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Abstract

Scalable approaches to communication and inference:

Minimalistic strategies for measurement and coordination

Dineshkumar Karuppanna Gounder Ramasamy

Recent advances in technology have enabled large-scale systems in a wide

variety of settings. We consider three examples which illustrate that by carefully

reducing the size of problem from the very outset, we can provide efficient solutions

to the engineering difficulties of communication and inference at scale.

The first example we provide is the problem of estimating a small number of

continuous valued parameters from a high dimensional signal. Random projections

have been shown to be effective in capturing sparse signals with few measurements.

We study the effect of random projections for parameter estimation by focusing

on two lower bounds on estimation error variance, the Ziv-Zakai bound (ZZB)

and the Cramér-Rao bound (CRB). They reveal that when we ensure that certain

geometries (shapes) in the signal manifold (the set of all possible values that

the signal can take) are preserved, these bounds are also preserved up to an

SNR penalty equal to the dimensionality reduction factor. We show how the

SNR penalty results when viewed in conjunction with the threshold behavior

of the ZZB can be used to accurately predict the minimum number of random
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projections needed to avoid large estimation errors. We take up the problem of

frequency estimation to illustrate the above ideas and give: (i) number of random

projections needed to preserve the identified geometries and (ii) an algorithm

which attains the CRB when the number of random projections exceeds the ZZB

based prediction.

The second problem we consider is that of geographic routing in mobile ad

hoc networks. In order to forward a packet, a relay node needs position estimates

of its neighbors and the destination. When the number of nodes in the network

grows, the overhead required to inform far away nodes of changes in one’s position

overwhelms the network. We address this problem by directing updates to only

a small subset of nodes in the network. Accordingly, we give a routing protocol

that accommodates scenarios where the source and/or relay nodes do not have

estimates of the destination’s location. The protocol parameters are chosen to

guarantee that the overhead fits within network resources and to ensure that

the length of every routing trajectory is bounded within a constant factor of the

shortest path. We verify these analytical design prescriptions using simulations.

The third problem is an exploration of the value of time for efficient inference

on Twitter. Twitter as an online social medium is defined by its real-time nature.

We therefore ask whether interests (e.g., sport fandom) can be identified from a

user’s tweet times alone by exploiting the known timing of “events” associated

ix



with the interest (e.g., game times of the sport team). Our results indicate that

tweet times can be used to make reliable inferences on the interests of a large

number of users. With a view to automate event identification, we develop an

inference framework with minimal measurement (time of tweets) and processing

requirements for accurately determining when a topic trends on Twitter from

an aggregate Twitter feed related to the topic. We then dissect the identified

trending times into groups, each associated with a different subtopic, using only

userIDs of tweets made during trending times based on the intuition that when two

events/trending-times share a large fraction of users, they likely correspond to the

same subtopic. Our results from Twitter data obtained over six months illustrate

that significant insights into topic-specific Twitter activity can be obtained within

our frugal measurement and processing framework. These results suggest that

time can be a compact and effective cue to cull data from massive online streams

like Twitter.
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Chapter 1

Introduction

Many current and emerging engineered systems dwarf their predecessors in

scale. This calls for minimalistic design approaches that extract the essential

features of the problem at hand. Adopting such designs, enables us to decrease

the problem scale to manageable levels, thereby giving room to carefully designed

algorithms that limit the sacrifices in optimality due to this reduction in scale. In

this thesis, we consider three examples illustrating such approaches:

• Physical layer: Channel estimation for 60GHz systems, where we give an

architecture that sidesteps the difficulties that arise as a result of hardware

scaling by restricting the nature and number of measurements that we take,

• Network layer: Maintaining routing state information for geographic routing

in large mobile ad hoc wireless networks, where the resulting overhead can

overwhelm the network. We propose a solution which drastically reduces

1



Chapter 1. Introduction

the coordination overhead by carefully choosing a minimal set of users to

inform and

• Application layer: Inference on social networks, for which the vast scale of

data that needs digesting motivates us to investigate the purchase from a

compact and ubiquitous source of information, the time when people act

(specifically, when a person tweets on Twitter).

While the problems differ in their details, the solutions we give demonstrate that

by reducing the scale of the problem intelligently at the outset, we can avoid the

pitfalls of scale, while also providing performance guarantees.

We now provide a summary of the aforementioned problems and state our

contributions.

1.1 Compressive parameter estimation in AWGN

This dissertation makes contributions towards the general problem of estimat-

ing continuous parameters from random projections perturbed by AWGN. We first

present the motivating problem of channel estimation for large 60GHz arrays.

2



Chapter 1. Introduction

Outdoor 60GHz cellular systems

The ever-growing demand for cellular data has strained existing wireless net-

works to their limits. We see the evidence for this in the finely tiered data packages

offered by cellular service providers. This crunch in wireless resources is partic-

ularly severe in urban environments, where the density of users makes current

approaches to tackling this shortage, namely increasing the density of cellular

basestations unsustainable.

The wireless spectrum around the cellular bands (≈ 2GHz) has mostly been

taken up by civilian and defense applications. An orders of magnitude larger

unlicensed spectrum is however available in the 60 GHz band (57-64 GHz in

North America). With the emergence of commercial 60GHz indoor technologies,

a potential approach to meet the cellular “capacity crunch” in outdoor urban

scenarios is to use the 60GHz spectrum. This can for example be realized by

tapping into the dense wireline backbone networks that are already available in

urban settings.

Coarse RF beamforming

The rule of thumb for the area of an antenna element is λ2, where λ refers to the

wavelength of the EM wave (λ ∝ 1/fc; fc is the carrier frequency). Therefore, at

3
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ADC

ADC

ADC

DSP

e−j2πfct

e−j2πfct

e−j2πfct

DSP

Coarse RF  

phase-shifters

{±1,±j}

ADC

e−j2πfct

Figure 1.1: Left: Conventional beamforming with fine digital access to each
antenna element; Right: Coarse RF beamforming with {±1,±j} phase shifters
for each antenna element.

higher frequencies (smaller wavelengths), the amount of power that an individual

antenna element can collect scales as λ2 and takes an order of magnitude hit (by

a factor of about a thousand when compared to the 2GHz band). An upside to

this, however, is that we can now pack many antennas on a small area: for e.g.,

it is possible to fit a 32 × 32 (1024 element) array on the area equivalent to the

palm of one’s hand (a 6cm × 6cm patch). By employing such physically small,

yet electrically large arrays we can compensate for the loss in power due to small

antenna sizes at 60GHz. Such gains from multi-antenna systems are referred to

as beamforming gains.

Current multi-antenna communication systems realize beamforming gains by

dedicating a separate analog-to-digital converter (ADC) for each antenna and

process the received signals digitally. By doing so, they ensure that the signals

from the different antennas add constructively. We depict such an architecture

4
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in Figure 1.1 (left). While this is feasible when antennas are few in number,

this architecture, which dedicates a power-hungry ADC to each antenna element

does not scale to the electrically large antenna arrays necessary for outdoor urban

cellular systems at 60GHz.

We consider an approach which addresses this challenge by means of a hybrid

minimalistic philosophy, wherein digitally controlled radio-frequency (RF) phase

shifters are used to modulate the gain of each antenna element in a coarse manner.

Following this, a single baseband chain (sum of the antenna responses) emerges

from the array. This architecture is sketched in Figure 1.1 (right) and is referred

to as RF beamforming.

Spatial channel estimation

It is desirable that we accommodate the following unique features of this esti-

mation problem:

• Channel measurements are obtained by coarse phase control of each antenna.

As a result, the kind of measurements that can be used for channel estima-

tion is limited (if N is the number of antenna elements, the measurements

are constrained to be projections onto vectors in {±1,±j}N).

5
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θ1

θ2

θ3

d

ωk = (2πd/λ) sin θk

Figure 1.2: 60GHz spatial channel seen by a d-spaced uniform linear array is a
mixture of sinusoids. The frequency of the sinusoid corresponding to each path is
given by ω = 2π(d/λ) sin θ, where θ is the angle of arrival of the path, a continuous
quantity

• Even though the number of antennas is large, it is desirable that the number

of measurements used for estimating the channel is minimal. This allows us

to adapt to mobility in outdoor cellular systems.

• It has been empirically observed that 60GHz channels are sparse. i.e., they

are composed of a few paths (say K). The channel response for each path

can be concisely described by a few continuous parameters. For the example

of the d-spaced linear array in Figure 1.2, they are the gains {gl} and the

“spatial frequencies” {ωl} of the K paths. Specifically, the channel response

x(n) seen by the n-th antenna element is given by

x(n) =
l=K∑

l=1

gle
jωln. (1.1)

The resultant channel is thus a mixture of sinusoids.

6
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One approach to estimating the 60GHz channel could be to explicitly estimate

this natural compact parameterization of the channel given by θ = (g1, ω1, . . . ,

gK , ωK), rather than the channel seen by each antenna element x(θ) = [x(1), . . . ,

x(N)]T individually (which entails estimating N ≫ 2K parameters).

Random projections are a natural fit for this estimation scenario because:

(i) they are agnostic to the constraint that the measurement weights must come

from a restricted set and (ii) they have been shown to be successful in exploiting

sparsity and capturing information with a small number of measurements. There-

fore, we investigate such compressive channel estimation strategies which take as

input random projections of the channel response and estimate the parameters θ

directly.

We layout the notation we use to state our results: We want to estimate a

K dimensional parameter θ = (θ1, θ2, . . . , θK) from M random projections of an

N dimensional signal x(θ) in AWGN. We denote the compressive measurement

matrix containing the random projection weights by A.

Contributions

In this dissertation, we make the following contributions to general parameter

estimation from compressive measurements (random projections) perturbed by

7
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Additive White Gaussian Noise (AWGN), which we apply to our channel estima-

tion setting:

• Bounds on the estimation error variance, such as the Ziv-Zakai bound (ZZB)

and the Cramér Rao bound (CRB), relate the geometry of the signal mani-

fold to the best achievable performance. We show that the ZZB is preserved

up to an SNR penalty equal to the dimensionality reduction factor M/N

when pairwise distances are approximately preserved. i.e.,

‖Ax(θ1)−Ax(θ2)‖ ≈ C ‖x(θ1)− x(θ2)‖ ∀θ1, θ2

We show that under weaker geometry preservation conditions (pairwise dis-

tances in the limit of θ1 → θ2), the CRB is preserved up to the same SNR

penalty of M/N .

• Non-linear estimation problems exhibit a threshold behavior with SNR and

this threshold behavior is closely mirrored by the ZZB. We use the preceding

SNR penalty results, which relate the number of compressive measurements

with the effective SNR to give a numerical prediction of the minimum num-

ber of random projections needed to avoid gross estimation errors.

Towards the motivating problem of estimating sparse 60GHz channels from

coarse phase shifts, this dissertation makes the following contributions (x(θ) is

8
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given by the mixture of sinusoids model in (1.1) and the entries of A are chosen

uniformly and independently at random from {±1,±j}):

• We characterize the minimum number of random projections needed to en-

sure that the geometry of the mixture of sinusoids problem (60GHz channel

estimation for uniformly spaced linear arrays) is approximately preserved.

While our characterization is complete when the number of sinusoids K = 1,

we give partial results for K ≥ 2.

• We provide a low-complexity algorithm for frequency estimation which at-

tains the CRB when the number of random projections exceeds our ZZB-

threshold based prediction.

While the motivation for our work on compressive frequency estimation has

been spatial channel estimation for 60GHz networks, the results in this dissertation

have direct implications for other related problems like OFDM channel estimation

for wideband channels (those that fit the Tapped Delay Line Channel Model with

a few taps).

9
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1.2 Geographic Routing for Mobile Ad Hoc Net-

works

Conventional wireless networks such as cellular networks and WiFi networks

are supported by a wired backhaul. The wireless portion of the network is used to

provide last-mile connectivity. In disaster relief scenarios, such wired networks can

be compromised. With the ubiquitous penetration of smartphones and tablets,

a large and dense ad hoc network of wireless devices equipped with geographic

positioning systems may yet be available.

Geographic routing is attractive for such ad hoc networks where the nodes

know their own locations. In order to implement geographic routing, a node

only requires the locations of its immediate neighbors and of the destination node

in order to forward a message. When the nodes in the network can move, a

node can maintain estimates of neighbors’ locations easily by means of periodic

local broadcasts. As the network scales, the overhead corresponding to global

dissemination of information regarding the locations of moving destination nodes,

however, becomes a bottleneck.

In this dissertation, we draw inspiration from prior work[7] where it was ob-

served that it is possible to reduce the frequency of position updates to nodes

which are farther away from the destination node without adversely affecting the

10
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Estimate 

Destination

Relay/packet 

locationDirection 

forwarded

Correct 

direction

θ

Next relay

Figure 1.3: Rate of progress depends on the angle between the forwarded and
correct directions (marked θ). When the distance between the destination and
the packet location is large, the position estimate used can disagree with the true
location by a proportionally larger amount while maintaining the quality of the
routing decision made at the relay node (quantified by θ).

quality of routing decisions (this simple intuition is presented in Figure 1.3). We

analyze the scalability of geographic routing protocols built on top of this basic in-

tuition. For such protocols two competing objectives need to be addressed. They

are the following:

• Scalability: We need to ensure that the volume of position updates does

not exceed the amount that can be sustained using a fixed bandwidth (a

portion of the available bandwidth can be preallocated for such overhead

purposes). This necessitates that we reduce the volume of position updates

made.

• Reliability & Efficiency: When we reduce the volume of updates, routing

decisions made at each intermediate node are “approximate”. We need

guarantees that such approximation errors do not “add up” and that packets

11
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Figure 1.4: Left: Update rings corresponding to three consecutive ring indices.
The position estimates (also centers of the update ring) are marked • on the des-
tination’s trajectory using corresponding colors. Right: Two packet trajectories
(blue) starting from nodes marked � converging to the destination (magenta •).

are successfully delivered to their destinations. Further, it is necessary to

quantify the loss in efficiency of the routing trajectories constructed using

lax position-publish strategies (a measure of the efficiency of a route could

be the length of the packet trajectory relative to length of the straight line

from source to destination).

We give a scalable solution that provides the system designer with the choice

of deciding where she wants to be in the above trade-off between overhead (band-

width needed) and efficiency.

Our scalability and reliability computations assume that all nodes in the net-

work execute Brownian motion with the same mean square velocity (or a random

walk on a fine 2D lattice). While Brownian motion as a model for short-term

mobility may seem unrealistic, we note that it is the movements over large time

12
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scales which matter for both scalability and reliability. Using law of large numbers

arguments, one can make the case that many local models for mobility “look like”

Brownian motion when viewed over a sufficiently large time scale.

Contributions

The contributions made in this dissertation towards addressing the scalability

and efficiency of geographic routing in mobile ad hoc networks are summarized as

follows:

• A measure of the suboptimality of a routing decision is the angle between the

correct direction of the destination and the direction along which a packet is

forwarded (θ in Figure 1.3). One approach to reducing the position update

overhead is to reduce the frequency of updates to nodes farther away, while

also ensuring the angular “error” for all routing decisions is bounded. In

order to do this, one needs to send position update to every node in the

network. We show that the position-publish overhead needed to sustain

such a scheme cannot be supported with fixed bandwidth.

• The position-publish protocol that we propose circumvents this scalability

bottleneck by sending position updates to strictly a subset of the nodes in

the network. Specifically, updates are made to annular regions centered

13



Chapter 1. Introduction

around the destination node (Figure 1.4 left). Counting outward from the

destination node, the radii, thickness and lifetimes of the updates all grow

exponentially with the ring index, but their exponents differ. We determine

the constraints that these exponents need to satisfy for scalable position-

publish.

• All nodes in the network do not possess position estimates corresponding to

the destination node. Therefore, the routing protocol appends the “best”

estimate of the destination node seen so far to the packet. Subsequent

relay nodes use this estimate to make their forwarding decisions unless they

have a better estimate of the destination node, in which case they overwrite

the packets’s estimate with theirs. The ring index corresponding to the

update is used to decide whether the estimate is a better estimate or not.

Representative packet trajectories corresponding to this routing strategy are

sketched in Figure 1.4 (right). In order to ensure routing reliability, a packet

must latch-on to the update corresponding to an update ring when it is

relayed through it (we illustrate this for the trajectories drawn in Figure 1.4

right, where packets refine their estimates when they pass through the ring).

Since, all nodes in the network are mobile, an update which we make to a

ring tends to diffuse away with time. We determine the conditions that the

14
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protocol parameters must satisfy in order to combat diffusion and ensure

reliable routing.

• We identify constraints on the protocol parameters which limit the potential

geometry of the update rings around each destination node to guarantee that

the efficiency of routes constructed using the proposed routing protocol is

bounded (from below) with high probability, even though a large fraction of

the nodes in the network do not posses position estimates corresponding to

the destination. We quantify routing efficiency by means of the reciprocal of

the route stretch, which we define to be the ratio of the length of the packet

trajectory to the shortest distance between the source and the destination

and give guarantees on routing efficiency.

1.3 Inference from time on Twitter

Twitter as a medium for social interactions is defined by its real-time nature.

Such timely interactions have been enabled by social media innovations like hash-

tags pioneered by Twitter. As a result, we expect the timing of tweets to be a

useful signal for inference on Twitter. Existing inference methods that use tweet

times also use the rich body of information in a tweet (like text, location, etc.,).

For e.g., an early Twitter based news aggregator used text and author reputa-
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tion scores for each tweet in addition to tweet times. Such systems, which pool

information from multiple sources do not give us an understanding of the value

inherent in time.

This dissertation explores two closely related problems with the view of clarify-

ing the value of time for identifying user interests. The first is a study of whether

the times when clearly demarcated events related to a topic transpire in the real

world can be used to identify users who are interested in the topic. For the exam-

ple of identifying fans of a sport team, these “event times” can be the times when

this team plays its games. The second aims to discover and group trending/event

times using aggregate feeds related to the topic (we use one such aggregate feed,

obtained by asking Twitter to return the stream of public tweets containing a few

keywords related to the topic). These groups of event times can then be used to

identify users interested in the topic. We now summarize the contributions made

in this dissertation for the two problems.

Contributions

This dissertation makes the following contributions towards understanding the

value of time as a tool for inference on Twitter:
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Not  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t
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Figure 1.5: Tweet times of the user marked by arrows. Event times are marked
in red. Top: Tweeting behavior of a person interested in the topic. Bottom: A
person not interested

• Interest from tweet times: We expect users interested in a topic to tweet

more often during associated event times than other times (sketched in Fig-

ure 1.5). We propose a simple Bayesian model for the tweet times of a user

that incorporates this intuition and derive a statistic for interest in a topic.

This statistic is merely a function of three numbers : (a) number of tweets

during events, (b) total number of tweets and (c) fraction of the overall ob-

servation time that corresponds to events. Since people often interact with

others who share similar interests, we extend our probabilistic framework to

use the interest level estimates of other users with whom a person interacts

(by referring to them in his/her tweets). Our results indicate that time can

be used to make (computationally) cheap and yet reliable inferences over

large user pools.
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t

t

Figure 1.6: Top: The frequency of tweets on an aggregate feed corresponding a
topic. Bottom: Event times/Trending times for the topic identified from this feed

• Event detection from aggregate feeds: Our notion of trending times/event

times are the times when the level of activity on a topic-specific aggregate

feed is abnormally high (Figure 1.6). Therefore, in order to identify events,

we need a notion of what the baseline activity is. We model baseline activ-

ity using a time-varying Poisson process in order to capture the significant

time-of-day effects on Twitter. A challenge in estimating baseline parame-

ters is avoiding the upward bias due to event times. We give an algorithm

for estimating the baseline which sidesteps this bias by borrowing ideas from

outlier detection. We detect events by means of a constant false alarm rate

(CFAR) test for increased tweet rate relative to the baseline model. This

reduces to a simple comparison of the observed number of tweets over a

particular time window with the number that one would expect on average

due to baseline activity. Our results illustrate that it is possible to reliably
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detect interesting activity from an aggregate feed using only the time of

tweets.

• Event clustering: Once events are detected, we build a bipartite user-event

graph, with an edge between a user and an event if the user tweets during

the event. We employ spectral partitioning techniques [23, 30] on this graph

to cluster the detected event times into sub-topics. We use wordclouds to

visualize the results for feeds corresponding to 4 TV shows (using 6 months of

observations). They show that in addition to identifying episode air times

(as a distinct sub-topic), we discover other commercial and social tie-ins

using such minimal means.

1.4 Outline

We review estimation error bounds and present our results on compressive

parameter estimation in Chapter 2. We then focus on geometry preservation

for compressive frequency estimation in Chapter 3. We present a scalable and

efficient geographic routing protocol for MANETs in Chapter 4. In Chapter 5,

we investigate inference from time on Twitter. We present our conclusions in

Chapter 6.
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Chapter 2

Compressive Parameter
Estimation in AWGN

We consider the problem of estimating a K dimensional parameter θ =

(θ1, θ2, . . . , θK) from random projections of an N dimensional signal x(θ) per-

turbed by Additive White Gaussian Noise (AWGN). In this chapter we arrive at

a precise characterization of the number of random projections needed to avoid

gross estimation errors.

When we make all N measurements, fundamental bounds on the estimation

error variance, such as the Ziv-Zakai bound (ZZB) and the Cramér Rao bound

(CRB), relate the geometry of the signal manifold to the best achievable perfor-

mance. The ZZB depends on pairwise distances of the form ‖x(θ)− x(θ′)‖ ∀θ, θ′,

Parts of this chapter are reprinted from our Journal submission [47] with permission. c©2014
IEEE.
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while the CRB depends on the norms of vectors in the “tangent planes”:

∑
k ak (∂x(θ)/∂θk), which are essentially pairwise distances ‖x(θ)− x(θ′)‖ in the

limit of θ′ → θ. We explain this in Section 2.3, when we review bounds on

estimation error in AWGN.

As a result, when we make compressive measurements, the measurement ma-

trix A enters the expressions for the ZZB and the CRB only via the norms of

vectors of the form A (x(θ)− x(θ′)). This observation leads us to the main result

of this chapter: We show that if the measurement matrix A satisfies the pairwise

isometry property (PIP):

‖A (x(θ)− x(θ′))‖ ≈ C ‖x(θ)− x(θ′)‖ , ∀θ, θ′,

the ZZB with compressive measurements is approximately equal to the ZZB with

all N measurements, except for an SNR penalty of M/N , where M stands for

the number of compressive measurements made (when we scale A so that the

noise variance is unaltered, each random projection captures only (1/N)-th of

the signal energy and this accounts for the M/N SNR penalty). We prove an

analogous result for the CRB when A guarantees tangent plane isometry

∥∥∥∥∥A
∑

k

ak (∂x(θ)/∂θk)

∥∥∥∥∥ ≈ C

∥∥∥∥∥
∑

k

ak (∂x(θ)/∂θk)

∥∥∥∥∥ , ∀θ, ak,

which is a weaker requirement than pairwise isometry. We state these results as

Theorems 2.1 & 2.3 in Section 2.4.
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When the preceding isometries hold, we can use their relationship to the

ZZB/CRB to obtain a tight prediction on the number of measurements neces-

sary for successful compressive estimation. It is known that nonlinear estimation

problems exhibit a threshold behavior with the SNR which is closely mirrored

by the threshold behavior of the ZZB. We employ this observation to predict the

number of measurements required to avoid performance floors, since the effec-

tive SNR with compressive measurements increases linearly with the number of

measurements. This prescription is given in Section 2.4.4.

Outline: We start by surveying related work in Section 2.1. In Section 2.2, we

state the compressive parameter estimation problem in AWGN and the isometry

properties needed for successful estimation. In Section 2.3 we review bounds on

parameter estimation in AWGN. The relationship between these estimation error

bounds (CRB/ZZB) and the isometry properties are brought out in Section 2.4.

2.1 Related work

The goal of standard compressed sensing [14, 18] is to recover signals which are

sparse over a finite basis with significantly fewer measurements than the dimension

of the observation space. Signal recovery requires that the measurement matrix

must satisfy the Restricted Isometry Property (RIP): the distance between any
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two sparse signals must be roughly invariant under the action of the matrix. If

the RIP is satisfied, sparse signals can be recovered efficiently using techniques

such as Orthogonal Matching Pursuit (OMP) and ℓ1-norm minimization.

The problem of compressive estimation of continuous-valued parameters was

perhaps first investigated in [6]. However, it does not relate the pairwise ǫ-isometry

property to estimation-theoretic bounds as we do here. Reference [6] also shows

that compressive measurements guarantee pairwise ǫ-isometry for a signal mani-

fold with probability 1− ρ, as long as the number of measurements M satisfies

M = O
(
ǫ−2 log(1/ρ)K log

(
NV Rτ−1ǫ−1

))
, (2.1)

where N and K are the dimensions of the observation and parameter space re-

spectively and V,R, τ are properties of the signal manifold (1/τ is the condition

number which is a generalization of the radius of curvature, R is the geodesic cov-

ering regularity and V is the volume). However, to the best of our knowledge, it

is difficult to specify how {τ, V, R} scale with the parameters N and K in general.

In this dissertation, we provide a self-contained derivation of the number of mea-

surements required to preserve these isometries when the signal manifold consists

of a mixture of sinusoids in Section 3.3. Compressive parameter estimation has

also been studied in [61]; however, since the noise model there is adversarial, the
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results are pessimistic for many practical applications in which a Gaussian model

for the noise is a good fit.

TheM/N SNR penalty due to compressive measurements has also been noted

in [4], but we go further and make the connection between isometries and esti-

mation bounds. Isometries and SNR loss for signal detection were considered in

[31].

While we focus on compressive estimation based on a finite-dimensional signal,

there has been significant research on the processing of continuous time signals

exhibiting some measure of sparsity, sometimes termed “finite rate of innovation”

(FRI) signals [38]. Sampling strategies for parameter estimation for such signals

are studied in [11], using the CRB as the performance metric. The benefits of

such good sampling strategies coupled with compressive processing at the analog

front end are investigated in [41].

2.2 Compressive measurements

We begin by presenting the model for compressive measurements and providing

the intuition behind two isometry conditions that are necessary for successful

parameter estimation.
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Consider the problem of estimating θ ∈ Θ ⊆ RK from noisy measurements

of a differentiable manifold x(θ) ∈ CN . The conventional estimation problem

involves measuring all N elements of x(θ) individually. In vector notation, the

measurements are given by:

y = x(θ) + z, z ∼ CN (0, σ2
IN). (2.2)

In contrast, with compressive measurements, we only observe M ≪ N noisy

projections of the manifold x(θ). Therefore, we have

y = Ax(θ) + z, z ∼ CN (0, σ2IM), (2.3)

where A ∈ C
M×N , which specifies the projection weights, is called the compressive

measurement matrix. The elements of A are chosen independently from zero-

mean distributions of variance 1/N for which certain concentration results (we

comment on this later) are available. Examples of such distributions include

Uniform{±1/
√
N}, Gaussian and Uniform{±1/

√
N,±j/

√
N}. When the matrix

A satisfies certain isometry conditions, we can successfully estimate θ from M ≪

N measurements. We first explain why these conditions are helpful intuitively

and then define them formally.

25



Chapter 2. Compressive Parameter Estimation in AWGN

The Maximum Likelihood (ML) estimator [59] of θ for the model in (2.3) is

given by

θ̂ = argmin
θ′

‖y−Ax(θ′)‖ (2.4)

= argmin
θ′

‖Ax(θ)−Ax(θ′) + z‖ . (2.5)

If the number of measurements is too small and A has a large nullspace, it is

possible that ‖A (x(θ)− x(θ′))‖ ≈ 0 even when ‖x(θ)− x(θ′)‖ is large. Thus,

with small amounts of noise z, the optimizing parameter θ̂ could be drastically

different from the true parameter θ, resulting in large errors. This problem can

be avoided if the matrix A preserves the geometry of the estimation problem

by ensuring that the distance between x(θ) and x(θ′) remains approximately

unaltered under its action. Specifically, if we have,

‖A (x(θ)− x(θ′))‖ ∝ ‖x(θ)− x(θ′)‖ , ∀θ, θ′ ∈ Θ, (2.6)

we see from (2.5) that the ML estimate at high SNR from M compressive mea-

surements roughly coincides with the estimate we would have obtained with (2.2),

where we have access to all N measurements of x(θ). The pairwise ǫ-isometry

property captures this idea of distance preservation precisely.
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Pairwise ǫ-isometry property: The matrix A satisfies the pairwise ǫ-isometry

property (ǫ < 1) for the signal model x(θ) if

√
M

N
(1− ǫ) ≤ ‖Ax(θ1)−Ax(θ2)‖

‖x(θ1)− x(θ2)‖
≤
√
M

N
(1 + ǫ), ∀ θ1, θ2 ∈ Θ. (2.7)

We now motivate the isometry constants
√
M/N(1−ǫ) and

√
M/N(1+ǫ). LetwH

i

denote the i-th row of A. Consider a single random projection of a signal v onto

the weights wi that have been chosen independently from zero-mean distributions

of variance 1/N . The average energy in the projection is 1/N of the energy

in the signal v: E
∣∣wH

i v
∣∣2 = (1/N) ‖v‖2. Thus, M compressive measurements

capture M/N of the signal energy on average: E‖Av‖2= (M/N)‖v‖2. Thus, for

compressive measurements, it is natural to define the pairwise isometry property

with the constants
√
M/N(1− ǫ) and

√
M/N(1 + ǫ).

