 k-point grid was used to generate the Wannier functions.ew set of
Wannier functions is required for each orientation of thegn&dization. The number of
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Wannier functions (18) was chosen to match the expected euaflatomic wave functions
for j =5/2, i.e. 2s-orbitals, 6p-orbitals, and 1@-orbitals. The 18 Wannier functions were
extracted from a set of 28 bands. The outer window for thentigglement procedure
used is 70 eV, so that disentanglement was performed ovéreaithput bands, rather than
a subset. The anomalous Hall effect integrations are paddron a 12& 128x 128 grid,
which is further refined over ax 7 x 7 grid if the Berry curvature exceeds 188

The parameters describing the anisotropy were calculathcavmultiple linear regres-
sion fit to the non-vanishing terms of the spherical harmeransion of the conductivity
for cubic crystals (crystal clas3;,). To third-order in the magnetization, the antisymmetric
Hall conductivity cubic material is given by the followingrtsor:

O23 = A%C%(ea¢)+A%C%-(67¢)+Agc:33(ea(p) (31)
031 = BiS{(6,0)+B3Sy(6,0)+B3S}(6,0) (3.2)
o2 = AJCD(6,9)+A3C3(6,0), (3.3)

where theCl, andS" are real spherical harmonics (see appendix B for definjtjdhsand

@ are the usual polar and azimuthal angles of the magnetizegiative to[001], and the
A" are spherical harmonic coefficients. TAE are not all independent. Two independent
parametersﬁ@ and A%) are required for a description of the Hall conductivity genin
cubic materials to this order.

To determine the coefficien®&y™ from the numerical datas;; (6, @) we use multiple
linear regression. The;j are calculated for a selected set of field directi6randg, and a
least squares matrix is used to determinedtﬁérom the calculatedsj. In the calculations
for iron, we determine each nonvanishiAg' independently so the symmetry relations
relating, for exampleA} to A3 are not satisfied exactly. Deviations from the expected
symmetry arise if the Brillouin zone integration of the Bermrature is not performed
to accurately or if the self-consistent band structure isfully converged. Allowing the
non-vanishing coefficientd" to vary independently, we can use the deviations from the
expected symmetry to estimate errors in the conductivihe Symmetry deviations serve
as an estimate of the accuracy of the conductivity calcuiati

Some care is required in choosing the field directions sinoeeschoices produce a
least-squares matrix that cannot determine all of the @iefiis, yieldA" that are sensitive
to small errors in the data, or data points that have no ingratie values of the fit parame-
ters (see appendix B for further details). The field configars chosen for the anisotropy
calculations of iron are described in table 3.1.

3.2 Results

The results for our calculations are summarized in table J.Be relations implied
by (3.1) relate the coefficients given in table 3.2. For th&tforder coefficients, we have
the relationsAl/A? = \/2 ~ 1.414. From the table 3.2 faN = 256, we findA}/A? =
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Table 3.1: Six field orientations are sufficient to calculdwe anisotropy of the anomalous
Hall conductivity to third-order in the magnetization. Téeglesd andg are the spherical
coordinates of the initial magnetization. The anflis measured from th®01]-direction,
and g is the angle between the initial magnetization and[flt)-direction in the(001)-

plane.

9 9
15

45
75
15
45
75
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60
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Table 3.2: Calculated values of tA&', in S/cm of iron, over am x N x N grid in k-space.
The A" are related to the Hall conductivity tensor through (3.1).

N A A3 Ap A3 A3

64 10535) —24(5) 150912) 1509) —19(9)
96 112417) —32(15) 16099) 22(7) —65(7)
128 11165) —22(5) 158416) 30(14) —38(14)
192 114812) -30(11) 16379) 29(7) —55(7)
256 115%9) —30(9) 164710) 30(8) —52(8)
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1.426(9). For the 3rd-order coefficients, the symmetry relations AggAd = —1, and
A3/AJ = \/5/3~ 1.29. Comparing these relations with our numerical calcutetjove
find thatA3 /A3 = —1, andA3/AS = 1.73. The numerical data for the 3rd-order coefficients
agrees with the expected symmetry relations in both signnaaghnitude, but due to the
small size of these 3rd-order coefficients, the relativeetiainty is large.

The results of these fits are shown in figure 3.1. In this figwecompare the fits to
the data, from the parameters described above, to a sepa@telous Hall conductivity
calculation. The two smooth curves are the fits describedeffor N = 128 to match
the additional Hall conductivity calculations). For thesdculations, the magnetization is
rotated in thg001)-plane by a full 360; o,x andoy, are calculated for each magnetization
direction. To first order wheM lies in the(001)-plane, oy, O cosp and oz 0 sing. The
curve labeledoy, was determined from a fit toy, over the 6 magnetization directions
described above. The coefficients for the curve describpdave been determined from
the corresponding parameters fay, (A1, AL, andA3). This plot shows that the fits do
an excellent job describing the behavior of the condugtiiitthe (001)-plane. Further,
the parameterization af,y in terms of the coefficients determined fay, introduces no
appreciable error. The symmetry relationships betwagrand o,x (analogous to (B.34),
(B.33) discussed in the appendix) are maintained numeyicall

In figure 3.2, there are 3 plots shown. The line labeled "3wko terms” contains
shows only the contribution toy, from the 3rd-order terms in (3.1). The points labeled
"1st-order residual” show the difference between the dated gy, and afirst-order fit to
this data. If the first-order fit were exact, then the residu@llld vanish everywhere. Any
deviation from zero is attributed to a 3rd-order variatibwg, with the magnetization. The
final curve, labeled "3rd-order residual” shows the differe between the complete 3rd-
order fits shown in figure 3.1 and the calculation in (881)-plane. We can see from the
graphs that a 3rd-order trend is present in the data. Tha-t¢inder variation is of roughly
the same size as its residual. Applying-gest to the data to learn whether the 3rd-order
terms should be included at all, we learn that the 3rd-orelens are significant; all of the
3rd-orderC-coefficients in table 3.2 are 3 to 4 standard deviations dvesmy O.

From the results described above, we may draw some conctualmut both the accu-
racy of the first-principles calculations for iron, and thehhvior of the anisotropy of the
Hall conductivity of iron. First, figure 3.1 shows that ousfib the conductivity tensor are
sufficient to describe the behavior of the Hall conductivatyer the entire magnetization
sphere. Second, the numerical accuracy of our calculaisaofficient to describe the first
order behavior of the anomalous Hall conductivity as the meéigation changes direction
to about 1% accuracy, and the third-order variation to aivelaccuracy of about 30%.
We can say that the 3rd-order coefficients are nonzero, agylthle expected symmetries.
Third, the anomalous hall conductivity of iron is almostfpetly isotropic. We can es-
timate about a 3% deviation from perfectly isotropic bebady noting that for a cubic
material, the leading term describing anisotropy is giverhe 3rd-order coefficienta?'.
Finally, we see no evidence of an observable 5th-order tiamian the anomalous hall
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Figure 3.1: The anomalous Hall conductivity of iron as theyn&tization is rotated through
the (001)-plane.
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conductivity. The 3rd-order description explains almdktre variation ingjj as the mag-

netization changes. Although this observation seems mindoes disagree with Hirsch
and Weissman’s measurement of the anisotropy [34] of théddfelct in iron. This point

is discussed further below.

3.3 The anomalous Hall effect of iron

In this section, we compare our results with other calcotegtiand with indirect mea-
surements of the anomalous Hall conductivity. As discugs#te introduction, the anoma-
lous Hall coefficient is related to the resistivity throudpe trelationship

Rs=ap + bp®. (3.4)

The coefficienbis proportional to the conductivity through the relatioipsRs = o/ (oM) p2.
Therefore, we can determine the conductivity directly frerperimental measurements
by varying the diagonal resistivitg. The diagonal resistivitp may be varied either by
changing the temperature, or by doping the material with allsamount of impurities. In
early experiments, when the scattering mechanisms werasnotll understood, the Hall
coefficients are fit an equation of the form

Ry =a(p/po)P. (3.5)
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Figure 3.2: Residuals to fits of the magnetization in({@1) plane.
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The exponenf3 was treated as an unknown to determine the dominant scaftter@éch-
anism. Such empirical fits can be used to estimate the camiiycby taking 8 = 2 or
by takingR; ~ Rs and fitting the experimentat andf to (3.4). Kooi [57], Klaffky and
Coleman [58], and Okamoto [59] report their data in this exgmdial form, and the results
of the conductivity are described in table 3.3.

