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1. INTRODUCTION 

Electric vehicles (EV) have drawn great attention in recent years because of the concern of 

traffic emissions and petroleum dependence (Krupa et al., 2014; Karplus et al., 2010). EVs 

include battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). Loosely 

speaking, BEVs incorporate a large on-board battery, which can be charged via a cord to a power 

grid, and the battery provides energy for an electric motor to propel the vehicle. Besides the 

electric motor, PHEVs are also equipped with an internal combustion engine generator that 

provides electricity to the motor once the initial battery charge is exhausted. Almost all major 

vehicle manufactures have their EV models available in the market, and a fast-growing adoption 

of EVs is expected (Querini and Benetto, 2014). For example, China hopes the accumulated sale 

volume of BEVs and PHEVs will reach five million by 2020 (China State Council, 2012). 

However, there still exist several bottlenecks blocking the rapid development of EVs, such as 

high cost of EV battery, lack of charging infrastructure and shortage of battery range. Moreover, 

it’s currently difficult for EV market to conquer all the obstacles only by itself. Considering the 

environmental benefits brought by EVs, many government agencies provide incentive policies, 

such as offering purchase subsidies and deploying public charging infrastructure, to promote the 

deployment of EVs (He et al., 2015; Motavalli, 2010; GLOBLE-Net, 2012).  

 

To assist policy makers to optimally deploy public charging infrastructure, various approaches 

have been proposed in the literature.1 The flow-capturing models locate charging stations to 

maximize the amount of travelers whose paths pass by at least one station (e.g., Hodgson, 1990; 

Berman et al., 1992, 1995; Hodgson and Berman, 1997; Shukla et al., 2011).  Another approach 

optimizes the locations of public charging stations to maximize the social welfare, based on the 

network equilibrium that captures the EV drivers’ spontaneous adjustments to the charging 

station deployment and interactions of travel and recharging decisions (e.g., He et al., 2013a b c, 

2015; Jiang et al., 2012; Jiang and Xie, 2014). However, both above approaches need to make 

assumption of EV drivers’ behavior, which remains to be verified by the real-world data. 

Recently, real-world driving profiles have been utilized to represent the drivers’ travel pattern, 

                                                
1 For a more detailed review of the literature on the public charging station deployment, see He (2014).  
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estimate their public charging needs and then determine the station locations (e.g., Dong et al., 

2013; Andrews et al., 2012; Dong and Lin, 2012). Nevertheless, due to the limited sample size of 

driving profiles (the sample size is often in the hundreds), it is difficult to provide conclusions at 

the city level based on the results of these studies (Cai and Xu, 2013).  

 

Using the large-scale trajectory data of 11,880 taxis in Beijing, Cai et al. (2014) conducted 

simulation to explore how to locate public charging stations among the existed gas stations of 

Beijing. The electrification rate, defined as the ratio of miles PHEVs travel in all-electric mode 

over the total driving miles, is adopted to evaluate different location plans. The simulation results 

show that the total number of parking events or average parking vehicle-hour per day serves as a 

good criterion to locate charging stations. Utilizing the real-time and large-scale trajectory data 

to reveal the inherent heterogeneity of individual travel patterns, their research is among the first 

attempts to apply the “big data” mining techniques to the deployment of public charging stations 

for PHEVs.  

 

Inspired by the above study and in order to reveal the travel patterns of individual drivers, this 

paper gathers the real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1 to 

November 30 in 2014. Note that it is very likely that public fleets, such as taxis and buses, adopt 

EVs early. Applying the ‘big data” mining techniques, we simulate drivers’ travel and recharging 

behavior to quantitatively depict the relationship among the electrification rate of vehicle miles 

traveled (VMT) by PHEVs, battery range of PHEV and public charging station deployment plan. 

In order to improve the electrification rate of VMT and based on the simulation results, we 

further provide policy guidelines for the public charging infrastructure deployment planning, 

including the locations of public charging stations, the number of chargers at each station and 

their types. Compared to Cai et al. (2014), our paper’s contribution lies in the following three 

aspects. Firstly, we consider the number of chargers at each public charging station is limited and 

hence PHEVs can charge batteries only if there are still unoccupied chargers left at stations. 