When the elements of A are drawn from appropriate distributions, for any

particular realization of the measurement matrix A, ‖Av‖2 concentrates around

its expected value (M/N)‖v‖2 with high probability. Specifically, for any v ∈ CN :

Pr

[∣∣∣∣
N

M
‖Av‖2−‖v‖2

∣∣∣∣ > δ

]
< C exp (−M c(δ)) , (2.8)

with constants C and c(δ) that depend only on the distribution from which the

elements of A are picked from. For example, when the elements of A are picked

i.i.d from Uniform{±1/
√
N,±j/

√
N} or Uniform{±1/

√
N} orN (0, 1/N), we can
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show that C = 4 and

c(δ) = δ2/4− δ3/6. (2.9)

These concentration results are typically used to prove the pairwise isometry prop-

erty (2.7). Refer [60] for a class of distributions (this includes all sub-gaussian

distributions) for which such results are available.

We note that a particular instance of a randomly generated measurement

matrix need not satisfy the pairwise isometry property for the signal manifold

x(θ). However, when the number of measurements M is sufficiently large, [6]

shows that the pairwise ǫ-isometry property can be satisfied with arbitrarily high

probability (the proof involves the use of concentration results (2.8) on carefully

chosen samples on the manifold).

A weaker notion of distance preservation is the tangent plane isometry property

that is particularly useful when we wish to refine an estimate θ̂ that is “close” to

the true parameter value. In this case, since we are interested only in the ML cost

surface around the true parameter θ, it suffices to preserve the geometry of the

estimation problem in the vicinity of θ by ensuring that the distances between

x(θ′) and x(θ) for θ′ → θ are preserved under the action of A. This is captured

by the tangent plane isometry property defined as follows.
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Tangent plane ǫ-isometry property: The matrix A satisfies the tangent plane

ǫ-isometry property (ǫ < 1) for the signal model x(θ) if

√
M

N
(1− ǫ) ≤ ‖A∑ am (∂x(θ)/∂θm)‖

‖∑ am (∂x(θ)/∂θm)‖
≤
√
M

N
(1 + ǫ)

∀ [a1, a2, . . . , aK ]
T ∈ R

K\{0}, ∀θ ∈ Θ (2.10)

By letting θ2 → θ1 in the definition of the pairwise ǫ-isometry property, we

see that a matrix A which satisfies the pairwise isometry property for the signal

model x(θ) also satisfies the tangent plane isometry, thereby confirming that

tangent plane isometry is a weaker notion of distance preservation.

2.3 Parameter estimation in AWGN

We now review classical bounds on parameter estimation in AWGN that we

relate to the isometry properties in the next section.

Consider the problem of estimating a parameter θ ∈ Θ ⊆ RK from noisy

observations of the differentiable manifold s(θ) ∈ C
M . The observations are given

by:

y = s(θ) + z, z ∼ CN (0, σ2
IM). (2.11)

For this measurement model,

p(y|θ) = (πσ2)−M exp
(
‖y − s(θ)‖2

/
σ2
)
. (2.12)
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For the observations y, let θ̂(y) be an estimate of θ. Given a weight vector

a ∈ RK , classical bounds establish lower limits on the error in estimating aTθ,

given by E

(
aT θ̂(y)− aTθ

)2
, for a class of estimators θ̂(y). What we have left

unspecified is the set of quantities we take the expectation over, and depending

on this, the bounds fall into one of two categories:

Deterministic, but unknown, parameters: One class of bounds do not use the

prior distribution of θ, so that the parameter to be estimated θ is best thought

of as a deterministic but unknown quantity. The most popular such bound is

the Cramér Rao Bound (CRB). For the CRB, the expectation is taken over the

conditional distribution p(y|θ), so that the bound is on Ey|θ

(
aT θ̂(y)− aTθ

)2
.

The CRB typically depends on the parameter θ and the most common version,

which is what we use here, applies to estimators θ̂(y) which are unbiased (unbiased

estimators θ̂(y) is one that satisfies Ey|θ

{
θ̂(y)

}
= θ, ∀θ).

Bayesian bounds: When we know the prior distribution p(θ) from which θ

is chosen, we can incorporate this information into the bounds. Such bounds

are called Bayesian bounds and, in these cases, the expectation is taken over the

joint distribution p(y, θ) = p(y|θ)p(θ). They establish lower limits on the Mean-

Squared-Error (MSE) in estimating aTθ, given by Ey,θ

(
aT θ̂(y)− aTθ

)2
. Among

the Bayesian bounds, we are primarily concerned with the Ziv-Zakai bound (ZZB)
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(we also briefly describe a version of the CRB, called the Bayesian CRB). Neither

of these bounds (ZZB/BCRB) require the estimator to be unbiased.

The Ziv-Zakai Bound is known to be an accurate predictor of best possible

estimation performance over a wide range of SNRs. Roughly speaking, it takes

into account two sources of error: coarse error, when the estimate is not close to

the true value of the parameter (essentially, making an error in hypothesis testing

after binning the parameter space); and fine-grained error (the mean squared

error from the true value when the estimate is in the right bin). At high SNR, the

probability of the estimate falling into the wrong bin becomes negligible, and the

Cramér Rao bound (CRB), which characterizes only fine-grained error, provides

an excellent prediction of performance, while being easier to compute than the

ZZB. We now state these bounds.

2.3.1 Cramér Rao Bound[59, 58]

Let a ∈ RK . The variance of any unbiased estimator of aTθ, given by

Ey|θ

(
aT θ̂(y)− aTθ

)2
, is lower bounded by aTF−1(θ)a, where F (θ) is the Fisher

Information Matrix (FIM). The (m,n)th element of the FIM is given by:

Fm,n(θ) = Ey|θ

{
∂ ln p(y|θ)

∂θm

∂ ln p(y|θ)
∂θn

}
. (2.13)
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For parameter estimation in AWGN (2.12), this simplifies to [59]

Fm,n(θ) =
2

σ2
ℜ
{(

∂s(θ)

∂θm

)H
∂s(θ)

∂θn

}
, (2.14)

where ℜ{b} denotes the real part of the complex number b.

Remark: Let a ∈ RK be any vector. Consider the quadratic form of the FIM

aTF (θ)a. It can be shown that:

aTF (θ)a =
2

σ2

∥∥∥∥∥

l=K∑

l=1

al
∂s(θ)

∂θl

∥∥∥∥∥

2

.

Therefore, all quadratic forms of the FIM depend on the signal manifold s(θ)

only through derivatives of the form
∑
al (∂s(θ)/∂θl). These may be thought of

as pairwise differences s(θ) − s(θ′) in the limit of θ′ → θ. We make use of this

observation in Section 2.4.

2.3.2 Bayesian Bounds on Mean Square Error

To describe the Bayesian bounds, it is convenient to define the MSE matrix,

R(θ̂) of the estimator θ̂(y). The m,n-th element of the MSE matrix R(θ̂) is given

by Rm,n(θ̂) = Ey,θ{(θ̂m−θm)(θ̂n−θn)}. For a vector a ∈ RK , the ZZB and BCRB

provide bounds on Ey,θ(a
T θ̂(y)− aTθ)2 which is simply aTR(θ̂)a.
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Bayesian Cramér Rao Bound[59, 58]

For any weight vector a ∈ RK and estimator θ̂(y) (not necessarily unbiased),

the Bayesian Cramér Rao Bound (BCRB) lower bounds the MSE aTR(θ̂)a by

aTB−1a, where B is the Bayesian Information Matrix (BIM). The (m,n)th ele-

ment of B is given by:

Bm,n = Eθ {Fm,n(θ)}+ Eθ

{
∂ ln p(θ)

∂θm

∂ ln p(θ)

∂θn

}
. (2.15)

(Extended) Ziv-Zakai Bound[9]

Since the ZZB is not as widely used as the CRB, we provide a brief review

in Appendix A.1. Here, we simply state the bound. The ZZB bounds the MSE

aTR(θ̂)a and, for the AWGN measurement model (2.11), it is given by:

aTR(θ̂)a ≥ 1

2

∫ ∞

0

V
{

max
δ:aTδ=h

∫

φ∈RK

(p(φ) + p(φ+ δ)) f(φ,φ+ δ) dφ

}
h dh, ∀θ̂(y)

(2.16)

where V{ } is the valley filling operation, defined as V{g(h)} = maxr≥0g(h + r),

and f(θ1, θ2) is the probability of error for the optimal detection rule in the

following hypothesis testing problem:

H1 : y = s(θ1) + z, Pr(H1) =
p(θ1)

p(θ1) + p(θ2)

H2 : y = s(θ2) + z, Pr(H2) =
p(θ2)

p(θ1) + p(θ2)
. (2.17)
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Since z ∼ CN (0, σ2IM), this detection error probability is given by[59]:

f(θ1,θ2) =
p(θ1)

p(θ1) + p(θ2)
Q

(
d(θ1,θ2)√

2σ
+

σ√
2d(θ1,θ2)

ln
p(θ1)

p(θ2)

)

+
p(θ2)

p(θ1) + p(θ2)
Q

(
d(θ1,θ2)√

2σ
− σ√

2d(θ1,θ2)
ln

p(θ1)

p(θ2)

)
. (2.18)

In the above expression, Q( ) stands for the CCDF of the standard normal distri-

bution N (0, 1) and

d(θ1, θ2) = ‖s(θ1)− s(θ2)‖. (2.19)

Remark: While the expression for the ZZB is complicated, we only need two

simple observations to prove the result we are interested in:

• With compressive measurements, the signal manifold s(θ) = Ax(θ) and

the measurement matrix A enters the ZZB only through the pairwise SNRs

d2(θ1, θ2)/σ
2.

• The minimum probability of detection error f(θ1, θ2) for the binary hy-

pothesis testing problem (2.17) is a non-increasing function of the pairwise SNR

d2(θ1, θ2)/σ
2.

We revisit these observations in Section 2.4.

2.3.3 Threshold behavior of ZZB

The ZZB typically exhibits a threshold behavior with SNR [58]. When the

SNR is very low, the measurements carry little information about the parameters

34



Chapter 2. Compressive Parameter Estimation in AWGN

we wish to estimate. Since the ZZB accounts for errors of “all magnitudes”, it

is usually large (depending primarily on the prior p(θ)) and insensitive to small

changes in SNR in this regime. However, at high SNRs, the variation of the ZZB

with SNR is predictable. When the SNR and the ZZB are both expressed on a

logarithmic scale, the ZZB falls off linearly with SNR, provided that the SNR is

above a certain value, which is called the (asymptotic) ZZB threshold [9]. When

the SNR exceeds the ZZB threshold, “large” estimation errors are unlikely, which

is exactly when we would declare estimation of a continuous-valued parameter to

be successful.

2.4 Relating the isometries to estimation bounds

We are now ready to relate the estimation error bounds for the compressive

estimation problem to the corresponding bounds when we make all N measure-

ments, provided that the compressive measurement matrix A satisfies appropriate

isometry conditions.

Consider the general problem of estimating θ from L measurements

y = Φx(θ) + z, θ ∈ Θ (2.20)

where Φ is any L×N complex-valued matrix and z ∼ CN (0, σ2
IL). The compres-

sive estimation problem is subsumed in this model (obtained by setting Φ = A,
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whose elements are chosen i.i.d. from a zero-mean distribution of variance 1/N for

which concentration results of the form (2.8) are available), as is the conventional

problem of estimating θ from all N measurements (obtained by setting Φ = IN ,

the N ×N identity matrix). Note that, in both these cases, the per-measurement

SNR (1/L)
∑

)k=L
k=1E|yk|2/σ2 is the same, since the rows of A have unit norm in

expectation.

We prove two theorems that connect the fundamental estimation-theoretic

bounds to the isometries defined in the previous section. First, we make a

connection between the ZZB and the pairwise isometry property. As we ob-

served in the remark under the statement of the ZZB, for the manifold s(θ) =

Φx(θ), the ZZB depends on the matrix Φ only through the set of pairwise SNRs

‖Φx(θ1)−Φx(θ2)‖2/σ2 ∀θ1, θ2 ∈ Θ. When the compressive measurement matrix

A satisfies the pairwise isometry property (2.7), the pairwise SNRs with Φ = A

are approximately M/N times the corresponding values with Φ = IN . Thus, the

ZZB with compressive measurements is approximately the same as the ZZB with

all N measurements, but at an SNR penalty of M/N . Theorem 2.3 proves this

intuition rigorously.

Likewise, we can connect the CRB to the tangent-plane isometry property. We

can show that the CRB depends on the measurement matrix only through norms of

the vectors Φ
∑

m am(∂x(θ)/∂θm). Thus, if A satisfies the tangent-plane isometry
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(2.10), the CRB withM compressive measurements is approximately equal to the

CRB with all N measurements, but at an SNR that is lower by M/N . We prove

this in Theorem 2.1.

While the connections established here between estimation-theoretic bounds

and the corresponding isometries apply generally to compressive estimation in

AWGN, showing that these isometries indeed hold requires a problem-specific

analysis, as we illustate for sinusoidal mixtures in later sections. As with stan-

dard compressed sensing, the goal of such analyses is to characterize the number

of measurements required for such isometries to hold with high probability for

random measurement matrices.

2.4.1 Cramér Rao Bound

Let F (Φ, θ) denote the Fisher Information Matrix for the measurement model

(2.20). For this measurement model the expression for FIM is given by (2.14)

with s(θ) = Φx(θ):

(2.21)Fm,n(Φ, θ) =
2

σ2
ℜ
{(

Φ
∂x(θ)

∂θm

)H

Φ
∂x(θ)

∂θn

}
.

Theorem 2.1. Let A be anM×N measurement matrix which satisfies the tangent

plane ǫ-isometry property (2.10) for the signal manifold x(θ). Then, the Fisher

Information Matrix F (A, θ), with compressive measurements (2.3) is related to
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the FIM with all N measurements as follows:

F (A, θ) � F
(√

M
N
(1 + ǫ)IN , θ

)

F (A, θ) � F
(√

M
N
(1− ǫ)IN , θ

) ∀θ ∈ Θ. (2.22)

Proof. Consider the quadratic form aTF (Φ, θ)a for any a = [a1 · · · aK ]T ∈ RK .

We see that

(2.23)aTF (Φ, θ)a =
2

σ2

∥∥∥∥∥Φ
∑

m

am
∂x(θ)

∂θm

∥∥∥∥∥

2

.

Since the compressive measurement matrixA satisfies the tangent plane ǫ-isometry

property (2.10) for the signal model x(θ), we have that for all θ ∈ Θ and a ∈ RK ,

∥∥∥∥∥A
∑

m

am
∂x(θ)

∂θm

∥∥∥∥∥

2

≤ M

N
(1 + ǫ)2

∥∥∥∥∥
∑

m

am
∂x(θ)

∂θm

∥∥∥∥∥

2

. (2.24)

Multiplying both sides by 2/σ2, we see that the LHS is aTF (A, θ)a, while the RHS

corresponds to aTF
(√

M/N(1 + ǫ)IN , θ
)
a. Therefore, we have that ∀θ ∈ Θ,

aTF (A, θ)a ≤ aTF
(√

M/N(1 + ǫ)IN , θ
)
a, ∀a ∈ R

K . (2.25)

This establishes the required upper bound on F (A, θ). The proof for the lower

bound is analogous.

2.4.2 Bayesian Cramér Rao Bound

Let B(Φ) denote the Bayesian Information Matrix for the measurement model

(2.20). Let p(θ) be the prior on θ. For this measurement model the expression

38



Chapter 2. Compressive Parameter Estimation in AWGN

for BIM is given by (2.15) with s(θ) = Φx(θ):

Bm,n(Φ) = Eθ {Fm,n(Φ, θ)}+ Eθ

{
∂ ln p(θ)

∂θm

∂ ln p(θ)

∂θn

}
. (2.26)

Corollary 2.2 (of Theorem 2.1). Let A be an M ×N measurement matrix which

satisfies the tangent plane ǫ-isometry property (2.10) for the signal manifold x(θ).

Then, the Bayesian Information Matrix B(A) with compressive measurements

(2.3) is related to the BIM with all N measurements as follows:

B

(√
M

N
(1− ǫ)IN

)
� B(A) � B

(√
M

N
(1 + ǫ)IN

)
(2.27)

Proof. Let a ∈ RK . We see that aTB(A)a depends on the measurement matrix

A only through quadratic forms of the FIM i.e., aTF (A, θ)a. When the tan-

gent plane isometry condition (2.10) is satisfied, we have from Theorem 2.1 that

aTF (A, θ)a is bounded by aTF (
√
M/N(1 ± ǫ)IN , θ)a for all a, θ. It immedi-

ately follows that the quadratic forms of B(A) are bounded by the corresponding

quadratic forms of B(
√
M/N(1± ǫ)IN).

2.4.3 Ziv-Zakai Bound

Let Z(Φ, a) denote the ZZB corresponding to the Mean-Squared-Error in esti-

mating aTθ for the measurement model (2.20). The expression for Z(Φ, a) is given

by the right hand side of (2.16), with d(θ1, θ2) = ‖Φx(θ1) − Φx(θ2)‖ (obtained

by setting s(θ) = Φx(θ)).
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Note that in (2.16), f(θ1, θ2) is the probability of detection error for the hy-

pothesis testing problem (2.17) with s(θ) = Φx(θ). We capture the dependence

of this probability on the matrix Φ by defining g(Φ, θ1, θ2) = f(θ1, θ2) when

s(θ) = Φx(θ).

Theorem 2.3. Let A be an M × N measurement matrix which satisfies the

pairwise ǫ-isometry property (2.7) for the signal manifold x(θ). Then, the ZZB

Z(A, a), with the compressive measurements in (2.3), is related to the ZZB with

all N measurements as

Z

(√
M

N
(1 + ǫ)IN ,a

)
≤ Z (A,a) ≤ Z

(√
M

N
(1− ǫ)IN ,a

)
. (2.28)

Proof. As we observed in the remark at the end of the definition of the ZZB,

g(Φ, θ1, θ2) is a non-increasing function of the pairwise SNR ‖Φx(θ1)−Φx(θ2)‖2/σ2.

When A satisfies the pairwise ǫ-isometry property (2.7), we can bound all the

pairwise SNRs as follows:

‖Ax(θ1)−Ax(θ2)‖2/σ2 ≤ M

N
(1 + ǫ)2‖x(θ1)− x(θ2)‖2/σ2 ∀θ1, θ2 ∈ Θ. (2.29)

Combining these facts, we get g(A, θ1, θ2) ≥ g(
√
M/N(1 + ǫ)IN , θ1, θ2), which

is the probability of detection error with all N measurements, but at an SNR

penalty of (M/N)(1 + ǫ)2. Substituting these pointwise bounds in the expression

for Z(A, a), we have that Z (A, a) ≥ Z
(√

M
N
(1 + ǫ)IN , a

)
. The other inequality

can be proved similarly.
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2.4.4 Number of measurements needed

These theorems show that, when the compressive measurement matrix A sat-

isfies the pairwise isometry property, the CRB and the ZZB are well approximated

by aTF−1(
√
M/NIN , θ)a and Z(

√
M/NIN , a) respectively (for any a). Thus, the

estimation performance with the measurement matrix Φ = A is roughly the same

as that with Φ =
√
M/NIN (all N measurements, but with the signal component

scaled by
√
M/N). Note that observations with Φ =

√
M/NIN and per-sample

noise variance σ2 are equivalent to observations Φ = IN (conventional measure-

ments) but with an increased per-sample noise variance σ2(N/M) (easily seen by

multiplying the observations with Φ =
√
M/NIN by

√
N/M). Putting these

observations together, we get a simple procedure for estimating the number of

measurements M required for successful compressive estimation:

(1) For the case when we make all N measurements, y = x(θ) + z with

z ∼ CN (0, σ2IN), compute the ZZB as a function of σ2. Find the ZZB threshold

as described in Section 2.3 (the value of σ2 below which log ZZB falls off linearly

with log σ2). Denote this threshold by σ2
t .

(2) MakingM compressive measurements y = Ax(θ)+z with z ∼ CN (0, σ2
0IM)

is roughly equivalent to making the observations

ỹ = x(θ) + z̃, z̃ ∼ CN (0, σ2
0(N/M)IM)
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when A satisfies the pairwise isometry property. Thus, the number of measure-

ments needed for successful compressive estimation is given by:

σ2
0

N

M
< σ2

t or M > N

(
σ2
0

σ2
t

)
(2.30)

We reiterate that the above SNR criterion is not the only condition for successful

compressive estimation: the number of measurements M must be large enough

for the matrix A to satisfy the pairwise isometry property, so that we can invoke

the SNR penalty arguments.

2.4.5 Remarks on model generality

While we describe our results in the context of the measurement model (2.3),

they extend easily to variants commonly encountered in the compressed sensing

literature, two of which we now discuss.

• For applications such as Direction of Arrival (DoA) estimation using large

arrays [46], compressive measurements are acquired sequentially in time and every

measurement is corrupted by independent measurement noise. Thus, the measure-

ments satisfy

yl = wT
l (x(θ) + z̃l) = wT

l x(θ) + zl, (2.31)

where z̃l ∼ CN (0, σ2
IN) and zl = wT

l z̃l ∼ CN (0, σ2‖wl‖2). The key point here

is that z̃1, . . . , z̃M are i.i.d. and as a result z1, . . . , zM are independent. Letting
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A denote the matrix with rows wT
l , y = [y1 · · · yM ]T and z = [z1 · · · zM ]T , we

have:

y = Ax(θ) + z, z ∼ CN (0, σ2K1), (2.32)

where K1 is a diagonal matrix whose diagonal entries are ‖wl‖2, l = 1, . . . ,M .

• For other applications, when we have access to a single noisy version of x(θ)

and compressive measurements are merely used as a dimensionality reduction tool,

we have

y = A (x(θ) + z̃) , z̃ ∼ CN (0, σ2IN). (2.33)

The same equation holds for the case when there are errors in modeling the man-

ifold x(θ) (given by z̃) and we make M sequential noiseless projections. Letting

z = Az̃ we have

y = Ax(θ) + z, z ∼ CN (0, σ2K2), (2.34)

where K2 = AAH .

Neither K1 and K2 are the identity matrix, hence these measurement models

do not fit directly into the framework in (2.3). However, we can extend our results

easily to these models by considering the whitened observations ỹi = K
−1/2
i y, i =

1, 2, and establishing bounds on the singular values of Ki. When the elements of
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A are chosen from a zero-mean distribution of variance 1/N (for which concentra-

tion results of the form (2.8) are available), the singular values of Ki concentrate

around 1. As a result, an ǫ-isometry (tangent plane or pairwise) for A can be

shown to translate to a mildly weaker ǫeff,i-isometry (ǫeff,i ≥ ǫ) forAeff,i = K
−1/2
i A,

the effective measurement matrix for the whitened measurements ỹi. All of our

results now apply by simply replacing ǫ with ǫeff,i. This equivalence of the mea-

surement model (2.33) and the general compressive model (2.3) has also been

investigated in detail in [4]. The proof for the conditioning of both K1 and K2

involves using the concentration result (2.8) for
√
N/MAH (see [60] for K2).

The concentration results for the singular values of K2 = AAH (which are

the square of the singular values of AH) needs N to be somewhat larger than M .

This is not an issue, since this is the regime of interest for compressive estimation.

The diagonal matrix K1, on the other hand, is well-conditioned for much larger

values of M (potentially larger than N).
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Compressive Frequency
Estimation

In this chapter, we apply the results derived in Chapter 2 to the problem

of frequency estimation from random projections of a mixture of sinusoids. In

addition to channel estimation for 60GHz arrays which we briefly discussed in the

introduction, this problem also appears in many other scenarios such as channel

estimation for OFDM systems, range estimation in radar, etc., In Chapter 2, we

showed that for parameter estimation from compressive measurements, we need to

preserve the geometry of the estimation problem (provide pairwise and tangent-

plane isometries). This chapter characterizes the number of random projections

needed to give such geometry preservation results for frequency estimation. We

Parts of this chapter are reprinted from our Journal submission [47] with permission. c©2014
IEEE.
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also verify the numerical prescription given in Chapter 2 for the number of random

projections needed to avoid gross errors.

Outline: We begin in Section 3.1 by surveying prior work on compressive fre-

quency estimation. We state the measurement model used in Section 3.2. Section

3.3 derives the number of compressive measurements needed to guarantee isometry

conditions for the problem of frequency estimation from a mixture of K sinusoids

of length N . We assume that we take M projections with the projection weights

chosen uniformly and independently at random from the set {±1,±j}N . We show

that:

(a) M = O (K log(NKδ−1)) measurements suffice to provide tangent plane isome-

tries, where δ depends on the frequency separation between the sinusoids in

the mixture (δ vanishes when any two of the K frequencies approach one

another).

(b) M = O (K log(NKδ−1)) measurements suffice to provide pairwise isometries

between two sets of frequencies ω = (ω1, ω2, . . . , ωK) and ω′ = (ω′
1, ω

′
2, . . . , ω

′
K)

that are “well-separated.” Here δ depends only on the frequency separation

between the sinusoids in the mixture of 2K sinusoids (ω,ω′), and vanishes

when any two frequencies in (ω,ω′) approach one another. Therefore, with
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O (K log(NKδ−1)) compressive measurements, we can preserve the “well-

separated” geometry of the frequency estimation problem.

The tangent plane isometry results (a) indicate that when the K frequencies

in ω themselves are “well-separated”, compressive measurements preserve the

“fine” geometry of the frequency estimation problem (and therefore the CRB). We

strengthen these results in Section 3.4 for a single sinusoid (K = 1), exploiting the

continuity of the sinusoidal manifold to show that O(logN) measurements suffice

to guarantee pairwise isometry between sinusoids at any two frequencies ω, ω′ (by

merging the “well-separated” and “fine” regimes). In Section 3.6, we consider

the problem of estimating the frequency of a sinusoid (channel composed of a

single path: K = 1) and show that the criterion for prediction of the number of

measurements, based on the threshold behavior of the ZZB given in Chapter 2, is

tight, by evaluating the performance of an algorithm which closely approximates

the MAP estimator. The algorithm works in two stages: first, from a discrete

set of frequencies, we pick the one that fits the observations best and, then, we

perform local refinements using Newton’s method.

47



Chapter 3. Compressive Frequency Estimation

3.1 Related work

Reference [5] used the Johnson-Lindenstrauss (JL) lemma to provide a simple

proof that O(K logN) random projections suffice to establish RIP for recovering

K-sparse vectors in RN . We briefly summarize the key ideas, since we use an

analogous approach in establishing pairwise isometry for the mixture of sinusoids

in Section 3.3. The JL lemma states that, to approximately preserve the pairwise

distances between P points after random projections (with the weights chosen

from appropriate distributions, such as i.i.d. Uniform{±1} [3]), we need O(logP )

such projections. However, to provide an RIP for compressive measurement ma-

trices, the distances between any two K-sparse vectors must be preserved. Since

the number of such vectors is infinite, the JL lemma cannot be applied directly.

However, the desired RIP result is established in [5] by discretizing the set of

K-sparse vectors sufficiently finely, applying the JL lemma to the resulting dis-

crete set of points, and then exploiting continuity to provide isometries for the

remaining points.

Algorithms to estimate the frequencies in a mixture of sinusoids from com-

pressive measurements are proposed and evaluated in [19, 21]. Both of these

papers assume that the sinusoids have a minimum frequency separation and [21]

further assumes that the frequencies come from an oversampled DFT grid. They
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propose variants of standard compressed sensing algorithms, such as Orthogonal

Matching Pursuit (OMP) and Iterative Hard Thresholding (IHT), which rely on

the sinusoids’ frequencies not being too close. As mentioned earlier, restricting

the frequency estimation to a discrete grid in this fashion results in performance

floors, as studied in great detail in [15]. However, as we show in this dissertation,

it is possible to avoid such performance floors, and to attain the CRB, by local

refinements based on Newton-like algorithms after grid-based coarse estimation.

A one-shot quadratic refinement is also proposed in [19] to improve estimates of

off-grid frequencies.

We characterize the structure of compressive estimation here in terms of that

of the original problem. However, in many cases, an estimation-theoretic under-

standing of the original problem is incomplete: in particular, for the mixture of

sinusoids model, a characterization of the difficulty of the problem in terms of the

minimum separation of frequencies in ω remains an ongoing effort [56, 12, 57], as

discussed in more detail below.

The problem of estimating frequencies in a mixture of sinusoids from noise-free

compressive measurements is studied in [57]. While the frequencies can come from

the [0, 2π) continuum, [57] requires that they are “well-separated” (four times the

DFT spacing of 2π/N). When this condition is met, it is shown that atomic-norm

denoising (cast as a semi-definite program) correctly estimates the frequencies in
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the mixture. The same 4× (2π/N) frequency separation is shown to be necessary

for recovering frequencies over a continuum with noisy measurements of all N

samples (not compressive) in [56, 12]. It is interesting to note that even when

all N samples are observed, the same minimum frequency separation is necessary

for stable recovery. This falls in line with the observations that we make on the

equivalence (except for an SNR penalty) of the “difficulty” in estimation using

compressive measurements and uncompressed measurements (all N samples) by

relating corresponding estimation error bounds.

In the algorithm description and numerical illustrations in this dissertation,

we restrict attention to a single sinusoid in order to illustrate the fundamental

features of compressive estimation. Our algorithmic approach (discrete grid fol-

lowed by Newton refinement) extends easily to estimate the frequencies of multiple

sinusoids[45, 46].