From Kooi’s tables and from the results of Okamoto, we havaesevidence that the
anomalous Hall conductivity is, for low concentrationsiti€sn, independent of the silicon
concentration. Okamoto plottéd] as a function op and found that he could fit his data by
a curve of the fornR; = 0.06 x 1072%(p/pp)12* with p = 10-8Qm. In Kooi's paper, we

Table 3.3: The anomalous Hall conductivity of iron

Description o (S/cm)
Side-jump [20] 100
Intrinsic [5] 751
Intrinsic [7] 750
Klaffky and Coleman [58] 1440
Dheer [60] 1029
Tian[11] 1100
Okamoto[59] 1012

Kooi[57] 926
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Figure 3.3: The extraordinary Hall coefficigRt as a function op
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find Ry = 0.07x 1071%(p/pg)*® whereRy is in Qm/T andp is in Qcm. If takeRs >> Ry we
can estimate the conductivity sigma. Using the relatiqgmshi= (oM /p?)R; and taking
Ry = a(p/po)?, we find

g — M ph—2. (3.6)
B
Po
Since Okamoto foun® = 1.94~ 2, we can then use the approximation
o= HM -2 (3.7)
B
Po

to estimateo.

Note that we've takeM = Mg as constant for the samples, and equal to the saturation
magnetization of irotMs = 1.715 A/m [25]; i.e. we are not accounting for the change in
Ms due to Si doping, or the changeshhat room temperature. Doping from 1-5 percent
changes the resistivity of iron by more than a few percentiting to Kooi's tables, but
has much less of an impact on the magnetization. Berger [28}sIsimilar results for
Rs for other alloys. From these results (other than the Klafikyl Coleman result) we
conclude that the experimental anomalous Hall condugtiwits about 1000 Fcm.
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Table 3.4: The anomalous Hall coefficieR, in 10719 Qm/T for iron at room tempera-
ture, for different orientations of the magnetizatidnand primary currend, and the Hall
coefficient alongM x J.

Current  Electric field Magnetization Rg Reference
direction component direction
[100 (010 [00]] 4.31 Dheer

9.70 Webster

4.22 Tatsumoto and Okamoto
6.0 Hirsch and Weissman
3.74 GGA (this work)

(111 [110 [112] 431 Dheer
B 3.88 GGA (this work)
[00]] [110] (110 9.80 Webster

4.22 Tatsumoto and Okamoto
29.8 Hirsch and Weissman
3.94 GGA (this work)

[110] [001] [110 114  Webster
. _ 3.94 GGA (this work)
[112] (110 [111) 9.70 Webster
_ _ 3.98 GGA (this work)
[110 [112] (111 3.92 Tatsumoto and Okamoto

3.98 GGA (this work)
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3.4 Anisotropy in the anomalous Hall coefficient

Table 3.4 summarizes the available measurements and aigdois of the anomalous
Hall coefficients at room temperature. The most recent measents of the anisotropy of
the anomalous Hall effect in iron has been performed by Dfg@#r The first few lines
of the table, with the magnetization along f0@1] axis, is the same arrangement used in
earlier calculations of the anomalous Hall conductivitydmne by Wang [7] and Yao [5].
The ab initio calculations agree with each other, and pre8icto be about 30% smaller
than is observed experimentally.

To measure the anisotropy of the anomalous Hall effect anrtemperature, Dheer
measuredR; for a second set of samples, where the magnetization andyricarrent were
along different crystal axes. His conclusion is that thenaalous Hall effect is isotropic.
Dheer estimates the$® measurements to be accurate to about 10 percentabAnitio
estimate oRs in this geometry shows th&; should increase by about 4 percent, too small
to have been detected in Dheer’s experiments.

Dheer also measured the anomalous Hall conductivity in tesmgi 4.2 K and found
that, for fields along thé10Q direction, Rs varied between @ x 1071° Qm/T to 05 x
10~10 Om/T, depending on the sample purity and field orientation. dale estimate the
contribution of the intrinsic mechanism at these tempeestusing the scaling relationship
Rs = axypfx. Sincepzosk /pa.2x ~ 300 for Dheer’s whiskers, and the intrinsic conductivity
is independent of temperature, we find that the Berry cureatuy contributes 39 x
10~1% QOm/T to the Hall resistivity at these temperatures. This @diifar too small to
explain either the observdg;, or the anisotropy irRs at these temperatures. There are
two probable explanations for this low temperature behavidghe AHC of iron. First is
skew scattering. At 4.2 K, the samples are highly conductivel the diagonal resistivity
is small. SinceRs [1 pyx for skew scattering, buRs [ p;'fx for the intrinsic contribution, it
is likely that the skew scattering dominates the intringiotdbution at low temperatures.
We could then interpret the low temperature measuremntsasiisg that skew scattering
is anisotropic at 4.2 K. The second explanation is anisgthophe ordinary Hall EffecRy
at low temperature. Since Dheer only measuRgdand did not determinBs from the low
temperature measurements, we cannot distinguish thegeosegibilities.

Webster [55] measured the Hall coefficiditin iron plates. His measuremerRy(=
9.7 x 10719 Om/T) disagrees in magnitude with Dheer’'s measurementsitosame field
directions. Webster's measurement wittalong [110] found Rs = 11.7 x 10~%% Qm/T,
but Webster also reports that the sample was damaged winilg pespared, and discards
the measurement. In the other measurements for singleatsysie found that the Hall
resistance for iron is isotropic. He estimates thaRiileasurements are accurate to about
2 percent. His conclusion is that the Hall effect is isotocopi crystals of iron. In our
calculations, we predict a 3 to 6 percent changBdfor iron crystals.

Tatsumoto and Okamoto [56] measured the anomalous Haditeffesamples of 1.23
% silicon iron at room temperature for 3 field configuratioAthough a small change in
the band structure due to the impurities could modify theatndpy of the intrinsic contri-
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bution, we saw in section 3.3 in the analysis of Kooi's datt the impurity concentration
has little impact on the conductivity along the crystal apeed. Tatsumoto and Okamoto
found that the extraordinary Hall coefficielRt was isotropic in their samples, but that the
ordinary Hall coefficientRy showed some anisotropy. The ordinary Hall coefficiBat
changes from % 10~1% Qm/T when the primary current was along tH®(-direction to
0.7 x 10719 Om/T when the primary current was passed along[1i€]-direction. Since
Rs = R1 — Ry, this data indicates th&s is anisotropic. However, it seems unlikely that
an anisotropic variation oRy could cancel a variation iRs to produce an isotropig&;.
The ab initio calculations predict thaRs for the (110) — [111] sample should be larger
than the(001) — [100 sample by ®2x 10719 Qm/T, but experimentallyRs is smaller
for the (001) — [100 sample by (B0 x 10719 Qm/T, due to the change Ry between the
two samples. Tatsumoto and Okamoto with Dheer’s, we sedtthtmeasurements agree
that there is some anisotropy R, but that they disagree about whether the anisotropy
originates inRy or Ry.

One possible reason for the discrepancy between the Tatsutand Okamoto is the
change in the band structure due to the silicon impuritiehoigh we have argued that
this change should not alter the conductivity, it may be fsgo simulate the effects of
these impurities by varying the magnetization of the irohisttould be done directly, with
a constrained magnetization calculation, or indirectyyaltering the exchange splitting of
iron in the same way we have performed for nickel in 4.1.2. ¢osel explanation for our
small discrepancy with Tatsumoto and Okamoto’s resultsaptesence of additional side-
jump scattering introduced by the silicon impurities. ®ime have no means of estimating
the side-jump scattering, we cannot rule out this posgbili

Hirsch and Weissman [34] measured the Hall coefficiégteandR; in a rod of iron
at 300 K. They passed a primary currdnilong the axis of the rod (th@01 direction),
and measured the Hall voltage perpendicular to the rod. elbgperiments found that
the ordinary Hall coefficient for iron i&y = 10.0 x 10-19Qm/T. The anomalous Hall
coefficientR; can be fit to the forniR; = a— bcos4p, wherea = 27.9 x 10~1°Qm/T, and
b=119x 10"1°Qm/T. Using the relationshifs = Ry — Ry, we findRs = mg+ M4 cos 4p
wheremy = 17.9 x 107 1°0m/T, andmy = —11.9 x 107 1°Qm/T. At ¢ = 0°, whenM is
along the[10( direction, Hirsch and Weissman find thag = 6.0 x 10~1° Qm/T, about
50% larger than the measurements of either Dheer or Tatsuamat Okamoto, listed in
the first set of directions in 3.4. Ap = 45°, corresponding to the third set of orientations
listed in table 3.4, Hirsch and Weissman fiRg= 29.8 x 10-1°Qm/T. As shown in table
3.4, every other measurement of anisotropy in the Hall aoeffts of iron concluded that
the anomalous Hall effect in iron is isotropic. Given thepdisty between Hirsch and
Weissman’s measurements and the other available measussitine results of Hirsch and
Weissman should not be taken as evidence of anisotropy artbmalous Hall effect in
iron.
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Figure 3.4: The anomalous Hall coefficightof iron, measured transverseNband[001],

as the magnetization rotates through t681)-plane. The measurements of Hirsch and
Weissman [34] disagree with measurements by Tatsumoto &ach@Qto [56], with mea-
surements by Webster [55], and wab initio calculations presented here.
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3.5 Conclusions

Our calculations for the anomalous Hall conductivity ofnrshow that the Hall con-
ductivity tensor is nearly isotropic in this material. Weegict deviations from perfectly
isotropic behavior of a few percent, too small to have bedeatied in the existing ex-
periments. This result is consistent with the findings of &hevith the measurements of
Tatsumoto and Okamoto (though there is a small discrepam@nke sample), and those of
Webster. Our results are not consistent with Hirch and Weasss measurements for the
anisotropy in iron, but as we have shown, their measurenukifiés by almost a factor of
10 from the other measurements of the anisotropy of the dalfificients in iron.

