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Scalable Session Locking for a Distributed File System

RANDAL C. BURNS and ROBERT M. REES
Storage Systems and Software, IBM Almaden Research Center, USA

LARRY J. STOCKMEYER
Department of Computer Science, IBM Almaden Research Center, USA

DARRELL D.E. LONG
Department of Computer Science, University of California, Santa Cruz, USA

Abstract. File systems provide an interface for applications to obtain exclusive access to files, in which a process holds privileges to a
file that cannot be preempted and restrict the capabilities of other processes. Local file systems do this by maintaining information about
the privileges of current file sessions, and checking subsequent sessions for compatibility. Implementing exclusive access in this manner
for distributed file systems degrades performance by requiring every new file session to be registered with a lock server that maintains
global session state. We present two techniques for improving the performance of session management in the distributed environment.
We introduce a distributed lock for managing file access, called a semi-preemptible lock, that allows clients to cache privileges. Under a
semi-preemptible lock, a file system creates new sessions without messages to the lock manager. This improves performance by exploiting
locality – the affinity of files to clients. We also present data structures and algorithms for the dynamic evaluation of locks that allow a
distributed file system to efficiently manage arbitrarily complex locking. In this case, complex means that an object can be locked in a
large number of unique modes. The combination of these techniques results in a distributed locking scheme that supports fine-grained
concurrency control with low memory and message overhead and with the assurance that their locking system is correct and avoids
unnecessary deadlocks.

Keywords: concurrency control, distributed file systems, session locking, lock evaluation

1. Introduction

Distributed file systems have become the principal method
for sharing data in distributed applications. Programmers
understand file system semantics well, and use them to easily
gain access to shared data. For exactly the same reason that
distributed file systems are easy to use, they are difficult to
implement. The distributed file system takes responsibility
for providing synchronized access and consistent views of
shared data, shielding the application and programmer from
these tasks, but moving the complexity into the file system.
A distributed client–server file system presents a local file
system interface to remote and shared data. The file system
client takes responsibility for implementing the semantics of
the local file system and translating the local interface onto
a client/server network protocol. For heterogeneous distrib-
uted file systems (many client operating systems), the system
may be translating the semantics of several different local
file systems onto a single network protocol.

In this work, we present a locking construct, called file
session locks, that implement sessions on files defined by
open and close calls from an application. File sessions en-
force concurrency constraints; e.g., if one client opens a
file for exclusive writing, permitting no concurrent readers,
opens for read on other clients must be forbidden. These
locks are not designed to provide data consistency or cache
coherency – a suitable cache coherency protocol is required

in addition to file session locking. Instead, the locks allow
clients to choose from among the many exclusive access and
sharing options available in its native file system interface
and have the semantics of the local open enforced through-
out a distributed system.

To help encode and enforce sessions in a distributed en-
vironment, we contribute the semi-preemptible lock, which
allows file system clients to cache session privileges. A
client holding a semi-preemptible lock on a file has the right
to access a file in any of the modes specified by its held
lock. Clients maintain their own file open (session) state lo-
cally, and do not need to transact with the file system server
when opening or closing a file. Clients may continue to
hold such a lock even when they have no open instances.
In this way, a client can cache access privileges, the right
to open a file, and service subsequent open requests with-
out a message to the server. This mechanism reduces server
traffic by eliminating open and close messages, and con-
sequently reduces latency by avoiding message round trip
time. Clients cache access privileges to a file on the belief
that the file will be used again locally before being used by
another client.

Semi-preemptible locks also reduce distributed lock state.
Clients often hold multiple open instances of a single file
concurrently. Clients locally create concrete locks for each
session which are held under (or in the context of) a distrib-
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uted lock. All of these open instances can be granted under
a single semi-preemptible lock, rather than holding a sep-
arate lock for every open. A single semi-preemptible lock
summarizes all of the client’s open state to the distributed
system.

Semi-preemptible locks combine two concepts in lock
management. First, clients manage locks hierarchically to
separate session state from lock state. Second, clients use
semi-preemptibility, also called lazy-revocation or sticky
locks [23], to retain privileges on files in the absence of ac-
tive sessions. We use the term hierarchical differently than
most of the locking literature. Generally, the term hierar-
chical describes locks held concurrently on different levels
of abstraction on the same data object to achieve granular
locking [11,26]. Instead, we use the term to describe two
levels of locking – the higher level is abstract, summarizing
client lock state to the server, and the lower level is concrete,
representing sessions.

The interface to open a file (create a session) has many
options that allow an application to specify its intended ac-
tions and restrict concurrent actions by other clients. To
express these options, locks on these data generally have
multiple locking modes each with unique semantics. The
number of different possible locking modes increases expo-
nentially with the number of access methods and locking for
a complex data object using existing methods quickly be-
comes unmanageable. We take the Windows-NT interface
as an example to establish this point. The file system takes
six binary arguments when opening a file which requires 64
unique locking modes to describe all sessions. Consider-
ing locking modes pairwise for compatibility, there are 4096
combinations. Locks are compatible if they can be held con-
currently. Furthermore, the large number of modes in this
interface do not fully specify all possible access modes. For
example, they do not address concurrent or exclusive access
to file system metadata.

Existing methods for lock management fall short in that
they either fail to scale well as the number of locking modes
become large, or they are ad hoc systems that are poorly
specified. Database systems employ a static data struc-
ture, called a lock compatibility table [11], that describes
the relationships between all locking modes pairwise. This
data structure fully specifies the interactions between lock-
ing modes, but grows quadratically in size with respect to the
number of locking modes. Alternatively, modern file sys-
tems use ad hoc rule-based methods to evaluate locks that
are efficient and compact [15]. However, without formally
specified semantics, the interactions between locking modes
can be difficult to reason about and implement correctly.

We present a formal specification of locking modes and
derive from this a data structure and algorithms for the man-
agement of distributed locks called dynamic evaluation. Our
methods have the advantage of scaling well with the number
of locking modes. In addition, they specify fully the interac-
tions among all locking modes, which eases the implemen-
tation of a correct locking protocol. Our system obviates the
need for static data structures, such as the lock compatibility

Figure 1. Schematic of the Storage Tank distributed file system on a storage
area network (SAN).

tables used in database systems, which require memory in
�(n2) with respect to the number of legal locking modes. In
our system, lock compatibility is evaluated algorithmically
based on small static lock structures that require memory in
O(log n). While, a distributed file system provides a good
example of a complex locking system, we feel the dynamic
lock evaluation has wide applicability to distributed systems.

