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The human gut microbiome has been implicated in important 
phenotypes related to human health and disease1,2. However, 
incomplete reference data that lack sufficient microbial 

diversity3 hamper understanding of the roles of individual micro-
biome species and their functions and interactions. Hence, estab-
lishing a comprehensive collection of microbial reference genomes 
and genes is an important step for accurate characterization of  
the taxonomic and functional repertoire of the intestinal  
microbial ecosystem.

The Human Microbiome Project (HMP)4 was a pioneering 
initiative to enrich knowledge of human-associated microbiota 
diversity. Hundreds of genomes from bacterial species with no 
sequenced representatives were obtained as part of this project, 
allowing their use for the first time in reference-based metage-
nomic studies. The Integrated Gene Catalog (IGC)5 was sub-
sequently created, combining the sequence data available from 
the HMP and the Metagenomics of the Human Intestinal Tract 
(MetaHIT)6 consortium. This gene catalog has been applied suc-
cessfully to the study of microbiome associations in different clini-
cal contexts7, revealing microbial composition signatures linked 
to type 2 diabetes8, obesity9 and other diseases10. But, as the IGC 
comprises genes with no direct link to their genome of origin, it 
lacks contextual data to perform high-resolution taxonomic classi-
fication, establish genetic linkage and deduce complete functional 
pathways on a genomic basis.

Culturing studies have continued to unveil new insights into 
the biology of human gut communities11,12 and are essential for 
applications in research and biotechnology. However, the advent 
of high-throughput sequencing and new metagenomic analysis 

methods—namely, involving genome assembly and binning—has 
transformed understanding of the microbiome composition in 
both humans and other environments13–15. Metagenomic analyses 
are able to capture substantial microbial diversity not easily acces-
sible by cultivation by directly analyzing the sample genetic mate-
rial without the need for culturing, although biases do exist16. This 
can be achieved by binning de novo-assembled contigs into putative 
genomes, referred to as metagenome-assembled genomes (MAGs). 
However, current challenges associated with metagenome assem-
bly and binning can result in incorrectly binned contigs, which 
substantially affects further taxonomic and functional inferences. 
Therefore, the use of MAGs requires careful considerations17, but 
they provide important insights into the uncultured microbial 
diversity in the absence of isolate genomes.

Recent studies have massively expanded the known species rep-
ertoire of the human gut, making available unprecedented num-
bers of new cultured and uncultured genomes16,18–21. Two culturing 
efforts isolated and sequenced over 500 human-gut-associated 
bacterial genomes each19,21, while three independent studies16,18,20 
reconstructed 60,000–150,000 MAGs from public human micro-
biome data, most of which belong to species lacking cultured rep-
resentatives. Combining these individual efforts and establishing a 
unified nonredundant dataset of human gut genomes is essential 
for driving future microbiome studies. To accomplish this, we com-
piled and analyzed 204,938 genomes and 170,602,708 genes from 
human gut microbiome datasets to generate the Unified Human 
Gastrointestinal Genome (UHGG) and Protein (UHGP) catalogs, 
the most comprehensive sequence resources of the human gut 
microbiome established thus far.

A unified catalog of 204,938 reference genomes 
from the human gut microbiome
Alexandre Almeida   1,2 ✉, Stephen Nayfach3,4, Miguel Boland1, Francesco Strozzi   5, 
Martin Beracochea   1, Zhou Jason Shi6,7, Katherine S. Pollard   6,7,8,9,10,11, Ekaterina Sakharova1, 
Donovan H. Parks   12, Philip Hugenholtz   12, Nicola Segata   13, Nikos C. Kyrpides   3,4 and 
Robert D. Finn   1 ✉

Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the 
human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 non-
redundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated 
in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in 
comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representa-
tives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of 
accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and 
UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome.
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Results
More than 200,000 human gut microbial genomes in the UHGG 
catalog. We first gathered all prokaryotic isolate genomes and 
MAGs from the human gut microbiome (publicly available as of 
March 2019). We compiled the isolate genomes from the Human 
Gastrointestinal Bacteria Culture Collection (HBC)19 and the 
Culturable Genome Reference (CGR)21, as well as cultured human 
gut genomes available in the NCBI22, PATRIC23 and IMG24 reposi-
tories, which include genomes from several other large studies11,12,25. 
In addition, we included all of the gut MAGs generated in Pasolli 
et al.20 (CIBIO), Almeida et al.18 (EBI) and Nayfach et al.16 (HGM). 
To standardize the genome quality across all sets, we used thresholds 
of >50% genome completeness and <5% contamination, combined 
with an estimated quality score (completeness –5 × contamina-
tion) > 50. The final numbers of genomes matching these criteria 
were 734 (HBC), 1,519 (CGR), 651 (NCBI), 7,744 (PATRIC/IMG), 
137,474 (CIBIO), 87,386 (EBI) and 51,489 (HGM), resulting in a 
total of 286,997 genome sequences (Fig. 1a and Supplementary Table 
1). These represented 204,938 nonredundant genomes on the basis 
of a Mash26 distance threshold of 0.001 (99.9% nucleotide identity) 
and only considering one genome per species per sample to account 
for the fact that the three large MAG studies analyzed many sam-
ples in common. Genomes were recovered in samples from a total 
of 31 countries across six continents (Africa, Asia, Europe, North 
America, South America and Oceania), but the majority originated 

from samples collected in China, Denmark, Spain and the United 
States (Fig. 1b).

