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ABSTRACT 

 

One-dimensional site response analysis (1D SRA) remains the world state of practice for assessing 

site-specific site response in engineering projects. The 1D SRA numerical approach condenses the 

complexities of the 3D wave propagation phenomena into a simple horizontally polarized wave 

vertically traveling through a soil column, thus leading to errors in site response predictions. This 

dissertation proposes two approaches: (1) an approach to capture the effect of shear-wave velocity 

(VS) spatial variability on site response using 1D SRAs, and (2) an approach for conducting 1D 

SRAs to account for the effect of unmodeled features affecting site response (e.g., inclined waves) 

and the potential for higher site amplifications. These approaches and the findings learned during 

their development are herein presented to provide practical recommendations expected to improve 

site response predictions using 1D SRAs.  

A numerical investigation using 2D and 1D SRAs is conducted to develop an approach for 

capturing 2D VS spatial variability effects on site response using 1D SRAs with randomized VS 

profiles. The limitations of 1D SRAs with VS randomization are mainly due to (1) the excessive 

randomization and the assumption that the resulting mean site response is representative, and (2) 

the intrinsic inability of 1D SRAs to capture wave propagation effects (e.g., constructive 

interference). Results from this investigation indicate that the 84th seismic response estimated from 

1D SRAs conducted with fifty randomized VS profiles generated using the Toro model (1995) with 

VS standard deviation, σlnVS  = 0.25 approximates well the median 2D site response at the site’s 

fundamental frequency, regardless of what the site-specific σlnVS  is. Comparisons with data from 

four borehole sites classified as Group A (Tao and Rathje, 2020) support this observation. 
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An approach for conducting 1D SRAs is developed based on comparisons between 1D 

SRA predictions and borehole ground-motion data, with two objectives: (1) to improve site 

response predictions, and (2) to account for the 1D-SRA bias and the potential for underpredicting 

the estimated seismic response. The first objective is achieved by using randomized VS profiles 

with σlnVS  and damping multipliers (Dmul) that reduce intrinsic errors carried in 1D SRAs, such as 

the overpredictions at the site’s resonant frequency. Results from this work indicate that the 

σlnVS-Dmul pair leading to the lowest root mean square error between the observed and 1D SRA-

based transfer functions and amplification factors is σlnVS  = 0.25 and Dmul = 3. The second 

objective is achieved by acknowledging the 1D-SRA bias (c3D
SRA) and the potential for under- and 

overpredictions due to modeling errors carried by 1D SRAs, quantified as the standard deviation 

of the site-specific bias-corrected mean residuals (ϕS2S
SRA). The c3D

SRA is used to bias-correct results 

from 1D SRAs with VS randomization, thus obtaining the best estimate site response. The potential 

for higher site amplifications is subsequently accounted for by computing the 95th site response 

percentile using ϕS2S
SRA.  
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CHAPTER 1 

INTRODUCTION 

 

BACKGROUND  

One-dimensional site response analyses (1D SRAs) remain the world state of practice for 

estimating site-specific site response, despite the ample evidence of discrepancies between ground-

motion data and site response predictions. These analyses condense the three-dimensional nature 

of wave propagation to horizontally polarized vertically propagating shear (SH) waves traveling 

upward through a soil column, which implies a soil deposit of horizontal layers that extend 

infinitely in the lateral directions. Such simplifications challenge the 1D SRA’s ability to capture 

the effect of non-1D features affecting site response, such as a dipping bedrock or the incidence of 

inclined waves, and their influence on site response leads to errors in site response predictions, in 

this dissertation referred to as modeling errors. 

The shear-wave velocity (VS) spatial variability is a critical site-specific feature affecting 

site response given its ubiquitous nature in the field, and it is perhaps the only one intended to be 

addressed in practice. For instance, it is common in the design of nuclear facilities (1) to conduct 

1D SRAs using three base-case VS profiles to account for the epistemic uncertainty, and (2) to 

randomize each one of these base-case VS profiles to account for aleatory variability using the 

model proposed by Toro (1995). This approach, however, has been found to underestimate site 

response predictions due to the excessive amount of VS randomization recommended by Toro 

(e.g., Teague and Cox, 2016) or the lack of lateral correlation between the randomized VS profiles 
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(Pehlivan, 2013). Nevertheless, 1D SRAs conducted using randomized VS profiles reduce the 

overprediction at the resonant frequencies (Tao and Rathje, 2019) and the peak-to-trough ratio in 

transfer functions (De la Torre et al., 2021), which thus make VS randomization a potential tool 

for improving site response predictions.  

Improving site response predictions in engineering practice is a difficult task. The simple 

parameterization and broad implementation of 1D SRAs in engineering practice limit the 

alternatives for improving site response predictions to: (1) altering the site response input 

parameters (e.g., VS and damping), (2) post-processing 1D SRA estimates such that a more 

accurate site response is obtained (e.g., using scaling factors), and (3) a combination of (1) and (2). 

Previous studies explored the effect of calibrating damping to capture wave scattering effects and 

thus improve linear elastic SRAs. For instance, Tao and Rathje (2019), based on observations from 

four borehole array sites, found that increasing the minimum damping estimated based on 

Darendeli (2001) by factors ranging from 1.5 to 5 can improve the prediction of different ground 

motion intensity measures or metrics of interest (e.g., peak ground velocity, transfer functions). 

The calibration of damping or other alternative approaches (e.g., randomizing VS profiles) can lead 

to improved 1D SRA-based predictions. Since such predictions are never flawless; thus, the 

reduced amount of modeling errors should be quantified and considered.  

The site response modeling errors are neglected in current practice, and the accuracy of site 

response predictions is assumed to depend on the quality of input parameters alone, which is an 

unrealistic assumption (e.g., Stewart and Afshari, 2020). Site response modeling errors can be 

quantified as the difference between ground-motion data from borehole sites and site response 

predictions, and separated into a global method bias, and aleatory components. Once quantified, 

the method bias can be accounted for by adding it to the predicted site response, and the potential 
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for higher site amplifications can be considered by estimating site response percentiles higher than 

the median.  

DISSERTATION SCOPE 

This dissertation is a collection of manuscripts published or to be submitted for review and future 

publication. This dissertation provides the following main contributions: (1) an approach for 

capturing 2D VS variability effects on site response using 1D SRAs conducted with VS 

randomization, and (2) an approach for conducting 1D SRAs to account for modeling errors that 

uses (a) calibrated amounts of damping and VS randomization that improve site response 

predictions, and (b) models for the bias and variability in the site terms (i.e., bias corrected site-

specific mean residual) associated with 1D SRAs conducted with the calibrated damping and VS 

randomization. A brief description of the subsequent chapters and the authorship roles are 

described in the following sections.  

CHAPTER 2 

The second chapter compares results from 2D SRAs on random fields and 1D SRAs on 

randomized VS profiles to evaluate the ability of the latter to capture 2D VS spatial variability 

effects. The amount of VS randomization required along with the VS model by Toro (1995) is 

calibrated, and its sensitivity to various 2D VS variability features (e.g., degree of VS variability, 

horizontal and vertical correlation lengths) is evaluated. The consistency of findings from this 

numerical study is evaluated against ground-motion data from borehole array sites.  

The contents of this chapter were originally published as a journal paper in Earthquake 

Spectra titled “Conducting 1D site response analyses to capture 2D VS spatial variability effects,” 

by R. Pretell, K. Ziotopoulou, and N.A. Abrahamson. Pretell was the lead researcher, responsible 
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for the methods, analyses, and writing of the manuscript, and Ziotopoulou and Abrahamson were 

the faculty advisors and reviewed the manuscript. The contents of Appendix A (referred in this 

chapter) were originally published as a conference paper titled “Numerical investigation of VS 

spatial variability effects on the seismic response estimated using 2D and 1D site response 

analyses,” by R. Pretell, K. Ziotopoulou and N.A. Abrahamson, presented during GeoCongress 

2022 in Charlotte, North Carolina (March 2022). Pretell was the lead researcher, responsible for 

the methods, analyses, and writing of the paper, Ziotopoulou and Abrahamson were the faculty 

advisors and reviewed the paper.   

CHAPTER 3 

The third chapter presents an approach for conducting 1D SRAs with two objectives (1) to improve 

site response predictions, and (2) to account for the bias in 1D SRAs and the potential for under- 

and overpredictions carried by site response estimates. This chapter uses ground-motion data from 

borehole sites to calibrate damping and VS randomization. 

The contents of this chapter will be submitted for journal publication with title “A borehole 

data-based approach for conducting 1D site response analyses I: damping and VS randomization,” 

by R. Pretell, N.A. Abrahamson, and K. Ziotopoulou. Pretell was the lead researcher, responsible 

for the methods, analyses, and writing of the manuscript, and Abrahamson and Ziotopoulou were 

the faculty advisors and reviewed the manuscript.  

CHAPTER 4 

The fourth chapter builds on the third chapter to quantify the site response residuals associated 

with 1D SRAs conducted with the calibrated amount of damping and VS randomization. The site 

response residuals are partitioned into their different components, mainly the global site response 
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bias (c3D
SRA) and the site-specific mean bias-corrected residuals (δS2Ss

SRA) with standard deviation 

ϕS2S
SRA, and their sensitivity due to site type (1D- or 3D-like), region, and the presence of pseudo-

resonances are discussed. Models for c3D
SRA and ϕS2S

SRA are proposed, and guidelines are provided for 

conducting 1D SRAs using the calibrated damping, VS randomization, and considering c3D
SRA and 

ϕS2S
SRA to account for modeling errors.  

The contents of this chapter will be submitted for journal publication with title “A borehole 

data-based approach for conducting 1D site response analyses II: accounting for modeling errors,” 

by R. Pretell, N.A. Abrahamson, and K. Ziotopoulou. Pretell was the lead researcher, responsible 

for the methods, analyses, and writing of the manuscript, and Abrahamson and Ziotopoulou were 

the faculty advisors and reviewed the manuscript.  

CHAPTER 5 

The fifth chapter of this dissertation summarizes the main findings of the previous three chapters 

and presents future research directions.  
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CHAPTER 2 

CONDUCTING 1D SITE RESPONSE ANALYSES TO CAPTURE 

2D VS SPATIAL VARIABILITY EFFECTS 

 

AUTHOR’S NOTE 

The contents of this chapter were originally published in Earthquake Spectra, by Pretell R, 

Ziotopoulou K and Abrahamson NA. Minor formatting changes were made to the original 

publication. Authorship roles are provided in Chapter 1.  

PUBLICATION 

Pretell R, Ziotopoulou K and Abrahamson NA (2022) Conducting 1D site response analyses to 

capture 2D VS spatial variability effects. Earthquake Spectra 00(0): 1–25. 

10.1177/87552930211069400  

2.1. ABSTRACT 

One-dimensional site response analyses (1D SRAs) with shear-wave velocity (VS) randomization 

are commonly performed to estimate median site-specific amplification factors (AFs) under the 

implicit assumption that this approach yields a realistic response. In this work, an investigation is 

conducted to determine the appropriate amount of VS randomization (σlnVS
) needed to capture a 

median response that accounts for 2D VS spatial variability effects. Results from 2D SRAs and 1D 

SRAs with VS randomization show that the median 2D seismic responses are generally higher than 

1D responses at the site’s fundamental frequency, and that higher VS variability has a mild impact 

https://doi.org/10.1177/87552930211069400
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on the median 2D seismic response amplitude at the fundamental frequency, whereas it 

significantly reduces the median 1D response. Findings indicate that the 84th percentile AFs based 

on 1D SRAs conducted with VS randomization using σlnVS
= 0.25, approximate well with the 

more realistic median 2D SRA-based AFs around the fundamental frequency, while the 70th to 60th 

percentiles might be more appropriate at higher frequencies. The benefit of using percentiles of 

the 1D SRA-based AFs higher than the median is shown for different site conditions and supported 

by comparisons against empirical data from four downhole sites. 

2.2. INTRODUCTION 

The estimation of the seismic response at the ground surface is a key component in the seismic 

design of structures. One-dimensional site response analyses (1D SRAs) are commonly used to 

assess the amplification or deamplification of seismic waves as they travel from a source at depth, 

through soil deposits, and reach the ground surface. This simplified analysis is widely used in 

engineering practice given that it requires a relatively simple site characterization, and it is 

computationally inexpensive. However, 1D SRAs condense the 3D nature of wave propagation to 

horizontally polarized vertically propagating shear (SH) waves traveling upward through a 1D soil 

column, which is representative of a soil deposit of horizontal layers that extend infinitely in the 

lateral directions. Given this simplification, observed discrepancies between empirical data and 

1D SRA-based estimations are unsurprising (e.g., Afshari and Stewart, 2019; Baise et al., 2011; 

Kaklamanos et al., 2011, 2013; Kottke, 2010; Regnier, 2013; Regnier et al., 2018; Stewart et al., 

2008; Tao and Rathje, 2019; Thompson et al., 2012; Zalachoris and Rathje, 2015). These 

discrepancies are generally attributed to (1) uncertainties associated with shear-wave velocity (VS) 

and (2) conflicts between field reality and the 1D SRAs’ underlying assumptions, such as laterally 

homogeneous VS structure. In this work, 2D VS spatial variability effects on the median seismic 
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response are studied, and an approach for capturing these effects using 1D SRAs is investigated. 

In reality, there are no 2D sites, but rather 3D sites that unavoidably encompass a wide range of 

site conditions (e.g., variable VS, inclined bedrock, inclined wave propagation) affecting the 

seismic response. However, herein, the expression “2D VS spatial variability” is used to be explicit 

about the assumptions of this study, and the range of applicability of the conclusions drawn. 

The effect of VS spatial variability on the seismic response has been studied by regulators 

and researchers. For nuclear facilities, it is common to follow the guidelines by the Electric Power 

Research Institute (EPRI, 2013) to conduct 1D SRAs. These guidelines recommend using three 

base-case VS profiles to account for the epistemic uncertainty on the VS profile and to randomize 

each one of these base-case VS profiles to account for aleatory variability. This approach, however, 

has been found to underestimate site response predictions (Teague and Cox, 2016). Previous 

research efforts have also studied spatial variability and other non-1D effects. Pehlivan (2013) 

performed 2D equivalent-linear SRAs on VS random fields and 1D equivalent-linear SRAs on 

randomized VS profiles and found that mean spectral accelerations from 2D SRAs are higher by 

15% – 40%. De Martin et al. (2013) performed 3D, 2D, and 1D SRAs using the spectral-element 

method and concluded that small deviations from 1D wave propagation theory strongly affect the 

period and amplitude of the system’s resonant modes. Bielak et al. (1999) compared the 

estimations from 2D and 1D SRAs against observations from the 1988 Armenia Earthquake and 

concluded that results from 2D SRAs provide a better agreement. 

In this article, 2D and 1D linear elastic SRAs are conducted to investigate a methodology 

for capturing 2D VS spatial variability effects on the seismic response using 1D SRAs with VS 

randomization. SRAs performed on 2D VS correlated random fields and on 1D randomized VS 

profiles are generated using the Toro model (1995). Various site conditions are considered to 
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generate the 2D random fields, whereas the standard deviation of VS (σlnVS
) for 1D randomization 

is calculated from the 2D models and generic values are also used. Differences between the median 

2D SRA- and 1D SRA-based seismic responses are discussed, and residuals are estimated. Two 

criteria for estimating a more realistic 2D seismic response using 1D SRAs are evaluated, and 

findings are contrasted against empirical data. Results from this study provide insights into the 

biases carried when estimating the seismic response using 1D SRAs with VS randomization, and 

practical guidance is provided to conduct these analyses such that a more realistic seismic response 

that accounts for 2D VS spatial variability effects is captured.  

2.3. RATIONALE FOR VS RANDOMIZATION 

One-dimensional SRAs are commonly conducted using randomized VS profiles with two 

objectives: (1) to account for the spatial variability of natural soil deposits (e.g., Griffiths et al., 

2016a; Kaklamanos et al., 2020; Tao and Rathje, 2019; Toro, 1995) and (2) to correct for 

overpredictions of the site amplification observed at the site’s fundamental frequency when using 

1D SRAs (e.g., Rodriguez-Marek et al., 2020; Zalachoris and Rathje, 2015). While these two 

aspects justify the use of randomized VS profiles, there is limited guidance on how to conduct VS 

randomization, and whether it yields a more realistic seismic response is unclear. Commonly, the 

amount of VS randomization, that is, the deviation from the baseline or “seed” VS profile, is 

controlled by σlnVS
 and determined from VS30-based site classes (e.g., EPRI, 2013). However, VS30 

is an index that cannot capture site-specific features affecting seismic amplification and thus VS 

randomization based on VS30 does not necessarily lead to a more realistic response. 

A number of site-specific features and wave propagation mechanisms play a role in the site 

amplification (or deamplification), such as changes in soil’s impedance, VS spatial variability, 
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constructive interference, wave reflections and focusing effects, surface waves, and so on (Figure 

2.1). Out of all these, 1D SRAs that are most commonly used in practice can only explicitly model 

the changes in impedance and resonance effects. We hypothesize that each unmodeled site-specific 

feature can be uncoupled and implicitly captured in 1D SRAs using a selected amount of σlnVS
. 

For instance, the seismic response for a site with spatially variable VS and a dipping bedrock can 

be estimated from 1D SRAs with randomized VS profiles generated using σlnVS
= σlnVS,1 +

σlnVS,2, where σlnVS,1 is used to capture the VS spatial variability effects on the seismic response, 

and σlnVS,2 is used to capture the dipping bedrock effects. 

In this work, an approach for using VS randomization and estimating an appropriate seismic 

response is investigated. The proposed approach for conducting 1D SRAs with VS randomization 

has two parts: (1) using contributions to σlnVS
 from each unmodeled site-specific feature and (2) 

estimating a realistic seismic response based on a calibrated or selected criterion (e.g., a percentile 

higher than the median or a scaled response). In this article, attention is placed on the amount of 

VS randomization for capturing the VS spatial variability effects on the median seismic response 

at ground surface, that is, σlnVS
. VS randomization is conducted using the model for VS proposed 

by Toro (1995). 

2.3.1. VS RANDOMIZATION MODEL BY TORO 

Toro (1995) proposed a VS randomization model for the probabilistic characterization of VS in 

SRAs with several sets of parameters for different VS30-based site classes (Boore et al., 1994; Toro, 

1995). The model’s main parameters are σlnVS
 and an auto-regressive functional form that 

determines the interlayer correlation. This model relies on the observation that VS approximately 

varies with a log-normal distribution (e.g., Li and Assimaki, 2010), and it assumes a constant σlnVS
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with depth. Toro also proposed models for randomizing layer thicknesses, and depth to bedrock, 

which are commonly used along with the model for randomizing VS. In this work, only VS is 

randomized. 

2.4. NUMERICAL INVESTIGATION 

2.4.1. EVALUATION APPROACH 

Three sets of SRAs are conducted (Figure 2.2): (1) 2D SRAs on random fields constructed for 

several target σlnVS
, (2) 1D SRAs with VS randomization using several specified values of σlnVS

, 

and (3) 1D SRAs on sampled VS profiles extracted from the 2D random field models. The 2D 

ground-motion response is recorded at equally spaced locations along the ground surface. These 

results, which are herein assumed to represent a more realistic seismic response, are compared 

against 1D SRA-based estimates. The sampled VS profiles consist of profiles numerically sampled 

from the 2D models at the recording locations (Figure 2.2). Results from this set of 1D SRAs 

provide insight into the ability of 1D SRAs to estimate an accurate seismic response when multiple 

flawlessly measured VS profiles are available. Results from the three sets are compared in terms 

of transfer functions (TFs) for Fourier amplitudes and amplification factors (AFs) for response 

spectral values. All SRAs are linear elastic. 

2.4.2. NUMERICAL MODEL 

The 2D and 1D models consist of 1 m × 1 m square elements with different VS values, which 

allow for an appropriate propagation of waves with frequencies lower than about 12.5 Hz 

(Kuhlemeyer and Lysmer, 1973). The 2D model’s width is selected such that a seismic response 

along the middle zone, that is “recording zone,” is unaffected by wave reflections from the edges 

of the model. Various model widths (or width-to-height W:H ratios) were tested for a 1D-type 
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model (Figure 2.3a) until the estimated seismic response is comparable to the one obtained using 

1D SRAs. A model width of 600 m (i.e., W:H = 20) is used to allow for a 100-m wide recording 

zone which results in errors in the TFs of less than 5% (Figure 2.3b and 2.3c). Each model has 21 

recording locations equally spaced every 5 m along the surface. Preliminary analyses not presented 

herein for brevity indicated that shorter recording spacings do not provide additional benefit in the 

accuracy of the estimated seismic response. 

A damping ratio of 10% is used for all soils in the numerical sections of this article. Note 

that damping is not used as a means to account for unmodeled natural phenomena such as wave 

scattering, instead, VS randomization is used for that. The selection of a 10% damping ratio was 

led by a balance between the number of recorded responses along the model’s surface, model size, 

and computational demand. Had a more realistic (lower) damping ratio been used, then a 

significantly larger 2D numerical model or more 2D models would have been required to obtain 

the same number of ground motion responses along the surface. Using this value of damping ratio 

does not affect the observed trends and conclusions drawn in this study, as indicated in a later 

section. The bedrock was modeled as a rigid base to isolate the effects of the soil–bedrock 

impedance ratio. The finite element software QUAD4MU (Hudson et al., 1994, 2003) is used to 

conduct 2D and 1D SRAs. 

2.4.3. BASELINE 2D RANDOM FIELD MODELS 

The 2D sites consist of 30-m-deep correlated VS random fields over a horizontally oriented 

bedrock. The random fields are developed using the covariance matrix approach (Vanmarcke, 

1983), based on a 1D seed VS profile and a correlation function ρ. The seed VS profile is developed 
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using the relations proposed by Kamai et al. (2016) for sites in California with a VS30 = 200 m/s, 

and ρ is an exponential model with no nugget, given by: 

𝜌 = exp (−2
Δℎ𝑜𝑟

θℎ𝑜𝑟
) exp (−2

Δ𝑣𝑒𝑟

θ𝑣𝑒𝑟
)    (2.1) 

in which Δhor and Δver are the lag distances along the horizontal and vertical directions, 

respectively, and θhor and θver are the horizontal and vertical VS correlation lengths, selected as 

50 and 5 m, respectively. The selected correlation lengths yield a correlation anisotropy of 10, 

common in soil properties and geological environments (DeGroot, 1996; Phoon and Kulhawy, 

1996, 1999). The 2D random field models are generated for target σlnVS
 = 0.2, 0.3, 0.4, and 0.5, 

commonly observed in nature (e.g., Holzer et al., 2005; Wills and Clahan, 2006). Figure 2.2 shows 

a sample 2D random field model for a target σlnVS
= 0.2, and Figure 2.4 shows the correlation 

functions for ln(VS) in the horizontal direction. The correlation values are presented in tanh−1 

scale to produce an approximately normal distribution (Abrahamson et al., 1991) and are estimated 

for a maximum lag distance of half the model width to prevent biases induced by the number of 

available data pairs. The agreement between the theoretical and the mean simulated correlation 

functions confirms that the target correlation model is well captured by the generated profiles. 

2.4.4. 1D SRAs WITH VS RANDOMIZATION 

The seismic response is assessed through 1D SRAs on a suite of 50 randomized VS profiles (Toro, 

1995). The seed profile used for VS randomization is calculated as the geometric mean of multiple 

profiles sampled from the recording zone, considered as the only portion of the 2D models 

affecting the seismic response, whereas σlnVS
 is the standard deviation of the same profiles, used 

for VS randomization. Hereafter, this standard deviation is referred to as “model-specific σlnVS
.” 

This approach is similar to practical applications where multiple VS profiles are measured in the 
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field and then used to estimate a representative VS profile and σlnVS
 (e.g., Griffiths et al., 2016b; 

Teague and Cox, 2016). Evaluations not included herein indicate that the ultimate seismic response 

is not sensitive to the location, or the number of the selected VS profiles sampled within the zone 

of influence when more than 10 VS profiles are used. In total, 50 VS profile realizations are 

generated as it leads to stable results, with standard errors for the mean AF lower than 5% for most 

cases and lower than 8% for models with highly variable VS. Using more realizations does not 

impact the results. Each set of results presented in this article are based on a different set of 50 VS 

randomized profiles, such that conclusions are not based on a single one. The VS randomization 

model was used with the interlayer correlation parameters recommended for sites with VS30 

ranging from 180 to 360 m/s. These correlation parameters and those recommended for sites with 

VS30 ranging from 360 to 760 m/s are similar and using either set of parameters for a given seed 

VS profile leads to practically the same seismic response. 

2.4.5. INPUT GROUND MOTION 

The ground motion from the M7.6 Chi-Chi earthquake (1999) recorded at the TCU075 station 

(Figure 2.5) was downloaded from the Pacific Earthquake Engineering Research Center (PEER) 

Database (Ancheta et al., 2013) and is applied uniformly as vertically incident SH waves along the 

model base as acceleration. For linear elastic SRAs, a single input ground motion is sufficient for 

estimating the response in terms of TFs. In the case of AFs, we assume that any additional 

contribution to the variability that comes from multiple input ground motions is minimal compared 

to the variability already included using 2D VS random fields and randomized 1D VS profiles. This 

assumption is supported by additional analyses with different ground motions, not presented herein 

and a previous study by Bazzurro and Cornell (2004). 
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2.5. BASELINE RESULTS 

Results indicate discrepancies between 2D and 1D SRAs in terms of TFs and AFs. Figures 2.6 and 

2.7 present TFs and AFs for four representative 2D models, each with different model-specific 

σlnVS
, and the associated sampled and randomized 1D models. The discrepancies are consistently 

observed for different σlnVS
and are due to (1) amplification effects captured by 2D SRAs but 

missed by 1D SRAs, such as wave scattering and constructive interference, and (2) a stronger 

shifting of the 1D fundamental frequencies due to VS randomization, which leads to the cancelation 

of peaks and troughs and thus lower median TFs and AFs, and overall highly variable responses 

across frequencies compared to the 2D results. This effect has also been pointed out by other 

researchers (e.g., Tao and Rathje, 2019; Teague and Cox, 2016). In all cases, the median 2D SRA-

based TF is higher than the median 1D SRA-based TF from sampled VS profiles around the 

fundamental frequency, and the latter is higher than the 1D SRA-based TF from randomized VS 

profiles.  

The cancelation of peaks and troughs is less significant in the case of 1D SRAs on sampled 

profiles given the stronger correlation of the 1D columns compared to the randomized VS profiles. 

These results also suggest that highly variable sites present a weaker second mode TF when 

estimated based on 2D SRAs, which is due to wave scattering caused by soil heterogeneities (De 

la Torre et al., 2019). Similar trends are observed in the median 2D SRA- and 1D SRA-based AFs 

(Figure 2.7), although with milder differences given that AFs have contributions from a range of 

Fourier spectrum frequencies at a single oscillator frequency (Bora et al., 2016). These 

observations are consistent with previous similar studies (e.g., Bielak et al., 1999; Nour et al., 

2003; Pehlivan, 2013). 
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Importantly, this numerical evaluation indicates that the site’s VS variability, captured 

through σlnVS
, has a different impact on the 2D and 1D seismic responses. In other words, using 

model-specific σlnVS
 values for 1D SRAs with VS randomization does not necessarily lead to a 

more realistic seismic response. It is worth noting that 2D SRA-based TFs generally show higher 

amplitudes than 1D SRA-based TFs. Various researchers have observed that 1D SRAs overpredict 

the responses at the site’s fundamental frequency (e.g., Rodriguez-Marek et al., 2020; Zalachoris 

and Rathje, 2015). It is therefore likely that 2D SRAs suffer from a similar issue. Assuming that 

the degree of overprediction is similar in 2D as in 1D SRAs, results from this work are not affected, 

as the relative differences between 2D and 1D SRAs are studied rather than absolute amplitudes. 