Tatsumoto and Okamoto also studied the anisotropy of theddafficients while the
iron sample was strained. Although we have not attempteuhtolate these experiments,
such simulations are possible, and would make an integestudy for future work.
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Chapter 4
Nickel

This chapter describes the anomalous Hall conductivityutk frc nickel. Previousib
initio calculations of the intrinsic Hall conductivity (witdd along the theoretical easy axis,
[001)) predictRs = —18.4 x 10~°Qm/T [7], but measurements of the anomalous Hall co-
efficient in nickel show a smalld®s. Lavine, for example, founBs= —5.70x 10-1°Qm/T
[61] whenM is along thg111] axis (experimental easy axis). In this chapter, we show that
a semi-empirical correction to theb initio calculations to improves the agreement with
experiments, and make corresponding predictions of theotmopy ofRs in nickel.

4.1 The Electronic Structure of Nickel

The standard approximations usedain initio calculations, namely the local density
approximation (LDA) and the generalized gradient appration (GGA) do not accurately
describe the electronic structure of fcc nickel [62]. Fitke GGA predicts the exchange
splitting in nickel to be 07 eV but experimentally the exchange splitting is onl@ éV.
Second, the GGA predicts the width of thd-Bands to be $eV but experiments find
3.7eV. Finally, GGA predicts that a hole pocket should exiehgll-X, corresponding to
the Xy band, but this does not seem to agree with experiments.

There is some disagreement in the available experimerteateigarding thiX;  pocket.
Hodges, Stone, and Gold performed de Haas-van Alphen nerasuts of Ni and did not
find an orbit that matched the predicted extremal area of¢hersl hole pocket predicted
by theory[28]. Gersdorf found that it was necessary to idelsuch a pocket to explain
the magnetic anisotropy of Ni [63]. Gersdorf believed tiX,, band crosses the Fermi
level as the magnetization direction is rotated. Kamaktied. §64] used soft x-ray angle-
resolved photoemission to map the energy bands of Ni, anadftlat this second hole
pocket does exist, since the tdg band crosses the Fermi surface alongltk¢ line.

The parameters for these calculations are as follows. Tthedaonstant of nickel is
set to the experimental lattice constan3x 10-19m [25]. The cutoff energy for the
wave functions is 140Ry. The initial self-consistent caitwan is performed on a 16
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Figure 4.1: The figures shows the band structure of Ni, altveg tX lines, when the
magnetization lies alon@01. The left half of each plot shows a path in {0@1]-direction,
and the right half is taken along tig00-direction. The energies of the bands are relative
to the Fermi energy. Part (a) shows the GGA band structurie wart (b) shows the GGA
bands after an empirical correction has been made to theegetsplitting of thel-bands.
The bottom part of each figure shows the contribution to theyBarrvature.
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16 x 16 k-point grid, and the non-self-consistent calculationthe Wannier interpolation
is performed on an 8 8 x 8 k-point grid. For the initial self-consistent calculatg) we use
cold smearing with a broadening parameter 62Ry. The GGA band structure is plotted
in figure 4.1.

A pureab initio calculation of the anomalous Hall conductivity suffersnfrthe defi-
ciencies in the band structure introduced by the GGA. Our G@lsulations have found
the intrinsic Hall conductivity of nickel [7] to be-2281 Scm. This value is larger than the
measured experimental conductivit$$46 §'cm by more than a factor of 3.

It has been known for some time that corrections to the LDAdbstructure of nickel
can improve the theoretical exchange splitting to yielddyeagreement with both Fermi
surface and ARPES measurements [65]. Weling and Callowaydfthat, in order to fit
both the Fermi surface and the ARPES measurements, the gechsalitting of thetyg
andeg bands are best described by splittings aféV and 0leV [66]. Liebsch applied
self-energy corrections and predicted that the exchanlgérgys for thetyg andey bands
are 037eV and ®1eV, in good agreement with measurements [65]. An apprabarshift
of the one-electron LDA eigenvalues to match the self-gnergs used in to calculate the
optical conductivity tensor, yielding better agreemenhwine experimental spectrum [67].

Of the discrepancies introduced by the GGA, the most likelynfluence the Berry
curvature calculations, is the error in the exchange sgiittThe small energy denominator
in (1.58) will be off by roughly a factor of 2 almost everywkean the Brillouin zone. The
error in the Fermi surface can be partially corrected by stdjg the exchange splitting, as
we will see later. The final discrepancy, the error in the debaidth at the L-point, should
not impact the calculations of the intrinsic conductivisynce transitions from bands far
away from the Fermi surface do not contribute significantlyite total Berry curvature.
Before describing the Hall conductivity of nickel in detaiih the next section we will
describe a method for adjusting tab initio exchange splitting to match the experimental
results.

4.1.1 Wannier functions in Ni

Suppose we want to calculate the Brillouin-zone averagedxmément of an operator

O. In terms ofoiy) (g), a matrix element between two Bloch states,

oW (a), (4.1)

(Onmisz = ¥ OM(@). 42)
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We can express (4.2) in terms of the matrix elemer®dfetween two Wannier functions
O (R) = (n0|O|mR). By definition,

nR) = < Y e R, (4.3)
q
so that
O (R) = 5 e 9Folf (a), @4
q
and therefore, & =0
ol (0) =y 3 oM@ @5)

Comparing (4.5) with (4.2), we see that
(Onm)ez = O (0) = (n0|O|mO). (4.6)

Equation (4.6) shows that the matrix element between twoféafunctions aR = 0 is the
Brillouin-zone average of the matrix element between theesponding Bloch functions.
In what follows, we will use this result to analyze the bamdicture of nickel in terms of
Wannier functions.

Table 4.1 lists the average energies and spins of some hyMaanier functions in
nickel. These Wannier functions were constructed fronalamitio calculation of nickel,
with the magnetization tilted 5from [001]. We can identify two groups of Wannier
functions: a group of 8-dimensionsp® hybridized bands, and a group of 10-dimensional
space ofl-bands. These groups can be further classified into spimdgin-down states.
Although the Wannier localization maintains the orbitahccter of these bands, the local-
ization procedure is less sensitive to the spin charactdéreo$tates; the resulting Wannier
functions are a mix of spin-up and spin-down states. In thisutation, the magnetization
is tilted by 15 from the[001]-direction. The average spin of the Wannier functions a@dyn
along the magnetization direction agrees with the compiookthe spin along direction,
0z = Cc0s15 ~ 0.9659.

Looking closer at thel-bands we can see that they split are composed of 2 sets of
subbands, a 3-fold degenerate subband and a doubly detgesigibhand. We interpret the
3-dimensional subband &g, orbitals, and the 2-dimensional subbandegsrbitals. The
tog orbitals show an exchange splitting aff@eV and theey orbitals are split by G7eV.
Also note that the splitting for thep® orbitals is only 003eV. Overall, the initial Wannier
functions used here are consistent with a description froigh#-binding model.

4.1.2 Modifying the exchange splitting in Ni

We can address some of the deficiencies in the GGA descriptidh by modifying
the exchange splitting of thé-bands. The Wannier formalism gives us a framework for
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Table 4.1: Properties of the Wannier functions of GGA nickallculated with the mag-
netization tilted 15 from thez-axis. The labeh identifies the corresponding band, in no
particular order. The column labeléH,) gz lists the Brillouin-zone average energy of the
band in eV. The Fermi energy is 13.88 eV. The column labeledstiows the number of
bands with average energies within 1 eV of each other. We eanrdpose the-bands
into eg andtyy states according to their degeneracy. THeand splitting of the Wannier
functions corresponds to octahedral symmetry.

id dim (Hnn)ez (€V) (Sin)ez (0/2)

=]

1 sp 8 26.2423 0.9657
2 spp 8 26.2421 0.9658
3 spP 8 26.2423 0.9657
4 spP 8 26.2421 0.9658
5 e 10 12.7277 0.9659
6 tyg 10 12.8202 0.9659
7 ty 10 12.8202 0.9659
8 g 10 12.7279 0.9659
9 tyy 10 12.8203 0.9659
10 sp 8 26.2160 -0.9658
11 sp 8 26.2161 -0.9658
12 sp 8 26.2160 -0.9658
13 sp 8 26.2161 -0.9658
14 ¢ 10 12.1557 -0.9659
15 tyy 10 12.0271 -0.9659
16 tyy 10 12.0271 -0.9659
17 e 10 12.1550 -0.9659

18 ty 10 12.0271 -0.9659
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doing so. We saw in the previous section that a naive lodaizaf the Wannier functions
produces two sets of Wannier functions polarized along tegmatization direction, and
that these Wannier functions can be interpreted in termsoofiia wave functions. These
properties allow us to implement a correction to #keinitio band structure to adjust the
d-band splitting.

