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Abstract

Leveraging deep neural networks to study human cognition

by

Joshua C. Peterson

Doctor of Philosophy in Psychology

University of California, Berkeley

Professor Thomas L. Griffiths, Chair

The majority of computational theories of inductive processes in psychology derive from small-
scale experiments with simple stimuli that are easy to represent. However, real-world stimuli
are complex, hard to represent efficiently, and likely require very different cognitive strategies to
cope with. Indeed, the difficulty of such tasks are part of what make humans so impressive, yet
methodological resources for modeling their solutions are limited. This presents a fundamental
challenge to the precision of psychology as a science, especially if traditional laboratory methods
fail to generalize. Recently, a number of computationally tractable, data-driven methods such as
deep neural networks have emerged in machine learning for deriving useful representations of
complex perceptual stimuli, but they are explicitly optimized in service to engineering objectives
rather than modeling human cognition. It has remained unclear to what extent engineering
models, while often state-of-the-art in terms of human-level task performance, can be leveraged
to model, predict, and understand humans.

In the following, I outline a methodology by which psychological research can confidently
leverage representations learned by deep neural networks to model and predict complex human
behavior, potentially extending the scope of the field. In Chapter 1, I discuss the challenges
to ecological validity in the laboratory that may be partially circumvented by technological ad-
vances and trends in machine learning, and weigh the advantages and disadvantages of boot-
strapping from largely uninterpretable models. In Chapter 2, I contrast methods from psychol-
ogy and machine learning for representing complex stimuli like images. Chapter 3 provides a
first case study of applying deep neural networks to predict whether objects in a large database of
images will be remembered by humans. Chapter 4 provides the central argument for using rep-
resentations from deep neural networks as proxies for human psychological representations in
general. To do this, I establish and demonstrate methods for quantifying their correspondence,
improving their correspondence with minimal cost, and applying the result to the modeling of
downstream cognitive processes. Building on this, Chapter 5 develops a method for modeling
human subjective probability over deep representations in order to capture multimodal mental
visual concepts such as “landscape”. Finally, in Chapter 6, I discuss the implications of the overall
paradigm espoused in the current work, along with the most crucial challenges ahead and po-
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tential ways forward. The overall endeavor is almost certainly a stepping stone to methods that
may look very different in the near future, as the gains in leveraging machine learning methods
are consolidated and made more interpretable/useful. The hope is that a synergy can be formed
between the two fields, each bootstrapping and learning from the other.
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What I cannot create, I do not understand.

Richard Feynman

1
Introduction

Humans possess a remarkable ability to cope with complex inductive problems in the nat-
ural world. Faced with a massive stream of multi-sensory input, we are able to parse in large part
the structure of our environment, and to locate, identify, and track an immense taxonomy of ob-
jects in that environment. To say nothing of the higher level, abstract reasoning we perform over
the same represented world, no model or machine yet rivals the efficiency, robustness, and per-
formance of humans on a number of key perceptual tasks (although we will review some recent
practical—and not necessarily theoretical—breakthroughs in Chapter 2).

While it would be unreasonable to expect that every scientificmodel capture the complexity of
the phenomenon of interest in its entirety, every scientific discipline must strive to obtain some
level of generalization to the real world. This is much easier said than done, and if we’ve fallen
short to some degree given time spent andmethodologies available, it’s not for a lack of interest or
ambition. More often a technological advance comes along (e.g., higher resolution brain imag-
ing techniques), that provides a new set of constraints for psychological theory. What I’d like to
present in the current thesis is what I believe is such an advance—a set of recent, engineeringmo-
tifs for relatively low-bias and data-driven learning (specifically deep neural networks), and what
I think are reasonable schemas for their application to cognitive modeling. Like all new scientific
tools, these methods are not meant to replace or suffice, but to allow for a fresh perspective on
several primary challenges in psychological modeling.
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1.1 Challenges to Classical Methods in Psychology

A staggering number of theories and insights have been born from small sets of simple (e.g., dot
pattern) stimuli and handfuls of human participants in a laboratory. For example, themajority of
seminal findings on human categorization behavior have be gleaned from relatively small, well-
controlled experiments (e.g., Medin & Schaffer, 1978; Nosofsky, 1986; Posner & Keele, 1968;
Reed, 1972; Rosch & Mervis, 1975). Several decades later, this trend is alive and well (see for
example Vong, Hendrickson, Perfors, & Navarro, 2016). Such a productive paradigm should by
allmeans continue forward, and is likely to yield further, invaluable insights into humanbehavior,
but is not without important limitations.

We can get a sense of these limitations by considering an example rooted in the above findings.
Exemplar models (Medin & Schaffer, 1978; Nosofsky, 1986) are a well-studied class of models
that learn to categorize stimuli by comparing an input stimulus to be categorized to a set of other
datapoints or exemplars in memory using a similarity function (e.g., k(xi, xj); Shepard, 1987).
This is in contrast to parametric models like the prototype model (Posner & Keele, 1968; Reed,
1972), which instead estimate the parameters θ of a categorization function f(θ, xi), and often
perform worse in predicting human categorization behavior. For most similarity functions k,
we can often alternatively find a feature transformation ϕ of the input space that yields identical
fit given even the simplest parametric models (Shawe-Taylor & Cristianini, 2004), or formally
when

ϕ(xi) · ϕ(xi) = k(xi, xj). (1.1)

This implies that fit to human behavior in this case can potentially be determined almost entirely
by the stimulus representation employed in the experiment (usually conceived and fixed a priori
by the experimenter) rather than by an accurate model of the cognitive process. In fact, a sim-
ilar identifiability problem should arise for nearly any representation-process pair, the building
blocks of countless cognitive theories.

1.2 The Representation Problem

Thequestion of how to best represent even simple stimuli is not always straightforward (Tversky,
1977). What type or form of representations should we use? How will we derive them in ways
that parallel human bias and learning strategies? Which aspects of multiply-represented stimuli
must we capture in order to study a phenomenon of interest? For more naturalistic stimuli (e.g.,
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color photographs of objects and scenes), this becomes increasingly problematic. Although we
may still ultimately be wrong, there are many fewer ways to represent stimuli like Gabor wavelets
in ways that are obviously highly relevant to our experiments. When it comes to the complexity
of the real world, human behavior seems all the more impressive, and our candidate models for
such robust behavior are limited.

Austerweil and Griffiths (2013) provide an elegant account of rational feature learning, but
full empirical validation is intractable given the complexity of real-world stimuli. The fact that
this is true is not a valid criticism of the analysis, since the question of tractability is engaged
at a different level of analysis (Marr, 1982), but the difficulty in engaging at this lower level is a
formidable challenge to providing a complete scientific account of cognition. Only recently has
a form of representation (and representation learning) emerged from researchers in computer
science that allows formodels that rival human performance on a number of complex perceptual
tasks (see for example Krizhevsky, Sutskever, &Hinton, 2012; Long, Shelhamer, &Darrell, 2015),
a topic to which we now turn.

1.3 The Ethos ofMachine Learning & Real-World Performance

Thelandscape ofmachine learning research can look very different frompsychology, even though
they often share a common set of modeling tools (e.g., neural networks, statistical inference, etc).
In fact, at least a handful of foundational methods inmachine learning emerged from research in
psychology (see Ackley, Hinton, & Sejnowski, 1985; Elman, 1990; Fukushima & Miyake, 1982;
Rosenblatt, 1958; Rumelhart, Hinton, & Williams, 1986 for some notable examples). For our
purposes, the differences will be of the most interest to consider.

Most (but not all) computational models of human cognition have been built alongside hu-
man datasets from well-controlled experiments, often in an artificial lab setting. By contrast,
machine learning complements a pure theory element (in many respects insightful to formal
theories of human learning) with a strong showing of highly practical applications aimed at per-
formance/prediction in the face of considerable noise and complexity, and is ornamented by
competitions, benchmarks, and formal challenges that reinforce those priorities.

This has proven extremely effective in recent years, blending classic methods with modern
components and large datasets, and challenging human performance in previously difficult do-
mains like object categorization (Krizhevsky et al., 2012), video game playing (Mnih et al., 2015),
and a highly complex, millennia-old, abstract strategy board game (Silver et al., 2016). If we
might hope for a proving ground outside of psychology for systems that could rival human intel-
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ligence in a complex world—and may help explain something about general, animal, or human
intelligence along the way—we could do much worse. In fact, little else comes to mind.

1.4 The Prediction-Interpretation Trade-off

Modern machine learning places a strong emphasis on highly expressive models and massive
training datasets from which to learn. This is not a particularly dogmatic position—it is an ob-
vious requirement of any learning system that must internalize a large, complex world, and a
consequence of requiring that we make predictions for increasingly more data (human brains
for example are drastically more massive, and accomplish much more).

The subset of these models that we will make use of in this thesis are flexible, parametric
models with potentially tens or hundreds of millions of automatically learnable parameters or
“knobs” that are obviously difficult to interpret, even if a high-performing solution is learned.
Learning fully (or even partially) interpretable models this way is difficult to say the least, and a
problem that is not likely to be solved quickly. This is a high price to pay for good predictions, and
it seems likely that any compromise between classic model-building strategies and data-driven
learning is subject to a tradeoff between prediction and explanation (see for example Plonsky,
Erev, Hazan, & Tennenholtz, 2017).