An immediate approach to test the validity of conclusions drawn from this numerical evaluation 

can rely on empirical data, as presented in a later section. 

2.5.1. VS RANDOMIZATION TO ACCOUNT FOR 2D VS SPATIAL VARIABILITY 

The previous section shows that randomizing VS with model-specific σlnVS
 values does not 

necessarily lead to an appropriate median seismic response. Here, an evaluation of the ability of 

VS randomization with a generic σlnVS
 = 0.25 to capture 2D VS spatial variability effects is 

conducted, and the performance of a generic σlnVS
 is compared against model-specific σlnVS

 

values. 

The results in terms of TFs and AFs are, respectively, presented in Figures 2.8 and 2.9 for 

the same representative sites selected for Figures 2.6 and 2.7. In all cases investigated, that is, 

σlnVS
 = 0.16 to 0.48, the 84th percentile TFs and AFs at the fundamental frequency estimated using 

a generic σlnVS
 = 0.25 are similar to those estimated using model-specific σlnVS

 values. Using 

σlnVS
 = 0.25 leads to TFs slightly broader compared to the ones from model-specific σlnVS

 for sites 
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with low VS variability, and narrower TFs in the case of highly variable sites. These results suggest 

that σlnVS
 = 0.25 could be used to capture 2D VS spatial variability effects on the seismic response. 

2.6. CRITERIA FOR ESTIMATING A REPRESENTATIVE SEISMIC RESPONSE 

Results indicate that median 1D SRA-based TFs and AFs (with or without VS randomization) are 

lower than the median 2D SRA-based TFs and AFs, around the fundamental frequency. This 

suggests that the median 2D response cannot be captured by the median 1D response. As such, 

two criteria to approximate the median 2D response using 1D SRAs with VS randomization are 

investigated: (1) 1D seismic response percentiles higher than the median, and (2) scaling factors 

to adjust the median 1D seismic response. Results in this section are presented in terms of AFs 

only, but similar trends are observed for TFs. 

2.6.1. POTENTIAL CRITERION : PERCENTILES HIGHER THAN THE MEDIAN 1D SRA-

BASED SEISMIC RESPONSE  

This approach aims at capturing a median response that accounts for 2D VS spatial variability 

effects using a percentile higher than the median 1D SRA-based response. To evaluate the benefit 

from this approach, residuals are estimated for the nth percentile of the 1D SRA-based AFs as: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ln(𝐴𝐹2𝐷, 𝑚𝑒𝑑𝑖𝑎𝑛) − ln(𝐴𝐹1𝐷, 𝑛𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) (2.2) 

where nth can be the median, 60th, 70th, 84th, or the 90th percentile. Positive and negative residuals 

indicate underprediction and overprediction, respectively. Figures 2.10 and 2.11 present residuals 

for AFs estimated using 10 2D random fields, and the corresponding randomized 1D VS profiles 

generated using model-specific σlnVS
, indicated in the top left corners, and a generic σlnVS

 = 0.25. 

In both figures, solid lines represent the median residuals estimated from all the 10 2D random 
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fields, each one with a different model-specific σlnVS
 affecting the seismic response, hence the 

range of σlnVS
 values. In Figure 2.10 (model-specific σlnVS

), residuals for median 1D SRA-based 

AFs (95% CI) vary from 20.5 to 0.75, with scatter increasing with σlnVS
. Logically, these residuals 

decrease, that is, they transition from underprediction to overprediction, as higher percentiles of 

the 1D SRA-based AFs are considered. The 84th – 90th percentile AFs have residuals near zero at 

the fundamental frequency (i.e., around 1.8 Hz), whereas the 60th – 70th percentile AFs reach near-

zero residuals at higher frequencies. In Figure 2.11 (generic σlnVS
 = 0.25), the differences between 

2D and 1D SRA-based AFs at the fundamental frequency are similar to those obtained when using 

model-specific σlnVS
 values. However, at higher frequencies, the overprediction is slightly higher 

for sites with low VS variability (σlnVS
 from 0.16 to 0.19), and lower for sites with high VS 

variability (σlnVS
 from 0.3 to 0.48). For highly variable sites, the 60th percentile AF appears to be 

high enough to capture the median 2D SRA-based response at frequencies other than the 

fundamental. 

2.6.2. POTENTIAL CRITERION : SCALING FACTORS TO ADJUST THE MEDIAN 1D SRA-

BASED SEISMIC RESPONSE 

This approach aims at capturing a median response that accounts for 2D VS spatial variability 

effects by scaling the median 1D SRA-based response. This approach is similar to using correction 

factors to account for 2D or 3D effects (e.g., Chavez-Garcia and Faccioli, 2000). The scaling 

factors are estimated as: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐴𝐹2𝐷, 𝑚𝑒𝑑𝑖𝑎𝑛

𝐴𝐹1𝐷, 𝑚𝑒𝑑𝑖𝑎𝑛
    (2.3) 
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in which AF2D, median is the median 2D SRA-based AF estimated for a site, and AF1D, median is 

the median 1D SRA-based AF for a set of 50 randomized VS profiles used to assess the seismic 

response of the same site. Generally, scaling factors vary from 0.5 to 2.3 (Figure 2.12). Higher 

factors are estimated for more variable sites. For instance, a median factor of 1.5 could be applied 

to a 1D SRA-based AF to estimate the median 2D AF at the fundamental frequency for sites with 

σlnVS
 from 0.4 to 0.48. 

Using scaling factors presents two limitations: (1) they depend on the site’s frequency 

modes, the site’s σlnVS
, and vary across frequencies, which makes them challenging to know and 

calibrate for a wide range of site conditions, and (2) they are highly variable even at a single 

frequency, often with factors lower and higher than 1 and a median near 1 that do not properly 

correct neither overprediction nor underprediction. This approach might be appropriate for site-

specific projects, where a few 2D SRAs can be conducted to calibrate scaling factors (e.g., 

Anderson et al., 2018), but appears unsuitable for a generalized recommendation. 

2.7. PARAMETRIC EVALUATION 

A parametric evaluation is conducted to study the consistency of the observed trends of the 

residuals in AFs for different site conditions. This evaluation is conducted for 2D random fields 

developed for a target σlnVS
 = 0.2 and varying other baseline conditions one at the time. These 

conditions are the underlying bedrock, the VS heterogeneity (correlation model, σlnVS
, and 

correlation lengths), the site’s stiffness and fundamental frequency (VS30 and depth), and the soils’ 

damping ratio. All the investigated parameters and values are listed in Table 2.1. TFs and AFs are 

estimated with model-specific σlnVS
, and the residuals for the median and 84th percentile AFs are 

calculated and compared against results for the baseline case. In this case, residuals are shown 
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against the normalized frequency, 𝑓/𝑓0, where 𝑓0 is the site’s fundamental frequency, to remove 

the effect of differences in 𝑓0 of different sites. Herein, attention is placed on the consistency of 

the improved performance of the 84th percentile over the median 1D SRA-based AFs, at the 

fundamental frequency (𝑓/𝑓0 = 1). A study of the effects of the site conditions on the 2D SRA-

based TFs and AFs and the sampled 1D SRA-based TFs and AFs is presented in Appendix A 

(Pretell et al., 2022). 

2.7.1. EFFECT OF UNDERLYING BEDROCK CONDITIONS 

The baseline site was modeled using a rigid base to isolate the influence of the soil–bedrock 

impedance ratio. A rigid base does not allow for the dissipation of energy when seismic waves 

bounce back down to the model base. Here, the effect of this assumption is studied. An elastic base 

allows for some energy dissipation, which is a more common field condition. The elastic base is 

modeled for three VS, bedrock = 500, 760, and 1500 m/s. The results indicate that the presence of an 

elastic base leads to a mild reduction of residuals, with lower VS values leading to lower residuals 

(Figure 2.13a). At the fundamental frequency, the 1D SRA-based median AF underpredicts the 

response, while 84th percentile AFs are relatively stable and lead to near zero residuals. At higher 

frequencies, the median and 84th percentile 1D SRA-based AFs generally overpredict the response. 

The relative difference between the residuals corresponding to a rigid and an elastic base is minor 

and follows the same trends as observed for the baseline site. Thus, a rigid base is used for further 

parametric analyses. 

2.7.2. EFFECT OF CORRELATION MODEL 

The correlation model controls how fast the VS correlation decays with distance. The baseline site 

was developed using VS random fields that follow an exponential correlation model. The effect of 
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the selected correlation is evaluated using the spherical, the polynomial decaying, and the squared 

exponential correlation models (e.g., Lloret-Cabot et al., 2014). The results do not show a 

significant variation of the residuals for different correlation models compared to the baseline site 

(Figure 2.13b). Overall, all residuals for the median and 84th percentile AFs cluster closely and 

vary within a narrow range of 0.1 ln units. 

2.7.3. EFFECT OF HORIZONTAL CORRELATION LENGTH 

The horizontal correlation length, θhor determines the span within which VS is highly correlated 

in the horizontal direction. Sites with longer θhor have a more similar VS in the lateral direction 

and thus are more compliant to the 1D SRA assumption of lateral continuity. Another 

interpretation for longer θhor is for sites with low VS variability relative to the size of the structure 

of interest. The baseline site’s θhor of 50 m is decreased and increased (θhor = 5, 25, and 500 m) 

to evaluate the effect of shorter and longer horizontal correlation lengths. The results indicate that 

sites with longer θhor lead to smaller residuals, that is, the 2D and 1D seismic responses are more 

similar (Figure 2.13c), whereas sites with shorter θhor, that is, more variable in the lateral direction, 

lead to further underpredictions of the 2D SRA-based median AFs at the fundamental frequencies. 

2.7.4. EFFECT OF VERTICAL CORRELATION LENGTH 

The vertical correlation length, θver, determines the span within which VS is correlated in the 

vertical direction. Sites with longer θver are representative of soil deposits with thicker layers of 

approximately uniform VS. The baseline site’s θver of 5 m is increased (θver = 10, 25, 50 m) to 

evaluate the effect of longer vertical correlation lengths. The results indicate that longer θver values 

lead to higher overpredictions of the seismic response at the fundamental frequency (Figure 2.13d). 
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The residuals for the 1D SRA-based median and 84th percentile AFs are not significantly affected 

by θver and vary within 0.2 ln units across frequencies. 

2.7.5. EFFECT OF SITE’S DEPTH 

The baseline site had a depth of 30 m and a θver of 5 m. The effect of the site depth on the estimated 

residuals is evaluated for the depths of 50, 100, and 200 m through two scenarios: (1) deeper sites 

with constant θver and (2) deeper sites with constant θver/depth. When necessary, the 2D baseline 

model geometry and element dimensions are changed to accommodate the larger (deeper and 

wider) models while balancing the number of recordings and the computational demand. The 

results indicate that the AFs for deeper sites with θver = 5 m are generally underpredicted by the 

median 1D SRA-based AFs at the fundamental and some high-frequency modes, and that 1D SRA-

based 84th percentile AFs are more representative of median 2D SRA-based AFs at 𝑓/𝑓0 (Figure 

2.13e). Similar trends are observed in the case of deeper sites with constant θver/depth (Figure 

2.13f). 

2.7.6. EFFECT OF SITE’S VS30 

The baseline site was generated to have an overall VS30 of 200 m/s following the relations by 

Kamai et al. (2016). The effect of VS30 is evaluated for the values of 300, 400, and 500 m/s. In all 

cases, the parameters used to generate 1D VS profiles are the same and correspond to sites with 

VS30 from 180 to 360 m/s (Toro, 1995). The results indicate that median 1D SRA-based AFs 

underpredict the median 2D SRA-based AFs at the site’s fundamental frequency and they might 

under- or overpredict AFs at higher frequencies (Figure 2.13g). The 84th percentile 1D SRA-based 

AFs lead to near zero residuals at the fundamental frequency and higher overprediction at higher 

frequencies. 
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2.7.7. EFFECT OF SOIL DAMPING 

The dissipation of energy during wave propagation is controlled by the damping ratio. The baseline 

site’s materials are modeled with a damping ratio of 10%. The effect of using different critical 

damping ratios is evaluated for damping ratio values of 2%, 5%, and 15%. The results indicate a 

significant impact of damping on the residuals, with lower damping leading to higher and a more 

erratic variability of residuals (Figure 2.13h). The effect of damping on the absolute seismic 

responses is important. However, the effect of damping on the relative difference between the 

seismic responses estimated using 2D and 1D SRAs is relatively minor. Given a selected damping 

ratio, the difference between the residuals corresponding to the 1D SRA-based median and 84th 

percentile 1D SRA-based AFs is similar to the previous scenarios in variability across frequencies 

and magnitude.  

2.7.8. CONCLUSION FROM PARAMETRIC EVALUATION 

The parametric evaluation indicates some variability in the magnitude of residuals for different 

site conditions but consistent trends in the differences between the residuals from the median and 

84th percentile 1D SRA-based AFs. Therefore, it is concluded that the applicability of the potential 

criteria for estimating a more realistic median seismic response is not limited to the baseline case. 

2.8. EMPIRICAL CONSISTENCY 

The ability of 1D SRAs with VS randomization using σlnVS
 = 0.25 combined with the selection of 

a percentile higher than the median seismic response to be approximate a more realistic response 

that captures VS spatial variability effects is evaluated against ground-motion data. Toward this 

end, data from four downhole sites are used: (1) Delaney Park (Alaska), (2) Garner Valley 

(California), (3) HYGH10 (Japan), and (4) IBRH13 (Japan). These stations are selected as they 
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are identified as sites unlikely to be exposed to non-1D effects and their seismic response to be 

dominated by true resonances (Tao and Rathje, 2020). Nevertheless, 1D SRAs might still lead to 

underestimation of the median empirical TF amplitudes, except at the fundamental frequency 

where overprediction is well known to occur. We argue that while these sites do not present 

complex geological structures, observed discrepancies between theoretical and empirical 

responses are mainly due to the VS spatial variability inherent to natural deposits. Therefore, these 

sites offer an opportunity to examine the trends and findings obtained from the numerical work 

discussed earlier. Key features of the downhole sites, including the taxonomy by Tao and Rathje 

(2020) and Thompson et al. (2012), are presented in Table 2.2. A description of the sites’ geology 

is presented by Combellick (1999) for Delaney Park, Bonilla et al. (2002) for Garner Valley, and 

borehole logs for HYGH10 and IBRH13 are available on the Kiban Kyoshin Network (KiK-net) 

website (National Research Institute for Earth Science and Disaster Resilience (NIED), 2019). 

2.8.1. GROUND-MOTION RECORDINGS 

Ground-motion recordings are collected from the Network for Earthquake Engineering 

Simulations (NEES) database for Delaney Park and Garner Valley and from the KiK-net database 

for the HYGH10 and IBRH13 sites. In the case of Delaney Park and Garner Valley, which have 

sensors at multiple depths, ground-motion recordings from the deepest sensor are used to work 

with the widest possible ground-motion frequency band. The ground motions are used as recorded, 

without any rotation. The recordings are processed, baseline corrected, and filtered with a 

Butterworth band-pass filter (0.5 – 25 Hz) using the software PRISM (Jones et al., 2017). The 

recordings are then selected for the site response evaluation based on the following two criteria: 

(1) an average signal-to-noise ratio (SNR) higher than 5 within the frequency range of interest 

(Ktenidou et al., 2011) and (2) peak accelerations lower than 0.01 g in the sensor at depth such 
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that SRAs remain within the linear elastic range (e.g., Kaklamanos et al., 2013). A summary of the 

number of records that meet these criteria is presented in Table 2.2. 

2.8.2. EVALUATION AND RESULTS 

The baseline VS profiles for each site, reported by Tao (2018), are randomized using the model 

proposed by Toro (1995) to generate 50 VS profiles. For these sites, the previously investigated 

generic σlnVS
 = 0.25 is used alongside with correlation parameters for sites with VS30 from 180 to 

360 m/s. Previous studies have suggested that σlnVS
 for VS randomization should decrease with 

depth and its selection should be guided by geological information (Tao and Rathje, 2019). 

However, given that enough data are not commonly available, a constant value of σlnVS
 is used in 

this study. The evaluation does not account for epistemic uncertainty on the baseline VS profile. 

Theoretical TFs are computed using the code NRATTLE, written by C. Mueller, modified by R. 

Herrmann, and included in the strong-motion programs by Boore (2005). NRATTLE uses the 

Thomson–Haskell solution to compute the 1D SH-wave TF (Haskell, 1953; Thomson, 1950) based 

on a VS profile, density, and the inverse of the quality factors (QS
−1). Values for QS are estimated 

as one-tenth of VS (Olsen et al., 2003), and damping as half the inverse of the Qs (Joyner and 

Boore, 1988). For this, the baseline VS profiles are considered, regardless of VS randomization, 

which leads to damping values ranging from 0.5% to 3.2% (Delaney Park), 0.15% to 2.6% (Garner 

Valley), 0.35% to 3.7% (HYGH10), and 0.15% to 3% (IBRH13). Alternative relations for quality 

factors as a function of damping have been proposed for California (Campbell, 2009) and KiK-net 

sites (Cabas et al., 2017). These relations generally lead to higher damping values and thus ultimate 

lower theoretical TFs and AFs are also possible. Vertical incident waves are assumed in all cases. 
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Theoretical and empirical TFs and AFs are compared in Figures 2.14 and 2.15, and 

residuals for AFs presented in Figure 2.16. For each site, 50 theoretical TFs are calculated along 

with 50 theoretical AFs per ground-motion recording. Unsurprisingly, given the sites’ 

classification as A (Tao and Rathje, 2020), the fundamental frequency mode is well captured by 

the theoretical TFs, except at HYGH10 where some discrepancy is observed. This discrepancy is 

attributed to errors in the baseline VS profile and can be addressed in practice using multiple 

baseline profiles (e.g., EPRI, 2013). 

Results in terms of TFs show that amplitudes of the first mode empirical median TFs are 

better approximated by the 84th percentile than by the median theoretical TFs. At higher 

frequencies, the median to the 84th percentile theoretical TFs fluctuate from overprediction to 

underprediction at different frequency ranges. Basically, the higher modes are smoothed out by VS 

randomization as previously pointed out by Tao and Rathje (2019). Results in terms of AFs, 

generally used in engineering design, present three different behaviors: (1) at Delaney Park and 

Garner Valley, the median theoretical AF is near or higher than the empirical median AF, and thus 

higher percentiles overpredict the AF consistently across frequencies; (2) at IBRH13, the median 

and 70th percentile theoretical AFs are generally lower than the empirical median AF, and the 84th 

percentile captures well the empirical median AF across frequencies; and (3) at HYGH10, results 

fluctuate between ranges of under- and overprediction for the median and higher percentile AFs. 

The overprediction of the seismic response at Delaney Park might be due to the high VS variability 

inferred from geological conditions at this site (Tao and Rathje, 2019). It is therefore always 

recommended to estimate site-specific σlnVS
 based on measured VS profiles to guide the selection 

of a more appropriate percentile (60th or 70th AFs) at frequencies other than the fundamental. 
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The seismic response estimated using empirical data from downhole vertical arrays shows 

consistency with results and trends obtained from the numerical investigation. To evaluate the 

overall benefit of using a higher percentile, mean residuals for the median, the 70th, and the 84th 

percentile 1D AFs are estimated for the numerical investigation considering all the baseline sites 

for a generic σlnVS
 = 0.25 (Figure 2.11) and for the empirical data (Figure 2.15). This preliminary 

statistical evaluation indicates consistency between the numerical and empirical trends (Figure 

2.17). Using percentiles higher than the median seismic response reduces the underpredictions to 

residuals near zero at the fundamental frequency observed for HYGH10 and IBRH13 in Figure 

2.16, although with site-specific differences as observed in Figures 2.14 and 2.15. 

2.9. CONCLUSIONS 

One-dimensional site response analyses (1D SRAs) with shear-wave velocity (VS) randomization 

are commonly conducted to estimate the median site-specific seismic amplification (or 

deamplification) under the implicit assumption that this approach leads to a realistic response. The 

results from the numerical evaluation using 2D SRAs and 1D SRAs with VS randomization 

indicate that the latter leads to TFs lower by 30 – 50% and AFs lower by 10 – 40%, around the 

sites’ fundamental frequency. Meanwhile, the observed underpredictions are either lower or 

overpredictions at higher frequencies. The inability of 1D SRAs with VS randomization to capture 

a more realistic 2D response is mainly due to the combined effects of (1) the shifting of the 

individual 1D responses’ fundamental modes that lead to the coincidence of peaks and troughs at 

common frequencies that cancel each other out when the median seismic response is estimated, 

and (2) the intrinsic limitations of 1D SRAs to capture the amplification effects other than those 

caused by impedance changes and resonance (e.g., constructive interference). Results from this 
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numerical evaluation do not support the use of median AFs from 1D SRAs with VS randomization 

for the design of structures. 

AFs estimated using 1D SRAs with VS randomization (σlnVS
 = 0.25) and percentiles higher 

than the median capture well the median 2D AFs that account for the effect of VS spatial variability, 

at the fundamental frequency. Results from the numerical evaluation suggest that in most cases, 

σlnVS
 = 0.25 for VS randomization has a similar or superior performance in preventing 

underpredictions using model-specific σlnVS
 computed from the 2D random fields for capturing 

2D VS spatial variability effects. The percentile 84th AF is an appropriate estimate at the 

fundamental frequency, the 70th percentile AF is a better alternative at higher frequencies for sites 

with slightly to moderately variable VS (σlnVS
 lower than 0.3), and the 60th percentile AF for highly 

variable sites (σlnVS
 higher than 0.3). These findings are supported by a numerical evaluation using 

linear elastic 2D and 1D SRAs on sites with spatially variable VS across multiple site conditions, 

and an initial analysis using empirical data from four downhole vertical arrays. The trends are 

consistent in numerical results across different site conditions, but three behaviors are observed 

for the performance of higher percentiles from 1D SRAs in the empirical evaluation, ranging from 

consistent overprediction of AFs to consistent underprediction, or a mixture of both. It is expected 

that avoiding overpredictions from the 84th percentile AFs would require conducting 2D or 3D 

SRAs with appropriate VS models. 

Results from this study also show that σlnVS
, used for VS randomization, has a different 

impact on 2D and 1D SRAs. In 2D SRAs, a higher σlnVS
 leads to mild variations of the median 

seismic response (TFs and AFs) amplitudes and a moderate increase in the response variability. In 

1D SRAs with VS randomization, a higher σlnVS
 leads to a significant decrease in the median 
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seismic response amplitudes and a significant increase in the response variability across 

frequencies. At the same time, σlnVS
 has a strong impact on TFs than it has on AFs. Due to these 

effects, conducting VS randomization with site-specific σlnVS
 does not necessarily lead to a more 

appropriate median seismic response, particularly for sites with highly variable VS (σlnVS
 higher 

than 0.3). Nevertheless, using measured VS profiles in site-specific SRAs is critical, and knowing 

the site-specific σlnVS
 can guide the selection of a representative seismic response percentile at 

frequencies other than the fundamental. The measurement of site-specific VS profiles is 

encouraged. 

This study focused on the estimation of a median seismic response that captures 2D VS 

spatial variability effects. Linear elastic 2D SRAs were conducted on correlated VS random fields 

with σlnVS
 values from 0.16 to 0.48, and 1D SRAs on randomized VS profiles developed using the 

model proposed by Toro (1995) for VS randomization only. Empirical data from sites classified as 

A using the taxonomy proposed by Tao and Rathje (2020) were compared against the results from 

SRAs conducted using damping ratios estimated based on quality factors and VS values (Joyner 

and Boore, 1988; Olsen et al., 2003). Findings from this work are subject to the above 

considerations and have not been tested against other conditions, such as sites inferred to be 

exposed to non-1D effects and complex geology. Further investigations are deemed necessary to 

investigate the effects of additional 2D features affecting the seismic response, the soil’s 

nonlinearity, among others. Similarly, a comprehensive statistical evaluation of the residuals 

associated with the seismic response estimated as a percentile higher than the median from 1D 

SRAs with VS randomization should be conducted. 
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FIGURES 

 

Figure 2.1. Schematic of various wave propagation phenomena in a natural environment. 

 

 

Figure 2.2. Sample window of a 2D correlation VS random field and sampled 1D VS profiles. 
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Figure 2.3. Selection of a minimum model width. (a) Model setup for evaluation. (b) Evaluation 

in terms of TFs against the 1D benchmark. (c) Evaluation of allowable error in the 2D response.  

 

 

Figure 2.4. Theoretical and simulated horizontal correlation functions of ln(VS) for the 2D random 

fields. 
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Figure 2.5. Input ground motion considered for the numerical evaluation of 2D versus 1D SRAs. 

 

Figure 2.6. Transfer functions from 2D and 1D SRAs. Results from (a) to (d) correspond to four 

representative 2D VS random field models, each with a different model-specific σlnVS
, indicated 

in the bottom left corners, and the corresponding sampled 1D and randomized 1D VS profiles. 

One-dimensional SRAs conducted with VS randomization using the model-specific σlnVS
. 
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Figure 2.7. Amplification factors from 2D and 1D SRAs. Results from (a) to (d) correspond to 

four representative 2D VS random field models, each with a different model-specific σlnVS
, 

indicated in the bottom left corners, and the corresponding sampled 1D and randomized 1D VS 

profiles. One-dimensional SRAs conducted with VS randomization using the model-specific σlnVS
. 
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Figure 2.8. Transfer functions from 2D and 1D SRAs. Results from (a) to (d) correspond to four 

representative 2D VS random fields, each with different σlnVS
, indicated in the bottom left corners, 

the corresponding randomized 1D VS profiles using model-specific σlnVS
, and 1D VS profiles using 

a generic σlnVS
 = 0.25. 
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Figure 2.9. Amplification factors from 2D and 1D SRAs. Results from (a) to (d) correspond to 

four representative 2D VS random fields, each with different σlnVS
, indicated in the bottom left 

corners, the corresponding randomized 1D VS profiles using model-specific σlnVS
, and 1D VS 

profiles using a generic σlnVS
 = 0.25. 
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Figure 2.10. Median residuals for various percentiles of 1D SRA-based amplification factors 

compared to 2D SRA-based median amplification factors. VS randomization conducted using 

model-specific σlnVS
, indicated in top left corners.  
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Figure 2.11. Median residuals for the 50th, 70th, and 84th percentiles of 1D SRA-based 

amplification factors compared to 2D SRA-based median amplification factors. VS randomization 

conducted using model-specific σlnVS
, indicated in the top left corners, and a generic σlnVS

 = 0.25. 

Residuals for the 84th percentile 1D SRA-based amplification factors from VS randomization with 

model-specific σlnVS
 (Figure 2.10) included for reference. 
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Figure 2.12. Scaling factors to estimate median 2D amplification factors accounting for VS spatial 

variability based on 1D SRAs with VS randomization using model-specific σlnVS
, indicated in top 

left corners. 