We add a term to the self-consistent Hamiltonk&that shifts the average energies of
thed-bands by an amouiit:

H =Ho+ Hg (4.7)
where 1
Ha(R) = 5 (Pa., —Pa.1) &R, (4.8)

and Py, are projection operators onto tldeband subspace along a direction Due to
the form of these projection operators, we must take sonmeinddentifying the spin-up
and spin-down Wannier functions, since the Wannier fumstiare not entirely polarized
along the magnetization direction. Although table 4.1 shtivat the Wannier functions are
nearly spin-polarized, each Wannier function has a smatfipmment of the opposite spin.
This component is large enough problems in the exchang#ispldescribed by (4.8).

We can force the Wannier functions to have a definite spinrjzataon by requiring
them to be eigenfunctions of a spin-operator. There is, kiewea severe drawback to
this approach. The eigenvalues of the spin operator in arfeagnetic system are almost
entirely +£1. Since there are only two eigenvalues, the spin eigenfumecmix the spin-
polarizeds, p, andd-like Wannier functions. We then lose the ability to matcé YNannier
functions with atomic states. If we cannot identify thatates, then we cannot adjust their
exchange splitting. An additional constraint on the eigecfions is required.

We choose to eliminate the spin matrix elements only betvetaes of similar char-
acter. States of similar character are identified by ch@paiamall energy window. If the
average energy of any two states differs by less than theomiridreshold, the states are
said to be of the same character. The spin-operator is tlagoaalized over the space of
Wannier functions of a given character. The energy windowtrbe chosen small enough
that the hybridized and p Wannier functions do not hybridize with tlie but large enough
that all 10d-states are identified as having similar character. Thdteesusuch an analysis
are shown in table 4.1, where we list the dimension of eachrobd subspace. We then ro-
tate the Wannier functions so that the spin operator is dialga each subspace. With this
procedure, an arbitrary rotation within each subspacdliskbwed, but the overall orbital
character of the states is preserved. The resulting Wafumetions will be termedpin
purified Wannier functions. Table 4.2 shows how spin purification ifiesl the Wannier
functions of Ni.

The success of the exchange adjustment to the Hamiltonganres a proper identi-
fication of the spin-up and spin-dowdibands. The results shown in table 4.1 seem to
show that the Wannier localization is able to properly idgrihe spin-polarized states, so
it might be possible to omit the spin purification step and tingeoriginal self-consistent
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Table 4.2: The Wannier functions of 4.1 after spin purifieatand adjusting the exchange
splitting of thed-bands. Thes and p Wannier functions are no longer hybridized. The
d-band Wannier functions now have a lower (square planar)rsstny.

id Hn(0) (€Y) Homn(0) (€V) A(eV)

=]

1 s 20.9721 20.9721 0
2 p 28.0510 28.0510 0
3 p 27.8760 27.8760 0
4 p 27.9636 27.9636 0
5 deyp 12.3946 12.1946 0.2
6 dy 12.1632 11.9632 0.2
7 dp 12.2622 12.0622 0.2
8  dyy 12.3453 12.1453 0.2
9 dy 12.1641 11.9641 0.2
10 p 27.8766 27.8766 0
11 p 27.9594 27.9594 0
12 p 28.0432 28.0432 0
13 s 21.0913 21.0913 0
14 dp 12.5862 12.7862 -0.2
15 de_y 12.6822 12.8822 -0.2
16 dy; 12.5377 12.7377 -0.2
17 dy, 12.5334 12.7334 -0.2

18 dyy 12.6389 12.8389 -0.2
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Table 4.3: Exchange splitting of the Nibands, in eV. The experimental results are taken
from [68]. The mean exchange splitting is taken from table Zhe exchange splitting at
theL-point was found from the band structure.

L mean

tog GGA 0.87 0.82

Adjusted GGA 0.47 0.42
experimental 0.33

gg GGA 0.68 0.59

Adjusted GGA 0.29 0.19
experimental 0.17

Wannier functions in the adjusted Hamiltonian (4.7). Isthiere possible, we could vary
the exchange splitting of they andtyg states independently. We attempted this in some
early experiments. The results, while promising if the neigmation lies alond001], as

we rotate the magnetization along other directions, thaltiag band structures are unreli-
able. The size of the average GGlAband exchange splitting identified by this procedure
fluctuated by large amounts as the magnetization was chaeged though there was no
such change in the original self-consistent GGA exchanfgisg.

4.2 The Anomalous Hall Conductivity and the Exchange
Splitting

Table 4.2 shows the exchange splitting of thbands whemM || [111]. TheL column
shows the exchange splitting when measured at theint in the Brillouin zone, and the
mean column shows the exchange splitting determined gireotn the Wannier function
HamiltonianH (R) at R = 0. The table shows that the mean exchange splitting overesti-
mates the exchange splitting at thgpoint by Q05eV to 010eV. In comparison with the
experimental values, the adjusted GGA exchange at the Lt oo large by between
0.12eV and Q14 eV.

A band structure calculated using the adjusted exchanggirgplis shown in figure
4.2 for two different orientations of the magnetizatigd01] and[111]. On rotating the
magnetization, much of the band structure remains unclogige there are some regions
near the X-point and the L-point where the energy bandsrdift¢iceably. Thed-band
width, measured at thie-point, remains unchanged from the uncorrected GGA value of
4.5eV.

Part (b) of Figure 4.1 shows the behavior of the adjusted aedr the X-point. The
Xo| band still crosses the Fermi surface, but the band is closget Fermi level than for
the uncorrected GGA band structure. If we demand thakshé&ermi surface in figure 4.1
agree with Gersdorf’s suggestion for the magnetic anipgtrand the results of Bunemann
et al., then an additional adjustment to the exchangeigglittf about 004 eV is required.
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Figure 4.2: The band structure and Berry curvature of fcc Nemvaan empirical correction

has been applied to match the experimental exchange mglitiiwo orientations of the
magnetization[001] and[111]) are shown here. The energies of the bands are less sensitive
to the orientation of the magnetization than the intrinsellldonductivity. The largest
contributions to the intrinsic Hall conductivity are in thieinity of the X and L points.
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There remain some discrepancies with the experimental §tamcture. The spin purifi-
cation procedure destroys the hybridization of thkand Wannier functions inteyy and
tog Orbitals. If we were able to maintain the hybridization agrthe spin purification, then
it would be possible to separately adjust the exchangeiapglif each orbital, to match the
experimentally observed difference in exchange splittiatyveen theyg andtyg orbitals.

In figures 4.3 and 4.4 we show the effects of varying the exgbaasplitting on the
average spin moment and the anomalous Hall conductiviturgi4.3 shows the average
spin magnetic moment as the exchange splitting is modifiede Jpin moment varies
smoothly and close to linearly, with the exchange splittifggure 4.3 shows how the
conductivity varies with exchange splitting. As we reduoe €xchange splitting from the
GGA value of 073eV to 033 eV the anomalous Hall conductivity drops frer2281 Scm
to —15719cm. Although this is still far from the experimental value700S/cm, the
adjusted GGA exchange splitting eliminates half of the iigancy with the experimental
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Figure 4.3: The spin magnetic moment of Ni as a function oftkehange splitting.
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conductivity.

4.3 Temperature Dependence of the Intrinsic Hall Con-
ductivity

Although the intrinsic part of the anomalous Hall conduityivs determined from the
band structure, and not from temperature dependent sogtf@ocesses, the intrinsic Hall
conductivity becomes temperature dependent when we dlewdcupancy of the bands to
vary. While previous work in iron [5] has shown that the insimtemperature dependence

Table 4.4: The anomalous Hall coefficidRgin Ni

Rs Reference
(10719Qm/T)
-4.54 Hiraoka
-5.70 Lavine
-5.76 Volkenshtein
-18.4 Wang (GGA)
-18.4 This work (GGA)

-11.7 This work (adjusted GGA)
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Figure 4.4: The intrinsic Hall conductivityyy, of Ni as a function of the exchange splitting.
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is small, this may not be the case for nickel. In nickel, it hasn argued that the proximity
of the d-bands to near the Fermi level affects the magnetic anigpt[®8]. Since the
magnetic anisotropy is also a function only of the band stinecand occupation, similar
temperature dependence may occur for the intrinsic Halllgotivity.