Therefore, our simulations are capable of accurately modeling the real-time operations of public 

charging station and reflecting the interactions of different PHEVs’ charging behavior. Note that 

considering the impact of public charging stations’ limited capacity will inevitably cause great 

computational challenge especially for our case with 46,765 taxis. However, it is necessary for 
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accurately estimating the electrification rate of VMT because recharging PHEV battery is time-

consuming and the time PHEVs choose for recharging has a large degree of overlap. Secondly, 

based on the proposed simulation framework, we further quantify the contribution of introducing 

the intelligent charging guidance system for improving the electrification rate of VMT in Beijing. 

This analysis can offer insight for the development of “smart charging” program that is devoted 

to applying the information technology to improving the utilization efficiency of public charging 

stations in the future. Thirdly, this paper validates the dataset through addressing the 

stochasticity embedded in the vehicle trajectories among different days. Note that although this 

paper only examines one type of fleet in a specific city, the proposed data-driven approach is 

readily applicable to other cities and types of fleet with similar dataset available.  

 

For the remainder of this paper, section 2 introduces the dataset and provides the time-series 

simulation model. In section 3, different simulation results are analyzed to derive insights for the 

deployment of public charging stations, and the dataset is also validated. Section 4 concludes the 

paper.  

 

2. DATA AND TIME-SERIES SIMULATION MODEL 

Using Beijing as a case study and assuming the travel behavior of drivers remains unchanged 

after adopting PHEVs, we utilize the vehicle trajectory data of 46,765 taxis to characterize the 

heterogonous travel patterns of individual PHEV drivers. It is reported that Beijing plans to 

deploy 170,000 EVs on roads and build 10,000 fast chargers by 2017 (XinhuaNet, 2014). On the 

basis of this dataset, we conduct time-series simulations to model PHEVs’ operations and 

charging behavior, and then discuss how to locate public charging stations and guide charging 

behavior.  

 

2.1 Data Description and Preprocessing 

To better characterize the heterogeneous travel patterns of individual taxis, we examine the real-

time vehicle trajectory data of 46,765 taxis in Beijing from October 1 to November 30 in 2014, 
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collected by smartphone and on-board device.2 The dataset includes 3.37 billion data points, 

which track each taxi’s location (longitude and latitude) and speed every 30 seconds. Table 1 

shows one sample of the records in the dataset. To clean up the raw data, we remove the points 

that are duplicated and incorrect.   

 

Table 1. Record Sample 
ID Time stamp Speed Longitude Latitude  
84471 201411120715� 32 116.8198 40.3431 1 

 

Figure 1 depicts the GPS trajectory of a randomly selected taxi in blue lines, which covers most 

parts of the roads in Beijing.  

 
Figure 1. GPS trajectory sample 

 

In this research, we focus on PHEVs, which are still capable of driving by consuming gasoline 

fuel after the battery is out of charge. It is hence assumed that the travel behavior of taxi drivers 

remains unchanged after adopting PHEVs. Note that this assumption is also adopted by many 

previous studies (e.g. Dong et al., 2014; Cai et al., 2014). In addition, considering the dataset will 

                                                
2 The total number of taxis in Beijing is approximately 66,000 (Huo et al., 2012; Zheng et al., 2011).   



13 

be iteratively utilized in the following simulation, we thus develop an approach to compress it. 

Generally, recharging EVs is much more time-consuming than refueling a conventional gasoline 

vehicle. For instance, it needs 20 hours to fully recharge a 24 kWh battery at the power level of 

1.2 kW. A charger with 60 kW power level still needs 24 minutes (He et al., 2014; ETEC, 2010).  

Therefore, we assume that a PHEV will not recharge if the dwelling time at an intermediate stop 

is less than 30 minutes. Based on this criterion, the trajectory of a vehicle could be divided into 

several trips. Specifically, we first order each vehicle’s trajectory data points by time. Next, for 

each vehicle, we cut the trajectory into separate trips at the points corresponding to the parking 

whose duration is more than 30 minutes. For each trip, we only record the time stamps and 

locations of its origin and destination as well as the calculated trip distance, and all the rest data 

points are deleted.  As a result, the data size is significantly reduced, which greatly speeds up the 

simulations described in the next section. 

 

2.2 Definition of Charging Opportunities  

Given the public charging station deployment plan, we focus on conducting time-series 

simulations to estimate the electrification rate of VMT for PHEV taxis. First of all, we define the 

PHEV charging opportunity from the aspects of time window, charging demand and charger 

availability. In the simulation model, a PHEV will recharge its battery if and only if all the 

following three conditions are met: 

i. The PHEV is in a charging time window and its duration is no less than 30 minutes. Note 

that we define charging time window as the time slot after a trip ends and before the 

consecutive trip starts.    

ii. The state of charge  (SOC) of PHEV’s battery is below a predefined threshold.  

iii. There are available chargers in the public charging station. 	
	