To determine how many species were included in this gut refer-
ence collection, we clustered all 286,997 genomes using a multistep 
distance-based approach (Methods) with an average nucleotide iden-
tity (ANI) threshold of 95% over at least a 30% alignment fraction 
(AF)27. The clustering procedure resulted in a total of 4,644 inferred 
prokaryotic species (4,616 bacterial and 28 archaeal; Supplementary 
Table 2). We found the species clustering results to be highly consis-
tent with those previously obtained16,18,20 (Supplementary Table 3). 
The best quality genome from each species cluster was selected as its 
representative on the basis of genome completeness, minimal con-
tamination and assembly N50 (with isolate genomes always given 
preference over MAGs), and the final set was used to generate the 
UHGG catalog (Fig. 1c). Of the 4,644 species-level genomes, 3,207 
were >90% complete (interquartile range, IQR = 87.2–98.8%) and 
<5% contaminated (IQR = 0.0–1.34%), with 573 of these having the 
5S, 16S and 23S rRNA genes together with at least 18 of the stan-
dard tRNAs (Extended Data Fig. 1). These 573 genomes (535 from 
isolates and 38 from MAGs) satisfy the ‘high quality’ criteria set for 
MAGs by the Genomic Standards Consortium28. The rRNA operon 
has previously been shown to be a problematic region to assemble 
from short-read metagenomic datasets13,16,18,20, which might explain 
the low number of high-quality MAGs. Thereafter, we classified 
each species representative using the Genome Taxonomy Database 
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Fig. 1 | The unified sequence catalog of the human gut microbiome. a, Number of gut genomes for each study set used to generate the sequence catalogs, 
colored according to whether they represent isolate genomes or MAGs. b, Geographic distribution of the number of genomes retrieved per country.  
c, Overview of the methods used to generate the genome (UHGG) and protein sequence (UHGP) catalogs. Genomes retrieved from public datasets first 
underwent quality control by CheckM. Filtered genomes were clustered at an estimated species level (95% ANI), and their intraspecies diversity was 
assessed (genes from conspecific genomes were clustered at 90% protein identity). In parallel, a nonredundant protein catalog was generated from all 
coding sequences of the 286,997 genomes at 100% (UHGP-100, n = 170,602,708), 95% (UHGP-95, n = 20,239,340), 90% (UHGP-90, n = 13,907,849) 
and 50% (UHGP-50, n = 4,735,546) protein identity.
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Toolkit29,30 (GTDB-Tk; Extended Data Fig. 2), a standardized taxo-
nomic framework based on a concatenated protein phylogeny rep-
resenting >140,000 public prokaryote genomes, fully resolved to 
the species level (see Methods for details on the taxonomy nomen-
clature used). However, over 60% of the gut genomes could not be 
assigned to an existing species, confirming that the majority of the 
UHGG species lack representation in current reference databases.

To obtain further insights into the quality of the UHGG genomes, 
we inferred the level of strain heterogeneity within each MAG with 
CMseq20. The median strain heterogeneity (proportion of polymor-
phic positions) of the UHGG MAGs was 0.06% (IQR = 0.01–0.25%; 
Extended Data Fig. 1c and Supplementary Table 1), which is below 
the 0.5% threshold defined previously20 to distinguish medium- 
from high-quality MAGs. We believe that this additional metric on 
strain heterogeneity is a useful complement to the standard com-
pleteness and contamination estimates, providing further evidence 
of the overall high quality of the genomes included here.

Comparison of species recovered in individual studies. We inves-
tigated how many of the 4,644 gut species were found in the different 
study collections to determine their level of overlap and reproduc-
ibility, as well as the ratio between cultured and uncultured species 
(Fig. 2a). Each of the large MAG studies used a different assembly 
and binning approach: the CIBIO study used metaSPAdes31 and 
MetaBAT 2 (ref. 32) for assembling and binning sequencing runs 
previously merged by sample; the HGM study used MEGAHIT33 
to assemble runs merged by sample and applied a combination of 
MaxBin 2 (ref. 34), MetaBAT 2 (ref. 32), CONCOCT35 and DAS Tool36 
for binning and refinement; and the EBI study used metaSPAdes31 
and MetaBAT 2 (ref. 32) for assembling and binning individual runs 
without merging by sample. Despite these methodological differ-
ences, the largest intersection found was between these collections 
of MAGs, with the same 1,081 species detected independently in 
the CIBIO, EBI and HGM datasets, but not in any of the cultured 
genome studies. By restricting the analysis to genomes recovered 
from 1,554 samples common to all three MAG studies, we found 
that 93–97% of the species from each set were detected in at least 
one other MAG collection and 79–86% were detected across all 
three (Extended Data Fig. 3a). A similar level of species overlap was 
observed when comparing studies on a per-sample basis (Extended 
Data Fig. 3b). Furthermore, conspecific genomes recovered from 
the same samples across different studies had a median ANI and AF 
of 99.9% and 92.1%, respectively (94.5% AF with ≥90% complete 
genomes and 86.6% AF with medium-quality genomes; Extended 
Data Fig. 3c). These results suggest that the large-scale studies of 
human gut MAGs16,18,20 generally recovered highly similar genomes. 
However, the smaller AF values detected among genomes that 
were <90% complete suggest that caution is needed when using 
medium-quality genomes in downstream analyses.

Rarefaction analysis indicated that the number of uncultured 
species detected has not reached a saturation point, meaning that 
additional species remain to be discovered (Fig. 2b). However, these 
most likely represent rarer members of the human gut microbiome, 
as the number of species is closer to saturating when only consider-
ing those with at least two conspecific genomes.

We also investigated the intersection between the three large 
culture-based datasets: the HBC, CGR and NCBI (which contains 
gut genomes from the HMP4). Unlike the MAGs, the majority of cul-
tured species were unique within a single collection (486/698; 70%), 
with only 70 (10%) common to all three collections (Extended Data 
Fig. 3d). This may be due to varied geographic sampling between 
the collections (Asia, Europe and North America) or might high-
light the stochastic nature of culture-based studies.

Most gut microbial species lack isolate genomes. We found that 
3,750 (81%) of the species in the UHGG catalog did not have a  

representative in any of the human gut culture databases. To extend 
the search to isolate genomes from other environments or lack-
ing information on the isolation source, we compared the UHGG 
catalog to all NCBI RefSeq isolate genomes. We identified an addi-
tional set of 438 species closely matching cultured genomes (88 
from human body sites, 29 from other animals, 3 from plants and 
the remainder (318) from unknown sources), leaving 3,312 (71%) 
UHGG species as uncultured (Supplementary Table 2).

By calculating the number of genomes contained within each 
cultured and uncultured human gut species, we found that species 
containing isolate genomes represented the largest clusters, while 
those exclusively encompassing MAGs tended to be the rarest, as 
discussed previously16,18,20. For example, only 2 of the 25 largest bac-
terial clusters were exclusively represented by MAGs (Fig. 2c), with 
1,212 uncultured species represented by a single genome (80% of 
which originated from samples only analyzed in one of the MAG 
studies; Extended Data Fig. 4). The bacterial species most repre-
sented in our collection were Agathobacter rectalis (recently reclassi-
fied from Eubacterium rectale37), Escherichia coli D and Bacteroides 
uniformis (Fig. 2c, Extended Data Fig. 5a and Supplementary Table 
2), whereas the most frequently recovered archaeal species was 
Methanobrevibacter A smithii, with 608 genomes found across all 
six continents (Extended Data Fig. 6). We inferred the level of geo-
graphic diversity of each species by calculating the Shannon diver-
sity index on the proportion of samples in which each species was 
found per continent. The largest species clusters displayed similarly 
high levels of geographic distribution, indicating that the most 
highly represented species were not restricted to individual loca-
tions (Fig. 2c and Extended Data Fig. 5b).