2. A storage area network file system

A brief digression into the file system architecture in which
we implement file session locking helps to motivate the per-
formance advantages. In the Storage Tank project at IBM
research, we are building a distributed file system on a stor-
age area network (SAN) (figure 1). A SAN is a high speed
network that gives computers shared access to storage de-
vices. Currently, SANs are being constructed on Fibre Chan-
nel (FC) networks [4]. In the future, we expect network at-
tached storage devices to be available for general purpose
data networks, so that SANs can be constructed for networks
such as Gigabit Ethernet [9]. A distributed file system built
on a SAN removes the server bottleneck for I/O requests by
giving clients a direct data path to disks.

File system clients on a SAN access data directly over the
storage area network. In contrast, most traditional client–
server file systems [7,13,15,25] store data on the server’s
private disks. Clients ship all data requests to a server that
performs I/O on their behalf. Unlike traditional file systems,
Storage Tank clients perform I/O directly to shared storage
devices. This direct data access model is similar to the file
system for network attached secure disks (NASD) [10], us-
ing shared disks on an IP network, and the Global file system
[20], for SAN attached storage devices.

Clients communicate with Storage Tank servers over a
general purpose network to obtain file metadata. In addition
to serving file system metadata, the servers manage cache
coherency protocols, authentication, and the allocation of
file data (managing data placement and free space).

Unlike most file systems, metadata and data are stored
separately. Metadata, including the location of the blocks of
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each file on shared storage, are kept at the server. The SAN
storage devices contain only the blocks of data for the files.
In this way, the shared devices on the SAN can be optimized
for data traffic, block transfer of data, and the server private
storage can be optimized for a metadata workload, frequent
small reads and writes.

The SAN environment simplifies the distributed file sys-
tem server by removing its data tasks, and radically changes
the server’s performance characteristics. Previously, server
performance was measured by data rate. Performance was
occasionally limited by network bandwidth, but more often
limited by the server’s ability to read data from storage and
write it to the network. In the SAN environment, a server’s
performance is more properly measured in transactions per
second, analogous to a database server. Without data to
read and write, the Storage Tank server performs many more
transactions than a traditional file server with equal process-
ing power.

Without the relatively slow process of shipping data from
the client to the server to hide protocol overhead, minimiz-
ing the message traffic for file system operations becomes
important. Protocol overhead is the network and server re-
sources and added latency used for client–server messages.
In traditional client–server file systems, clients go to the
server to obtain data. Because shipping data to the client
takes significantly longer and uses many more resources than
a single server message, the overhead associated with the
messages for opening and closing a file are hidden by the
cost of shipping data. In Storage Tank, protocol overhead
limits performance. When the semi-preemptible lock allows
a client to open a file without contacting the server, a mes-
sage is avoided and time is saved on the critical path.

3. Semi-preemptible file locks

For distributed files systems, little data sharing occurs in
practice [2,16], where data sharing indicates two clients con-
currently accessing the same file. Additionally, clients of-
ten access data that they have recently used. These claims
are supported by the effectiveness of data caching in this
environment [14,18]. More mature distributed file systems
[1,7,12,13,15,18,22,23] take advantage of this observation
and cache file data at clients even when no process actively
uses the data. The design decision to cache file data after
a file has been closed improves performance when a sub-
sequent open from the same system is more likely than a
request from another client to access the same data. For sub-
sequent accesses, caching improves performance by avoid-
ing a server message and data read from disk. However, if
another client attempts to access the same data, it sees ad-
ditional latency while the file system server invalidates the
cache of the client that holds data before granting access to
the new client.

For the same reasons that caching improves performance
on data access, the semi-preemptible lock improves per-
formance on file open. When a local process requests an

Figure 2. Demands for the semi-preemptible lock are accepted or denied
depending upon client session state.

open for a file, if no lock is held, the client obtains a semi-
preemptible lock before granting the open. When the local
process closes the file, the client records that there are no
open file instances currently using the lock, but holds onto
the lock awaiting future opens of the same file. Analogous
to data caching, holding access locks past close decreases
latency by avoiding a server message on subsequent opens.
But, caching locks adds latency to opens from other clients,
because the server must revoke the lock before granting ac-
cess to the other client.

By recording the open instances associated with each ac-
cess lock, a client differentiates locks that are held to pro-
tect open files, and therefore cannot be released, from locks
that are held to improve performance on subsequent opens.
Consider that a second client wishes to obtain exclusive ac-
cess to a file that is already locked by a first client. The
server processes the second client’s request by demanding1

the lock from the first client, sending a message that requests
the release of the held lock. If the first client holds an open
instance of that file, it requires the held lock to protect that
instance and denies demand requests from the server (fig-
ure 2). However, if no process holds an open instance, the
client no longer utilizes the held lock and releases it safely.
These access locks are called semi-preemptible because the
server must demand them, as if they were preemptible locks.
However, a client can refuse a demand request.

The semi-preemptible locking system is particularly ap-
propriate for our SAN-based distributed file system, because
data are not obtained through the server. When a lock is held,
a client can directly access the data from shared storage, and
need not interact with the server at all. Without direct access
storage, clients must interact with servers for data, and these
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file systems cannot save a message from semi-preemptible
locking.

4. Managing complexity

Lock management includes both the locking protocol and
the lock evaluation. Protocol describes how locks are ob-
tained and released and, in our system, we use the semi-
preemptible protocol. Lock evaluation is the enforcement
of semantics of the locks themselves and the semantics are
encoded in the lock mode. For file session locks, the mode
defines the actions that are allowed under a lock and actions
that are restricted by concurrent sessions. In a file system,
there are a large number of possible locking modes, describ-
ing all possible combinations of actions and restrictions.

Evaluation of locks becomes difficult as the number of
locking modes grows large. Techniques that reduce the num-
ber of locking modes have been explored as an alternative
to implementing the full complement of possible modes.
Although these techniques reduce complexity, they nega-
tively affect concurrency and reduce performance. In Stor-
age Tank, we implement all possible locking modes for the
greatest degree of concurrency and application correctness.
However, we describe other techniques for comparison.