The above second condition implies that analyzing charging behavior of PHEV needs to track its 

SOC. Namely, the amount of electricity PHEV charges affects when and where its next charging 

demand occurs,  leading to the fact that we could not study each charging behavior separately but 

need to conduct a time-series simulation to analyze its trip chain. Furthermore, from the above 

third condition, it is possible that one charger’s occupation by one vehicle eliminates another 

vehicle’s charging opportunity. In other words, the third condition reveals the charging behaviors 
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of different vehicles are correlated and hence we cannot analyze each vehicle separately. To 

summarize, the above analyses suggest modeling charging and operations of PHEV taxi fleet 

needs a time-series simulation model that takes into account all the vehicles simultaneously. 

However, the big dataset (46,765 taxis for two months) inevitably creates computational burden 

and challenge for conducting this time-series simulation. In the following section, we will 

describe the simulation model as well as how to solve it efficiently.  

 

2.3 Time-series Simulation Model 

Assume the extracted trip-chain information from the dataset represents the travel patterns of 

PHEV drivers well. We simulate their traveling and charging behaviors in this section. After the 

simulation, the electrification rate of VMT can be thereby estimated. Figure 2 shows the flow 

chart of the simulation model. Once again, we emphasize the time-series simulation model 

requires that drivers follow the existed trip-chain profile and will consider recharging only when 

the three conditions defined in section 2.2 are satisfied. In the simulation, time is discretized, and 

as the time step propagates, each PHEV’s SOC is updated accordingly. The update is 

implemented through utilizing three tables, i.e., time window chart, station operation chart and 

vehicle driving profile. When a PHEV’s SOC falls below the pre-determined threshold, we 

check if there is a charging time window and also search the nearby charging station to verify the 

availability of chargers. If all these conditions are satisfied, the vehicle will be recharged and the 

above three tables are updated correspondingly.  

 



15 

 
Figure 2. Simulation model flow chart 

 

The details of the simulation model are shown as follows: 

  

Step1: Set ! = 0,  SOC'( = 1, ∀,. Choose the time step as five minutes.   

Step2: Set the threshold SOC as 0.2. At time index !, find the PHEVs with charging demand, i.e., 

SOC below 0.2.  

Step3: For any PHEV with charging demand, identify its nearest charging station, which implies 

drivers tend to choose the nearest station for recharging.3 Due to the fact that the roads in 

Beijing are typically vertical and horizontal, we calculate the Manhattan distance between a 

PHEV and a charging station.  

Step4: Send the PHEV to the identified station. If there is at least one charger available within 

five minutes since arrival, recharge the vehicle. The recharging time equals the minimum of 

the time needed to replenish the battery and the remaining time of charging time window. 

                                                
3 It is assumed that without the information of nearby charging stations’ utilization, drivers will choose the nearest 
stations to seek for charging opportunities. In section 2.4, we will discuss an intelligent charging guidance system, 
devoted to assisting drivers to better choose stations.    
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Otherwise, the PHEV will continue its trip, consuming electricity first and then utilizing the 

gasoline after the electricity is exhausted.  

Step5: Set ! = ! + 1. If ! is the end of the simulation period, end the simulation.  Otherwise, go 

to step 2.  

 

In the above simulation procedure, the most time-consuming part is finding all PHEVs with 

charging demands. The naïve way of doing this is to check SOC of each PHEV at each time step, 

which leads to roughly 260 million checks of PHEV SOC in our dataset and greatly increases the 

time of running the simulation model. Here, we introduce a more efficient method, which we 

refer to as the Tetris method. Specifically, we firstly construct the time window chart whose 

rows and columns respectively correspond to time steps and vehicle IDs, as shown in figure 3. 