We can estimate the temperature dependence of the intpasiof the anomalous Hall
conductivity by using a Fermi-Dirac distribution in the egpsion for the anomalous Hall
conductivity, (1.1). This model of the temperature dep&edds highly simplified, taking
into account only the changes in occupation of the electamaksneglects effects from the
long-wavelength thermal fluctuations discussed in se@i@n The results are plotted in
figure 4.3. The temperature dependence @ roughly independent of the magnetization
direction. Orienting the magnetization along [111] proeialmost the same temperature
dependence ad along [100]. The GGA predicts that the conductivity shoudtiase in
magnitude by about 400 S/cm as the temperature rises frorK 20800 K. The adjusted
GGA predicts an increase of only 150 S/cm over the same regioth models predict that
the conductivity should increase in magnitude from O K to K50

4.4 Orientation Dependence

The orientation dependence of the anomalous Hall condtyctivNi has been mea-
sured by Hiraoka. Hiraoka modeled his data in terms of a Bdleroexpression for the
conductivity. To compare thab initio data with Hiraoka’s experimental data, we use a
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Figure 4.5: Temperature dependence of the intrinsic Haltlootivity
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similar 5th-order expansion. By symmetry, the nonvanisténms of the conductivity are
given by:

023 = AICL(6,9)+ASCH(6,9) +AIC3(6, @) + A5 (6, ) +ASCS(6, 9) + ASC2 (64 8)
031 = BiSI(6,0)+B3Si(6,9) +BISY(6,9) + BiS5(6, 0) + BES3(6, ¢) + BES(64p)0)
012 = A?Cl(e,(p)+A8C3(9,(p)—|-A5C5(6,(p)+A5C5(9,(p). (4.11)
The coefficients given above are not all independent. Thexetdinearly independent

coefficients:A?, A3, A2, andAZ. We can relate the coefficients o3 to those ofay, with
the relations:

Al = V2AY (4.12)
Al = —%@Ag (4.13)
A = VS (4.14)
A = %\/3_0A8+%\/2_1A§ (4.15)
A = —%\/3_5A8+%f2A§ (4.16)

R = VIR ST @17)



55

Relations for the nonvanishing™ are given in appendix B. Unlike the 3rd-order case,
wheready; is independent of the azimuthal angdethe appearance of the= 4 termA‘S"
shows that;» can now vary ag is rotated.

To calculate the coefficien&§" to this order we again vary the magnetization direction
over the sphere and use a least squares fit to determirg"tirem the g;;. We vary both
6 and ¢ independently over a uniforid x 2N grid on the surface of the sphere such that
@ = 1k/N for k= 0..2N — 1 and8; = (k+1/2)rt/N for k = 0...N — 1, where the 12
is introduced to avoid sampling at the poles. Such a grid\f 8amples is sufficient to
determine a spherical harmonic expansion of oiderl [69].

Although computationally demanding, this procedure islyaiobust. The values of
the coefficients do not depend on the form of the expansien ffie covariance is small),
and the values of the coefficients are not more sensitive feestata points than others.
Also, this procedure allows us to estimate the accuracy p€aleulations by testing other
models (i.e. 3rd-order models, or models that violate thpeeted symmetry) of the data.

4.4.1 5th-order dependence

Our results for the Hall conductivity anisotropy are sumizet in tables 4.5 and 4.6. In
table 4.5 we show the coefficients describang over the magnetization sphere in both the
GGA approximation, and after using our adjusted exchanlijisg. In table 4.6 we show
the parameters far,3. Using the relations (4.12)-(4.17), we can calculate tserépancies
between the calculated;» and 0>3, as an additional estimate of the error in #i®initio
calculations.

Table 4.7 shows the results of this calculation. The colunepsesent the difference
in the corresponding coefficient, For example,ﬂi&:olumn showsA% —/2A9, and from
(4.12) each column in the table should be zero. The uncédaihsted in the table were
propagated from tables 4.5 and 4.6. The discrepancy fronm&trny in the first order and
third order GGA expansion are all less than 20 S/cm, and gwe&pancies increase as the
order of the expansion increases. The discrepancy in theofifter expansion for the GGA
are almost half the magnitude of the corresponding coefiisjiandicating that we have
run into a limit from numerical accuracy. For the adjustedA;@&e have better agreement
between the two components overall, but the first orderemmncy is much larger. While
somewhat troubling, the discrepancy of 20 S/cm is only atétibf the magnitude ofl,
which is -2817 S/cm. ThAZ' in the adjusted GGA agree to within 2 standard deviations,
the worst beingA? which differs by 126 S/cm.

The A" are proportional to the Hall conductivity, averaged ovén@gnetization an-
gles. The adjusted GGA results show that the average Hatustivity \/(1/2)A‘{ =
1416 S/cm, while its value fow || [001] of o = 1571 S/cm. Sincé\? is an average over
all angles of the magnetization, it can serve as an estirhatelall conductivity of a poly-
crystalline sample. The anomalous Hall coefficiBgibf a polycrystalline sample should
be about 11% smaller than that of a monocrystalline sampgienvall fields are along the
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Table 4.5: Spherical harmonic coefficieds in S/cm describingri2 in Ni.
AL A3 AS AS
GGA —28908) —2718) 52(7) 10514)
Adjusted GGA —20073) —104(4) 23(3) 52(6)

Table 4.6: Spherical harmonic coefficiedds in S/cm describingrzz in Ni.

AL A3 AL A A
GGA —4091(5) 251(4) —3185) 43(3) 82(4) 1135
Adjusted GGA —28195) 85(4) —1015) 503) 11(4) 35(5)

cubic axes. The third-order coefficierA§' are large, on the order of 100S/cm, indicating
that the anisotropy of nickel should be large enough to nreastcurately. The fifth-order
AZ' are small, only a few percent of th&". Although the calculations here are unable to
determine theAl' accurately, the discussion in the preceding paragraph stioat these
numbers should be accurate in both sign and order of magnitud

4.5 Discussion

Hiraoka measured the anomalous Hall conductivity in stidsi cut at different orien-
tations of the crystal axes in order to measure the anisptvbthe anomalous Hall effect.
Hiraoka performed these measurements at two differenteestyres: liquid nitrogen (77
K) and room temperature (297 K). Hiraoka fit his data to thioWing form:

Rs = C+Cys-+Cat (4.18)

wheres= aa3 + a2a2 + aza? andt = afaza3, and thea; are the direction cosines of
the magnetization. The constant te@ns isotropic, and equal to the magnitude of the
Hall coefficient when the magnetization is along [001]. Thextntwo termsC; andC,.
are proportional to the third-order and fifth-order anispirin py. These coefficients are
related to the\\" as follows:

P 1 V/3A0 0 0
HO—MS\/;T( 3AS+ VTA+ VIIAY) (4.19)

Table 4.7: Discrepancy in th&", in S/cm, of Ni from cubic symmetry.
AL A3 A AS AS A
GGA 3(12) -17(8) 14(10) 53(13) —37(7) —41(11)
Adjusted GGA —20(7) 55) —156) —4(6) 13(5) -1(7)
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2 1
Pxx 0 / 0 / 4
— — (4 14A 4 2 — 4.2

p3 63 /11
C, = uo—l\/lsE\/;(g'fZAg_\/g_sAé) (4.21)

The three coefficient§, C; andC; are linear combinations of theA". It is not possible
to calculate the\" directly from the experimental data, since the 3 availakfgeemental
coefficients are not sufficient to determine the 4 unknéyn

In the discussion that follows, to calculate the Hall coédfit from the conductivity, we
use the usual relatioRs = oancPs/ (HoMs). At room temperatur@y, = 7 x 1078Qm and
Ms = 0.482MA/m. At 77 K, we havepyx = 0.55x 10-8Qm [70] andMs = 0.509 MA/m.
These values, though reasonable, are a possible sourceofren converting the theo-
retical conductivity to the experimental Hall coefficiebtit are consistent with those used
by Hiraoka in analyzing his samples [19]

Table 4.8 and 4.9 compare our estimates ofRh&rom the conductivities described in
the previous section with the experimentally obsegdlhe coefficienC should be equal
to the value shown in table 4.4. Again, at room temperaturth the GGA and adjusted
GGA predict a Hall coefficienT that is too large compared with experiments. Also, in that
same table, note that Hiraokas room temperature Hall ceffics smaller than both the
measurements of Lavine and the measurements of Volkensiit2B7 K.

Moving toCy, the third-order anisotropic term, the GGA predicts betn@é x 10-1°Qm/T
and 125 x 10-1°Qm/T, while the adjusted GGA predicts betweed 2 10 1°Qm/T and
3.8 x 10 19Qm/T depending on which parameterization we use. AdjustiegGGA ex-
change splitting decreas€s, but not so much to cause the sign to reverse, so that both
the GGA and the adjusted GGA prediaCato be positive, in contradiction with Hiraokas
measurements at room temperature. The magnitude of thetedjGGAC; is also too
large, much like the isotropic prediction of the isotro@iterm. Finally, the fifth-orde€,
term is found theoretically to be about9 x 10-1°Qm/T, which agrees in sign with Hi-
raokas measurement ef3.8 x 10-1°Qm/T, but is too large at room temperature, by about
a factor of 2.