4.1. Implementing subsets

By implementing a chosen subset of all possible locking
modes, some systems trade reduced complexity for minor
semantic violations. File systems often select a set of distrib-
uted locks for file access that are simpler than the semantics
of the underlying file open system call [7,14]. The mismatch
between open semantics and locking results in either concur-
rent opens being allowed that violate open semantics, or con-
current opens being disallowed that open semantics would
permit. File systems opt to disallow legal opens because this
policy impinges on concurrency rather than correctness.

An extreme example of a subset is to protect an object
with a single exclusive lock. This lock is very easy to rea-
son about, implement, and manage. One client holds it at
a time, and it gives that client total control over the locked
object. However, this lock allows no concurrent action by
other clients. For sessions, this would mean that there can
only be one open instance of a file at a time. Single exclu-
sive locks operate reasonably for a data consistency proto-
col, in which locks can be preempted. However, for non-
preemptible locks, the concurrency restrictions are intolera-
ble.

4.2. Multiple simple locks

Breaking a single complex lock into multiple locks with sim-
pler semantics is another technique for reducing complex-
ity. While this strategy is desirable, because each individ-
ual lock has few modes and therefore is easy to manage, it
introduces either deadlock or livelock and ultimately limits

performance. Problems arise as the locks are not truly in-
dependent. Applications require multiple locks to be held
concurrently for their operation, and application semantics
tie seemingly independent locks together.

Any complex set of locking modes for a single lock can
be implemented as multiple locks each with simple seman-
tics that are obtained individually. For example, a lock that
protects a data file for both writing data and updating meta-
data can be broken down into two separate locks, one for
writing and one for metadata update. However, both locks
cannot be obtained atomically.

For example, clients that need to obtain multiple pre-
emptible locks to conduct an operation can experience live-
lock and have no guarantee that they will ever make any
progress. Consider two clients trying to obtain the same set
of locks. Both clients hold some locks currently and request
the remaining locks. As each client obtains some locks,
other locks are revoked. Neither client ever has the guar-
antee that it will get the full complement of locks needed to
continue. Increases in the number of clients, resource con-
tention, and number of locking modes all exacerbate live-
lock.

Techniques that eliminate livelock introduce deadlock.
To eliminate livelock, clients that need multiple locks can
deny or ignore revocation on its currently held locks while
awaiting the other locks it requires. The same two clients in
our livelock example, each requesting the same set of locks,
would be at an impasse if they ignored revocation. Neither
client releases the locks it holds, and neither client obtains
the locks it needs. Deadlock is generally handled through
either avoidance or detection [11]. Regardless of the cho-
sen technique, dealing with deadlock always incurs a perfor-
mance penalty.

Protecting all accesses using a single lock with more
complex semantics, rather than multiple individual locks,
avoids deadlock, livelock, and the associated inefficiencies.
Rather than needing to obtain multiple locks, applications
atomically obtain a single lock. The request can be evaluated
immediately at the server and granted or denied. Application
and lock state always progress.

5. Compatibility tables

For comparison against our system of dynamic evaluation,
we present the compatibility table which has been developed
to manage distributed concurrency in databases [11]. Our
key criticism of this structure is that it does not scale well
when the number of locking modes becomes large. To be
fair, in databases the number of locking modes tends to be
very small (in contrast to file systems) and these static data
structures are more than adequate.

A compatibility table determines whether incoming lock
requests can be granted in conjunction with currently out-
standing locks. A system defines a set of locks and fills out
this data structure, which defines how these locks are man-
aged.
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Table 1
Locking modes and the compatibility table for session locks.

Symbol Name Description

r Read Reader lock
w Write Reader and writer lock
s Shared Reader lock, no writers
u Update Writer lock, no writers
x Exclusive No readers or writers

Requested Held
None r s w u x

r + + + + + −
s + + + − − −
w + + − + − −
u + + − − − −
x + − − − − −

When opening a file, clients select a locking mode that
best matches the semantics of its open and requests the cor-
responding lock from a locking server. The server uses the
compatibility table to evaluate whether the incoming request
can be serviced. We present an example based on the locking
modes and compatibility table in table 1, which are a subset
of all possible locks. The table consists of rows that index
the mode of the incoming lock request and columns that in-
dex locks currently held by other clients. The table cells that
hold a plus indicate that the request is compatible with the
outstanding lock, or a minus indicating that the requested
and held lock are in conflict. For example, if a server re-
ceives a request for a w (write) lock on a file with outstand-
ing locks r (read) and s (shared), it evaluates the locks as
follows. It first looks up the cell for requested mode w and
held mode r and sees that the lock modes are compatible. It
then continues to evaluate w against s and, seeing that they
are incompatible, the w lock cannot be immediately granted
given current lock state. The server demands the s lock and
grants the w lock if the demand succeeds.

For n locking modes, the compatibility table contains
n2 entries. For databases and other systems with few locks,
programming a compatibility table presents no problems.
However, when we looked at implementing this structure for
all possible locks in a distributed file system, the amount of
state was daunting, and we were concerned with the correct-
ness and maintenance of our implementation.

6. Dynamic lock evaluation

To reduce the memory used by static locking data structures,
we define simple algorithms for evaluating the compatibil-
ity of lock requests. These algorithms require the client and
server to store only the number of allowable access methods,
k, and need not record every lock mode and the associated
compatibility table. These algorithms support all possible
locking modes for a given set of access modes, unlike sys-
tems that implement a subset of all possible locks to limit
complexity.

Our algorithms use the following quantities:

L set of locking modes
A set of valid access modes
∀X ∈ L: PX ⊆ A X’s permitted access modes
∀X ∈ L: DX ⊆ A X’s disallowed sharing modes

Each lock X can be appropriately thought of as an or-
dered pair 〈PX,DX〉 of the access modes that it permits and
the access modes it disallows. Permitted modes are the ac-
cess methods that the lock holder can perform. Disallowed
modes are the access methods that the lock holder forbids
other clients from performing concurrently. Both the per-
mitted and disallowed access modes vary over all possible
subsets of the set A. Thus for A containing k different ac-
cess modes, there are 22k different potential locks, because
the number of distinct subsets of A equals 2k .