During running the simulation model, we use this chart to assist us to efficiently identify the 

charging demands of PHEVs by following the procedure below: 

 

i. We initiate the values of all the elements in this table at zero. 

ii. Taxi drivers do not charge their vehicles during traveling. So, we replace zero by -1 in the 

elements whose corresponding vehicles are travelling and their SOC is above the predefined 

threshold.  

iii. During the simulation, if a vehicle chooses to charge in a station, we replace zero by the 

station number in the elements that correspond to the entire charging period. Recall that the 

vehicle’s charging time equals the minimum of needed charging time and available charging 

time.  

iv. After finishing charging, the PHEV continues to travel. Let , denote the trip immediately 

after the finish of charging. Based on the vehicle driving profile, we can easily find the trip j, 

at which the SOC of the PHEV begins to drop below the threshold again. Replace zero by -1 

in the elements between trips , and ..  
v. For vehicle /, let 	12 represent the number of row where zero firstly appears in the elements. 

Find the vehicle with the smallest 12 and conduct the charging opportunity check for it. Run 

steps ii-v iteratively.  

 

Figure 3 further illustrates the steps iv and v of Tetris method.  
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Figure 3. Tetris method 

 

2.4 Public Charging Station Location and Intelligent Charging Guidance System 

Public charging stations should be located to satisfy the recharging needs of PHEVs. We cluster 

the locations of charging time windows of PHEVs and then locate charging station to each 

cluster. For instance, if we plan to locate 50 public charging stations, we will apply the K-means 

method to partition the locations of charging time windows into 50 clusters and then locate a 

station at the centroid of each cluster.4 Note that this locating method is consistent with the 

suggestion by Cai et al. (2014) that the number of parking events serves as a good criterion to 

locate stations. Figure 4 shows the location plans corresponding to 50, 100, 300 and 500 stations, 

in which each dot represents a charging time window belonging to a PHEV. To further explore 

the location plan, we locate these stations in the electronic map of Beijing and observe that these 

locations suit the hot spots and parking lots of Beijing well, indicating the clusters of charging 

time windows indeed reveal the possible future charging needs.  

                                                
4 We do not require the station locations to sit in the existed gasoline stations in consideration of the fact that the 
existed gasoline stations do not necessarily have enough space to accommodate many PHEVs that simultaneously 
recharge their batteries.   
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Figure 4. Location plan of public charging stations 

 

Recall that in the proposed simulation model, PHEVs with charging demands always choose the 

nearest stations to seek for charging opportunities in spite of the utilization levels of the stations, 

which mostly happens if PHEV drivers have no access to the real time charging information. 

Hereinafter, we refer to it as the nearest-station strategy. However, with the development of 

information and smartphone technology, an intelligent charging guidance system is becoming 

possible (Charge Point, 2016). In essence, the intelligent charging guidance system can not only 

feed the charger availability information to drivers but also provide guidance for their charging 

station choices. In this paper, besides the above nearest-station strategy, we also consider the 

possible adoption of the intelligent charging guidance system. Through the smartphone 

application or on-board equipment, drivers can conveniently connect to the intelligent charging 

guidance system to check the utilization levels of all charging stations. The system will also 

navigate a vehicle to the station that currently has the most available chargers within a pre-

defined distance to the vehicle. In section 3, we will quantify the effects of introducing such a 

system.  

50	stations	 100	stations	

300	stations	 500	stations	
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2.5 Simulation Environment 

To provide guideline for the charging station deployment planning, we run the simulation model, 

varying the number of charging stations, the number and types of chargers for each station and 

battery ranges. Table 2 lists the values or ranges of the parameters in the simulations (Morrow et 

al., 2008; Dong et al., 2014):  

 

Table 2. Parameter values 
Parameter Value 

Fast charger power 60kW 
Slow charger power 6kW 

Number of charging stations 50-500 
Number of fast chargers at each station  0-4 
Number of slow chargers at each station  10-60 

Battery range  10-80km 
SOC threshold 0.2 

Driving efficiency 0.2kWh/km 
 

3. RESULTS 

In this section, we first show the simulation results of the base scenario, i.e., 500 stations, 30 

slow chargers (each with the charging power of 6 kW) at each station, no intelligent charging 

guidance system, battery with the range of 80 km, and home charging available.5 Then, we 

conduct the sensitivity analyses with respect to the number of chargers per station, charger types 

and the availability of home charging and intelligent charging guidance system.  

 

3.1 Simulation Results of Base Scenario 

We apply the K-means clustering method to locating the public charging stations. From the 

simulation results, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 

million vehicle miles.  We also run the simulation with the 500 public charging stations 

uniformly deployed, and the electrification rate of VMT is only 42.6%, which further justifies 

                                                
5 Consistent with Cai and Xu (2013), home charging occurs when the duration of charging time window exceeds 
eight hours.  
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the proposed approach of locating public charging stations to the clusters of PHEVs’ charging 

time windows.  