 



49 

 

 

Figure 2.13. Residuals for the median and 84th percentile 1D SRA-based amplification factors 

relative to the median 2D SRA-based amplification factors for various site parameters related to 

(a): the underlying bedrock condition, (b) to (d): the VS heterogeneity, (e) to (g): the site’s stiffness 

and fundamental frequency, and (h): damping. One-dimensional SRAs conducted with VS 

randomization using the model-specific σlnVS
. 
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Figure 2.14. Theoretical and empirical transfer functions for four sites classified as A based on 

the site taxonomy by Tao and Rathje (2020). Theoretical transfer functions based on 1D SRAs 

with VS randomization using a generic σlnVS
 = 0.25 to capture 2D VS spatial variability effects. 
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Figure 2.15. Theoretical and empirical amplification factors for four sites classified as A based on 

the site taxonomy by Tao and Rathje (2020). Theoretical amplification factors based on 1D SRAs 

with VS randomization using a generic σlnVS
 = 0.25 to capture 2D VS spatial variability effects. 
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Figure 2.16. Residuals for various 1D SRA-based amplification factor percentiles. 1D SRAs 

conducted with VS randomization using a generic σlnVS
 = 0.25. Note: Site’s theoretical 

fundamental frequency corresponding to the first mode observed in the theoretical transfer 

function. 

 

 

Figure 2.17. Mean of median residuals in amplification factors for the investigated numerical 

baseline sites (Figure 2.11) and the four downhole sites (Figure 2.16). 
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TABLES 

Table 2.1. Summary of parameters for all the evaluated site conditions. 

Parameter Baseline case Parametric evaluation 

Input ground motion boundary condition Rigid  Elastic (VS = 500, 760, 1500 m/s) 

Correlation model Exponential Spherical, polynomial decaying, 

squared exponential 

Horizontal correlation length, hor (m) 50 5, 25, 500 

Vertical correlation length, ver (m) 5 10, 15, 25 

Site’s VS30 (m/s) 200 300, 400, 500 

Site depth (m) 30 50, 100, 200 

Soil’s damping ratio (%) 10 2, 5, 15 

Note: In all cases, input σlnVS
 = 0.20 ln units. 

 

Table 2.2. Key features of the downhole sites selected for the evaluation of empirical consistency. 

Downhole 

site 
Depth (m) VS30 (m/s) 

Site type Number of 

events 3 
Database 

TR20 1 Tea12 2 

Delaney Park 61 270 A LG 15 NEES 

Garner Valley 150 285 A LG 89 NEES 

HYGH10 100 225 A LP 23 KiK-net 

IBRH13 100 335 A LG 120 KiK-net 

1 Tao and Rathje (2020): A: 1D sites dominated by true resonances.  

2 Thompson et al. (2012): L: Low variability; G: Good fit.  

3 Both components of each event are used. 
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CHAPTER 3 

A BOREHOLE DATA-BASED APPROACH FOR CONDUCTING 

1D SITE RESPONSE ANALYSES I: DAMPING AND VS 

RANDOMIZATION 

 

AUTHOR’S NOTE 

The contents of this chapter will be submitted for journal publication by Pretell R, Abrahamson 

NA and Ziotopoulou K. Authorship roles are provided in Chapter 1.  

3.1. ABSTRACT 

One-dimensional site response analysis (1D SRA) remains the state of practice to estimate site-

specific seismic response, despite the ample evidence of discrepancies between observations and 

1D SRA-based predictions. These discrepancies are due to errors in the input parameters, intrinsic 

limitations in the predicting capabilities of 1D SRAs even for sites relatively compliant to the 1D 

SRA assumptions, and the inability of 1D SRAs to model 3D wave propagation phenomena. This 

paper aims at reducing 1D SRA mispredictions by using minimum damping profiles calibrated by 

a damping multiplier (Dmul) and randomized shear-wave velocity (VS) profiles. An approach for 

conducting 1D SRAs is developed with the goal of reducing the 1D SRAs errors in magnitude and 

variability. First, sites from a database of 534 downhole sites are classified as 1D- and 3D-like 

sites depending on the substructure conditions inferred from observed transfer functions. Second, 

data from the 1D-like sites are compared against predictions from 1D SRAs conducted using 

various trials of Dmul and VS standard deviations (σlnVS) for VS randomization. Third, Dmul and 
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σlnVS  are evaluated in their combined ability to reduce the root mean square error (RMSE) in SRA 

predictions. Results indicate that 1D SRAs conducted with Dmul = 3, and σlnVS = 0.25 lead to an 

overall minimum RMSE and thus provide more accurate site response estimations. The use of 

these parameters in forward SRAs is discussed in Chapter 4.  

3.2. INTRODUCTION 

One-dimensional site response analysis (1D SRA) remains the state of practice to estimate site-

specific seismic response, despite of the ample evidence of discrepancies between observations 

from borehole sites and 1D SRA predictions. These discrepancies are generally attributed to the 

lack of knowledge about the shear-wave velocity (VS) profile, and the breakdown of the 1D wave 

propagation assumptions, and 3D effects (Kaklamanos et al., 2020; Stewart and Afshari, 2020; Hu 

et al., 2021). The parameterization of linear elastic 1D SRAs consists of damping and VS profiles 

only. This simple parameterization, and the broad implementation of 1D SRAs in practice prevents 

the addition of new parameters or the adoption of more advanced numerical approaches for 

estimating site response (e.g., Semblat, 2011). This situation leads to three alternatives for 

enhancing 1D SRA-based site response predictions: (1) altering the site response input parameters 

(VS and damping), (2) post-processing 1D SRA estimations such that a more accurate site response 

is obtained, e.g., using scaling factors, and (3) a combination of (1) and (2). In this work, a 

methodology for conducting 1D SRAs with altered input parameters is proposed, specifically 

damping profiles increased by a damping multiplier (Dmul) and randomized VS profiles. The 

proposed approach focuses on linear elastic SRAs, henceforth referred to as “1D SRAs,” and thus 

only the minimum or small-strain damping is discussed and referred to as “damping” for brevity. 
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Current practices use geophysical testing and engineering correlations to define site 

response input parameters. In principle, both VS and damping profiles could be measured using 

geophysical testing (e.g., Foti et al., 2014). However, damping is commonly estimated based in 

correlations with other geotechnical or seismological parameters (Boaga et al., 2015), and VS 

profiles are often measured, although to an extent that is generally insufficient to understand and 

account for the VS spatial variability and potential presence of any complex geological structure 

underneath a given site of interest. The approach for defining damping profiles for forward site 

response predictions remains a choice based on the analyst’s preference and available data. These 

approaches include correlations with the site-specific attenuation parameter κ0 (Xu et al., 2020), 

quality factors, Q (e.g., Olsen et al., 2003; Campbell, 2009; Cabas et al., 2017), and laboratory-

based damping formulations (e.g., Darendeli, 2001; Menq, 2003). The latter are often scaled to 

better represent the field conditions (e.g., Rodriguez-Marek et al., 2017; Tao and Rathje, 2019; 

Ruigrok et al., 2022). The VS spatial variability is the only site-specific feature intended to be 

addressed when conducting 1D SRAs in engineering practice. To this end, randomized VS profiles 

generated using the Toro (1995) model are used (e.g., Griffiths et al., 2016a), and the median 

response is considered as representative. However, studies show that this approach underpredicts 

the seismic response (Teague and Cox, 2016; Tao and Rathje, 2019; Kaklamanos et al., 2020; 

Hallal et al., 2022, Pretell et al., 2022a). To prevent these underpredictions, Pretell et al. (2022a) 

recommend using randomized VS profiles generated using the model by Toro with VS standard 

deviation (σlnVS) = 0.25 and selecting the 84th percentile seismic response as representative at the 

site’s fundamental frequency. 

The development of the proposed approach has two main parts. The first part consists of 

the selection of a Dmul and a σlnVS  for VS randomization that together lead to the lowest minimum 
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root square error (RMSE). The second part consists of the quantification of the 1D SRA remaining 

errors such that they can be considered in forward predictions of site response. This chapter focuses 

on the first part, and Chapter 4 describes the second part. 

3.3. PROPOSED APPROACH FOR CONDUCTING 1D SITE RESPONSE ANALYSES 

The state of practice for predicting site response uses 1D SRA as an approach that condenses the 

complexities of 3D wave propagation to an SH wave traveling vertically through a soil column. 

Such simplification leads to modeling errors, evident when comparing 1D SRA predictions and 

observations (e.g., Bonilla et al., 2002; Kaklamanos et al., 2013; Kaklamanos and Bradley, 2018; 

Stewart and Afshari, 2020; Zhu et al., 2022). For example, Figure 3.1 shows the theoretical and 

observed transfer functions (TFs), defined as the ratio of the Fourier amplitude spectra at surface 

and depth, for four borehole sites. Key observations in Figure 3.1 are (1) the overprediction of the 

theoretical fundamental mode (Figures 3.1a to 3.1d), (2) the underprediction of the high-frequency 

modes (Figures 3.1b, 3.1c, and 3.1d), (3) the misalignment of the fundamental and higher modes 

between the median observed and theoretical TFs (Figures 3.1b to 3.1d), and (4) the overall 

smoother observed TFs compared to the more sharply peaked theoretical TFs (Figures 3.1b to 

3.1d). The commonly observed overprediction of the fundamental mode suggests that 1D SRAs 

have a consistent tendency at the fundamental frequency, and less clearly so at other frequencies 

(e.g., Kaklamanos et al., 2013). In this section, an approach for conducting 1D SRAs with Dmul 

and VS randomization is described. 

3.3.1. DAMPING MULTIPLIERS AND VS RANDOMIZATION IN 1D SRAs 

Various mechanisms lead to dissipation of energy during wave propagation, such as friction 

between particles and wave scattering, which are not modeled but can be captured by damping in 
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1D SRAs. Laboratory-based damping models (e.g., Darendeli, 2001; Menq, 2003) provide 

estimates of the intrinsic material damping and do not account for energy dissipation mechanisms 

existing in the field. As such, damping is underestimated and the site response amplitudes 

overestimated. Various authors propose that laboratory-based damping could be scaled to improve 

site response predictions (Elgamal et al., 2001; Tsai and Hashash, 2009; Stewart et al., 2014; 

Zalachoris and Rathje, 2015; Kokusho, 2017; Tao and Rathje, 2019). For instance, Tao and Rathje 

(2019) find that Dmul = 3 to 5 applied to damping profiles after Darendeli (2001) reduces the 

discrepancies between observations and 1D SRA predictions at four borehole sites, and Ruigrok 

et al. (2022) suggest that a Dmul = 0.65 to 1.6 can be used to scale laboratory damping-based κ0 to 

match Q estimates at the Groningen gas field in the Netherlands. 

Randomized VS profiles generated using the Toro (1995) model for 1D SRA applications 

are commonly used in the nuclear industry (e.g., Abrahamson et al., 2002; Abrahamson et al., 

2004; EPRI, 2013; Bommer et al., 2015; Rodriguez-Marek et al., 2021). Toro recommends 

different values of σlnVS  for VS randomization ranging from 0.27 to 0.37, depending on site classes 

determined based on VS30, estimated as the inverse of the average slowness in a site’s top 30 m. 

Generally, VS profiles are randomized with the goals of (1) reducing the overpredictions at the 

site’s fundamental mode (e.g., Figure 3.2c), and (2) capturing the VS spatial variability across the 

footprint of a project site. However, it is unclear how the amount of randomization mapped through 

σlnVS  should vary for sites with different site-specific conditions regardless of VS30. Overall, 

various studies indicate that the σlnVS  values recommended by Toro are excessively high and thus 

VS randomization leads to unrealistically low site response estimates (e.g., Stewart et al., 2014; 

Griffiths et al., 2016b; Teague et al., 2018; Tao and Rathje, 2019; Passeri et al., 2020). Pretell et 

al. (2022a) show that not only σlnVS  is generally too high, but site response underpredictions also 
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originate from considering the median site response as representative. Based on a numerical 

investigation, Pretell et al. (2022a) suggest that the 84th percentile site response from 1D SRAs 

conducted with randomized VS profiles (σlnVS  = 0.25) is an appropriate response that accounts for 

VS spatial variability at the site’s fundamental frequency.  

Increasing damping and randomizing VS profiles are both tools observed to improve 1D 

SRA predictions, but they affect the estimated responses differently. For instance, Figure 3.2 

shows TFs calculated for various Dmul and σlnVS  values applied to a baseline VS profile generated 

after Kamai et al. (2016) for site conditions consistent with California. Both Dmul and σlnVS  reduce 

the site response amplitudes at the fundamental mode, but the Dmul causes a stronger reduction in 

the high-frequency range (Figure 3.2b), whereas σlnVS  leads to relatively stable minimum 

amplitudes (Figure 3.2c). 

3.3.2. APPROACH FOR IMPROVING SITE RESPONSE PREDICTIONS 

In theory, 1D SRAs should provide the best possible site response predictions for sites that are 

more compatible with 1D SRA assumptions (1D-like sites), while larger errors are expected for 

sites that are more strongly affected by non-1D effects (3D-like sites). However, the assumptions 

of the 1D SRA approach are unrealistic and thus 1D SRAs cannot predict site response accurately 

even for 1D-like sites, and cases with VS profiles exempt from measurement errors, as 

demonstrated in numerical investigations (e.g., De la Torre et al., 2021; Pretell et al., 2022b). Such 

errors are herein referred to as “intrinsic errors.” Two major sources of such errors are (1) the 

unrealistic wave reverberations and spurious resonances that lead to overpredictions of the 

amplitudes at the sites’ fundamental frequency (Boore, 2013), and (2) the inability to simulate 

energy dissipation mechanisms, thus leading to an overall overprediction of site response 
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amplitudes. It is hypothesized that the portion of 1D SRA mispredictions due to intrinsic 1D-SRA 

errors can be removed by using randomized VS profiles and an increased amount of damping. The 

remaining residuals can then be attributed to 3D effects affecting the seismic response, the intrinsic 

complexity of the wave propagation phenomena, and randomness of ground motion waveforms.  

An approach for conducting 1D SRAs using increased damping and randomized VS 

profiles is proposed with two objectives: (1) to remove the bias intrinsically carried by 1D SRAs 

following the previously described hypothesis, and (2) to obtain the minimum variability in site 

response residuals. To achieve this goal, this work builds off the work by Tao and Rathje (2019) 

and Pretell et al. (2022a) to find the most appropriate Dmul and σlnVS  by comparing 1D SRA 

predictions to ground motion data from 1D-like borehole sites, whose residuals are assumed to be 

dominated by the intrinsic errors in 1D SRAs. Pretell et al. (2022a) hypothesized that VS 

randomization can be treated as a multi-purpose tool used to capture site-specific features affecting 

the seismic response such as (1) VS spatial variability (e.g., Assimaki et al., 2003; Nour et al., 

2004; El Haber et al., 2019; De la Torre et al., 2021; Pretell et al., 2022a); (2) dipping bedrocks 

and topography (e.g., Katebi et al., 2018), wave inclination (e.g., Semblat et al., 2000; Zhu et al., 

2016); and (3) other features that cannot be explicitly modeled in 1D SRAs. This approach is 

extended to find the right amount of σlnVS  for VS randomization that along with Dmul removes the 

intrinsic errors associated to 1D SRAs. This approach does not prevent the potential for including 

further or lower randomization to capture site-specific features, but further work is needed in this 

direction. The use of Dmul in 1D SRAs follows a similar philosophy, motivated by the inability to 

explicitly model energy dissipation mechanisms in 1D SRAs.  
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3.3.3. FRAMEWORK OF ALEATORY VARIABILITY AND EPISTEMIC UNCERTAINTY 

One-dimensional SRAs, or more generally numerical simulations and analysis tools, inevitably 

deal with sources of aleatory variability (AV) and epistemic uncertainty (EU) as described by 

Abrahamson et al. (1990) and Roblee et al. (1996). AV and EU refer to variability due to apparent 

randomness of the natural phenomena caused by the features uncaptured in a selected modeling 

approach, and the lack of knowledge about the optimal input parameters, respectively 

(Abrahamson et al., 2004; Baecher and Christian, 2003). Abrahamson et al. (1990) further 

partitioned the AV and EU into parametric and modeling components (Table 3.1). The parametric 

AV (PAV) results from the spatial and temporal randomness of the input parameters, whereas the 

parametric EU (PEU) results from the lack of knowledge about the ranges of input parameters and 

the values sampled for analyses. The modeling AV (MAV) is due to the site-specific features 

which effects are not captured by the analysis tool, and the modeling EU (MEU) is due to the 

limited predictive capabilities of the analysis tool.  

Generally, there is a trade-off between the complexity of the analysis tool and the MAV. 

For instance, within the context of ground motion modeling, it is expected that ground motion 

models (GMMs) that only account for magnitude and distance (i.e., simple parameterization) have 

a larger MAV than GMMs that also account for site conditions mapped through VS30 and the depth 

to VS = 1 km/s, Z1 (i.e., a more complex parameterization). The reduction in MAV for the second 

GMM comes with an additional PEU associated with the VS30 and Z1 scaling in the model that can 

be reduced as larger datasets are collected, or if further investigations are conducted to better 

estimate such parameters. Overall, there is a benefit in trading MAV for PEU as the latter can be 

reduced whereas the former can only be accounted for.  
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The framework proposed by Abrahamson et al. (1990) can be adapted to 1D SRA 

applications. The PAV consists of random factors affecting site response that can be explicitly 

modeled. The PAV includes the ground motion waveforms, an example of randomness in time, 

and VS spatial variability, an example of randomness in space. The PEU consists of the plausible 

alternative input parameters, selected based on some criteria, such as a given mean and standard 

deviation of ground motion spectral accelerations, and a best estimate, lower, and upper bound VS 

profiles. A part of MAV can be reduced as site-specific terms are quantified (more complex 

model). Finally, the remaining part of MAV consists in the variability of site response given its 

natural randomness that is not captured by the selected modeling approach, e.g., ground motion 

inclination within the context of 1D SRAs. 

3.3.4. SITE RESPONSE RESIDUAL COMPONENTS 

The errors carried by 1D SRA predictions can be quantified using borehole data, which consist of 

ground motion recordings at depth and ground surface. Within the context of 1D SRAs, the ground 

motions recorded at depth should explain the ground motions at surface assuming that the site’s 

1D VS profile is accurate. Thus, the recordings at depth can be used as input motions and the 

resulting responses and recordings at surface be compared to evaluate the accuracy of 1D SRAs. 

For an intensity measure “IM” estimated using 1D SRAs, and the corresponding observed 

earthquake component “e” at a site “s,” the following relation can be established: 

𝐼𝑀𝑒𝑠
𝑜𝑏𝑠 = 𝐼𝑀𝑒𝑠

𝑆𝑅𝐴 + 𝛿𝑒𝑠
𝑆𝑅𝐴      (3.1) 

where IMes
obs and IMes

SRA are respectively the observed and 1D SRA-predicted IM in natural 

logarithm units, and δes
SRA is the site response residual. IM can represent transfer functions (TFs), 

amplification factors (AFs), or any other metric of interest. Following the separation of residuals 
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proposed by Al Atik et al. (2010), adapted to the approach for conducting 1D SRAs herein 

proposed, the residual in Equation 3.1 can be expressed as:  

δ𝑒𝑠
SRA = 𝑐𝑆𝑅𝐴 + δ1𝐷𝑠

𝑆𝑅𝐴 + δ3𝐷𝑒𝑠
𝑆𝑅𝐴    (3.2) 

where cSRA is the global 1D-SRA bias, estimated as the mean of all the residuals in the available 

dataset, δ1Ds
SRA is the site-specific residual due intrinsic 1D-SRA errors (e.g., the 1D SRA 

overprediction at the site’s fundamental mode), and δ3Des
SRA is the residual due to non-1D features 

affecting the site response and the effect of different ground motion waveforms that are not 

accounted for by cSRA. The residual δ3Des
SRA can be further partitioned as: 

δ3𝐷𝑒𝑠
𝑆𝑅𝐴 = 𝛿𝑆2𝑆𝑠

𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠
𝑆𝑅𝐴    (3.3) 

where δS2Ss
SRA is the mean bias-corrected residual at a site “s”, and δAMPes

SRA is the unexplained 

remaining bias- and site-corrected residual. The components δS2Ss
SRA and δAMPes

SRA are 

considered random variables with zero mean and standard deviations ϕS2S
SRA and ϕAMP

SRA , 

respectively. Replacing Equation 3.3 into Equation 3.2:  

𝛿𝑒𝑠
𝑆𝑅𝐴 = 𝑐𝑆𝑅𝐴 + 𝛿1𝐷𝑠

𝑆𝑅𝐴 + 𝛿𝑆2𝑆𝑠
𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠

𝑆𝑅𝐴  (3.4) 

Equations 3.1, 3.2, and 3.4 correspond to 1D SRAs conducted with a single best estimate VS profile 

and an uncalibrated amount of damping (e.g., based on laboratory measurements or correlations 

with Q). Following the hypothesis herein proposed, δ1Ds
SRA can be removed by using the right 

amount (i.e., calibrated) of damping and VS randomization through Dmul and σlnVS , respectively. 

Therefore, using calibrated Dmul and σlnVS , Equation 3.4 reduces to: 

𝛿𝑒𝑠
𝑆𝑅𝐴 = 𝑐𝑆𝑅𝐴 + 𝛿𝑆2𝑆𝑠

𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠
𝑆𝑅𝐴   (3.5) 
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Note that δ𝑒𝑠
SRA in Equations 3.2 to 3.4 is calculated from Equation 3.1 with IMes

SRA obtained from 

a VS profile and an input ground motion, whereas δ𝑒𝑠
SRA in Equation 3.5 is calculated from Equation 

3.1 with IMes
SRA representing the median IM from a suite of randomized VS profiles and an input 

ground motion. Thus, cSRA in Equations 3.4 and 3.5 are conceptually different. This paper aims at 

finding the Dmul and σlnVS  based on comparisons with borehole data. Sites considered in the 

evaluation are those identified as 1D-like, thus cSRA is expressed as c1D
SRA. The more common c3D

SRA 

(i.e., the bias associated with 3D-like sites), and the residual components δS2Ss
SRA and δAMPes

SRA 

are discussed in Chapter 4. All the terms in Equations 3.1 to 3.5 are frequency dependent. 

Various sets of SRAs are conducted for Dmul from 1 to 10 in increments of 1, and σlnVS  

from 0.05 to 0.40 in increments of 0.05, leading to a total of 80 Dmul-σlnVS  trials. Ten additional 

sets of SRAs with Dmul from 1 to 10 and no VS randomization are also conducted. When 

randomization is used, a suite of 50 randomized VS profiles is generated per site, and the median 

of the corresponding 50 theoretical TFs compared against each of the observed TFs. In the case of 

AFs, each ground motion recording is propagated through the 50 VS profiles resulting in 50 AFs 

per recording available. The median of these 50 theoretical AFs per recording is compared against 

each of the observed AFs.  

Several modeling decisions and assumptions are considered for the damping and the VS 

profiles. Damping profiles are calculated as a function of vertical effective stress following the 

formulation by Darendeli (2001) considering the same layering as in the VS profiles. The Darendeli 

model is used assuming a plasticity index (PI) = 0, an overconsolidation ratio (OCR) = 1, a load 

frequency (fload) = 1 Hz, and a coefficient of lateral pressure at rest (K0) = 0.5. The vertical 

effective stress is estimated considering the measured groundwater table level, when available, or 
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inferred water table elevations located based on the deepest location with a compressional-wave 

velocity (VP) higher than 1500 m/s (Table 3.2) or site conditions (e.g., closeness to a body of 

water). The sites’ mean effective stresses at the borehole sensor locations range approximately 

from 4.5 to 53 atm (assuming a K0 = 0.5), with a 90th percentile of 27.6 atm, which is 

approximately falls within the range of isotropic confining pressures considered by Darendeli in 

the development of the model from 0.3 to 27 atm. Sites with higher mean effective stresses are 

AICH09, CHBH17, IBRH17, and SZOH25. Randomized VS profiles are generated based on 

measured VS profiles using the VS model by Toro (1995) with a constant σlnVS with depth, and the 

coefficients recommended for sites with VS30 = 180 to 360 m/s, which are approximately the same 

as the coefficients for sites with VS30 = 360 to 760 m/s. The correlation between damping and VS 

is not considered in the estimation of damping or randomized VS profiles, and the same damping 

is used for all the randomized VS profiles.  

The theoretical TFs are computed using the computer code NRATTLE, while observed are 

based on borehole data. NRATTLE is included in the SMSIM programs (Boore, 2005), 

considering a within-motion boundary condition (e.g., Kwok et al., 2007), and smoothed after 

Konno and Ohmachi (1998). NRATTLE uses the Thomson–Haskell solution to compute the 1D 

SH-wave TF (Thomson, 1950; Haskell, 1953) based on profiles of VS, density, and the inverse of 

the Q, estimated as half the inverse of damping (Joyner and Boore, 1988). AFs are estimated based 

on response spectra of accelerations computed using pyRotD (Kottke, 2018). Only the data from 

borehole sites with measured VS profiles are used, and it is assumed that such profiles are accurate. 

Ground motion recordings are screened and those with a shear strain index (Idriss, 2011) lower 

than 0.005%, expected to yield shear strains lower than 0.01% on average (Kim et al., 2016), 

considered appropriate for linear elastic SRAs (Kaklamanos et al., 2013) and kept for this 
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investigation. The ground motions are also screened to meet an acceptable signal-to-noise ratio 

SNR within frequencies higher than half the site’s fundamental frequency (𝑓0) to 12 to 20 Hz, 

depending on the ground motion database. The number of ground motions per usable (i.e., 

appropriate) SNR is presented across 𝑓/𝑓0 in Figure 3.3, and summarized in Table 3.2. Note that 

the 𝑓0 corresponds to the first mode of the theoretical TFs computed assuming a within-motion 

boundary condition. 

3.4. IDENTIFICATION OF 1D-LIKE SITES 

Several approaches for identifying sites compatible with the 1D SRA assumptions are available in 

the literature (Thompson et al., 2012; Laurendeau et al., 2018; Afshari and Stewart, 2019; Pilz and 

Cotton, 2019; Tao and Rathje, 2020; Pilz et al., 2022) as summarized by Hallal et al. (2022). For 

instance, Thompson et al. (2012) assessed a given site’s compliance to 1D SRA assumptions by 

means of the inter-event variability (σ), and the Pearson’s correlation coefficient (r) between 

observed and theoretical TFs. The authors suggested that sites with σ < 0.35 and r > 0.6 are less 

exposed to 3D effects, and thus better modeled using 1D SRAs.  

In this work, sites with theoretical TFs estimated using Dmul = 1 and no randomization 

whose peaks align well with those in observed TFs are considered 1D-like. To evaluate this, an 

approach similar to the proposed by Thompson et al. (2012) is followed, with the difference that 

only the Pearson’s correlation coefficient is used. The goal of the evaluation is to find 1D-like sites 

that can be used for the calibration of Dmul and σlnVS and thus remove the δ1Ds
SRA. Therefore, the 

inter-event variability, indicative of the azimuthal variations in the velocity structure (Ramos-

Sepúlveda and Cabas, 2021; Pilz et al., 2022), is not used in the evaluation. The correlation 

coefficient is computed at five frequency ranges indicated in Appendix B, e.g., from the first to 
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either the third theoretical TF peaks or the maximum usable frequency determined based on the 

SNR. Considering various relatively narrow frequency intervals prevents that a single highly or 

negligibly correlated mode dominates the correlation coefficient across a wide frequency range, 

and thus allows for the identification of 1D-like sites with a proper alignment of TF peaks across 

frequencies. A database of 534 borehole sites from the US and Japan is used to identify the 1D-

like sites. The 100 sites with the highest Pearson’s correlation coefficients in at least three 

frequency intervals are selected as candidates and visually inspected. A total of 39 sites are 

identified as 1D-like, which represents about 7% of the database. Examples of 1D- and 3D-like 

sites’ TFs are presented in Figure 3.4. A summary of the main characteristics of the 1D-like sites 

is presented in Table 3.2, the corresponding correlation coefficients in Appendix B, and TFs and 

AFs estimated using Dmul = 1 and no randomization for all the 1D-like sites are presented in 

Appendices C and D.  