To develop algorithms for evaluating lock state, we begin
by casting the definition of lock compatibility in set theoretic
terms. From this definition, we create simple algorithms for
evaluating lock requests at the server and processing local
open requests and server lock demands at the client. Lock
compatibility is evaluated in a dynamic fashion; i.e., com-
patibility need not be pre-computed and stored in tables.

Definition 6.1 (Compatibility). Lock X and Y are compat-
ible iff PX ∩DY = ∅ and PY ∩DX = ∅.

Two locks are compatible if they do not forbid the ac-
cess modes that the other lock protects. Compatibility must
be symmetric so that the lock state in a distributed system
has no dependence on the order in which locks are acquired.
This helps avoid non-deterministic behavior due to race con-
ditions. For illustration, consider that compatibility were not
symmetric. We could have two locks, X and Y , with X com-
patible with Y but not vice versa. If two clients were obtain-
ing these locks and lock X were obtained first, then another
client could get lock Y . On the other hand, if Y were ob-
tained first, X would be unavailable. The final lock state
would vary depending upon the order in which the lock re-
quests arrive.

In addition to lock compatibility, used to evaluate lock
requests, clients require the concepts of lock strength and
weakness to manage locks hierarchically and determine lock
transitions. Strength and weakness are used by clients when
either upgrading a held lock to service a local file open re-
quest or downgrading a lock in response to the server’s de-
mand.

Definition 6.2 (Strength). Lock X is stronger than lock Y

iff PY ⊆ PX and DY ⊆ DX.

Definition 6.3 (Weakness). Lock X is weaker than Y iff Y

is stronger than X.

A stronger lock permits more access methods and re-
stricts sharing when compared with a weaker lock. The
strength and weakness definitions include identical locks;
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i.e., two identical locks are both mutually stronger than each
other and weaker than each other. Although this abstraction
seems incongruous, it simplifies locking algorithms by ad-
dressing boundary conditions.

The following theorems help show that these definitions
match our intuition for file access locking and have seman-
tics identical to the compatibility, strength, and weakness of
static locking data structures. First, a lock hierarchy can only
be valid if the strength and weakness relations are transitive,
required conditions for an ordering.

Theorem 6.1. X stronger than Y and Y stronger than Z im-
plies X stronger than Z.

Proof. X stronger than Y implies that PY ⊆ PX and DY ⊆
DX. Also, Y stronger than Z implies that PZ ⊆ PY and
DZ ⊆ DY . From these, we observe that PZ ⊆ PX and
DZ ⊆ DX , which is exactly the condition for X stronger
than Z. �

Corollary 1. X weaker than Y and Y weaker than Z implies
X weaker than Z.

Lock strength is closely related to compatibility and will
be used to help determine transitions among locking modes
in our system. This next theorems express key concepts that
clients use to summarize locks and evaluate lock transitions.

Theorem 6.2. If X is weaker than Y then all locks compat-
ible with Y are compatible with X.

Proof. When X weaker than Y , PX ⊆ PY and DX ⊆ DY .
Also, for any lock Z compatible with Y , PY ∩ DZ =
∅ and PZ ∩ DY = ∅. This implies that PX ∩ DZ =
∅ and PZ ∩ DX = ∅. We conclude that X is compatible
with Z. As we have not constrained Z, X is compatible with
any lock compatible with Y . �

Corollary 2. If X is not compatible with Y then all locks
stronger than X are also incompatible.

Proof. For the sake of contradiction, conjecture an Z,
stronger that X, that is compatible with Y . By theorem 6.2
Z compatible with Y implies that X is compatible with Y .
This establishes the contradiction and no such Z can exist. �

The presented description of locks defines the semantics
that must be implemented by lock evaluation algorithms.
The algorithms for dynamic lock evaluation compare lock
requests and transitions to these definitions, rather than per-
forming a look up in a preset data structure. This eliminates
the memory required to store lock tables.

7. A summarizing data structure for lock evaluation

In addition to the formal definition of lock semantics, we re-
quire data structures at the lock requester (client) and lock

Figure 3. Lock management data structure.

granter (server) to fully specify algorithms. For lock eval-
uation, the server has the task of receiving incoming lock
requests and evaluating the compatibility of these requests
against currently outstanding locks. Obvious implementa-
tions might elect a data structure that enumerates all out-
standing locks and, when receiving a new lock request, the
server iterates over existing locks comparing compatibility
with the requested lock. Implementations based on lock ta-
bles work in exactly this fashion, performing a table look
up that compares the requested lock against each currently
outstanding lock.

We define a data structure that allows our algorithms to
evaluate lock compatibility directly, without iteration. The
fundamental concept of this data structure is to summarize
the sharing restrictions and permitted access modes of all
outstanding locks in a single location and evaluate incoming
lock requests against the summary. The data structure also
allows the server to find all locks that need to be demanded
directly, without searching.

This concept of summarizing lock state is similar, but
more general than, using the strongest outstanding lock as
a representative for all outstanding locks [11]. However, our
system makes provisions for locks that are compatible yet
not strength-related, which occurs when all possible combi-
nations of access modes are allowed.

In addition to the summary itself, the data structure con-
tains a list of all outstanding locks which indexes the bits of
each individual lock (figure 3). This allows the data struc-
ture to evaluate new lock requests against the summary, but
also permits the contribution of any individual lock to the
summary to be calculated and removed when the lock is re-
leased.

In the lock summary data structure, we use a bit vec-
tor to represent any individual lock. For a locking system
with k unique access modes, the bit vector contains 2k bits.
The first k bits correspond to the set of access modes that
a lock permits. The next k bits indicate the set of access
modes that the lock disallows. For example, in a locking
system with metadata read, metadata write, read, and write
access modes (mr,mw, r,w) the bit vector 〈1011 : 0001〉 de-
scribes a lock that permits metadata read and data read and
write while disallowing other clients from holding a write
privilege. We punctuate the bit vector with a colon to indi-
cate the semantic differences between the first and second
k bits.
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The data structure contains a list, called the Outstanding
list, of all individual locks currently held by clients. The
list holds a description of each lock, its 2k bits describing
permitted access and concurrently disallowed locking modes

(〈 ⇀

PLi ,
⇀

DLi 〉), and is indexed by lock identifier (Li ).
⇀

P stands
for the bit vector representation of set P . The server picks
lock identifiers for incoming lock requests, and all subse-
quent lock operations are conducted by lock identifier. Since
all client/server lock operations are conducted in the con-
text of lock identifier, the server can always look up entries
in this list quickly. It is possible to maintain this list as
an ordered index, so that locks can be looked up by name
in O(1), but engineering restrictions2 often require unique,
non-decreasing lock identifiers. These lock identifiers are
maintained using extendible hashing [8] for scalability and
fast look up, in time O(log n) for n outstanding locks.