 

Figure 5 illustrates the average number of chargers utilized at midnight and noon respectively 

during these two months.  Each red circle represents a charging station, and its color corresponds 

to the average number of occupied chargers (the depth of the color increases with the number of 

occupied chargers). It can be observed that more public chargers, especially in business areas, 

are occupied at noon than midnight, which could be explained because many taxis do not operate 

during night and hence prefer home charging or the public charging stations in suburban areas.   

 

midnight noon 
 

Figure 5. The average number of utilized chargers 

 

Figure 6 illustrates the daily average aggregate charging power in public charging stations in 

November. Consistent with figure 5, the charging power reaches the daily peak at around 13:00. 

After midnight, there also exists a peak time, implying public charging stations are also utilized 

at night (mostly in suburban areas as demonstrated in figure 5).  

 

Figure 7 depicts the distribution of average daily utilization levels among public charging 

stations. For each station, the daily utilization level is defined as the ratio of the total amount of 

energy PHEVs recharge in it over the amount of energy it can provide in one day (calculated as 

the total power of chargers multiplied by 24 hours). From figure 7, the median utilization level is 

0.15, demonstrating the public charging station’s daily utilization level is not high in general. 
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This could be possibly explained by the temporal and spatial imbalance of PHEVs’ recharging 

behavior, revealed in figures 5 and 6.  

 
Figure 6. Daily aggregate average charging power  

 
 

 
Figure 7. Distribution of average daily utilization levels for public charging stations 

 

3.2 Sensitivity Analyses 

3.2.1.	Home-charging	
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We firstly evaluate the impact of the availability of home charging on the electrification rate of 

VMT. Define the electrification gap as the difference between the electrification rates of VMT 

with and without home charging. Figure 8 compares the electrification gaps under the 

combination of different battery ranges and charging infrastructure plans, among which the poor, 

normal and good charging infrastructure plans all correspond to locating 500 stations. But the 

numbers of slow chargers at each station are 10, 20 and 30 for the poor, normal and good 

charging infrastructure plans, respectively. It can be observed that when the battery range is 

below 20 km, the values of the electrification gaps for all the three plans are below 0.06. In 

addition, the values of electrification gaps increase with the battery range. The values of the 

electrification gaps under the poor charging infrastructure plan are the highest among the three 

plans. From these observations, we can conclude that: the effect of promoting home charging is 

limited when the battery range of PHEVs is not large enough; in the early stage of EV 

development when the public charging infrastructure is not sufficient, promoting home charging 

is a relatively promising way to improve the electrification rate of VMT.  

 

 
Figure 8. The influence of home charging  

	
3.2.2	Charger	types	
 

As demonstrated in table 2, a fast charger is ten times as efficient as a slow charger. However, its 
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chargers in stations is possible, we explore how to determine the specific numbers of both types. 

Fixing the total number of stations as 500 and setting the total charging power at each station as 

180 KW (the same as base scenario), figure 9 compares the electrification rates of VMT for four 

different charger plans under different battery ranges. The four plans respectively deploy 30 slow 

chargers, 2 fast and 10 slow chargers, 1 fast and 20 slow chargers, and three fast chargers, at 

each located charging station. We observe some interesting results: i) when the battery range is 

less than 30 km, the difference among different plans is not obvious; ii) as the battery range 

continues to grow, the electrification rate of VMT corresponding to the plan of 2 fast and 10 

slow chargers is the highest, followed by 1 fast and 20 slow chargers and then 30 slow chargers. 

This is because the recharging time of most PHEVs is limited and fast chargers can further 

extend their electric miles. Furthermore, the plan of three fast chargers performs the worst among 

the four plans. This could be caused by the fact that the number of chargers is not sufficient 

enough to simultaneously accommodate several PHEVs’ recharging when their arrival time at 

the station is closed, which often happens in business areas. We note that this observation is 

corresponding to the scenario where PHEV drivers are only willing to wait at most five minutes 

in stations if there are no stations available. 6 To summarize, without changing the total power of 

a public charging station, introducing appropriate number of fast chargers will contribute to the 

electrification rate of VMT but replacing all slow chargers with fast chargers may not necessarily 

increase the electrification rate of VMT.  