To the engineer, the position along this continuum is dictated by the problem specification. To
a scientist who values explanation above all else, the value in compromise is less clear. However,
if scientific models are to accommodate greater complexity, and larger data spaces, they will not
be exempt from this trade-off, and the emergent dynamics of even fully hand-built models will
eventually become difficult to interpret, at least at the outset. It is also worth pointing out that
machine learning may not have been such an extreme example just a few years ago; however, in
the course of following what works, there has been a natural shift.

1.5 A Framework forMethodological Integration

A theme for the current work is to prevent ourselves from getting immediately bogged down
by the obvious challenge of the Prediction-Interpretation Trade-off, partly due to its immense
difficulty, but primarily to put forth what I think is a practical framework for making the best use
of both methods in psychology, right now, and for bringing them into synergy as best one can at
this stage. An interesting side-note is that our ability to exploit this potential synergy increases
by the month, at least for some problems of interest, given the recent pace in machine learning

4



research. That is not to say that their limitations as say, surrogate (replacement) cognitivemodels
necessarily decreases, but that their usefulness as complementary tools surely increases. I will
make this point more concrete later on.

1.5.1 Black Boxes as Stepping Stones

To start, it is important to understand that a machine learning model does need to constitute a
valid cognitive model in and of itself to be useful or informative, nor must it learn like humans,
without their help, or with the same objectives (in many cases, it is probably enough that it solve
a similar, or related problem, as we will see). That is not to say that these aren’t also interesting
questions/goals for particular models (e.g., to what extent could we show that a learned model
captures what we had intended as an explanation of a cognitive process). In fact, these types of
questionsmay bear fruit. However, it is more immediately important that suchmodels predictive
of human behavior. A model that is said to be “explanatory”, but is not predictive, is no more
valuable than amodel that is neither explanatory nor predictive, since it simply does not describe
the world. However, a model that is predictive, but not fully explanatory, can at least be argued
to be relevant (even though we may ultimately reject it).

Moreover, a predictive model can be of use even if it is yet to be explained, or is not likely to
be explained. In particular, if we like, we can position machine learning models as components
of a larger scientific model. One way to do this is to model a prerequisite process with a one such
“black box” model (and to suspend full understanding), assuming we can show that its behavior
and performance are satisfactory, in service to a higher-level, or downstream cognitive process of
interest. For example, understanding the process of memory search may not require the explicit
integration of a representation learner (i.e., we can choose only tomodelmemory search given an
adequate representation, so long as our question does not primarily concern their interaction).
Chapters 3, 4, and 5 can be interpreted either partially or fully in this way.

Another useful perspective is to think of machine-learned representations as imperfect, but
ultimately useful initializations, surrogate representations that hover surprisingly near those of
humans in a vast hypothesis space. Depending on just what the discrepancies are, one can answer
certain questions that are invariant to some trivial differences. For example, a representation that
entangles human-relevant features and their importance (salience) ismore valuable than one that
disentangles feature importance from a human-irrelevant representation (e.g., raw image pixels),
because feature importance is more easily modeled through interpretable means. We will come
across such examples in Chapters 4 and 5.
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1.5.2 Iterative Bootstrapping

Ultimately, supposing we are successful in the sorts of strategies proposed above, one hopes that
the insight into whatever natural processes that can now be studied can be in turn used to shape
and constrainmore human-relevant machine learningmodels. For example, we could ask which
datasets to feed our black box learner in order to better support downstream modeling. Find-
ing better surrogate representations means our cognitive models can obtain higher precision for
complex, messy problems, which in turn might give us a better sense of what other prerequisites
might further support our improved cognitive model. Put differently, the aim is to bootstrap
from black box models, learning what we can from them, augmenting where possible, and iter-
atively exploiting the improvements they provide to constrain the next step.

1.6 An Overview of the CurrentWork

In the next chapter, I review the traditional role of representation in psychology, and modern
tools for learning representations that we will exploit for the length of the thesis. The follow-
ing chapters provide concrete case studies of the general framework espoused above. Vision is
chosen as the primary superdomain of study, given what we will see is an existing toolkit of
quite conveniently low-hanging fruit for which psychologists can make use, although one could
reasonably expect some level of generalization to other perceptual domains (e.g., audition).

Chapter 3 presents a case study of the superiority in predicting human behavior with an off-
the-shelf deep neural network. In particular, the objects that humans are likely to collectively
remember in a large database of natural scene images can be predicted with a high degree of
accuracy (even if say two objects from the same category and pose are remembered differently).
In Chapter 4, I ask why these networks’ representations should be expected to work (i.e., how are
they like representations people have), identify minimal-cost corrections to apparent discrepan-
cies, and assess the usefulness of these corrections in a subsequent discriminative modeling task.
Finally, I show how another class of networks can be used, without any explicit augmentation, to
capture human generative models (i.e., human category concepts as subjective probability distri-
butions). In Chapter 6, I reflect on the practicality of sustaining such an overall paradigm, make
clear some crucial and likely enduring limitations, and present an outline for future work.
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Events and developments, such as... the Copernican
Revolution... occurred only because some thinkers ei-
ther decided not to be bound by certain “obvious”
methodological rules, or because they unwittingly broke
them.

Paul Feyerabend, Against Method

2
Background

The concept of mental representation stretches back to Aristotle’s De Anima (350 BC),
and has been the subject of considerable philosophical and scientific inquiry going forward
(Cummins, 1989), but its most widespread application to psychology is rooted in the cogni-
tive revolution. Before this shift, behaviorism—an early attempt to support a rigorous science
of animal (and human) behavior—had taken an extreme methodological position. As a strong
proponent, Skinner (1957, 1977) argued that when the description of mental models appears
isomorphic to the contingencies in the environment (e.g., our apparent “cognitive associations”
look suspiciously like associations in the world), there is little to be gained by doing anything
more than enumerating those contingencies, which are the reason for that correspondence in
the first place. The counterexamples to this generalization (see for example Chomsky, 1959)
have rung loudly enough to eliminate such a constraint on psychology as a productive science.

In its place is indeed a collection of rich mental models with which we think of the mind as
actively representing the world, sometimes apparently incorrectly, sometimes with a strong but
justified bias, and often in service to other goals. In this chapter, we will review common ways of
thinking about, inferring, or learning representations in both psychology and machine learning,
which will lay the groundwork for their integration in the following chapters.
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2.1 Representations in Psychology

A great deal of psychological research has been devoted to identifying the content of so-called
psychological representations, their innate constraints, and theway inwhich they reflect theworld.
The principal challenge is that, unlike outward behavior, representations in our minds cannot be
directly observed, although they can potentially be inferred through clever methods.

2.1.1 Inferring Representations

Shepard (1987) famously developed a method for inferring certain classes of representation with
stunning detail, simply by making the assumption that human generalization behavior should
be law-like (consistent). Previously, behavorist paradigms for studying generalization from one
stimulus to another had created the illusion that functions describing the relationship between
physical stimulus properties and generalization were highly inconsistent, and therefore nearly
inexplicable. If instead the organism’s mental representation of the stimulus was known, then
perhaps human and animal behavior would seem less arbitrary. Indeed, using the generaliza-
tion data themselves (pairwise confusions, similarity judgments, or recall order), and the quite
weak assumption of monotonicity (i.e., differences in the mental representation of stimuli must
always decrease generalization), complex psychological structure such as Newton’s color wheel
(Shepard, 1980) can be recovered.

This method, termed Non-metric multidimensional scaling (NMDS), uses gradient descent to
infer representations in the form of manifolds embedded in geometric spaces. Points (stimuli)
in this space preserve the ordination of the generalization data. More formally, the iterative al-
gorithm minimizes an objective function referred to as stress, defined as√∑

i,j (fm(sij)− dij)2∑
i,j (dij)

2
, (2.1)

where fm is a monotonically decreasing function of human-derived proximities (similarity or
generalization data), and dij is the distance between current point representations of stimuli i
and j in the inferred coordinate space. On each iteration, fm is refit using monotonic regression
(in psychology, often using a single-parameter exponential curve), and point representations
are updated using gradient descent. The manifolds embedded in the resulting solutions can be
mapped with complementary developments like the ISOMAP algorithm (Tenenbaum, De Silva,
& Langford, 2000).
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Where non-spatial representations aremore appropriate (Tversky, 1977), alternative but anal-
ogous methods for fitting the stimulus generalization matrix have been developed (Shepard,
1980). Additive clustering (Shepard & Arabie, 1979) assumes that stimuli are represented by a
discrete feature set, and that stimulus generalization is a weighted sumof shared features between
two stimuli:

sij =
∑
k

wkfikfjk . (2.2)

where sij is the similarity between stimuli i and j. This model allows clusters to overlap (i.e.,
for features to be shared by any subset of stimuli), and can be viewed as a discrete analog of the
eigenvalue decomposition of a covariance matrix (i.e., principal component analysis), where both
binary features fik and weights wk must be inferred. Additive clustering is general enough to
encompass many potential discrete structures of interest, but this also implies a massive search
problem due to the number of possible feature configurations (many heuristics are often used).
For this reason, it is sometimes worth introducing additional constraints. For example, another
popular form of discrete clustering, hierarchical clustering, is a special case of additive clustering
where clusters are strictly nested (Shepard, 1980). The resulting familiar tree structure is often
used to describe human knowledge about hierarchical taxonomies, but can also be to model
phenomena such as generalization bias (Xu & Tenenbaum, 2007).