3.2 System model

Consider a manifold of signals which are linear combinations of K complex

sinusoids
∑K

l=1 glx(ωl), where gl ∈ C are complex gains and

x(ω) =
[
h1e

−jω(N−1)/2 · · · hNejω(N−1)/2
]T

(3.1)
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is a windowed sinusoid, with window weights given by {hn}. Without loss of

generality, we assume that the window weights are normalized so that
∑

n |hn|
2 =

1. To avoid trivialities, we assume that more than one of the hn’s are non-zero.

We assume that we make M compressive measurements of the form

y = A

l=K∑

l=1

glx(ωl) + z, z ∼ CN (0, σ2
IN) . (3.2)

where the elements of theM×N matrixA are drawn uniformly and independently

at random from {±1/
√
N,±j/

√
N}. We refer the reader to Section 2.4.5 of

Chapter 2 and Section 3.5 of this chapter for comments on the generality of this

model. We wish to estimate the gains g = [g1 · · · gK ]T and the frequencies

ω = [ω1 · · · ωK ]
T . Therefore, the parameter to be estimated is θ = (g,ω). In

the forthcoming section, we characterize the number of measurements needed to

give the necessary tangent plane and pairwise isometries.

3.3 Isometry conditions for frequency estima-

tion from compressive measurements

We show that, for a mixture of K sinusoids, the number of measurements

required depends on the conditioning of appropriately defined matrices, which

in turn depends on the separation between the frequencies in the mixture. We
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consider the special case of a single sinusoid, for which we can prove stronger

results in Section 3.4.

3.3.1 Tangent plane isometry for a mixture of K sinusoids

Our first goal is to quantify the number of measurements needed to preserve

the CRB for a given frequency support ω (i.e., for all θ that share this frequency

support). We show that this is equivalent to guaranteeing ǫ-isometry for a set of

tangent planes as follows. For any specific value of the unknown parameters –

gain magnitude {|gl|}, phases {gl/|gl|} and frequencies {ωl} (we split the complex

gain in this manner in order to restrict attention to real parameters) – Theorem

2.1 guarantees that the CRB can be preserved (up to the M/N SNR penalty) by

ensuring ǫ-isometry for the plane tangent to the manifold at this set of parameters.

Therefore, to preserve the CRB for the frequency support ω, we need to guarantee

ǫ-isometry for tangent-planes for all values that the gain magnitudes {|gl|} and

the phases {gl/|gl|} can take. We can show that the union of all such tangent

planes is a subset of the span of the matrix T(ω) (in CN), defined as

T(ω)=

[
x(ω1) · · · x(ωK) τ

dx(ω1)

dω
· · · τ dx(ωK)

dω

]
(3.3)
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where τ = 1/‖dx(ω)/dω‖ (note that τ does not depend on ω). Therefore, if the

compressive measurement matrix A satisfies

√
M

N
(1− ǫ) ≤ ‖AT(ω)q‖

‖T(ω)q‖ ≤
√
M

N
(1 + ǫ) ∀q ∈ C

2K , (3.4)

we can preserve the CRB (up to the SNR penalty) for a given frequency support ω.

Furthermore, if the above relationship holds, we say that A satisfies the tangent

plane ǫ-isometry property at ω.

Our first result is to show that the smallest singular value of the matrix T(ω),

given by δ = minq∈C2K‖T(ω)q‖/‖q‖, compactly characterizes the number of mea-

surements needed to preserve tangent plane ǫ-isometry.

Theorem 3.1. Let A be an M ×N measurement matrix whose entries are drawn

i.i.d. from Uniform {±1/
√
N,±j/

√
N}. Let T(ω) denote the tangent plane

matrix (3.3) of sinusoids (3.1) with frequencies ω = (ω1 . . . ωK) ∈ R
K. Let

ΛT (δ) = {ω : smallest singular value of T(ω) ≥ δ}. Then, for any ǫ > 0, we

have

1− ǫ ≤
√
N

M

‖AT(ω)q‖
‖T(ω)q‖ ≤ 1 + ǫ, ∀ω ∈ ΛT (δ),q ∈ C

2K (3.5)

with high probability when M = O(ǫ−2K log(NK ǫ−1δ−1)).

Remarks:

53



Chapter 3. Compressive Frequency Estimation

• The theorem states that the minimum number of measurements scales as the

inverse of the smallest singular value δ. The singular values of T(ω) are the square

roots of the eigenvalues of TH(ω)T(ω), whose entries can be shown to depend

only on the set of frequency differences ωi−ωj, 1 ≤ i, j ≤ K. Therefore, δ depends

only on the set of frequency differences.

• The smallest singular value δ tends to zero when any two of the K frequencies

(say ωi and ωj) get close, since the columns x(ωi) and x(ωj) (and hence the

columns dx(ωi)/dω and dx(ωj)/dω) approach each other, and the matrix T(ω)

becomes poorly conditioned. It is a natural question, therefore, to ask whether it is

possible to provide a lower bound on δ, and hence an upper bound on the number

of measurements required to give tangent plane isometries, by ensuring that the

spacing between the constituent frequencies is large enough (larger than say ∆ω).

We leave this as a topic for further investigation, since that characterization of

the smallest singular value δ in terms of the minimum frequency separation ∆ω

is a feature of the original system with a full set of measurements rather than a

problem inherent to compressive estimation. It is interesting to note that prior

work on non-compressive frequency estimation [56, 12, 13], while not directly

working with the parameter δ, also requires a minimum frequency separation for

successful estimation (e.g., a separation of around four times the DFT spacing of

2π/N) using N measurements.
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• When the frequency support ω is “roughly” known ahead of time (say ω ≈ ω0),

such as in tracking scenarios encountered in radar (where frequencies correspond

to directions of arrival), A need only preserve the norms of vectors in the span of

T (ω) for ω = ω0 (not all ω ∈ ΛT (δ)). Typically, the number of sinusoids K in the

mixture is small. So, one can do better than the M/N SNR penalty that would

be incurred if a compressive measurement matrix is used: In such a scenario, it

may even be possible to preserve the CRB with no SNR degradation whatsoever.

The equivalent problem of direction-of-arrival estimation is studied in [63]. The

precise conditions on A so that the CRB is preserved with no SNR penalty are

stated in [63]. This, however, requires knowing the very frequencies that we wish

to estimate. Of course, this is not applicable to the one-shot estimation problem

considered here, where we wish to preserve the CRB (up to the SNR penaltyM/N)

with a few measurements M , irrespective of what the particular realization of ω

is.

3.3.2 Pairwise isometry for a mixture of K sinusoids

Consider now the problem of quantifying the number of measurements needed

to guarantee pairwise ǫ-isometry for a mixture of K sinusoids. We denote the ma-

trix containing the sinusoids [x(ω1) x(ω2) . . .x(ωK)] by X(ω). From the defini-
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tion of pairwise isometry in Section 2.2, compressive measurements must preserve

the ML cost structure, thereby implying that

‖AX(ω)g−AX(ω′)g′‖ ≈
√
M/N‖X(ω)g−X(ω′)g′‖,

for pairs of (g,ω) and (g′,ω′) of interest. We are typically interested in all values

of the gains g, g′ but may restrict the set of frequencies ω and ω′ to each come

from a set Θ (for example, the set of K frequencies that are separated pairwise

by at least ∆ω).

To simplify the problem, we only consider ω and ω′ that are “well-separated”

(we comment on why this helps later). For example, we may restrict ω′ to Θ′(ω) =

Θ\B(ω, µ), where B(ω, µ) is a small ball of frequencies around ω. (A possible

definition for the ball B(ω, µ) can be B(ω, µ) = {ω′ : min1≤i,j≤K|ω′
i − ωj|≤ µ}).

Suppose that we make enough measurements to guarantee pairwise ǫ-isometry for

all ω ∈ Θ and ω′ ∈ Θ′(ω), no matter what value ω takes. This implies that

for any set of frequencies ω ∈ Θ, we have preserved the cost-structure of the

estimation problem at hypothesis frequencies ω′ that are “far-away” (ω′ outside

B(ω, µ)). Roughly, a good estimation algorithm should not incur frequency errors

larger than µ at high SNRs.

We introduce some notation for the following discussion. Let ω̃ = [ω ω′] , g̃ =

[g − g′] denote vectors of length 2K concatenating the gains and frequencies.
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Also let X(ω̃) = [X(ω) X(ω′)] denote the N × 2K matrix containing all the

sinusoids. Note that g̃ can take any value in C2K but ω̃ has a special structure:

its first K entries ω must belong to Θ and its last K entries come from a set Θ′(ω)

that depend on the first K values. As shorthand, we say that ω̃ ∈ Θ̃ = {[ω ω′] :

ω ∈ Θ,ω′ ∈ Θ′(ω)}. With this notation, the above pairwise isometry condition

for a mixture of K sinusoids, which we desire can be written as

√
M

N
(1− ǫ) ≤ ‖AX(ω̃)g̃‖

‖X(ω̃)g̃‖ ≤
√
M

N
(1 + ǫ) ∀g̃ ∈ C

2K , (3.6)

for a particular ω̃ ∈ Θ̃. If the matrix A satisfies this relationship, we say that A

guarantees ǫ-isometry (just isometry, not pairwise) for the frequency support ω̃

(2K sinusoids).

Our goal is to quantify the number of measurements necessary for (3.6) to

hold for all ω̃ ∈ Θ̃. While solving this problem in its entirety is difficult, we can

break it down into two subproblems, the first of which we tackle. We explain

the solution to this subproblem and then comment on the other. In analogy with

our previous discussion of tangent plane isometry, let Λp(δ) denote the set of all

frequencies ω̃ (chosen from anywhere in R
2K , not just Θ̃) such that the smallest

singular value of X(ω̃) is at least as large as δ. Suppose that we want A to

guarantee ǫ-isometry for all ω̃ ∈ Λp(δ) (as in (3.6) except that the set from which
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ω̃ is chosen has changed). We show that M = O (ǫ−2(2K) log (N(2K)ǫ−1δ−1))

measurements suffice to provide such a guarantee with high probability.

Theorem 3.2. Suppose that A is an M ×N measurement matrix whose entries

are drawn i.i.d. from Uniform {±1/
√
N,±j/

√
N}. Let X(ω) = [x(ω1) . . . x(ωK)]

denote an N × K matrix of sinusoids (3.1) with ω = (ω1 . . . ωK) ∈ R
K. Let

Λp(δ) = {ω : smallest singular value of X(ω) is greater than or equal to δ}. For

any ǫ > 0 and δ > 0, we have

1− ǫ ≤
√
N

M

‖AX(ω)g‖
‖X(ω)g‖ ≤ 1 + ǫ, ∀ω ∈ Λp(δ), g ∈ C

K , (3.7)

with high probability when M = O (ǫ−2K log (NKǫ−1δ−1)).

Remarks:

• Returning to the problem posed in (3.6), suppose that the smallest singular value

of X(ω̃), further minimized over all values of ω̃ ∈ Θ̃ is σmin > 0. Then, Θ̃ is con-

tained in Λp(σmin) and using Theorem 3.2,M = O
(
ǫ−2(2K) log

(
N(2K)ǫ−1σ−1

min

))

measurements suffice to guarantee the required ǫ-isometry.

• While the singular values of X(ω̃) depend only on frequency differences, we

leave the question of quantifying σmin (e.g., in terms of the minimum pairwise

separation ∆ω of frequencies for ω ∈ Θ) and µ (the radius of the ball around each

ω ∈ Θ) as an open problem. The problem of lower bounding the singular values of

the Fourier matrix (X(ω), when choosing {hn} in (3.1) as the all-ones sequence)
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as a function of minimum frequency separation has been investigated in [22] (using

Gershgorin-type bounds). Similar ideas may be useful in our present context as

well, but again, these are fundamental and difficult questions regarding the original

frequency estimation problem (with a full set of measurements) that are beyond

our scope here. We are, however, able to provide an explicit characterization for

the special case of a single sinusoid in Appendix B.3.

• The previous remark also explains why we choose to restrict ω′ to Θ′(ω) =

Θ\B(ω, µ). The singular value of X(ω̃) when ω,ω′ ∈ Θ can be made arbitrarily

small by allowing ω′ → ω. Thus, in this case, we cannot directly use Theorem

3.2 to quantify the number of measurements required. However, this does not

necessarily mean that an isometry cannot be provided for closely spaced sinusoids.

Indeed, we show in Appendix B.3 that, for K = 1, it is possible to provide an

isometry no matter how close ω and ω′ get.

Proof of Theorems 3.1 and 3.2: We give a proof of Theorem 3.2 along the lines of

the proof in [6], where the authors extend the JL lemma (which gives the number

of compressive measurements needed to preserve the geometry of a discrete point

cloud) to a manifold by sampling the manifold and exploiting its continuity. De-

tails of the proof can be found in Appendix B.1. A similar proof can be given for

Theorem 3.1, which we briefly sketch in Appendix B.2.
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3.4 Pairwise isometry for frequency estimation

of a single sinusoid

In the preceding discussions, we quantify the number of measurements needed

to give pairwise isometries for a mixture of K sinusoids in two distinct regimes:

when the frequencies (ω,ω′) are “far apart” and in the limit of ω′ → ω (tangent

plane isometries). We now consider a single sinusoid (K = 1) and provide pairwise

isometries for all frequency pairs. In order to do this, we consider two regimes

of frequency pairs (ω1, ω2): closely spaced and well-separated. For the set of

well-separated frequencies, say {(ω1, ω2) : |ω1 − ω2|> ψ}, we obtain a bound on

the smallest singular value of X(ω) = [x(ω1) x(ω2)] and use it in Theorem 3.2

to immediately infer the number of measurements needed to guarantee pairwise

ǫ-isometry for sinusoids from this set. The challenge then is in providing a similar

result for sinusoids whose frequencies are separated by less than ψ. We solve

this problem in two stages: first, we use Theorem 3.1 to infer the number of

measurements needed to guarantee tangent plane ǫ-isometries for all frequencies

(loosely, pairwise isometries for ω1 → ω2). We then use the continuity of the

sinusoidal manifold to extend these tangent plane ǫ-isometries to a pairwise 2ǫ-

isometry for closely-spaced frequencies {(ω1, ω2) : |ω1 − ω2|< ψ}.
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Theorem 3.3. Suppose that A is an M × N measurement matrix whose en-

tries are drawn i.i.d. from Uniform {±1/
√
N,±j/

√
N}. Let x(ω) denote a sinu-

soid (3.1) of frequency ω with weights {hn} such that
∑|hn|2= 1. Let H(ω) =

∑n=N
n=1 |hn|2ejω(n−(N+1)/2) be such that (i) the maxima of |H(ω)|2 that occur at fre-

quencies other than ω = 0 (side-lobes) are smaller than some constant D < 1

(independent of N) and (ii) |H(ω)|2 is non-increasing in (0, π/(2N)). Then, for

any ǫ > 0,

1− ǫ ≤
√
N

M

‖g1Ax(ω1)− g2Ax(ω2)‖
‖g1x(ω1)− g2x(ω2)‖

≤ 1 + ǫ, ∀g1, g2, ω1, ω2 (3.8)

with high probability when M = O(ǫ−2 log(Nǫ−1(1 − τχ)−1ζ−1α−1)) where τ =

1/‖dx(ω)/dω‖, χ = |dH(0)/dω|, α = 1/(Nτ) and ζ = −N−2

2
d2|H(0)|2

dω2 are parame-

ters of the windowing sequence {|hn|2}.

We give the proof of Theorem 3.3 in Appendix B.3. The condition that (i)

|H(ω)|2 is monotonic in (0, π/(2N)) and (ii) all side-lobes peaks of |H(ω)|2 are

smaller than an absolute constant D < 1 (the main-lobe peak |H(0)|2= 1 since

∑|hn|2= 1) are mild. These conditions are satisfied by windowing sequences

{|hn|2} commonly used for spectral estimation, such as the all-ones, Hamming,

Hanning, Triangular and Blackman sequences.
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3.5 Remark on generality

We state and prove Theorems 3.1, 3.2 and 3.3 for compressive measurements

with projection weights (elements of A) taken from Uniform{±1/
√
N,±j/

√
N}.

In addition to the concentration results on ‖Av‖2 of the form (2.8) which we

need to preserve the geometry of a discrete point cloud, we use the fact that

the Frobenius norm ‖A‖F=
√
M w.p. 1 for this choice of distribution. When the

elements of A are drawn from other distributions such as the gaussian distribution

for which these concentration results on ‖Av‖2 are also available [60], ‖A‖2F , which

is the sum of the square of all elements of A, can be shown to fall withinM(1±δ)

w.h.p. Therefore, the conclusions of Theorems 3.1, 3.2 and 3.3 also apply when

the elements of A are drawn from these distributions.

3.6 Number of random projections needed for

frequency estimation

In this section, we illustrate how to apply the results established in Chapter 2

to design compressive estimation strategies for frequency and phase estimation of

a single sinusoid. We describe an algorithm which attains the CRB for compressive

frequency estimation when given “enough” compressive measurements, and show
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how to determine how many measurements are enough, based on the threshold

behavior of the ZZB.

The measurements are given by

y = ejφΦx(ω) + z (3.9)

where x(ω) =
[
e−jω(N−1)/2 e−jω(N−3)/2 · · · ejω(N−1)/2

]T
is an N -dimensional sinu-

soid with frequency ω, φ is its phase, Φ is an L × N complex valued measure-

ment matrix and z ∼ CN (0, σ2IL). The parameters to be estimated φ and ω

are both distributed uniformly over [0, 2π]. For this choice of {hn} (all-ones),

when we apply Theorem 3.3 (after normalizing so that
∑|hn|2= 1), we see that

M = O (ǫ−2 log (Nǫ−1)) compressive measurements suffice to satisfy the pairwise

ǫ-isometry property w.h.p ((1− τχ)−1ζ−1α−1 in Theorem 3.3 is bounded for large

N).

In Chapter 2, we denoted the parameter to be estimated by θ = [ω φ]T and

the signal manifold x(θ) = ejφ
[
e−jω(N−1)/2 · · · ejω(N−1)/2

]T
. We now separate

the contributions from the phase and frequency and use x(ω) to denote a sinusoid

with frequency ω and zero phase (φ = 0).
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When we make all N measurements (setting Φ = IN in (3.9)), the CRB is well

known [48]. The FIM in estimating θ = [ω φ] is

F (IN , θ) =
2

σ2



N(N2 − 1)/12 0

0 N


 , ∀θ. (3.10)

In particular, the CRB on the variance of the frequency estimate (computed as

aTF−1(IN , θ)a with a = [1 0]) is CRB(IN , θ) = 6σ2/(N(N2 − 1)). Note that the

CRB is independent of θ.

We must be careful in computing the ZZB because the noiseless signal is a

periodic function (with period 2π) of both the phase and the frequency. Thus,

the errors in estimating these parameters must be appropriately defined (i.e., the

difference between 0 and 2π− ǫ is ǫ for small ǫ). The ZZB on the “periodic-MSE”

of the frequency estimate is given by (using (27) in [8])

Z(IN , a) =

∫ π

0

max
φ′∈[0,2π]

Q

(‖x(0)− ejφ
′
x(h)‖√

2σ

)
h dh

=

∫ π

0

Q

(√
N

σ2

(
1−

∣∣∣∣
sin(Nh/2)

N sin(h/2)

∣∣∣∣
))

h dh. (3.11)

Suppose now that we makeM compressive measurements (setting Φ = A), choos-

ing M large enough so that the measurement matrix A satisfies the pairwise ǫ-

isometry property for the
{
ejφx(ω)

}
signal model. Then, from Section 2.4, we

know that the Fisher information with compressive measurements F (A, θ) is

well-approximated by F
(√

M/N IN , θ
)
, the Fisher information with all N mea-
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surements at an M/N SNR penalty. Given that we know F (IN , θ), computing

F (
√
M/N IN , θ) is easy: we simply replace σ2 in (3.10) by σ2(N/M).

When A satisfies the pairwise isometry property, we can show that the ZZB

with periodic-MSE also satisfies Theorem 2.3. Therefore, the above arguments

regarding the increase in the noise level by a factor of N/M hold true for the ZZB

with periodic distortion too. Thus, we get the CRB and the ZZB with compressive

measurements to be

CRB(A, θ) ≈ CRB(
√
M/N IN , θ) = 6σ2/(M(N2 − 1)) ∀θ,

Z(A, a) ≈ Z(
√
M/N IN , a) =

∫ π

0

Q

(√
M

σ2

(
1−

∣∣∣∣
sin(Nh/2)

N sin(h/2)

∣∣∣∣
))

h dh.

We now illustrate how to predict the number of measurements needed for

successful compressive estimation based on the threshold behavior of the ZZB.

Consider frequency estimation of a N = 256 sinusoid from all N measurements

(Φ = IN) at a noise level σ2. In Fig. 3.1, we plot the CRB and the ZZB for this

estimation problem as a function of the per-measurement SNR
△
= 1/σ2. For SNRs

that are smaller than −30dB, we see from Fig. 3.1 that the ZZB is insensitive

to changes in SNR, unlike the CRB which exhibits a linear falloff for all SNRs.

However, when the SNR exceeds −10dB, the ZZB exhibits a linear falloff with

SNR.
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Figure 3.1: RMSE in dB scale for 5 compressive measurement matrices (Φ = A)
with M = 10, 25, 40, 60, 256 and the all N measurements case (Φ = IN) plotted
against effective per sample SNR M/(Nσ2). Overlaid are plots of

√
CRB and√

ZZB for all N measurements (Φ = IN) corresponding to this effective SNR. The
length of the sinusoid x(ω) is N = 256.
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If we now make M compressive measurements (Φ = A), the effective SNR

is given by (1/σ2)(M/N). We expect “good” estimation performance when this

effective SNR exceeds the ZZB threshold, which translates to the following rule

of thumb for the number of compressive measurements required:

M > Nσ2 × ZZB threshold SNR, (3.12)

Note that the ZZB threshold is computed for the original system with all N

measurements (Φ = IN), independent of the compressive measurement matrix A

and the noise level σ2. For our specific example of a sinusoid of length N = 256,

the preceding prescription translates to M > Nσ2/10, since the ZZB threshold is

−10 dB.

We now describe an algorithm whose performance closely follows these pre-

dictions: the algorithm approaches the CRB (for a given effective SNR) when

the effective SNR exceeds the ZZB threshold. This illustrates the efficiency of the

algorithm, as well as the accuracy of our design guideline of “sufficient effective

SNR.”

3.6.1 Algorithm

Let s(ω) denote the signal manifold Φx(ω). Suppose that for the purposes of

algorithm design, we ignore the fact that the unknown phase rotation ejφ has unit
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amplitude and estimate the complex gain g and the frequency ω according to the

model

y = gs(ω) + z, z ∼ CN (0, σ2I). (3.13)

Let yr(g, ω) denote the residual measurements corresponding to a hypothesized

(g, ω)-pair: y − gs(ω). The ML estimates of the gain and frequency (ĝ, ω̂) are

obtained by optimizing the function

S(g, ω) = − ‖yr(g, ω)‖2
/
2 = 〈y, gs(ω)〉 − 0.5|g|2‖s(ω)‖2, (3.14)

over g ∈ C, ω ∈ [0, 2π] and 〈x,y〉 = ℜ{xHy}. Performing a direct optimization

over g and ω is difficult. Therefore, we resort to a two stage procedure, consisting

of a detection phase and a refinement phase, which we describe now.

(i) Detection phase: First, we notice that for any ω, the optimizing g is given

by (s(ω))H y/‖s(ω)‖2. Substituting this in the cost function S(g, ω), we see that

the ML estimate of the frequency ω̂ should optimize G(ω) = maxg∈CS(g, ω) =

0.5|yHs(ω)|2/‖s(ω)‖2. We obtain a coarse frequency estimate by discretizing the

frequencies uniformly into a set F = {0, 2π/(4N), . . . , 2π(4N − 1)/(4N)} of size

4N and then choosing q⋆ ∈ F that maximizes G(q), q ∈ F . Since the frequency

estimation error is substantial (on the order of 1/N), we call this the detection

phase. The gain estimate is given by ĝ = (s(q⋆))H y/‖s(q⋆)‖2
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(ii) Refinement phase: In the second stage, we iteratively refine the gain and

frequency estimates. Suppose that after the nth round of optimization, the gain

and frequency estimates are given by ĝn and ω̂n respectively (starting off with the

estimates from the detection phase). In the n+1th round, we refine the frequency

estimate by fixing the gain to ĝn and locally optimizing S(ĝn, ω) around ω̂n using

Newton’s method:

ω̂n+1 = ω̂n −
∂S(ĝn, ω̂n)/∂ω

∂2S(ĝn, ω̂n)/∂ω2
, where

∂S(g, ω)

∂ω
= 〈yr(g, ω), g (ds(ω)/dω)〉 ,

∂2S(g, ω)

∂ω2
=
〈
yr(g, ω), g

(
d2s(ω)/dω2

)〉
− |g|2‖(ds(ω)/dω)‖2 .

Next, fixing the frequency estimate to ω̂n+1, we get the updated gain after the

n+ 1th round to be ĝn+1 =
(
s(ω̂n+1))

Hy
)
/‖s(ω̂n+1)‖2. Our numerical results are

based on applying three such rounds of iterative optimization.

Results: We simulate the performance of the algorithm with M = 10, 25, 40, 60

and 256 compressive measurements across effective per measurement SNRsM/(Nσ2)

ranging from −30dB to 1dB using 5 × 104 trials (for each M , we use the same

measurement matrix Φ = A for all SNR values). The elements of A are picked

i.i.d from Uniform{±1/
√
N,±j/

√
N}. We plot the Root-Mean-Squared-Error

(RMSE) of the frequency estimate versus the effective SNR M/(Nσ2) along with
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Figure 3.2: Bounds on pairwise SNR variation due to pairwise isometry constant
ǫ (2.7) for the compressive measurement matrices used in Fig. 3.1. Isometry
constant ǫ corresponds to the manifold {gejφx(ω)} where g ∈ R+ and φ, ω ∈
[0, 2π].

the CRB and ZZB in Fig. 3.1. We define the effective SNR beyond which the

RMSE of the estimate exhibits a linear falloff with SNR in the log-log plot (simi-

lar to the ZZB at high SNRs) as the RMSE threshold. From our earlier discussions

on the number of measurements needed for successful compressive estimation, we

expect the RMSE threshold to exceed the ZZB threshold. From Fig. 3.1, we

see that the RMSE thresholds for M = 10, 25, 40, 60 and 256 measurements are

−2,−6,−7,−7 and −8dB respectively. All the RMSE thresholds are larger than

the ZZB threshold of −10dB as expected. We also evaluate the algorithm for the

all N measurements case (Φ = IN) and find that the RMSE threshold in this case

is −8dB.
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Differences in the isometry constant ǫ explain why the RMSE thresholds are

different for different measurement matrices A. With increasing number of mea-

surements M , the isometry constant decreases. This trend is shown in Fig. 3.2

where we plot the bounds on the deviation of the pairwise SNRs from M/N ,

corresponding to (1 ± ǫ)2, for the measurement matrices A used in our simula-

tions. (Note: These isometry constants correspond to the manifold {gejφx(ω) :

g ∈ R+, φ, ω ∈ [0, 2π)} because the algorithm does not use the fact that g = 1).

When we take few compressive measurements, pairwise SNRs can deteriorate sig-

nificantly (ǫ is large) and, as a result, the RMSE threshold increases. The bounds

on pairwise SNR variation (in Fig. 3.2) when we make 40 and 60 measurements

do not differ by much. This illustrates the diminishing improvements in isometry

per measurement beyond a point. For the all-N measurements case (Φ = IN), the

isometry constant ǫ = 0 by definition and therefore the RMSE threshold is close

to the ZZB threshold.

When we set M = N = 256, the degradation in pairwise SNRs is smaller

than 2dB. However, for this extreme case, the RMSE threshold is merely 1dB

smaller than that for M = 40. This indicates that, for our example of frequency

estimation for sinusoid of length N = 256, the isometry constant is small enough

when we make 40 or more compressive measurements.
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To summarize, when the number of measurements M is large enough for the

isometry constant ǫ to be small, the number of measurements M necessary obeys

the rule of thumb in (3.12), based on ZZB threshold computations for the original

system. For our example N = 256 sinusoid, this translates to the rule of thumb

M ≥ max{40, 25.6σ2}.
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Scalable and Efficient Geographic
Routing in Mobile Ad Hoc
Wireless Networks

We investigate the problem of geographic routing in Mobile Ad Hoc Networks

(MANETs). In order to implement geographic routing, a relay node needs esti-

mates of the location of its neighbors and the destination node. When the nodes

in the network can move, estimates of the locations of neighboring nodes can

be maintained by means of periodic local broadcasts. Such local broadcasts can

be easily accommodated with a constant bandwidth overhead. However, global

dissemination of information regarding the locations of moving destination nodes

becomes a bottleneck. As noted in prior work, it is possible to reduce the volume

of position updates to distant nodes without excessively compromising route qual-

ity. While we build on top of this intuition, we show that sending updates to all

nodes in the network does not scale even after accounting for this reduction. In
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this chapter, we present a solution to this problem by carefully choosing a small

subset of nodes in the network as the recipients of position updates made by a

node. The main features of the solution presented are:

• Updates are sent to annular rings centered around potential destination

nodes. The radii and thickness of these rings grow exponentially with the

ring index. The frequency of updates on the other hand decay exponentially

with ring index.