 

 

 

                                                
6 We assume PHEV drivers will not wait a long time at charging stations for available chargers in consideration of 
the following aspects. First of all, PHEVs are still capable of operating even after their electricity is exhausted. 
Hence, recharging their batteries is not mandatory for completing following trips. Second, besides recharging, 
PHEV drivers may plan to conduct some other activities such as eating and rest during the time window. If so, it 
may not be desirable for them to spend all the dwelling time waiting at public charging stations. 
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Figure 9. Impacts of charger types 

	
3.2.3	The	station	scale	
 

With regards to the station scale, there are generally two trends: one is to construct huge stations 

with many chargers at each station and the other is to build more small stations with less 

chargers. Without the sensitivity analyses, it’s difficult to determine the scale of stations to best 

satisfy the charging needs.  

 

Fixing the total charging power, we vary the number of stations from 50 to 1000. Inspired by 

figure 9, we mix fast and slow chargers at each station. Table 3 shows the charger types and 

numbers under different station numbers. Figure 10 compares the electrification rates of VMT 

for different charging station numbers under different battery ranges.  In spite of the battery 

range, as the station number increases and the station scale decreases, the electrification rate 

firstly increases and then remains nearly unchanged, which intuitively makes sense because the 

charging stations need to be spread out sufficiently to spatially satisfy the fleet charging demands. 

Moreover, if economies of scale exist in charging station deployment, 500 public charging 

stations will best fit our case as the marginal increase of the electrification rate is relatively small 

after 500.  
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Table 3. Numbers and types of chargers  
Station Number Number of slow chargers at 

each station  
Number of fast chargers at 

each station 
50 100 20 
100 50 10 
300 20 3 
500 10 2 
600 15 1 
750 10 1 
900 7 1 
1000 5 1 

 

 
Figure 10. Impacts of station scales 

	
3.2.4	Intelligent	charging	guidance	system	
 

Recall that we mentioned the possible adoption of an intelligent guidance system. In particular, 

the system is capable of feeding the information of charger availability at each station to PHEV 

drivers and navigating them to the stations with the most available chargers within a pre-defined 

distance to the vehicles. Figure 11 compares the electrification rate gaps between the nearest-

station strategy and intelligent charging under different battery ranges. As expected, adopting the 

intelligent charging guidance system can increase the electrification rate of VMT by around 

0.027 because it improves the possibility for PHEVs to find available chargers. Moreover, we 

also observe that the increase rate is not sensitive to battery range.  
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Figure 11. Impacts of intelligent charging guidance system 

	
3.2.5	Contours	of	electrification	rate	of	VMT	
 

To explore the relation among the electrification rate of VMT, battery range and the total number 

of public chargers, we fix the total number of public charging stations as 500 and depict the 

contours of electrification rate of VMT in figure 12 through varying the number of slow chargers 

at each station from zero to 30 and battery range from 10 km to 80 km. If denoting 3, 4 and  5 

as the electrification rate, battery range and the number of slow chargers respectively, we can 

observe that 6768 > 0, 676: > 0, 67
;

6;8 < 0, 67
;

6;: < 0. It reveals that the electrification rate increases 

with the battery range or the total number of chargers, and the rate of returns on increasing 

battery range or the number of chargers diminishes as these two factors (4 and 5) increase. 

Moreover, we also see 67
;

686: > 0, which could be explained because these two factors support 

each other, i.e., one factor will perform better when the other is at a high level. Lastly, based on 

the map of contours, we can identify all the possible combinations of 4 and 5 to achieve a target 

electrification rate. This could potentially support the decision-making process when a taxi fleet 

company electrifies its vehicles.  
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Figure 12. Contours of electrification rate of VMT 

	
3.2.6	Dataset	validation	
 

The proposed simulation model is based on the trajectory data of taxi fleet. In practice, taxis’ 

trajectories vary from day to day. To explore the impact of the stochasticity embedded in the taxi 

trajectory data on the electrification rate of VMT, we respectively divide the dataset into eight, 

four and two components. Each of the eight, four and two components corresponds to one week, 

half month and one moth of the two moths, respectively. Then, the simulation is run 

independently for each component to estimate the electrification rate of VMT.  Figure 13 

compares the standard deviation of the estimated electrification rates. For instance, if we divide 

the dataset into eight components (each one corresponds to one week), the standard deviation of 

eight estimated electrification rates are  0.0271, 0.0273 and 0.0263 under the battery ranges of 