We can also compare to Hiraoka’s measurements at 77 K. Herealbulated intrin-
sic conductivities are too small by about a factor of 2. Thym%f C; still disagrees with
Hiraoka’s measurements, while the sign@andC, agree with the measurements. The
anisotropy does not change sign either in the theory or iexperiments. At these temper-
atures, unlike room temperature, the adjusted GGA (as wéleaGGA values, not shown)
are now smaller compared to the experimental values, bytabiagctor of 3.

Figures 4.6 and 4.7 compare the anomalous Hall coeffi¢gkgrdalculated from Hi-
raoka’s fit to his experimental data, a measurement repbstécvine [61], and the calcu-
lation by Wang [7], along with our results. The plots showt ti@se results are consistent
with previous theoretical calculations, and that Hiraska&tperiments agree with Dheer’s
measurements along tf@01] direction at room temperature.

Thomas and Marsocci [71] presented an argument based amlgsion theory, and
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Table 4.8: Anisotropy of the anomalous Hall coeffici®gf Ni at 297 K in 10 1°Qm/T

C o] C> Remarks
GGA -18.4 12.5 -30.6 03
-18.2 115 -275 o3
-179 9.9 -23.8 012
Adjusted GGA -11.6 2.7 -8.403
-11.6 2.8 -8.0 o031
-11.9 3.8 -12.6 o012
Experimental -45 -1.8 -3.8 Hiraoka, 297 K
-95 -6.3 Chen and Marsocci

Table 4.9: Anisotropy of the anomalous Hall coeffici®gof Ni at 77 K in 102 Qm/T

C G C, Remarks
GGA -6.8 1.6 -4.9 023
-6.8 1.7 -4.7 o031
-6.9 22 -7.4 o1
Experimental -13.9 -4.9 -14.2 Hiraoka, 77 K

estimated the magnitude of the anisotropyrRinto be about 3%. Our results for the ad-
justed GGA show thatr varies by about 3.5%, and about 6.7% for the GGA. Chen and
Marsocci [72] measured the anisotropy of the Hall coeffitsen thin films of Ni, but they
conclude that their measurements are unreliable, due tdifffaulty of correcting for the
demagnetizing-field in the sample. They fit the Hall resistiyp,» to a third order expres-
sion, and found tha® = —9.5 x 10-19Qm/T andC; = —6.3 x 10 19Qm/T. These results
agree with Hiraoka’s results, in th@; andC have the same sign, but the Hall coefficient
Ry is too large by almost a factor of 2. Also, they note that thieran theirC; is almost as
large a<C, itself, due to errors in accounting for the demagnetizatibtie film.

Volkenshtein measured the temperature dependence of dmeadwus Hall conductiv-
ity from 4.2 K to 300 K. They found that from about 77 K to 100 Ketlkxtraordinary
Hall coefficientR; shows a linear relationshig; [1 Ap to the resistivity. This shows that
skew scattering is likely to dominate the Hall conductiatyower temperatures in nickel.
Lavine measured the Hall resistivity of Ni over a range of penatures from 77 K to
over 600 K. At higher temperatureR; O p1°7, showing that the side-jump and intrinsic
mechanisms dominate, but at low temperatiRe§] p1°, showing that skew scattering
dominates.
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Figure 4.6: Plot of the anomalous Hall coeffici€ttin nickel at 297 K. The figures below
show the change iRs, from (4.18), adM rotates around the axilks using the parameters in
table 4.8.
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Figure 4.7: Plot of the anomalous Hall coeffici€tatin nickel at 77 K. The figures below
show the change iRs, from (4.18), adM rotates around the axilks using the parameters in
table 4.9.

Rs (1071°Q m/T)

-0.06 N ' -....-Hiraoka
N B I e GGA .
4 4 Adjusted GGA -

-0.08 +

0.1+
-0.12 ¢+
o \/\/\/\/

L~
-0.16 ! — = —
011] 001)(112) 0011L01 112

J1[100 J 110 J 11y



60

4.6 Conclusions

In this chapter, we have discussed the anomalous Hall ctimdyiéen Ni under a vari-
ety of conditions. First, we discussed the known limitasiaf the GGA in describing Ni.
We introduced a modification to the Wannier interpolationritonian to reduce the ex-
change splitting of thd-bands. We showed that this adjustment brings the electsbnic-
ture closer to what is observed experimentally, and desdritow adjusting the exchange
splitting affects the anomalous Hall conductivity. We fdutmat our exchange splitting
adjustment corrects half of the discrepancy between thergrpntalRs and the intrinsic
contribution toRs. We also discussed the temperature dependence of thesiattionduc-
tivity, and showed that the change in the conductivity, ttoonly about 10%, should be
large enough to be observable. In the final section of thetehage discussed the ori-
entation dependence of the anomalous Hall conductivitycamapared with the available
experimental data for Ni.

The calculations here agree with the measurements of Hiraokthat we predict a
large anisotropy in the Hall conductivity of Ni, but disagii@ some important ways. First,
the Hall conductivity predicted here is again too large.ddek; our calculations predict the
wrong sign for the third-order anisotropy of nickel, but impements to the band structure
calculations could alter the third-order anisotropy. Thkand width in our calculations
is too large, but as we argued earlier, although we don’t exjes to make a significant
difference in the conductivity. A more robust calculaticoutd be made by using a self-
consistent Hamiltonian to calculate the band structureehSuself-consistent calculation
could have a significant effect on the structure of thkeands. Another method method
that has shown promise in describing Ni is the LDA+U methoDAkU has been used to
calculate the magnetic anisotropy of nickel, and the ptedimmagnetic anisotropy energy
agreed with experimental measurements of the easy axis pf3}li Similar calculations
may improve our ability to describe the Hall conductivity.

The most significant limitation, though, in the data desslilnere is that we cannot
evaluate either the side-jump or skew scattering coniohstto the Hall resistivity. It
is entirely possible that the skew scattering contributiorNi is large and anisotropic.
Figure 4.7 shows that the intrinsic mechanism is too smalttmunt for the observed Hall
resistivity at 77 K. At 77 K, Volkenshtein showed that the @winated by skew scattering.
This is significant, since at room temperature, we saw theirttninsic contribution to the
resistivity was too large. We can use this estimate of thsit conductivity as an upper
bound. If we ignore side-jump scattering, then we can atteilthe discrepancy between
the calculated intrinsic Hall resistivity and the obsert#all resistivity to skew scattering.
We can then conclude that the skew scattering is anisotraepid thatC; < O for skew
scattering.
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Chapter 5

Conclusion

This work shows that the anomalous Hall conductivity in jroabalt, and nickel, over
all orientations of the magnetization, is adequately deedrby the Karplus-Luttinger the-
ory, when used with aab initio calculation of the electronic structure. In cobalt, these
calculations show that the observed Hall conductivity ityprystalline thin films can be
explained by taking into account the first-order anisotropyhe magnetization. In iron,
anisotropy appears to third-order in the magnetizationth®imagnitude of the third-order
term is too small to have been measured by past experimentsnié¢kel, in addition to
describing the anisotropy, we also showed that half of tiserdpancy between previous
ab initio calculations and the measured anomalous Hall coefficienbeaeliminated by
adjusting the theoretical exchange splitting of nickel stireates of the experimental ex-
change splitting. Using this same adjustment, we calcdiltite third-order orientation
dependence of the intrinsic anomalous Hall conductivity] showed that the third-order
intrinsic term does not explain the experimentally obsémeisotropy in nickel. We spec-
ulated that this discrepancy is a result of skew-scattermig the low temperature mea-
surements of nickel, where skew-scattering is expectedoirthte the anomalous Hall
effect.

The motivation for this work came from several areas. Firgt Boremost is the de-
sire to understand the microscopic mechanisms of the amun&lall effect. The intrin-
sic Karplus-Luttinger mechanism is only one of the contiims to the anomalous Hall
conductivity. Calculations of this contribution from firstipciples, combined with mea-
surements of the Hall coefficients, allow us to estimate ihe af the side-jump and skew
coefficients. Second, the intrinsic conductivity is a macapic manifestation of a geo-
metric property, the Berry curvature, of the electron bandcstire. The geometric effects
are sensitive to the fine details of the electronic stru¢tsmeearly efforts were hampered
due to the lack of sufficient accuracy in the wave functiortsiding the anomalous Hall
conductivity from first principles, using accurate Hamilians, allows us to gain insight
as to how these effects behave in realistic systems, and asra complement to model
Hamiltonians using simplified descriptions of these matsriA final goal of this work is
to serve as a starting point for future studies of the anounsatall conductivity as the mag-
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netization changes orientation. The magnetic field orterias one of the few parameters
that can be easily adjusted by both experiments and in ttieairealculations. Therefore,
this work is expected to be of interest to future theoristsudating the side-jump and skew
scattering contributions, and also to experimentalistdyshg anisotropic transport.