3.5. SELECTION OF Dmul and 𝛔𝐥𝐧𝐕𝐒 

Various Dmul and σlnVS  are evaluated in their individual and combined ability to improve 1D-SRA 

predictions for 1D-like sites in terms of TFs and AFs (e.g., Figures 3.5 to 3.7). The most 

appropriate Dmul and σlnVS  are the pair yielding to the lowest (δS2Ss
SRA + δAMPes

SRA) thus 

removing δ1Ds
SRA. Such a Dmul-σlnVS  combination can be found by minimizing the root mean 

square error (RMSE), defined as: 

𝑅𝑀𝑆𝐸 =
1

𝑁𝑠𝑖𝑡𝑒
∑

(

 
 1

2 × 𝑁𝑒𝑣𝑒𝑛𝑡
∑ √

1

𝑁𝑓𝑟𝑒𝑞
∑ Δ𝑒𝑠

SRA2

𝑁𝑓𝑟𝑒𝑞

𝑖=1

2×𝑁𝑒𝑣𝑒𝑛𝑡

𝑔𝑚=1

)

 
 

𝑁𝑠𝑖𝑡𝑒

𝑠=1

     (3.6) 
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where the variables Nfreq, Nevent, and Nsite are the number of frequencies, the number of 

earthquake events (Table 3.2), and the number of sites available in the database (Nsite = 39), 

respectively. The number of earthquake events is factored by 2 as both horizontal components of 

the ground motion records are used. The frequency is normalized by each site’s fundamental 

frequency (𝑓0) from the theoretical TFs, such that all the fundamental modes align at a common 

value of 𝑓/𝑓0 = 1. Only the normalized frequencies from 0.5 (i.e., half 𝑓0) to 20 times 𝑓0, or the 

maximum usable 𝑓 in the borehole or surface recording, is used. This range is thus re-sampled 

with 200 points (i.e., Nfreq = 200) with natural logarithmic spacing for a fair comparison across 

frequencies and sites.  

In addition to the RMSE of Equation 3.6, the errors in site response predictions are also 

quantified as the square root of the summation of absolute values. To this end, the exponent in the 

innermost term in Equation 3.6 is removed. To make this distinction, this error is referred to as 

“L1 error”, whereas the RMSE as presented in Equation 3.6 is referred to as “L2 error.” The L1 

and L2 errors are computed from residuals δes
SRA as opposed to bias-corrected residuals 

(δes
SRA − c1D

SRA) to prevent the selection of a Dmul-σlnVS  associated to a large c1D
SRA. If bias-corrected 

residuals are used, then higher values of Dmul are found to minimize the variability in residuals, 

but they also lead to significantly higher c1D
SRA across frequencies (Figure 3.11). The results in 

Figures 3.8, 3.9, 3.12, and 3.13 are presented in terms of standardized L1 errors, i.e., L1 errors 

shifted and scaled to vary from 0 to 1, for clarity. 
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3.6. RESULTS 

3.6.1. INDEPENDENT EFFECTS OF Dmul and 𝛔𝐥𝐧𝐕𝐒 ON THE SEISMIC RESPONSE 

The standardized L1 errors in TFs and AFs are presented in Figures 3.8 and 3.9 for various Dmul 

and σlnVS applied separately across 𝑓/𝑓0. The sharp contrasts observed starting at 𝑓/𝑓0 = 5 are 

partly due to the lower number of records available at high frequencies (Figure 3.3). These results 

indicate that increased damping and randomized VS profiles can both improve 1D SRA predictions 

for 1D-like sites, but this improvement is not equally favorable across frequencies and neither for 

TFs nor AFs simultaneously. For example, the predictions at the fundamental mode, 𝑓/𝑓0 = 1, 

can be improved with Dmul > 6 for TFs and Dmul ≈ 5 for AFs, but lower Dmul are more appropriate 

at higher frequencies in both cases. Similarly, Figure 3.9 suggests that using σlnVS ≈ 0.2 and 

σlnVS ≈ 0.35 can improve the predictions in TFs and AFs at 𝑓/𝑓0 = 1, respectively, but lower 

σlnVS  are more appropriate at other 𝑓/𝑓0. Based on these results, 1D SRAs with frequency-

dependent damping are expected to be better suited to accurately estimate site response, as 

suggested in previous studies within the context of nonlinear 1D SRAs (Assimaki and Kausel, 

2002; Kausel and Assimaki, 2002; Yoshida et al., 2002; Huang et al., 2020; Meite et al., 2020; 

Kuo et al., 2021). Finally, the L1 error patterns for TFs are narrower, whereas they are broader for 

AFs. This is due to the wider range of frequencies that affects the response of a single degree of 

freedom oscillator at a given frequency in AFs (Bora et al., 2016), whereas TFs vary more 

independently, although with some inter-frequency correlation (Bayless and Abrahamson, 2019).  

The L2 errors in TFs and AFs resulting from the independent use of Dmul and σlnVS are 

presented in Figure 3.10 (darker lines labeled as “All data”), and a summary for key Dmul-σlnVS  

combinations in Appendix C. There is a stronger effect of Dmul on TFs and AFs compared to σlnVS . 
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Overall, an initial reduction of the L2 with higher Dmul and σlnVS  values is observed, followed by 

an increase in L2 error starting at Dmul ≈ 3, and σlnVS ≈ 0.25. The minor contribution of σlnVS  on 

the reduction of residual variability in AFs presented as L2 errors is likely due to the averaging 

effect of using data from multiple sites, ground motion recordings, and frequencies. The influence 

of σlnVS , even though less pronounced compared to TFs, is not negligible (e.g., Figures 3.6c and 

3.6d). Based on Figure 3.10, 1D SRA predictions could be improved by Dmul ≈ 3 and no VS 

randomization, or VS randomization with σlnVS  = 0.25 and Dmul = 1. A Dmul = 3 is consistent with 

results by Tao and Rathje (2019), who estimated Dmul based on the variation of measured values 

of κ at borehole sites. A σlnVS  = 0.2 to 0.3 is consistent with findings by Pretell et al. (2022a), who 

compared results from 2D SRAs and 1D SRAs with VS randomization to identify the most 

appropriate σlnVS  to capture the effects of VS spatial variability of soils on the seismic response.  

The independent effects of various Dmul and σlnVS  on the bias in TFs and AFs are presented 

in Figure 3.11. As previously observed, increases in Dmul lead to a reduction of the TF amplitudes 

that affects more strongly the high-frequency range, thus leading to a higher bias at high 𝑓/𝑓0 

(Figures 3.11a and 3.11c). Importantly, the bias in TF at high 𝑓/𝑓0 values for Dmul = 1 is low, 

whereas a low bias in TF at 𝑓/𝑓0  = 1 is achieved only with Dmul ≈ 8 (Figure 3.11a). The 

variability of bias with σlnVS  mostly affects the low-frequency range, around 𝑓/𝑓0 = 1 (Figures 

3.11b and 3.11d). Again, the variation of AF amplitudes is smoother compared to TFs. 

3.6.2. COMBINED EFFECT OF Dmul and 𝛔𝐥𝐧𝐕𝐒 ON THE SEISMIC RESPONSE 

The previous section shows the independent impact of Dmul and σlnVS  on site response predictions 

in terms of TFs and AFs. Here, the combined effect of Dmul and σlnVS  is investigated by conducting 
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SRAs with various Dmul-σlnVS  combinations and comparing the results against observations. The 

L2 errors in TFs and AFs are presented in Figures 3.12a and 3.12b respectively, and their combined 

effect computed as the standardized averaged L2 error is presented in Figure 3.13. The 1D SRA 

bias associated with the most appropriate Dmul-σlnVS  trial is compared against the bias resulting 

from scenarios with either Dmul or σlnVS  alone in Figure 3.11.  

Results from the analyses indicate that a different combination of Dmul and σlnVS is required 

to improve predictions for TFs and AFs. A σlnVS  = 0.25 leads to the minimum L2 error in TFs and 

no Dmul is needed (Figure 3.12a). Meanwhile, a σlnVS ≈ 0.2 to 0.3 and a Dmul ≈  3 to 4 lead to the 

lowest L2 error in AFs (Figure 3.12b). Overall, considering that TFs and AFs are equally 

important, the combination Dmul = 3 and σlnVS  = 0.25 leads to most appropriate site response 

predictions (Figure 3.13). Thus, 1D SRAs conducted with a Dmul = 3 and randomized VS profiles 

generated using the model by Toro with σlnVS  = 0.25 lead to (1) removing the intrinsic 1D SRA 

error 1Ds
SRA, and (2) the lowest variability in site response residuals. The δ1Ds

SRA removed is the 

difference between the c1D
SRA corresponding to Dmul = 3 with σlnVS  = 0.25, and Dmul = 1 with no 

randomization in Figure 3.11. A similar Dmul-σlnVS  pair is obtained if the L1 error is considered as 

the decision metric instead of the L2 error (Appendix D). For sites in the US, damping profiles 

based on Darendeli (2001) with Dmul = 3 are similar or slightly higher in the top 10 m to those 

obtained based on correlations with Q, Model 1 by Campbell (2009), but dominantly lower at 

deeper locations.  

As previously mentioned, the selection of the Dmul-σlnVS  pair focuses on minimizing the 

variability in residuals, not the systematic bias c1D
SRA. Figure 3.11 shows that as Dmul = 3 and σlnVS  

= 0.25 leads to an overall reduction in c1D
SRA, but an increase at high frequencies for TFs. This 
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increase results from a compromise between selecting a single Dmul-σlnVS  pair that works for TFs 

and AFs across a wide range of frequencies and using a different pair for TFs and AFs. This 

increase in bias should be addressed by bias-correcting site response predictions, as explained in 

Chapter 4.  

3.7. SENSITIVITY OF THE RESULTS 

The previous results are based on the comparisons of 1D SRA predictions against data from 39 

1D-like sites from Japan and the US, and damping profiles developed after Darendeli (2001) 

assuming PI = 0, OCR = 1, fload = 1 Hz, and K0 = 0.5. In this section, the regional differences 

between data from sites in California, and Japan, and the effect of damping variables on the 

resulting Dmul-σlnVS  recommendation is investigated.  

3.7.1. REGIONAL DIFFERENCES 

The selection of the most appropriate Dmul and σlnVS leading to improved site response predictions 

of TFs and AFs is based on comparisons against data from six sites in California, one site in Alaska, 

and 32 sites in Japan. In this section, regional differences in the most appropriate Dmul and σlnVS  

combination, and the resulting c1D
SRA are investigated for California and Japan.  

The most appropriate Dmul and σlnVS  to reduce the L2 error in TFs are the same for 

California and Japan (Dmul = 1 and σlnVS  = 0.25). However, differences are found in the case of 

AFs. Figure 3.14 shows the standardized L2 errors for TFs, AFs, and the average between the two. 

Figures 3.14c and 3.14d indicate that higher Dmul and σlnVS  are required to improve predictions in 

AFs in Japan. In particular, there is a clear need for a higher Dmul (also Figure 3.10) that is 

attributed to the overall more uniform amplification of seismic waves across frequencies observed 
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in the Japanese data as flatter TFs or median TFs with lower peak-to-trough ratios (e.g., Treasure 

Island versus GIFH28 in Figure E1, Appendix E), indicative of a higher VS spatial variability (e.g., 

De la Torre et al., 2021) and overall less compliance to 1D SRA assumptions. Such flatter response 

in TFs exacerbates the overamplification of AFs given the influence of the low-frequency waves 

across various oscillators’ frequencies (Bora et al., 2016). For instance, TFs and AFs for the site 

SBSH06 in Figures E3 (Appendix E) and F3 (Appendix F) respectively show how over- and 

underpredictions observed in TFs turn into consistent overpredictions in AFs caused by the 

dominance of the overpredicted TF fundamental mode.  

The ultimate overall appropriate Dmul-σlnVS  combination for TFs and AFs are Dmul = 1 and 

σlnVS  = 0.25 for California, and Dmul = 3 and σlnVS = 0.25 for Japan (Figure 3.14). The latter is 

also the global recommendation based on all 39 1D-like sites (Figure 3.13). The c1D
SRA for California 

are shown in Figure 3.15, whereas the corresponding ones for Japan are very similar to the global 

estimates in Figure 3.11 and thus not presented. Figure 3.15 shows that SRAs for California 

generally underpredict the seismic response, consistent with previous studies (e.g., Stewart and 

Afshari, 2020). The observed differences indicate potential for improvement site response 

predictions for regions that share similar features affecting site response (e.g., topography, 

subsurface conditions, soil deposition). However, the data available for California (Table 3.2) do 

not currently allow for region-specific estimates of Dmul, σlnVS , and the terms in Equation 3.5.  

3.7.2. EFFECT OF SMALL-STRAIN DAMPING PARAMETERS 

From the previously discussed evaluation, SRAs conducted with Dmul = 3 and randomized VS 

profiles generated using σlnVS  = 0.25 lead improve site response predictions. In this study, Dmul is 

applied to damping profiles developed after Darendeli (2001) assuming PI = 0, OCR = 1, fload = 1 
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Hz, and K0 = 0.5, hereafter referred to as “default parameters” yielding the baseline damping 

(Dbaseline). These parameters must be used when following the proposed approach, nevertheless, it 

is worth evaluating the effect of using different values to calculate the damping profiles. 

Henceforth, if parameters other than the default ones are used the resulting damping is called Dnew. 

The effect of any given parameter on the ultimate Dmul is quantified through the damping Scaling 

Factor (DSF): 

 𝐷𝑆𝐹 =
𝐷𝑛𝑒𝑤

𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
      (3.7) 

Different scenarios are considered to evaluate the effect of the Darendeli model parameters on the 

resulting DSF. The effect of these parameters on the damping values are studied at a single arbitrary 

depth, but results valid at any depth of a profile. The results are presented in Figure 3.16 as DSF 

and the corresponding 3 × DSF, i.e., the impact on the damping resulting after applying Dmul = 3. 

These scenarios include results for various PI (Figure 3.16a), fload (Figure 3.16b), and K0 (Figure 

3.16c). For the evaluation of K0, various geotechnically consistent scenarios for OCR and PI are 

considered based on data reported by Brooker and Ireland (1965) and Mayne and Kulhawy (1982).  

Unsurprisingly, results from the parametric evaluation indicate that PI and fload have an 

important effect on the Dmul, whereas K0 leads to milder variations in Dmul. These findings are 

consistent with previous studies on clayey soils (e.g., Vucetic and Dobry, 1993). Variations of 

these parameters lead to DSF values from 0.3 to 1.8, and thus 3 × DSF from 0.9 to 5.4. This means 

that applying a Dmul = 3 on damping profiles developed using parameters that differ from there 

assumptions herein made can excessively increase damping profiles (Figure 3.16), and 

consequently lead to higher L2 errors (Figure 3.13 for Dmul = 3 to 5). The ultimate impact on TFs 

and AFs might be milder as not all layers in a given damping profile are likely to differ from the 
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default parameters. Nevertheless, it is recommended that the default parameters (PI = 0, OCR = 1, 

fload = 1 Hz, and K0 = 0.5) be used in all cases when estimating the seismic site response following 

the proposed approach. Engineering problems involving soils that significantly deviate from the 

assumed values are expected to require analyses more advanced than 1D SRAs. 

3.8. CONCLUSIONS 

An approach is developed for improving site response predictions using 1D SRAs that combines 

damping multipliers (Dmul), and randomized shear-wave velocity (VS) profiles with a VS standard 

deviation σlnVS , where Dmul and σlnVS  are calibrated based on data from borehole sites. This paper 

discussed (1) the approach and framework for quantifying site response residuals, and (2) the 

selection of the most appropriate Dmul-σlnVS  combination by comparing observed and theoretical 

transfer functions (TFs) and amplification factors (AFs) from sites relatively compatible with 1D 

SRA assumptions (1D-like sites). Chapter 4 discusses the use of Dmul and σlnVS  in forward 

predictions of site response for the more commonly encountered 3D-like sites, and addresses the 

underprediction of high-frequency amplitudes caused by increasing the minimum damping. 

The results indicate that using a Dmul = 3 and σlnVS  = 0.25 leads to an overall minimum 

root mean square error (RMSE) in site response predictions. However, different values are 

obtained if the focus is placed on TFs or AFs separately, or the available data is separated by 

region. A lower Dmul = 1 is required if TFs are the only metric of interest, and Dmul = 2 and 4 are 

respectively required for AFs for California and Japan when analyzed independently. The higher 

Dmul values required for AFs compared to TFs result from the wide range of ground-motion 

frequencies affecting the spectral ordinates of a single degree of freedom oscillator (Bora et al., 

2016), and thus the AFs. The response of the oscillators of different frequencies gets contributions 
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from ground motion waves around the site’s fundamental mode, which are generally 

overpredicted. Such waves lead to the overprediction of AFs that require higher Dmul values to be 

corrected. The factor making a difference between Dmul for AFs in California and Japan are similar 

in essence. The ground motions from the Japanese sites present a more uniform and generally 

higher amplification of waves across frequencies, suggested by flatter TF shapes (Appendix E). 

These characteristics observed in TFs turn into larger contributions to the oscillators’ spectral 

ordinates and thus AF amplitudes.  

The analyses showed that the effects of Dmul and σlnVS  on the predicted TFs and AFs vary 

with frequency, and thus any Dmul-σlnVS  combination does not lead to a uniform reduction of the 

RMSE across frequencies. This suggests that frequency-dependent SRAs are better suited for site 

response predictions, which is consistent with other findings within the context of nonlinear SRAs 

(Assimaki and Kausel, 2002; Kausel and Assimaki, 2002). Frequency dependent SRAs have yet 

to make its way into practice.  

A total of 39 1D-like sites from a database of 534 borehole sites were identified based on 

the alignment of peaks and troughs of the median observed and theoretical transfer functions (TFs) 

measured using the Pearson’s correlation coefficient, followed by a visual screening. The results 

indicate that only 39 of the 534 sites can be considered as 1D-like sites, which represents about 

7% of the database. It is unclear whether the calibrated Dmul = 3 and σlnVS  = 0.25 would change 

with larger datasets of 1D-like sites, but it is expected that these recommendations will be revised 

as ground motion databases become larger. Similarly, the number of sites and ground motion 

recordings from California do not allow for providing region-specific recommendations, but there 

is potential for doing so as data become available. 
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The Dmul and σlnVS  were estimated considering damping profiles after Darendeli (2001), 

and randomized VS profiles generated using the VS model by Toro (1995), without prior layer 

discretization. Therefore, following the proposed approach involves using these models and 

corresponding assumed parameters. The Darendeli model is used assuming a plasticity index 

(PI) = 0, an overconsolidation ratio (OCR) = 1, a load frequency (fload) = 1 Hz, and a coefficient of 

lateral pressure at rest (K0) = 0.5. Using site-specific values that differ from these assumptions 

might lead to damping values higher in a factor of 2. It is expected that engineering problems 

involving soils that significantly deviate from the assumed values would require analyses more 

advanced than 1D SRAs. Randomized VS profiles are generated using the VS model by Toro with 

the coefficients recommended for sites with VS30 = 180 to 360 m/s, which are very similar to those 

for sites with VS30 = 360 to 760 m/s, which together cover a wide range of VS30. 

The proposed approach focuses on linear elastic SRAs, but the framework can be extended 

to nonlinear site response applications. The extension to equivalent linear 1D SRAs could involve 

using damping curves (e.g., Seed and Idriss, 1970) increased by an amount equivalent to the 

difference between the recommended and default laboratory-based damping, as opposed to the 

product of Dmul by the entire damping curve. Alternatively, the low-strain tail of the damping 

curves could be scaled up (e.g., Kaklamanos et al., 2020). Further research needs to be conducted 

towards the application of the proposed approach for equivalent linear and nonlinear site response 

applications.  
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FIGURES 

 

Figure 3.1. Comparison of observed and theoretical transfer functions (TFs). TFs computed using 

the measured VS profiles and minimum damping after Darendeli (2001). TFs plotted within the 

range of usable signal based on the signal-to-noise ratio. 
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Figure 3.2. Effects of increased damping and randomized VS profiles on transfer functions (TFs) 

in 1D site response analyses: (a) damping and randomized VS profiles, (b) effect of damping on 

TFs for various damping multipliers (Dmul), and (c) effect of VS randomization on TFs for various 

VS standard deviations (σlnVS). Baseline TFs computed using the minimum damping after 

Darendeli (2001). Baselined VS profile randomized using the Toro (1995) VS model.  
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Figure 3.3. Number of ground motion recordings per normalized frequency (𝑓/𝑓0). 

 

Figure 3.4. Example of 1D- and 3D-like sites. Pearson’s correlation coefficient (r) between the 

empirical and theoretical transfer functions from the first to the third peak of the theoretical transfer 

functions. No specific correlation coefficient threshold is used to distinguish 1D- from 3D-like 

sites.  
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Figure 3.5. Effect of damping multipliers (Dmul) on 1D-like sites and comparison against 

observations. (a) and (b): Effect on the median theoretical transfer functions, (c) and (d): effect on 

the median amplification factors. Note: The median TFs result from TFs corresponding to 50 

randomized VS profiles, whereas the median AFs result from AFs from all the ground motion 

recordings, each one propagated through 50 randomized VS profiles.  
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Figure 3.6. Effect of VS standard deviation (σlnVS) for VS randomization on 1D-like sites and 

comparison against observations. (a) and (b): effect on the median theoretical transfer functions, 

(c) and (d): effect on the median amplification factors. Note: The median TFs result from TFs 

corresponding to 50 randomized VS profiles, whereas the median AFs result from AFs from all the 

ground motion recordings, each one propagated through 50 randomized VS profiles. 
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Figure 3.7. Combined effect of damping multiplier (Dmul) and VS standard deviation (σlnVS) for 

VS randomization, and comparison against ground motion recordings. (a) and (b): effect on the 

median theoretical transfer functions, (c) and (d): effect on the median amplification factors. Note: 

The median TFs result from TFs corresponding to 50 randomized VS profiles, whereas the median 

AFs result from AFs from all the ground motion recordings, each one propagated through 50 

randomized VS profiles. 
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Figure 3.8. Standardized L1 error in: (a) transfer functions (TFs), and (b) amplification factors 

(AFs) across normalized frequency (𝑓/𝑓0) for various damping multipliers (Dmul).  

 

 

Figure 3.9. Standardized L1 error in: (a) transfer functions (TFs), and (b) amplification factors 

(AFs) across normalized frequency (𝑓/𝑓0) for various VS standard deviations (σlnVS) for VS 

randomization.  
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Figure 3.10. Variation of L2 error with damping multiplier (Dmul) and VS standard deviation 

(σlnVS) for VS randomization. Results labeled as “All data” based on data from all the 39 1D-like 

sites from the US and Japan, and results labeled as “California” based on the data from six 1D-like 

sites from California. 

 

 

 



98 

 

 

Figure 3.11. Bias in 1D site response estimates for 1D-like sites (c1D
SRA): (a) bias in transfer 

functions (TFs for various damping multipliers (Dmul), (b) bias in TFs for various VS standard 

deviations (σlnVS), (c) bias in amplification factors (AFs) for various Dmul, and (d) bias in AFs for 

various σlnVS values.  
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Figure 3.12. Standardized L2 error for combinations of damping multiplier (Dmul) and VS standard 

deviation (σlnVS) for VS randomization: (a) Standardized L2 error in transfer functions (TFs), and 

(b) standardized L2 error in amplification factors (AFs). Minimum standardized L2 error in TFs 

for Dmul = 1, and σlnVS  = 0.25, and minimum standardized L2 error in AFs for Dmul = 3, and σlnVS 

= 0.25.  

 

 

Figure 3.13. Standardized averaged L2 errors in transfer functions (Figure 11a) and amplification 

factors (Figure 11b) for combinations of damping multiplier (Dmul) and VS standard deviation 

(σlnVS) for VS randomization. Minimum standardized L2 error for Dmul = 3, and σlnVS  = 0.25.  
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Figure 3.14. Standardized L2 errors for various combinations of damping multipliers (Dmul) and 

VS standard deviations (σlnVS) for VS randomization. (a), (c), and (e): Standardized L2 errors for 

sites in California; (b), (d), and (f): standardized L2 errors for sites in Japan. 
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Figure 3.15. Bias in 1D site response estimates for 1D-like sites (c1D
SRA) in California. (a) Bias in 

transfer functions (TFs) for various damping multipliers (Dmul), (b) bias in TFs for various VS 

standard deviations (σlnVS), (c) bias in amplification factors (AFs) for various Dmul, and (d) bias 

in AFs for various σlnVS .  
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Figure 3.16. Effect of various parameters of the damping model by Darendeli (2001) on damping 

multiplier (Dmul). (a) Effect of plasticity index (PI), (b) effect of loading frequency (fload), and (c) 

effect of coefficient of lateral pressure at rest (K0) and overconsolidation ratio (OCR).  
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TABLES 

Table 3.1. Matrix for the partition of sources of aleatory variability and epistemic uncertainty in 

numerical simulations (Abrahamson et al., 1990). 

 Aleatory Variability Epistemic Uncertainty 

P
a

ra
m

et
ri

c 

PAV 

Effect of the randomness in time and space  

of input parameters on site response 

PEU 

Distribution of values for input parameters and 

alternative selected representative input 

parameters 

  

M
o
d

el
in

g
 MAV 

Randomness in predictions due to inherent 

complexities in natural phenomena not 

captured by the selected modeling approach 

MEU 

Uncertainty in the predictions due to 

limitations of the selected modeling approach  

 

 

Table 3.2. 1D-like borehole sites and main characteristics.  