• Since all nodes in the network do not receive updates corresponding to the

destination node, the “best” estimate seen by a packet so far is appended

to it. Relay nodes that either do not possess updates corresponding to the

destination or have updates of lesser quality use the packet’s estimate. A

relay node with a better estimate than that corresponding to the packet,

overwrites the packet’s estimate.

• It can happen that the source does not possess an estimate of the destina-

tion’s position. In that case, the source node picks an arbitrary direction and

forwards the packet along this direction. This direction is indicated in the

packet and relays downstream forward along this direction until the packet

reaches a relay with a position estimate corresponding to the destination

(this relay overwrites the direction field with its estimate).
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By choosing protocol parameters appropriately, we show that the proposed position-

publish protocol is scalable while also ensuring that the accompanying routing

protocol constructs efficient routes with high probability.

Outline: We start in Section 4.1 by reviewing prior art. In Section 4.2, we lay

out the model and the accompanying scaling used in our computations. We focus

on greedy geographic forwarding with location errors and give relevant definitions

in Section 4.2.1. We derive necessary conditions on the communication radius to

ensure that all greedy routing decisions “agree” with the straight line joining the

relay at which they are made to the position estimate used to make the decision.

We state this result as Theorem 4.1 in Section 4.2.1. We go over the cost of

multicasting to a region (in terms of the number of transmissions needed), which

is a building block for our scalability computations in Section 4.2.2. We show in

Section 4.3 that the naive strategy of issuing updates (of necessary fidelity) to

all nodes in the network does not scale. The proposed position-publish protocol,

which overcomes this scalability bottleneck by issuing updates to a small subset of

nodes is presented along with the accompanying routing protocol in Section 4.4.

In Section 4.5, we provide necessary conditions on the protocol parameters for

scalable position-publish and reliable & efficient routing. We report simulation

results for one such choice in Section 4.6.
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4.1 Related Work

Since we are concerned with large-scale networks, our communication model

and notion of scalability are guided by the relevant asymptotic results of Gupta

and Kumar [28] [29]. We postpone detailed discussion of these to Section 4.2.

The literature on MANET routing and on geographic routing (for stationary

or mobile nodes) is vast, hence we restrict attention here to prior work that is

most closely related to our approach (many of the references we cite provide good

discussions on the state of the art). DREAM [7] considers geographic routing when

the frequency of location updates is reduced as the distance from the updating

node increases. While this intuition is the starting point for our scheme as well,

we show that location updates made to all nodes as in DREAM are not scalable.

A similar intuition is also behind the Hazy Sighted Link State (HSLS) algorithm

in [52], in which link state updates are sent less frequently to distant nodes.

HSLS is designed based on minimization of the sum of the overhead due to route

suboptimality and location updates. However, the overhead computations in [52]

show that HSLS is not scalable. An intuitive reason for this is that all nodes must

have a roughly consistent view of the network for successful link state routing,

whereas geographic routing only requires that an appropriate subset of nodes

have location updates from a given destination node. GLS [35] is a spatially
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hierarchical quorum based scheme for position lookups, but is not designed to

work in networks with pervasive movement.

MLS[24] proposes a “lazy” hierarchical position lookup service in which up-

dates are published to certain fixed geographical regions. It is similar in spirit to

our scheme, in that it is able to guarantee a constant route stretch without requir-

ing that all nodes in the network obtain location updates, but the updates in our

scheme are published to regions which are different, in general, for different nodes.

It is worth mentioning that MLS builds on an earlier scheme termed LLS[2], which

structures location updates to areas centered around the destination node, as in

our scheme. The key difference of [24, 2] from our work is they do not relate the

routing overhead to network transport capacity, and do not provide means to vary

the tradeoff between route stretch and overhead.

Prior work [28] derives the scaling of the communication radius needed for

network connectivity. The critical radius needed for successful greedy geographic

forwarding is derived in [62]. We derive necessary conditions on the communi-

cation radius to ensure that a routing decision made at a relay node using an

arbitrary position estimate does not deviate “too much” from the straight line

joining the relay to this estimate. Unlike [62], our results hold even when the

position estimates using which forwarding decisions are made do not correspond

to current locations of network nodes. The node distribution in [62] is assumed
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to be given by a Poisson Point Process (PPP) of uniform density. While we make

the assumption that the number of nodes is fixed and distributed uniformly and

independently at random, we note that our scaling results also hold for the PPP

model in [62].

For the routing scheme presented in this dissertation and the preceding ref-

erences, mobility is a nuisance that increases routing overhead. However, when

delay in message delivery is not an issue, Grossglauser and Tse have shown in

[26] that mobility can actually help us get around the transport capacity limits

derived by Gupta and Kumar [29]. In a similar spirit, mobility can be exploited

to reduce the overhead of location updates, as argued in [27][20]. However, this

is not the regime of interest to us, since we are interested in delivering packets to

their destinations with minimal delay.

4.2 System Model

We consider a network of n nodes in the two-dimensional plane. The deploy-

ment region is a square of area n from which initial node positions are picked

uniformly and independently at random. Therefore, the nominal node density is

fixed at one node per unit area.
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Connectivity: We assume that the communication radius for all n nodes is fixed

at r = r(n), and that it is chosen so that the network is connected. It is shown in

[28] that connectivity requires that r must scale so that

πr2 = (1 + ǫ) logn, (4.1)

for any constant ǫ > 0. While such a choice corresponds to a communication radius

r(n) = Θ
(√

log n
)
, we note that we can scale down to a constant communication

radius by scaling the deployment region as n/logn (along with suitably scaling

other parameters) rather than as n.

Scalability: We use the protocol model for interference proposed in [29] for

our scalability computations: Each transmission precludes the reception of any

other transmission within a disc of radius (1 + ∆) r, where r is the communica-

tion radius (∆ being an absolute constant). Thus, if the bandwidth available for

communication isW , then the maximum number of simultaneous useful transmis-

sions available per time slot, denoted by TA(n), scales as Θ (Wn/r2(n)). Denoting

by TU (n) the average of the total number of simultaneous transmissions needed

per unit time to sustain a protocol (overhead) across all nodes, we employ the

following definition for the scalability of a protocol.
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Definition. We refer to a protocol as scalable if TU(n) = O (n/r2(n)). In this

case, the overhead needed for the protocol can be accommodated with a suitably

chosen constant bandwidth W .

The preceding definition assumes that the load induced on the network as a

result of position updates is uniform in space and time (this holds for our mobility

model, which is described next).

Mobility Model: Every node in the network is mobile, executing 2D Brownian

motion of mean square velocity 2σ2, with reflection at the boundaries of the de-

ployment region (assumed to be square for convenience). We note that for the

choice of square deployment region with initial node positions picked indepen-

dently and identically at random from the uniform distribution, 2D Brownian

motion with reflection at the boundaries results in instantaneous node positions

(marginals in time) also given by the uniform distribution, with each node’s po-

sition being independent of the other nodes in the network.

While we choose the Brownian motion model for its analytical tractability,

we note that our scalability results hold more broadly: scalability depends on

how distant nodes perceive the mobility of a destination node, and a large class of

randomized models for local mobility look like Brownian motion when viewed from

far away and at large time scales. For example, consider a version of the random
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waypoint model[33] in which each node chooses a new speed Vl ≥ 0 independently

and identically from a distribution and direction Φl uniformly over [0, 2π] for a

duration Dl, where the times Dl > 0 are independent and identically distributed

random variables. It can be shown that, over large time scales, this model can be

viewed as Brownian motion with mean square velocity (EV 2
1 ED2

1)/ED1 .

4.2.1 Greedy geographic forwarding with location errors

The routing protocol that we consider is the following: When a packet arrives

at a node which is not the intended destination node, this node forwards the

packet to the neighbor that is the closest to the current estimate of destination

node’s position (this position estimate may be available at the relay node or may

have been appended to the packet by an earlier relay node). We refer to such a

local routing strategy as greedy geographic forwarding. To facilitate this, we

assume that every node has perfect knowledge of the location of its neighboring

nodes.

We want to ensure that greedy geographic forwarding with imperfect location

estimates is reliable and that successful routes are efficient. In the forthcoming

discussions, we formally define these properties of greedy geographic forwarding

protocols.
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Figure 4.1: Rate of progress depends on the angle between the forwarded and
correct directions. The circle around the packet is the neighborhood of the relay
node (given by the communication radius).

Definition. We refer to a routing protocol as reliable if it delivers packets to

their destination with high probability (w.h.p.). We note that greedy geographic

forwarding with perfect location information is reliable when ǫ in (4.1) exceeds

ǫ0 ≈ 1.6 [62].

When information about the destination’s location is imperfect, the natural

approach is to route the packet along the best estimate of the direction of the

destination, possibly updating this estimate after each hop, until we get close

enough that the destination is within the communication radius. If the angle

between the correct and the forwarded direction is θ, then the progress towards

the destination per unit distance traveled is cos θ, so that we would like θ to be

small.
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We now observe that we can afford to be sloppier in our estimate of the des-

tination’s location when we are farther away. Let us denote the distance between

points a and b by ℓ (a,b).

Definition. We define the uncertainty U of the position estimate e of the desti-

nation at d available to a packet at p as the ratio of distances U = ℓ (d, e)/ℓ (d,p) .

When we fix the uncertainty of the available estimate to U , it is easy to show

that the worst case (largest) value of θ is given by sin θ = U . Thus, if we wish to

ensure that the angle between the estimated direction and the correct direction is

less than θ, we can allow for the localization error to be larger when the packet is

farther away (i.e., ℓ (d, e) can be as large as ℓ (d,p)× sin θ).

Definition. We define the ratio of the length of the source-destination packet

trajectory to the source-destination distance to be the route stretch.

Definition. The reciprocal of route stretch is a measure of routing efficiency and

we refer to a routing protocol with a bounded stretch as an efficient protocol.

Bounded uncertainty leads to bounded stretch: Now, suppose that the uncertainty

seen by a packet is always less than Umax < 1, so that the worst case angle

between the correct and estimated directions always satisfies θ ≤ arcsin (Umax).

This implies that cos θ ≥
√

1− U2
max and the route stretch will be bounded by

1/
√
1− U2

max.
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The preceding argument assumes that the forwarded direction perfectly matches

the estimated direction. However, the neighbor of the relay node node (at p) which

is the closest to the estimate e is never (with probability one, for our model of

network nodes as points) on the line joining p and e. Therefore, we expect some

disagreement between the actual direction along which a packet is forwarded and

the desired direction corresponding to the estimate e used (we sketch this in Fig-

ure 4.1). The amount of this disagreement depends on the availability of neighbors

around the relay node along the estimated direction and thereabouts. Providing

route stretch guarantees while taking this variability into account requires that

we choose a large enough communication radius (4.1) by an appropriate choice of

ǫ. This ensures that w.h.p., the amount of disagreement between the forwarded

direction and the desired direction (denoted by δ in Figure 4.1) is small for all

greedy forwarding decisions. We summarize this in the following theorem. We

note that this theorem holds for an arbitrary position estimate, which need not

correspond to the current location of any of the n nodes in the network. The

theorem assumes that at any time instant all n nodes are distributed uniformly

and independently at random over a square of area n. This assumption holds true

for the deployment region and mobility model considered.

84



Chapter 4. Scalable and Efficient Geographic Routing in Mobile Ad Hoc Wireless

Networks

Theorem 4.1. For any 0 < δ ≤ π/3, the following statement holds w.h.p. The

maximum disagreement between the direction along which a packet is forwarded

and the desired direction given by the straight line joining the relay with the es-

timate using which this greedy routing decision is being made is at most δ, when

ǫ in the choice of communication radius r =
√

(1 + ǫ)/π logn is a large enough

constant so that

1 + ǫ > π/(δ − sin δ) (4.2)

and the estimate is at least 2r away from the relay node

Corollary 4.2. Suppose that all nodes within 2 (1− U
max

)−1 r of one another

know each other’s locations perfectly. When the uncertainty seen by packets is

bounded by U
max

< 1, routing with imperfect estimates is reliable if ǫ satisfies

(4.2) for some 0 < δ < min {π/3, π/2− arcsinU
max

}.

Remark: When uncertainty is smaller than Umax and ℓ(p,d) > 2 (1− Umax)
−1 r,

it can be shown that ℓ(p, e) > 2r. Therefore, from Theorem 4.1 we have that, if ǫ

satisfies (4.2), the stretch of the segment of the trajectory from the packet source

up until a distance of 2 (1− Umax)
−1 r from the destination node is bounded by

1/cos (arcsin (Umax) + δ) ≤
(√

1− U2
max −

√
2δ
)−1

.

Proofs of Theorem 4.1 and Corollary 4.2: We give the proofs of both the theorem

and its corollary in Appendix C.1. The main ingredients of the proof of Theo-
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rem 4.1 are the following: (i) We identify ⌈2π/δ⌉ “anchor” regions in the neighbor-

hood every node (within the communication radius r(n)). We show that when all

anchor regions around a node are occupied, greedy forwarding decisions made by

this node are such that the angle between the forwarded and estimated directions

is smaller than δ (ii) We use the union bound and show that if πr2(n) = (1+ǫ) log n

with ǫ satisfying (4.2) all anchor regions in the network are occupied w.h.p.

A natural approach to guarantee a worst case route stretch is to employ

a position-publish protocol that maintains uncertainty below a level Umax < 1

throughout the network. We show in the next section that such protocols would

not scale. Before doing that, we round out this section by quantifying the cost of

multicasting information to a specific region (which is a basic building block for

the position-publish protocol discussed here).

4.2.2 Cost of Multicast

We note here for future use that the optimal number of transmissions needed

to multicast a message to all nodes in a connected region A, C (A) = Θ (|A|/r2).

To see this, we note that, in order for every node in A to have listened to the

message at least once, the area |A| has to be “tiled” by circles of area πr2. Thus,

C(A) = Ω (|A|/r2).
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To provide an upper bound, we need a constructive scheme that multicasts

messages to all nodes in A. When πr2 = (1 + ǫ) logn, with ǫ a sufficiently large

constant, we can use a result from [29] to tile the area a priori into Θ (|A|/r2)

tiles such that there exists at least one node per tile and every node in a tile can

communicate with every other node in its tile and all the nodes in its neighboring

tiles. Thus, the resultant network of tiles is connected. We designate one node per

tile (say the one with the smallest node ID) to transmit and listen while others

merely listen. The first instant when the designated node in each tile receives the

multicast message, it airs the message to all nodes in its range in a collision free

manner (using an appropriate MAC) by means of a wireless broadcast. Thus, the

message is multicast to all nodes in A with Θ (|A|/r2) transmissions, which proves

that C (A) = Θ (|A|/r2).

Note that, even though nodes are mobile, the tiling of the network can be done

a priori as in [29], and a node leader elected based on the node of smallest ID

occupying the tile (this only requires nodes to have information regarding their

neighbors, which any position-publish protocol provides).

We have been able to use the results in [29] because for the initial node deploy-

ment and mobility model considered, the instantaneous distribution of nodes in

the network is given by the uniform distribution, with each node’s position being

independent of the other nodes in the network
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4.3 A Non-Scalability Result

While maintaining the uncertainty guarantees an upper bound on route stretch,

we now show that maintaining a uniform uncertainty throughout the network,

which requires updating all nodes in the network, does not scale.

In order to maintain uncertainty of at most Umax, location updates from a

particular node (say v) must reach all nodes that are a distance z away from

it if it moves a distance roughly equal to (Umaxz) /(1 + Umax). For our Brownian

motion model, the mean time to move this distance is (U2
maxz

2)
/(

2σ2 (1 + Umax)
2) ,

and the average frequency of updates to these nodes is the reciprocal of this time.

The area of a small ring at distance z is 2πz dz and, as shown in Section 4.2.2,

the minimum number of transmissions needed to inform all nodes in this ring is

C (2πz dz) = Θ (z dz/r2).

Remembering that the diameter of the network is Θ (
√
n), the average number

of transmissions allocated to a node v per unit time tU must satisfy:

tU ≥ 2σ2C (πk1r
2)

k22r
2

+

∫ k3
√
n

k1r

2σ2C (2πz dz)

k4z2
(4.3)

= σ2k5
r2

+ σ2k6
r2

log

(
k3
√
n

k1r

)

for some constants k1, k2, k3, k4, k5 and k6. The first term corresponds to broad-

casts to a circle of radius bigger than r to ensure all nodes have accurate lists of

neighbors, while the second term corresponds to the location updates to distant
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nodes aimed at preserving uncertainty. The inequality in (4.3) is because we have

ignored the rate needed to preserve updates in space (other network nodes are

mobile and so updates made to a certain region in space will not be available in

that region indefinitely). So TU (n) = n× tU = Ω((σ2n logn)/r2).

Maintaining uniform uncertainty does not scale: The ratio of required overhead

to sustainable capacity is therefore given by

TU(n)/TA(n) = Ω
((
σ2 log n

)/
W
)

which blows up (albeit slowly) for large n. Thus, a strategy of maintaining an

upper bound on uncertainty throughout the network (and thus bounding route

stretch) does not scale.

Clearly, in order to provide guarantees on route stretch, the angle between the

true and estimated directions towards the destination cannot be too large. But

what we have just shown implies that we must appropriately choose a subset of

nodes to update in order to reduce the routing overhead enough that the protocol

can scale. This observation motivates the proposed protocol described in the next

section.
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4.4 Proposed Protocol

We now describe a scalable position-publish protocol, and an accompanying

greedy geographic forwarding protocol which works with imperfect position esti-

mates and is reliable and efficient. Before presenting the details of the position-

publish protocol and the routing protocol, we provide an overview of the position-

publish protocol and state the necessary conditions on the protocol parameters

for scalable position-publish and for reliable and efficient routing.

4.4.1 Overview of the position-publish protocol

We give a summary of the position-publish protocol executed by a typical node

that is a potential destination (we call this the destination node henceforth) while

deferring the details to Section 4.4.3. The destination node directs its updates to

geographic regions structured as annular rings around its current position, indexed

as i = 0, 1, ..., K. The position-publish algorithm is executed in a parallel fashion

for each ring index.

An update ring corresponding to index i has inner radius of the ri and thickness

di ≪ ri. Therefore, the geographical region to which an update is issued is

specified by the center c of the ring and its ring index i. An update issued to

the i-th ring is retained for a duration of Ti by the nodes that receive this update
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Figure 4.2: Left: Update rings corresponding to three consecutive ring indices
l − 1 (black), l (red) and l + 1 (green). The position estimates (also centers
of the update ring) are marked • on the destination’s trajectory (blue) using
corresponding colors. The current position of the destination is the magenta •.
Right: Two packet trajectories (blue) starting from nodes marked � in between
the l-th and (l + 1)-th update rings converging to the destination (magenta •).
The packets are launched in arbitrary directions and acquire their first estimate
(bootstrap) inside the l-th and (l + 1)-th update rings respectively (marked �).
They progressively refine their estimates when they cut through lower indexed
rings (marked N).

after which it is discarded. We refer to this time duration over which a particular

update is retained as its lifetime and those updates whose lifetimes have come to

pass as expired updates. The parameters ri, di and Ti, which define the ring index

i all scale exponentially with the ring index i.

The position-publish protocol proactively publishes position updates to those

ring indices whose updates are at the cusp of expiry, thereby ensuring that an

update ring (which has not yet expired) corresponding to each of the K + 1

update indices encircles the destination node. We depict the typical configuration

of update rings around the destination node in Figure 4.2 (left). Three update
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ri βri

Confidence region

d (t0)

Figure 4.3: Update made to the i-th ring at time t0 by the destination node (in
black). The nodes shaded red receive this update.

rings corresponding to consecutive ring indices {l − 1, l, l + 1} are highlighted

in Figure 4.2. The position-publish algorithm runs in parallel for different ring

indices (with different typical lifetimes {Tl−1, Tl, Tl+1}). As a result, the three

rings are centered around different points on the destination’s trajectory.

Denoting the position of the destination at time t by d(t), the position estimate

e of an update points to the location of the destination node at the time of issue

(i.e., an update made at time t0 satisfies e = d (t0)). Each update also comes with

a guarantee on the quality of its position estimate e, which can be tuned by a

parameter β satisfying 0 < β < 1: The destination node is understood to remain

within a circle of radius βri around this position estimate e (i.e., ℓ(d(t), e) < βri

until this update expires). We refer to this region as the confidence region of

the update. Figure 4.3 illustrates a typical update ring and the confidence region
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associated with it. Confidence region guarantees are essential for the reliability

and efficiency of the accompanying routing protocol. Two representative packet

trajectories, which make use of the information disseminated by the position-

publish protocol are sketched in Figure 4.2 (right).

4.4.2 Protocol parameter choices

We summarize the regime of operation of the proposed protocol in Theo-

rem 4.3. We provide a proof of Theorem 4.3 in Section 4.5 via Lemmas 4.4, 4.5 & 4.6.

The inner radius ri, thickness di and timer duration Ti of update rings grow

exponentially with the ring index i as

ri = r0α
i, di = d0α

µi, Ti = T0α
γi.

The zero-order ring defined by r0, d0 and T0, the ring scaling exponents α, µ and γ

and the confidence region parameter β are the tunable parameters of the proposed

position-publish protocol. Let Umax denote the maximum uncertainty seen by a

packet after it acquires an initial estimate of the destination’s position (we refer

to this process of acquiring an initial estimate, as bootstrapping, when we explain

the routing protocol in Section 4.4.4). We show in Appendix C.3 that

Umax = αβ/(1− β) . (4.4)
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We assume hereon that all nodes within 2 (1− Umax)
−1 r of one another know each

other’s positions perfectly (via local broadcasts), where r is the communication

radius, chosen to satisfy πr2 = (1 + ǫ) logn. Such local broadcasts are neces-

sary for maintaining neighbor lists and can be accommodated within a constant

bandwidth.

Theorem 4.3. The proposed position-publish protocol is scalable and the associ-

ated routing protocol is efficient and reliable when r0/β, d0 and
√
T0/σ scale as

Θ(r), α > 1, 0 < β < 1/(1 + α) , 1/3 < µ < 1, 1 + µ < γ < min{2, 4µ} and

1 + ǫ > π/(δ − sin δ) for some constant 0 < δ < min {π/3, π/2− arcsinU
max

}.

An example of parameter choices satisfying Theorem 4.3: (i) confidence region

parameter β = 0.25, (ii) order-zero ring specified by r0 = r/β, d0 = 2r, T0 =

(1/8) (βr0/σ)
2 and (iii) ring scaling parameters α = 2, µ = 0.55, γ = 1.95. We

perform simulations for this choice of parameters and present results in Section 4.6.

4.4.3 Position-publish protocol

We now present the details of the position-publish protocol. There are two

kinds of location updates: normal and abnormal updates.

Normal update: A normal update published at time t0 to ring i (of radius ri)

specifies the center of the ring as the current location of the destination node. i.e.,
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c = d(t0). The update points to the current location e = d(t0) and has a lifetime

of Ti after which the nodes which receive the update discard it.

Abnormal update: An abnormal update is sent when the destination leaves the

confidence region for a prior normal update before the timer for the latter update

expires. For example, for the normal update at time t0 described above, if the

destination node crosses the boundary of the confidence region at time t1 < t0+Ti

(i.e., ℓ (d(t1), e) = ℓ (d(t1),d(t0)) > βri), then we send an abnormal update to

the ring centered at the prior update. That is, we send an update specifying the

current location e = d(t1) to a ring of index i centered at c = d(t0) with a timer

Ti − (t1 − t0) (spanning the remaining lifetime of the invalidated update).

When we choose the protocol parameters within the regime prescribed in The-

orem 4.3, the probability of abnormal updates tends to zero as the ring index

increases. However, we include abnormal updates to ensure that stretch guaran-

tees are met.

Triggers for new updates: A normal update is performed whenever the timer

for a prior normal update expires. This is depicted in Figure 4.4 (left). When a

destination node moves out of the confidence region of a normal update whose

timer has not expired, then two updates are performed: a normal update to

a ring centered around the current location and an abnormal update centered

around the old location (at which the invalidated, but as yet unexpired, normal
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d (t0)
d (t0 + Ti)

d (t0) d (t1)

Figure 4.4: Left: Typical scenario of the destination node staying within the
confidence region of the update made at t0, when it expires at t0 + Ti. A new
normal update of lifetime Ti is made to the ring i and is received by the blue relay
nodes. Right: An unlikely situation where at time t1 < t0 + Ti, the destination
node leaves the confidence region of the update before it expires, thus requiring
an abnormal update (received by the green relays) of lifetime Ti − (t1 − t0) and
a normal update of lifetime Ti (received by the blue relays). Relays marked red,
outside the two update rings possess stale unexpired updates made at time t0
and these updates can be applied to packets only if these relays re-enter the ring
centered at d (t0).
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update was made). The abnormal update lasts for the remaining lifetime of the

invalidated update. This is shown in Figure 4.4 (right). When a destination node

moves out of the confidence region of an abnormal update whose timer has not

expired, then one update is performed: an abnormal update centered around the

old location which lasts for the remaining lifetime of the invalidated abnormal

update. Abnormal updates prevent invalidated updates from influencing packet

trajectories. The destination node maintains a list of updates published by it,

so that it can publish new updates when these updates time out or when their

guarantees are invalidated. Updates whose guarantees have been invalidated, are

deleted from this list once the aforementioned compensatory action (of issuing

new updates) is taken.

Spatial validity of updates: An update (whose timer has not yet expired) can

only be used for geographical forwarding if the relay node is in the ring to which

the update was made (specified by its ring center c and ring index i). Thus, once

a node moves out of that ring, it can no longer use the information it received

about the destination’s location when in the ring. It will use this information if

it moves into the update ring again. While this may seem overly restrictive, this

constraint on the spatial validity of updates enables us to use abnormal updates to

reinstate the confidence region guarantees needed for reliable & efficient routing.
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Update propagation: In order to limit the traffic generated by a location up-

date, the destination node sends the update packet in a specified direction until

it hits the ring it is intended for, at which point it “expands” into a multicast

message. Specifically, the destination launches the packet in an arbitrarily chosen

direction u, which is indicated in the packet. Each intermediate node examines

the packet to see if it is in the specified ring. If not, it simply forwards the packet

in the direction u. Once the packet reaches a node in the update ring, that node

repackages the update as a multicast packet for all nodes in the update ring.

All nodes that receive this multicast message store the position update for the

destination node (overwriting previous updates for the destination node with the

most recent update). While large “holes” in the deployment region can disrupt

update propagation and expansion, we note that this can be handled when we

assume that the shape of the deployment region (expected to be static) is known

to all potential destination nodes. The destination nodes can thus choose launch

direction(s) u so as to avoid disruption of update propagation and expansion.

4.4.4 Routing protocol

We now consider the problem of routing a packet to a destination which proac-

tively publishes its location as described in Section 4.4.3. The packet contains a
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field indicating the destination identity, the “best” estimate of its location and

the ring index & time of update corresponding to this estimate. Intermediate

nodes use this field for geographic forwarding, and are allowed to overwrite it if

they have a “better” active estimate of the destination’s location. An estimate

is active only when the relay node’s current location satisfies the spatial validity

constraints of the update. An estimate is considered “better” only if its ring index

is smaller than that of the packet or if its ring index is the same as that the packet,

but the update is more recent than that of the packet. The ring index is given

more importance than the time of update because of the guarantees given by the

destination node through its layered update scheme.

If the source node does not possess an active update, then it chooses a random

direction to relay the packet along: this is indicated in the packet by means of

a vector indicating this direction (in the position estimate field), time of update

−∞ and ring index ∞. Until the packet reaches a node with an active update all

intermediate nodes relay the packet along this direction. When the packet hits a

node with an active estimate, it is said to have bootstrapped. If the packet reaches

the boundary of the network before bootstrap, it bounces off the boundary by

reflection (by a boundary node changing the direction field).

The parameters α and β of the position-publish protocol limit the potential

geometry of normal update rings around the destination node and are chosen to
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ensure that before the packet reaches the estimate it possesses (say corresponding

to the ring index l+1), it meets a smaller indexed update ring (the ring index l) and

acquires the corresponding estimate (we detail this in Appendix C.3). Therefore,

the amount by which the packet’s estimate e can disagree with the true location

of the destination d, which can be no larger than the radius of the confidence

region corresponding to the present estimate βrl+1, progressively decreases after

bootstrap and the packet eventually reaches the estimate corresponding to the

ring indexed 0, whose confidence region guarantee ensures that the destination

is no further than βr0 away from this location. This motivates the choice of the

radius of the 0-order ring, r0 = r/β in Section 4.5, thereby ensuring successful

packet delivery (we assume that nodes within 2 (1− Umax)
−1 r > 2r > βr0 = r

know each other’s locations perfectly). Two such converging packet trajectories

are sketched in Figure 4.2 (right).

4.5 Scalability, Reliability and Efficiency

We now derive the design guidelines for protocol parameter choices summarized

in Theorem 4.3 in Section 4.4.2. Recall that the inner radii of the update rings

scale up exponentially with ring index: ri = r0α
i, where α > 1. So does the ring

thickness, but at a slower rate: di = d0α
µi, 0 < µ < 1. The timer durations also
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scale up exponentially: Ti = T0α
γi. The behavior of the protocol depends on the

parameters: r0, d0, T0, α, β, γ and µ. In this section, we present three lemmas

constraining the parameters for each of our design objectives: Lemma 4.4 for

scalability of the position-publish scheme, Lemma 4.5 for routing reliability, and

Lemma 4.6 for routing efficiency. Theorem 4.3 simply represents the intersection

of the conditions for these three lemmas.