5.1 Future Work

The calculations of the AHC anisotropy of nickel failed top&in the third-order
anisotropy. Although the error could be a remaining probierthe electronic structure,
the discrepancy could also be due to skew scattering at rempdrature. A self-consistent
calculation of the band structure of nickel, using a modezatment of the exchange and
correlation energies, can clarify the possible errors e litand structure. A calculation
should be performed using one of the methods that has beamsb@gree with the mag-
netic anisotropy energy calculations of nickel. The mogetatistep in this direction is an
LDA+U calculation of nickel using spinor wave functions.

These intrinsic calculations of the conductivity are oig first step towards a complete
ab initio treatment of the anomalous Hall effect. The side-jump arsvsdcattering terms
remain important in some regimes, and no practical schesgdt&merged for calculating
these terms. The results for nickel presented in this wodkvsthat the anisotropy of the
Hall conductivity in nickel is a promising starting pointrféuture insight into the role of
these mechanisms, in particular the skew scattering. Atdnigemperatures, the intrinsic
effect should dominate the Hall coefficient of nickel. THere, a measurement of the AHE
anisotropy at higher temperatures may reveal that the-thrildr anisotropy changes sign
as the temperature increases.

Our estimates for polycrystalline samples of cobalt shoagrgement with the existing
measurements, but we used a relatively crude approximtadiarodel the polycrystalline
behavior. Better models of polycrystalline samples areirequo connect the conductivity
calculations presented here with measurements of the doosall effect in polycrys-
talline samples.

In our comparison with Hiraoka’s measurements of nickell,[B&d Tatsumoto and
Okamoto’s measurements of iron [56], we note here that thesssarchers also measured
the pressure and strain dependence of the anomalous Héltieods in these materials.
Simulations of the pressure and strain dependence coulsdiiel to supplement the orien-
tation dependence described here.
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Appendix A

Units

In the magnetism literature the saturation magnetizatgrms rarely listed in units of
emu/cnt, but is usually expressed in the cgs unit of magnetic flux i@ To convert

into Sl units,
B 4mB

T Ho HoAm
whereB/(4m) is the cgs magnetization @, andM is in A/m, and 4t/ iy = 103A/m/G.

M (A1)

A.1 Units and Conventions

Resistivity is measured isr ! in Gaussian units, but in the older Hall effect literature it
is common to use the Sl unit of resistivity, and Gaussiansuioit the magnetic quantities
B, H, andM, so the ordinary Hall coefficierRy is in units ofQ cm/G. We may convert
bothRy andRs into Sl units in the usual manner cm/G= 10> Qm/T), but we must take
some care when with the extraordinary Hall coefficignt

We definedr; through the relationship (1.5). If we substitidefor pgH and 4t for
UoM, we find

pH = RoH + Ry4nM. (A.2)

In the older literature, we find instead of (A.2) the convenipy = RogH + RiM, so if we
now define
R = 4nRy (A.3)

then
pH = RoH + RiM. (A.4)

These relationships are summarized in table A.1 When conypdine results presented
here with older workRy andRs should agree, but the reader must check to see whether
relationship (A.4) (e.g. [19], [34]) or (A.2) (e.g. [74], 3]) has been used. Hurd [13]
definesR; with relationship (A.4) in chapter 5, but uses the defini{ArR) in the tables at

the end of the book!
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Table A.1: Relationships between cgs and Sl definitions oftilies related to the anoma-
lous Hall conductivity

symbol name Sl cgs

B magnetic flux density Ho(H + M) H +4rM

H magnetic field strength LoH H

M magnetization oM 4riM

PH Hall resistivity RotoH +RitoM  RoH +R{M

PH Hall resistivity RoB + Ry oM RoB + 4niRsM

R1 extraordinary Hall coefficient Ry = Ry + Rs R} = 4m(Ry+Rs)

Rs anomalous Hall coefficient Rs=R;+Rg Rs=Rj/(4m) — Ry
1QmIT=102Q cm/G (A.5)
1Qcm/G=100Q m/T (A.6)

A.2 Applied Fields

In this section we express the Hall resistivity in terms af #pplied fieldH,, rather
than the internal fieléH. The two fields are related by the expression

H =Ha— NM (A.7)

whereN is the demagnetization factor of the sample. Sikte- (y, — 1)H, the internal
field is related to the applied field by

Ha
H— a A.8
1+N(pu—1) (A-8)
and we have
pr = RoploHa + (R1 — NRy) oM. (A.9)
For large applied fieldsyl = Mg, so that
PH = RotoHa + (R — NRy) HoMs. (A.10)
To understand what happens in small fields, we first use (A.8)ininateM from (A.9)
that
+R -1
oy = ot Rl — 1) (A.11)

Ha.
T+N(g—1) 70
Sincey, is large for small applied fields, aml~ 1 for a plate or rod in the usual geometry,

(A.11) reduces to s
pr = 3 HoHa. (A.12)
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Comparing relations (A.9), (A.10), and (A.12) with (1.5),8Land (1.9) we see that the
gualitative behavior of the Hall resistivity is the same otlbcases, i.e. the ordinary Hall
coefficientRy dominates in large fields. In small fields, we find tiogt = (Ry/N) tioHa,
rather thanpy = RipH. For an infinite plane, the demagnetization fadtioe= 1 if Hy is
normal to the plane, and there is no need to distinguish letwgH, from B, since the
resulting Hall coefficients are identical. Nf is on the order Ay, or N = 0, this argument
no longer applies. For thin films, when the applied magnegid is in the plane of the film,
a separate analysis is necessary.
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Appendix B

Symmetry of the Conductivity Tensor

B.1 Symmetries of the Conductivity Tensor

Birss [14] considers in detail the symmetries governinggabmagnetic properties, in-
cluding the anomalous Hall coefficient. The nonvanishingypgonents of the conductivity
tensor are determined by the relations:

Oij..pn..pn... = Gij..p".pm. (B.1)
gij(M) = 0ji(-M) (B.2)
Roij(M) = (detR)gij(M). (B.3)

Despite early criticism that these results [75] do not priypaccount for microscopic re-
versibility in the presence of a magnetic field, the relatlups above were later shown
correct [16].

B.2 Direct Inspection Method

To motivate the direct inspection method, we begin with aaneple. Consider a four-
fold rotational symmetry through theaxis. This symmetry is generated by the operation
Rtakingx — vy, y — —X, z— z The action ofR on a tensor of rank 1, i.e. a vectAr=
AKX+ A+ AsZ shows thaR(A) = —AX+ A+ AsZ The action oR on each component
of Ais given byR(Ax) = —Ay, R(Ay) = A, andR(A;) = A,. If Ais invariant undeR, then
R(A)) = A, and we findA, = Ay = 0, while A; remains free.

The direct inspection method formalizes the argument glaove relates it to the sym-
metries of tensors of arbitrary order. This method stemmftbe observation that the
contraction of a rank-tensor ovem coordinates is invariant under general orthogonal
transformations of those coordinates [76]. The directacsipn can be used to find the
nonzero components of a tensor [77, 78, 17]. Direct inspecs applicable when the ac-
tion of the symmetries on a tensor component can be repezsastmanipulations of the
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indices and sign reversal. Therefore, unless the matesighms a six-fold or three-fold
axis, direct inspection can be used to determine all of tdependent components of a
high-order matter tensor. When three-fold or six-fold syrtriee are present, one must
consider the action of these symmetries separately, aadtdirspection may still be used
for the remaining symmetries.

Fumi describes the generators of the point groups for thécayte (non-hexagonal)
crystal classes, and uses the direct inspection to dervmtiependent tensor components
for some crystal classes [77]. Fumi derives expressionshfodt and fourth rank tensors
in hexagonal crystals, using the general group theory aegisn and direct inspection in
[79]. In [80] the authors derive results for general tensdifith and sixth rank in all of the
crystal systems. Fumi and Ripamonti Later found another agkttbr deriving symmetries
of high-order tensors with hexagonal symmetry [81], [88B]I

Birss discusses the symmetries relevant to magnetic systedetail, and uses direct
inspection applied to analyze the galvanomagnetic termocri/stals of cubic symmetry
(On) and hexagonal symmetry. Birss starts from the results foege tensors presented
by Fumi, and imposes the additional constraints from themmwhial expansion in the
magnetic field, and the generalized Onsager relations.8J) Juretschke applies the same
strategy in the A7 crystal structure, to derive similar testor antimony.

B.3 Implementation of the Direct Inspection Method

The high-order polynomials necessary for the descriptfdheHall conductivity make
manually calculations of the unique nonvanishing comptmehthen-th order galvano-
magnetic tensor both tedious and error prone. For exandifth order expansion i
requires us to apply the symmetry relations above to a sevank tensor with 3= 2187
coefficients. We describe here how to carry out such maripakon a computer.

The tensor component symmetries are relationships of tine fo

Tijk... = £Tirjue.... (B.4)

Imagine a graph formed by these relationships, where eadé represents a component
+Tijk..., and the sign is required to represent a possible changgriméthe component. An
edge is drawn whenever two components are related by anitgqUdle connected nodes
of any such graph are then identical, and each connectedar@nprepresents a unique
coefficient. An algorithm for finding the connected compaseaf a graph is described in
ref. [84].