No Site 1 
Number 

of events2 

Depth 3  

(m) 

GWT 4  

(m) 

VS30 
5  

(m/s) 

VS, average 
5  

(m/s) 

1 Corona I-15 Highway 91 4 42 25 334 440 

2 Delaney Park 7 61 21 266 320 

3 El Centro 4 195 5 199 320 

4 Hayward San Mateo Bridge 4 91 11.5 184 255 

5 San Bernardino 4 92 16 268 420 

6 Treasure Island 22 122 2 160 295 

7 Wildlife 20 100 1.2 198 240 

8 AICH09 12 360 68 275 615 

9 AICH16 16 101 3 365 740 

10 CHBH17 12 822 5 525 907 

11 FKIH05 7 122 22 190 370 

12 FKSH16 35 300 0 530 840 

13 GIFH18 21 107 6 555 935 

14 GIFH28 11 400 5 370 785 

15 IBRH11 120 103 10 245 650 

16 IBRH13 120 100 16 335 795 

17 IBRH17 18 510 10 277 550 

18 IBUH01 48 101 12 310 520 

19 IBUH05 41 177 4 380 525 

20 IWTH04 120 106 15 460 935 

21 IWTH08 84 100 10 305 685 

22 KGSH03 32 100 0 1200 1635 
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No Site 1 
Number 

of events2 

Depth 3  

(m) 

GWT 4  

(m) 

VS30 
5  

(m/s) 

VS, average 
5  

(m/s) 

23 KMMH08 23 103 10 525 790 

24 KMMH13 22 177 12 405 585 

25 KOCH10 10 101 2 1120 1470 

26 MIEH07 8 207 8 620 1350 

27 MYGH06 120 100 0 595 710 

28 MYZH01 5 103 24 545 840 

29 NGNH20 14 100 5 530 1115 

30 NGNH21 12 180 8 510 765 

31 NIGH15 26 100 0 685 890 

32 NMRH03 22 228 4 190 335 

33 NMRH04 23 216 8 170 290 

34 NMRH05 37 220 8 210 370 

35 SBSH06 5 130 0 480 640 

36 SZOH25 7 450 7 330 695 

37 TCGH12 54 120 4 340 505 

38 TKSH04 9 100 7 475 950 

39 YMTH12 10 203 4 365 675 

1 Sites number 1, and 3 to 6 from the Center for Engineering Strong Motion Data (CESMD) database. Sites number 2 

and 7 from the Network for Earthquake Engineering Simulation (NEES) database. All other sites from the Kiban 

Kyoshin Network (KiK-net) database.  

2 Number of events after ground motion screening. Both horizontal recording components per event are used.  

3 In case of multiple sensors, the deepest one is considered.  

4 Depth to groundwater table based on the literature (Afshari et al., 2019; Holzer and Youd, 2007; Thornley et al., 

2019) or the ground motion databases. When unavailable, the groundwater table was assumed as located where the 

measured compressional-wave velocity (VP) > 1500 m/s. The groundwater table for the San Francisco Bridge and 

Benicia Martinez Bridge were assumed as 0 m, based on their closeness to bodies of water.  

5 Values estimated based on measured VS profiles (Gibbs et al., 2000; Afshari et al., 2019; Thornley et al., 2019).  
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CHAPTER 4 

A BOREHOLE DATA-BASED APPROACH FOR CONDUCTING 

1D SITE RESPONSE ANALYSES II: ACCOUNTING FOR 

MODELING ERRORS 

  

AUTHOR’S NOTE 

The contents of this chapter will be submitted for journal publication by Pretell R, Abrahamson 

NA and Ziotopoulou K. Authorship roles are provided in Chapter 1.  

4.1. ABSTRACT 

Site response estimates from 1D site response analyses (SRAs) carry inaccuracies due to modeling 

and parametric errors. Modeling errors are due to the condensation of the 3D wave propagation 

phenomenon to the vertical propagation of a horizontally polarized wave through a soil column, 

while parametric errors are due to the incomplete knowledge of the soil parameters distribution 

leading to the selection of non-optimal representative input parameters for a site of interest. While 

parametric errors are traditionally handled by using different soil parameters (e.g., alternative 

shear-wave velocity profiles), modeling errors are generally neglected. In this paper, an approach 

is proposed for conducting linear elastic 1D SRAs in a way that improves site response predictions 

and accounts for modeling errors. First, ground-motion data from borehole sites are collected, 

processed, and screened for appropriateness (e.g., expected shear strains lower than 0.01%, signal-

to-noise ratio higher than 3). Second, 1D SRA predictions in terms of transfer functions and 

amplification factors are compared against observations, and the discrepancies are quantified as 
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residuals. Finally, the residuals are partitioned into a model bias term (c3D
SRA), a site-specific mean 

residual with standard deviation ϕS2S
SRA, and a site- and event-specific residual with standard 

deviation ϕAMP
SRA , and values for these terms are recommended for forward predictions. The 

sensitivity of the residuals to region and site type (1D- or 3D-like), the applicability of findings to 

outcropping applications is discussed, and an example application for a hypothetical project site is 

presented.  

4.2. INTRODUCTION 

Predictions from one-dimensional site response analyses (1D SRAs) carry modeling and 

parametric errors, as well as errors intrinsic to the 1D SRA as a numerical modeling tool. The 

simplest approach for estimating site response consists of the propagation of the input ground 

motions through a soil column characterized with best estimate shear-wave velocity (VS) and 

damping profiles. Modeling errors in the predicted response come from the simplification of the 

3D wave propagation phenomenon to the vertical propagation of a horizontally polarized wave 

through a simple 1D model, which thus omits any unmodeled non-1D site-specific feature that 

affects the site response. Parametric errors are due to the lack of knowledge about the range of 

soil’s properties and, in the case of linear elastic simulations, the most appropriate VS and damping 

profiles. Lastly, there are errors associated with 1D SRA as an imperfect tool when conducted with 

a best estimate VS profile and uncalibrated amount of damping, even for sites relatively compliant 

to the 1D SRA assumptions. Such errors are referred to as “intrinsic errors.” While parametric 

errors are commonly addressed by using multiple alternative input parameters, e.g., baseline, 

upper, and lower VS profiles (EPRI, 2013), intrinsic and modeling errors are generally overlooked. 

This and the previous chapter develop and propose an approach for conducting 1D SRAs that 
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removes the intrinsic errors, and accounts for modeling errors in 1D SRA-based site response 

predictions.  

The proposed approach for conducting linear elastic 1D SRAs, hereafter referred to as 1D 

SRAs, consists of two main parts: (1) using calibrated input parameters (damping and randomized 

VS) under the hypothesis that using the right amount of damping and VS randomization removes 

the 1D SRA intrinsic errors, and (2) bias-correcting the response and computing the 5th and 95th 

site response percentiles. Damping multipliers (Dmul) are used to increase laboratory-based 

damping values and the VS randomization model by Toro (1995) is used to generate suites of 

randomized VS profiles. Based on comparisons with borehole data from 39 1D-like sites, it is 

observed that using Dmul = 3 and a standard deviation for VS randomization, σlnVS
 = 0.25, leads to 

more accurate median site response predictions and a reduction in the site response variability. 

Chapter 3 discusses further the calibration of damping and VS randomization, whereas this paper 

focuses on the quantification of the method bias and the estimation of the best estimate site 

response, and the 5th and 95th site response percentiles. 

In this paper, a database of 490 3D-like borehole sites from Japan and the US is used to 

estimate the method bias (c3D
SRA) and variability in the site terms (δS2Ss

SRA), quantified with the 

standard deviation ϕS2S
SRA. One-dimensional SRAs are conducted with Dmul = 3 and σlnVS

 = 0.25, 

and residuals calculated for transfer functions (TFs) and amplification factors (AFs), following the 

findings from Chapter 3. Mixed-effects regression is used to separate the residuals into their 

components, and c3D
SRA and ϕS2S

SRA values for engineering applications are recommended. The 

protocol for conducting 1D SRAs following the proposed approach is outlined, and an example 

application for a hypothetical project site is presented.  
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4.3. CAPTURING MODELING ERRORS IN 1D SRAs 

4.3.1. FRAMEWORK 

Errors carried by 1D SRA predictions can be quantified using ground-motion data from borehole 

sites. For an intensity measure (IM) of interest estimated using 1D SRAs and the corresponding 

observed earthquake component “e” at a site “s,” the following relation can be established: 

𝐼𝑀𝑒𝑠
𝑜𝑏𝑠 = 𝐼𝑀𝑒𝑠

𝑆𝑅𝐴 + 𝛿𝑒𝑠
𝑆𝑅𝐴    (4.1) 

where IMes
obs and IMes

SRA are respectively the observed and 1D SRA-predicted IM in natural 

logarithm units, and δes
SRA is the site response residual associated with 1D SRAs conducted using 

a best estimate VS profile and an uncalibrated amount of damping (e.g., based on laboratory 

testing). In this work, IM represents either TFs or AFs, estimated as the ratio of the observed or 

the predicted ground motion at surface and the observed ground motion at depth. The residual 

δes
SRA in Equation 4.1 can be partitioned as:  

𝛿𝑒𝑠
𝑆𝑅𝐴 = 𝑐𝑆𝑅𝐴 + 𝛿1𝐷𝑠

𝑆𝑅𝐴 + 𝛿3𝐷𝑒𝑠
𝑆𝑅𝐴   (4.2) 

where cSRA is the global 1D-SRA bias estimated from a mixed-effects regression. The site-specific 

term δ1Ds
SRA is due to 1D-SRA intrinsic errors (e.g., overpredictions at the site’s fundamental 

mode) that depend on the effect of the site’s damping and VS profiles. The term δ3Des
SRA is the 

remaining modeling aleatory residual due to non-1D features affecting the site response and the 

effect of variability in the ground-motion waveforms that are not accounted for by cSRA. δ3Des
SRA 

can be partitioned as (Al Atik et al., 2010): 

δ3𝐷𝑒𝑠
𝑆𝑅𝐴 = 𝛿𝑆2𝑆𝑠

𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠
𝑆𝑅𝐴    (4.3) 
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where δS2Ss
SRA is the mean bias-corrected residual at a site “s,” referred to as “site term,” and 

δAMPes
SRA is the remaining unexplained bias-corrected and site-corrected residual. The 

components δS2Ss
SRA and δAMPes

SRA are assumed random variables with zero mean and standard 

deviations ϕS2S
SRA and ϕAMP

SRA , respectively. Replacing Equation 4.3 into Equation 4.2:  

𝛿𝑒𝑠
𝑆𝑅𝐴 = 𝑐𝑆𝑅𝐴 + 𝛿1𝐷𝑠

𝑆𝑅𝐴 + 𝛿𝑆2𝑆𝑠
𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠

𝑆𝑅𝐴  (4.4) 

In Equation 4.4, the term δ1Ds
SRA can be removed by conducting 1D SRAs with a calibrated 

amount of damping (Dmul = 3) and VS randomization (σlnVS
 = 0.25), as discussed in Chapter 3. 

This randomization should not be confused with the VS randomization commonly used in 

engineering practice to capture spatial variability effects (e.g., Pretell et al., 2022). Given that the 

quantification of residuals is conducted using data from 3D-like sites, then cSRA = c3D
SRA. With 

these considerations, Equation 4.4 reduces to: 

𝛿𝑒𝑠
𝑆𝑅𝐴 = 𝑐3𝐷

𝑆𝑅𝐴 + 𝛿𝑆2𝑆𝑠
𝑆𝑅𝐴 + 𝛿𝐴𝑀𝑃𝑒𝑠

𝑆𝑅𝐴   (4.5) 

Note that previously, in Equations 4.2 to 4.4, the δes
SRA is estimated from 1D SRAs conducted with 

a best estimate VS profile and uncalibrated damping values, whereas it is estimated from 1D SRAs 

conducted with VS randomization and calibrated damping in Equation 4.5. Within the context of 

this work, a “site” is defined as a punctual location that does not account for spatial variability of 

soil properties across a structure’s footprint. All the terms in Equations 4.1 to 4.5 are frequency 

dependent.  

Site response predictions can be improved by accounting for c3D
SRA and ϕS2S

SRA. The c3D
SRA 

represents a global bias in the estimated response, and ϕS2S
SRA represents the variability in the mean 

bias-corrected 1D SRA-based site response. The residual component δS2Ss
SRA varies from site to 
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site, and whether it is positive (implying underprediction) or negative (overprediction) is unknown 

unless borehole ground motion data are available at a site of interest. To account for the 1D-SRA 

bias and the potential under- or overprediction, c3D
SRA and ϕS2S

SRA are quantified using data from a 

database of borehole ground motions. Note that ϕS2S
SRA is different from the between-site standard 

deviation in ground-motion models (GMMs), herein referred to as ϕS2S
GMM, which represents the 

variability in amplification factors (e.g., Al Atik et al., 2010). 

4.3.2. PROPOSED APPROACH 

The proposed approach for conducting 1D SRAs (1) uses Dmul and VS randomization to improve 

site response predictions, and (2) accounts for c3D
SRA and ϕS2S

SRA. The protocol for conducting 1D 

SRAs consists of five steps: 

Step 1: Site characterization. Selection of the best estimate VS profile for a site of interest, and 

estimation of the minimum damping after Darendeli (2001). The model by Darendeli is used 

assuming a plasticity index (PI) of 0, an overconsolidation ratio (OCR) of 1, a loading frequency 

(fload) of 1 Hz, a coefficient of lateral pressure at rest (K0) of 0.5. The same layering in the VS 

profiles is considered for the development of damping profiles. This site characterization is not 

uncommon in SRA applications.  

Step 2: Input parameters. A Dmul = 3 is used to increase the minimum damping and a suite of 50 

randomized VS profiles is generated from the best estimate profile. The randomized VS profiles 

are obtained using the Toro (1995) VS model with σlnVS
 = 0.25 and the parameters recommended 

for sites with the inverse of the slowness in the top 30 m (VS30) between 180 and 360 m/s. The 

Toro model is implemented in widely used computer codes such as STRATA (Kottke and Rathje, 

2008) and DeepSoil (Hashash et al., 2020). 
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Step 3: Uncorrected site response. All the randomized VS profiles are paired with the same single 

damping profile (Dmul = 3) to compute the site response for each selected input ground motion. 

The median site response (μIM) from all the VS profiles is estimated, where IM can be Fourier 

amplitudes or pseudo-spectral accelerations (PSAs) at ground surface. The median response of all 

the VS profiles is the uncorrected best estimate for a given input motion.  

Step 4: Bias correction. The estimated μIM is bias-corrected by adding c3D
SRA (both in ln units). The 

resulting response is the best estimate for a given input ground motion:  

Best estimate: 𝐼𝑀𝐵𝐸 = 𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴 

Step 5: Accounting for modeling errors. The potential for modeling errors is accounted for by 

considering alternative percentiles of the bias-corrected FAS or PSA with 90% confidence 

interval:  

5th percentile: 𝐼𝑀5𝑡ℎ = (𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴) − 1.65 × 𝜙𝑆2𝑆

𝑆𝑅𝐴 

95th percentile: 𝐼𝑀95𝑡ℎ = (𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴) + 1.65 × 𝜙𝑆2𝑆

𝑆𝑅𝐴 

The proposed approach can be repeated for alternative best estimate VS profiles to account for 

parametric epistemic uncertainty, described in the next section. The estimated response at surface 

is valid for frequencies captured by the 1D model, approximately higher than the site’s 

fundamental frequency (𝑓0). In this work, c3D
SRA and ϕS2S

SRA are considered applicable to frequencies 

higher than half the 𝑓0. The site response at lower frequencies can be estimated based on GMMs.  
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4.3.3. ALEATORY VARIABILITY AND EPISTEMIC UNCERTAINTY ASSOCIATED WITH 

THE PROPOSED APPROACH 

A framework for the identification of sources of aleatory variability (AV) and epistemic 

uncertainty (EU) in ground-motion modeling (Abrahamson et al., 1990) is described in Chapter 3 

within the context of site response. The separation of AV and EU helps understand the different 

factors affecting the response, as well as the benefits and the limitations of a selected numerical 

approach. This framework is developed (Table 4.1) and discussed within the context of the 

proposed approach and potential extensions to it.  

The parametric AV (PAV) consists of random factors affecting the site response that can 

be explicitly modeled by the selected modeling approach. Such random factors include 

randomness in time given by the ground-motion waveforms, which can be captured by using 

multiple time histories. These time histories lead to variability in the response for PSA at surface 

that can be quantified as a standard deviation associated with time histories “TH”: ϕAMP−TH
SRA . Note 

that in the case of TFs or FAS, ϕAMP−TH
SRA  = 0. The PAV component ϕAMP−TH

SRA  is not discussed in 

this paper.  

The parametric EU (PEU) consists of the plausible alternative input parameters associated 

to the selected modeling approach. The PEU can include multiple suites of parameters depending 

on the available information and problem-specific needs (e.g., Rodriguez-Marek et al., 2020). 

Within the context of the proposed approach, the PEU consists of suites of input ground motions, 

selected based on some demand criteria, and best estimate VS profiles (e.g., based on different 

geophysical tests). The PEU also includes Dmul to increase damping and σlnVS
 to randomize VS 

profiles. The best estimate and recommended values for these parameters are Dmul = 3 and 
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σlnVS
 = 0.25, but alternative plausible values could be selected: Dmul = 1 to 4 and σlnVS

 = 0.2 to 

0.3 (see Figure 3.13 in Chapter 3).  

The modeling AV (MAV) consists of the variability in the estimated site response given 

the factors affecting the site response but uncaptured by 1D SRAs. These factors include the wave 

propagation direction and wave inclination, the presence of other wave types, the presence of a 

dipping bedrock or complex subsurface structures, topographic and basin effects. From the 

perspective of the proposed approach, all these factors are regarded as random, leading to 

uncontrolled under- or overpredictions. The MAV, represented by cSRA and δ3Des
SRA in Equation 

4.2, is quantified using ground-motion data.  

Lastly, the modeling EU (MEU) accounts for the potential misestimations of the MAV 

components, i.e., c3D
SRA, ϕS2S

SRA, and ϕAMP
SRA . The MEU is quantified as standard errors (SE). Given 

that c3D
SRA, ϕS2S

SRA, and ϕAMP
SRA  are herein estimated based on a large database of sites and ground-

motion recordings, the SE in all cases is considered negligible (Table 4.1).  

4.3.4. RELATION TO SEISMIC HAZARD 

The AV and EU components associated with the proposed approach should be consistent with 

seismic hazard calculations. In particular, the characterization of the seismic demand at the 

location of interest at depth (i.e., halfspace), and the subsequent convolution of the hazard at 

ground surface, if required, should capture different fractions of the ground-motion variability. 

The seismic hazard at the halfspace should be calculated using single-station sigma to remove 

ϕS2S
GMM given that site effects are explicitly modeled using site-specific 1D SRAs (Atkinson 2006; 

Rodriguez-Marek et al., 2011, 2013; Al Atik, 2015). To compute the seismic hazard at the ground 

surface, the convolution approach proposed by Bazzurro and Cornell (2004) is recommended by 
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EPRI (2013) and commonly used in partially non-ergodic applications in the nuclear industry (e.g., 

Rodriguez-Marek et al., 2014, 2021). The convolution approach requires two parameters: the 

median response at the ground surface (μCONV) and the standard deviation (σCONV). The μCONV 

corresponds to the best estimate, and the 5th and 95th percentiles resulting from the proposed 

approach, whereas the σCONV results from the addition of ϕAMP−TH
SRA . Here, we follow the approach 

that the component ϕAMP
SRA  is already included in the GMM and thus is not considered in the 

convolution of hazard. More details are provided by Bazzurro and Cornell (2004), Pehlivan et al. 

(2016), and Stewart et al. (2014). 

4.3.5. MAIN ASSUMPTIONS 

There are four primary assumptions associated to the proposed approach: 

1. Applicability to outcropping applications: The calibration of Dmul and σlnVS
, and the 

quantification of c3D
SRA and ϕS2S

SRA are based on borehole data. The wave cancelling effects 

observed in borehole recordings (e.g., Bonilla et al., 2002) raise concerns as to whether 

findings from borehole data are applicable to outcropping applications. An initial investigation 

of the validity of this assumption is presented in a later section.  

2. Perfectly measured VS profiles: The calibration of Dmul and σlnVS
, and the quantification of 

c3D
SRA and ϕS2S

SRA are based on comparisons of ground-motion observations and 1D SRA 

predictions, and discrepancies attributed to modeling errors. This implicitly assumes that the 

VS profiles used in the 1D SRAs are flawless, which is hardly a realistic assumption (e.g., Zhu 

et al., 2022).  

3. Ergodicity: The c3D
SRA and ϕS2S

SRA are estimated based on data mainly collected from Japan but 

nevertheless considered to be applicable to any site. The ergodic assumption is required given 
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that there are not enough borehole sites that could potentially allow for differentiating aspects 

dominating site response in different regions. Removing the ergodic assumption requires (1) 

the collection of recorded ground motions at a site of interest, (2) the estimation of the 

components in Equation 4.5, and (3) accounting for the associated non-negligible SE of c3D
SRA 

and ϕS2S
SRA.  

4. Applicability to any site type: The c3D
SRA and ϕS2S

SRA are recommended for any site in engineering 

applications. The datasets used in the estimation of c3D
SRA and ϕS2S

SRA consist of 3D-like sites 

identified following a specific set of criteria that cannot be used in non-borehole sites or in the 

absence of data. Given that 93% of the sites in the database are 3D-like, it is reasonable to 

expect that most sites encountered in engineering practice are 3D-like. Note that the labels 1D- 

and 3D-like are only applicable within the context of the proposed approach and might not 

concur with proposed taxonomies (e.g., Thompson et al, 2012; Tao and Rathje, 2020a; Pilz et 

al., 2022).  

4.4. PREVIOUS ESTIMATES OF SITE RESPONSE RESIDUALS 

Previous studies provide estimates of cSRA, ϕS2S
SRA and ϕAMP

SRA  for 1D SRAs (Kaklamanos et al., 

2013; Kaklamanos and Bradley, 2018; Stewart and Afshari, 2020; Zhu et al., 2022). These studies 

are based on different borehole datasets and damping assumptions: 

▪ Kaklamanos et al. (2013) conducted 1D SRAs for 100 sites in the Kiban Kyoshin Network 

(KiK-net) database (NIED, 2019) using constant damping values optimized to fit observations 

at each site (Thompson et al., 2012) and computed residuals for PSA. The authors found an 

overall underprediction with cSRA as high as 0.5, except between 0.5 and 2 Hz, ϕS2S
SRA from 0.4 

to 0.6, and ϕAMP
SRA  of 0.3 approximately constant with frequency. Subsequent efforts 
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(Kaklamanos and Bradley, 2018; Kaklamanos et al., 2020) identified the coarseness of VS 

profiles in the KiK-net database as the factor leading to underpredictions in 1D-SRA estimates. 

▪ Stewart and Afshari (2020) conducted 1D SRAs for 21 sites in California using three damping 

models and computed residuals for PSA. The authors found an overall trend of underprediction 

with cSRA as high as 0.5 across frequencies up to 10 Hz for SRAs conducted with damping 

estimated based on correlations with quality factors (QS) and site-specific estimates of the high-

frequency attenuation parameter (κ). The overall underprediction was not observed for 1D 

SRAs conducted with damping defined based on laboratory-based formulations (Darendeli, 

2001; Menq, 2003). Stewart and Afshari estimated ϕS2S
SRA from 0.25 to 0.6, and ϕAMP

SRA  from 0.2 

to 0.4. The different damping formulations had a minor effect on ϕS2S
SRA and ϕAMP

SRA . The authors 

proposed a model for ϕS2S
SRA and provided recommendations for accounting for 1D SRA 

modeling errors.  

▪ Zhu et al. (2022) conducted 1D SRAs for a large database of borehole and surface sites in 

Japan to investigate the efficacy of various methods for predicting FAS. Such methods include 

“full-resonance” 1D SRAs (i.e., the commonly used 1D SRA), the square-root-impedance 

(SRI) 1D SRAs (Joyner et al., 1981; Boore, 2003), and the horizontal-to-vertical spectral ratio 

(HVSR) correction (Nakamura, 2019). Zhu et al. used two damping formulations for SRAs 

and found that HVSR provides more accurate predictions, whereas the SRA and SRI have an 

overall poor performance, which was attributed to high parametric and modeling errors in their 

dataset. The authors estimated ϕS2S
SRA to vary from 0.25 to 0.4 from 0.1 to 2 Hz and then rapidly 

increase up to 0.95 for higher frequencies. The effect from using different damping models 

was minor. 
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These studies provide valuable insights into the site response bias and variability of the site terms 

(δS2Ss
SRA). In this paper, a database of borehole sites from Japan and the US is used to estimate 

c3D
SRA and ϕS2S

SRA, and recommended values are provided along with a framework for conducting 1D 

SRAs to account for modeling errors. This work is different from previous studies in that SRAs 

are conducted using randomized VS profiles and residual components estimated for normalized 

frequencies.  

4.5. QUANTIFICATION OF SITE RESPONSE MODELING ERRORS 

Site response residuals are quantified using publicly available borehole data from Japan and the 

US (California and Alaska), downloaded from the KiK-net database, and the Network for 

Earthquake Engineering Simulation (NEES) and the Center for Engineering Strong Motion Data 

(CESMD) databases, respectively. 

A total of four cases are investigated for comparative purposes: 

Case 1: Damping with Dmul = 1 and best estimate VS profile. This is the baseline case. 

Case 2: Damping with Dmul = 3 and best estimate VS profile.  

Case 3: Damping with Dmul = 1 and 50 randomized VS profiles. 

Case 4: Damping with Dmul = 3 and 50 randomized VS profiles. This is the proposed approach. 

4.5.1. SITE CHARACTERIZATION 

The site characterization for 1D SRAs consists of profiles of minimum damping, VS, and bulk 

density. Given the significant impact of VS on the predicted site response at surface (e.g., Passeri 

et al., 2019; Kaklamanos et al., 2020), only sites with a measured VS profile are used. The measured 
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VS profiles from Japan are provided on the KiK-net database website, whereas various sources are 

used for the VS profiles of sites in the US (Gibbs et al., 2000; Holzer and Youd, 2007; Thompson 

et al., 2010; Thornley et al., 2019; Afshari et al., 2019). A compromise is made to include a few 

sites with gaps in the VS profile, typically at the top 1 to 2 m (e.g., KOCH05, SBSH01, YMTH02). 

Such VS profiles are considered acceptable given that the shallow layer is expected to minimally 

impact the amplitudes at the site’s fundamental mode. The VS corresponding to the immediate 

underlying layer is considered for the missing portion. Figure 4.1 shows the location of the sites 

selected for the development of the proposed approach, including the 1D-like sites used for the 

calibration of Dmul and σlnVS
 in Chapter 3. The measured VS profiles are randomized to generate 

50 profiles using the VS model by Toro (1995) using σlnVS
 = 0.25 and the other parameters 

recommended for sites with VS30 = 180 to 360 m/s. The site depths vary from 35 to 923 m, with 

95% of the sites varying from 100 to 360 m, and most of them with a depth of 100 m.  

The measured VS profiles are considered flawless and discrepancies in site response 

predictions are attributed to modeling errors. VS profiles could be adjusted based on the observed 

TF’s fundamental mode as done by Tao and Rathje (2020a). However, this correcting approach 

implicitly assumes that deviations from a 1D-like TF are due to errors in the VS profile, which 

might be accurate for some sites but could also be explained by non-vertical wave propagation and 

non-1D effects (Thompson et al., 2009). In lieu of a better approach, measured VS profiles are used 

as published. 

The damping profiles are estimated based on a laboratory-based relationship and density 

values are assumed based on VS. The damping is estimated after Darendeli (2001) assuming PI = 0, 

OCR = 1, fload = 1 Hz, and K0 = 0.5. The resulting damping profiles are factorized by Dmul = 3. The 
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bulk density is assumed as 1,800 kg/m3 for materials with VS values lower than 760 m/s, and 2,200 

kg/m3 otherwise. Figure 4.2 shows examples of the input parameters for four sites.  

4.5.2. GROUND-MOTION DATA 

Ground-motion processing 

Ground-motion data are accessed through the KiK-net, NEES, and CESMD databases. 