We determined how representative the UHGG catalog is of 
the human gut microbial diversity by mapping 1,005 independent 
metagenomic datasets against the 4,644 UHGG species (Fig. 2d 
and Supplementary Table 4). Using Kraken 2 (ref. 38), we obtained 
a median classification rate of 85.9% (IQR = 83.5–88.1%). Notably, 
this corresponded to a median improvement of 155% over the stan-
dard RefSeq database. The increase in classification rate was most 
pronounced in non-Western samples from Cameroon, Ethiopia, 
Ghana and Tanzania, highlighting the potential of the UHGG cata-
log to improve the study of microbiome diversity from these under-
studied populations.

The phylogenetic distribution of the 4,616 bacterial (Fig. 3a) and 
28 archaeal (Extended Data Fig. 6) species revealed that uncultured 
species exclusively represented 66% and 31% of the phylogenetic 
diversity of Bacteria and Archaea, respectively, with several phyla 
lacking cultured representatives (Fig. 3b). The four largest mono-
phyletic groups lacking cultured genomes were the 4C28d-15 order 
(167 species, recently proposed as the novel order Comantemales 
ord. nov.39; Fig. 3c), order RF39 (139 species), family CAG-272 (88 
species) and order Gastranaerophilales (67 species). While none 
have been successfully cultured, several have been described in 
the literature, including for RF39 (ref. 16) and Gastranaerophilales 
(previously classified as a lineage in the Melainabacteria40), which 
are characterized by highly reduced genomes with numerous aux-
otrophies. This analysis suggests that, despite recent culture-based 
studies11,12,19,21, much of the diversity in the gut microbiome remains 
uncultured, including several large and prevalent clades.

Expanding the set of proteins in the human gut microbiome. 
Metagenomic approaches have the ability to leverage gene content 
information not only for more precise taxonomic analysis but also 
to predict the functional capacity of individual species of interest 
in comparison to marker-gene-based methods (for example, rely-
ing solely on the 16S rRNA gene or a limited number of diagnos-
tic genes). We built the UHGP catalog with a total of 625,255,473 
full-length protein sequences predicted from the 286,997 analyzed 
genomes herein. These were clustered at 50% (UHGP-50), 90% 
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(UHGP-90), 95% (UHGP-90) and 100% (UHGP-100) amino acid 
identity, generating between 5 to 171 million protein clusters (Fig. 1c  
and Extended Data Fig. 7a). While the number of UHGP-95 and 
UHGP-90 clusters showed a steady increase as a function of the 
number of genomes considered, those from UHGP-50 are reaching 
a saturation point (Fig. 4a), in line with previous estimates6.

To determine how comprehensive the UHGP is when compared 
to existing human gut gene catalogs, we combined the UHGP-90 
(n = 13,910,025 protein clusters) with the IGC5, a collection of 9.9 
million genes from 1,267 gut metagenome assemblies, which we 
grouped into 7,063,981 protein clusters at 90% protein identity 
(referred to as IGC-90). Nearly all samples used to generate the IGC 
were also included in the UHGP catalog (except for 59 transcrip-
tome datasets), but the latter was generated from a larger and more 

geographically diverse metagenomic dataset (including samples 
from Africa, South America and Oceania). Combining the UHGP-
90 and IGC-90 resulted in a set of 15.2 million protein clusters, with 
an overlap of 5.8 million sequences (Fig. 4b). This revealed that 81% 
of the IGC is represented in the UHGP catalog, with the missing 
19% likely representing fragments of prokaryotic genomes that are 
<50% complete and viral or eukaryotic sequences, plasmids or other 
sequences not binned into MAGs. In fact, only 0.2% (n = 34,070 
clusters) of the UHGP-90 was predicted to be of viral origin (on 
the basis of eggNOG annotations), as compared to the 5% estimate 
obtained in a previous human gut gene catalog6 included in the IGC. 
Most notably, though, the UHGP provided an increase of 115% in 
coverage of the gut microbiome protein space over the IGC (from 
7,063,981 to a total of 15,217,595 protein clusters).
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We also compared the read mapping rate using the same 
1,005 metagenomic samples tested against the UHGG catalog 
(Supplementary Table 4). Even though the classification rate was 
substantially higher when using the UHGG catalog than with 
RefSeq, the increase with the UHGP-90 over IGC-90 was more 
modest (median of 5%; Extended Data Fig. 7b). These results sug-
gest that, although the UHGP collectively encompasses a much 
larger number of protein clusters, most of the newly added pro-
teins are at lower abundance/prevalence within individual samples. 
However, as the UHGP was generated from individual genomes and 
not from their original unbinned metagenome assemblies, our cata-
log also has the advantage of providing a direct link between each 
gene cluster and its genome of origin. To this end, we have also gen-
erated high-quality subsets of the UHGP-95, UHGP-90 and UHGP-
50 consisting of protein clusters where at least two proteins from 
different genomes belonging to the same species were retrieved 
(UHGP-95-HQ, n = 10,798,224; UHGP-90-HQ, n = 8,082,122; 
UHGP-50-HQ, n = 3,088,278). This clustering criterion was used 
to control for the presence of contaminating sequences within 
each MAG and for the possibility that multiple copies of the same 

protein-coding sequence may be present in one genome. The UHGP 
ultimately allows the combination of individual genes with their 
genomic context for an integrated study of the gut microbiome.

Functional capacity of the human gut microbiota. We used the 
eggNOG41, InterPro42, COG43 and KEGG44 annotation schemes to 
capture the full breadth of functions within the UHGP. However, 
we found that 41.5% of UHGP-100 was poorly characterized, as 
27.3% lacked a match to any database and a further 14.2% only had 
a match to a COG with no known function (Fig. 4c). On the basis 
of the distribution of COG functions, the most highly represented 
categories were related to amino acid transport and metabolism, cell 
wall/membrane/envelope biogenesis and transcription.

We further leveraged the set of 171 million proteins derived from 
the human gut genomes to explore the functional diversity within 
each of the UHGG species. Protein sequences from all conspecific 
genomes were clustered at 90% amino acid identity to generate a 
pan-genome for each species. Analysis of the functional capacity 
of the UHGG species pan-genomes identified a total of 363 KEGG 
modules encoded by at least one species (Extended Data Fig. 8a and 
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Fig. 3 | Uncultured species are predominant among human gut phyla. a, Maximum-likelihood phylogenetic tree of the 4,616 bacterial species detected in 
the human gut. Clades are colored by the cultured status of species, with outer circles depicting the GTDB phylum annotation. Bar graphs in the outermost 
layer indicate the number of genomes from each species. The order Comantemales ord. nov. is highlighted with dark green branches. b, Proportion of 
species within the 25 prokaryotic phyla detected according to cultured status. Numbers in parentheses represent the total number of species in the 
corresponding phylum. c, Phylogenetic tree of species belonging to the order Comantemales ord. nov. (phylum Firmicutes A), the largest phylogenetic 
group exclusively represented by uncultured species. The geographic distribution of each species and the number of genomes recovered are represented 
below the tree. The species previously classified as Candidatus ‘Borkfalki ceftriaxensis’ is indicated with an asterisk.