We start off by choosing the radius of the confidence region of the innermost

update region, βr0, equal to the communication radius r (i.e., r0 = Θ(
√
log n)).

This ensures that before the packet is forwarded to the node closest to the estimate

corresponding to this zero-order ring, which can disagree with the true location

of the destination by at most βr0 = r, the packet is within a distance of 2r

of the destination, thereby acquiring the true location (we assume nodes within

2 (1− Umax)
−1 r > 2r of one another know each other’s positions perfectly by

means of local broadcasts). For this choice of r0, the number of rings K scales as

O (logn). To see this, we note that we need the radius of the outermost update

ring rK = r0α
K to roughly equal the network diameter

√
2n (the deployment

region is a square of area n), and this yields K = Θ (log (n/r20)).
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4.5.1 Position-publish Scalability

Computing the average cost of updates to a particular ring index i is the key

step to computing the routing overhead. For proving scalability, it is the behavior

for large i that is the most relevant. For 2D Brownian motion, it can be shown

that the probability of exiting a circle of radius βri within the timer duration Ti

tends to zero, as long as Ti grows slower than r
2
i . For Ti = T0α

γi and ri = r0α
i, this

is satisfied for large i as long as γ < 2, which we henceforth take as a constraint.

This implies that the rate of abnormal updates tends to zero (with ring index i),

and that the update rate Fi for ring i is approximately 1/Ti for large i. In fact,

Fi ≤ Φ/Ti for all i, where Φ depends only on βr0
/(
σ
√
T0
)
. We choose T0 so that

r
/(
σ
√
T0
)
= Θ (1) and as a result Fi = Θ (1/Ti) for all i.

As described in Section 4.4.3, a position update to ring i goes on a straight line

until it hits the ring, and then is multicast in the ring. The area of the i-th ring

(i ≥ 1) is Ai = π ((ri + di)
2 − r2i ) = πd2i + 2πridi = Θ (ridi) (since the radius ri

scales faster than the thickness di). From Section 4.2.2, we know that the number

of transmissions to multicast in this area is C(Ai) = Θ (|Ai|/r2). Proceeding along

the straight line takes Θ (ri/r) transmissions, which can be ignored in comparison

to the preceding. Thus, the number of transmissions for an update to the i-th ring

is νi = Θ (ridi/r
2). The average rate of transmissions corresponding to updates for
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a typical destination node, which we term the average overhead rate, is therefore

given by

tU =
K∑

i=1

Fiνi = Θ

(
K∑

i=1

ridi
r2Ti

)

Plugging in the scaling for ri, di and Ti, we obtain that the average overhead rate

is given by

tU = Θ

(
r0d0
r2T0

K∑

i=1

α(1+µ−γ)i

)

As n gets large, so does the number of rings K, so that the preceding summation

converges when α1+µ−γ < 1. Since we need α > 1 in order to exponentially expand

the rings, we must have 1 + µ − γ < 0 as a necessary condition. As n grows, we

have already noted that r0 scales as Θ(r/β) and T0 as Θ (r2/σ2). For this scaling,

we show in Section 4.5.2 that we need d0 = Θ(r) for reliable routing. We now

have that

TU = n× tU = Θ
(
σ2
/
r2
)

which matches the throughput available per node TA for a fixed bandwidth.

Lemma 4.4. The proposed position-publish protocol is scalable when 1+µ < γ <

2, βr0 = Θ(r), d0 = Θ(r) and T0 = Θ (r2/σ2).
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4.5.2 Routing Reliability

We have analyzed the update protocol to determine conditions for scalability.

We now analyze the routing protocol to determine conditions that ensure reliable

routing. After an update is made to nodes in a ring, some of these nodes may

leave the ring. When a packet being routed to the destination hits the ring,

therefore, the relay nodes it sees may be ones which moved in after the currently

active update was made. According to the proposed routing protocol, when the

packet meets such nodes which have estimates of the destination’s location worse

than its own (including not having any estimate of the destination’s location), it

simply continues in the direction it is going. Thus, in order for a packet to take

advantage of an active update for ring i once it hits it, it suffices that at least

one of the nodes it meets as it is cutting through the ring has an active update

corresponding to ring i. If this does not happen, we say that the packet has

“missed” the i-th ring. The lifetime Ti of normal updates must be short enough

that the probability of a miss tends to zero, which imposes additional conditions

on the protocol parameters, as we show here.

The worst case scenario for missing a ring is the following scenario: (i) The

packet is relayed radially across it, since it meets fewer relay nodes along the ring,

and hence a smaller probability of meeting a node with an active update (ii) The
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time since update issue is Ti (just prior to update expiry). This is because the

density of relay nodes with updates inside the update ring (the region where the

update is spatially valid) decreases as time from update issue increases and the

packet is least likely to meet a relay node with an active update just prior to update

expiry. We consider this worst case scenario and use the following asymptotics

(for outer rings; large i): ri/
√
Ti → ∞, di/ri → 0 and di

/(
σ
√
Ti
)
→ 0 to give an

upper bound on the miss probability Pmiss(i):

logPmiss(i) / − d2i

/(
σr
√

2πTi

)
. (4.5)

We provide the details of this derivation in Appendix C.2. Since σ
√
T0 = Θ(βr0) =

Θ(r), if we ensure that d0 grows at least as fast as r, we can bound the probability

of missing the innermost ring (i = 0) for all network sizes. Thus, we set d0 = Θ(r).

We prove in Appendix C.3 that when no misses occur, the confidence region

guarantees of active updates ensure that the uncertainty seen by a packet after

bootstrap is bounded by Umax = αβ/(1− β). When we make the following as-

sumptions: (i) β is chosen so that Umax < 1 (ii) all nodes broadcast their current

positions to other nodes within 2 (1− Umax)
−1 r (iii) ǫ in πr2 = (1 + ǫ) log n is a

large enough constant given by (4.2) for some δ < min {π/3, arcsinUmax}, we can

invoke the corollary of Theorem 4.1 to guarantee routing reliability. Therefore,

the overall probability of routing failure P nett
miss can be upper bounded by the prob-
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ability of missing at least one ring P one
miss (so that the uncertainty can no longer be

bounded by Umax). Using the union bound, we have

P one
miss ≤

i=K∑

i=0

Pmiss(i) /
i=K∑

i=0

exp
(
−d2i

/(
σr
√
2πTi

))
. (4.6)

Since d20
/(
rσ

√
T0
)
= Θ(1), we note that P one

miss is bounded for all network sizes

(and thus, so is P nett
miss) if γ < 4µ. By choosing d20

/(
rσ

√
T0
)
to be large enough,

we can drive the bound on P one
miss given by (4.6) below any desired level.

Lemma 4.5. The proposed routing protocol is reliable when γ < 4µ, 0 < β <

1/(1 + α) , d0 = Θ(r), T0 = Θ (r2/σ2) and ǫ in (4.1) is large enough so that (4.2)

holds for some δ < min {π/3, π/2− arcsinU
max

}.

4.5.3 Routing Efficiency

In order to bound the route stretch, we must account for the fact that, since

location updates are sent to only a subset of nodes, the source node need not have

an active update for the destination. In this case, the packet travels an additional

distance in an arbitrarily chosen direction until it hits a node with an active update

and we refer to this process of acquiring an initial estimate as the bootstrapping

process. Our bound on route stretch must account for this additional distance.

Once the packet does encounter a node with an active update, we use uncertainty,

which we show is bounded by Umax = αβ/(1− β) provided the packet does not
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miss smaller indexed rings thereafter, to bound the route stretch. The resulting

bound on the route stretch is given by (we assume that ǫ in the choice of r is large

enough so that the direction along which a packet is forwarded closely matches

that corresponding to the position update used; i.e., ǫ chosen to satisfy (4.2) for

small δ): √√√√√1 +



√
α2 (1 + β)2

(1− β)2
− 1 +

α (1 + β)√
(1− β)2 − α2β2




2

(4.7)

Details of the derivation can be found in Appendix C.3. We note that this bound

is finite if Umax = αβ/(1− β) < 1.

Lemma 4.6. Packet trajectories are within a constant stretch factor of the source-

destination distance ( efficient) when routing is reliable (no additional constraints).

4.6 Simulation results

We perform simulations of the position-publish and routing protocol for a par-

ticular destination node, for the following scenario: Number of nodes n = 1.8×106,

node density 1, mobility model being 2D Brownian motion with parameter σ2 = 1

and the deployment area is a square of side
√
n. We choose the communication

radius r to be
√

(1 + ǫ) logn/π and report results for both ǫ = 0 and ǫ = 2. The

parameters of the position-publish protocol are: (i) confidence region parameter
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Figure 4.5: Probability of missing a ring for r corresponding to ǫ = 0 (left) and
ǫ = 2 (right) for radial traversal just prior to update expiry (worst case)

β = 0.25, (ii) order-zero ring specified by r0 = r/β, d0 = 2r, T0 = (1/8) (βr0/σ)
2

and (iii) ring scaling parameters α = 2, µ = 0.55, γ = 1.95.

To get a concrete sense of what these numbers mean, we choose the units

of distance so that the communication radius is r = 100m (for ǫ = 0). The

deployment area is 63 km by 63 km, with a node density of 458 nodes per square

km. Now we choose units of time so that RMS motion over one second σ
√
2, to

be 10m (consistent with vehicular speeds), we see that the lifetime of updates to

the update rings of radii 3.2, 6.4, 12.8 & 25.6 km (i = 3 to i = 6) and thickness

0.63, 0.92, 1.35 & 1.97 km are 0.40, 1.55, 5.98 & 23.10 hours respectively.

Probability of a packet missing updated nodes in a ring: We first compare

the asymptotic estimate of the worst case miss probability in (4.5) with simulations

of the worst case (radial trajectory & just prior to update expiry) in Figure 4.5.
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Figure 4.6: Overlaid routing trajectories (converging to a destination node) at
a snapshot of the network for the proposed routing protocol for two different
communication radii (smaller on the left). Blue dots indicate nodes with active
position updates for the destination node; green dots indicate nodes with active
position updates that however cannot be used because these nodes do not satisfy
the spatial validity constraint of their position updates; red dots indicate relay
nodes along packet trajectories using greedy geographic forwarding; black dots
indicate greedy face traversal around voids [34].

Note that the match is better for ǫ = 2, because the average number of relay

nodes seen by a packet decreases with an increase in ǫ and approaches the lower

bound of di/r used in the derivation of the upper bound on Pmiss(i) ((C.3) in

Appendix C.2).

Trajectories: We plot a sampling of the simulated trajectories in Figure 4.6

(Left: ǫ = 0, Right: ǫ = 2) (we ignore edge effects by focusing only on trajectories

that start inside the outermost update ring while noting that network boundaries

can be handled either by using a specialized update ring, or via packet “reflec-
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Figure 4.7: CCDF of uncertainty seen by packets as they cut through the network
(after bootstrap) for ǫ = 0 (left) and ǫ = 2 (right). The red vertical line demarcates
the upper bound on uncertainty (4.4)

tion” at the boundaries). We note that, for larger communication radius (ǫ = 2),

the trajectories are straighter, as there are many nodes available in each direction

around a relay node. For ǫ = 0, which is below the threshold [62] for asymptotic

success of greedy geographic forwarding, trajectories hit voids frequently. How-

ever, using the standard technique of greedy left hand traversal of voids [34] (these

segments of the trajectory are marked in black), route failure rates are reduced

to a small level.

Uncertainty: The uncertainty of the position estimate is designed to be less

than αβ/(1− β) = 2/3 once the packet bootstraps. From our simulations, we

find that the uncertainty seen by a packet after bootstrap remains smaller than

this value. The CCDFs of the location uncertainty after bootstrap are presented

in Figure 4.7.
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Figure 4.8: CDF of reciprocal stretch, i.e., the ratio of source-destination dis-
tance to the length of the packet trajectory, for communication radius r corre-
sponding to ǫ = 0 (left) and ǫ = 2 (right). Red vertical line corresponds to the
worst case stretch (4.7)

Route Stretch: Figure 4.8 plots the CDF of the reciprocal of the route stretch

attained, with reciprocal stretch equal to zero indicating a routing failure (edge

effects are ignored by focusing on trajectories which start inside the outermost

update ring). From (4.7), the route stretch is bounded by 9 and the corresponding

reciprocal stretch is marked via the red vertical line. Note that all successful

routes satisfy this guarantee, and that all routes are successful for ǫ = 2. For

ǫ = 0 (greedy geographic forwarding not guaranteed to work), a small fraction of

route failures do occur.
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Chapter 5

Inference from time on Twitter

In this chapter, we first explore whether the timing of a user’s tweets tells

us something about her/his interests, by comparing it against the known timing

of external events associated with a particular interest. We take the example

of baseball fandom to illustrate that the time of tweets can be a useful tool for

interest inference on Twitter.

We then tackle the problem of understanding the temporal evolution of a

topic feed on Twitter with a view to leverage this knowledge for identifying user

interests. We use minimal measurements derived from the tweets in the feed: their

time and authorship (the when and the who of each tweet). The main features of

this problem are the following:

(a) Twitter feeds exhibit significant time-of-day effects. i.e., even when no inter-

esting activity takes place, the variations in tweet intensity as a function of

time are pronounced
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(b) The duration of interesting activity (and their tweet intensity) observed is

diverse, with some events lasting around 20 hours, while others are brief (10

minutes)

(c) Within the broad area, we expect people who share specific interests to tweet

at roughly the same times, when conversations related to their shared interest

take place on Twitter.

The framework proposed in this chapter accommodates the above features and

has two major components: (i) Identify and isolate the times when interesting

activity takes place in the feed using tweet times. We call such times event times.

We address the facets of the problem (a) and (b) when we detect events (ii) Dis-

sect, using tweet times and authorship, this set of events into subsets, each of

which likely correspond to different subtopics. We exploit attribute (c) in order

to discover such relationships.

Outline: We start by reviewing prior work on mining Twitter feeds in Section 5.1.

We state the model we use for tweet times of a user in Section 5.2.1. We model a

user interested in the topic as one who is likely to tweet at a higher rate during

“event times” associated with the topic than at other times. This leads to a sta-

tistical measure for a user’s interest which is the Bayesian posterior probability,

based on measured tweet times, of the user’s tweet rate during event times be-
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ing higher than at other times. Under our model, this probability only depends

on the number of tweets (rather than on their exact timing) during events and

during other times. This makes the statistic, which we derive in Section 5.2.2,

attractive for inference in large-scale systems, both in terms of measurement and

computation. We present our model for interest-overlap among “neighboring”

users and derive a statistic for pooling interest-level estimates of neighbors un-

der this model in Section 5.2.3. In Section 5.2.4, we present results for inferring

baseball fandom. We define event times as those times which see abnormally high

activity. In order to identify these event times, we need to define what normal is:

i.e., model baseline activity. By using a time-varying Poisson process for model-

ing baseline activity, we are able to capture the significant time-of-day effects in

aggregate Twitter feeds. This model is presented in Section 5.3.1. We review con-

stant false alarm rate (CFAR) detection under the Poisson model in Section 5.3.2

and present our event detection algorithm in Sections 5.3.3 and 5.3.4. We fol-

low this up with the baseline estimation algorithm in Section 5.3.5. We round

out Section 5.3 by presenting event detection results corresponding to 4 TV show

feeds in Section 5.3.6. In Section 5.4, we identify relationships between events us-

ing tweet authorship information (user ID) and dissect the event times identified

in Section 5.3 into subtopics. For this purpose, we build a user-event bipartite

graph, where we place an edge between a user and an event if the user tweets
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during the event. We embed the random-walk commute times between events on

this bipartite graph using spectral methods. We summarize these ideas in Sec-

tions 5.4.1 and 5.4.2. We explain our event clustering algorithm which makes use

of these embeddings in Section 5.4.3 and present implementation considerations

in Section 5.4.5. We conclude Section 5.4 by presenting wordclouds and timelines

of significant subtopics (for the 4 TV show feeds) in Section 5.4.6. We choose

to illustrate the power of our inference framework via TV shows (we present re-

sults for four shows) because clearly demarcated periodic events such as episode

air times provide unambiguous validation of our approach, while less predictable

tie-ins with other cultural and commercial phenomena provide an opportunity to

demonstrate that our approach can lead to automated discovery of interesting

phenomena (all without text analysis).

5.1 Related Work

Prior work on mining Twitter feeds has mostly been fed by text analysis.

TwitterStand [51] maintains a news stand by parsing through different tweet feeds.

The timing of tweets has been used here to help in the clustering of tweets into

different news groups. The authors in [50] build a system that can locate events

such as an earthquake in space and time from tweets (using tweet location and
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times). However, unlike the solution proposed herein, both[51, 50] rely mainly

on text analysis, with tweet times being used only in the later stages. PET[36]

tracks the evolution of events, and users’ interest in them, as a function of time.

Unlike our approach, PET uses text analysis, and does not use the specific tweet

time or its relation to external events (PET analyzes tweets collected daily to infer

the evolution of topics from day to day). A method of training a classifier to do

sentiment analysis of individual tweets is proposed in [44]. Here smileys are used

in a bootstrapping mechanism to build a corpus of words along with an associated

sentiment (positive or negative) for each word. The preceding references do not

explicitly aim to mine for the interests of a user, which is the focus of our work.

A system that employs Wikipedia as an external corpus to do word associations

is proposed in [40] for mining broad interests on a per user basis. In [16], the

authors observe that in identifying political affiliation of a 1000 hand-labeled users,

the structure of the re-tweet graph is more useful than the text in the tweets

themselves. They arrive at this conclusion by implementing a text based classifier

and comparing it with the results obtained merely by identifying the community

structure in the re-tweet graph.

There is by now a significant body of work on Twitter event detection for

summarizing topic-specific Twitter feeds. The method proposed in [54, 55] relies

on abrupt local changes in tweet counts to detect activity in a topic-specific feed.
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TwitInfo [39] identifies events using an algorithm inspired by TCP’s congestion

control algorithm, by keeping track of the mean and variance of tweet counts. The

authors in [43] present a system to detect and summarize significant events in a

single sport event. The event detection algorithm proposed maintains an estimate

of the mean and variance of the slopes of tweet counts (differences in adjacent tweet

counts). These estimates are used to threshold observed slopes in order to detect

events. The preceding systems examine the content of tweets that fall within

events, so as to provide text-based summaries of individual events corresponding

to a single extended event such as a soccer game or Presidential debates. In

contrast to these local change detection approaches, we use observations over a

longer period to build a baseline statistical model, and then use this to identify

extended events of interest as well as shorter burst of activity. In addition, we

provide an approach for teasing out relationships between identified events without

any content analysis.

Temporal dynamics have been used for clustering news topics in Twitter based

news aggregator systems[51, 64]. Identifying the newsworthiness of a tweet is a

fundamental feature of such systems. As a result they rely heavily on the text of

tweets. In fact TwitterStand[51] uses the distribution of words in a tweet first to

filter out “noisy tweets,” using the time of tweets later as one of the cues when

clustering newsworthy tweets into topics. EDCoW [64] uses the distribution of
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words in each tweet to detect important words, and employs a short-term temporal

analysis of these words (over a 24 hour period) to extract trending themes (a bag

of words) from a Twitter feed obtained by crawling around 20,000 “active” users.

The correlation between the time courses of usage for different words is used in [64]

for clustering newsworthy words. While this is similar in spirit to our approach, we

cluster events based on users with similar tweet times, and hence do not require

any content analysis.

A complementary work of interest is the study of temporal patterns of user

attention in online social media in [65], which shows that short-term temporal

dynamics (over a few days) of a large number of topics (hashtags) on Twitter

can be well-approximated by a small set of shapes. While our focus here is on

detecting and dissecting activity over large time duration (order of a year) for a

single topic, exploring whether the shapes of the events we detect are similar to

those in [65] is certainly an interesting topic for future work.

5.2 Inferring interest from time

5.2.1 Tweet times model

We start by presenting a probabilistic model for tweet times of a user over an

observation time window (this need not consist of contiguous intervals) . Our basic
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premise is the following: a user who is interested in topic X (say the SFGiants

baseball team) tweets more often at times when X is in the “public eye” (SFGiants

play a baseball game) than at other times. Thus, we partition the observation

window into two complementary sets:

1. Event times are times within the observation window when X is in the

“public eye” (which, according to our hypothesis, stimulates users interested

in X to engage in conversations on Twitter).

2. Non-event times: All other times over the observation window.

This partitioning, along with the behaviors we expect for users who are interested

(or not) in the topic X, is shown in figure 5.1.

The tweet times of a user are modeled as a homogeneous Poisson process of

rate λ1 tweets per unit time during event times and an independent homoge-

neous Poisson process of rate λ0 tweets per unit time during non-event times. As

depicted in figure 5.1, we expect that λ1 > λ0 for users interested in topic X.

A homogeneous Poisson process is parameterized by a single parameter, its

rate λ. Such a parsimonious model for the tweet times of a user has two ad-

vantages: robustness (heterogeneity among twitter users may make more detailed

usage profiles, such as allowing for tweet rates dependent on the time of day,

counterproductive) and simplicity (e.g., the decision statistics we obtain require
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Figure 5.1: Tweet times of the user marked by arrows. Event times are marked
in red. All other times are non-event times. Top: Tweeting behavior of a person
not interested in X. Bottom: A person interested in X

aggregate tweet counts rather than individual tweet times). For a Poisson pro-

cess of constant rate λ tweets/unit time, the number of tweets N made in a time

interval of length T (need not be contiguous) is a Poisson random variable with

mean λ× T . i.e., the probability that the user puts out n tweets in T time units

is given by

Pr [N = n| λ] = e−λT (λT )n

n!
, n = 0, 1, 2, . . . ,∞.

Further, under the Poisson model, the number of tweets put out by the user in

non-overlapping time intervals are independent random variables.

120



Chapter 5. Inference from time on Twitter

5.2.2 Inferring interest levels from tweet times

We propose a statistic that measures our confidence in the assertion that the

user tweets more frequently during event times than other times. i.e., his/her

tweet rate during event times is larger than the rate at other times. This statistic

is our metric for the user’s interest level in the topic X. We use knowledge of

the event and non-event times to estimate the probability distributions of the

corresponding tweet rates λ1 and λ0 from the tweet times of the user, and then

compute the statistic from these posterior distributions.

Under our Poisson model, the posterior distribution of λ1 given the tweet times

depends only on the total number of tweets put out by the user during event times,

which we denote by N1. The tweet times themselves do not matter. Similarly,

to make probabilistic inferences on λ0, all we need is the total number of tweets

during non-event times, denoted by N0. In the language of estimation theory, N1

and N0 are minimal sufficient statistics for estimation of λ1 and λ0, respectively.

Let the total time span of the event times and non-event times be T1 and T0

respectively.

Continuing with our minimalism in modeling, we assume a non-informative

prior on the rates λ1 and λ0, assuming that the prior density p(λ1, λ0) ∝ 1/
√
λ1λ0

for all λ1 > 0, λ0 > 0 (the corresponding marginal priors are p(λi) ∝ 1/
√
λi for
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λi > 0, i = 0, 1). Of course, this prior cannot exist over an infinite support, since

densities must integrate to one, but this is a standard trick in Bayesian estimation

when the ground truth on priors is difficult to determine. This joint prior is the

Jeffreys non-informative prior on the rate parameters (λ1, λ0) [32]. In our case,

accurately estimating priors for each topic X would require the ground truth on the

interests of a large number of users, which goes counter to our objective of mining

for these interests. Furthermore, we would need to constantly revise our ground

truth data set for a heterogeneous population of Twitter users with dynamically

evolving interests, which is clearly infeasible.

Since we assume that the two Poisson processes corresponding to the event

times and non-event times are independent, the corresponding counts N1 and N0

are conditionally independent given λ1, λ0. Putting this together with our as-

sumption of non-informative prior on λ1, λ0, we obtain, using Bayes’ rule, that

the posterior distributions of λ1, λ0 also factor and are given by p (λi|Ni) ∝

Pr [Ni|λi] p (λi) ∝ λi
Ni−0.5e−Tiλi, λi > 0. Normalizing the posteriors so they in-

tegrate to one (which we can do even though we employed improper priors), we

obtain

p (λi = x|Ni) =





Ti(Tix)
Ni−0.5e−Tix

γ(Ni+0.5)
if x ≥ 0

0 otherwise

, (5.1)
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where γ(z) =
∫∞
0
tz−1e−tdt is the gamma function. The statistic which we propose

to quantify the user’s interest level in the topic X is Z = Pr [λ1 > λ0|N1, N0]. We

declare a user to be interested in X when Z exceeds a certain threshold. Thus, we

conclude that the user is interested in X, when we are “confident enough” that

his/her tweet rate during event times is larger than that during non-event times.

Given the observations N1, N0, T1, T0, the statistic Z can be computed using the

posteriors (5.1) as follows:

Z = Pr [λ1 > λ0|N1, N0] (5.2)

=

∫∫

x>y

p (λ1 = x|N1) p (λ0 = y|N0) dx dy.

5.2.3 Exploiting user interactions

We use social networks to engage in conversation with others who share our

interests. If a user has interacts with others who are interested in the topic X, we

expect that the probability that he/she is also interested in X is higher than for a

randomly picked user. We present a method that relies on this simple intuition to

improve our estimates of the interest level of a “tagged” user using interest level

estimates of other users mentioned in his/her tweets. During the observation time

window, this tagged user may mention other users using their twitter handle (for

example, the official SFGiants twitter handle @SFGiants, or another individual
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@johnadams2001) in his/her tweets. We call such users the “neighbors” of the

tagged user. Since we will be combining the Z statistics of multiple users, we

need to pay attention to scaling. In particular, we expect that we would weight

the tagged user’s Z statistic higher than that of his/her neighbors. We now

describe a framework for motivating such scaling.

Notation: Let the index 0 denote the tagged user and the indices i = 1, . . . ,M

denote the neighbors. From the number of tweets during event times N1(i) and

non-event times N0(i) of the i-th user (N(i) denotes the pair (N1(i), N0(i))), we

arrive the statistic (5.2) which we denote by Zi. Let λ1(i), λ0(i) denote the tweet

rates of the i-th user in the event and non-event times and Yi denote the event

that the i-th user tweets more frequently during event times than other times.

i.e., Yi = 1 if λ1(i) > λ0(i) and Yi = 0 otherwise (note that Zi = Pr[Yi = 1|N(i)]).

Let Ci represent the true interest of i in the topic X (Ci takes the value 1 if this

user is interested in X and 0 otherwise).

A user who is not interested in X may still happen to tweet more often during

event times. Likewise, a user interested in X may happen to tweet less frequently

during event times than at other times. Therefore, we first relate Yi to Ci in a

probabilistic manner to derive a function of the Zi statistic for each user i (i.e.,

the tagged user and his/her neighbors) such that, when combined across users to

make an inference regarding the tagged user, no one user has too big an influence.
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We then discuss a model for the dependence between the tagged users and his/her

neighbors which motivates combining these individual statistics.

For the first step, let pt = Pr[Yk = 1|Ck = 1] denote the probability that

a user interested in topic X is timely (i.e., tweets more frequently during event

times than at other times), and let pf = Pr[Yk = 1|Ck = 0] denote the probability

of false alarm (i.e., a user not interested in X happens to tweet more frequently

during event times). We now compute the likelihood ratio of user k’s interest in

topic X based on its own measurements, defined as

φk =
Pr[N(k)|Ck = 1]

Pr[N(k)|Ck = 0]
,

in terms of the statistic Zk = P [Yk = 1|N(k)], which we already know how to

compute from Section 5.2.2.

Under our uninformative prior, it is easy to show that Pr[Yk = 1] = Pr[λ1 >

λ0] =
1
2
, Conditioning on Yk and using the conditional independence of N(k) and

Ck given Yk (the Markov structure in figure 5.2):

Pr [N(k)|Ck] = Pr [Yk = 1|Ck] Pr [N(k)|Yk = 1] + Pr [Yk = 0|Ck] Pr [N(k)|Yk = 0]

= 2Pr[N(k)]
(
Pr [Yk = 1|Ck]Zk + Pr [Yk = 0|Ck] (1− Zk)

)
,

where we have used Zk = Pr [Yk = 1|N(k)]. Using the above, we obtain that

φk =
ptZk + (1− pt)(1− Zk)

pfZk + (1− pf)(1− Zk)
=

1 + pt

(
Zk

1−Zk
− 1
)

1 + pf

(
Zk

1−Zk
− 1
) .
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Figure 5.2: Markov structure of the user interests Ci, the tweet rate differentials
Yi = λ1(i) > λ0(i) and the number of tweets N(i) = (N1(i), N0(i)). The index 0
refers to the tagged user while 1, 2, 3 denote the neighbors of this user

This effectively corresponds to soft thresholding the raw likelihood ratio Pr[λ1 >

λ0]/Pr[λ1 ≤ λ0] = Zk/(1−Zk) between an upper limit of 1/pf and a lower limit of

1−pt. Both φk and the raw likelihood ratio are monotone increasing in Zk. Thus,

for a single user (as considered in the Section 5.2.2), threshold rules based on any

of these statistics are equivalent. However, when combining across multiple users,

the soft thresholding in φk is important for robustness, since it ensures that no

one user has too large an influence on the outcome.