Additionally, the dataset for California is complemented with ground-motion recordings made 

available by Afshari et al. (2019). Ground motions from KiK-net and NEES are downloaded in 

raw format (count units) and processed using the software PRISM v2.1 (Processing and Review 

Interface for Strong Motion by Jones et al., 2017). Downloading the data in raw format allows for 

uniform processing across databases and the estimation of the event onset (t0) using PRISM. t0 is 

the time of the P-wave arrival estimated from the acceleration time history and is determined based 

on the rate of change of dissipated energy using the PPHASEPICKER algorithm (Kalkan, 2016). t0 

differentiates the noise from the noise and earthquake signal together in the acceleration time 

histories (Figure 4.3a) and thus allows for the computation of the signal-to-noise ratio (SNR) used 

to assess the quality of ground-motion recordings. Data from CESMD are not available in raw 

format, thus data in Volume 2 (V2) format are used, and data from Afshari et al. (2019) are used 

in their processed form.  

Raw data are converted from counts to accelerations, baseline corrected, and filtered. An 

acausal filter is used with a lower corner frequency of 0.1 and a maximum of 25 Hz or higher, 

depending on the earthquake magnitude (Massa et al., 2010). The ground-motion data are only 

used up to 25 Hz as higher frequencies are affected by the instruments’ anti-aliasing filters (Aoi et 

al., 2004). Most recordings have a sampling frequency of 200 Hz (time step of 0.005 s), and 
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recordings with lower sampling frequencies are resampled using the frequency-domain zero 

padding proposed by Lyons (2014) and implemented in PRISM and Matlab (Kalkan, 2021). To 

estimate t0 using PRISM for the processed data from CESMD and Afshari et al. (2019), these 

recordings are converted to count units using arbitrary yet reasonable shifts and scaling factors. 

The artificially raw recordings are then processed using PRISM, the estimated t0 is stored for the 

computation of SNR using the originally processed recordings, and the resulting processed 

recordings are disregarded.  

Ground motion selection 

Three criteria are considered to select ground-motion recordings appropriate for the quantification 

of site response residuals: (1) record component completeness, (2) SNR appropriateness, and (3) 

linear site response. An event is considered complete if all six components are available (three 

components from the sensor at depth and three from the sensor at ground surface) or at least four 

horizontal components, which is the case of data from CESMD and Afshari et al. (2019). The SNR 

of ground-motion recordings is computed as:  

𝑆𝑁𝑅 =
𝐹𝐴𝑆𝑛𝑜𝑖𝑠𝑒+𝑠𝑖𝑔𝑛𝑎𝑙

𝐹𝐴𝑆𝑛𝑜𝑖𝑠𝑒
     (4.4) 

where FASnoise is the Fourier amplitude spectrum of the recording from the beginning (time, 

t = 0 s) to t0, and FASnoise+signal is the Fourier amplitude spectrum of the recording from t0 to 

2 × t0 such that the same FAS abscissae are obtained. When available, the t0 obtained for the 

vertical component is used on the two corresponding horizontal components as P waves are better 

observed in vertical ground motions and thus yield a more reliable t0. Ground-motion recordings 

with SNR > 3 across frequencies from 0.5 Hz or at least half the site’s fundamental frequency 
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(𝑓/𝑓0 = 0.5) to 25 Hz are considered appropriate. Some of these criteria are relaxed for sites in 

California, given the limited number of recordings available (see Table 4.2 footnotes). Figure 4.3 

shows an example of the t0 and the SNR for a set of records.  

Only ground-motion recordings not expected to yield soil nonlinearities are used. 

Recordings potentially leading to nonlinear behavior of soils are identified using the shear-strain 

index (I), proposed by Idriss (2011), and defined as: 

𝐼𝛾 =
𝑃𝐺𝑉𝑖𝑛

𝑉𝑆30
× 100%     (4.5) 

where PGVin is the peak ground velocity of the input motions, in the same units as VS30. The 

ground motions yielding Iγ values lower than 0.005% are expected to yield shear strains lower 

than 0.01% on average (Kim et al., 2016) and are thus considered appropriate for linear elastic 1D 

SRAs (Kaklamanos et al., 2013). The vertical recordings are not screened based on this criterion. 

Lastly, all ground motions are visually screened and recordings presenting obvious 

anomalies disregarded. After screening the sites based on the availability of a measured VS profile 

and the ground motions, only sites with at least four two-component recorded events are kept. The 

maximum number of events per site is set at 120 (240 recordings) to reduce computational cost. 

Sites with more than 120 events are re-screened to keep the recordings with the wider frequency 

range of acceptable SNR values. The screened dataset consists of 534 sites, 518 from Japan and 

16 from the US. From them, 39 sites are identified as 1D-like and used to calibrate Dmul and σlnVS
 

as discussed in Chapter 3. From the remaining 495 3D-like sites, five sites are used as examples 

to apply the proposed approach (Figure 4.11) and thus removed from the dataset. The remaining 

490 sites are used for the quantification of c3D
SRA and ϕS2S

SRA. Figure 4.4 shows the distribution of the 
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magnitude and epicentral distance of all the events in the dataset, and Figure 4.5 shows the number 

of usable recordings per normalized frequency.  

4.5.3. SITE RESPONSE ANALYSIS 

Site response analyses are conducted using NRATTLE, code written by C. Mueller, modified by 

R. Herrmann, and included in the suite of strong-motion programs Stochastic-Method SIMulations 

(SMSIM) by Boore (2005). NRATTLE uses the Thomson-Haskell solution to compute the 1D 

SH-wave TF (Thomson, 1950; Haskell, 1953) based on a VS profile, density, and quality factors 

(QS) or small-strain damping. The ground-motion recordings at depth are input as vertically 

incident SH waves into the 1D models. Each of the two horizontal components is used 

independently in the analysis. The borehole ground-motion recordings used as input motions 

capture the wavefield of incident upgoing and reflected downgoing waves. Thus, a rigid base 

boundary condition (e.g., Kwok et al., 2007) is assumed for the analyses. All TFs are smoothed 

after Konno and Ohmachi (1998) with b = 40, and PSA response spectra (5% damping) computed 

using the package pyRotD (Kottke, 2018). Using other computer codes such as Shake2000 

(Ordonez, 2012), STRATA (Kottke and Rathje, 2008), and DeepSoil (Hashash et al., 2020), leads 

to the same results as NRATTLE in linear elastic 1D SRAs.  

Observed and theoretical TFs for four representative sites are presented in Figure 4.6. In 

general, the theoretical TFs present higher amplitudes than the observed TFs at the site’s 

fundamental mode and often at some higher modes. The baseline theoretical TFs are more sharply 

peaked than the observed TFs and generally overpredict the fundamental and some higher modes. 

Results from the proposed approach (Dmul = 3 and σlnVS
= 0.25) show smoother median theoretical 

TFs compared to the baseline. The smoother TFs better capture the more uniform distribution of 
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energy across frequencies as indicated by the lower peak-to-trough ratio (e.g., Figure 4.6c) that is 

common in median observed TFs (De la Torre et al., 2021). These TFs more accurately estimate 

the observed TFs at the fundamental mode but lead to an overall underprediction of the high-

frequency amplitudes. Similar trends are observed for AFs (Figure 4.7). 

4.5.4. METHOD BIAS AND MODELING ALEATORY VARIABILITY 

The site response residuals are calculated for TFs and AFs using Equation 4.1 and the c3D
SRA 

computed using a mixed-effects regression. Figure 4.8 shows the c3D
SRA and the residuals (95% 

confidence interval) for the four Dmul-σlnVS
 cases. The c3D

SRA corresponding to the baseline case 

(Figures 4.8a and 4.8b) shows a notorious overprediction of TFs and AFs at fundamental mode 

(𝑓/𝑓0 = 1), which is reduced as damping is increased and by using randomized VS profiles. 

Between the two, Dmul has a weaker effect than VS randomization in reducing the overprediction 

at the fundamental mode (Figures 4.8c and 4.8d versus 4.8e and 4.8f). However, the proposed 

Dmul-σlnVS
 combination leads to a nearly unbiased prediction of AFs, which is widely used in 

engineering practice (Figure 4.8f versus 4.8h). The underprediction observed at the high-frequency 

range is addressed in Step 3 of the proposed approach.  

The site response residuals are partitioned into their components c3D
SRA, δS2Ss

SRA, and 

δAMPes
SRA and the results indicate that the proposed Dmul-σlnVS

 pair leads to an overall reduction 

in c3D
SRA and ϕS2S

SRA (Figure 4.9). The partition of residuals is conducted using a mixed-effects 

regression (Pinheiro et al., 2022) to account for the correlation among the varying number of 

ground-motion recordings at a given site. A significant reduction of the ϕS2S
SRA of TFs is obtained 

from Case 1 to Case 4 in the 𝑓/𝑓0 range from 1.6 to 8, and relatively minor differences are observed 

at lower and higher 𝑓/𝑓0 (Figure 4.9a). The ϕS2S
SRA of AFs presents a relatively modest reduction of 
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0.15 from Case 1 to Case 4 across frequencies (Figure 4.9b). The ϕAMP
SRA  of TFs is the same for all 

the Dmul-σlnVS
 scenarios given that TFs scale proportionally with Dmul and σlnVS

 at a given 

frequency (Figure 4.9c). Lastly, the ϕAMP
SRA  of AFs presents a reduction of about 0.2 at the 

fundamental mode from Case 1 to Case 4, and around 0.1 at higher frequencies (Figure 4.9d). A 

reduction in c3D
SRA indicates that the estimated FAS or PSA at the surface are more accurate and 

only a small bias correction is required. A smaller ϕS2S
SRA indicates more confidence in the estimated 

response. Conducting 1D SRAs following the proposed approach leads to c3D
SRA ranging from -0.5 

to 0.5 for TFs and AFs, ϕS2S
SRA around 0.6 for TFs and from 0.4 to 0.5 for AFs, and ϕAMP

SRA  nearly 

constant around 0.4 and 0.3 for TFs and AFs, respectively. Recommended models for c3D
SRA and 

ϕS2S
SRA are provided as values for various 𝑓/𝑓0 or normalized period (T/T0) in Table 4.3, and 

presented in Figures 4.8g, 4.8h, and 4.9a to 4.9d. 

These results are consistent with findings from previous studies that have used a similar 

database. The results are not fully comparable as such studies did not use the normalized frequency 

in the estimation of the residual analysis, but some trends can be observed. For TFs, the estimated 

ϕS2S
SRA is higher at low frequencies and lower at high frequencies compared to Zhu et al. (2022), 

and a similarly minor effect of damping models is observed. For AFs, the estimated c3D
SRA is lower 

(i.e., closer to zero or more negative) than Kaklamanos et al. (2013), although with similarly low 

values across frequencies. The ϕS2S
SRA of AFs is slightly lower than the estimated by Kaklamanos et 

al. (2013), and the ϕAMP
SRA  of AFs similar. Various studies showed very consistent trends in the 

ϕAMP
SRA  estimates.  
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4.6. COMPARISON AGAINST BOREHOLE DATA 

To illustrate the predictive capability of the proposed approach, TFs and AFs are computed for 

five KiK-net sites and results compared to observations. Data from these sites were not used in the 

statistical analyses and were rather selected based on a preliminary evaluation indicating that their 

site terms in TFs at 𝑓/𝑓0 = 1 (i.e., δS2Ss
SRA) spanned across from underprediction to 

overprediction. These sites were also selected as they are all about 100 m deep, which are the most 

abundant sites in the available dataset. The cumulative distributions of site terms estimated based 

the recommended c3D
SRA models (Table 4.3) for TFs and AFs including the approximate location of 

the five selected KiK-net sites are presented in Figures 4.10a and 4.10b, respectively. Note that 

the ranking of a site’s site term in AFs does not uniformly translate to the ranking in site terms for 

TFs. This is particularly evident for the site SZOH32.  

Figure 4.11 illustrates a comparison between observations and results from the proposed 

approach for the five KiK-net sites in terms of TFs and AFs. The best-estimate responses show an 

overall ability to capture well the median observed responses (Figures 4.11c to 4.11f) but also the 

potential for discrepancies. The discrepancies observed in AFs at the fundamental modes cover 

the range of possible accuracy achieved by the proposed approach. In cases where the best estimate 

response does not capture the observed median well, the 5th and 95th percentiles manage to envelop 

it. An exception to this is observed for GIFH14, a site that presents a dominant mode around 3 Hz. 

Such high amplitudes at the dominant frequency are explained by the additional variability in site 

response residuals ϕAMP
SRA , whose effects are assumed to be included in the input motion in seismic 

hazard analyses, and thus not considered to address modeling errors in the proposed approach. 

Overall, the proposed approach provides more accurate site response predictions compared to a 

more traditional approach (baseline case), as well as the ability to envelope the median responses.  
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4.7. EFFECT OF SITES’ REGION AND TYPE 

As previously described, c3D
SRA, ϕS2S

SRA, and ϕAMP
SRA  are quantified based on data from 490 3D-like 

borehole sites from Japan and the US (Figures 4.8 and 4.9). This approach is preferred as grouping 

the sites according to their compliance to the 1D assumptions (1D-like or 3D-like), or region as 

such an approach (1) requires a taxonomy for the identification of the site type when no ground-

motion data are available, and (2) reduces the data to smaller groups of sites. In this section, c3D
SRA, 

ϕS2S
SRA, and ϕAMP

SRA  are calculated considering the sites’ compliance to 1D assumptions and 

geographical location. While the geographical location is not expected to be a factor controlling 

site response, grouping the sites by their location either in Japan or California could capture 

geomorphological aspects and ground surface features (Nweke et al., 2022; Pilz et al., 2022) 

leading to differences in site response accuracy. There are 39 1D-like sites and 490 3D-like sites, 

480 of them located in Japan, nine in California, and one in Alaska. All 1D SRAs in this section 

are conducted considering Dmul = 3, and σlnVS
 = 0.25. A comparison of observed and theoretical 

TFs and AFs for the 39 1D-like sites is presented in Appendices E and F, and TFs and AFs for the 

nine 3D-like sites in California in Appendices G and H. 

The site response residuals for 1D-like sites indicate underprediction at 𝑓/𝑓0 = 1 and 

overall lower standard deviations, compared to the 3D-like sites (Figure 4.12). The c1D
SRA (method 

bias for 1D-like sites), show an overall underprediction of the TFs in 0.5 ln units across frequencies 

(Figure 4.12a), whereas the AFs are nearly unbiased (Figure 4.12b). Compared to c3D
SRA, c1D

SRA tends 

towards an underprediction of the fundamental mode as opposed to the overprediction exhibited 

by c3D
SRA (Figures 4.12g and 4.12h). This tendency is expected as, unlike 3D-like sites, the 1D-like 

sites often present a good agreement between the theoretical and observed TFs’ fundamental 
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modes. Therefore, the extent to which overpredictions occur at 𝑓/𝑓0 = 1 is reduced. The ϕS2S
SRA for 

1D-like sites (Figures 4.13a and 4.13b) is slightly higher or equal than the ϕS2S
SRA for 3D-like sites 

at the fundamental mode, and mostly lower by 0.1 to 0.2 at higher frequencies. Lastly, there is no 

significant difference in the estimated ϕAMP
SRA , except at 𝑓/𝑓0 higher than seven, where a slight 

reduction is observed for the 1D-like sites in both TFs and AFs.  

The site response residuals for California are similar in tendency to the global data, clearly 

dominated by the Japanese sites, but they show a different trend in the observed ϕS2S
SRA and ϕAMP

SRA  

across frequencies. The c3D
SRA for TFs for sites in California shows stronger under- and 

overpredictions, although with a similar trend with frequency (Figure 4.12c), whereas minor 

differences are observed in c3D
SRA for AFs (Figure 4.12d). The ϕS2S

SRA for TFs for sites in California 

is higher near the fundamental mode by about 0.3 (Figure 4.13a) and significantly lower at higher 

frequencies, with values nearing zero at some 𝑓/𝑓0 values. These near-zero values are given by 

the very limited data available for California that cannot capture a more realistic residual 

variability. The ϕS2S
SRA for AFs for sites in California are consistently lower in about 0.2 to 0.3 ln 

units (Figure 4.13b) compared to the ϕS2S
SRA based on the global dataset, and lower than the ϕS2S

SRA 

estimated by Stewart and Afshari (2020) overall. Lastly, there is no significant difference in the 

estimated ϕAMP
SRA , except an increase at 𝑓/𝑓0 lower than 1.1 and a consistent decrease at 𝑓/𝑓0 higher 

than eight. The ϕAMP
SRA  for California is consistent with findings by Stewart and Afshari (2020). The 

Japanese dataset represents 98% of the global dataset and thus results are nearly the same and not 

described. Unsurprisingly, these results indicate that the data from the US do not contribute to the 

estimation of the recommended c3D
SRA, ϕS2S

SRA, or ϕAMP
SRA . 
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4.8. APPLICABILITY TO OUTCROP GROUND MOTIONS 

The proposed approach is developed based on borehole data, whereas forward site response 

predictions and ground-motion model developments are based on rock outcropping and free field 

data. Concerns regarding the use of borehole recordings are due to the wave cancelling effects that 

such recordings carry. The wave-cancelling effect refers to the destructive interference of the 

upgoing and downgoing waves (Bonilla et al., 2002) that leads to near-zero amplitude at some 

frequencies in borehole recordings and thus unrealistically high amplitudes in observed TFs (e.g., 

site OKYH14 at 5 Hz in Figure 14e). Given that these TF amplitudes are not associated with the 

subsurface structure or site-specific factors controlling the site response, they are referred to as 

pseudo-resonances (Tao and Rathje, 2020b).  

Various researchers investigated wave-cancelling effects and proposed methods for using 

borehole data (e.g., Clayton and Wiggins, 1976; Mehta et al., 2007; Parolai et al., 2010; Cadet et 

al., 2011; Chandra et al., 2015), however, no method is established to date. Tao and Rathje (2020a, 

2020b) propose a taxonomy for identifying sites affected by pseudo-resonances and recommend 

that these sites not be used in site response validation studies. Contrary to this, Stewart and Afshari 

(2020) suggest that pseudo-resonances be embraced and considered in the evaluation of the 1D 

SRA predicting capabilities. While the effect of pseudo-resonances leads to the overestimation of 

TF amplitudes, within the context of this paper, the question we try to answer is whether pseudo-

resonances affect the site response bias, c3D
SRA, and the standard deviations of the site response 

residual components, ϕS2S
SRA and ϕAMP

SRA .  

An initial investigation to evaluate the effect of pseudo-resonances on c3D
SRA, ϕS2S

SRA, and 

ϕAmp
SRA  is conducted with the aim to find any distinctive difference. To this end, sites not affected 
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by pseudo-resonances are first selected from the database. Tao and Rathje (2020b) suggest that 

true resonances are those captured by outcropping theoretical TFs (i.e., TFs calculated using the 

outcropping boundary condition), whereas pseudo-resonances are captured by within theoretical 

TFs. In addition, the authors indicate that the absence of a distinct velocity contrast in the VS profile 

is suggestive of the presence of pseudo-resonances. Based on these observations, sites with similar 

fundamental frequency from the outcropping and within TFs (Dmul = 1, no randomization) with 

15% of similarity are considered free of pseudo-resonances. In cases where the similarity of the 

TFs alone does not suggest the presence of absence of pseudo-resonances, the site’s VS profile is 

inspected. Figure 4.14 shows examples of sites with and without pseudo-resonances, and a 

complete set of figures for all sites identified to be unaffected by pseudo-resonances is presented 

in Appendix I. Any discrepancies between the theoretical and observed TFs is not considered in 

this selection and rather attributed to 3D effects.  

The 490 sites used for the statistical analysis are separated into 40 sites identified as free 

of pseudo-resonances (N-P), and the remaining 450 sites with pseudo-resonances (P). Residuals 

are computed for each group, and the statistical analyses conducted to recompute c3D
SRA, ϕS2S

SRA, and 

ϕAMP
SRA . The results show minor differences between (c3D

SRA)
P
, (ϕS2S

SRA)
P
, and (ϕAMP

SRA )
P
 (Figures 

4.15c, 4.15d, and 4.16), and the proposed global c3D
SRA, ϕS2S

SRA, and ϕAMP
SRA  (Figures 4.8g, 4.8h, and 

4.9). The method bias (c3D
SRA)

N−P
 is higher than (c3D

SRA)
P
 by 0.3 to 0.7 for TFs and 0.5 for AFs at 

𝑓/𝑓0 lower than 2; whereas it is slightly lower at higher frequencies (Figure 4.15). The standard 

deviation (ϕS2S
SRA)

N−P
 is higher than (ϕS2S

SRA)
P
 by about 0.2 and 0.15 for TFs and AFs around the 

fundamental mode, and by about 0.3 and 0.2 for TFs and AFs starting at 𝑓/𝑓0 = 10 (Figures 4.15c 
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and 4.15d). Lastly, the standard deviations (ϕAMP
SRA )

N−P
 and (ϕS2S

SRA)
P
 fluctuates within a 0.05 range 

(Figures 4.16e and 4.16f).  

Overall, results for sites considered unaffected by pseudo-resonances indicate higher c3D
SRA 

for 𝑓/𝑓0 up to around 3 and higher ϕS2S
SRA around 𝑓/𝑓0 = 1 and 𝑓/𝑓0 higher than 9. To remove the 

effect of the lower number of sites free of pseudo-resonances, mixed-effects regressions are 

conducted for suites of 40 sites randomly sampled without replacement from the dataset of 450 

sites affected by pseudo-resonances. The results confirmed the observed trends (Figure 4.16) and 

variability at intermediate frequencies. Similar to the results for 1D-like sites, the higher c3D
SRA and 

ϕS2S
SRA values near the fundamental frequency are due to the similarity in the theoretical and 

observed TFs’ fundamental modes.  

These findings show that there is potential for further underprediction of the median site 

response, and higher ϕS2S
SRA and ϕAMP

SRA  in applications using outcropping ground-motion recordings. 

Given (1) the relatively low number of sites free of pseudo-resonances, (2) the assumptions made 

in the selection of such sites, and (3) the impact that these results would have on site response and 

seismic hazard applications, the values for c3D
SRA and ϕS2S

SRA in Table 4.3 are still preferred for 

practical applications. The results presented in this section encourage the need for further 

investigations regarding the applicability of borehole data-based lessons to outcropping 

applications. 

4.9. EXAMPLE APPLICATION 

The proposed approach is used to estimate the site response at a hypothetical project site selected 

for the construction of a rigid structure with a period of approximately 0.1 s. The site is located on 
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30 m-thick old deposit of dense alluvial soils overlying a bedrock with VS = 1080 m/s at the top 

30 m. A single measured VS profile available for the site (Figure 4.17b). The closest active fault is 

located 25 km away from the site, and the highest historical earthquake magnitude is Mw6.0. The 

engineers leading the design of the structure are concerned about the seismic demands during an 

earthquake of similar magnitude and with a predominant period close to the structure’ resonant 

period. The analysts decide to conduct a deterministic seismic hazard analysis and 1D SRAs to 

estimate the seismic demand at the foundation level of the structure.  

4.9.1. SEISMIC DEMAND 

A deterministic scenario is defined based on the site’s characteristics, and the response spectrum 

estimated using the Abrahamson et al. (2014) GMM (Figure 4.17c). For practical purposes, this 

spectrum is considered representative of the seismic demand at the base of the alluvial deposit. A 

more appropriate estimation requires (1) accounting for the differences in the site-specific VS 

profiles and the implied by the GMM (Williams and Abrahamson, 2021), (2) the location at a 

depth of 30 m for the application of the input ground motions (Pretell, Ziotopoulou et al., under 

review), and (3) the estimation of the response spectrum at surface using a single-station sigma 

given that the site response is estimated using 1D SRAs (e.g., Al Atik, 2015).  

Thirteen ground motions are selected from the NGA-West2 database (Ancheta et al., 2013), 

and scaled such that their mean approximately matches the target response spectrum (Figure 

4.17c). The potential for soil nonlinearity is evaluated based on the shear strain index, Iγ, with 

VS30 = 450 m/s. All values are lower than 0.05%, thus linear elastic SRAs are appropriate, and the 

proposed approach is well-suited for estimating the site response. 
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4.9.2. PROPOSED APPROACH 

Step 1: Site characterization 

The site characterization consists of estimating the baseline VS profile, and laboratory-based 

damping profile. The baseline VS profile is taken from the available field measurement (Figure 

4.17b), whereas the damping profile is estimated after Darendeli (2001), considering the mean 

effective stress at the middle of each VS layer (Figure 4.17a).  

Step 2: Increased damping profile, and randomized VS profiles 

The baseline damping and VS profiles are adjusted to remove the errors intrinsic to 1D SRAs as a 

tool. The minimum damping profile estimated after Darendeli (2001) is increased by Dmul = 3. In 

addition, the top 30 m of the baseline VS profile corresponding to the alluvial deposit are 

randomized to generate fifty VS profiles using the VS model after Toro (1995) with σlnVS
 = 0.25. 

The other parameters used for the Toro model are those recommended by Toro for sites with 

VS30 from 180 to 360 m/s. The obtained damping and randomized VS profiles are shown in Figure 

4.17. 

Step 3: Uncorrected median site response 

The input ground motions are propagated through each of the randomized VS profiles to obtain the 

response at ground surface (Figure 4.18). An outcropping boundary condition is considered for the 

base of the models. Fifty FAS and acceleration response spectra per input ground motion are 

obtained at surface, and the median values considered the uncorrected (biased) best estimate 

responses for each one of the input motions (Figures 4.18e and 4.18f). Results are presented in 

FAS from 0.04 to 0.25 s (half the fundamental frequency ≈ 4 Hz, to 25 Hz), but PSA at shorter 

periods are also presented as they are often controlled by the longer period range (Douglas and 
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Boore, 2011). FAS and PSA estimates at periods longer the site’s fundamental mode can be 

estimated using GMM (e.g., Bayless and Abrahamson, 2019).  

Step 4: Bias correction 

The median FAS and PSA response spectrum at ground surface are corrected to account for the 

1D-SRA bias. The bias correction is conducted by scaling the T/T0 in Table 4.3 by the site’s 

fundamental period (T0 ≈ 0.125 𝑠) fundamental values and then adding the c3D
SRA values for TFs 

or AFs as needed, to the median responses obtained in Step 3. The resulting bias-corrected FAS 

and PSA (Figures 4.18g and 4.18h) are the best estimate for a given input motion.  

Step 5: Modeling epistemic uncertainty 

The bias-corrected best estimate TFs and AFs assume that the proposed approach and 1D SRAs 

are capable of perfectly estimating the site response, which is unrealistic. To account for the 

potential response to be higher or lower due to unmodeled features affecting the response with a 

90% confidence interval, the best estimate bias-corrected TFs and AFs are shifted by 

±1.65 × ϕS2S
SRA. The resulting 5th and 95th percentiles, and the median of all input motions, are 

presented in Figures 4.18g and 4.18h. These are plausible responses that should be considered in 

design decisions.  

4.9.3. RECOMMENDED PATH FORWARD 

The site response evaluation indicates that the median PSA expected at a period of 0.1 s is 

approximately 0.145g. However, when accounting for modeling errors, it is possible that the PSA 

be as high as 0.32g. Whether the median or 95th percentile PSA value is used for design of the 

structure depends on the project-specific engineering and non-engineering related aspects. 
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However, it is recommended that at the very minimum (1) the bias-corrected median be used for 

design, and (2) the 95th site response percentile be checked, and the design adjusted as needed to 

prevent catastrophic failure caused by this seismic demand.  