Nature Biotechnology | VOL 39 | January 2021 | 105–114 | www.nature.com/naturebiotechnology 109

http://www.nature.com/naturebiotechnology


Resource NaTUrE BIoTECHnoloGy

Supplementary Table 5). Most conserved modules were related to 
ribosomal structure, glycolysis, inosine monophosphate biosynthe-
sis, gluconeogenesis and the shikimate pathway—all representing 
essential bacterial functions. However, we found that, for certain 
phyla such as Myxococcota, Bdellovibrionota, Thermoplasmatota, 
Patescibacteria and Verrucomicrobiota, a substantial proportion of 
the species pan-genomes remained poorly characterized (Extended 
Data Fig. 8b). At the same time, species belonging to the clades 
Fibrobacterota, Bacteroidota, Firmicutes I, Verrucomicrobiota 
and Patescibacteria had the highest proportion of genes encoding 
carbohydrate-active enzymes (CAZy; Extended Data Fig. 8b). As 
most of these lineages are largely represented by uncultured species 
(Fig. 3b), this suggests that the gut microbiota may harbor many 
species with important metabolic activities yet to be cultured and 
functionally characterized under laboratory conditions.

Patterns of intraspecies genomic diversity. With the protein anno-
tations and pan-genomes inferred for each of the UHGG species, we 
explored their intraspecies core and accessory gene repertoire. Only 
near-complete genomes (≥90% completeness) and species with 
at least ten independent conspecific genomes were analyzed. The 
overall pattern of gene frequency within each of the 781 species con-
sidered here showed a distinctive bimodal distribution (Extended 
Data Fig. 9), with most genes classified as either core or rare (that 
is, present in ≥90% or <10% of conspecific genomes, respectively). 
We analyzed the pan-genome size for each species in relation to the 
number of conspecific genomes to look for differences in intraspe-
cies gene richness. We observed distinct patterns across different 
gut phyla, with species from various Firmicutes clades showing the 

highest rates of gene gain (Fig. 5a). There was wide variation in the 
proportion of core genes between species even among clades with 
more than 1,000 genomes (Fig. 5b), with a median core genome 
proportion (percentage of core genes among all genes in the repre-
sentative genome) estimated at 66% (IQR = 59.6–73.9%).

To distinguish the functions encoded in the core and accessory 
genes, we analyzed their associated annotations. Core genes were 
well covered, with a median of 96%, 94%, 92% and 69% of the genes 
assigned with an eggNOG, InterPro, COG and KEGG annotation, 
respectively (Fig. 5c). In contrast, the accessory genes had a signifi-
cantly higher proportion of unknown functions (P < 0.001), with a 
median of 21% of the genes (IQR = 16.7–27.3%) lacking a match 
in any of the databases considered. Thereafter, we investigated the 
functions encoded by the core and accessory genes on the basis of 
the COG functional categories. Genes classified as core were signifi-
cantly associated (adjusted P < 0.001) with key metabolic functions 
involved in nucleotide, amino acid and lipid metabolism, as well as 
other housekeeping functions (for example, related to translation 
and ribosomal structure; Fig. 5d). In contrast, accessory genes had a 
much greater proportion of COGs without a known function and of 
genes involved in replication and recombination, which are typically 
found in mobile genetic elements (MGEs; Fig. 5d). A significant 
number of accessory genes were related to defense mechanisms, 
which encompass not only general mechanisms of antimicrobial 
resistance (AMR) such as ABC transporter efflux pumps but also 
systems targeted toward invading MGEs (for example, CRISPR–
Cas and restriction modification systems against bacteriophages). 
These results highlight the potential of this resource to provide 
better understanding of the dynamics of chromosomally encoded 
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AMR within the gut and allow deciphering of the extent to which 
the microbiome may be a source of both known and novel resis-
tance mechanisms.

We next investigated intraspecies single-nucleotide variants 
(SNVs) within the UHGG species. We generated a catalog consisting 
of 249,435,699 SNVs from 2,489 species with three or more conspe-
cific genomes (Fig. 6a). For context, a previously published catalog 
contained 10.3 million single-nucleotide polymorphisms from 101 

gut microbiome species45. Of note, more than 85% of these SNVs 
were exclusively detected in MAGs, whereas only 2.2% were exclu-
sive to isolate genomes (Fig. 6b). We found the overall pairwise SNV 
density between MAGs to be higher than that observed between 
isolate genomes (Fig. 6c). This was irrespective of the level of strain 
heterogeneity of the MAGs, as there was no correlation between SNV 
density and the degree of strain heterogeneity estimated with CMseq 
(Extended Data Fig. 10). Next, we assigned the detected SNVs to the 
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continent of origin of each genome and observed that 36% of the 
SNVs were continent specific. Notably, genomes with a European 
origin contributed to the most exclusive SNVs (Fig. 6d). However, 
genomes from Africa contributed over three times more variation 
on average than European or North American genomes. Pairwise 
SNV analysis also supported a higher cross-continent SNV den-
sity, especially between genomes from Africa and Europe (Fig. 6e).  
Our results suggest that there is high strain variability between con-
tinents and that a considerable level of diversity remains to be dis-
covered, especially from under-represented regions such as Africa, 
South America and Oceania.

Resource implementation. Both the UHGG and UHGP catalogs 
are available as part of a new genome layer within the MGnify46 
website, where summary statistics of each species cluster and their 
functional annotations can be interactively explored and down-
loaded (see ‘Data availability’ for more details). We have generated a 

Bitsliced Genomic Signature Index (BIGSI)47 of the UHGG catalog, 
which allows users to interactively query sequence fragments <5 kb 
in length to search for similar sequences in this collection.

We plan to periodically update the resource (approximately 
every 6–12 months) as new genomes are generated and made 
publicly available. MAGs will be retrieved from the European 
Nucleotide Archive (ENA), where a new MAG analysis class was 
recently implemented48. Genomes (MAGs or isolates) will be incor-
porated in the resource either as new species or by replacing uncul-
tured reference genomes with better quality versions. We will adopt 
a versioning system whereby previous iterations of the catalog will 
still be accessible after subsequent updates to ensure reproducibility.