Each tensor componefij ... is represented by a strirgy The strings are of the form+
ijk...”, where the length of the string is one more than the rank@fdnsor, to accomodate
the possible sign change. For each symmetry, the symmeématpng is applied to the
string to generate a new striry), and the new strin@ is placed into the same set as
S The process is repeated over all componé&hts a given rank. We apply only the
generators of the point groups, since the action of the gémeover the entire allows us
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to avoid needlessly considering products of group eleme®tsce the symmetries have

been applied, the algorithm terminates with a list of cobe@nodes, and a representative
element for each connected subgraph. The final step is twimte a tensor component O,

and apply the condition that Tjx . = —Tjjx..., thenT = 0.

At the end of the symmetry calculation, we are left with a direpresentative ele-
ments for each nonvanishing tensor component, and a siegtegentative element for all
of the vanishing tensor components. Since the nonvanideimgs of the polynomial ex-
pansion ofgj (theg;...) are now known, it is a simple matter to construct polynomiak;
appearing in (1.11). Once the polynomialsiinare known, the final step in the procedure
is to express these polynomials in polar coordin&esd .

B.4 Spherical Harmonics

The spherical harmonics are a convenient basis set foratiadLthe orientation depen-
dence of the Hall conductivity. The normalization and phasaventions for the spherical
harmonics are described in this section. The definitionsigeal here are consistent with
those of ref. [85]. The spherical harmoni¥g}, in the Condon-Shortley phase convention,
may be written as

Y6, ) = | 2=l cogg) g (8.5)

4t (1 +m)
where the Legendre polynomiaR} are defined fom >= 0 by: [85]

Ao = a2 S o2 1) (8.6
and form< 0 0 m)
Plim(x> = (_1)m(| + m)| le(x)' (87)

We may expand a function over the sphere in terms o¥the

00 |

6.0~y 3 aMv"0.). (B.8)
[=0m=—I
where S
"= [ [¥"(1.m6.9)" 1(6.9)sin6d6 e (B.9)

The integral in (B.9) may be performed directly on the polymnexpansion (1.11) to
relate the
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B.5 Real Spherical Harmonics

We define the real spherical harmonics:

Clm(ev(p) = %2 [(Yl_m(e7¢) + (_1)mY|m(9a ¢>] = (_1)m\/§ R6Y|m(9,([)) (B].O)
Sﬂ(97¢> = é [Yl_m(97(p) - (_1)mY|m(97(p)] = (_1)m 2 ImYlm(97qD)7 (Bll)
where we have used the identity

Y (6,9) = (-1)"™"(6,9)". (B.12)

In terms of the real spherical harmonics, the expansion (B8dmes

o |
(0.0)=3 3 IATC(6.0)+B'S"(6.9)]. (B.13)

[=0m=0

It is sometimes convenient to reorder the summation bvaerd m to isolate the angular
dependence og:

[(6.0)= 5 3 IATCI(6,¢)+BIS(6,¢)]. (B.14)

m=0l=m

The coefficients\" andB]" are related to the" by

a = V2R (B.15)
d'= L (A" -iBf (B.16)
g M= 5 [AM+iB] (B.17)

If the function (8, @) is real, then the coefficien&" andB]" are also real. Then we may
write form > 0

A" =v2Rea ™ (B.18)
B"=v2Img ™ (B.19)
and form=0
0_ & (B.20)
A = 75 .

B.6 Cubic Crystals

We begin by discussing crystals in the crystal cl@gs This class of crystals include
the face-centered cubic and body-centered cubic systems.
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B.6.1 Third-order relations

In a cubic crystal, we find that:

O3= 12301 + 3212024 105 + A103) + 312330 (B.21)
O31= a12302+ 3812224 0202 + 01202) + A1 23305 (B.22)
O12= 12303 + 3812229 Q302 + 03017) + 8123305 (B.23)

There is one independent 3rd-order componagts and two independent 5th-order com-
ponentsia;2oozanda23ss

o23= AICH(6, ) +A3CI(8, p) +AC3(6,9) (B.24)
os1= BiS|(6.¢)+B3S;(0,9) +B3S}(6,9) (B.25)
012 = AXCY(8, @) + AJC3(6, ) (B.26)

Relating the spherical harmonic coefficients back to the Gimetensor coefficients we
find that

A% = 1/15V/12m(5a123+ 6a12223+ 3812333 (B.27)

A= 1/35v/42m(3a12223— @12333) (B.28)

AS = —\/ 27'[/35(36112223— 8.12333) = —/ 5/3A1, (B.29)

Bl = 1/15v6v2m(3a12333+ 5123+ 6a12029 = A (B.30)

B = 1/35v/4211(3a12203— 812333 = A (B.31)

B3 = \/211/35(3a12223— 812333) = —A, (B.32)

and finally

Acl) = 1/15+/6m(6a12223+ 3a12333+ 5a123) = (1/2) \/—ZA% (B.33)

AO = —315 147'[(38_12223— 312333) = —(2/3) \/éA% (B.34)

There are two linearly independent spherical harmonicf'rcrimﬁts:A% andA%.

B.6.2 Fifth-order relations

Hiraoka [19] expands the resistivity tensor to fifth ordeoirstarting with the relation-
ship
A(a) = ai [e+ea? + exa + e (afaz + azas + afa?)]. (B.35)
Since this expansion applies to the conductivity tensomag use it directly. In terms of
spherical harmonics, this relationship becomes:

g23=AICL(6,9) + ALC3(6,0) + AJC3(0, 0) + ASCE(6, ) + ASC3(6, ) + A2C2(6, 9)
(B.36)
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031 = BiS[(6, ) + B3S3(6, 0) + B3S} (6, 9) + BES(6, ) + BES}(6, ) + B2(60, 9)

(B.37)
012 = AICY (6, ¢) + AJC3(6. ) +ASCE(6, 9) + AZC3 (6, ) (B.38)
where theB" andA" are related by
Bl = Al (B.39)
B = Al (B.40)
B} =-A3 (B.41)
Bs = A5 (B.42)
B = A2 (B.43)
Be = A2 (B.44)

Hiraoka does not use the coefficieri®;, e», andes directly, but instead defines three
coefficients

C=e+e+6 (B.45)
Ci= 26— 3e,+63 (B.46)
C, = 3e. (B.47)

Aside from an overall constant of proportionality relatidgC; andC, to the conductivities,
these coefficients are given in terms of #j@ by the relations:

c = \/;(\/éA8+\/7A2+\/1_1A8> (B.48)
C = —ﬁ (40\/1_4A8+49\/2_2A8—3\/§5A§) (B.49)
C, = i—g 1—nl<3\/_2A8—\/3_5Ag‘). (B.50)

B.7 Tetragonal Crystals

In this section we discuss the symmetries of the condugtimitrystals with the point
groupDgn. These systems include the face-centered tetragonal;dmugred tetragonal,
and A3 crystal structures. To third order in the magnetidf@tection, the AHC tensor in
these crystals may be written as:

O23= 3101 + 3823130103 + 382312201105 + 8311103 (B.51)
O31= 23102 + 38231330202 + 38231220202 + 82311105 (B.52)
O12= Q12303+ 3812209 0203+ A503) + 1233415. (B.53)
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There are 2 unique 3rd-order componexs anda;»zand 5 unique 5th-order components:

823111, 823122 823133 A12311aNda12333
If we express the relations above in terms of the (real) sphldrarmonics, we find that

these equations can be written in terms of@feandS™

023 = AICL(6,9)+AC5(6,0)+ASC3(6, 9) (B.54)
031 = BiS(6,9)+B3Si(6, ) +B3S3(6, ) (B.55)
o = ACY(6,9)+AIC3(6, ). (B.56)

We can relate the coefficients of the spherical harmonic resipa to the components of
the tensol. Transformingo»s, we find

Al = Y2 (58031 + 3apa111+ 3823120+ 3323139 (B.57)
Az = V22T (4ap3133— A23120— 823111 (B.58)
A3 = —+/ 211/35(3a23122— a23111) - (B.59)
Similarly for asy,
Bl = Y227 (5a31+ 333111+ 3803120+ 3303139 = AL (B.60)
Bj= V22T (4ap3133— B3120— 823111) = A3 (B.61)
83 = 27T/35(3&23122— azglll) = —A3, (B.62)

and finally foras»

Vo

A = =TS (5a123+ 6212223+ 3812333 (B.63)
4

A = TS 771/2 (3212223 — @12333) - (B.64)

There are 7 independent Cartesian coefficients, but only &padent spherical har-
monic coefficients:Al, AL, A3, A? andAS. The spherical harmonics provide all of the
information that is independent of the field magnitude. Ifa@epare the results for cubic
crystals with those of tetragonal crystals, we find that entétragonal crystalsé% andAg
are independent, but they are related in the cubic systeiimilaBrelationships are seen in
(B.34) and (B.33). See section 2.1 for a related discussiocthystals.