Let us now consider the second step: relating the interests of the tagged user

and his/her neighbors. We expect that it is more likely that the neighbors are

interested in X when the tagged user is interested in X than when the tagged user

is not: Denoting Pr[Ck = 1|C0 = 1] by α and Pr[Ck = 1|C0 = 0] by β, we expect

that α ≫ β. It is actually the difference in α and β that affects how we combine

these statistics, rather than their raw values. For example, even if α is small (e.g.,
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0.1, so that there is only a 10% probability of the neighbor of a fan also being a

fan), if β = 10−4, then we still get very useful information from the neighbors’

measurements.

We make a simplifying assumption on the structure of interactions among

neighbors: The true interests of the neighbors, {Ci, i > 0}, are independent when

conditioned on the interest status of the tagged user C0 : Pr[C1, . . . , CM |C0] =

∏
Pr[Ci|C0]. This is illustrated via the Markov structure depicted in figure 5.2

(in the figure M = 3). This assumption is violated when a neighbor of the tagged

user refers to another neighbor of the tagged user in his/her tweets (therefore

introducing additional dependencies between the two neighbors). However, as

we will see when we discuss the results, this simple structure by itself gives us

considerable gains over just using the interest level estimates Z0 of the tagged

user alone.

Our statistic that incorporates information from the neighbors is the following

log likelihood ratio:

S =
Pr [N(0),N(1), . . . ,N(M)|C0 = 1]

Pr [N(0),N(1), . . . ,N(M)|C0 = 0]
.

From the Markov structure in figure 5.2, we observe that the true interests of the

neighbors Ci given that of the tagged user C0 are independent. This observation
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leads to the following simplification:

S = log
Pr[N(0)|C0 = 1]

Pr[N(0)|C0 = 0]
+

M∑

k=1

log
Pr[N(k)|C0 = 1]

Pr[N(k)|C0 = 0]
.

From Bayes’ rule, for the neighbors,

Pr [N(k)|C0] = Pr [N(k), Ck = 1|C0] + Pr [N(k), Ck = 0|C0]

= Pr [N(k)|Ck = 1]Pr [Ck = 1|C0] + Pr [N(k)|Ck = 0]Pr [Ck = 0|C0] .

Using the above, we obtain that:

Pr[N(k)|C0 = 1]

Pr[N(k)|C0 = 0]
=
αφk + (1− α)

βφk + (1− β)
.

Therefore, the statistic S depends only on the likelihood ratios φk of the tagged

user and his/her neighbors, as follows:

S = log φ0 +
M∑

k=1

log
1 + α(φk − 1)

1 + β(φk − 1)
.

While we can tune the parameters α and β to get good performance with this

statistic, in practice, we have found the following modified rule, using a single

parameter to scale down the sum of the neighbors’ log likelihood ratios, to work

well:

S̃ = logφ0 + κ
∑M

k=1 log φk. (5.3)

In our numerical results, therefore, we report on the performance of this modified

statistic, with κ = 1/6 (found to work well empirically).
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5.2.4 Results

We test our statistical framework by trying to identify whether a user is a

fan of the San Francisco Giants (SFGiants) baseball team from the user’s tweet

times (we also briefly report on analogous results for the NY Yankees). The times

when SFGiants played Major League Baseball (MLB) games are used as a natural

candidate for event times. We also include a 15 minute window on either side of

each game in our definition of event times to account for the buzz before and after

each game when fans are expected to tweet heavily.

Dataset description: The data set is a 10% random sampling of all public tweets

over a month (May-June) in the summer of 2011. In this one month window,

SFGiants played 29 games. Each tweet, apart from its brief text, is tagged with

an user ID, the time when this tweet was made and the user IDs of twitter handles

mentioned in the tweet (if any).

Ground truth: In order to characterize the effectiveness of the statistic that we

propose, we need to know the fandom of users on whose tweet times we apply the

statistic. For this purpose, we searched the text of all tweets (in our dataset) that

were made in the first and last 10 minutes of all SFGiants games for keywords

associated with this baseball team. The keywords that we used were: sfgiants,

#sfgiants, rowand, #rowand, lincecum and #lincecum. We identified 640 users
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in this manner. We assume that these users who used the keywords associated

with the SFGiants baseball team are indeed their fans. We also picked a random

set of 1000 users who appear in our dataset (they tweeted at least once in this

one month window). None of these randomly picked users used the preceding

keywords in their tweets and we assume that they are not fans of SFGiants.

For all of the above users (fans and non-fans) we keep a list of the times at

which they put out tweets in this one month window. We use these times to

evaluate the statistic (5.2) for these users. We also keep a list of user IDs for each

of these users and this list gives our per user neighbor list. The entries in this

list are the users who are mentioned in the tweets of the tagged user over the one

month time window (his/her neighbors). In order to compute the statistic (5.3)

which uses estimates of the interest levels of the neighbors, we also compile a list

of the tweet times of the neighbors of every user.

Interests from user times: We evaluate the statistic Z in (5.2) from the tweet

times of the 640 fans and 1000 non-fans. When computing Z, we account for an

average of ten hours of sleep daily. We do this by scaling the total one month

time window T1 + T0 by 14/24 and computing the total sleep compensated non-

event times via T ′
0 = (14/24) × (T1 + T0) − T1. We assume that the user is

awake during event times (thus leaving T1 as it is). Let λ̂i = Ni/Ti denote the

empirical estimate of λi. We threshold the Z statistic at different values and plot
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the number of correctly detected fans versus the false alarms (number of randomly

picked users misclassified as fans) in figure 5.3 (blue curve, top). Contrast this

with naive ratio of empirical tweet rate estimates λ̂1/λ̂0 = (N1T0)/(N0T1) that is

plotted in black. When we are interested in small false alarm rates, λ̂1/λ̂0 metric

is not useful: for a false alarm rate of 10/1000 we detect a mere 51/640 fans when

we use λ̂1/λ̂0, whereas, we are able to detect 137/640 fans using the statistic Z.

However, when we are willing to tolerate more false alarms (> 40/1000), we see

that the performance of Z is comparable to that of empirical tweet rate ratios

λ̂1/λ̂0.

Incorporating neighbor tweet times: From the tweet times of the neighbors

of the 640 fans and the 1000 randomly picked users, we compute their interest

level statistic Z (again accounting for a per day average of ten hours of sleep). We

then use the interest level estimates of the tagged user and his/her neighbors to

compute the statistic S̃ in (5.3). To compute φk from the individual interest levels

Zk, we choose pt = 0.9 and pf = 10−20. We threshold the statistic S̃ at different

values and plot as before the number of correctly detected fans versus the false

alarms in figure 5.3 (red curve, top). From the figure, we see that for any fixed

false alarm rate, we are able to detect more fans via the consolidated statistic S̃

than the interest level Z0 of the tagged user alone. For example, for a false alarm

rate of 10 in a 1000, we are able to improve the detection accuracy for SFGiants

131



Chapter 5. Inference from time on Twitter

from 138/640 using Z0 alone, to 233/640 using the consolidated statistic S̃ with

κ = 1/6.

We run an identical analysis for 623 fans of the New York Yankees baseball

team (identified in a manner similar to the SFGiants fans). These results are

plotted in figure 5.3 (bottom). We see the same trend with the Yankees, with S̃

outperforming Z.

When interpreting the results summarized in figure 5.3, we must bear in mind

the importance of operating at low false alarm rates. The proportion of “fans,”,

or users interested in any particular topic, is expected to be small. For example,

suppose 10% of the overall user population are fans. Then, for a moderately large

false alarm rates of 10%, the number of misclassified non-fans is 9% of the user

pool. This can overwhelm the pool of correctly classified fans, which is at most

10% for our example. This is the well known multiple comparisons problem, for

which the natural regime of interest is low false alarm rates. From Figure 5.3, we

see that we are able to detect a significant fraction of fans for false alarm rates as

small as 1%.
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Figure 5.3: Number of correctly detected fans plotted versus the number of
randomly picked users misclassified as fans for the statistics Z, S̃ and λ̂1/λ̂0. Left:
SFGiants and Right: Yankees

5.3 Topic-specific trending times

In order to identify the times when a “unusually high” level of activity related

to a topic takes place on Twitter, we must first build a model for baseline/default

tweet rates. In this section, we describe how we build our baseline model, intro-

duce the notion of virtual time tailored to our goal of detecting events correspond-

ing to increased activity, and describe our multi-resolution approach to detecting

these events.

5.3.1 Poisson model

Our baseline model for “background chatter” related to a keyword or set of

keywords is a Poisson Point Process (PPP) whose rate is a function of the time-
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Figure 5.4: Rate of tweets that match the query simpsons or bartsimpson over
a 5 day period measured using 2 hour windows

of-day. Figure 5.4 shows an example of the strongly periodic trend (with a period

of 24 hours) in topic-specific tweet rates. The PPP model is consistent with the

following intuitively plausible assumptions for baseline activity: (i) a user’s past

tweet times (matching the keyword query) are independent of future tweet times;

(ii) a user’s tweet times do not depend on the tweet times of any other user; (iii)

the pool of users who can potentially use one of the keywords we track is large;

(iv) the chance that a particular user posts a tweet with a keyword at any given

time is negligibly small (since our notion of time is continuous).

Let t denote absolute time (for example, the UNIX epoch) and [t] the time-of-

day, both expressed in hours. Thus, [t] ∈ [0, 24) equals t modulo 24. We model

the number of search query matching tweets over a time interval corresponding
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to background chatter by a Poisson Point Process of rate B([t]). If no activity

were taking place over an interval S, the distribution of the number of tweets

corresponding to baseline activity is given by a Poisson random variable of mean

m = Λ (S) =
∫

S
B ([t]) dt. (5.4)

An interesting event is said to occur when the observed number of tweets in

such an interval exceeds m by a “significant” amount. But how should we define

“significant,” and how should we choose the interval length? In order to see this,

we first review some basic detection-theoretic tradeoffs for a single Poisson random

variable.

5.3.2 CFAR Detection under a Poisson model

Let X denote a random variable modeled as Poisson with nominal mean m,

corresponding to background activity over an interval as in (5.4. Suppose that our

decision rule is that an interesting event happens when X > a, for some a > m.

The false alarm rate associated with this decision rule (i.e., the probability that

this realization actually does come from the null hypothesis) is therefore given by

PF (a,m) = P [X ≥ a] =

∞∑

k=a

mk

k!
e−m (5.5)

A simple criterion for choosing the threshold a is to maintain the false alarm

rate below some threshold pf . In detection theory, such tests are referred to as
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Constant False Alarm Rate (CFAR) tests [53]. The advantage of this approach is

that it requires only a model for the nominal distribution, and can leave deviations

from the nominal unmodeled. This is well-matched to our application, where we

observe that tweet rates during event times are heterogeneous and difficult to

model.

An explicit expression for the false alarm rate is given by

PF (a,m) =
Γ(⌊a⌋+ 1, m)

Γ(⌊a⌋ + 1, 0)
, (5.6)

where Γ( , ) refers to the (upper) incomplete gamma function given by Γ(n, x) =

∫∞
x
tn−1e−tdt. However, for the purpose of our design, it is useful to develop

additional insight into how PF behaves as a function of a and m.

For additive deviations from the mean of order
√
m, we can employ a Gaussian

approximation to see that

PF (m+ α
√
m,m) ≈ Q (α)

where Q(x) =
∫∞
x

e−u2/2√
2π

du denotes the complementary CDF of a standard Gaus-

sian random variable. The Gaussian approximation becomes tight for large m, as

long as α does not grow with m. However, in order to make the false alarm rate

low, we must make α large, and once we make it large enough (e.g., comparable

to
√
m), we fall out of the Gaussian regime. We therefore consider multiplicative
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deviations from the mean, setting a = γm, where γ > 1. In this regime, we can

use a Chernoff bound to obtain that

PF (γm,m) ≤ exp (−A(γ)m) , γ > 1 (5.7)

where the exponent of decay A(γ) = γ log γ − γ + 1 is a positive and increasing

function of γ, for γ > 1, and is asymptotically exact as m gets large.

What (5.7) tells us is that we need the product A(γ)m to be large if we want

to drive the false alarm rate down. Thus, if we want to detect unusual activity

over a smaller time window over which the nominal number of tweets m is small,

then we can only hope to detect larger multiplicative deviations (i.e., larger γ and

hence A(γ)) while maintaining a desired value for PF .

Furthermore, since detection performance depends only on m and γ, it is

useful to divide time into bins that correspond to fixed values of m. Since our

background process is time-varying, as discussed next, we find it convenient to

transform it into an equivalent time-invariant process by introducing the concept

of virtual time, such that the nominal mean over a virtual time bin depends only

on its length.
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5.3.3 Virtual time

We scale the time axis (depending on the time-of-day [t]) so that the frequency

of tweets corresponding to background chatter B(t) is a constant λ tweets per v-

hour (we add the prefix “v-” to units of time in this new notion of time to stress

that they are not real units of time but virtual ones), where λ is the average hourly

baseline rate:

λ =
1

24

∫ y=24

y=0

B(y) dy. (5.8)

Let

f(t) = t− [t] + F ([t]) (5.9)

denote the mapping from true time to virtual time, where F (t), 0 ≤ t < 24 is

given by

F (t) =
1

λ

∫ y=t

y=0

B(y) dy, (5.10)

We reserve the notation t for the native notion of time and denote the virtual

time f(t) by x. The background tweet rate in virtual time equals λ, since λdx =

B(t)dt. A virtual time interval of length ∆ corresponds to a nominal mean tweet

count of m = λ∆, and we can now ask whether the observed number of tweets

significantly exceeds it using the CFAR test described in the previous section.

Once we detect the virtual event times, we map it back to native time: the virtual
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time x = f(t) is a continuous and increasing function of t, and is invertible when

B(t) > 0.

Let E denote the set of observed tweet times (in native time), and H =

{f(t) : t ∈ E} the corresponding virtual times. We define the tweet count

function for the virtual time interval A as

y(A, H) =
∑

x∈H
IA(x),

where IA(x) is the indicator function of the set A. We compare the tweet count

function to appropriate thresholds for event detection, as described next.

5.3.4 Event detection

In virtual time, the nominal mean number of tweets over an interval [a, a+∆) is

m = λ∆, and we define an interesting event to occur, or the topic to be “trending,”

if the tweet count over the interval exceeds γm, where γ > 1. As discussed in

Section 5.3.2, the false alarm rate depends on γ and m, and we must choose their

combination so as to attain a given false alarm level pf . Define ϑ(m, pf ) as the

smallest value of γ such that PF (γm,m) ≤ pf . Instead of using the asymptotic

approximation (5.7), we compute ϑ(m, pf ) by numerically inverting (5.6). These

values can be pre-computed for false alarm rates of interest for various values ofm.

Figure 5.5 plots ϑ(λ∆, pf ) versus the mean parameter m = λ∆ for different false
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Figure 5.5: Smallest factor ϑ(λ∆, pf ) by which the frequency of tweets during
trending times must increase for us to be able to detect it plotted against the
average number of tweets expected λ∆.

alarm rates. For example, we can read off from the figure that for γ = 2.5 (which

we take to be the smallest γ of interest in our experiments) and pf = 10−14,

we need m = λ∆ ≥ 40, so that we can restrict attention to windows of width

∆ = 40/λ v-hours.

Event detection algorithm

We can now design the size of the windows in virtual time that we should use

to test for unusual activity. We need to test first for bursts of intense activity

(large γ) over small time intervals (hence small m = λ∆). Once we detect and

eliminate these, we should expand the window (larger m = λ∆) to detect less

intense activity (smaller γ). The order in which we do this is important: an
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intense but brief burst of activity which falls next to a period of baseline activity

could be classified as a longer event if we do not first detect and eliminate the

short burst. This leads to the following multi-resolution algorithm.

Algorithm: We take a multi-resolution approach in Algorithm 1, testing for

activity in time windows of the form [k∆, (k + 1)∆) for increasing values of ∆.

Since we were interested in activity of intensity greater than 2.5 times the baseline

intensity (i.e., γ ≥ 2.5), we use test windows of duration at most 40/λ v-hours.

Specifically, we choose ∆ of the form ∆02
r, r = 0, 1, 2, 3 with ∆0 = 5/λ v-hours

so that the largest test windows spanned 40/λ v-hours.

5.3.5 Learning baseline tweet profiles

We now describe how to estimate the baseline chatter frequency, given by

B(t), 0 ≤ t < 24 from the set of observed tweet times E (one may use a small

subset of the observed tweet times for this training phase; we use the entire ob-

servation window of around 6 months). We assume that B(t), t ∈ [0, 24) is a

piecewise constant function of the form

B(t) =

l=24/∆−1∑

l=0

φ(l)I[l∆,(l+1)∆)(t), (5.11)

for the time duration ∆ hours (which we call coherence time). It is convenient to

choose ∆ so that it divides 24 hours (we use ∆ = 40 minutes).
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Algorithm 1 Identify topic specific trending times

1: inputs Observed tweet times H (discrete set), observation window W ⊆

[xstart, xend), baseline rate λ, window sizes ∆1 < ∆2 < · · · < ∆K and false

alarm rate pf (we use 10−14).

2: initialize R = { }

3: for l = 1 to l = K do

4: for r = ⌊xstart /∆l⌋ to r = ⌊xend /∆l⌋ do

5: S = [r∆l, (r + 1)∆l) ∩W {the observation window W need not be con-

tiguous}

6: S = S \ R {discard portions declared active earlier}

7: if y(S, H) ≥ λ |S| × ϑ (λ |S| , pf) then

8: R = R ∪ S

9: end if

10: end for

11: end for

12: return R
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We start by pooling tweet counts corresponding to the same time-of-day [k∆, (k+

1)∆) into sets N (k) for k = 0, 1, . . . , (24/∆)−1. For each such set N (k), we want

an estimate φ̂(k) of the baseline frequency φ(k). We explain the ideas behind

our algorithm by focussing on one of the sets N (k), dropping the dependence

on k in subsequent discussions. As per our piecewise constant baseline model,

background chatter in the set N are realizations of Poisson (φ∆). If there was no

topic specific activity at all, then the maximum likelihood (ML) estimate of φ is

given by (1/∆)×mean (N ). The sets N also contain tweet counts corresponding

to topic specific trending times. The tweet counts during trending times can be

orders of magnitude larger than those at times corresponding to baseline chatter.

Therefore, one must account for such outliers while estimating φ.

The method we use to estimate the baseline profile φ resembles “inward” proce-

dures for univariate outlier detection ([10] gives a brief survey of outlier detection

methods). We assume that outliers only correspond to trending times (which by

definition see heightened activity; i.e., γ > 1). Therefore, the small values in N

are likely to correspond to the baseline. Assuming that the proportion of base-

line entries is high, a robust estimate of φ is given by φ̂ = (1/∆) × median (N ).

We use this estimator for φ because (i) the median of a Poisson distribution is

approximately equal to its mean φ∆ (ii) the empirical median is more resilient to

143



Chapter 5. Inference from time on Twitter

0 5 10 15 20
0

50

100

150

200

 

 

1
2
3
4
5
6
7
8
9

Iteration
count

Figure 5.6: Iterative refinement of the estimate of B(t) (expressed in #tweets
per hour) by Algorithm 2 until convergence (South Park).

outliers than the empirical mean. When the fraction of outliers δ is very small,

this is a good estimate of φ.

When this fraction is not very small, the empirical median φ̂∆ overestimates

the mean parameter φ∆ of the Poisson distribution. We must therefore refine our

estimate φ̂ further. We do this by identifying tweet counts in the set N that are

inconsistent with the current estimate of the baseline model Poisson(φ̂∆). These

are the tweet counts n ∈ N , that exceed the threshold φ̂∆×ϑ(φ̂∆, pf) for activity.

Such counts are pooled into a set R. As these observations are inconsistent with

the current baseline estimate, we treat them as outliers and discard them when we

refine our estimate of φ via φ̂ = (1/∆)median(N \ R). We repeat the preceding

refinement step until convergence. It is easy to show that the sequence of sets
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R (across iterations) is non-decreasing and convergence is therefore guaranteed.

We summarize this procedure in Algorithm 2 and plot the associated refinement

procedure in Figure 5.6. Notice that the estimates of B(t)-s across iterations (for

the same time-of-day t) is non-increasing; this follows from the non-decreasing

nature of the sequence of sets R.

Note that, during this baseline estimation phase, we are lenient towards false

alarms in setting our thresholds. For example, we set pf = 10−4 now, in contrast

to the event times detection Algorithm 1 where we set pf to 10−14.

Summary: Given the set of tweet times E, we first estimate the baseline rate

B(t) using Algorithm 2. Using this estimate of B(t), we transform to virtual time

x = f(t) via (5.9) in which the baseline rate is a constant λ tweets per v-hour

(B(t) is piecewise constant which results in a piecewise linear, easy to evaluate

map f(t)). The set of virtual tweet times is the map H of the set E. On this

set H , we employ Algorithm 1 (for the estimated value of λ = mean(φ̂(k))) to

detect event times across time scales. Having identified such topic specific times,

we revert back to native time using the inverse map t = f−1(x), which as we noted

in section 5.3.3 exists when B(t) > 0 (or φ̂(k) > 0).
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Algorithm 2 Estimate baseline profile

1: inputs Coherence time ∆ (should divide 24 hours; we use 40 minutes) for

the piecewise constant approximation, observed tweet count set N (k), k =

0, . . . , 24/∆ − 1 for the time-of-day [k∆, (k + 1)∆) and the false alarm rate

parameter pf (we use 10−4).

2: initialize φ̂(k) = (1/∆)×median(N (k)) for k = 0, 1, . . . , (24/∆)− 1.

3: repeat

4: for k = 0 to k = (24/∆)− 1 do

5: R(k) =
{
y ∈ N (k) : y ≥ φ̂(k)∆× ϑ(φ̂(k)∆, pf)

}

6: φ̂(k) = (1/∆)×median(N (k) \ R(k))

7: end for

8: until All φ̂(k)-s have converged

9: return Estimate of the baseline profile

B(t) =

k=(24/∆)−1∑

k=0

φ̂(k)I[k∆,(k+1)∆)(t).
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Figure 5.7: Baseline profile B(t) (expressed in #tweets per hour) estimated
by Algorithm 2 plotted against the time-of-day expressed in hours (t = 0 hours
corresponds to 0:00:00 UTC).

5.3.6 Results

We queried the Twitter streaming API (using Tweepy[1]) for mentions of four

television shows (from the first week of November 2013 up until the first week of

May 2014). We plot the estimated baseline profiles in Figure 5.7. They indicate

that the time-of-day effects are pronounced.

We plot event detection results in Figure 5.8 and summarize them in Table 5.1.

We see that we identified topic specific activity that spanned about 10− 20 days

in this 6 month window. The number of tweets that correspond to background

chatter is more than 50% for the four shows, indicating that such simple temporal
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Topic
Total trending Max. event Total #tweets
time (in days) span (hours) #tweets in events

South Park 19.3 9.8 641113 282130
TBBT 10.4 9 324962 104467

Simpsons 12.6 5.6 1237271 360878
Modern Family 16.7 20.6 162483 78441

Topic #events
Total #users
#users in events

South Park 910 328933 154715
TBBT 330 170863 62515

Simpsons 1117 837206 295430
Modern Family 211 92339 45023

Table 5.1: Summary of topic specific trending times identified in the 171 day
observation window for 4 TV shows

analysis can have value in helping us to focus on what matters for each topic when

we wish to do more detailed analysis such as text analysis. We collapse contiguous

activity windows into a single event. From Table 5.1, we see that the maximum

event duration for the show Mordern Family is the longest. This stems from the

fact that the baseline rates B(t) for this show are small (the average rate λ is

about 18 tweets per hour; Figure 5.7). Therefore, when we test for activity we

use large test windows for this show. We chose the smallest time window ∆0 to

be 5/λ v-hours. This is results in poor time resolution for shows that have small

average rates λ.
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#tweets per hour (estimated using 30 minute windows) plotted against the time
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5.4 Discovering event relationships

Now that we have a systematic framework (via algorithms 1 & 2) for identifying

events associated with a topic, we are interested in whether there are sub-topics

(where this term is used quite loosely to denote phenomena associated with dif-

ferent causes) that emerge from a closer examination of these events. While text

analysis may be a useful tool for this purpose, we focus here on whether it is pos-

sible to identify sub-topics from crowd behavior alone. Our basic premise is that

when “many” users who tweet during an event also tweet during another event, it

is likely the underlying reason behind the two events is the same. Based on this

premise, we develop an algorithm which partitions the set of event times into sets

that correspond to different reasons, by trying to ensure that two events which

share a significant user pool are placed in the same partition. We only use tweets

(matching our query) which fall within any of the identified event times, and use

the tweet times and authorship (user IDs) for event clustering. Thus, starting

with the observed tweet profile over time (Figure 5.9 top row), we extract event

times (Figure 5.9 middle row) and would now like to present these event times

with their relationships revealed (Figure 5.9 bottom row).
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Figure 5.9: Dissecting detected activity

We first present the method employed to partition identified event times, then

discuss its computational cost, and conclude this section by presenting the results

for the TV show data described in Section 5.3.6.

5.4.1 “Distance” between events

In order to associate users with events, we build an undirected weighted bipar-

tite graph B, as shown in Figure 5.10, with the n events on one side and m users

with at least two search query matching tweets during these n event times on the

other (note that n ≪ m). The strength of the link c(e, u) ≥ 0 between event e

and user u could be the number of search query matching tweets by user u during
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Figure 5.10: User-event bipartite graph B used to cluster events

event e. In order to cluster events, we need to choose a suitable definition for

the distance between two events which ensures that any two events which share a

large pool of common users are “close” to one another. We choose the (average)

commute time between the two events for the random walk on B as our distance

metric.

Commute times: The random walk on a weighted undirected graph G(V,E),

with edge weights w(u, v) (the convention is w(u, v) = 0 if (u, v) /∈ E) is a Markov

chain on the state space V with the state transition function

Pr [Location(l) = v|Location(l − 1) = u] =
w(u, v)

d(u)
, (5.12)

where d(u) is the (weighted) degree of the vertex u given by d(u) =
∑

k∈V w(u, k)

and l is the number of hops taken by random walk so far. The average number
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of hops taken by a random walk starting at vertex a to visit vertex b for the first

time is the access time of b from a. The sum of the access times from a to b and

from b back to a is the commute time of the random walk between vertices a and

b.

For the user-event bipartite graph in Figure 5.10, when is the commute time

between two events small? A random walk starting at event a is more likely to

reach event b quickly & vice-versa when “many” users who tweet during event a

also tweet during event b (the exact definition of “many” will depend on the choice

of the link strength metric c(e, u)). The first hop of a random walk initiated at

event a will take it to one of users who talked during event a. If this set of users

overlaps heavily with the set of users who talk during event b, there is a “good

chance” that the second hop of the random walk sees event b.

5.4.2 Commute time embedding of a graph

It is possible to give a map m(·) from V to R|V |−1 such that the square of

the Euclidean distance between m(u) and m(v) is equal to the commute time

between the vertices u and v. This map u 7→ m(u) is sometimes referred to as

the “commute time embedding” of the graph G.
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Denoting the (weighted) adjacency matrix with entries w(u, v) by A and the di-

agonal matrix with diagonal entries equal to dl(u) by Dl, the normalized adjacency

matrix N of the graph is the symmetric matrix D−1/2AD−1/2. The normalized

adjacency matrix is closely related to the random walk on the weighted graph G.

Let the eigenvalues of N be ν1 ≥ ν2 ≥ · · · ≥ ν|V | and the corresponding eigenvec-

tors be z1, z2, · · · , z|V | (normalized so that zTk zk = 1). Let the u-th element of the

eigenvector zk be zk(u) and let

π(u) = d(u)

/
∑

v∈V
d(v)

denote the stationary distribution of the random walk on this weighted graph.

The commute time embedding of the vertex u is given by [37]

m(u) =
1√
π(u)

(
z2(u)√
1−ν2

z3(u)√
1−ν3

· · · z|V |(u)√
1−ν|V |

)
. (5.13)

Commute time embedding of events in the bipartite graph B: The ad-

jacency matrix A of any bipartite graph with two independent sets of size n and

m can be written in the following form:

A =




0n×n X

XT 0m×m


 .

For the graph in Figure 5.10, the (e, u)-th element of the n×m matrix X is given

by c(e, u), the strength of the link between event e and user u. Since A takes the
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above form, we can write the normalized adjacency matrix as:

N =




0n×n D
−1/2
1 XD

−1/2
2

D
−1/2
2 XTD

−1/2
1 0m×m


 ,

where Dl
1 denotes the n × n diagonal matrix with the degrees of events d1(e) =

∑u=m
u=1 c(e, u) raised to power l on the diagonal and Dl

2 denotes the m×m diagonal

matrix with degrees of users d2(u) =
∑e=n

e=1 c(e, u) raised to power l on the diagonal.