Discussion
We have generated a unified sequence catalog representing over 
200,000 genomes and 171 million protein sequences of the human 
gut microbiome. Of the 4,644 species contained in the UHGG  
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catalog, 71% lack a cultured representative, meaning that the major-
ity of microbial diversity in the catalog remains to be experimen-
tally characterized. During preparation of our manuscript, a new 
collection of almost 4,000 cultured genomes from 106 gut species 
was released49, which will be incorporated in future versions of the 
resource. As 96% of these genomes were reported to have a species 
representative in the culture collections included here, we do not 
anticipate that this dataset will provide a substantial increase in the 
number of species discovered. Nevertheless, our analyses suggest 
that additional uncultured species from the human gut microbi-
ome are yet to be discovered, highlighting the importance and need 
for culture-based studies. Furthermore, given the sampling bias 
toward populations from China, Europe and the United States, we 
expect that many under-represented regions still contain substantial 
uncultured diversity.

By comparing recently published large datasets of uncultured 
genomes16,18,20, we were able to assess the reproducibility of the 
results from each study. We show that, despite the different assem-
bly, binning and refinement procedures used in the three studies, 
almost all of the same species and similar strains were recovered 
independently when using a consistent sample set. Although these 
results increase confidence in the use of MAGs, new methods for 
metagenome assembly, binning and quality control continue to  
be developed to overcome existing limitations, meaning that 
improved versions of the MAGs included here will likely be  
generated in the future.

With the establishment of this massive sequence catalog, it is 
evident that a large portion of the species and functional diver-
sity within the human gut microbiome remains uncharacterized. 
Moreover, knowledge of the intraspecies diversity of many species 
is still limited owing to the presence of a small number of con-
specific genomes. Having this combined resource can help guide 
future studies and prioritize targets for further experimental valida-
tion. Using the UHGG or UHGP catalogs, the community can now 
screen for the prevalence and abundance of species or genes in a 
large panel of intestinal samples and in specific clinical contexts. 
By pinpointing particular taxonomic groups with biomedical rel-
evance, more targeted approaches could be developed to improve 
understanding of their role in the human gut. The functional pre-
dictions generated for the species pan-genomes could also be lever-
aged to develop new culturing strategies for isolation of candidate 
species. Target-enrichment methods such as single-cell50 and/
or bait-capture hybridization51 approaches could also be applied. 
Given the large uncultured diversity still remaining in the human 
gut microbiome, having a high-quality catalog of all currently 
known species substantially enhances the resolution and accuracy 
of metagenome-based studies. Therefore, the presented genome and 
protein catalogs represent a key step toward a hypothesis-driven, 
mechanistic understanding of the human gut microbiome.
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Methods
Genome collection. We compiled all the prokaryotic genomes publicly available 
as of March 2019 that were sampled from the human gut. To retrieve isolate 
genomes, we surveyed the IMG24, NCBI22 and PATRIC23 databases for genome 
sequences annotated as having been isolated from the human gastrointestinal tract. 
We complemented this set with bacterial genomes belonging to two recent culture 
collections: the HBC19 and CGR21. To avoid including duplicate entries due to 
redundancy between reference databases, we combined genomes obtained from the 
PATRIC and IMG repositories and added only those without an identical genome in 
the sets extracted from NCBI, HBC and CGR. This was determined by comparing 
isolate genomes between different databases using Mash v2.1 (ref. 26; ‘mash dist’ 
function) and only selecting one genome among those estimated to be identical 
(Mash distance of 0). MAGs (that is, uncultured genomes) were obtained from Pasolli 
et al.20 (CIBIO), Almeida et al.18 (EBI) and Nayfach et al.16 (HGM). For the CIBIO set, 
only genomes retrieved from samples collected from the intestinal tract were used.

Metadata for each genome were first retrieved from the five large human gut 
studies16,18–21. These were further enriched with data obtained using the ENA API 
(https://www.ebi.ac.uk/ena/portal/api) and the NCBI E-utilities (http://eutils.
ncbi.nlm.nih.gov/). Metadata on the isolate genomes from IMG and PATRIC 
were retrieved using the GOLD52 system and the PATRIC FTP website (ftp://ftp.
patricbrc.org/patric2/current_release/RELEASE_NOTES/genome_metadata), 
respectively. We only extracted metadata on the geographic origin of each genome, 
as other factors such as disease status and demographic information were missing 
from most of the samples.

Assessing genome quality. Assembly statistics were calculated with the ‘stats.sh’ 
script from BBMap v38.75 (https://sourceforge.net/projects/bbmap/). Genome 
quality (completeness and contamination) was estimated with CheckM v1.0.11 
(ref. 53) using the ‘lineage_wf ’ workflow to select only genomes that passed the 
following criteria: >50% genome completeness, <5% contamination and an 
estimated quality score (completeness – 5 × contamination) > 50. We also searched 
for the presence of rRNAs in each genome with the ‘cmsearch’ function of 
INFERNAL v1.1.2 (ref. 54; options ‘-Z 1000 --hmmonly --cut_ga --noali --tblout’) 
against the Rfam55 covariance models for the 5S, 16S and 23S rRNAs. tRNAs of the 
standard 20 amino acids were identified with tRNAScan-SE v2.0 (ref. 56)  
with options ‘-A -Q’ for archaeal species and ‘-B -Q’ for species belonging to 
bacterial lineages.

To investigate the level of strain heterogeneity represented within each MAG, 
we used the CMseq tool (https://github.com/SegataLab/cmseq) as previously 
described20. Briefly, metagenomic reads from the sample used to generate the MAG 
were aligned to the respective MAG using bowtie v2.2.3 (ref. 57), with the resulting 
alignment file indexed and sorted with samtools v1.5 (ref. 58). The level of strain 
heterogeneity was estimated with the ‘polymut.py’ script from the CMseq package 
by calculating the number of nonsynonymous substitutions detected out of all 
positions mapped with a depth of coverage of at least 10 reads and base quality of 
at least 30 (a minimum of 100 positions were needed to estimate  
strain heterogeneity).

Species clustering. We clustered the total set of 286,997 genomes at an estimated 
species level (ANI ≥ 95%; ref. 27) using dRep v2.2.4 (ref. 59) with the following 
options: ‘-pa 0.9 -sa 0.95 -nc 0.30 -cm larger’. Because of the computational 
burden of clustering the entire genome set, we used an iterative approach where 
random chunks of 50,000 genomes were clustered independently. The selected 
representatives from each chunk were combined and subsequently clustered, 
reducing the final computational load. To ensure that the best quality genome was 
selected as the species representative in each iteration, a score was calculated for 
each genome on the basis of the following formula:

Score ¼ CMP� 5 ´CNTþ 0:5 ´ log N50ð Þ

where CMP represents the completeness level, CNT is the estimated contamination 
and N50 is the assembly contiguity characterized by the minimum contig size in 
which half of the total genome sequence is contained. The genome with the highest 
score was chosen as the species representative, with cultured genomes prioritized 
over uncultured genomes (that is, if a MAG had a higher score than an isolate 
genome, the latter would still be chosen as the representative).