The data structure also contains a summary of all out-
standing locks. The lock summary consists of the union
of all permitted access modes and the union of all disal-
lowed concurrently held modes. For a system with locks
L1, . . . , Ln outstanding, the summary is:

S = 〈PS,DS 〉 =
〈

n⋃
j=1

PLj ,

n⋃
j=1

DLj

〉
. (1)

In our data structure, we represent the summary using bit
vectors for sets, as if it were a single lock. The set operations
for union and intersection are computed using logical oper-
ators on bit vectors: “bit-wise or” ∨ for union and “bit-wise
and” ∧ for intersection. These bit operators can be legally
applied to two vectors of the same length and operate pair-
wise on the bits in each vector, producing a result bit vector
of the same length.

Our implementation encodes the two unions of the sum-
mary in terms of bit operations, whose bit components can
be expanded to arrive at an equivalent logical expression.

S = 〈⇀PS,
⇀

DS

〉= 〈 ⇀

PL1 ∨
⇀

PL2 ∨ · · · ∨
⇀

PLn,

⇀

DL1 ∨
⇀

DL2 ∨ · · · ∨
⇀

DLn

〉
. (2)

By maintaining the union of the permitted and disallowed
lock modes at all times, the server can implicitly evaluate the
compatibility of an incoming lock request against all locks
by evaluating the request against the summary. A requested
lock R = 〈PR,DR〉 is compatible if it does not disallow any
access modes permitted by the summary, and the summary
does not disallow any permitted modes it accesses, i.e.,

(PR ∩DS = ∅) ∧ (DR ∩ PS = ∅)
which is equivalent to

(⇀

PR ∧
⇀

DS

) ∨ (⇀

PS ∧
⇀

DR

) =⇀

0 . (3)

The intuition behind the summary is that all the lock state in
the system can be represented by an equivalent single lock,
constructed from the union of all permitted and concurrently
prohibited access modes.

In addition to the summary and Outstanding lists, we re-
quire additional lists to aid in processing lock requests and
efficiently maintaining the summary. For each bit in the lock
summary, we keep a BitLocks structure that contains a list of
the locks in Outstanding that set that bit high. Each BitLocks
list describes the set of locks that contribute to setting an in-
dividual bit of the summary high. Our algorithms for lock
management use this list to efficiently determine what locks
need to be revoked when a requested lock is not compatible
with current lock state.

Each lock in Outstanding also has references (pointers)
to the locations in all BitLocks lists in which the lock ap-
pears. When a lock is released, the lock management algo-
rithms use these references to quickly remove the released
lock from all BitLocks lists. The references actually point
from the entry in the Outstanding list to the actual entry in
the BitLocks list and not to the head of a list as the diagram
might indicate. This allows the algorithm to look up an entry
in the BitLocks list in unit time.

7.1. Correctness

To establish that evaluating lock requests based on this sum-
mary (equation (3)) is correct, we show that the summary
expression can be derived as a logical simplification of the
compatibility criteria: a requested lock is compatible with
outstanding lock state and can be granted if and only if it is
compatible (definition 6.1) with all outstanding locks.

For a system with locks L1, . . . , Ln outstanding, the re-
quested lock must be evaluated for compatibility pairwise
against locks L1, . . . , Ln.

∀Lj ∈ {L1, . . . , Ln}:
(PR ∩DLj = ∅) ∧ (DR ∩ PLj = ∅) (4)

≡
n∧

j=1

((⇀

PR ∧
⇀

DLj=
⇀

0
) ∧ ( ⇀

PLj ∧
⇀

DR=
⇀

0
))

(5)

≡
n∨

j=1

((⇀

PR ∧
⇀

DLj

) ∨ ( ⇀

PLj ∧
⇀

DR

)) =⇀

0 (6)

≡
(

⇀

PR ∧
n∨

j=1

⇀

DLj

)
∨
(

n∨
j=1

⇀

PLj ∧
⇀

DR

)
=⇀

0 (7)

≡ (⇀

PR ∧
⇀

DS

) ∨ (⇀

PS ∧
⇀

DR

) =⇀

0 . (8)

Noting that (8) is equivalent to (3), this transformation
shows that evaluation against the summary is equivalent to
evaluation against all outstanding locks and is the original
motivation for the summarizing data structure. We first de-
veloped the formalism for locking presented in section 6.
Upon seeing the expression for evaluating the compatibil-
ity of a single (requested) lock against a set of compatible
(outstanding) locks, we determined that it can be simplified.
The summarizing data structure for lock evaluation merely
captures the logical simplification.
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8. Algorithms for lock management

Based on both dynamic lock evaluation and the semi-
preemptible protocol, we develop a set of algorithms for
managing a distributed set of locks. These algorithms are
based on the summarizing data structure and logical rules
for lock evaluation. They also capture our design goal of
eliminating lock state using hierarchical locking.

In Storage Tank’s semi-preemptible protocol, we restrict
each client’s lock holdings to a single distributed session
lock for each file. Clients may have many local open in-
stances of that given file protected by a single lock.