4.10. CONCLUSIONS 

An approach for conducting linear elastic 1D site response analyses (SRAs) developed based on 

borehole data was presented. This approach (1) uses damping multipliers (Dmul = 3) and VS 

randomization to improve site response predictions and (2) accounts for the 1D-SRA bias (c3D
SRA) 

and the modeling errors, quantified through the standard deviation ϕS2S
SRA, carried by the inability 

of 1D SRAs to capture non-1D effects affecting site response. Current engineering practice expects 

1D SRAs to provide accurate site response estimates and neglects modeling errors. This is an 

unrealistic expectation.  

Comparisons of ground-motion data from 534 borehole sites against 1D SRA predictions 

in terms of transfer functions (TFs) and amplification factors (AFs) showed trends in the 

discrepancies. An overall site response overprediction is observed in the low-frequency range, and 

underpredictions in the high-frequency range. The use of randomized VS profiles reduces the 

overpredictions at the frequency modes and leads to median TFs and AFs with a more uniform 

distribution of energy (i.e., site response amplitudes) across frequencies, similar to the observed 

median responses. The use of Dmul = 3 to increase damping leads to the estimation of nearly 

unbiased AFs across frequencies. Despite these improvements, site response estimates from 1D 

SRA conducted with Dmul and randomized VS profiles are still biased and present significant 

variability in their site terms (δS2SS
SRA). The proposed approach addresses these concerns by bias-

correcting the predicted responses and considering the 5th and 95th site response percentiles.  
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An investigation of the effect of pseudo-resonances on the proposed approach indicates 

that outcropping applications could potentially require a stronger bias-correction to prevent 

underpredictions and a larger shift of the bias-corrected median response to account for 1D SRA 

modeling errors. This finding further stresses the need for investigating the applicability of 

findings from site response studies using borehole data for engineering applications. Given the 

assumptions made in this investigation and recognizing that current practices assume c3D
SRA = 0 and 

ϕS2S
SRA = 0, using borehole-data base estimates is considered a step forward in our practice 

regardless of the potential issues associated with borehole data.  

The recommended values for c3D
SRA and ϕS2S

SRA are tied to the proposed approach for 

conducting 1D SRAs, and thus the provided recommendations should be closely followed. 

Reducing the magnitude of the recommended ϕS2S
SRA would likely require conducting 2D or 3D 

SRAs and considering the ϕS2S
SRA associated with those numerical approaches. The proposed c3D

SRA 

and ϕS2S
SRA are valid for linear elastic analyses but the framework can be extended to nonlinear 

SRAs.  
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FIGURES 

 

Figure 4.1. Borehole site locations differentiating types as 1D- or 3D-like: (a) sites in Japan, (b) 

sites in California with an insert closeup view of the Delaney Park site in Alaska. Note: 3D-like 

KiK-net sites used as examples throughout this paper are labeled for reference.  

 

 

Figure 4.2. Example of input VS and damping profiles for 1D SRAs.  
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Figure 4.3. (a) P-wave arrival time in ground-motion recordings, and (b) signal-to-noise ratio 

(SNR). 

 

 

Figure 4.4. Distribution of epicentral distance and earthquake magnitude for selected events. 
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Figure 4.5. Number of usable recordings per normalized frequency. 
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Figure 4.6. Comparison of observed transfer functions (TFs) and 1D SRA-based TFs for Case 1: 

Baseline (damping with Dmul = 1 and best estimate VS profile), and Case 4: Proposed approach 

(damping with Dmul = 3 and randomized VS profiles).  
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Figure 4.7. Comparison of observed amplification factors (AFs) and 1D SRA-based AFs for Case 

1: Baseline (damping with Dmul = 1 and best estimate VS profile), and Case 4: Proposed approach 

(damping with Dmul = 3 and randomized VS profiles).  
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Figure 4.8. Comparison of site response method bias (c3D
SRA) and residuals (95% confidence 

interval) in transfer functions and amplification Factors. (a) and (b): Case 1, baseline (damping 

with Dmul = 1 and best-estimate VS profile); (c) and (d): Case 2 (Dmul = 3 and best estimate VS 

profile); (e) and (f): Case 3 (Dmul = 1 and randomized VS profiles with σlnVS
 = 0.25); and (g) and 

(h): Case 4, proposed (Dmul = 3 and σlnVS
 = 0.25). 
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Figure 4.9. Comparison of site response residual standard deviations (ϕS2S
SRA and ϕAMP

SRA ) in transfer 

functions and amplification factors. 

 

 

Figure 4.10. Cumulative distribution of site terms (δS2Ss
SRA) at 𝑓/𝑓0 = 1: (a) Site terms in transfer 

functions (TFs), and (b) in amplification factors (AFs). Labels indicate five selected sites with 

approximately uniformly spaced site terms in AFs. 
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Figure 4.11. Transfer functions and amplification factors estimated using Cases 1 (baseline) and 

Case 4 (proposed approach) for five KiK-net sites. The sites are selected to cover the range of site 

term values (δS2Ss
SRA) in AFs.  
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Figure 4.12. Comparison of site response method bias (c1D
SRA or c3D

SRA) and residuals (95% 

confidence interval) in transfer functions and amplification factors estimated from different 

datasets. (a) and (b): 1D-like sites from Japan and the US, (c) and (d): 3D-like sites from California, 

(e) and (f) 3D-like sites from Japan, and (g) and (h): 3D-like sites from Japan and the US 

(proposed). 
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Figure 4.13. Comparison of site response residual standard deviations (ϕS2S
SRA and ϕAMP

SRA ) in 

transfer functions and amplification factors estimated from different datasets: (1) 1D-like sites 

from Japan and the US, (2) 3D-like sites from California, (3) 3D-like sites from Japan, and (4) 3D-

like sites from Japan and the US (proposed). 
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Figure 4.14. Example of sites unaffected and affected by pseudo-resonances: (a) Measured VS 

profiles, (b) and (d): transfer functions (TFs) for sites free of pseudo-resonances, (c) and (e): TFs 

for sites with pseudo-resonances. 

  

Figure 4.15. Comparison of site response method bias (c3D
SRA) and residuals (95% confidence 

interval) in transfer functions and amplification factors estimated from different datasets. (a) and 

(b): Sites unaffected by pseudo-resonances, (c) and (d): Sites affected by pseudo-resonances. 
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Figure 4.16. Comparison of site response residual standard deviations (ϕS2S
SRA and ϕAMP

SRA ) in 

transfer functions and amplification factors estimated from different datasets: (1) Sites unaffected 

by pseudo-resonances, (2) sites affected by pseudo-resonances, (3) random sample of sites affected 

by pseudo-resonances, and (4) sites unaffected and affected by pseudo-resonances (proposed). 

 

 

Figure 4.17. (a) Baseline and factorized damping profiles. (b) Baseline and randomized VS 

profiles. (c) Target response spectrum and selected input ground motions. 
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Figure 4.18. Estimated site response for a hypothetical site, step-by-step results for Fourier 

amplitude spectra (FAS) and pseudo-spectral acceleration (PSA) response spectra. (a) and (b): 

Input ground motions, (c) and (d): transfer functions and amplification factors (median of all input 

motions) per randomized VS profile; (e) and (f): uncorrected FAS and uncorrected PSA response 

spectra (median of all input motions) at surface; (g) and (h): best estimate, and 5th and 95th 

percentiles of bias-corrected FAS and PSA response spectrum at surface (median of all input 

motions). 
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TABLES 

Table 4.1. Matrix for the separation of sources of aleatory variability and epistemic uncertainty 

associated with the proposed approach for conducting 1D SRAs. 

 Aleatory Variability Epistemic Uncertainty 

P
a

ra
m

et
ri

c 

 

Effect of the randomness in time on the 

site response, e.g., from ground-motion 

waveforms: ϕAMP−TH
SRA , only applicable 

to amplification factors. 
 

 

Alternative suites of input ground motions 

consistent with design criteria. 

Alternative best estimate 1D VS profile. 

Alternative values of σlnVS  for VS randomization to 

remove δ1Ds
SRA: 0.2 to 0.3. 

Alternative values of Dmul for increasing damping to 

remove δ1Ds
SRA: 1 to 4. 

M
o
d

el
in

g
 

Standard deviation of the site-specific 

mean residual, δS2Ss
SRA: ϕS2S

SRA 

 

Standard deviation of remaining 

unexplained residuals, δAMPes
SRA: 

ϕAMP
SRA  

 

Standard error of c3D
SRA, SE(c3D

SRA) ≈ 0 given the 

large database it is based on. 

 

Standard error of ϕS2S
SRA, SE(ϕS2S

SRA) ≈ 0 given the 

large database it is based on. 

 

Standard error of ϕAMP
SRA , SE(ϕAMP

SRA ) ≈ 0 given the 

large database it is based on. 

 

 

Table 4.2. Databases and ground motion selection criteria, including 1D- and 3D-like sites.  

Database 
Maximum shear strain 

index, 𝐈𝛄 (%) 1 
Minimum signal-to-

noise ratio, SNR 

Accepted  

sites 

Accepted 

events 

CESMD 0.01 3 2 12 105 3 

KiK-net 0.005 3 3, 5 518 15,541 

NEES 0.01 2.5 4, 5 4 43 

1 Idriss (2011) 

2 SNR estimated within frequency window from 0.5 Hz or at least half the site’s frequency, up to 10 Hz. This SNR 

was enforced in 90% of the frequency range. Time of P-wave arrival (t0) selected based on horizontal recordings 

given the absence of vertical components.  

3 Includes ground-motion recordings from the Afshari et al. (2019) database.  

4 SNR estimated within frequency window from 0.5 Hz or at least half the site’s frequency, up to 20 Hz.  

5 SNR estimated within frequency window from 0.5 Hz or at least half the site’s frequency, up to 12 Hz.  

6 Same SNR criteria applied for selecting vertical ground motion components. The I was not evaluated.  
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Table 4.3. Recommended method bias (c3D
SRA) and standard deviations ϕS2S

SRA and ϕAMP
SRA  of TFs and 

AFs for various normalized periods and frequencies. 

𝐓/𝐓𝟎 𝒇/𝒇𝟎  
𝐜𝟑𝐃

𝐒𝐑𝐀 𝛟𝐒𝟐𝐒
𝐒𝐑𝐀 

TF AF TF AF 

0.04 25.0 0.60 0.20 0.60 0.40 

0.05 20.0 0.60 0.20 0.60 0.40 

0.10 10.0 0.45 0.05 0.60 0.45 

0.20 5.00 0.50 0.0 0.60 0.45 

0.30 3.33 0.55 0.0 0.60 0.45 

0.40 2.50 0.55 0.0 0.60 0.50 

0.50 2.00 0.55 -0.05 0.60 0.50 

0.60 1.67 0.55 -0.10 0.60 0.50 

0.70 1.43 0.55 -0.15 0.60 0.50 

0.80 1.25 0.40 -0.30 0.60 0.50 

0.90 1.11 0.10 -0.50 0.60 0.50 

0.95 1.05 -0.10 -0.55 0.60 0.50 

1.00 1.00 -0.2 -0.63 0.60 0.50 

1.05 0.95 -0.30 -0.63 0.60 0.50 

1.10 0.91 -0.30 -0.63 0.60 0.50 

1.20 0.83 -0.30 -0.63 0.60 0.50 

1.30 0.77 -0.15 -0.55 0.60 0.50 

1.40 0.71 -0.10 -0.45 0.60 0.50 

1.50 0.67 -0.05 -0.40 0.60 0.50 

1.60 0.63 0.0 -0.35 0.60 0.50 

1.70 0.59 0.05 -0.33 0.60 0.50 

1.80 0.56 0.05 -0.25 0.60 0.50 

1.90 0.53 0.05 -0.25 0.60 0.50 

2.00 0.50 0.05 -0.25 0.60 0.50 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

 

This dissertation discussed two main topics: (1) an approach for capturing 2D shear-wave velocity 

(VS) variability effects on site response using one-dimensional site response analyses (1D SRAs) 

conducted with randomized VS profiles, and (2) an approach for conducting 1D SRAs to account 

for modeling errors by using (a) calibrated amounts of damping and VS randomization to improve 

site response predictions, and (b) models for the bias (c3D
SRA) and variability in the site terms 

(δS2Ss
SRA), quantified with the standard deviation ϕS2S

SRA, to account for the potential under- and 

overprediction of site response. A summary of the main findings of interest for engineering 

practice and future research directions are provided in this chapter.  

SUMMARY OF MAIN CONTRIBUTIONS 

CHAPTER 2  

The results from 2D SRAs on VS correlated random fields and 1D SRAs on randomized VS profiles 

indicated that the latter leads to underprediction of the site response around the sites’ fundamental 

frequency when the standard deviation for VS randomization (σlnVS) was computed from the 2D 

random fields. Such underprediction was due to: (1) the shifting of the individual 1D responses’ 

fundamental modes that led to coinciding peaks and troughs that canceled each other out, and 

(2) the intrinsic limitations of 1D SRAs in capturing non-1D amplification effects (e.g., 

constructive interference). The results from this chapter did not support the use of median 
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amplification factors (AFs) from 1D SRAs with VS randomization for estimating the seismic 

demands in the design of structures. 

The results indicated that the 84th percentile site response from 1D SRAs conducted with 

VS randomization using the Toro model (1995) with σlnVS = 0.25 captures VS spatial variability 

effects well at a given site’s fundamental frequency. This generic σlnVS  = 0.25 showed a similar 

or superior performance than the site-specific σlnVS  values in preventing site response 

underpredictions. A comparison against ground-motion data from four borehole array sites 

(Delaney Park, Garner Valley, HYGH10, and IBRH13) supported this finding on average.  

This chapter also indicated that σlnVS  has a different meaning in 2D and 1D SRAs. In 2D 

SRAs, a higher σlnVS  led to mild variations of the median seismic response and a moderate increase 

in the response variability. In 1D SRAs with VS randomization, a higher σlnVS  led to a significant 

decrease in the median seismic response amplitudes and a significant increase in the response 

variability across frequencies. This finding suggested that conducting 1D SRAs with randomized 

VS profiles generated based on measured site-specific σlnVS  values does not necessarily lead to a 

more appropriate seismic response estimate. 

CHAPTER 3  

An approach was proposed for improving site response predictions based on 1D SRAs by using 

damping multipliers (Dmul), and randomized VS profiles. A Dmul = 3 and σlnVS  = 0.25 led to an 

overall minimum root mean square error (RMSE) in site response predictions. A lower Dmul = 1 

was required for cases where transfer functions (TFs) were the only metric of interest, whereas 

Dmul = 2 to 4 were required for AFs. Higher Dmul values were needed to improve AF predictions, 
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given that the AF at a single degree of freedom oscillator frequency is affected by a wide range of 

ground-motion frequencies (Bora et al., 2016).  

A framework for the sources of aleatory variability (AV) and epistemic uncertainty (EU) 

in ground-motion modeling initially proposed by Abrahamson et al. (1990) was adapted for 1D 

SRA applications. This framework differentiates between the parametric and modeling 

components of AV and EU. The parametric AV consists of random factors affecting the site 

response that the selected modeling approach can explicitly model (e.g., ground-motion 

waveforms). The parametric EU consists of the plausible alternative input parameters associated 

to the selected modeling approach (e.g., suites of input ground motions, selected based on some 

demand criteria). The modeling AV consists of the variability in the estimated site response given 

the factors affecting the site response but uncaptured by 1D SRAs (e.g., the wave propagation 

direction and wave inclination). Lastly, the modeling EU accounts for the potential misestimations 

of the MAV components such as the standard errors in the method bias associated with 1D SRAs 

(c3D
SRA) within the context of the proposed approach.  

CHAPTER 4  

This chapter follows Chapter 3 on developing an approach for conducting linear elastic 1D SRAs 

based on ground-motion data from borehole sites. Specifically, the c3D
SRA, the site-specific mean 

residual with standard deviation ϕS2S
SRA, and a site- and event-specific residual with standard 

deviation ϕAMP
SRA  were quantified and models for engineering applications were proposed. In 

summary, the proposed approach for conducting 1D SRAs consists of the following five steps: 
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1. Site characterization 

Selection of best estimate VS profile and estimation of the minimum damping after Darendeli 

(2001). This site characterization is not uncommon in SRA applications.  

2. Input parameters 

Application of Dmul = 3 to increase the minimum damping and generation of a suite of 50 

randomized VS profiles based off the best estimate profile using the VS model by Toro (1995) 

with σlnVS  = 0.25.  

3. Uncorrected site response 

Conducting of 1D SRAs using the randomized VS profiles and the same single damping profile 

(Dmul = 3). The suite of randomized VS profiles is used for each one of the selected input ground 

motions. The median site response from all the VS profiles is computed and considered the 

uncorrected best estimate for a given input motion.  

4. Bias correction 

The model for c3D
SRA is added to the uncorrected best estimate: 

Best estimate: 𝐼𝑀𝐵𝐸 = 𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴 

5. Accounting for modeling errors 

The potential for modeling errors leading to under- or overpredictions is accounted for by 

considering alternative percentiles of the bias-corrected Fourier amplitude spectra (FAS) or 

pseudo-spectral acceleration (PSA) response spectra with 90% confidence interval:  

5th percentile: 𝐼𝑀5𝑡ℎ = (𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴) − 1.65 × 𝜙𝑆2𝑆

𝑆𝑅𝐴 

95th percentile: 𝐼𝑀95𝑡ℎ = (𝜇𝐼𝑀 + 𝑐3𝐷
𝑆𝑅𝐴) + 1.65 × 𝜙𝑆2𝑆

𝑆𝑅𝐴 
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Systematic trends were observed in the comparisons of ground-motion data from 495 3D-like 

borehole sites against 1D SRA predictions. First, there is an overall site response overprediction 

of the low-frequency range, and underprediction of the high-frequency range. Second, VS 

randomization reduces the overpredictions at the frequency modes and leads to median TFs and 

AFs with a more uniform distribution of energy, i.e., smoother peaks at frequency modes. Third, 

using Dmul = 3 to increase damping leads to the estimation of nearly unbiased AFs across 

frequencies. Fourth, VS randomization and Dmul can improve site response predictions; for 

instance, following the proposed approach. However, there is still significant bias in the results 

and significant variability in the site terms (δS2SS
SRA).  

FUTURE DIRECTIONS 

The development of the proposed approaches for conducting 1D SRAs involved the exploration 

of various avenues that can be further investigated in future studies. The proposed approaches are 

herein referred to as: 

▪ Approach 1: To capture VS spatial variability effects in site response (Chapter 2) 

▪ Approach 2: To reduce and account for the modeling errors in 1D SRAs (Chapters 3 and 4) 

Eight broad areas of future directions are identified and described as follows:  

1. The proposed Approaches 1 and 2 were developed independently. Approach 1 offers a 

practical alternative for estimating a site response that captures VS spatial variability at a given 

site’s fundamental mode. Meanwhile, Approach 2 can be used to estimate the range of potential 

site amplifications accounting for modeling errors that lead to potentially lower or higher site 
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amplifications. Further work is needed to combine both approaches or to develop a method 

that meets both approaches’ goals.  

2. The proposed Approaches 1 and 2 were developed for linear elastic 1D SRAs which are rarely 

used in engineering practice. Future efforts could build on the proposed frameworks to develop 

approaches for conducting equivalent linear and nonlinear 1D SRAs. It is expected that such 

initiatives should include the randomization of the equivalent linear material properties (i.e., 

shear modulus reduction curves, and damping ratio curves), or any other parameters whose 

effect on site response is variable in the field and observed to be important. The goals of such 

randomization should be clearly defined.  

3. The proposed Approaches 1 and 2 used VS randomization considering the VS model by Toro 

(1995). Future research efforts should also evaluate the potential for improving site response 

predictions by (1) randomizing VS layer thicknesses and the depth to bedrock, (2) considering 

a variable σlnVS with depth (e.g., Tao and Rathje, 2019), and (3) using a different 

randomization model.  

4. The framework considered in the development of Approach 1 can be extended to evaluate the 

appropriate amount of VS randomization, mapped through σlnVS , to capture non-1D site-

specific features beyond VS spatial variability (e.g., a dipping bedrock). Approach 1 suggests 

that using σlnVS  = 0.25 and selecting the 84th percentile site response leads to appropriate 

estimates at a given site’s fundamental mode that capture VS spatial variability effects. 

However, most sites are likely exposed to more than a single site-specific feature affecting site 

response. Future studies should therefore consider using VS randomization to capture the 

independent and the combined effect of such non-1D features.  
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5. The evaluation of the effect of pseudo-resonances showed that higher c3D
SRA and ϕS2S

SRA values 

could be associated with Approach 2 when used in applications involving rock outcrop ground 

motions. This finding stressed the need for further investigating the applicability of research 

findings based on ground-motion data to engineering applications. 

6. The proposed Approach 2 was developed based on a large database of ground-motion 

recordings, which was used to quantify Dmul, σlnVS , c3D
SRA, ϕS2S

SRA, and ϕAMP
SRA . It is unclear 

whether these values would increase or decrease as ground motion data are collected. It is 

expected that the recommended Dmul and σlnVS  values and the models for c3D
SRA, ϕS2S

SRA, and 

ϕAMP
SRA  will be revised as the borehole ground-motion datasets become larger.  

7. The development of Approach 2 involved identifying 1D-like sites based on the similarity 

between observed and theoretical TFs. A total of 39 1D-like sites were identified from a 

database of 534 borehole sites, representing about 7%. This finding urges the development of 

protocols for conducting site response analyses using more advanced 2D and 3D SRAs. It is 

expected that such protocols would include directions from the model development stage to 

the implementation of the models in a numerical platform and the interpretation of results for 

design purposes.  

8. Lastly, this dissertation adapted the framework for the parametric and modeling components 

of AV and EU (Abrahamson et al., 1990) to site response applications. This framework is 

expected to be used in future development of numerical simulations, within the context of site 

response applications and beyond.  
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ABSTRACT 

One-dimensional site response analyses (1D SRAs) are the most widely used tool to assess site-

specific seismic response. However, compared to 2D and 3D SRAs, 1D SRAs are limited in their 

ability to capture some wave propagation mechanisms. Here, 2D and 1D SRAs are conducted on 

VS correlated random fields to evaluate: (1) the discrepancies in the median 2D and 1D seismic 

responses, (2) the effects of VS spatial variability features (e.g., correlation length, θ) on the 2D 

response, and (3) the effect of using 1D SRA-based ground motions to estimate intensity measures 

(IMs) towards getting insight into the seismic performance of geosystems. Results indicate that (1) 

median 2D responses are higher than median 1D responses, and the discrepancy increases with VS 

variability (σlnVS), (2) σlnVS  has a stronger effect than other VS variability features on the 2D and 

1D seismic responses, and (3) IMs might be underpredicted when estimated using 1D SRA-based 

ground motions, and thus the expected geosystems’ seismic performance overestimated. 

https://doi.org/10.1061/9780784484043.020
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INTRODUCTION 

The state of practice for assessing site-specific seismic response consists of 1D SRAs, commonly 

accompanied with VS randomization to account for VS spatial variability (e.g., EPRI 2013). Two 

implicit assumptions to this are: (1) 1D SRAs can capture the seismic response of natural deposits, 

and (2) the combined seismic response from multiple randomized 1D VS profiles can capture VS 

spatial variability effects. Validation studies compared 1D SRAs predictions against recorded 

ground motions from downhole stations (e.g., Stewart et al. 2008, Kaklamanos et al. 2013, Afshari 

and Stewart 2019) have shown discrepancies that are often attributed to uncertainties on the input 

parameters such as measured VS profiles, and non-1D effects (e.g., Kaklamanos et al. 2020). 

A numerical evaluation is conducted to understand the discrepancies between the 2D SRA-

based seismic responses for simple 2D sites with spatially variable VS, but unexposed to complex 

geological conditions, and 1D SRA-based responses from 1D VS profiles numerically sampled 

from the 2D models. Results provide insights into (1) the ability of 1D SRAs to capture the effect 

of VS spatially variability, σlnVS, (2) the effect of VS spatial variability features, such as correlation 

lengths, on the 2D seismic response; and (3) the accuracy of the expected seismic performance of 

geosystems when inferred from 1D SRA-based IMs. 

NUMERICAL SITES 

The seismic response of 2D sites with spatially variable VS is evaluated using linear elastic 2D and 

1D SRAs (Figure A.1). The sites consist of 30 m-deep VS correlated random fields developed 

using the variance-covariance matrix approach (Vanmarcke 1983), based on a “seed” 1D VS 

profile generated using the relationship by Kamai et al. (2016) for conditions consistent with sites 

in California. In reality, there are no 2D sites, but rather 3D sites that unavoidably encompass a 
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wide range of site conditions (e.g., variable VS, inclined bedrock, inclined wave propagation) 

affecting the seismic response. However, herein the models are referred to as “2D sites with 

spatially variable VS” to be explicit about the assumptions of this study, and the range of 

application of the conclusions drawn. 1D SRAs are conducted on columns sampled from the 2D 

sites, at the recording locations (Figure A.1). These columns represent VS profiles that are exempt 

from measuring errors or field technique limitations, and are referred to as “sampled VS profiles.” 

The model elements are 1 m by 1 m, which allows for an appropriate estimation of the 

seismic response for frequencies lower than approximately 12.5 Hz (Kuhlemeyer and Lysmer, 

1973), and higher than the site’s fundamental frequency. Multiple model widths were tested, and 

a reasonably small model was selected such that the seismic response measured along the middle 

portion was not influenced by spurious wave reflections from the model’ sides (Pretell et al., 2022). 

This zone is hereafter referred to as “recording zone.” The software QUAD4MU (Hudson et al., 

2003) is used for both 2D and 1D SRAs with a damping of 10% for all soils. This damping is used 

to allow for a smaller model and thus a reasonable computational demand. Additional analyses 

indicate that using lower damping values does not significantly affect the relative difference 

between 2D and 1D seismic responses (Pretell et al., 2022). A fully reflective boundary condition, 

i.e., rigid base (Kwok et al., 2007), is used for the base of the 2D and 1D models to isolate the 

effects of the soil-bedrock impedance ratio. The input motion is applied as a horizontal 

acceleration, accompanied by a null vertical acceleration to prevent vertical displacements. 

Horizontal and vertical displacements are allowed along the 2D models’ sides, whereas vertical 

displacement is prevented along the 1D models’ sides. The selected 1D boundary conditions 

provide results that are consistent with those from conventional software. 
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Results from 1D and 2D SRAs are compared in terms of transfer functions (TFs) and 

amplification factors (AFs). The 2D seismic response is recorded at 21 locations equally spaced 

every 5 m along the recording zone. This zone is the only portion of the model affecting the seismic 

response and thus is used to quantify σlnVS . Ten 2D sites are used, leading to 210 2D and 1D 

recordings, with standard errors of the median and standard deviation TF lower than 2.5%. 

BASELINE SITES 

The variance-covariance matrix approach for generating random fields depends on (1) the standard 

deviation of VS in natural logarithm units, σlnVS, (2) the correlation model, and (3) the horizontal 

and vertical correlation lengths selected for the model (θhor and θver, respectively). The σlnVS  

determines how variable VS is within the modeled space, the correlation model determines the rate 

at which the VS correlation decays with distance, and the θhor and θver determine the span within 

which VS values are similar. For the baseline sites, σlnVS values commonly observed in nature are 

selected: 0.2, 0.3, 0.4, and 0.5 ln units (e.g., Wills and Clahan, 2006). It is worth noting that these 

target σlnVS  values are for the entire model, but only 75 to 98% is achieved within the recording 

zone. The correlation model and correlation lengths are arbitrarily selected. The effect of these 

assumptions on the seismic response is explored in a later section of this article. 