The problem of choosing what form of representation to infer from human behavior mirrors
the problem that humans face as learners (i.e., how to best carve up the world). Several decades
after most of the above methods were conceived and first applied, Kemp and Tenenbaum (2008)
developed amethod to infer both the optimal form (spatial, non-spatial, or other forms derivable
through graph grammars), as well as the optimal structure for that form with a single procedure.
To further avoid the problem of search over potentially biased, qualitative structural forms that
are hand-specified by the algorithm designer, a sparsity prior is often the only necessary con-
straint to successfully infer relevant graphs (Lake, Lawrence, & Tenenbaum, 2018).

Inferredmental structures have been applied widely in psychological modeling, often yielding
base representations on top of which to model phenomena such as categorization (Kruschke,
1992; Rips & Shoben, 1973), analogy (Ehresman & Wessel, 1978; Rumelhart & Abrahamson,
1973), and memory (Caramazza, Hersh, & Torgerson, 1976; Schwartz & Humphreys, 1973) to
name just a few. The assumption (or the convenience) that a cognitivemodel can be factored into
representation and process components is common in psychology, and although obviously re-
ductive (see Goldstone, 1994a), it is understandably evenmore difficult tomodel representation-
task dynamics given already shaky ground to stand on.
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2.1.2 Limitations of the Psychologist’s Current Toolkit

Despite great success, the methods above share a number of important limitations, since they are
a function of the same form of human behavioral data and stimulus sets, specifically:

• Inferring representations directly from behavior this way is costly. Human generalization
data is derived from the unique pairwise groupings n(n− 1)/2 of all stimuli under con-
sideration, whichmust be collected during an experiment for several human participants,
whereas humans obviously learn from streams of stimuli by themselves.

• Fitting to stimulus generalization data implies that our algorithms must evaluate all stim-
ulus pairings (as opposed to each stimulus by itself) during each iteration of the inference
procedure, greatly effecting the ability of the algorithms to scale to large sets of stimuli.
The computational complexity of a single iteration of NMDS for example is O(n2).

• Learning complex/high-dimensional representations for large naturalistic datasets would
require lots of data, which is both experimentally and computationally costly as discussed
above. This eliminates the possibility of inferring a staggeringly large class of humanmen-
tal content.

• The representations learned from thesemethods are obviously sensitive to the stimulus set
employed, especially since these sets are often small and considerably biased. Moreover,
it is unclear whether it makes sense to infer a single representational picture of stimuli
when they are more complex (i.e., we might think object taxonomies differently depend-
ing on the task at hand). If we must start with a single base representation, then we want
something general and expressive enough to be selectively rescaled for particular contexts
of interest.

• Directly inferred representations for a set of stimuli in relation to each other cannot by
design be extended or generalize to unseen stimuli, since an explicit transformation of
the raw stimuli into psychological structures is not learned. This also implies that we
cannot make observations about the complexity of such a transformation, which would
otherwise provide invaluable information about what inductive biases humans might be
employing.

• Methods that infer representations directly miss out on the chance to learn them in ways
thatmightmirror human learning. Amodel that successfully learns a good representation
given the appropriate data is a validation of our grasp of the necessary constraints humans
bring to the learning problem.
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2.2 Representations in Machine Learning

2.2.1 The Similarity-Representation Duality

We saw above that Shepard exploited the relationship between similarity (inter-stimulus gener-
alization) and representation in order to recover the latter from the former. This relationship,
also demonstrated in Chapter 1 in the context of non-identifiability of categorization algorithms,
is often explicitly leveraged in machine learning by use of what is referred to as the “kernel trick”.
For example, the Support Vector Machine (SVM) is a highly effective linear discriminator that
can maximize the margin between classes in a dataset (Shawe-Taylor & Cristianini, 2004). It is
easily regularizable, and the solution is a global optimum. Applying the kernel trick to SVMs
allows one to learn nearly any nonlinear discriminator, corresponding to a linear discriminator
in some space ϕ(x), without ever having to learn ϕ. From a theoretical perspective, there are
little downsides to such a learning algorithm aside from having to identify sufficiently expressive
kernels.

On the other side of the spectrum, neural networks are the most salient examples of a ϕ-
learners (explicit representation learners). However, unlike kernel SVMs for example, the con-
vergence properties of neural networks are less well-behaved (Choromanska, Henaff, Mathieu,
Arous, & LeCun, 2015; Saad & Solla, 1995), which historically has been taken as reason enough
not to use them. By practical reputation, neural networks can be both unstable and unreliable.
Despite this seemingly damning property, neural networks have somewhat recently become the
dominant method in machine learning. By luck, this has in one important way re-aligned many
modern machine learning efforts with psychology. It’s beyond a surface plausibility that humans
engage in a fair share of rich representation learning (in lieu of kernels operating over raw in-
put). In fact, the algorithm for training neural networks that is still in use today was conceived by
psychologists (Rumelhart et al., 1986), constituting another psychological method that has been
used to derive representations of simple stimuli (Kruschke, 1992). Some important reasons why
such methods are now beginning to scale are discussed in the next section.

2.2.2 Deep Neural Networks

The re-emergence of artificial neural networks in machine learning comes in the form of deep
neural networks. From their most typical description (see LeCun, Bengio, & Hinton, 2015), it
would seem like there is nothing new under the sun, but there are in fact a number of very
important distinctions that set them apart from their close cousins. By tradition, they are first
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described as networks with many “layers” (a composition of many—jointly learned—parametric
functions) that transform input(s) to output(s). We will proceed with this assumption for the
time being, and then discuss some crucial differences.

2.2.2.1 Multi-layer Perceptrons

Figure 2.1: Multi-layer Perceptron. Theoutputofeachnon-inputlayerisafunctionofasetoflearnedweights
andthepreviouslayer’soutput.Anexampleforthefirsthiddennodeisshowninred:(.3 · 5) + (.7 · 2) = 2.9.

Multi-layer neural networks that can successfully be trained have been around for some time.
Generalizations of single-layer perceptrons (Rosenblatt, 1958), multi-layer architectures are uni-
versal function approximators (Cybenko, 1989) given at least one (“hidden”) layer between input
and output layers, and as many hidden units as needed (and more practically, like all expressive
learners, given enough data). More formally, a multi-layer perceptron (MLP) is a composition
of functions, each of the form

oj = φ(fj(x, θj)). (2.3)

where the output oi is determined by θj , a learned parameterization of a linear function fj at layer
j, and φ is any differentiable (usually fixed, and simple), nonlinear activation function (e.g., the
sigmoid function). Since f is linear, each layer is an inner product between the input (or previous
layer’s output) and the set of parameters or weights, then passed through the activation function.
Output at the final layer of the network with L layers is then a composition of the form
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oL = φ(fL( ... φ(f1(x, θ1), θL)), (2.4)

This implies several levels of representation, each layer representing the input in a different way,
and as a function of the previous representation. Given such a simple composition, multi-layer
perceptrons, including their modern, deeper instantiations, can be trained to minimize any of a
number of typical loss functionwith a simple application of the chain rule, called backpropagation
(i.e., of error) for MLPs (Rumelhart et al., 1986).

2.2.2.2 Deep, Stable, & Appropriately Biased

The most successful deep neural networks are indeed deep (and wide), but more importantly,
they belong to a number of families of more specific architectures, such as convolutional neural
networks (CNN; Krizhevsky et al., 2012), and recurrent neural networks (RNN; Graves, 2008).
While any aspect of a network architecture (e.g., how many layers) can be considered an in-
ductive bias, it has not surprisingly been more effective to impose much stronger constraints
on modern networks, building in relatively weak (compared to hand-engineered expertise sys-
tems and cognitive models), but effective assumptions about the domain, and allowing for the
flexibility of learning everything else.

These more specific architectures have risen in popularity alongside accompanying methods
for eliminating more general issues with so-called “vanishing gradients” that plague deep net-
works (Glorot, Bordes, & Bengio, 2011; Hochreiter & Schmidhuber, 1997), as well as a number of
innovative regularization and efficient ensembling techniques (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014), and methods for speeding up and stabilizing training (Ioffe
& Szegedy, 2015). For that matter, increased physical computing power and access to large, fairly
high-quality datasets have also played considerably large roles in their success. However, it can
be argued that the right, architecturally implemented inductive biases are of the most value, the
list of which continues to increase (see Battaglia et al., 2018 for a review of important recent ad-
ditions). Given the focus on the visual domain for this thesis, we will review the corresponding
architecture and bias in detail below.