Clients must be able to modify their currently held lock
– change the protected access and sharing without releasing
the lock. This need arises in two instances: (1) when the
client holds a semi-preemptible lock protecting local open
instances and another client requests a lock for that file that
does not conflict with the open instances, but is incompatible
with the held semi-preemptible lock; and (2) when a client
holding a semi-preemptible lock that protects open instances
has a local process request another open instance, compati-
ble with current open instances, that has access and sharing
requirements the semi-preemptible lock cannot provide. In
the first case, the held lock is too strong and the client must
convert it to a weaker and compatible lock that still protects
the open instances. This process is a lock downgrade. The
client cannot release its lock outright and obtain a weaker
lock because it has current open instances to protect. For
downgrades, the lock demands received from a server must
contain the type of file access lock requested so that clients
can resolve compatibility and the appropriate downgrade. In
the second case, the held lock cannot provide the access and
sharing requirements of the new request. The held lock is
too weak and the client attempts to obtain a stronger lock
that can protect all of the current open instances and the
new request. Obtaining the stronger lock while continuing
to hold the old lock is called a lock upgrade. The concepts
of strength and weakness help the system determine what
action to take, i.e., how to change lock state to service local
open requests or server demand messages.

We note that upgrade does not lead to deadlock for file
session locks. In databases, the term upgrade is sometimes
used interchangeably with the term promotion [11], which
describes a process reading a data object under one lock
and promoting the lock before writing. This type of pro-
motion leads to deadlock. For example, if two processes
reading the same object both hold the weaker lock and re-
quire the stronger lock for writing, then neither will receive
the promoted lock, because neither will release the weaker
lock which protects the contents of the object that it has read.
In contrast, for file session locks an upgrade changes the ab-
stract distributed lock and does not modify the mode of an
actual session; i.e., upgrades are not promotions. Conflicting
upgrades of session locks do not result in deadlock, because
the semi-preemptible protocol allows the server to deny con-
flicting lock requests.

EvaluateLockRequest

Inputs: The requested lock R = 〈⇀PR,
⇀
DR〉 and the lock summary data

structure.

1. If (
⇀
PR ∧

⇀
DS) ∨ (

⇀
PS ∧

⇀
DR) =⇀

0 , the lock is compatible. Proceed to
step 5 to grant the lock.

2. Else Demand all incompatible locks.

(a) For all non-zero bits in
⇀
PR ∧

⇀
DS demand the locks from the

summary that disallow the access modes desired by the requested
locks, i.e., for i = 1, . . . , k: if PR(i) ∧ DS(i) then demand all
locks in BitLocks(i + k).

(b) Similarly, for all non-zero bits in
⇀
PS ∧

⇀
DR demand the locks

from the summary that permit access for the bit the requested
lock disallows, i.e., for i = 1, . . . , k: if PS(i) ∧ DR(i) then
demand all locks in BitLocks(i).

3. Receive and process all responses to demand requests using function
ReleaseLock or by downgrading the lock.

4. If any lock holder refuses the demand, deny the lock request and Re-
turn.

5. Grant the requested lock. Reflect the change in lock state on the sum-
mary data structure using GrantLock and Return.

Figure 4. Server routine for evaluating incoming lock requests.

8.1. Server algorithm

The server acts as a central management authority for grant-
ing and revoking locks. It takes incoming lock requests from
clients, takes action by revoking outstanding locks to make
the requested lock compatible, and grants the request when
possible. To perform these actions, the server uses the sum-
marizing locking data structure.

The server receives lock requests from multiple clients
concurrently and processes these requests serially. Distrib-
uted locking requires that all lock state changes occur atom-
ically. For this reason, the server considers one lock op-
eration at a time. Multiple requests for the same lock are
queued at the server and executed serially. Processing one
lock request may result in multiple changes in lock state.
That is, before granting a lock a server may demand mul-
tiple locks and reflect many state changes on the summary.
However, these are server-driven state changes rather than
client requests and, therefore, are conducted in the context
of a single client-initiated lock request.

Upon receiving an incoming lock request, the server must
evaluate the requested lock for compatibility and demand
incompatible locks before granting the request. The server
follows the steps in figure 4 to determine the compatibility
of the incoming lock request with respect to current system
state. The server first evaluates the lock against the sum-
mary (step 1) to determine if the lock is compatible with all
outstanding locks and can be granted immediately.

If the request cannot be immediately fulfilled, one or
more currently outstanding locks conflict with the request
and must be demanded. The server determines and demands
the set of conflicting locks in step 2. Outstanding locks
can be incompatible because they disallow one of the ac-
cess modes required by the requested lock (step 2(a)). Al-
ternatively, outstanding locks can be incompatible because
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GrantLock

Inputs: The lock to be granted G = 〈⇀PG,
⇀
DG〉 and the lock summary data

structure.

1. Register the lock to be granted in the list of outstanding locks. Create

entry OG = 〈
⇀
PG,

⇀
DG〉 in the list Outstanding.

2. Calculate the contribution of the lock to be granted to the summary.

(a)
⇀
PS←

⇀
PS ∨

⇀
PG.

(b)
⇀
DS←

⇀
DS ∨

⇀
DG.

3. Add a reference to G in the BitLocks data structures for each bit it
permits and each it disallows. For each entry add a link from OG to
the BitLocks list.
(a) For i = 1, . . . , k : if DG(i) = 1 add OG to BitLocks(i + k).

(b) For i = 1, . . . , k : if PG(i) = 1 add OG to BitLocks(i).

Figure 5. Server routine for updating the summarizing data structure when
granting a lock.

ReleaseLock

Inputs: The lock to be released R = 〈⇀PR,
⇀
DR〉 and the lock summary data

structure.

1. Look at the references in OR to find and remove all occurences of OR

in the BitLocks lists.

2. If any of the BitLocks lists become empty, set the corresponding bits
low in the summary, i.e., if BitLocks(i) = ∅ then S(i)← 0.

3. Remove OR from the Outstanding list.

Figure 6. Server routine for processing released locks.

they permit an access mode the requested lock disallows
(step 2(b)). The routine evaluates the conflicting access
modes using the requested lock and the summary. For all

high bits in
⇀

PR ∧
⇀

DS and
⇀

PS ∧
⇀

DR , the routine demands
all locks that set those bits. The remainder of the rou-
tine implements the semi-preemptible lock protocol through
client/server interactions. If any client denies a demand, the
requested lock is refused. Otherwise, if all demands succeed,
the server grants the lock request (step 5).

The routine to evaluate lock requests results in outstand-
ing locks being released and a new lock being granted, which
changes the global lock state. The server updates the lock-
ing data structure to reflect these changes using subroutines
when granting a lock (figure 5) and when clients release
locks (figure 6).