INPUT GROUND MOTION 

All SRAs are conducted using a ground motion record of the 1999 Mw 7.6 Chi Chi Earthquake 

(peak ground acceleration, PGA = 0.33g), recorded at the TCU075 station and downloaded from 

the PEER Database (Ancheta et al., 2013). A single ground motion is appropriate for this 

investigation as linear elastic SRAs are used. In addition, the amplitude of this ground motion does 
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not impact the observed trends given that comparisons are made in terms of either (1) TFs, (2) 

AFs, or (3) the relative difference between 2D SRA- and 1D SRA-based IMs. 

BASELINE RESULTS 

TFs and AFs estimated for the baseline site conditions are presented in Figures A.2 and A.3, 

respectively. The results indicate consistent trends in the relative difference between responses 

from the 2D and 1D SRAs. First, discrepancies in the median seismic responses mainly occur at 

the site’s fundamental frequency and are more significant in TFs than in AFs. This trend is 

consistent with other investigations, e.g., Teague and Cox (2016), Tao and Rathje (2019), Hallal 

and Cox (2021). Second, the differences between the median TFs and AFs increase with the site’s 

VS variability. 

Third, low VS variability sites present modest discrepancies in the median seismic 

responses, but significantly different standard deviations. Unsurprisingly, these trends suggest that 

multiple 1D SRAs cannot compensate for the absence of 2D SRAs, even under the assumption 

that VS profiles are exempt from measurement errors, which is hardly ever the case in practice. 

Findings from these analyses are consistent with previous similar studies (e.g., Pehlivan et al., 

2012; Pehlivan, 2013). 

Discrepancies in the median seismic response estimated using 2D and 1D SRAs are mainly 

due to (1) inherent limitations of 1D SRAs compared to 2D SRAs, given that conventional 1D 

SRAs can only account for wave amplification (or deamplification) due to changes in impedance 

contrasts, and (2) the combined effect of a greater shifting of multiple 1D models’ fundamental 

frequency compared to that of 2D models, and the averaging effect of using the median response 

across frequencies. Results suggest that the seismic response estimated using 2D SRAs for sites 



175 

 

with low VS variability (σlnVS lower than 0.2) can be reasonably modeled using 1D SRAs (Figures 

A.3a and A.4a). As the site variability increases, the amplitudes of the 1D seismic response 

decrease significantly due to shifting of the fundamental frequency caused by the effect that soil 

heterogeneities have on 1D models (e.g., Roy et al.; 2020). In the case of the 2D response, a higher 

site variability leads to higher variability in the seismic response and a lower median second mode 

(Figures A.2c and A.2d). The decrease in the second mode is caused by the multiple wave 

reflections, scattering, and filtering effects (e.g., Nour et al., 2003; Kokusho, 2017; De la Torre et 

al., 2019). 

PARAMETRIC INVESTIGATION 

The role of VS30, site depth, and VS spatial variability features (e.g., correlation model) on the 2D 

seismic response is evaluated and compared to σlnVS . The model characteristics and number of 

recordings are similar to those previously described, unless otherwise indicated. The scenarios 

considered are summarized in Table A.1, and the estimated TFs, and the standard deviation of TFs 

are presented in Figures A.5 and A.6, respectively. Results in terms of AFs are similar and thus 

not shown. 

EFFECT OF SITE’S VS30 

The baseline VS correlated random fields are consistent with a VS30 = 200 m/s. Two-dimensional 

SRAs are conducted on stiffer sites consistent with the following VS30 values: 300, 400, and 500 

m/s. Results from 2D SRAs (Figures A.5a and A.6a) show a shifting of the site’s resonant 

frequency, but similar amplitudes of the median response and standard deviation. Amplitudes of 

the median second mode, however, decrease as VS30 increases. This is attributed to (1) a stronger 
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impact of σlnVS on VS spatial variability for stiffer sites and thus further shifting of the fundamental 

frequency, and (2) limitations of the model mesh in propagating high-frequency waves.  

EFFECT OF CORRELATION MODEL 

The baseline VS random fields follow an exponential correlation model. Two-dimensional SRAs 

are conducted on random fields that follow alternative models: squared exponential, spherical, and 

polynomial decaying (e.g., Baecher and Christian, 2003), presented in Figure A.4a. These models 

indicate, for instance, that random fields that follow the squared exponential model are more 

variable within a span of 50 m than those based on the exponential model (Figure A.4a). Results 

from 2D SRAs suggest that there is little effect of the correlation models on the median seismic 

response and its standard deviation (Figures A.5b and A.6b). The seismic response for random 

fields generated using the squared exponential model exhibit slightly higher amplitudes in TFs at 

the second vibration mode, and lower standard deviations across frequencies. 

EFFECT OF HORIZONTAL CORRELATION LENGTH, 𝛉𝐡𝐨𝐫 

The baseline horizontal correlation length is 50 m. Two-dimensional SRAs are conducted on 

random fields consistent with different θhor values: 5, 200, and 500 m (Figure A.4b). Results from 

2D SRAs indicate minor variations in the median response (Figure A.5c), partly due to the 

averaging of multiple responses (total of 210 recordings). There is a slight decrease of amplitudes 

for longer θhor values at the frequency modes, accompanied by an increase in standard deviations 

(Figure A.6c). Sites with shorter θhor present a mild increase in the half bandwidth due to wave 

scattering (De la Torre et al., 2019). Sites with longer θhor have a higher VS lateral continuity, and 

thus a lower seismic response, more similar to that from 1D SRAs. 
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EFFECT OF VERTICAL CORRELATION LENGTH, 𝛉𝐯𝐞𝐫 

The baseline vertical correlation length is 5 m. Two-dimensional SRAs are conducted on random 

fields with different θver: 10, 25, 50 m (Figure A.4b, for reference). Results from 2D SRAs indicate 

that longer θver values lead to slight decreases in the median response (Figure A.5d) and higher 

standard deviations (Figure A.6d). These results are due to the fact that sites with longer θver 

present a more uniform VS with depth, thus there is presence of zones that are either more 

consistently soft or stiff. Shifting of the fundamental frequency and averaging the seismic 

responses lead to a lower seismic response with a higher standard deviation. 

EFFECT OF SITE DEPTH 

The baseline vertical correlation length is 5 m. The baseline site is 30 m-deep with a θver = 5 m 

(θver/depth ratio = 6). Two-dimensional SRAs are conducted on deeper models generated with (1) 

a constant θver = 5 m, and (2) a constant θver/depth ratio = 6, for site depths of 50 m (θver = 8.3 

m), 100 m (θver = 16.6 m), and 200 m (θver = 33.3 m). To evaluate these scenarios, necessary 

changes were made to the model dimensions to prevent boundary effects while balancing a similar 

number of recording locations and computational demand. Results from 2D SRAs on deeper sites 

with constant θver present a slight increase in the seismic response and a decrease in the standard 

deviation, while deeper sites with constant θver/depth ratio do not exhibit changes in the median 

responses, but an increase in the standard deviation (Figures A.5e, A.5f, A.6e, and A.6f). In the 

first case (constant θver), the observed trends are due to a more uniform response given the weaker 

influence of a constant θver = 5 m on deeper sites, and thus less shifting of the fundamental 

frequency mode. In the second case (constant θver/depth ratio), representative of more realistic 

field conditions, the effects of θver is sustained as sites get deeper, and thus the averaging of 
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multiple responses still leads to stable median responses. A reduction of the seismic response’s 

second mode is observed in both scenarios for deeper sites. 

IMPLICATIONS ON INFERRED GEOSYSTEM’S PERFORMANCE 

In the previous sections, discrepancies in median TFs and AFs caused by the modeling approach 

selected, either 2D or 1D SRAs, were investigated. In this section, the impact of using 1D SRAs 

as a substitute for 2D SRAs on estimated ground motion IMs that correlate to seismic performance 

is evaluated. The following VS spatial variability parameters are considered: σlnVS , correlation 

model, θhor, and θver, and four IMs: PGA, peak ground velocity, PGV, Arias intensity, AI (Arias 

1970), and cumulative absolute velocity, CAV (EPRI 1998). PGA values are commonly used for 

the evaluation of liquefaction triggering, while PGV, AI, and CAV correlate well with seismic-

induced displacements and damage (e.g., Armstrong et al. 2020).  

The IMs are computed for each ground motion and the results are shown in Figure A.7. 

IMs estimated from 2D and 1D SRAs are plotted along the horizontal and the vertical axes, 

respectively. Different columns correspond to different VS spatial variability parameters, and 

different rows to different IMs. Results indicate that PGAs are more strongly affected by the 

selected modeling approach, with 2D SRAs leading to higher values. A weaker impact on PGV, 

CAV, and AI, is observed. The VS spatial variability parameter leading to the most significant 

difference between 2D SRA- and 1D SRA-based IMs is σlnVS. As σlnVS goes from 0.16 – 0.19 to 

0.24 – 0.29, there is a shift towards the right side, suggesting that higher values are estimated from 

2D SRAs. This shift is particularly clear for PGVs. However, further increases in σlnVS lead to 

shifting back to the left side and to a reduction of the correlation between IMs estimated from 2D 

and 1D SRAs. For example, the estimated correlation between IMs for sites with low σlnVS  is 
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about 0.15 for PGA, 0.5 for PGV and AI, and 0.45 for CAV, whereas the correlation for sites with 

high σlnVS  is near 0 for PGA, 0.15 for PGV, and about 0.1 for AI and CAV. These observations 

suggest that an initial increase in σlnVS  leads to reverberations and higher amplitudes of time 

histories of accelerations, but further increases in σlnVS  lead to excessive wave scattering, a 

decrease in the amplitudes, and thus lower IM values. The effect of other VS variability parameters 

suggests some degree of underprediction of ground motion IMs when using 1D SRAs. 

FINAL REMARKS 

A numerical evaluation was conducted to understand the discrepancies between 2D and 1D seismic 

responses for simple 2D sites with spatially variable VS, but unexposed to complex geological 

conditions, and 1D VS profiles numerically sampled from these 2D models. Results indicate that 

(1) discrepancies between the median 2D and 1D seismic response are exacerbated by VS spatial 

variability, σlnVS , (2) the magnitude of σlnVS  has a dominant effect on the 2D and 1D seismic 

responses compared to other VS spatial variability features evaluated as part of this work (e.g., 

correlation lengths), and (3) 1D SRA-based IMs tend to be lower than those estimated based on 

the more realistic 2D SRAs, which could infer an unconservative expectation of the seismic 

performance of geosystems in common practice. 

Results from 2D and 1D SRAs show consistent differences in the median transfer functions 

(TFs) and amplification factors (AFs) for various site conditions. The extent to which a median 

2D seismic response is higher than a median 1D response depends on the site’s σlnVS . The observed 

discrepancies are due to wave propagation mechanisms that are inherently uncaptured by 1D SRAs 

and the averaging effect of considering the median response across frequencies as representative. 

A parametric evaluation of VS30, site depth, and VS spatial variability features indicate that the 
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site’s σlnVS  dominates the 2D median seismic response more strongly, whereas other parameters 

lead to modest changes in amplitude and standard deviation. Results from the estimated ground 

motion IMs also suggest that slnVs dominates the extent to which 2D SRA-based IMs are higher 

than 1D SRA-based IMs, and the strength of these two sets of IM’s correlation. In the case of sites 

with σlnVS  > 0.3, 1D SRA-based IMs are likely unconservative. It is recommended that 2D SRAs 

that explicitly model VS spatial variability are conducted for highly variable sites. 

The findings of this evaluation are limited to the conditions considered herein (e.g., 2D 

models with a horizontal base and the availability of numerically sampled 1D VS profiles), as well 

as a relatively large number of 2D and 1D results leading to smooth median TF and AF. Further 

investigations such as the effects of soils’ nonlinearity, more complex geological configurations, 

and comparisons with empirical data are deemed necessary. Discrepancies between 2D and 1D 

seismic responses are expected to be larger in most practical applications. 
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FIGURES 

 

Figure A1: Example window of numerical site with spatially variable VS. 

 

 

Figure A2: Transfer functions estimated using 2D SRAs on sites with increasing Vs spatial 

variability and 1D SRAs on columns sampled from the sites. 
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Figure A3: Amplification factors estimated using 2D SRAs on sites with increasing Vs spatial 

variability and 1D SRAs on columns sampled from the sites. 

 

 

Figure A4: Correlation models: (a) various types of correlation models, and (b) the exponential 

model for various correlation lengths. 
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Figure A5: Effect of different site’s VS features on median 2D transfer functions. 
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Figure A6: Effect of site’s VS features on the standard deviation of 2D transfer functions. 
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Figure A7: Effect of features of 2D VS spatial variability on the discrepancies between 2D and 

1D SRAs for common ground motion intensity measures (IMs).  
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TABLES  

Table A1. Summary of investigated VS spatial variability features.  

Parameter Baseline case Parametric evaluation 

Site’s VS30 (m/s) 200 300, 400, 500 

Correlation model Exponential 
Spherical, polynomial decaying, 

squared exponential 

Horizontal correlation length, hor (m) 50 5, 25, 500 

Vertical correlation length, ver (m) 5 10, 15, 25 

Site depth with constant θver = 5 m (m) 30 50, 100, 200 

Site depth with constant θver/depth = 6 (m) 30 50, 100, 200 

Note: In all cases, input σlnVS  = 0.20 ln units. 
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APPENDIX B 

PEARSON’S CORRELATION COEFFICIENTS 

FOR 1D-LIKE SITES 
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Table B1. Pearson’s correlation coefficient (r) between empirical and theoretical transfer functions 

(TFs) for various frequency ranges. 

No Site 𝒇𝟎 to 𝒇𝟏 𝒇𝟎 to 𝒇𝟐 𝒇𝟎 to 𝒇𝟑 𝒇𝟏 to 𝒇𝟐 𝒇𝟐 to 𝒇𝟑 

1 Corona I-15 Highway 91 0.42 0.42 0.43 0.59 0.54 

2 Delaney Park 0.47 0.45 0.45 0.39 0.67 

3 El Centro 0.60 0.52 0.52 0.40 0.64 

4 Hayward San Mateo Bridge 0.50 0.45 0.42 0.32 0.04 

5 San Bernardino 0.35 0.39 0.37 0.66 -0.56 

6 Treasure Island 0.52 0.52 0.52 0.56 0.34 

7 Wildlife 0.58 0.56 0.53 0.61 0.49 

8 AICH09 0.45 0.42 0.41 0.51 0.51 

9 AICH16 0.54 0.51 0.49 0.38 0.11 

10 CHBH17 0.46 0.47 0.43 0.56 0.26 

11 FKIH05 0.52 0.48 0.40 0.52 0.24 

12 FKSH16 0.45 0.43 0.40 0.29 -0.10 

13 GIFH18 0.47 0.41 0.36 0.66 -0.07 

14 GIFH28 0.61 0.60 0.57 0.53 -0.17 

15 IBRH11 0.47 0.33 0.19 0.24 0.85 

16 IBRH13 0.40 0.44 0.33 0.49 0.01 

17 IBRH17 0.36 0.43 0.38 0.74 0.54 

18 IBUH01 0.41 0.33 0.22 0.60 0.09 

19 IBUH05 0.46 0.35 0.35 0.26 0.45 

20 IWTH04 0.62 0.60 0.60 0.67 0.58 

21 IWTH08 0.49 0.42 0.37 0.23 -0.07 

22 KGSH03 0.76 0.76 0.67 0.78 0.46 

23 KMMH08 0.40 0.39 0.38 0.65 -0.66 

24 KMMH13 0.42 0.41 0.40 0.47 0.54 

25 KOCH10 0.45 0.45 0.43 -0.14 0.09 

26 MIEH07 0.44 0.45 0.43 0.63 0.23 

27 MYGH06 0.76 0.70 0.54 0.73 0.46 

28 MYZH01 0.49 0.35 0.32 0.45 0.76 

29 NGNH20 0.55 0.38 0.32 0.17 0.21 

30 NGNH21 0.68 0.60 0.55 0.22 0.44 
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No Site 𝒇𝟎 to 𝒇𝟏 𝒇𝟎 to 𝒇𝟐 𝒇𝟎 to 𝒇𝟑 𝒇𝟏 to 𝒇𝟐 𝒇𝟐 to 𝒇𝟑 

31 NIGH15 0.66 0.64 0.64 0.64 0.78 

32 NMRH03 0.48 0.47 0.45 0.58 0.45 

33 NMRH04 0.39 0.46 0.37 0.71 0.28 

34 NMRH05 0.38 0.32 0.34 0.23 0.64 

35 SBSH06 0.42 0.39 0.37 0.38 0.48 

36 SZOH25 0.35 0.40 0.39 0.64 0.40 

37 TCGH12 0.42 0.39 0.35 0.58 0.75 

38 TKSH04 0.44 0.48 0.48 0.28 -0.42 

39 YMTH12 0.50 0.41 0.38 -0.04 -0.03 

1 f0: TF’s fundamental frequency, f1 to f3: TF’s second to fourth frequency modes. 

2 The upper bound frequency could be lower if the recordings’ signal-to-noise ratio (SNR) does not meet 

the set criterion (Pretell et al., under review).  
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APPENDIX C 

ROOT MEAN SQUARE ERROR (RMSE)  

FOR 1D-LIKE SITES 
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Table C1. Average root mean square error (RMSE) or L2 error on transfer functions (TFs) for 

selected cases of damping multiplier (Dmul) and VS standard deviation (𝜎lnVS) for randomization.  

No Site Dmul = 1 Dmul = 3 𝛔𝐥𝐧𝐕𝐒 = 0.25 
Dmul = 3  

𝛔𝐥𝐧𝐕𝐒 = 0.25 

1 Corona I-15 Highway 91 0.98 0.98 1.00 1.02 

2 Delaney Park 0.61 0.50 0.40 0.43 

3 El Centro 0.67 0.66 0.63 0.67 

4 Hayward San Mateo Bridge 0.81 0.61 0.57 0.51 

5 San Bernardino 0.75 0.63 0.58 0.51 

6 Treasure Island 0.73 0.82 0.79 1.00 

7 Wildlife 0.66 0.78 0.63 0.86 

8 AICH09 0.82 0.89 0.80 0.90 

9 AICH16 0.64 0.64 0.68 0.77 

10 CHBH17 0.69 0.64 0.54 0.59 

11 FKIH05 1.09 1.02 1.12 1.15 

12 FKSH16 0.73 0.66 0.56 0.55 

13 GIFH18 0.71 0.58 0.38 0.36 

14 GIFH28 0.86 0.84 0.80 0.82 

15 IBRH11 0.96 0.99 0.95 1.03 

16 IBRH13 0.83 0.85 0.81 0.89 

17 IBRH17 0.85 0.95 0.93 1.09 

18 IBUH01 0.77 0.79 0.66 0.73 

19 IBUH05 0.75 0.70 0.50 0.53 

20 IWTH04 0.67 0.67 0.63 0.74 

21 IWTH08 0.73 0.83 0.76 0.90 

22 KGSH03 0.82 0.68 0.43 0.46 

23 KMMH08 0.79 0.65 0.56 0.51 

24 KMMH13 0.72 0.78 0.53 0.68 

25 KOCH10 0.88 0.73 0.48 0.43 

26 MIEH07 0.71 0.62 0.55 0.43 

27 MYGH06 0.76 0.61 0.54 0.50 

28 MYZH01 0.84 0.70 0.64 0.56 

29 NGNH20 0.62 0.55 0.53 0.57 
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No Site Dmul = 1 Dmul = 3 𝛔𝐥𝐧𝐕𝐒 = 0.25 
Dmul = 3  

𝛔𝐥𝐧𝐕𝐒 = 0.25 

30 NGNH21 0.75 0.64 0.45 0.41 

31 NIGH15 0.69 0.67 0.47 0.56 

32 NMRH03 0.70 0.66 0.42 0.52 

33 NMRH04 0.62 0.65 0.46 0.59 

34 NMRH05 0.73 0.74 0.52 0.67 

35 SBSH06 0.67 0.65 0.41 0.55 

36 SZOH25 0.74 0.79 0.71 0.82 

37 TCGH12 0.74 0.73 0.55 0.60 

38 TKSH04 0.84 0.77 0.65 0.65 

39 YMTH12 0.92 0.72 0.65 0.49 
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Table C2. Average root mean square error (RMSE) or L2 error on amplification factors (AFs) for 

selected cases of damping multiplier (Dmul) and VS standard deviation (𝜎lnVS) for randomization. 

No Site Dmul = 1 Dmul = 3 𝛔𝐥𝐧𝐕𝐒 = 0.25 
Dmul = 3  

𝛔𝐥𝐧𝐕𝐒 = 0.25 

1 Corona I-15 Highway 91 0.40 0.48 0.35 0.42 

2 Delaney Park 0.70 0.42 0.67 0.31 

3 El Centro 0.37 0.36 0.37 0.40 

4 Hayward San Mateo Bridge 0.97 0.64 0.95 0.60 

5 San Bernardino 0.61 0.41 0.55 0.34 

6 Treasure Island 0.25 0.38 0.25 0.44 

7 Wildlife 0.33 0.63 0.30 0.65 

8 AICH09 0.40 0.42 0.36 0.35 

9 AICH16 0.36 0.33 0.37 0.32 

10 CHBH17 0.49 0.39 0.51 0.41 

11 FKIH05 0.66 0.66 0.66 0.68 

12 FKSH16 0.69 0.46 0.64 0.39 

13 GIFH18 0.77 0.57 0.74 0.51 

14 GIFH28 0.51 0.39 0.45 0.33 

15 IBRH11 0.41 0.41 0.36 0.34 

16 IBRH13 0.36 0.39 0.31 0.40 

17 IBRH17 0.30 0.43 0.22 0.33 

18 IBUH01 0.39 0.44 0.34 0.39 

19 IBUH05 0.66 0.39 0.71 0.40 

20 IWTH04 0.50 0.36 0.48 0.35 

21 IWTH08 0.34 0.46 0.29 0.45 

22 KGSH03 0.89 0.72 0.80 0.67 

23 KMMH08 0.79 0.57 0.71 0.46 

24 KMMH13 0.63 0.53 0.61 0.49 

25 KOCH10 1.04 0.83 0.97 0.73 

26 MIEH07 0.73 0.56 0.76 0.53 

27 MYGH06 0.88 0.58 0.92 0.65 

28 MYZH01 0.80 0.61 0.73 0.53 

29 NGNH20 0.45 0.33 0.45 0.29 
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No Site Dmul = 1 Dmul = 3 𝛔𝐥𝐧𝐕𝐒 = 0.25 
Dmul = 3  

𝛔𝐥𝐧𝐕𝐒 = 0.25 

30 NGNH21 0.75 0.58 0.77 0.56 

31 NIGH15 0.46 0.38 0.43 0.32 

32 NMRH03 0.61 0.44 0.65 0.42 

33 NMRH04 0.24 0.43 0.26 0.39 

34 NMRH05 0.53 0.45 0.53 0.43 

35 SBSH06 0.78 0.54 0.77 0.52 

36 SZOH25 0.42 0.38 0.39 0.38 

37 TCGH12 0.39 0.40 0.51 0.36 

38 TKSH04 0.52 0.41 0.40 0.33 

39 YMTH12 1.23 0.97 1.18 0.90 
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APPENDIX D 

STANDARDIZED L1 ERRORS IN  

TRANSFER FUNCTIONS AND AMPLIFICATION FACTORS  

FOR VARIOUS Dmul-𝛔𝐥𝐧𝐕𝐒 COMBINATIONS 
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Figure D1. Standardized L1 error in transfer functions (TFs) for various combinations of damping 

multiplier (Dmul) and VS standard deviation (σlnVS) for VS randomization. Minimum standardized L1 error 

for Dmul = 1, and σlnVS = 0.25. 

 

 

Figure D2. Standardized L1 error in amplification factors (AFs) for various combinations of damping 

multiplier (Dmul) and VS standard deviation (σlnVS) for VS randomization. Minimum standardized L1 error 

for Dmul = 4, and σlnVS = 0.2. 
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Figure D3. Standardized L1 errors for various combinations of damping multiplier (Dmul) and VS 

standard deviation (σlnVS) for VS randomization. Averaged L1 error in transfer functions (Figure 

D1) and amplification factors (Figure D2). Minimum standardized L1 error for Dmul = 3, and 

σlnVS  = 0.25.  
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APPENDIX E 

COMPARISON OF PREDICTED AND OBSERVED 

TRANSFER FUNCTIONS FOR 1D-LIKE SITES 
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Figure E1. Transfer functions (TFs) for 1D-like sites (Part 1). Theoretical TFs based on measured 

VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, OCR = 1, 

fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS randomization. 
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Figure E2. Transfer functions (TFs) for 1D-like sites (Part 2). Theoretical TFs based on measured 

VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, OCR = 1, 

fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS randomization. 
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Figure E3. Transfer functions (TFs) for 1D-like sites (Part 3). Theoretical TFs based on measured 

VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, OCR = 1, 

fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS randomization. 
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APPENDIX F 

COMPARISON OF PREDICTED AND OBSERVED 

AMPLIFICATION FACTORS FOR 1D-LIKE SITES 
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Figure F1. Amplification factors (AFs) for 1D-like sites (Part 1). Theoretical AFs based on 

measured VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, 

OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS 

randomization. 
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Figure F2. Amplification factors (AFs) for 1D-like sites (Part 2). Theoretical AFs based on measured VS 

profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, OCR = 1, fload = 1 Hz, 

and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS randomization. 
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Figure F3. Amplification factors (AFs) for 1D-like sites (Part 3). Theoretical AFs based on measured VS 

profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, OCR = 1, fload = 1 Hz, 

and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS randomization. 
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APPENDIX G 

TRANSFER FUNCTIONS FOR 3D-LIKE SITES 

IN CALIFORNIA 
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Figure G1. Transfer functions (TFs) for 3D-like sites in California. Theoretical TFs based on 

measured VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, 

OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS 

randomization. 
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APPENDIX H 

AMPLIFICATION FACTORS FOR 3D-LIKE SITES 

IN CALIFORNIA 
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Figure H1. Amplification factors (AFs) for 3D-like sites in California. Theoretical AFs based on 

measured VS profiles, damping profiles after Darendeli (2001) with default parameters (PI = 0, 

OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 and no VS 

randomization. 
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APPENDIX I 

IDENTIFICATION OF SITES  

UNAFFECTED BY PSEUDO-RESONANCES 
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Figure I1. Transfer functions (TFs) for sites unaffected by pseudo-resonances (Part 1). Theoretical 

TFs based on measured VS profiles, damping profiles after Darendeli (2001) with default 

parameters (PI = 0, OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 

and no VS randomization. 
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Figure I2. Transfer functions (TFs) for sites unaffected by pseudo-resonances (Part 2). Theoretical 

TFs based on measured VS profiles, damping profiles after Darendeli (2001) with default 

parameters (PI = 0, OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 

and no VS randomization. 
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Figure I3. Transfer functions (TFs) for sites unaffected by pseudo-resonances (Part 3). Theoretical 

TFs based on measured VS profiles, damping profiles after Darendeli (2001) with default 

parameters (PI = 0, OCR = 1, fload = 1 Hz, and K0 = 0.5). No damping multiplier (Dmul) or Dmul = 1 

and no VS randomization. 

 

 

 

 