40km, 60km and 80km respectively. It can be observed that as the length of dataset’s 

corresponding period increases, the standard deviation of the estimated electrification rates 

decreases. For the one-month long dataset, the standard deviation is as small as 0.0158, implying 

that the impact of stochasticity from the trajectory data could be substantially mitigated by 

adopting the dataset covering a longer period. 
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Figure 13. Impacts of the length of dataset’s corresponding period 

 

4. CONCLUSION 

Using the two-month trajectory dataset of 46,765 taxis in Beijing, this study proposes a time-

series simulation model to accurately quantify the electrification rate of VMT by taxi fleet, 

which considers not only the capacity of public charging stations but also the possible adoption 

of intelligent charging guidance system. We further cluster the charging time windows of PHEVs 

to locate public charging stations. Based on the proposed simulation model, we lastly estimate 

the impacts of charger type, charging station scale, home charging and intelligent charging 

guidance system on the electrification rate of VMT by taxis in Beijing. Main findings are 

summarized as follows.  

 

� For the base scenario of 500 public stations, 30 slow chargers at each station, no intelligent 

charging guidance system, battery with the range of 80 km, and home charging available, the 

electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle 

miles in Beijing. 

� When the public charging infrastructure is not sufficient, facilitating home charging is a 

promising way to increase the electrification rate of VMT especially for the high range 

PHEVs. 
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� Without changing the total power of charging stations, introducing appropriate number of 

fast chargers will contribute to the electrification rate of VMT but replacing all slow 

chargers with fast chargers may not necessarily increase the electrification rate of VMT. 

� Breaking the charging stations into smaller ones and spatially distribute them will increase 

the electrification rate of VMT but its marginal effect becomes relatively small after the 

station number exceeds 500. 

� Adopting the intelligent charging guidance system can increase the electrification rate of 

VMT by around 0.027. 

� The impact of stochasticity embedded in the trajectory data could be substantially mitigated 

by adopting the dataset covering a longer period.  

 

This study assumes the PHEV’s SOC decreases linearly with the traveled distance. We will 

further extend the simulation framework by adopting more sophisticated models to track SOC of 

PHEVs (e.g., Yang et al., 2015). Another future study is to investigate how to design the 

intelligent charging guidance system to improve the electrification rate of VMT.  For instance, 

besides navigating PHEVs to currently available chargers, we could explore to add additional 

features into the guidance system such as making appointment for charging and predicting the 

utilization levels of charging stations in the future.   

 

 

REFERENCES 

Andrews, M. et al., 2012. Modeling and optimization for electric vehicle charging. Available at: 
http://ect.bell-labs.com/who/gtucci/publications/ev_conf.pdf. 

Berman, O., Larson, R. C., & Fouska, N. 1992. Optimal location of discretionary service 
facilities. Transportation Science, 26(3), 201-211. 

Berman, O., Hodgson, M., Krass, D., 1995. Flow intercepting models. In: Z. Drezner, ed. Facility 
Location: A Survey of Applications and Methods. New York: Springer, pp. 389-426.  

Cai, H. and Xu, M., 2013. Greenhouse gas implications of fleet electrification based on big data-
informed individual travel patterns. Environmental science & technology, 47(16), 
pp.9035-9043. 

Cai, H., Jia, X., Chiu, A. S., Hu, X., & Xu, M. 2014. Siting public electric vehicle charging 
stations in Beijing using big-data informed travel patterns of the taxi fleet. Transportation 
Research Part D: Transport and Environment, 33, 39-46. 



30 

China State Council, 2012. Notice of the State Council on Issuing the Planning for the 
Development of the Energy-Saving and New Energy Automobile Industry (2012-2020). 
http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm (accessed February 20, 2016)  

Charge Point, 2016. < https://na.chargepoint.com/charge_point> (accessed February 24, 2016).  
Dong, J., & Lin, Z. 2012. Within-day recharge of plug-in hybrid electric vehicles: energy impact 

of public charging infrastructure. Transportation Research Part D: Transport and 
Environment, 17(5), 405-412. 

Dong, J., Liu, C., Lin, Z., 2013. Charging infrastructure planning for promoting battery electric 
vehicles: an activity-based approach using multiday travel data. Transportation Research 
Part C 38, pp. 44-55. 