When granting a lock, the server updates the locking data
structures to reflect the new outstanding lock (figure 5). The
new lock is added to the list of outstanding locks (step 1).
The summary is modified to reflect the change in lock state
(step 2). Finally, for every access mode permitted or disal-
lowed, the new lock must be added to the BitLocks list and
references added from the lock entry in Outstanding to the
entries in BitLocks.

When clients release locks, the server updates its data
structure using the routine in figure 6. Releasing a lock con-
sists of removing the lock from the list of Outstanding locks
(step 3), updating the summary to reflect the change of state
(step 2), and removing references to the lock (step 1).

We do not present algorithms for processing upgrade re-
quests and downgrade requests because these operations can

Server Client 1 Client 2 Client 3
S Summary H1 Held H2 Held H3 Held
H1 Client 1 S1 Summary S2 Summary S3 Summary
H2 Client 2 L1,1 Local L2,1 Local L3,1 Local
H3 Client 3 L1,2 Local L2,2 Local L3,2 Local

L1,3 Local L2,3 Local
L2,3 Local

S = H1 ∨H2 ∨H3
S1 = L1,1 ∨ L1,2 ∨ L1,3
S2 = L2,1 ∨ L2,2 ∨ L2,3 ∨ L2,4
S3 = L3,1 ∨ L3,2

Figure 7. Hierarchical lock management among client and servers.

be treated as combinations of release and request. The im-
portant difference between upgrade (or downgrade) and a
combination of simpler operations is that the upgrade (or
downgrade) must be performed atomically. Atomicity for
multiple operations can be achieved at the server by allow-
ing only a single process to access the locking data struc-
ture at a time. However, unlike the server algorithms, the
client/server protocol must contain upgrade and downgrade
primitives, as the protocol has no atomicity guarantee across
multiple operations.

8.2. Client algorithms

The semi-preemptible locking protocol allows clients to hold
locks even when they do not use them. By holding locks
when not in use, caching locks, the client optimistically re-
tains privileges on the premise that the last client to lock a
resource is the most likely to lock it again. This design aims
to minimize changes in lock state and the associated mes-
saging and transactional overhead.

The client uses two techniques to manage distributed
locks and local processes that operate under these locks.
First, the client allows local processes to use any subset of
the access modes allowed by the locked resource; i.e., the
client is not required to use the full strength of the held lock.
Also, the client allows multiple local processes to operate
under the same distributed lock.

To implement these techniques, the client manages its
held lock and local processes hierarchically. The client holds
a distributed lock (H ) with a server (figure 7). H encap-
sulates all actions that local processes can take against the
locked resource. The local processes only access data us-
ing the modes specified by the lock and only prohibit the
concurrent access modes encoded in H . Under this held
lock, the client maps the access modes and sharing limita-
tions of each local process to a local lock. The local lock
is a local management abstraction and is not visible to other
clients or the server. A client holds many local locks and
uses the same summarizing data structure as the server (fig-
ure 3) to evaluate and manage local locks. For the client, the
summary describes all in-use access modes and disallowed
modes for local processes accessing the data. The summary
is restricted to be always weaker than the distributed held
lock. This allows the held lock to protect concurrency guar-
antees expressed in the summary and, therefore, needed by
the local locks.
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ProcessDemand
Inputs: The remotely requested lock included in the demand message R =
〈⇀PR,

⇀
DR〉 and the client lock summary data structure.

1. Evaluate whether the requested lock is compatible with the currently

held local locks. If (
⇀
PR ∧

⇀
DS) ∨ (

⇀
PS ∧

⇀
DR) =⇀

0 proceed to step 2,
Else deny the demand and Return.

2. Determine the downgraded lock mode required to protect the cur-
rently held locks and the requested lock using one of the two following
heuristics.

(a) Maximum downgrade heuristic, H = 〈⇀PS,
⇀
DS 〉.

(b) Minimum downgrade heuristic, H = 〈 ⇀
PH ∧¬

⇀
DR,

⇀
DH ∧¬

⇀
PR〉

3. Inform the server of the downgrade and Return.

Figure 8. Client routine to determine the needed lock downgrade.

The management of the client’s summarizing data struc-
ture is different than the server’s. In many ways, man-
agement is simpler because the local locks held by local
processes are non-preemptible. This eliminates demands or
revocations of held locks. In other ways, management is
more complex because when the client changes local lock
state, it must consider the distributed system state, encapsu-
lated by the held distributed lock H .

The main principle in the management of multiple local
locks under a single distributed lock is theorem 6.2, which
states that if a lock is compatible with all other outstanding
locks in the distributed system then all locks weaker than that
lock are also compatible. This ensures that if the remainder
of the distributed system acts in accord with the held lock,
the permitted access and sharing of the local locks are re-
spected.

Locking clients respond to several stimuli, requests to ob-
tain and release local locks from local processes, and de-
mand requests from the lock server. Clients obtain and up-
grade distributed locks on behalf of local processes that re-
quire stronger local locks and downgrade and release locks
in response to server demands. In effect, the client acts as a
server of locks to local processes, under the constraint that
the client holds a suitable distributed lock. For this reason,
lock acquisition, release, upgrade, and grant operations at
the client use routines much like the server’s. Owing to sim-
ilarities, we omit detailed descriptions of these operations.

The remaining client action is to process demand requests
from the server (figure 8). Demands are initiated by a server
attempting to alter the distributed lock state in order to grant
a lock to another client. The lock mode requested by the
other client is included in the server’s demand message so
that the requested lock can be evaluated against current open
state. In step 1, the client evaluates whether the requested
lock can be granted given local lock state. Only the clients
know local state and they must evaluate the request and de-
termine the conflicting outstanding locks. The clients them-
selves make the final determination as to the compatibility
of the request against current system state by comparing the
requested lock against their current local lock state.

Clients with compatible local locks downgrade their dis-
tributed lock. When choosing the locking mode for the

downgrade, there are many possible choices. We present
the two extreme choices as possible heuristics. First, a client
can elect to retain as strong a lock as possible, the minimum
downgrade heuristic. The client reduces its holding as little
as possible, in the lock strength sense, to make its lock com-
patible with the requested lock. This choice would perform
well if future access to the object were more likely to occur
locally than from other clients. However, if the interest in
the object has moved to other clients, the policy may result
in future demands. The other alternative is to downgrade
the lock holding as much as possible: the maximum down-
grade heuristic. The downgraded locking mode is exactly
the lock summary – the fewest permitted access modes and
disallowed modes needed by local locks.