We denote D
−1/2
1 XD

−1/2
2 by X̃ . Let

X̃ =

k=n∑

k=1

µkpkq
T
k

be the singular value decomposition of X̃ . We denote the column vector
[
xT yT

]T

by [x; y]. Consider the vector [pk;qk]: It is easy to verify that this is an eigenvector

of N corresponding to eigenvalue µk. Similarly the vector [pk;−qk] is also an

eigenvector, with corresponding eigenvalue −µk. All other eigenvalues of N are

equal to zero; there are m− n eigenvectors of N corresponding to the eigen value

0 (assuming that n singular values of the n × m matrix X̃ are nonzero). These

eigenvectors are of the form {[0n×1;xl]}, where {xl} can be chosen to be any

orthonormal basis perpendicular to {q1, . . . ,qn}.

While some of the preceding observations have been made in prior work on

spectral partitioning of bipartite graphs [17], unlike [17], we wish to cluster vertices

only on one “side” of the bipartite graph B (specifically, the events). From the
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special structure of the eigenvectors of the normalized adjacency matrix N of the

user-event bipartite graph, we can drastically reduce the dimensionality of the

embedding and show that the commute time embedding of the event e is given

by:

m(e) =
1√
π(e)

(
p2(e)√
1−µ2

2

p3(e)√
1−µ2

3

· · · pn(e)√
1−µ2

n

)
, (5.14)

where pk(e) is the e-th row of the left singular vector pk of X̃ and π(e) =

d1(e)/(2
∑
d1(k)). Note that this is an n − 1 dimensional embedding and not

a |V |−1 = m + n− 1 dimensional embedding, which is the case in general. This

reduction in dimensionality follows from (i) the bipartite nature of the graph and

(ii) the fact that only commute times between events (which form one of the two

“sides” of B) interests us. It is important to note that the eigenvalues µk and

−µk of the normalized adjacency matrix N appear via a single term 1/
√
1− µ2

k

in (5.14) rather than via 1/
√
1− µk and 1/

√
1 + µk as one would expect from the

expression for the commute time embedding in (5.13).

Typically, the first “few” singular values are close to 1 (in fact µ1 = 1) and

the later µk-s fall off to zero. The 1/
√
1− x2 non-linearity that appears in the

expression for the commute time embedding further amplifies this fall off. This

motivates us to approximate the commute time embedding of events using leading

singular vectors pk, k = 2, . . . , L + 1 of X̃ to arrive at an L ≪ n dimensional

156



Chapter 5. Inference from time on Twitter

embedding in which Euclidean distance squares approximate commute times on

the bipartite graph in Figure 5.10. We refer to these L-dimensional embeddings

as the “approximate commute time embeddings” and denote them by m̂(e).

We can use the square of the Euclidean distance between these L-dimensional

embeddings of events, which roughly approximates commute times, as the distance

metric when we cluster events. In practice, we notice better clustering performance

when we normalize the approximate commute time embedding m̂(e) to unit norm

vectors m̃(e) by setting m̃(e) = m̂(e)/‖m̂(e)‖ (similar behavior has been observed

in [42], where spectral methods are used to cluster points in K-dimensional space;

they however do not scale the eigenvectors zl by 1/
√
1− νl as we do here). We

refer to m̃(e) as the normalized (approximate) commute time embedding of the

event e. In section 5.4.3, we briefly describe the algorithm we employ to cluster

the embeddings {m̃(e)} of events.

The need for normalization: Using a simple connection between commute

times and recurrence times, we can see why the preceding normalization is required

to facilitate clustering. The recurrence time r(u) of a vertex u is defined as the

average number of hops taken by the random walk starting off at vertex u to

return back to u for the first time. Recurrence times (for a connected graph

with |V |< ∞) are inversely proportional to the stationary distribution of the

random walk i.e., r(u) ∝ 1/π(u) ∝ 1/d(u). The commute time between two
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vertices a and b must be at least as large as the larger of the two recurrence

times r(a) and r(b). As a result, a low degree vertex u is “far away” from all

vertices in the commute time embedding of the graph even when this vertex is

tightly connected to only one of the “dominant clusters” of the graph, making

its cluster membership unambiguous. This is also fairly evident in the expression

for the commute time embedding of u in (5.13), where we see that if the vertex

u has small degree d(u) ∝ π(u), then the 1/
√
π(u) scaling in (5.13) pushes its

commute time embedding away from the origin, whereas the embeddings of high

degree vertices are pushed toward the origin. When a vertex is densely connected

to only one of the dominant clusters of the graph (its “home” cluster), it is likely

that most traversals of the random walk from any vertex which lies outside its

home cluster to the tagged vertex u will pass via other vertices in its home cluster.

Therefore, the commute times between the tagged vertex u and vertices in its home

cluster must be smaller than the commute times between u and a vertex outside

its home cluster. Thus, the ordering of the commute times to the tagged vertex

u still retains the “neighborhood” structure of the graph even if this low degree

vertex u is far away from all vertices. Since the magnitude of the commute time

embedding (roughly proportional to 1/
√
d(u)) does not capture this neighborhood

information, its direction m(u)/‖m(u)‖ must have captured it. Therefore, we

normalize the approximate commute time embedding of events m̂(e) to arrive at
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m̃(e) and use these for the subsequent clustering phase. This explicitly reveals

to standard Euclidean clustering algorithms such as k-means (a variant of which

is applied to this embedding) that it is only the directions of the commute time

embeddings that matter when we cluster them.

5.4.3 Clustering events using normalized commute time

embeddings

We map events to a collection of n points {m̃(e)} on the unit hypersphere in

RL, so that the Euclidean distance between points roughly captures the ordering of

commute times of the random walk on the user-event graph. We use deterministic

annealing [49] (which can be roughly viewed as a version of k-means which adapts

k to the data) to cluster these embeddings {m̃(e)}. We will now quickly walk

through the mechanics of this clustering algorithm.

Deterministic Annealing (DA) for squared Euclidean distance: DA is a

soft partitioning algorithm that attempts to best approximate the collection of

points {x1, . . . ,xn} using a mixture of k circularly symmetric Gaussian random

variables centered at yj, j = 1, . . . , k of equal variance T/2 and mixture weights

pj. The parameter T is referred to as the “temperature” (analogy to physical

annealing) and each of yj-s are called cluster centers/centroids. Each iteration
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of DA involves a cooling step T = αT, α < 1, followed by a few EM iterates

to optimize cluster center positions yj and mixture weights pj so as to minimize

the average squared Euclidean distance of the data points {xi} from the cluster

centers yj (as per the mixture of k Gaussians model). The algorithm starts off

at a high temperature T . Since the variance of each cluster T/2 is high, all

cluster centers yj collapse to a single point and we have effectively one cluster

(i.e., k = 1). As the temperature is progressively lowered, distinct cluster centers

yj emerge (typically one at a time), thereby increasing k. The temperature below

which the next cluster will emerge can be predicted on the fly [49]. It is also

possible to simply divide each cluster into two sufficiently close clusters and check

whether or not the two collapse into a single cluster after a few EM iterates. At

any temperature, we can pause and ask for the maximum of p (yj|xi) for each

point xi from among the j = 1, . . . , k clusters. This gives us a k-partition of the

n points {xi}. If this partition is “good”, we can stop the annealing procedure.

We now elaborate on our metric for “partition goodness” when we run DA with

xi = m̃(i).

Partition quality: The two-step random walk on events in the user-event bipar-

tite graph B (when we treat 2 hops given by event–user–event as a single hop)

can be shown to be the same as a random walk on the induced “event similarity
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graph” (on n vertices) whose adjacency matrix is given by

As = D
1/2
1 X̃X̃TD

1/2
1 = XD−1

2 XT . (5.15)

Indeed, if we had started off with the corresponding similarity metric between two

events events a and b given by the (a, b)-th element of As,

w(a, b) =

u=m∑

u=1

c(a, u)c(b, u)

d2(u)
, 1 ≤ a, b ≤ n, (5.16)

the resulting commute time embedding would have been the same as (5.14) (except

for the scale factor
√
2 which accounts for the fact that two hops on B correspond

to one effective hop on the event similarity graph). Therefore, we compute the

modularity score of the partition {Sl, l = 1, . . . , k} induced by the association

probabilities p (yj |xi) of DA on this event similarity graph when judging its qual-

ity (the bipartite graph B is a graph on m+ n vertices and its adjacency matrix

A cannot be used directly to test the quality of a partition of the n events; there-

fore, we use the above similarity graph’s adjacency matrix As (a n× n matrix) to

compute modularity scores). The modularity score of the partition {Sl} on this

weighted graph is given by the expression [25]:

Q({Sl}) =
l=k∑

l=1


∑

a,b∈Sl

w(a, b)

M
−
(
∑

a∈Sl

d1(a)

M

)2

 ,

where M =
∑

e d1(e), the total edge weight on the user-event bipartite graph

(which is also equal to twice the total edge weight on the “event similarity” graph).
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Summary: We store the best partition {Sopt
l } induced by DA as we progressively

decrease temperature T (using modularity on the event similarity graph as the

measure of goodness). We run DA until the number of clusters k exceeds the

maximum number kmax (we set kmax = n/10 for our results) and return the best

partition encountered so far.

5.4.4 Complexity

Typically, the number of events n is small, whereas the number of users m can

potentially grow large over time (for the 4 TV shows we followed for 6 months, we

identified n < 1200 events, while the number of users, m, who tweet during events

is roughly 200 times bigger; see table 5.1). In order to compute the normalized

commute time embeddings, we need the first L + 1 eigenvalues and eigenvectors

(normalized to unit norm and chosen to be orthogonal in the case of repeated

eigenvalues) of X̃X̃T . Constructing this dense n × n matrix from observations

{c(e, u)} requires O(n2) memory and O(mn2) operations. We are interested in

only the dominant eigenvalues & vectors of the positive semi-definite matrix X̃X̃T

and iterative methods such as Lanczos and subspace iteration can be used to solve

this problem efficiently (roughly O(Ln2) operations for the dense matrix X̃X̃T ).

For the clustering phase, each DA iterate is of complexity O(Ln), while evaluating
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Figure 5.11: Identified events and their groupings (time in days) for the TV
show The Big Bang Theory. y-axis is #tweets during each event in log scale

the modularity score of each partition takes O(n2) operations on the dense event

similarity graph As.

5.4.5 Implementation details

We specify implementation considerations before presenting our results. We

use Algorithm 1 to identify times of increased activity. We refer to each continuous

segment of activity as an event. While an event identified using Algorithm 1

may span a long time duration, we wish to give our clustering algorithm the

opportunity to dissect it into sub-events associated with different “reasons,” and

therefore slice events into segments of at most 30 minutes. This enabled us, for
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example, to dissect east and west coast US air times, which were typically returned

as a single event for the TV show The Big Bang Theory (Figure 5.11).

On the other hand, we do recognize that events that are nearby in time are

likely to share the same reason, and we build this intuition into our choice of

weight, c(e, u), between event e and user u. A natural choice is to set c(e, u) equal

to the number of tweets made by the user u during the event e. However, better

clustering performance is obtained by a softer notion of tweet count obtained by

spreading the contribution of a tweet to multiple events in its vicinity. Let S(e)

denote the time window corresponding to the event e = 1, . . . , n. For a tweet

authored by user u at time q during any one of the events, we first compute

the probability mass under a two-sided exponential p.d.f. whose mean is q and

standard deviation is σ (we choose σ = 30 minutes) in the interval S(e), as follows:

z(e, q) =
1√
2σ

∫

S(e)
exp

(
−
√
2|t− q|/σ

)
dt.

Letting T (u) denote the set of tweet times of a user that fall within any one of

the events S(e), e = 1, . . . , n, we define c(e, u) as
∑

q∈T (u)

(
z(e, q)/

∑k=n
k=1 z(k, q)

)
.

This operation spreads the membership of a tweet at time q across events in the

neighborhood of q.
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5.4.6 Results

We now summarize results (using a L = 30 dimensional embedding) for this

phase of the temporal inference system, which dissects events into clusters. When

we examine the text of tweets in the identified grouping of event times, we see these

partitions are consistent with the underlying cause for the topic to trend. These

results suggest that massive online feeds can be well understood with minimal

processing by restricting attention to just coarse authorship information (user ID

& time).

We present word clouds of the identified clusters for The Simpsons and manual

summaries for the other TV shows. In Figure 5.12, we plot nine clusters of the

detected events of The Simpsons sorted in descending order of modularity scores.

Cluster 4 matches US air times, while cluster 7 matches UK air times. Cluster

6 corresponds to reaction to a sketch referring to the Oscars 2014 ceremony that

was posted on The Simpsons official Twitter feed. Cluster 2 matches periodic

resurgence of news regarding a Simpsons-themed LEGO set on Twitter. Cluster 3

mainly consisted of retweets of a post made by a YouTube celebrity that involved

the Simpsons characters. Most of the tweets in cluster 1 were reactions to a

tweet posted on The Simpsons official feed referring to a 2005 episode of the

show that happened to depict a NFL Superbowl final with the same two teams
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Figure 5.12: Partition of detected events for the show Simpsons
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Figure 5.13: Word clouds for the show Simpsons
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Air times

Game featuring  

South Park characters  

The Stick Of Truth 

Figure 5.14: Partition of detected events for the show South Park

that made it to the final this year. However, other seemingly unrelated events

have also been placed in cluster 1. The word clouds for these clusters are shown

in Figure 5.13. Cluster 8 corresponds to news of a deal between “Chelsea FC”

soccer team franchise and the makers of The Simpsons.

We display clusters along with short summaries for the three other shows in

Figures 5.14, 5.15 and 5.16. The clusters are sorted in the descending order of

modularity scores. We give summaries only for clusters for which the correspon-

dence with real world events is unambiguous.
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Figure 5.15: Partition of detected events for the show The Big Bang Theory

East coast air 

times

West coast air 

times

Figure 5.16: Partition of detected events for the show Modern Family
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Conclusions

In this dissertation, we give three examples which demonstrate that by care-

fully restricting the volume of measurements/coordination signals, we can arrive

at scalable solutions.

6.1 Compressive parameter estimation in AWGN

For parameter estimation in AWGN, we have identified isometry conditions un-

der which the only effect of making compressive measurements is an SNR penalty

equal to the dimensionality reduction factor. We prove this by establishing a con-

nection between the isometry conditions and the CRB/ZZB. Based on the thresh-

old behavior of the ZZB, we also observe that, in order to avoid large estimation

errors, the compressive measurements must not only preserve the geometry, but

the SNR after the dimension reduction penalty must also be above a threshold.
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Motivated by channel estimation for 60GHz systems, we investigate the prob-

lem of compressive frequency estimation. Specifically, for a mixture of K sinu-

soids of length N , we show that O(K logNKδ−1) measurements suffice to provide

isometries, where δ is the smallest singular value of appropriate matrices (a com-

plete characterization is given for K = 1). We verify that the convergence of

the ZZB to the CRB can be used to tightly predict the number of measurements

needed to avoid error floors for frequency estimation of a single sinusoid.

Open Issues

While we identified geometry preservation conditions for the CRB and the ZZB

in AWGN, a topic for further investigation is whether any additional geometry

preservation conditions are needed for other error bounds like the Weiss-Weinstein

bound for the same AWGN measurement model. Random projections are known

to preserve ℓ2 norms (Euclidean geometries). Since it is only ℓ2 norms that matter

for Gaussian-perturbed measurements, random projections are successful in such

scenarios. It is, however, not clear whether such random projections will be ef-

fective in reducing dimensionality in non-Gaussian settings and this a interesting

problem that requires further study.
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We leave open the issue of establishing the relationship between the smallest

singular value δ and the minimum spacing between sinusoids, and characteriz-

ing the regime in terms of the minimum separation of the frequencies for which

the stronger isometry results established for a single sinusoid can be extended

to K > 1. Another interesting topic for future work is the development of an

analytical understanding of multi-dimensional sinusoid estimation, motivated by

practical applications such as large 2D arrays for mm-wave communication [46]

and imaging.

6.2 Geographic Routing for Mobile Ad Hoc Net-

works

To the best of our knowledge, this is the first work that provides a provably

scalable position-publish protocol while providing guarantees on route stretch for

the accompanying geographic routing protocol. Key to scalability is a probabilis-

tic approach to updating a subset of nodes, and to geographic forwarding with

imperfect information. We give new sufficiency results on the scaling of the com-

munication radius needed to ensure that a greedy routing forwarding decision does

not deviate too much in angle from the estimate used.
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Open Issues

Our emphasis here was on providing analytical insight and design criteria,

verified by simulations. Mapping our ideas to practice require detailed protocol

specifications at the level of packet level format and processing, and more extensive

simulations for a wide variety of mobility models. In addition, while we focus on

distant nodes in proving scalability, it may be possible to significantly optimize

our protocol as the distance to the destination decreases. Another direction for

future investigation is the design of position-publish strategies that account for

large holes in the deployment region. It is interesting to note that, while we

have assumed a uniform set of protocol parameters for all destination nodes to

prove scalability, in practice, each potential destination can choose its parameters

differently, depending on the tradeoffs between routing overhead, reliability and

stretch that it desires to obtain. While we specify routing efficiency in terms of

the length of routing trajectories, an important problem for future investigation

is whether provable guarantees can be given for efficiency when we define stretch

using number of hops. Such a characterization is useful since wireless resources

like energy and spectrum usage can be directly related to the number of hops.
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6.3 Inference from time on Twitter

We have demonstrated that significant information about a user’s interest can

be mined from his/her tweet times alone, by correlating these with the timing of

appropriately chosen events in the external world. The Bayesian framework that

we develop for extracting this information is shown to be effective in detecting

baseball fandom from the tweet times of users over a one month period. Measure-

ments from “neighbors” (in the sense of Twitter mentions) provides additional

performance gains, with improvements of about 50% in detection accuracy for a

false alarm rate of 1%.

Our results also show that significant information on topic evolution in Twitter

can be gleaned from minimalistic methods that use only the time and authorship

of tweets. We present a principled approach, grounded in detection and estimation

theory, to baseline modeling and activity detection over multiple time scales. By

examining tweet time patterns across the pool of users who appear in the feed,

we have shown that we can identify meaningful subtopics or event classes. In

particular, for the four TV shows we tracked over a period of six months, not only

did our analysis identify expected activity during episode air times, but it also

uncovered other phenomena such as commercial tie-ins and awards.
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Open Issues

Our current implementation of event detection and clustering is based on batch

algorithms, and it is of interest to explore streaming implementations. While our

event detection algorithm is naturally matched to streaming implementation, an

important topic for further investigation is a streaming version of the event em-

bedding and clustering algorithm for dissecting a topic into subtopics. Another

topic for future study is whether the topic-level information obtained from ag-

gregate feeds can be employed for detailed user-level inference and whether ideas

similar to the ones presented here for event detection can be used to identify the

emergence of interesting motifs on social networks.
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A.1 (Extended) Ziv-Zakai Bound Review[9]

Consider the problem of estimating a parameter θ from measurements

y = s(θ) + z, θ ∈ Θ, z ∼ CN (0, σ2
I). (A.1)

For an estimator θ̂(y), let ǫ = θ̂(y) − θ denote the estimation error. The ZZB

lower bounds the error E|aT ǫ|2 for any a ∈ RK by relating it to the probabilities

of error in a sequence of detection problems. We begin by describing one of the

detection problems.

Consider a simplified version of the preceding model, in which the parameter θ

takes only two values φ and φ+δ, occurring with probabilities p(φ)/(p(φ) + p(φ+

δ)) and p(φ+ δ)/(p(φ) + p(φ+ δ)), respectively. There are two possible ways to

estimate θ:
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• Optimal detection-theoretic approach: Compute the Bayesian posterior prob-

abilities p(φ|y) and p(φ + δ|y). Choose φ if p(φ|y) > p(φ + δ|y) and φ + δ

otherwise. Denote the probability of error with this approach by Popt(φ,φ+ δ).

• Heuristic approach using the estimate θ̂(y): Form the estimate θ̂(y); this could

take any value in Θ, and is not restricted to {φ,φ + δ}. Classify based on the

following rule: if aT θ̂(y) < aTφ + (h/2), where h = aTδ, choose φ to have

occurred; else, choose φ+ δ. Denote the probability of error with this scheme by

P θ̂
nn(φ,φ+ δ).

Since the Bayesian detection rule is optimal, we have Popt(φ,φ+δ) ≤ P θ̂
nn(φ,φ+

δ). In order to use this observation to bound E|aTǫ|2, we begin with the identity

E
∣∣aT ǫ

∣∣2 = 1

2

∫ ∞

0

Pr
(∣∣aTǫ

∣∣ ≥ h/2
)
h dh, (A.2)

and relate Pr
(∣∣aTǫ

∣∣ ≥ h/2
)
to the probability of error with the heuristic rule

P θ̂
nn (φ,φ+ δ) as follows:

Pr
(∣∣aT ǫ

∣∣ ≥ h/2
)
=

∫

RK

(p(φ) + p(φ+ δ))P θ̂
nn (φ,φ+ δ) dφ, (A.3)

where δ is any vector satisfying aTδ = h. We now use the lower bound P θ̂
nn (φ,φ+ δ)

≥ Popt(φ,φ+ δ) in (A.3) and substituting back in (A.2), we get the basic version

of the ZZB.

We can further tighten the bound in two ways: (a) by choosing δ appropriately

and (b) by exploiting the fact that Pr
(∣∣aTǫ

∣∣ ≥ h/2
)
is non-increasing using the
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valley filling operation V{ }, defined as V{q(h)} = maxr≥0q(h + r) (refer [9] for

details). This gives us the ZZB in (2.16).

179



Appendix B

B.1 Proof of Theorem 3.2

Let ω = [ω1 · · · ωK ]
T , g = [g1 · · · gK ]T and X(ω) = [x(ω1) · · · x(ωK)]. We

note that an ǫ-isometry for all vectors of the form X(ω)g such that ‖X(ω)g‖> δ

and ‖g‖= 1 is equivalent to (3.7). We discretize the frequencies [0, 2π] uniformly

into R points (R is specified later) and obtain the set F . We first prove a 2ǫ0

isometry for all vectors in the span of X(q) for all frequency tuplets q ∈ FK

(i.e., q = [q1 · · · qK ]T with ql ∈ F ). We then extend this to a 3.5ǫ0 isometry for

vectors X(ω)g such that ‖X(ω)g‖> δ and ‖g‖= 1 by: (a) approximating them to

nearby points in the span of X(q), (b) choosing R = O(N1.5K0.5δ−1ǫ−1
0 ) so that

the approximation is good.

Sampling: For any tuplet of sampled frequencies q ∈ FK , if A preserves the

norm of
(
6ǫ−1

0

)2K
well-chosen samples in the span of X(q) up to ǫ0 < 2/5, it can

be shown that A will preserve the norms of all vectors in the span of X(q) up to
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2ǫ0 [5] (since we are concerned only with ℓ2 distances from sampled points, we map

the unit ball in CK to the unit ball in R2K using the map f(z) = [ℜ{zT} ℑ{zT}]T

and use corresponding covering arguments in [5]. The other argument used in

[5], which is closure w.r.t. to addition is satisfied in CK as well). Since there

are RK sampled frequency tuplets q ∈ FK , by demanding that A preserves the

norm of RK
(
6ǫ−1

0

)2K
samples, we can provide a 2ǫ0 isometry for the span of

X(q) ∀q ∈ FK .

Isometry for mixtures of arbitrary frequencies: We now extend this to an

3.5ǫ0 isometry result for vectors of the form X(ω)g such that ‖X(ω)g‖> δ and

‖g‖= 1 by choosing R appropriately.

Let q be a tuplet in FK that is close to ω satisfying maxl |ql − ωl| ≤ π/R. We

let el = x(ωl) − x(ql) and bound the absolute value of each term of el using the

mean value theorem to get ‖el‖ ≤ πN/(
√
2R). We use this to calculate a bound

on the difference between a vector X(ω)g and its approximated version X(q)g.

Using the definition of el, we obtain

X(ω)g = X(q)g +

l=K∑

l=1

glel. (B.1)

Using the triangle inequality and the fact that
∑

l|gl|≤
√
2K (since ‖g‖= 1), we

have

‖X(q)g‖
‖X(ω)g‖ ∢ 1± π

√
KNR−1

‖X(ω)g‖ . (B.2)
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where x ∢ y ± z denotes y − z ≤ x ≤ y + z.

Next, we bound the difference between the vectors AX(ω)g and AX(q)g. We

see that ‖A‖F=
√
M and, therefore, have ‖Aek‖ ≤

√
M ‖ek‖. Furthermore, since

A preserves the norms of all vectors of the form X(q)g, where q ∈ FK up to an

isometry constant 2ǫ0 (and scale factor of
√
M/N), we get

√
N

M

‖AX(ω)g‖
‖X(q)g‖ ∢ 1±

(
2ǫ0 +

πN
√
NKR−1

‖X(q)g‖

)
. (B.3)

Before we proceed to give the isometry result, we need to characterize how

small ‖X(q)g‖ can be in (B.3). Since ‖X(ω)g‖> δ, from (B.2) we have the

following:

‖X(q)g‖
‖X(ω)g‖ ∢ 1± π

√
KN(Rδ)−1. (B.4)

Choosing R = (4π)N
√
NKǫ−1

0 δ−1, we have that

‖X(q)g‖
‖X(ω)g‖ ∢ 1± 0.25ǫ0. (B.5)

For this choice of R, from (B.3), we see that

√
N

M

‖AX(ω)g‖
‖X(q)g‖ ∢ 1±

(
2ǫ0 +

0.25ǫ0δ

‖X(q)g‖

)
. (B.6)

Using the lower bound from (B.5), ‖X(q)g‖ ≥ (1 − 0.25ǫ0) ‖X(ω)g‖ ≥ δ(1 −

0.25ǫ0), √
N

M

‖AX(ω)g‖
‖X(q)g‖ ∢ 1± 2.5ǫ0. (B.7)
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Substituting the bounds for ‖X(q)g‖ in terms of ‖X(ω)g‖ from (B.5), we have

that
√
N

M

‖AX(ω)g‖
‖X(ω)g‖ ∢ 1± 3.5ǫ0. (B.8)

Number of measurements: It only remains to specify the number of measure-

ments M required to preserve the norms of the RK
(
6ǫ−1

0

)2K
samples up to ǫ0.

Using the value for R just obtained, and setting ǫ = 3.5ǫ0, we see that we must

preserve the norms of (18 × 73πN1.5K0.5ǫ−3δ−1)K vectors (samples) up to 2ǫ/7

w.h.p. We relate the probability of preserving these norms to the number of mea-

surements M via the concentration results (2.8) for Uniform{±1/
√
N,±j/

√
N}

(setting δ in (2.8) and (2.9) to 32ǫ/49 – here we have used the fact that when ǫ < 1,

max{(1+2ǫ/7)2−1, 1− (1−2ǫ/7)2} < 32ǫ/49). We employ the union bound and

(2.8) to compute the probability that the norm of at least one sample is not pre-

served. This probability becomes vanishingly small forM = O (ǫ−2K log (NKǫ−1

δ−1)) measurements, which concludes the proof.

B.2 Proof of Theorem 3.1

For the matrix T(ω), K of the columns are of the form τdx(ω)/dω, while

the remaining K are of the form x(ω). When τdx(ω)/dω is approximated by

τdx(q)/dω, where q is the frequency on an uniformly spaced frequency grid with
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R points that is the closest to ω, the norm of the approximation error is upper

bounded by πN/(
√
2R). The upper bound on the norm of the error in approximat-

ing x(ω) by x(q) used in theorem 3.2 is also πN/(
√
2R). Therefore, by following

the proof of theorem 3.2 with K set to 2K (because number of columns of X(ω)

is only K), we obtain the proof for theorem 3.1.

B.3 Proof of Theorem 3.3

We present the results for closely spaced frequencies first (tangent plane isome-

tries), and then move to the well-separated setting.

Tangent plane isometry: For a single sinusoid, the tangent plane matrix at

ω is given by T(ω) = [x(ω) τdx(ω)/dω] where τ = 1/‖dx(ω)/dω‖. The smallest

singular value of T(ω), denoted by σtangent, satisfies

σ2
tangent = 1− τ |〈x(ω), dx(ω)/dω〉| (B.9)

= 1− τ

∣∣∣∣∣

n=N∑

n=1

|hn|2jω (n− (N + 1/2))

∣∣∣∣∣ (B.10)

where the second equality is obtained from the definition of the sinusoid (3.1) by

noting that the nth entry of x(ω) is hne
jω(n−(N+1)/2). From the definition of H(ω),

we see that,

σ2
tangent = 1− τ |dH(0)/dω| , (B.11)
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and therefore σtangent =
√
1− τχ where χ = |dH(0)/dω|. By Jensen’s inequality,

we see that χ2 < 1/τ 2 when the weight sequence {hn} has more than one non-zero

tap. Thus, τχ < 1 and therefore σtangent is strictly positive. Setting δ =
√
1− τχ

in Theorem 3.1, we can provide tangent plane ǫ-isometries for a single sinusoid

with M = O (ǫ−2 log (Nǫ−1(1− τχ)−1)) measurements.