2.2.2.3 Convolutional Neural Networks

Convolutional neural networks (see Figure 2.2) are specialized for visual tasks, and employ layers
that make an amazingly obvious assumption about images, namely, that any sub-image pattern
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Figure 2.2: a. Convolutional layer. Asingleslidingconvolutionalfilterproducesasingleoutputfeaturemap
withinalargervolumecorrespondingtofilter-mappairs. b. Close-up of the 2D convolution operation. A3×
3 filter(bottomlightred)performsaninnerproductoperationandproducesasinglescalaroutput(darkred
square)forthatlocationintheimage(largergreygrid).Fittingthesamefilterintotheremainingportionsofthe
inputwillyieldand2×2featuremap.c. A typical convolutional neural network.A3-channelcolorimageisfed
throughthreeconvolutionallayers,eachfollowedbypoolingtoshrinkthespatialresolutionbyafactoroftwo.
Thechanneldimensionbecomesafeaturedimension,andisgreatlyexpandedinthelastconvlayer.Thefinal
layerfullyconnectsthelastconvrepresentationtoasetofnotesrepresentingoutputclasses,usingasoftmax
functiontocomputeclassificationprobabilities.

can occur at any spatial position in the overall image (they are said to be translation invariant).
The same goes for higher level patterns. That is, the co-occurrence of two eyes and a mouth
can occur at any position in an image’s reference frame (much like our eyes). These high-level
patterns are simply patterns of low-level patterns (image patches), hence deep CNNs.

Now it is considerably less clear which specific patterns our models should look for, and this
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is precisely the reason why one would want to learn them from a large set of examples. If we
wanted, we could focus our efforts to find a sufficiently flexible model with enough training data
to learn translation invariance (at least implicitly), but this is almost certainly a waste of data and
model power (and it could take a very long time), although see Z. Lin, Memisevic, and Konda
(2015) for an interesting experiment. The fact that we’ve found an assumption that gets us near
human performance on certain tasks for the first time in history is good reason not to make the
problem harder on ourselves.

CNNs excel at perceptual tasks such as object recognition (Krizhevsky et al., 2012) and image
segmentation (Long et al., 2015), among many others. Early architectures were mainly aimed at
classification (Figure 2.2c), often combining a fairly constrained recipe of convolutional layers,
“pooling layers” (to reduce dimensionality at each layer), and traditional fully-connected layers,
but subsequent work has successfully eschewed many of these non-focal components (Sprin-
genberg, Dosovitskiy, Brox, & Riedmiller, 2014), as we might expect given our argument about
essential biases.

The essential component of CNNs, the convolutional layer (Figure 2.2a), is a learned set of
patterns or filters (Figure 2.2b). Like fully-connected layers, the filters are sets of weights, but
smaller than the input, and the inner product (for each filter in a layer) is computed at each
position in a grid of some specified resolution across the original image. For example, if a subset
of the image the same size as the filter has a similar appearance to the filter at the first layer, the
inner product will be high, and the output feature-by-position activation map (a volume in this
case) will reflect this. If we want instead to output an expanded spatial representation (in the case
of outputting an image for example), we can use transposed convolution (Long et al., 2015), which
can be thought of as “painting” an image using a filter as a “brush”, often called deconvolution, or
upsampling since the spatial resolution increases with additional layers. Like all neural networks,
learning the parameters of each layer is done jointly, such that all parts of the network take each
other into consideration when searching for a good solution.

2.2.3 Generative Neural Networks

Deep neural networks have also been used to learn generative models of the input domain.
Specifically, the goal is to model p(x), so that we can for example compute the probability of
a particular datapoint xi, or sample/synthesize new data. This also allows us to learn a repre-
sentation of the data that is not dependant on any one particular task or set of tasks (a generic,
and potentially optimal compression), a property that also appears in cognitive models (e.g.,
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Figure 2.3: Typical generative adversarial network for images. ThegeneratornetworkG (green)mapssome
simplerandomvariable(e.g.,multivariateGaussian)inputstoimage-sizedoutputs.AdiscriminatornetworkD
(blue)learnstodistinguishbetweengenerated(fake)imagesandimagesfromarealdataset.Thelossfunction
foreachnetworkissymmetric:thediscriminatormaximizestheprobabilityofreal/fakeguesses,whichthegen-
eratorsimultaneouslyminimizes.

Austerweil & Griffiths, 2013; Kemp & Tenenbaum, 2008).
While a variety of comparble deep generative modeling approaches exist (e.g., Kingma &

Welling, 2013; Oord, Kalchbrenner, & Kavukcuoglu, 2016), we focus on generative adversarial
networks (GAN; Goodfellow et al., 2014), which when built with convolutional/deconvolutional
layers (Radford, Metz, & Chintala, 2015), are arguably the most effective current method for
subsecond generation of convincing image samples.

GANs approach the problem of learning p(x) by teaching a generator network to mimic the
training dataset. To do this, the data is represented by some prior pz(z), often a simple distri-
bution (e.g., a multivariate Gaussian or uniform distribution). The learned generatorG(z; θg) is
a mapping from the latent encoding z to the data space x, where G is a differentiable function
(e.g., a deconvolutional network) parameterized by θg . This defines a new distribution pg(x).
Initially, pg will be a poor approximation of p(x), and feeding noise inputs pz(z) into G will
yield random pixel configurations.

To trainG, a second discriminator networkD(x; θd), parameterized by θd, takes image-sized
inputs, specifically both images from a dataset sampled from the true p(x) and fake/synthesized
images generated by G, and outputs a single probability that each image was indeed sampled
from the true p(x). D is trained to maximize the probability of assigning correct “real” labels to
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samples from p(x), and correct “fake” labels to samples from pg(x), andG is trained tominimize
log(1−D(G(z))), pitting the two networks directly against each other. This adversarial process
is a two-player minimax game. During training, the game must be well-balanced (e.g., neither
network should completely dominate the other), so that each provides a useful learning signal to
the other. At the game’s theoretical equilibrium, D is 1

2 everywhere, and

pg(x) = p(x) (2.5)

when the image distribution has been captured. In practice, G is never perfect, but is powerful
enough to compress realistic-looking images into amanageable encoding, sampledwith plausible
frequency (althoughmode collapse is a common issue inGANs). A schematic of the overall dual-
network model and training process is illustrated in Figure 2.3.

2.3 Deep Neural Networks in Psychology

Despite bearing a lose analogy to human brains, and being rooted in classic psychology literature,
machine learning is primarily focused on solving engineering problems, and not necessarily en-
gineering human-like intelligence. However, machine learningmodels are almost always trained
on datasets that were created, stratified, and annotated/labeled by humans. Data-driven language
models are trained on human-written corpora, and speech production systems are trained on
thousands of hours of human speech. It would not be particularly surprising if a model trained
to explore the world, talk, reason, or understand like humans might reveal something about hu-
man cognition, since many of these tasks are difficult to model at all with any real success.

Lake, Zaremba, Fergus, and Gureckis (2015) were the first to propose an explicit, “synthetic
psychology” of deep neural networks, mining them for insights about the cognition of concepts,
demonstrating for example that output class probabilities from a deep CNN were predictive of
human category typicality ratings. More recently, it was shown that human shape sensitivity
for natural images could be explained well for the first time using a deep neural network model
(Kubilius, Bracci, & Op de Beeck, 2016). A common theme across such works is to learn a suc-
cessful (and often superior) model, and explain it after by further probing the behavioral and
representational characteristics of the trained network. That is, it is more common to see deep
neural networks used as cognitive model learners (in some ways not unlike how humans learn
from data), as opposed to components of a larger cognitive modeling pipeline.
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2.4 Summary

In this chapter, we reviewed classic psychological methods for inferring humanmental represen-
tations, which while surprisingly innovative, do not seem well-suited to large, complex, natural-
istic datasets. By sharp contrast, we can derive meaningful representations for complex inputs
by learning them from weakly-constrained, but still very powerful machine learning tools, as
long as we have enough data to feed them. However, these methods have largely progressed in
parallel to efforts in cognitive science, with little integration between the two fields. Some initial
work has demonstrated value in treating deep networkmodels as cognitive models (perhaps that
learn somewhat like we do), but as I have argued, this is not the only promising framework for
integration. In the following chapters, I put all of the tools reviewed in this chapter to use in
understanding human and machine alike.
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Normal science, the activity in which most scientists in-
evitably spend almost all their time, is predicated on the
assumption that the scientific community knows what
the world is like.

Thomas S. Kuhn, The Structure of Scientific
Revolutions

3
Predicting the memorability of objects in

natural scenes

Recent large-scale web experiments on image memorability have shed light on what
distinguishes the collective memorability of thousands of diverse, naturalistic images, a refresh-
ing departure from the sorts of laboratory studies discussed in Chapter 1 that are built around
small stimulus sets. However, they have often relied on image annotations and simple featural
representations to make predictions and explore contributing factors. Partly for this reason, a
more granular understanding, such as a knowledge of the contrasting memorability of specific
objects in the image, especially within the same object class (e.g., similar objects with different
surface appearance), remains illusive. This emerging, ecologically-focused study of a crucial cog-
nitive process therefore presents a near-perfect case study for evaluating the utility of deep neural
networks in predicting complex human behavior at scale.

Much of the content of this chapter was published in Dubey, Peterson, Khosla, Yang, and Ghanem
(2015), the first-authorship for which was shared.
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3.1 What DoWe RememberWhenWe Remember?

Early work on human memory capacity was unable to identify an upper bound—it appears to
be effectively limitless—even when presented with streams of thousands of images (Standing,
1973). Although the proportion of images remembered decreases with additional stimuli, the
total number remembered always increases. Brady, Konkle, Alvarez, and Oliva (2008a) later
found that the information retained in such experiments is much more detailed than previously
thought. Despite this, human memory is obviously imperfect, and much less work has been
aimed at identifying exactly what we remember (or forget).