9. Comparing dynamic evaluation with traditional
locking

We present the execution time and memory usage bounds of
lock evaluation algorithms to illustrate how dynamic evalu-
ation asymptotically outperforms evaluation based on static
data structures if locking systems are complex.

The amount of space used by a locking system can be
divided into static and dynamically used space. The static
space contains the information the system needs to know
about locking modes to properly run the locking protocol.
The dynamic space contains information about current out-
standing locks. Conventional wisdom holds that the dy-
namic costs dominate the static costs. However, as locking
systems become more complex, this assertion is not always
true because the static space costs can grow exponentially in
the number of access modes.

For static data structures, k different access modes results
in 22k unique locks. Locking with traditional data structures
requires space in �(24k). There are 24k entries in a lock
compatibility table for 22k locks. For dynamic lock evalua-
tion, the algorithms only need to know the different locking
modes, which uses space in O(k).

The dynamic space usage of locking using traditional data
structures is �(nk) for n outstanding locks. The system
stores a list of the k modes of the n outstanding locks. Dy-
namic evaluation uses the summarizing data structure to hold
dynamic lock state, which is an �(nk) data structure. The
Outstanding list has n entries each of size k, and there are k

different BitLocks lists with a total of n entries in all lists
and n incoming pointers referring to these entries.

For execution time, we look at how long operations take
with respect to the amount of outstanding lock state n and
the amount of static state k. Lock evaluation with static data
structures takes time in �(n), because the request must be
checked against all outstanding locks. Dynamic lock evalu-
ation uses execution time in O(k) to evaluate the lock, up-
date the lock summary, and fill out the BitLocks and Out-
standing lists. Similarly, releasing a lock takes time in O(k).
When concurrency is high, there are many outstanding locks,
n dominates k, and dynamic evaluation operates more effi-
ciently.
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The total space required for dynamic evaluation of locks
is always asymptotically less than or equal to that required
for evaluation based on static data structures. However, the
dynamic space requirements of dynamic evaluation of locks
are larger by a constant factor. The list of locks used for
static evaluation is equivalent in size and content to the Out-
standing list. All other portions of the summarizing data
structure are overhead. The true space savings are realized
on the static data structures and become important when k

grows large.
Perhaps more important than the space and time savings

is the improvement in manageability and ease of implemen-
tation. An implementer using a lock compatibility table must
reason about each pair of locks and complete the entry in the
table. This task can be difficult even for as few as 64 locks in
Windows NT. Additionally, all locking modes must be pre-
programmed. With dynamic evaluation, the implementer
need only identify how the object will be accessed. The dy-
namic evaluation algorithms manage concurrency and com-
patibility.

10. Related research

Many distributed file systems clients transact with a server
on every open and close of a file for synchronization [5,24,
25]. This is the simplest technique to implement local file
system open semantics in the distributed environment. How-
ever, all file open and file close requests require a network
operation.

The Andrew file system [14] interacts with a server at
every open and close and uses open and close as points to
synchronize cached data. Andrew does implement a data
cache that can hold data past close and a general callback
(demand) mechanism. However, callbacks apply only to pre-
emptible data locks.

Like Storage Tank, the Calypso file system [7] uses open
mode synchronization locks, called tokens, to implement lo-
cal file system semantics. In Calypso, tokens are fully pre-
emptible at the client and cannot be held past close. Every
file system open and close generates a token request or re-
lease. File system open state and token request conflicts are
managed completely at the server. Calypso uses a simple
lock hierarchy for its data locks, but the hierarchy does not
apply to open mode synchronization tokens.

The DFS file system [15] describes a token mechanism
similar to semi-preemptible locks for the management of
data, metadata, and open state. Like semi-preemptible locks,
a client can refuse or permit revocation of a token, depending
upon local state. Token management in DFS differs in that
all elements of system locking, including file access locks,
data locks, and byte-range locks are managed with the single
token mechanism. The DFS treatment of token management
is less concrete than our discussion of locking, and does not
address mapping local file system semantics to a distributed
locking system.

This work omits a discussion of synchronization in the
presence of failure. A distributed file system that presents a

local file system interface to remote and shared storage must
continue to do so when components fail. As do many mod-
ern file systems [17,20,23], Storage Tank uses a lease-based
[6] protocol to ensure operational safety and high availabil-
ity in the presence of client and server failures, and network
partitions.

11. Conclusions

Distributed file systems need to manage open state for ref-
erential integrity and synchronized access to files. Exist-
ing distributed systems address this problem by either re-
laxing local file system semantics, or by sending every file
open request to a server. We have introduced a locking con-
struct, the semi-preemptible lock, that permits file system
clients to grant most file open requests locally, without a
server transaction. By avoiding server messages on open,
our client improves performance by exploiting locality of ac-
cess to files. Semi-preemptible locks are also used to sum-
marize open state, so that many open files may be granted
under the protection of a single semi-preemptible lock. This
reduces global lock state and further reduces client–server
messages.

We have also presented a set of algorithms and data struc-
tures for the dynamic evaluation of locks. Dynamic evalua-
tion provides a formal and compact framework for evaluat-
ing lock compatibility at runtime. Dynamic evaluation ob-
viates lock compatibility tables, exponentially reducing the
space requirements to describe a locking system. It also
replaces ad hoc systems for lock evaluation, providing a
formalism that manages locks correctly and without dead-
lock.

In combining semi-preemptible locks and dynamic eval-
uation, we present a total solution for managing sessions in
a distributed file system. Our techniques are space efficient,
come with correctness guarantees, and exploit file system
workload characteristics.

Notes

1. We use the term “demand” for consistency with existing terminology
despite the fact that clients can refuse a demand. A term like “request”
would more appropriately describe the server’s action, but request is of-
ten used to describe the client’s process for acquiring locks from the
server.

2. Security [19,21] and failure recovery [3] benefit from unique and non-
decreasing lock identifiers.
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