To further investigate the within-species population diversity, we calculated 
pairwise distances for all conspecific genomes using Mash v2.1 (ref. 26; default 
sketch size). From these results, we generated individual distance trees for each 
species using the ‘complete’ hierarchical clustering method implemented in the 
Fastcluster R package60. We calculated the number of clusters recovered using a 
distance cutoff of 0.03 (97% ANI) and 0.01 (99% ANI).

Evaluating reproducibility of the methods. The species clusters inferred here 
were compared with those previously generated in human gut MAG studies16,18,20 
from a common set of genomes. Similarity between species clusterings was 
estimated using the adjusted Rand index (ARI) computed in the Scikit-learn 
Python package61. This metric considers both the number of clusters and cluster 
membership to compute a similarity score ranging from 0 to 1.

Conspecific genomes recovered in the same metagenomic samples but in 
different studies were compared with FastANI v1.1 (ref. 27) with default parameters 
to obtain both the maximum AF and ANI for each pairwise comparison.

Inferring cultured status. To determine cultured status, the UHGG species 
representatives were searched against NCBI RefSeq release 93 after excluding 
uncultured genomes (that is, metagenome-assembled or single-cell amplified 
genomes). Genome alignments were performed in two stages: (1) Mash v2.1  
(ref. 26) was used as an initial screen (using the function ‘mash dist’) to identify the 
most similar RefSeq genome to each of the UHGG species and (2) ‘dnadiff ’ from 
MUMmer v4.0.0beta2 (ref. 62) was subsequently used to compute whole-genome 
ANI for the genome pairs. A species was considered to have been cultured if (1) 
it contained a cultured gut genome from the UHGG catalog or (2) it matched 
an isolate RefSeq genome with at least 95% ANI over at least 30% of the genome 
length. Available metadata related to each RefSeq genome were retrieved from 
the ENA API (https://www.ebi.ac.uk/ena/portal/api/) using the corresponding 
BioSample accession.

Calculating the number of conspecific genomes. For an accurate assessment of 
the number of nonredundant genomes belonging to each species, we de-replicated 
all conspecific genomes at a 99.9% ANI threshold using dRep with options ‘-pa 
0.999 --SkipSecondary’. Furthermore, the frequency of each species was only 
counted once per sample to avoid cases where the same genome was recovered 
multiple times because of overlapping samples between the three MAG studies.

Estimating geographic diversity. A geographic diversity index was estimated 
to assess how widely distributed each species was. We calculated the Shannon 
diversity index on the proportion of samples in which each species was found per 
continent. This metric combines both richness and evenness, such that the level of 
estimated diversity is highest in species found across all continents at a  
similar proportion.

Metagenomic read mapping. A set of 1,005 metagenomic datasets from 14 studies 
(Supplementary Table 4) were retrieved from ENA and used to perform read 
mapping against the genome (UHGG) and protein (UHGP) catalogs. Only studies 
that were not used to generate the UHGG or UHGP catalogs were included. Reads 
were quality filtered and trimmed using TrimGalore v0.6.0 (https://github.com/
FelixKrueger/TrimGalore), and human contamination was removed by aligning 
the reads with BWA MEM v0.7.16a-r1181 (ref. 63; default options) against human 
genome GRCh38. Filtered reads were then mapped using Kraken v2.0.8-beta38 
(with default settings) against a custom database of the UHGG catalog available 
from the MGnify46 FTP site (http://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/), and the standard RefSeq database (release 96). Bracken64 
databases of the UHGG catalog for read lengths of 50, 100, 150, 200 and 250 bp 
were also generated and have been made available from the MGnify FTP site. 
Classification improvement was calculated on a per-sample basis as (proportion 
of reads classified with UHGG − proportion of reads classified with RefSeq)/
proportion of reads classified with RefSeq × 100. DIAMOND v0.9.21.122  
(ref. 65) was used to translate and map the reads against the IGC-90 and UHGP-90 
protein catalogs using the ‘blastx’ function with options ‘--id 90 --evalue 1e-6 -k 1 
--max-hsps 1’.

Phylogenetic analyses. Taxonomic annotation of each species representative 
was performed with GTDB-Tk v0.3.1 (refs. 29,30; database release 04-RS89) 
using the ‘classify_wf ’ function and default parameters. To use consistent 
species boundaries between the genome clustering and taxonomic classification 
procedures, genomes were assigned at the species level if the ANI to the closest 
GTDB-Tk species representative genome was ≥95% and the AF was ≥30%. In this 
taxonomy scheme, genera and species names with an alphabetic suffix indicate 
taxa that are polyphyletic or needed to be subdivided on the basis of taxonomic 
rank normalization according to the current GTDB reference tree. The lineage 
containing the type strain retains the unsuffixed (valid) name, and all other 
lineages are given alphabetic suffixes, indicating that they are placeholder names 
that need to be replaced in due course. Taxon names above the rank of genus 
appended with an alphabetic suffix indicate groups that are not monophyletic in 
the GTDB reference tree but for which there exists alternative evidence that they 
are monophyletic groups. We also generated NCBI taxonomy annotations for 
each species-level genome on the basis of its placement in the GTDB tree, using 
the ‘gtdb_to_ncbi_majority_vote.py’ script available in the GTDB-Tk repository 
(https://github.com/Ecogenomics/GTDBTk/).

Maximum-likelihood trees were generated de novo using the protein sequence 
alignments produced by GTDB-Tk: we used IQ-TREE v1.6.11 (ref. 66) to build 
a phylogenetic tree of the 4,616 bacterial and 28 archaeal species. The best fit 
model was automatically selected by ‘ModelFinder’ on the basis of the Bayesian 
information criterion (BIC) score. The LG+F+R10 model was chosen for building 
the bacterial tree, while the LG+F+R4 model was used for the archaeal phylogeny. 
Trees were visualized and annotated with Interactive Tree Of Life (iTOL) 
v4.4.2 (ref. 67). Phylogenetic diversity (PD) was estimated by the sum of branch 
lengths, with the amount that was exclusive to uncultured species calculated as 
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PDtotal – PDcultured. Uncultured monophyletic groups were defined as nodes in the 
tree containing child leaves exclusively comprising uncultured genomes.