For example, consider the image on the left side of Figure 3.1. Even though the person on
the right is comparable in size to the person on the left, he is remembered far less by human
participants, indicated by their respective “memorability scores” (across-subject recall rates) of
0.18 and 0.64. Moreover, people tend to remember the person on the left and the fish in the
center, even after three minutes and more than seventy additional visual stimuli have passed.
Interestingly, despite vibrant colors and considerable size, the boat is far less memorable with a
memorability score of 0.18. Why do we remember some of these objects better than others, and
how do these objects influence the overall memorability of the scene?

Figure 3.1: Not all objects are equally remembered.Theimageontheleftshowsobjectsfromascenealongwith
theirrespectivememorabilityscoresobtainedfromourexperiment.Certainobjects(fishandpersonontheleft)
aremorememorablethanotherobjects.Theimageontherightshowsthegroundtruthmapgeneratedfromthe
objectsegmentsandmemorabilityscores,andtheultimatetargetforpixel-levelprediction.

Some initial hints about the answers to these questions come from recent work on memora-
bility at the image level (Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 2015; Isola, Parikh, Tor-
ralba, & Oliva, 2011; Isola, Xiao, Parikh, Torralba, & Oliva, 2014; Isola, Xiao, Torralba, & Oliva,
2011; Khosla, Bainbridge, Torralba, & Oliva, 2013; Khosla, Xiao, Isola, Torralba, & Oliva, 2012).
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The typical experimental design employed for these studies involves empirically estimating the
memorability of a set of scenes (overall images). Whether an image was remembered due to a
complex interaction between objects, or simply due to a single salient object for example is not
immediately reflected in the recall rates for each image. Some of this knowledge can be poten-
tially inferred from the memorability score of an image alone (Isola, Parikh, et al., 2011; Khosla,
Xiao, Torralba, & Oliva, 2012). However, these methods will ultimately require ground truth
object memorability data to be properly evaluated. Moreover, predicting such a detailed map
of memorable content is likely to require innovative methods for representing complex image
content.

3.2 Goals for the Chapter

To enable the direct study of content/object memorability by humans, we collect a large dataset
of ground truth object-level memorability scores and conduct an extensive first empirical inves-
tigation of memorability at the object level. This allows for a simple yet powerful strategy that
provides detailed answers to many interesting questions at hand. We then systematically explore
the memorability of objects within individual images and shed light on the various factors that
drive that memorability. In exploring the connection between object memorability, saliency,
object categories, and image memorability, this chapter makes several distinct contributions:

• While previous work has tried to infer such knowledge computationally (Khosla, Xiao,
Torralba, & Oliva, 2012), this work is the first to directly quantify and study what ob-
jects in an image humans actually remember, providing a ground truth with which to test
predictive and explanatory models.

• Weuncover the relationship between visual saliency andobjectmemorability, anddemon-
strate those instances where visual saliency directly predicts object memorability and
when/why it fails to do so. While recent work has explored the connection between im-
age memorability and visual saliency (Bylinskii et al., 2015; Kim, Yoon, & Pavlovic, 2013;
Mancas & Le Meur, 2013), our work is the first to explore the connection between object-
level memorability and ground-truth human visual saliency.

• Wemake significant headway in disambiguating the link between image and object mem-
orability, showing that in many cases, the memorability of an image is primarily driven
by the memorability of its most memorable object, but not always.

• Finally, we show that deep neural networks appear to capture enough necessary informa-
tion to beat out several competitive predictive models of object memorability.
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3.3 Measuring ObjectMemorability

As a first step towards understanding thememorability of objects in images, we compile an image
dataset containing a variety of objects from a diverse range of categories. We can then measure
the probability that each object in each image will be remembered by a large group of partici-
pants after a single viewing, providing ground truthmemorabilitymaps for objects inside images
(defined as image segments). This allows for a precise analysis and prediction of the memorable
elements within an image.

Toward this, we utilized the PASCAL-S dataset (Li, Hou, Koch, Rehg, & Yuille, 2014), a fully
segmented dataset built on the validation set of the PASCAL VOC 2010 (Everingham & Winn,
2010) segmentation challenge. To improve segmentation quality, we manually refined the seg-
mentations from this dataset, removing all homogenous non-object or background segments
(e.g. ground, grass, floor, and sky), along with imperceptible object fragments and excessively
blurred regions. All remaining object segmentations were tested for memorability. Our final
dataset comprises 850 images and 3, 412 object segmentations (i.e. an average of 4 objects per
image), for which we gathered ground truth memorability through crowd sourcing on Amazon
Mechanical Turk.

3.3.1 Object Memory Game

Figure 3.2: ObjectMemory Game.Participantsviewedaseriesofimagesfollowedbyasequenceofobjectsand
wereaskedtoindicatewhethereachobjectwasseenintheearliersequenceoffullimages.Unfamiliarandsingly-
appearingfillerimageswereusedasspacinginthesequence,andreappearingcontrolobjectsthatwereeasyto
identifyensuredparticipantswerepayingattention.

To measure the memorability of individual objects in each image in the dataset, we created
an alternate version of the Visual Memory Game through Amazon Mechanical Turk following
the basic design in Isola, Xiao, et al. (2011), with the exception of a few key differences (refer to
Figure 3.2). In our game, participants first viewed a sequence of 35 images, one at a time, with
a 1.5 second interval between image presentations. Participants were then asked to remember
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the contents and objects inside the images to the best of their ability. To ensure that participants
would not heuristically inspect only the most salient and center-most objects, they were given
unlimited time to freely view the images. Once they were done viewing an image, they could
press any key to advance to the next image. After the initial image sequence, participants viewed
a sequence of 45 objects, their task then being to indicate through a key press which of those
objects was present in one of the previously shown images. Each object was displayed for 1.5
seconds, with a 1.5 second gap between each object in the sequence. Pairs of corresponding
image and object sequences were broken up into 10 blocks. Each block consisted of 80 total
stimuli (35 images and 45 objects), and lasted approximately 3 minutes. At the end of each
block, the participant could take a short break. Overall, the experiment took approximately 30
minutes to complete.

Unknown to the participants, each sequence of images inside each blockwas pseudo-randomly
generated to consist of 3 “target” images taken from the PASCAL-S dataset, whose objects were
later presented to the participants for recall. The remaining images in the sequence consisted
of 16 “filler” images and 16 “familiar” images. Filler images were randomly selected from the
DUT-OMRON dataset (Yang, Zhang, Lu, Ruan, & Yang, 2013), while the familiar ones were
randomly sampled from the MSRA dataset (Liu et al., 2011). In a similar fashion, the object
sequence in each block was also generated pseudo-randomly to consist of 3 target objects (1 ob-
ject taken randomly from each previously shown target image). The remaining objects in the
sequence consisted of 10 control, 16 filler, and 16 familiar objects. Filler objects were sampled
randomly from the 80 different object categories in the Microsoft COCO dataset (T.-Y. Lin et al.,
2014), while the familiar objects were sampled from objects taken from the previously displayed
familiar images in the image sequence. The familiars ensured that the participants were always
engaged in the task and the fillers helped provide spacing between the target images and target
objects. While the fillers and familiars (both images and objects) were taken from datasets of
real-world scenes and objects, the control objects were artificial stimuli randomly sampled from
the dataset proposed in Brady, Konkle, Alvarez, and Oliva (2008b). Control objects were meant
to be easy to remember and served as a criteria to ensure quality (Brady et al., 2008b; Isola, Xiao,
et al., 2011). Target images and their corresponding target objects were spaced 70 − 79 stimuli
apart, while familiar images and their objects were spaced 1− 79 stimuli apart.

All images and objects appeared only once, and each participant was tested on only one object
from each target image to prevent objects from priming memory of other objects in the scene.
Objects were centered within the image they originated from and non-object pixels were set to
grey. Participants were required to complete the entire task, which included 10 blocks (∼ 30
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minutes) and could not participate in the experiment a second time. The maximum time that
participants could take to finish the experiment was 1 hour. After collecting the data, we assigned
a memorability score to each target object in our dataset, defined as the percentage of correct de-
tections by participants (refer to Figure 3.1 for an example). Strict criteria was undertaken to
screen participants’ performance and to ensure that our final dataset consisted of quality par-
ticipants. We discarded all participants whose accuracy on the control objects was below 70%.
The accuracy of these participants on filler objects and familiar objects was greater than chance
(> 75%) demonstrating that our data consists of participants who were paying attention to the
task. The mean time taken by the participants to view an image was 2.2 seconds with a standard
deviation of 1.6 seconds. In total, we had 1, 823 workers from Mechanical Turk each having at
least 95% approval rating in Amazon’s system. On average, each object was scored by 16 partic-
ipants and the average memorability score was 0.33 with a standard deviation of 0.28.

3.3.2 Human Inter-rater Reliability Analysis

To assess human inter-rater reliability in remembering objects, we repeatedly divided our entire
participant pool into two equal halves and quantified the degree to which memorability scores
for the two sets of participants were in agreement using Spearman’s rank correlation (ρ), a non-
parametric measure for testing themonotonic relationship between two variables. We computed
the average correlation over 25 of these random split iterations, yielding an average correlation
of ρ = 0.76. This high reliability in object memorability indicates that, like full images, object
memorability is a shared property across participants. That is, people tend to remember (and
forget) the same objects in images, and exhibit similar performance in doing so. Thus memora-
bility of objects in images can potentially be predicted with high accuracy, and we can compare
prediction performance to human consistency. In the next section, we study the various factors
that drive object memorability in images.