Extending tangent plane isometry to pairwise isometry for frequencies

separated by at most 1/N1.5: We now extend ǫ-isometry of the tangent planes

to a pairwise 2ǫ-isometry for any two frequencies ω1, ω2 whose separation ∆ =

ω2 − ω1 is “small” (we quantify how small later) by exploiting continuity. Let

q = (ω1 + ω2)/2 be the average of the two frequencies. For small values of |∆|,

a first-order Taylor series expansion for x(ω1) and x(ω2) around x(q) will have

small errors. Such an expansion gives us

x(ω1) = x(q)− (∆/2)(dx(q)/dω) + e1, (B.12)

x(ω2) = x(q) + (∆/2)(dx(q)/dω) + e2, (B.13)

where e1, e2 are the approximation errors. Consider a linear combination X(ω)g

where X(ω) = [x(ω1) x(ω2)] and g = [g1 g2]. This can be written as

X(ω)g = v + e (B.14)

where e = g1e1 + g2e2 and

v = (g1 + g2)x(q) + (∆/2) (g2 − g1) (dx(q)/dω), (B.15)
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lies in the span of T(q) = [x(q) τ(dx(q)/dω)], the tangent plane at ω = q.

Since A guarantees ǫ-isometries for tangent planes at all frequencies, for any

vector T(q)h in the tangent plane at q, the quantity ‖AT(q)h‖ is bounded within

(1 ± ǫ)
√
M/N‖T(q)h‖. Expanding out ‖AX(ω)g‖/‖X(ω)g‖ in terms of v and

e and applying the tangent plane isometry condition to ‖Av‖/‖v‖, we can show

that
√
N

M

‖AX(ω)g‖
‖X(ω)g‖ ∢ 1 ±

(
ǫ+

5
√
N‖e‖
‖v‖

)
. (B.16)

where x ∢ y±z denotes y−z ≤ x ≤ y+z. Next, we get bounds on ‖e‖ and ‖v‖ as

follows. First, we use the mean value theorem to show that the error is bounded

as ‖e‖≤ N2∆2/(4
√
2). Next, since v lies in the span of T(q), we can use the

bound on the minimum singular value of T(q) to get ‖v‖≥ √
1− τχ|∆|/(

√
2τ).

The details are given in Appendix B.4. Substituting these bounds in the above

equation, we obtain

√
N

M

‖AX(ω)g‖
‖X(ω)g‖ ∢ 1 ±

(
ǫ+

5τ |∆|N2.5

4
√
1− τχ

)
. (B.17)

We note that τ = 1/‖dx(ω)/dω‖ scales as 1/N . Therefore, defining a scale-

invariant constant α = 1/(Nτ), we see that, as long as the frequency separation

|∆|≤ (4αǫ
√
(1− τχ)/5)/N1.5, we can get a 2ǫ isometry

√
N

M

‖AX(ω)g‖
‖X(ω)g‖ ∢ 1 ± 2ǫ. (B.18)

186



Appendix B.

Thus, if A provides an ǫ/2 tangent plane isometry for all frequencies (which

can be achieved with M = O (ǫ−2 log (Nǫ−1(1− τχ)−1)) measurements), we can

extend it to a pairwise ǫ-isometry for the set of frequencies ω1, ω2 whose separation

|ω1 − ω2|≤ (4α(ǫ/2)
√
(1− τχ)/5)/N1.5.

Pairwise isometry for frequencies separated by more than 1/N1.5: We now

use Theorem 3.2 to quantify the number of measurements necessary to guarantee

pairwise ǫ-isometry for two frequencies that are separated by more than µ/N1.5,

where µ = (4α(ǫ/2)
√
(1− τχ)/5).

First, we obtain a bound on the smallest singular value of X(ω1, ω2) = [x(ω1)

x(ω2)]. Denoting the smallest singular value by σ2
signal, we can show that it satisfies

σ2
signal = 1− |〈x(ω1),x(ω2)〉| . (B.19)

Furthermore, we can show that |〈x(ω1),x(ω2)〉| = |H(ω1 − ω2)|, where H(ω) =

∑n=N
n=1 |hn|2ejω(n−(N+1)/2). Thus, we have σ2

signal = 1− |H(ω1 − ω2)|.

Suppose now that |ω1 − ω2|> µ/N1.5. For large values of N , the smallest

singular value of X(ω1, ω2) is bounded as

σsignal >

√
0.4ζµ2

N
, where ζ = −N

−2

2!

d2|H(ω)|2
dω2

∣∣∣∣
ω=0

. (B.20)

The details are given in Appendix B.5.

We now apply Theorem 3.2 with δ =
√

0.4ζµ2/N . The set of all frequencies

|ω1 − ω2|> µ/N1.5 is contained in Λp(
√

0.4ζµ2/N) and thus, we can guarantee
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pairwise ǫ-isometry for this set with M = O (ǫ−2 log (Nǫ−1(1− τχ)−1ζ−1α−1))

measurements.

Combining the isometries in the regimes |ω1 − ω2|≤ µ/N1.5 and |ω1 − ω2|≥

µ/N1.5 completes the proof of Theorem 3.3.

B.4 Extending tangent plane isometry

We first derive a bound on ‖e‖. Applying the triangle inequality to e, we obtain

‖e‖≤ |g1|‖e1‖+|g2|‖e2‖. Since the quantity we wish to bound ‖AX(ω)g‖/‖X(ω)g‖

does not depend on ‖g‖, we can, without loss of generality, restrict attention to

‖g‖= 1. Thus, we have |gi|≤ 1. We use the mean value theorem to obtain bounds

on ‖ei‖ i = 1, 2 (the mean value theorem relates ei to d2x(ω′
i)/dω

2 for some

ω′
i ∈ [ω1, ω2]) and ultimately get ‖e‖≤ N2∆2/(4

√
2).

In order to obtain a lower bound for ‖v‖, we rewrite v as

v = T(q)




√
2 0

0 ∆√
2τ







1√
2

1√
2

−1√
2

1√
2






g1

g2


 . (B.21)

We now recall that the minimum singular value of the product of two matrices is

at least as large as the product of their minimum singular values. The minimum

singular value of T(q) is σtangent =
√
1− τχ and the corresponding value for the

other two matrices are |∆|/
√
2τ and 1 respectively. Thus, the minimum singular
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value of the product of the three matrices is greater than
√
1− τχ × |∆|√

2τ
. Since

‖g‖= 1, we immediately get the desired bound on ‖v‖.

B.5 Smallest singular value for well-separated

frequencies

We wish to obtain a lower bound for the smallest singular value σ2
signal of the

matrix [X(ω1) X(ω2)] when the frequencies satisfy |ω1 − ω2|> µ/N1.5. First, we

note that this is equivalent to upper-bounding |H(ω1 − ω2)| since σ2
signal = 1 −

|H(ω1−ω2)|. Since |H(ω)| is not necessarily monotonic (imagine that |hn|2 is the

Hamming window; |H(ω)|, being the magnitude of the Fourier transform of |hn|2,

has sidelobes), it is not true in general that that the maximum of |H(ω)|, |ω|>

µ/N1.5 occurs at ω = µ/N1.5. However, we now make two observations that allow

us to analyze the behavior of |H(ω)| only at the minimum separation µ/N1.5.

First, if there were no restrictions on the frequencies (ω1, ω2), |H(ω1−ω2)| has

a maximum (= 1) when ω1 = ω2. Second, because (i) the set of the frequencies

we are excluding |ω1 − ω2|< µ/N1.5 is very small (it is smaller than π/(2N) for

large enough N) and (ii) we restrict ourselves to sequences {hn} such that |H(ω)|
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is monotone in (0, π/(2N)), the maximum of |H(ω1 − ω2)|, π/(2N) > |ω1 − ω2|>

µ/N1.5 is guaranteed to occur when ω2 = ω1 ± µ/N1.5.

For small values of |ω1 − ω2|, we can expand |H(ω)|2 around ω = 0 to get

|H(ω1 − ω2)|2= 1− ζN2 (ω1 − ω2)
2 ±O

(
N4 (ω1 − ω2)

4) , (B.22)

where ζ = −(N−2/2!) d2|H(ω)|2/dω2|ω=0. For |ω1 − ω2|= µ/N1.5, we have

∣∣H
(
µ/N1.5

)∣∣2 = 1− ζµ2/N ± O
(
1/N2

)
. (B.23)

we see that |H(µ/N1.5)| approaches 1 with increasing N . Since we assume that

all side-lobes are smaller than D < 1, there exists some N beyond which the

maximum of |H(ω1 − ω2)|, |ω1 − ω2|> π/(2N) is guaranteed to be smaller than

|H(µ/N1.5)|. Therefore, for sufficiently large N , the maximum of |H(ω1−ω2)| for

all |ω1 − ω2|> µ/N1.5 occurs at |ω1 − ω2|= µ/N1.5. Plugging the expression for

|H(ω1 − ω2)| in σ2
signal for this frequency separation, we have that,

Nσ2
signal ≥ 0.5ζµ2 ±O (1/N) . (B.24)

To arrive at the above expression we have used the following: |H(ω)|≤ 1 ∀ω (since

∑|hn|2= 1). This gives us

1− |H(ω)|≥ (1 + |H(ω)|)(1− |H(ω)|)/2 ∀ω. (B.25)

Therefore, σ2
signal ≥ (1 − |H(µ/N1.5)|2)/2, which yields (B.24). The first term in

(B.24) given by 0.5ζµ2, is a constant and the second term decays to zero (as 1/N).
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Therefore, for large values of N , the second term is much smaller than the first

and σ2
signal is bounded away from zero. In particular, for large enough N (how

large it needs to be depends on µ and the behavior of |H(ω)|2 at ω = 0), we have

σsignal >
√
0.4ζµ2/N .
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C.1 Proof of Theorem 4.1

We start by laying out the notation used in this proof. Every node in the

network can forward packets to any node that is within the communication radius

r(n). We refer to the circle of radius z centered around a point u by C(u, z). We

reserve the symbol r = r(n) for the communication radius and v for the location of

the network node (relay) under consideration. Therefore, the node v can forward

a packet to any node inside the circle C(v, r).

Around each node v, we choose ⌈2π/δ⌉ “anchor” regions Ak
v of the following

form: (i) Ak
v = C(v, r) ∩ C (uk, r), where uk is a point on the perimeter of the

circle C (v, 2r cos (δ/2)), where δ is the constant in the statement of Theorem 4.1

(satisfying 0 < δ ≤ π/3) (ii) The ⌈2π/δ⌉ points {uk} are carefully chosen so that

any ray drawn outward from this node v intersects at least one anchor region Ak
v.
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Figure C.1: Anchor regionsAk
v numbering ⌈2π/δ⌉ in the neighborhood (distances

smaller than the communication radius r) around a typical node v. φ is the
direction of the estimate e towards which a packet is being greedily routed by v.

Figure C.1 illustrates one such choice of anchor regions around the node v for

δ = π/3 (2π/δ chosen to be an integer for the sake of convenience).

We now provide a summary of the proof strategy used. Using an union bound,

we first show that when we choose a large enough communication radius (r2 ≥

c logn, for an appropriate choice of constant c), then w.h.p., every anchor region

in the network is occupied by at least one node. We follow this up with the

implications of the occupancy of the ⌈2π/δ⌉ anchor regions {Ak
v} around a node

v for greedy forwarding decisions made by this node.
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Asymptotic occupancy guarantee for anchor regions

Let Ek
v denote the “error event” that all n − 1 network nodes (other than v)

reside outside the anchor region Ak
v. In other words, Ek

v denotes the event that

the anchor region Ak
v is unoccupied. All nodes are uniformly and independently

distributed over the deployment region of area n. Therefore, denoting the area of

the region P by |P |, we have that

Pr
[
Ek

v

]
=
(
1−

∣∣Ak
v

∣∣/n
)n−1

.

We refer to the event that one of the n ⌈2π/δ⌉ anchor regions being empty as the

“cumulative error event” and denote it by Eall. Since Eall =
⋃

v,k E
k
v, we use the

union bound to arrive at:

Pr [Eall] ≤
∑

v,k

Pr
[
Ek

v

]
=

⌈
2π

δ

⌉
n

(
1− (δ − sin δ) r2

n

)n−1

,

where we have used the fact that
∣∣Ak

v

∣∣ = (δ − sin δ) r2. Let ν > 0 denote a

constant. We note that when

r2 = (1 + ν) log n/(δ − sin δ) , (C.1)

Pr [Eall] → 0 as n grows. Thus, for large n, if r satisfies (C.1), all anchor regions

are occupied w.h.p.
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Implications of anchor region occupancy for greedy for-

warding

Consider a packet at the node v, which is being forwarded towards an estimate

e (need not correspond to the location of any of the n nodes in the network) which

is no closer to v than 2r. All ⌈2π/δ⌉ anchor regions {Ak
v} around v are occupied

by at least one node. We denote the line segment joining the points u and v by

L(u,v). w.l.o.g., we assume that L(v, e) intersects the anchor region A1
v. Let φ

denote the angle between L(v, e) and L(v,u1), where u1 is the point used in the

construction of the anchor region A1
v (this is depicted in Figure C.1). We now

provide the answer to the question: What does the occupancy of the region A1
v

mean for the quality of the greedy forwarding decision taken by v corresponding

to this estimate e? More specifically, denoting the next hop (the node to which

this packet is forwarded to) by x, we ask, what is largest absolute value that the

angle between L(v, e) and L(v,x) can take?

Consider the tangent to the inner boundary of the anchor region A1
v which

is perpendicular to the line segment L(v, e) (tangent to C(u1, r); marked in Fig-

ure C.2). Let 2Φ denote the angle subtended by the acute sector S of C(v, r)

associated with this tangent (we mark this sector in Figure C.2 using the � sym-
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e
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A1
v
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Figure C.2: Sector S is marked using the � symbol. The point t in C(v, r) \ S
closest to the estimate e is marked using the ∗ symbol.

bol). It can be shown that cos Φ = 2 cos (δ/2) cos φ − 1. Since the line L(v, e)

intersects this anchor region A1
v, we have that φ ≤ δ/2, and as a result Φ ≤ δ.

Consider any point u ∈ C(v, r) \ S. When δ ≤ π/3 and ℓ(v, e) > 2r, it can

be shown that: (i) ℓ(u, e) ≥ ℓ(t, e) (where t ∈ C(v, r) \ S is the point marked

in Figure C.2 using the ∗ symbol) (ii) C(e, ℓ(e, t)) encompasses the anchor region

A1
v completely. Therefore, every point inside the anchor region A1

v is closer to e

than any point in C(v, r) \ S (i.e., A1
v ⊂ C(e, ℓ(e, t)) ⊆ C(e, ℓ(e,u))).

We now show (by contradiction) that when δ < π/3, ℓ(v, e) > 2r, the next

hop x lies within this sector S of width 2Φ. Now suppose that the next hop

x ∈ C(v, r) \ S. Our preceding discussions imply that A1
v ⊂ C(e, ℓ(e,x)). Since

greedy geographic forwarding always chooses the neighbor closest to the destina-

tion, we infer that the anchor region A1
v is not occupied. But this contradicts the
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assumption that A1
v is occupied by at least one node. Thus, the next hop x must

lie inside the sector S. The absolute angle between direction along which the

packet is forwarded and the direction of the estimate using which it is forwarded

is therefore bounded by Φ ≤ δ.

Summary

We have shown that: (i) when the communication radius r(n) scales as (C.1),

then w.h.p., all anchor regions around every node are occupied. This corresponds

to choosing ǫ in (4.1) so that (4.2) holds (ii) When the ⌈2π/δ⌉ anchor regions

around a node v are occupied, the absolute angle between the direction along

which the packet is forwarded L (v,x) and the direction of the position estimate

L (v, e) using which this forwarding decision is made can be no larger than δ (for

any δ < π/3 and e such that ℓ (v, e) > 2r), thus proving Theorem 4.1.

C.1.1 Proof of Corollary 4.2

Consider the scenario where the uncertainty of all position estimates is bounded

by Umax. This ensures that the angle between the estimated direction and the

true direction is no greater than arcsinUmax. If the communication radius r is

large enough, we infer from Theorem 4.1 that greedy forwarding decisions re-
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sult in angular distortions smaller than δ (as long as the relay-estimate distance

is no smaller than 2r). Therefore, the angle between the direction along which

the packet is forwarded and the true direction is bounded by arcsin (Umax) + δ

and progress towards the destination per unit distance travelled is no lesser than

cos (arcsin (Umax) + δ). Therefore, every hop reduces the packet-destination dis-

tance until the relay-estimate distance is smaller than 2r. From the definition

of uncertainty, we have that when the relay-estimate distance is smaller than 2r,

the relay-destination distance is smaller than 2 (1− Umax)
−1 r. Therefore, location

information is exact and routing is guaranteed to be successful thereafter (when

ǫ satisfies (4.2) for some δ ≤ π/3, ǫ > ǫ0 ≈ 1.6 needed for successful routing with

exact location information [62]).

C.2 Probability of missing an update ring

The density of nodes throughout the network is a uniform 1 node per unit area.

This remains invariant under our Brownian motion model. For ri ≤ a ≤ ri + di,

let us denote by ΛU(a, t) the “update density”, or the density of the subset of

nodes in the ring with active updates, where t is the time elapsed since update

issue and a is the distance of from the center of the update ring (the update

density is circularly symmetric and thus is a function of only the distance from

198



Appendix C.

the center of the ring). At t = 0, all nodes in the ring have active updates, so

that ΛU(a, 0) = I[ri,ri+di](a), where IB denotes the indicator function of a set B.

As time proceeds, the positions of the nodes with active updates is smeared out

by the Gaussian kernel induced by 2D Brownian motion, so that

ΛU (a, t) = ΛU (a, 0)⊗N
(
0, σ2t I2

)
(C.2)

where ⊗ stands for 2D convolution. Let Λ⋆(a) = ΛU(a, Ti) be the worst case

update density (just before the update expires). When a packet meets a node at

a distance a from the center of the i-th update ring, the probability that it does

not get an active update is therefore at most 1− Λ⋆(a).

The worst case packet traversal for missing an update ring is given by a radial

cut through, and for this trajectory the packet meets at least di/r nodes, and

a miss occurs if none of these have an active update (we wish to reiterate that

meeting fewer nodes inside an update region increases the chance that the packet

misses this update and that the number of nodes via which a packet is relayed

can be no lesser than di/r). We therefore obtain that the miss probability for the

i-th ring satisfies

Pmiss(i) ≤
ℓ=di/r∏

ℓ=1

(1− Λ⋆ (ri + ℓr)) . (C.3)
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Taking logarithms, the product becomes a sum which we then approximate as an

integral using r/di → 0 for i large.

logPmiss(i) ≤
l=di/r∑

l=1

log (1− Λ⋆ (ri + ℓr))

≤ −
l=di/r∑

l=1

Λ⋆ (ri + lr)

≈ −1

r

∫ ri+di

ri

Λ⋆ (a) da. (C.4)

The worst case update density for the i-th ring Λ⋆(a) (a is the distance from

the center of the update ring) is the density just before the timer Ti corresponding

to the update elapses and from (C.2), we have that

Λ⋆ (a) =
1

σ2Ti

∫ ri+di

ri

ρ exp

(−a2 − ρ2

2σ2Ti

)
I0

(
aρ

σ2Ti

)
dρ, (C.5)

where I0 (·) denotes the zeroth order modified Bessel function of the first kind.

The probability of missing the the i-th update ring satisfies (C.4). Using (C.5) in

(C.4),

logPmiss(i) /
−1

σ2rTi

∫∫

Ai

ρ exp

(−a2 − ρ2

2σ2Ti

)
I0

(
aρ

σ2Ti

)
da dρ,

where Ai is given by ri ≤ a, ρ ≤ (ri + di). For outer rings minAi
(aρ) = r2i ≫ σ2Ti

(since γ < 2; required to limit abnormal updates). Therefore, the argument of

I0(·) is large and we can use the approximation I0(t) ≥ exp(t)
/√

2πt (which is
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valid for large t) to arrive at

logPmiss(i) /
−σ√Ti
r
√
2π

∫∫

Bi

√
y/x exp

(
−(x− y)2

2

)
dx dy,

where we have set x = a
/√

σ2Ti , y = ρ
/√

σ2Ti and Bi is given by ri
/√

σ2Ti ≤

x, y ≤ (ri + di)
/√

σ2Ti . We note that minBi

√
y/x =

√
ri/(ri + di) . Since ri

scales faster than di, this is well-approximated by 1 for outer rings. Using this

approximation, we arrive at

logPmiss(i) /
−σ√Ti
r
√
2π

∫∫

Bi

exp
(
− (x− y)2

/
2
)
dx dy

=
−σ√Ti

r
×
∫ deffi

0

(1− 2Q (x)) dx

≈ −σ√Ti
r
√
2π

×
(
deffi
)2
.

where Q(x) =
(
1
/√

2π
) ∫∞

x
e−t2/2 dt is the CCDF of the standard normal distri-

bution and deffi denotes di
/(
σ
√
Ti
)
. The above approximation is accurate when

deffi is small enough so that for 0 ≤ x ≤ deffi , Q(x) is well approximated by

0.5−
(
x
/√

2π
)
. As we choose γ > 1 + µ to accommodate scalability constraints,

this is equivalent to the ring index i being large enough. Thus, for outer rings,

logPmiss(i) / −d2i
/(
rσ

√
2πTi

)
.
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C.3 Bound on route stretch

To provide bounds on the worst case route stretch, we need to understand the

geometry of the update rings surrounding a destination node that executes the

position-publish algorithm. The publish algorithm ensures that at all times, there

exists exactly one set of normal updates with valid confidence region guarantees

corresponding to each ring index. All other updates with valid confidence region

guarantees are abnormal updates issued in order to prevent older unexpired up-

dates (made stale by atypically large movements of the destination node) from

misdirecting packets. When a packet is relayed through an update ring to which

updates that were issued earlier have become stale, abnormal updates issued to

the same region ensure that the packet latches on to the newer estimate that they

possess rather than the stale estimates. This is because the routing algorithm

prefers newer updates (more recent) when it is presented with a tie in terms of

the ring indices. The analysis in the derivation of Pmiss (i) holds here for the prob-

ability of missing the newer updates (in regions with stale updates that also have

the same spatial validity). The role of abnormal updates is therefore to prevent

routing failures as a result of misdirection from stale updates. Therefore, we can

assume that abnormal updates and stale updates which were compensated for
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using abnormal updates are absent in a discussion of worst case routing stretch

guarantees.

Consider a destination node which is surrounded by one normal update ring

of each ring index, all of which satisfy their corresponding confidence region guar-

antees. We denote the center and the position estimate (both of which coincide

for normal updates) of the i-th update ring by ci. Since these position updates

satisfy their corresponding confidence region guarantees, ℓ (ci,d) ≤ βri.

Inner and outer envelope of updates: In the following computations it is

useful to define the concept of inner and outer envelope of an update of ring index

i. The outer envelope of updates of ring index i is defined as the set of points

farthest from the destination node that can possess a spatially active update of

ring index i. Similarly the inner envelope of updates of ring index i is defined as

the set of points closest to the destination node that can possess a spatially active

update of ring index i. In each direction the farthest spatially valid update can be

(1 + β) ri away corresponding to ℓ (ci,d) = βri and ci in the same direction (we

neglect di in this computation as di/ri ≪ 1). So the outer envelope of updates

of ring index i is the circle of radius (1 + β) ri centered around the destination

node d. Similarly the inner envelope of updates is the circle of radius (1− β) ri

centered around the destination node.
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If the packet source has an active estimate of the destination, then the packet

proceeds towards this estimate. However, if it does not possess an active update,

the source launches the packet in some arbitrarily chosen direction and the packet

eventually bootstraps when it is relayed to a node which possesses an active esti-

mate of the destination node’s location. This process of bootstrapping contributes

to route stretch in addition to the route stretch stemming from lazy updates.

Firstly, we examine the contribution of the lazy position updates to the route

stretch after bootstrap. An upper bound on this is given via the worst case

uncertainty seen by a packet that has bootstrapped. Then we provide an upper

bound on the worst case contribution to route stretch due to the bootstrapping

process which corresponds to a confluence of unfavorable geometric configurations

of the immediate inner and outer rings surrounding the packet source and the

launch direction chosen by it.

Stretch after bootstrap

What is the worst case uncertainty seen by a packet after it has bootstrapped?

To answer this question consider a segment of any packet trajectory from just after

it has acquired the update for the (i + 1)-th ring till it acquires the update for

the i-th ring. In this segment of the packet trajectory, the packet is routed using

204



Appendix C.

the estimate from the (i + 1)-th ring and so the location estimate e = ci+1 can

disagree from the true destination location by not more than βri+1 = αβri (i.e.,

ℓ (d, e) ≤ βri+1 = αβri). The farthest from the destination node that an update

of index i+1 can be obtained by the packet is given by (1 + β) ri+1, the radius of

the outer envelope of the (i+ 1)-th ring and the closest the packet can get to the

destination without latching on to the i-th ring update is (1− β) ri, the radius of

inner envelope of updates of the i-th ring. This is the region where a packet can

use the (i+ 1)-th indexed update, and in this region, uncertainty ℓ (d, e)/ℓ (p,d)

satisfies U ≤ Umax, where Umax = αβ/(1− β). This bound is independent of the

update index i + 1 and thus as long as the packet does not “miss” any update

ring that it is relayed through, the uncertainty seen by it is no greater than Umax.

Therefore, from Corollary 4.2 of Theorem 4.1, the route stretch after bootstrap is

at most 1/cos (arcsinUmax + δ) ≈ 1/
√

1− U2
max (assuming that δ is small and ǫ in

the choice of communication radius πr2 = (1 + ǫ) log n is chosen to satisfy (4.2)).

From the preceding discussion, we see that when Umax < 1 or βri+1 < (1−β)ri,

before the packet reaches the estimate ci+1 corresponding to the (i+1)-th ring, it

is guaranteed to be relayed via the i-th ring, thus acquiring the estimate ci corre-

sponding to the i-th update. Therefore, the packet is guaranteed to progressively

obtain better estimates of the destination, and this imposes the extra constraint

on routing reliability (Section 4.5.2) given by αβ < 1− β or Umax < 1.
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Bootstrapping cost

Consider a packet originating from the source node positioned at s for the

destination at d. Suppose the rings that surround the source are the i-th (inner)

and (i + 1)-th (outer) rings. A packet launched in any direction first bootstraps

at one of these two rings. Since we are interested in route stretch, which is a ratio

of distances, we henceforth scale all distances by ri, the radius of the inner ring.

The source can be surrounded by the i-th and (i + 1)-th ring only if it is inside

the region between the inner envelope of the i-th ring and the outer envelope of

the (i+ 1)-th ring. Therefore 1− β ≤ ℓ (s,d) ≤ α (1 + β).

When the packet is launched from the source in an arbitrary direction, the

scenario where the packet latches to the ring closer to the destination is a better

case. So consider the case where the packet bootstraps at the outer ring. We

note that for all distances of the source node from the destination node the packet

travels the farthest distance before bootstrapping if it is launched tangential to

the inner envelope of the inner ring and bootstraps at the outer envelope of the

outer ring. This scenario is depicted in Figure C.3 (left). We denote the point

where this tangential trajectory touches the inner envelope of the inner ring by t

and the point on the outer envelope of the outer ring where the packet bootstraps

by b.
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φ

1− β

α(1 + β)

x d

θ
s

t

b

x d

θ
s

t

b

⋆

⋆

1

α

ci

ci+1

Figure C.3: Left: Contribution of bootstrapping to stretch via envelopes. Right:
A configuration of ring centers ci and ci+1 marked ⋆ which satisfies the confidence
region guarantees and has the same bootstrapping cost as the worst case envelope
based calculations

Let θ be the angle between the launching direction and the direction of the

destination. Then sin θ = (1− β)/x. Let φ be the angle between the vectors t and

b as shown in Figure C.3 (left). Then we have cosφ = (1− β)/(α (1 + β)). From

the cosine formula, the worst case distance traveled before bootstrap Z(x) =

ℓ (s,b) for a packet originating at a distance x = ℓ (s,d) from the destination

satisfies (using Theorem 4.1 and assuming that ǫ is large enough so that δ in (4.2)

is small; note that forwarding along a fixed direction is equivalent to forwarding

greedily towards an estimate at ∞ and thus in the regime where Theorem 4.1 is
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applicable)

Z(x) =

√
x2 + α2 (1 + β)2 − 2xα (1 + β) cos

(π
2
− θ + φ

)

=

√
x2 − (1− β)2 +

√
α2 (1 + β)2 − (1− β)2.

Overall stretch

We are now ready to bound the overall stretch using the preceding two ingredi-

ents: A packet originating at a distance x from the destination travels a distance

not exceeding Z(x) before bootstrap at b. Since the stretch after bootstrap is at

most 1/
√
1− U2

max (Umax is the upper bound on uncertainty given by (4.4)) and

ℓ (b,d) = α(1 + β), the overall route stretch is at most S:

S = maxℓ(s,d)

(
ℓ (s,b) +

(
ℓ (b,d)

/√
1− U2

max

))/
ℓ (s,d)

= max1−β≤x≤α(1+β)

(√
x2 − (1− β)2 +

α (1− β2)√
(1− β)2 − α2β2

+

√
α2 (1 + β)2 − (1− β)2

)/
x

and it can be shown that this maximum is equal to the expression in (4.7).

While we consider worst case envelopes of rings for the above discussion, this

scenario can be mapped to a feasible configuration of inner and outer update rings

as is shown in Figure C.3 (right) because each point on the envelopes corresponds

to a certain valid choice of ring center. The center of the inner ring is ci =
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−βt/(1− β) and that of the outer ring ci+1 = βb/(1 + β). Note that the same

launch trajectory is now a tangent to the inner ring with center as specified.

Further ℓ (ci,d) = β and ℓ (ci+1,d) = αβ, which satisfy their confidence region

guarantees.
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