BIGSI construction. A BIGSI47 was generated for all species-level genomes with 
BIGSI v0.3.8. First, k-mers of size 31 were extracted from each genome with 
McCortex v1.0.1 (ref. 68; ‘mccortex31 build -k 31’). Thereafter, Bloom filters were 
built for each k-mer set using ‘bigsi bloom’ and inserted into the BIGSI index 
with ‘bigsi build’. BIGSI config parameters h (number of hash functions applied 
to each k-mer) and m (Bloom filter’s length in bits) were set at 1 and 28,000,000, 
respectively. A final API layer for querying the index was built using hug  
(http://www.hug.rest/) and hosted on the MGnify46 website at https://www.ebi.
ac.uk/metagenomics/genomes.

Pan-genome analysis and functional annotation. Protein-coding sequences 
(CDS) for each of the 286,997 genomes were predicted and annotated with Prokka 
v1.13.3 (ref. 69), using Prodigal v2.6.3 (ref. 70) with options ‘-c’ (predict proteins with 
closed ends only), ‘-m’ (prevent genes from being built across stretches of sequence 
marked as Ns) and ‘-p single’ (single mode for genome assemblies containing a 
single species). Pan-genome analyses were carried out using Roary v3.12.0 (ref. 71). 
We set a minimum amino acid identity for a positive match at 90% (‘-i 90’), a core 
gene defined at 90% presence (‘-cd 90’) and no paralog splitting (‘-s’). Normalized 
pan-genome size was estimated by dividing the total number of core and accessory 
genes by the number of genes contained in the species representative genome.

The UHGP catalog was generated from the combined set of 625,255,473 
CDS predicted. Protein clustering of the UHGP and IGC5 was performed with 
the ‘linclust’ function of MMseqs2 v6-f5a1c72 with options ‘--cov-mode 1 -c 0.8’ 
(minimum coverage threshold of 80% the length of the shortest sequence) and 
‘--kmer-per-seq 80’ (number of k-mers selected per sequence, increased from 
the default of 21 to improve clustering sensitivity). The ‘--min-seq-id’ option was 
set at 1, 0.95, 0.9 and 0.5 to generate the catalogs at 100%, 95%, 90% and 50% 
protein identity, respectively. We clustered the IGC only at 90% and 50% protein 
identity, as it was originally de-replicated at 95% nucleotide identity5. Functional 
characterization of all protein sequences was performed with eggNOG-mapper 
v2 (ref. 73; database v5.0 (ref. 41)) and InterProScan v5.35-74.0 (ref. 42). COG43, 
KEGG44, CAZy74 and viral annotations were derived from the eggNOG-mapper 
results. Differences in annotation coverage and COG functional categories between 
the core and accessory genes were evaluated with two-tailed Wilcoxon rank-sum 
tests in R v3.6.0 (function ‘wilcox.test’). Expected P values were corrected for 
multiple testing with the Benjamini–Hochberg method. Cohen’s d effect sizes were 
estimated with the function ‘cohen.d’ from the Effsize75 R package. To accurately 
estimate the proportion of each KEGG module in the species pan-genome, 
we used the compositional data analysis R package CoDaSeq76. Pseudocounts 
for zero-count data were first imputed using a Bayesian–multiplicative simple 
replacement procedure implemented in the ‘cmultRepl’ function (method ‘CZM’). 
Final counts were thereby converted to centered log ratios using the ‘codaSeq.clr’ 
function to account for the compositional nature of the data and for differences in 
pan-genome size.

SNV analyses. A total of 2,489 species with at least three conspecific genomes were 
used to generate a catalog of SNVs. For each species, we mapped all conspecific 
genomes to the representative genome using the ‘nucmer’ program from MUMmer 
v4.0.0.beta2 (ref. 62) and filtered alignments using the ‘delta-filter’ program with 
options ‘-q -r’ to exclude chance- and repeat-induced alignments. Thereafter, 
we identified SNVs using the ‘show-snps’ program. Single-base insertions and 
deletions were not counted as SNVs. Each SNV locus was included in the catalog 
only when the alternate allele was detected in at least two conspecific genomes. The 
final SNV catalog was generated by unifying the SNV coordinates on the basis of 
their position in the species representative genome. The SNV entries in the catalog 
were characterized as genome type or continent specific on the basis of whether the 
alternate allele could be found solely in genomes from a specific genome type or 
continent. The number of continent-specific SNVs was normalized by the number 
of genomes from the corresponding continent to estimate the contribution per 
genome to the continent-specific SNV discoveries.

Similar programs and parameters were used for the pairwise genome 
alignment, but in this case only near-complete genomes (≥90% completeness) 
and species with at least ten independent conspecific genomes were considered. 
Because of the high computational demand, pairwise alignments of species 
encompassing more than 1,000 genomes were limited to the 1,000 best quality 
genomes. A total of 29,283,684 pairwise genome alignments were performed 
between almost 113,000 genomes from 909 species. For each pairwise comparison, 
we estimated the total number of SNVs and the overall density as the number 
of SNVs per kilobase. In addition, the pairwise comparisons were organized on 
the basis of the type and continent origin of the genomes in the pair for further 
downstream analyses. A two-tailed Wilcoxon rank-sum test was used to evaluate 
differences in SNV distribution. Resulting P values were corrected for multiple 
testing with the Benjamini–Hochberg method.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome assemblies of the UHGG catalog have been deposited in the European 
Nucleotide Archive under study accession ERP116715. The UHGG, UHGP and 
SNV catalogs are available from the MGnify FTP site (http://ftp.ebi.ac.uk/pub/
databases/metagenomics/mgnify_genomes/) alongside functional annotations, 
pan-genome results and custom Kraken 2/Bracken databases of the UHGG 
catalog. These data, together with the BIGSI search index of the UHGG catalog, 
can also be accessed interactively via the MGnify website at https://www.ebi.
ac.uk/metagenomics/genomes. Mash distance trees have been generated for each 
individual species cluster and are available at both the MGnify website and the 
associated FTP site.