3.4 Understanding ObjectMemorability

In this section, we aim to better understand how object memorability is influenced by a number
of visual factors. Specifically, we study the relationship between object memorability and simple
color features, visual saliency, and object semantics.
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3.4.1 Can simple features explain memorability?

While simple low-level image features are traditionally poor predictors of image memorability
(Isola, Xiao, et al., 2011), and with good reason (Konkle, Brady, Alvarez, & Oliva, 2010), the
question arises whether such features play any role in determining object memorability in images.
To address this question and following a similar strategy as in Isola et al. (2014), we compute the
mean and variance of each HSV color channel for each object in our dataset, and compute the
Spearman rank correlation with the corresponding object memorability score (refer to Figure
3.3).

We find that the mean (ρ = 0.10) and variance (ρ = 0.25) of the value channel correlates
weakly with object memorability, suggesting that brighter and higher contrast objects may be
more memorable. On the other hand, essentially no relationship exists between memorability
and either the hue or saturation channels. This deviates slightly from the findings in Isola, Xiao, et
al. (2011), which show mean hue to be weakly predictive of image memorability. This difference
could be due to the fact that the dataset in Isola, Xiao, et al. (2011) contains blue and green
outdoor landscapes that are less memorable than the warmly colored human faces and indoor
scenes. In contrast, outdoor scene-related segments such as sky and ground were not included
as objects in our dataset. From these results, we see that, like image memorability, simple pixel
statistics do not play a significant role in determining object memorability in images.

3.4.2 What is the role of saliency in memorability?

Intuitively, we expect that objects within an image that are most salient are likely to be remem-
bered, since they tend to draw a viewer’s attention, i.e. a majority of his/her eye fixations will lie
within those object regions. On the other hand, it is conceivable that some visually appealing re-
gions will not be memorable, especially since aesthetic images are known to be less memorable
(Isola et al., 2014; Isola, Xiao, et al., 2011). When can visual saliency predict object memora-
bility and what are the possible differences between the two? Studying the relationship between
saliency andmemorability is paramount for understanding objectmemorability in greater depth.

To address this question, we utilize the eye fixation data made available for the PASCAL-S
dataset (Li et al., 2014). First, we compute the number of unique fixation points within the image
segment of each object and the correlation between this metric and the object’s memorability
score (refer to Figure 3.4, left). We find this correlation to be positive and considerably high
(ρ = 0.71), suggesting that fixation count and visual saliency may drive object memorability
considerably. However, the large concentration of points on the bottom left part of the scatter plot
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Figure3.3: Simplecolor featuresdonotexplainobjectmemorability.Correlationsofobjectmemorabilityscores
withhueandsaturationarenearzero.Onlyvalueshowsaweakcorrelation.

Figure 3.4: Correlations betweenmemorability, fixation count, and number of objects. Left:Memorabilityand
fixationcountscorrelatepositively. Middle:Memorabilityandnumberofobjectsarenegativelycorrelated.
Right:Fixationsandobjectcountsareweaklynegativelycorrelated.
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in Figure 3.4 (left panel) suggests that part of the reason for this high correlation is that objects
that have not been viewed (i.e. no fixation points associated with them) at all have essentially no
memorability, and therefore will always imply correlation. If we remove these simple cases, we
can examine whether or not the full range of memorability scores is predicted by fixation count.

To investigate this, we plot the change in correlation between object memorability and fixa-
tions as the minimum number of fixations inside objects increases. For each minimum fixation
count, we compute the memorability-fixation correlation again, but only using objects that con-
tain at least this number of fixations (refer to right panel of Figure 3.5). The decreasing trend
in correlation indicates that as the number of fixations inside an object increases, the predictive
ability diminishes significantly, indicating that the full range of memorability scores are not well
predicted. In addition, Figure 3.5 (left) plots this correlation as a function of total number of ob-
jects in an image. Interestingly, as the number of objects in an image increases, the correlation
between saliency, i.e. number of fixations, and memorability decreases sharply. The two remain-
ing scatter plots in Figure 3.4 (middle) and (right) provide additional clues about the relationship
between memorability and fixation count. Note that object count is negatively correlated with
both memorability and fixation count. This makes sense, since people have more to look at in
an image when more objects are present. In this case, they tend to look less at any single object,
especially if some of these objects compete for saliency, and therefore may have a more difficult
time remembering those objects.

Figure3.5:Correlationbetweenobjectmemorabilityandobjectfixationcountasafunctionofminimumnumber
ofobjects(left)andminimumnumberoffixations(right).

In summary, saliency is a good predictor of object memorability in simple contexts with few
objects or when an object has few interesting points, but it is a much weaker predictor of mem-
orability in complex scenes containing multiple objects that have many points of interest.
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Figure 3.6: Memorability prediction by saliency in complex scenes.Toprow:thememorabilityofthedogislow
eventhoughhumansfixateonit.Bottomrow:Humanslookatthepersonmorethanthehorse,butthehorseis
morememorablethantheperson.

Figure 3.7: Memorable objects and fixation locations. Left:Normalizedlocationsforallobjectsinthedataset.
Bothcenterofobjectboundingboxes(CBB,blue)andobjectcenterofmass(COM,red)areshown.Middle:Loca-
tionsformemorableobjectsonly.Right:Averagegroundtruthsaliencymapacrosstheentiredataset.Thesolid
yellowlinemarkstheregioncontaining95%ofallnormalizedfixationlocations.Thedashedbluelinemarksthe
regionwithabove-medianmemorableobjects.Centerbiasismorestronglyexpressedinthefixationlocations.
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3.4.3 Center Bias

Figure 3.7 illustrates another example where saliency andmemorability diverge. Previous studies
related to visual saliency have shown that saliency is heavily influenced by center bias (Judd,
Ehinger, Durand, & Torralba, 2009; Zhang, Tong, Marks, Shan, & Cottrell, 2008), primarily due
to photographer bias (also evident in the left-most panel of Figure 3.7) and viewing strategy
(Tseng, Carmi, Cameron, Munoz, & Itti, 2009). Since our data collection experiment tries to
control for viewing strategy, memorability in our dataset exhibits comparatively less center bias
than saliency. This is most apparent when considering the difference between the solid ellipse
in the right-most panel of Figure 3.7), which shows where 95% of fixations are located, and the
dashed ellipse, which shows where 95% of the above-median memorable objects are located.

3.4.4 How do object-level statistics affect memorability?

In the previous section, we explored the relationship between visual saliency and objectmemora-
bility. Now, we explore how object-level information such as category labels and co-occurrence
influences the probability of remembrance.

3.4.4.1 Are some object categories more memorable?

For this analysis, three in-house annotators manually labeled the object segmentations in our
dataset. The annotators were provided the original image (for reference) and the object segmen-
tation and asked to assign a single category to the segment out of 7 possible categories: animal,
building, device, furniture, nature, person, and vehicle. We chose these categories so that a wide
range of object classes could be covered. For example, the category “device” includes objects
like utensils, bottles, and televisions, while “nature” includes objects like trees, mountains, and
flowers etc. Figure 3.8 shows the distribution of the memorability scores of all 7 object categories
in our dataset.

Results in Figure 3.8 give a sense of how memorability changes across different object cate-
gories. Animal, person, and vehicle are all highly memorable classes, each associated with an
average memorability score greater than or close to 0.5. Interestingly, all other categories have
an averagememorability lower than 0.25, indicating that humans do not remember objects from
these categories very well. In particular, furniture is the least memorable category with an aver-
age score of only 0.14. This is possibly due to the fact that most objects in the furniture, nature,
and building categories either appear mostly in the background or are occluded, which likely de-
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Figure 3.8: Someobject categories aremorememorable than others.Categorieslikefurniture,nature,building,
anddevicetendtohavealargemajorityofobjectswithverylowmemorabilityscores. Objectsbelongingto
animal,person,andvehiclecategoriesarerememberedmoreoften.

creases theirmemorability significantly. In contrast, objects from the animal, person, and vehicle
categories appear mostly in the foreground, leading to a higher memorability score on average.
Interestingly, the most memorable objects from the building, furniture, and nature categories
tend to have an average memorability in the range of 0.4 − 0.8, whereas the score of the most
memorable objects from person, animal and vehicle is higher than 0.9. While the differences
in the memorability of different object categories could be driven by factors like occlusion, size,
background/foreground, or photographic bias, the distribution in Figure 3.8 suggests that hu-
mans remember some object classes such as person, animal, and vehicle irrespective of external
nuisance factors and these categories are intrinsically more memorable than others.
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Figure 3.9: Memorability of object categories. Mostmemorable,mediummemorableandleastmemorableob-
jectsfromeachofthe7categories.

3.4.4.2 Exploring category-specific memorability

As demonstrated above, some object categories (i.e. animal, person, and vehicle) tend to bemore
memorable than others. However, not all objects in the same category are equally memorable.
The examples in Figure 3.9 show the most memorable, medium memorable, and least memo-
rable objects for each category. Across categories, medium to high memorability objects tend to
have little to no occlusion, and low memorability objects tend to be both occluded and darker.
What other category-related factors could influence the memorability of objects? Among the
possible factors, we explore how category-specific object memorability is influenced by (i) the
number of objects in an image and (ii) the presence of other object categories.