ETEC 2010. "Electric Vehicle Charging Infrastructure Deployment Guidelines for the Oregon I-
5 Metro Areas of Portland, Salem, Corvallis and Eugene.” 
http://www.oregon.gov/odot/hwy/oipp/docs/evdeployguidelines3-1.pdf (accessed 
February 20, 2016). 

GLOBLE-Net,2012. http://www.globe-net.com/articles/2012/april/9/bc-plan-for-electric-car-
charging-stations-may-unleash-vehicles-around-province/ (accessed February 20, 2016). 

He, F., Wu, D., Yin, Y., Guan, Y., 2013a. Optimal deployment of public charging stations for 
plug-in hybrid electric vehicles. Transportation Research Part B 47 (1), 87-101. 

He, F., Yin, Y. and Zhou, J., 2013b. Integrated pricing of roads and electricity enabled by 
wireless power transfer. Transportation Research Part C: Emerging Technologies, 34, 
pp.1-15. 

He F, Yin Y, Wang J, Yang Y, 2013c. Sustainability SI: optimal prices of electricity at public 
charging stations for plug-in electric vehicles. Netw Spat Econ. doi:10.1007/s11067-013-
9212-8.  

He, F., Yin, Y., Lawphongpanich, S., 2014. Network equilibrium models with battery electric 
vehicles. Transportation Research Part B 67, 306-319. 

He, F., Yin, Y., Zhou, J., 2015. Deploying public charging stations for electric vehicles on urban 
road networks. Transportation Research Part C 60, 227-240. 

He, F., 2014. Optimal Deployment and Operations of Public Charging Infrastructure for Plug-in 
Electric Vehicles (Doctoral Dissertation). University of Florida, Gainesville. 

Hodgson, M. J., 1990. A Flow-capturing location�allocation model. Geographical 
Analysis, 22(3), 270-279. 

Hodgson, M., Berman, O., 1997. A billboard location model. Geographical and Environmental 
Modeling 1, pp. 25-45. 

Huo, H. et al, 2012. Vehicle-use intensity in China: current status and future trend. Eng. Policy 
43, 6–16. 

Jiang, N., Xie, C. and Waller, S., 2012. Path-constrained traffic assignment: model and 
algorithm. Transportation Research Record: Journal of the Transportation Research 
Board, (2283), pp.25-33. 

Jiang, N. and Xie, C., 2014. Computing and analyzing mixed equilibrium network flows with 
gasoline and electric vehicles.  Computer�aided Civil and Infrastructure 
Engineering, 29(8), pp.626-641. 

Karplus, V.J., Paltsev, S. and Reilly, J.M., 2010. Prospects for plug-in hybrid electric vehicles in 
the United States and Japan: A general equilibrium analysis. Transportation Research 
Part A: Policy and Practice, 44(8), pp.620-641. 



31 

Krupa, J.S., Rizzo, D.M., Eppstein, M.J., Lanute, D.B., Gaalema, D.E., Lakkaraju, K. and 
Warrender, C.E., 2014. Analysis of a consumer survey on plug-in hybrid electric 
vehicles. Transportation Research Part A: Policy and Practice, 64, pp.14-31. 

Motavalli, 2010. "Toyota and Tesla Plan an Electric RAV4". New York Times. 
Shukla, A., Pekny, J., Venkatasubramanian, V., 2011. An optimization framework for cost 

effective design of refueling station infrastructure for alternative fuel vehicles. Computers 
and Chemical Engineering 35, pp. 1431-1438. 

Querini, F. and Benetto, E., 2014. Agent-based modelling for assessing hybrid and electric cars 
deployment policies in Luxembourg and Lorraine. Transportation Research Part A: 
Policy and Practice, 70, pp.149-161. 

US Department of Energy, 2013. http://www.fueleconomy.gov/feg/evsbs.shtml (accessed March 
24, 2015). 

XinhuaNet, 2014. http://news.xinhuanet.com/tech/2014-06/30/c_126689597.htm (accessed 
March 8, 2016).  

Yang, Y., Yao, E., Yang, Z. and Zhang, R., 2015. Modeling the charging and route choice 
behavior of BEV drivers. Transportation Research Part C: Emerging Technologies(in 
press).  

Zheng, Y. et al., 2011. Urban computing with taxicabs. In: Proceedings of the 13th International 
Conference on Ubiquitous Computing. ACM, Beijing, China, pp. 89–98. 

 

 


	FirstPage
	FinalReport