Code availability
The workflow used to generate the genome and protein catalogs, alongside 
the pan-genome and functional annotations, is described in a Common 
Workflow Language (CWL) pipeline at https://github.com/EBI-Metagenomics/
genomes-pipeline. Scripts used to generate the SNV catalogs are available at https://
github.com/zjshi/snv_analysis_almeida2019.
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Extended Data Fig. 1 | Genome quality of species representatives. a, Completeness and contamination scores for each of the 4,644 species 
representatives, colored by their quality classification category. Medium quality: >50% completeness; near complete: ≥90% completeness; high-quality: 
>90% completeness, presence of 5S, 16S and 23S rRNA genes, as well as at least 18 tRNAs. All genomes have a quality score (QS = completeness  
– 5 × contamination) above 50. b, Number of species according to different completeness and contamination criteria. c, Distribution of the level of strain 
heterogeneity (proportion of non-synonymous substitutions) estimated for the species-level MAGs using CMseq. Dashed vertical line corresponds to the 
threshold defined in Pasolli, et al.20 to distinguish medium- from high-quality MAGs.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ResourceNaTUrE BIoTECHnoloGy

Extended Data Fig. 2 | Taxonomy composition of the bacterial and archaeal species. a, Taxonomic affiliation of the 4,616 bacterial species detected.  
Data is partitioned by taxonomic rank, with only the five most highly represented taxa per rank depicted in the legend. b, Taxonomic affiliation of the 28 
archaeal species detected, partitioned by taxonomic rank.
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Extended Data Fig. 3 | Species overlap across study sets. a, Number of species found across the three metagenome-assembled genome sets, ordered 
by their level of overlap. Only those genomes recovered from the 1,554 metagenomic samples used by all three studies were considered in this analysis. 
b, Distribution of the proportion of species recovered per sample (n = 1,554) in each study set out of all species recovered across all three studies in the 
same samples. Box lengths represent the IQR of the data, and the whiskers the lowest and highest values within 1.5 times the IQR from the first and third 
quartiles, respectively. c, Estimated aligned fractions and average nucleotide identities (ANI) between conspecific genomes obtained in the same sample 
but in different MAG studies. Results for medium-quality genomes are illustrated in the top panel, whereas those for near complete (≥90% completeness) 
genomes are represented in the lower panel. Vertical dashed lines denote the median values. d, Number of species identified in three culture-based studies 
and their degree of overlap. The NCBI study set consists mainly of genomes from the Human Microbiome Project (HMP).
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Extended Data Fig. 4 | Quality and sample origin of uncultured singleton species. a, Genome completeness and contamination estimates of the 1,212 
uncultured species represented by a single genome. Box lengths represent the IQR of the data, and the whiskers the lowest and highest values within 
1.5 times the IQR from the first and third quartiles, respectively. b, Proportion of the 1,212 singleton species, by study set, that originated from samples 
analysed in one, two or three of the MAG studies (CIBIO, EBI and HGM).
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Extended Data Fig. 5 | Species frequency and geographical diversity. a, Number of nonredundant genomes retrieved from the 50 most highly represented 
species in the UHGG catalog. Each species is colored by its assigned phylum according to the figure legend. b, Geographical diversity estimated using 
the Shannon index in relation to the number of nonredundant genomes from each species containing more than one genome (n = 2,786). Percentage 
values represent the estimated diversity normalized by the maximum theoretical value (considering an equal distribution of samples across the six major 
continents — Africa, Asia, Europe, North America, South America and Oceania). The Spearman’s rank correlation coefficient and P value (calculated 
with the Spearman’s test) are depicted in the graph. Predicted values represent the random geographical distribution of equivalent numbers of genomes 
observed for each species. Dashed horizontal line indicates the median observed value for species with more than one genome.
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Extended Data Fig. 6 | Diversity of the gut archaeal species detected. Phylogenetic tree of the 28 archaeal species detected in the human gut. Tips are 
labelled with the corresponding species representative code and colored according to its cultured status. The taxonomic affiliation (family), geographical 
distribution, number of nonredundant genomes and total pan-genome size are represented next to the tree.
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Extended Data Fig. 7 | UHGP cluster size and mapping rate. a, Cumulative distribution curve of the number and size of the gene clusters of the UHGP-
95 (n = 20,239,340), UHGP-90 (n = 13,907,849) and UHGP-50 (n = 4,735,546). Dashed vertical lines indicate the cluster size below which 90% of the 
gene clusters can be found. b, Proportion of metagenomic reads from 1,005 independent datasets aligned with DIAMOND against the combined clusters 
of UHGP-90 and IGC-90 (left). The degree of classification improvement provided over the IGC-90 alone is represented in the right panel. The following 
represents the number of datasets analysed per country: Cameroon, n = 54; Ethiopia, n = 25; Germany, n = 56; Ghana, n = 40; India, n = 105; Italy, n = 50; 
Luxembourg, n = 26; Russia, n = 4; Tanzania, n = 61; United Kingdom, n = 210; United States, n = 374. Box lengths represent the interquartile range (IQR) 
of the data, and the whiskers the lowest and highest values within 1.5 times the IQR from the first and third quartiles, respectively.
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Extended Data Fig. 8 | Functional annotation of gut microbiome species. a, Functional profiles of the UHGG species pan-genomes (rows) according to 
363 KEGG modules (columns). Numbers of genes matching each module were normalized to centered log ratios after imputing values with zero counts. 
Species are colored according to phylum. KEGG modules and species were hierarchically clustered using the Ward’s criterion method. b, Proportion of 
each species pan-genome, partitioned by phylum, without any assignment to the eggNOG, InterPro, COG or KEGG databases (left). Proportion of the 
pan-genome with a match to the carbohydrate-active enzymes (CAZy) database (right). Sample size (number of species) of each phylum is indicated in 
parentheses (n = 4,644 total species). Box lengths represent the IQR of the data, and the whiskers the lowest and highest values within 1.5 times the IQR 
from the first and third quartiles, respectively.
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Extended Data Fig. 9 | Gene frequency distribution within the species-level clusters. a, Distribution of the number of genes found per fraction of 
conspecific genomes. Only near-complete genomes (≥90% completeness) were considered in the analysis. b, Number of core genes detected based on 
the threshold of genomes per species used to classify as core. Vertical dashed line represents the 90% threshold used in this study.
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Extended Data Fig. 10 | SNV density and MAG strain heterogeneity. a, Correlation between the SNV density calculated among MAGs and their level 
of strain heterogeneity estimated with CMseq (n = 268,994 comparisons). A Pearson correlation test was performed to determine the correlation 
coefficient and P value. Colors denote density of data points (increasing from dark purple to yellow). b, Comparison of pairwise SNV density between 
isolates (n = 808,331 comparisons) and between MAGs with <0.01% (n = 2,923,610 comparisons) and <0.1% strain heterogeneity (n = 13,634,222 
comparisons). A two-tailed Wilcoxon rank-sum test was performed to assess statistical significance and further adjusted for multiple comparisons using 
the Benjamini-Hochberg correction (***P <0.001). Box lengths represent the IQR of the data, and the whiskers the lowest and highest values within 1.5 
times the IQR from the first and third quartiles, respectively.
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