Number of objects: Figure 3.10 shows the change in averagememorability for the different cate-
gories when the minimum number of objects within an image is increased. Results indicate that
the number of objects present in an image is an important factor in determining memorability.
For example, as the number of objects in an image increases, the memorability of animals and
vehicles decreases sharply, most likely a result of competition for attention. Although the mem-
orability of vehicles starts to show a slight increase for objects greater than 8, this arises only due
to insufficient data (number of images is less than 30). Interestingly, the memorability of the
person category does not change significantly when an increasing number of objects are present
in the image. This suggests that people are not only one of themost memorable object categories,
but that their memorability is the least sensitive to the presence of object clutter in an image.

Inter-category memorability: How much is the memorability of a particular object category
affected when it co-occurs with another object category (or another instance of the same cate-
gory)? To quantify the effect of one category on another, we consider each pairwise combination
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Figure3.10: Objectnumberaffectscategory-specificmemorability.Foreachcategory,acurveshowsthechange
inaveragememorabilityasthenumberofadditionalobjectsintheimagesincrease.Thememorabilityofobjects
belongingtocategorieslikeanimalsandvehiclesdecreasessignificantlywithanincreaseinobjectnumber.

of categories and gather all images that contain at least one object from both categories. By taking
one category as the reference and the other as the distractor, we compute the average memorabil-
ity scoremR|D of the reference in the images common to the reference and distractor. To isolate
the effect of the distractor, we compute the memorability difference

∆m = mR|D −mR, (3.1)

where mR is the memorability score of the reference in all images where it exists. Figure 3.11
shows∆m for all possible reference and distractor pairs. It is clear that∆m for low-memorability
categories (i.e. nature, furniture, device, and building) is not significantly affected by the presence
of other categories.

Also, thememorability of the animal categorymaintains its high score in the presence of other
categories, except vehicles, people, and itself, where it decreases substantially. The memorability
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Figure 3.11: Inter-category objectmemorability relationship.Effectofdistractorcategoriesonthememorabil-
ityofreferencecategories.

of people tends to be unaffected by the presence of most other categories including itself. How-
ever, it decreases in the presence of vehicles and buildings. This could be due to the fact that
people in images containing vehicles or buildings are usually zoomed out and smaller in size (re-
fer to Figure 3.12). The memorability of the vehicle category is strongly affected by the presence
of other object categories. In particular, it drops significantly in the presence of other vehicles,
people, and animals.

In summary, when an animal, vehicle, or person co-occur in the same image, the memora-
bility of all three categories usually decreases. However, this pattern of change in memorability
is category-specific in general. For example, when a vehicle and animal are present in the same
image, the animal is generally more memorable, even though both their memorability scores
drop significantly. When a vehicle or an animal co-occurs with a person, the person is generally
more memorable (also shown in Figure 3.12).
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Figure 3.12: Memorability of people in the presence of other categories. Toprow:Imageswhereapersonco-
occurswithothercategories.Bottomrow:Groundtruthobjectmemorabilitymaps.Inthepresenceofbuildings,
thememorabilityofapersoncandrop.Inthepresenceofavehicleoranimal,thepersonisusuallymorememo-
rable.

3.4.5 How are object & image memorability related?

Until now, we have studied what objects people remember and the factors that influence their
memorability, but to what extent does the memorability of individual objects affect the overall
memorability of an image? Moreover, if an image is highly memorable, what can we say about
the memorability of the objects inside those images (and vice versa)? To shed light on these
questions, we conducted a second large-scale experiment on Amazon Mechanical Turk for all
images in our dataset to gather their respective image memorability scores. For this experiment,
we followed the same strategy as the memory game experiment proposed in Khosla, Raju, Tor-
ralba, and Oliva (2015). A series of images from our dataset and the Microsoft COCO dataset
(T.-Y. Lin et al., 2014) (i.e. ‘filler’ images) were flashed for 1 second each, and participants were
instructed to press a key whenever they detected a repeat presentation of an image. A total of 350
workers participated in this experiment with each image being viewed 80 times on average. The
rank correlation after averaging over 25 random splits of the participants’ memorability scores
was 0.70, indicating high inter-rater reliability.

Using results from the previous experiments, we computed the correlation between the scores
of the singlemostmemorable object in each image and thememorability score of each image. This
correlation is moderately high with ρ = 0.40, suggesting that the most memorable object in an
image plays a crucial role in determining the overallmemorability of an image. To investigate this
finding in relation to some extreme cases, we repeated the same analysis as above but on a subset
of the data containing the 100 most memorable images and the 100 least memorable images.
The correlation between maximum object memorability and image memorability for this subset
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of images increased significantly to ρ = 0.62. This means that maximum object memorability
serves as a strong indicator of whether an image is highly memorable or not memorable at all. In
other words, images that are highlymemorable contain at least one highlymemorable object and
images with low memorability usually do not contain a single highly memorable object (refer to
Figure 3.13).

Figure 3.13: Max object memorability predicts image memorability. Toprow:Mostmemorableimagestaken
fromourdatasetalongwiththeirhighestmemorableobjectandtheirrespectivememorabilityscores.Bottom
row:leastmemorableimagesinthedatasetalongwiththeirmostmemorableobjectandtheirrespectivemem-
orabilityscores.Maximumobjectmemorabilitycorrelatesstronglywithimagememorabilityinbothcases.

To study the relationship between maximum object memorability and image memorability
conditioned on the object category, we computed the correlation between maximum object and
image memorability for each individual object category separately. The resulting correlations
for each category are: animal (ρ = 0.38), building (ρ = 0.22), device (ρ = 0.47), furniture
(ρ = 0.53), nature (ρ = 0.64), person (ρ = 0.54), and vehicle (ρ = 0.30), indicating that
certain categories are more susceptible to the effect than others. For example, images containing
animals, buildings, or vehicles as the most memorable objects tend to have varying degree of
image memorability (indicated by their lower ρ values). On the other hand, device, furniture,
nature, and person are strongly correlated with image memorability, indicating that if an im-
age’s most memorable object belongs to one of these categories, the object memorability score
is strongly predictive of the image memorability score. We can imagine scenarios in which this
information is potentially useful. For example, in vision systems that are tasked to predict scene
memorability, a single object and its category can serve as a strong prior in predicting this score.
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3.5 Predicting ObjectMemorability

This work makes available the very first dataset containing ground truth memorability of con-
stituent objects from a highly diverse image set. In this section, we show that our dataset can be
used to benchmark computational models of object memorability.

3.5.1 Memorability Prediction with Deep Neural Networks

To predict object memorability using representations learned using a deep neural network, we
first generated object segments by using multiscale combinatorial grouping (MCG), a generic
object proposal method proposed in Arbelaez, Pont-Tuset, Barron, Marques, and Malik (2014).
We then extract feature representations for each object proposal using the CaffeNet implemen-
tation of AlexNet (Jia et al., 2014; Krizhevsky et al., 2012), a deep convolutional network classifier
that was pretrained to classify 1000 object classes of the ImageNet dataset (Russakovsky et al.,
2015). While this network was not explicitly trained to predict saliency or memorability, object
categories play an important role in determining object memorability (Section 3.4.4).

Next, a support vector regressor (SVR) was trained using 6-fold cross-validation to map our
extracted deep object features to memorability scores. This model was used to predict memo-
rability scores for the top K = 20 object segments obtained using the MCG algorithm, as well
as the original object segmentations. After predicting these memorability scores, memorability
maps were generated by averaging the scores of these top K segments at the pixel level (DL-
MCG).

3.5.2 Baseline Models

Feature-basedModels: Since image features like Scale-invariant FeatureTransform (SIFT; Lowe,
2004) and Histogram of Oriented Gradients (HOG; Dalal & Triggs, 2005) have previously been
shown to achieve good performance in predicting image memorability (Isola et al., 2014; Isola,
Xiao, et al., 2011), a single baseline model was built using both of these features for comparison.
Training and testing of this model was performed similarly to our deep network model.

Saliency Models: Given the uncovered correlation between what is remembered and what par-
ticipants fixate on, we employed eight state-of-the-art saliency methods (top performing meth-
ods according to benchmarks in Borji, Sihite, and Itti (2012, 2013)): GB (Harel, Koch, & Per-
ona, 2006), AIM (Bruce & Tsotsos, 2006), DV (Hou & Zhang, 2009), IT (Itti, Koch, & Niebur,
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1998), GC (Cheng, Zhang, Mitra, Huang, & Hu, 2011), PC (Margolin, Tal, & Zelnik-Manor,
2013), SF (Perazzi, Krahenbuhl, Pritch, & Hornung, 2012), and FT (Achanta, Hemami, Estrada,
& Susstrunk, 2009). Each algorithm produces a pixel-level map of predicted saliency.

Figure 3.14: Rank correlation of predicted object memorability. Accuracyofthesaliencyandfeature-based
modelsonproposedbenchmark.

3.5.3 Results

To evaluate the accuracy of the predicted object memorability maps, we computed the rank cor-
relation between the mean predicted memorability score inside each of the object segments and
their ground truth memorability scores. These results are reported in Figure 3.14. Clearly, the
deep networkmodel, DL-MCG, performs considerably well (ρ = 0.39). In contrast, the baseline
trained using HOG and SIFT (H+S) exhibits much weaker performance (ρ = 0.27).

Figure 3.14 shows that the H+S baseline is also outperformed by most saliency prediction
methods. Thus, even though models using SIFT and HOG have previously demonstrated high
predictive power for image memorability, they may not be as well suited for the task of predict-
ing object memorability. The deep network model (DL-MCG) performs better than all other
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saliency methods with only PC (ρ = 0.38), SF (ρ = 0.37), and GB (ρ = 0.36) showing com-
parable performance. A common factor between these saliency methods is that they explicitly
add center bias to their implementation. Although object memorability exhibits less center bias
when compared to eye fixations, it still tends to be biased somewhat towards the center due to
photographer bias (see Section 3.4.2), which could be a reason for the high performance of these
saliency methods.

While DL-MCG performed favorably in predicting object memorability, its accuracy is highly
dependent on the quality of the segmentations used. To illustrate this fact, we redo the prediction
task but with the ground truth segments replacing the MCG segments. The resulting baseline
is referred to as DL-UL, which can be considered the gold standard or the upper bound on au-
tomated object memorability prediction. Its correlation score is very high and close to human
inter-rater relability (ρ = 0.70), which suggests that the deep network model does have high
predictive ability, but that it is sensitive to the image segmentations it is applied to. This is not
that surprising given that MCG does not always propose object-like segmentation bounds, and
sometimes groups multiple objects and background elements together by mistake. It should be
noted that this problem might be solved with better segmentation methods that also make use
of deep neural networks (Long et al., 2015).

3.6 Conclusion

In this chapter, we focused on the problem of understanding the memorability of objects in nat-
ural images. To this end, we obtained ground truth data that helps to study and analyze this
problem in depth. We show that the category of an object is a good index of its memorability,
and that visual saliency can predict object memorability to some degree. Moreover, we studied
the relationship between image and object memorability and compiled a benchmark dataset for
object memorability prediction.

In the end, deep networks were most successful in making predictions about exactly which
objects will be remembered in an image. Human image annotations can tell us when a person is
present in an image for example, and this information is surprisingly predictive of memorability,
but it does not not include the sorts of rich representational detail that deep networks appear to
have captured. However, in the end, what can we claim beyond predictive superiority? When
deep features fail to predict human behavior for certain images, can we know why? If we can,
can we explicitly optimize them to avoid this? In the next chapter, we will provide an initial set
of answers to these questions.
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Science is an essentially anarchic enterprise: theoretical
anarchism is more humanitarian and more likely to en-
courage progress than its law-and-order alternatives...
The only principle that does not inhibit progress is: any-
thing goes.

Paul Feyerabend, Against Method

4
Predicting human similarity judgments for

natural images

Deep neural networks continue to excel in new tasks that have been historically very diffi-
cult for computers to solve, including problems in vision (LeCun et al., 2015), natural language
processing (Collobert et al., 2011) and reinforcement learning (Mnih et al., 2015). In the last
chapter, we found similar success in applying deep networks to predict human behavior directly,
as opposed to accidentally (e.g., needing humans to label the structure in the world given no
other feasible alternatives). Indeed, our model did not learn what should be remembered in the
world given certain model constraints, but what people do remember in the world.

We further accomplished this without explicitly re-training the network for our own predic-
tion problem—we used the feature representation that was learned to support object recogni-
tion. This opens up a number of interesting questions about the generality and usefulness of
the learned representation. For example, can we think of these representations as a generally
good compression of the images, not unlike what humans might employ to solve several types of
problems? Further, to the extent that ourmodel was imperfect, what representational differences
were to blame? If instead we found a perfectly predictive model for this particular task, does that

Much of the content of this chapter was published in Peterson, Abbott, and Griffiths (2018).
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mean the network represents those stimuli much like people do? In this chapter, we explore how
well the representations discovered by deep convolutional network classifiers align with human
psychological representations of natural images, show how they can be adjusted to increase this
alignment, and demonstrate that the resulting representations can be used to predict complex
human behaviors such as learning novel categories.

4.1 Comparing Representations

4.1.1 Deep Neural Networks and the Brain

Following the success of DNNs in computer vision, recent work has begun to compare the prop-
erties of these networks to psychological and neural data. Much of the initial work in comparing
deep neural network representations to those of humans comes fromneuroscience. For example,
early work found that neural network representations beat out 36 other popular models from
neuroscience and computer vision in predicting IT cortex representations (Khaligh-Razavi &
Kriegeskorte, 2014), and later work found a similar primacy of these representations in predict-
ing voxel-wise activity across the visual hierarchy (Agrawal, Stansbury, Malik, & Gallant, 2014).
However, neural representations are not necessarily the gold standard for capturing all of the
complex structure of human mental representations. Human similarity judgments for a set of
objects encode representational detail that cannot be estimated by inferotemporal cortex repre-
sentations, which are more similar to monkey inferotemporal cortex than to human psycholog-
ical representations (Mur et al., 2013). For this reason, estimating human behavior directly may
also be fruitful, and possibly more informative.

4.1.2 Deep Neural Networks and Human Behavior

Several recent studies have seen some initial success in applying representations fromdeep neural
networks to psychological tasks, including predicting human typicality ratings (Lake, Zaremba,
et al., 2015), as well as the work presented on memorability in Chapter 3, for natural object
images. More recently, it was shown that human shape sensitivity for natural images could be
explained well for the first time using deep neural networks (Kubilius et al., 2016), which now
constitute a near essential baseline for emerging models of human shape perception (Erdogan
& Jacobs, 2017). A follow-up to our own previous work (Peterson, Abbott, & Griffiths, 2016)
showed that important categorical information is missing from deep representations (Jozwik,
Kriegeskorte, Storrs, & Mur, 2017).
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4.2 Overview of the Chapter

As we saw in Chapter 2, human psychological representations cannot be observed directly, and
so comparing them to representations formed by deep neural networks is challenging. Our ap-
proach is to solve this problem by exploiting the close relationship between representation and
similarity discussed in Chapters 1 and 2 (i.e., every similarity function over a set of pairs of data
points corresponds to an implicit representation of those points). This provides an empirical
basis for the first detailed evaluation of DNNs as an approximation of human psychological rep-
resentations. To do this, we can subject both DNN and human similarities to an ensemble of
classic psychological methods for probing the spatial and taxonomic information they encode.
This identifies aspects of human psychological representations that are captured by DNNs, but
also significant ways in which they seem to differ. We can then consider whether a better model
of human representations can be efficiently bootstrapped by transforming the deep representa-
tions. The resulting method opens the door to ecological validation of decades of psychological
theory using large datasets of highly complex, natural stimuli, which is demonstrated by predict-
ing the difficulty with which people learn natural image categories.

4.3 Experiment 1: Evaluating the Correspondence Between Rep-
resentations

Human psychological representations are not directly observable, and cannot yet be inferred
from neural activity (Mur et al., 2013). However, psychologists have developed methods for
inferring representations from behavior alone. Human similarity judgments capture stimulus
generalization behavior (Shepard, 1987) and have been shown to encode the complex spatial,
hierarchical (Shepard, 1980), and overlapping (Shepard & Arabie, 1979) structure of psycholog-
ical representations, around which numerous psychological models of categorization and infer-
ence are built (Goldstone, 1994b; Kruschke, 1992; Nosofsky, 1987). If we can capture similarity
judgments, we will have obtained a considerably high resolution picture of human psychological
representations. Experiment 1 evaluated the performance of deep neural networks in predicting
human similarity judgments for six large sets of natural images drawn from a variety of visual do-
mains: animals, automobiles, fruits, furniture, vegetables, and a set intended to cross-cut visual
categories (referred to below as “various”).

41



4.3.1 Methods

4.3.1.1 Stimuli

Stimuli were hand-collected for each of the six domains, digital photos that weremeant to exhibit
wide variety in object pose, camera viewpoint, formality, and subordinate class. Each domain
contained 120 total images, each cropped to a square aspect ratio and resized to 300× 300 pixel
dimensions. An example subset of these images for each dataset is provided in Figure 4.1, and
the full sets are provided in Appendix A.

4.3.1.2 Procedure

For all six stimulus categories, pairwise image similarity ratings (within each category) were col-
lected from human participants on Amazon Mechanical Turk. Participants were paid $0.02 to
rate the similarity of four pairs of images within one of the six categories on a scale from 0 (“not
similar at all”) to 10 (“very similar”). They could repeat the task as many times as they wanted,
but were not allowed to repeat ratings of the same unique image pair. The experiment obtained
exactly 10 unique ratings for each pair of images (7,140 total) in each category, yielding 71, 400
ratings per category (428,400 total ratings), from over 1,200 unique participants. The result is
six 120×120 similarity matrices after averaging over individual judgments, for which each entry
represents human psychological similarity between a pair of objects. The raw similarity matrices
are included in Appendix A.

4.3.1.3 Deep neural network representations

To obtain image representations from our deep neural networks, each input image is fed through
each network. The nodes that comprise the network obtain different activation values for each
image after each layer performs a transformation. We can take these activation values as a vector
of “features” representing the image (for the entire network, or for a particular layer). These fea-
ture vectors can be collected into a feature matrix F, which specifies a multidimensional feature
representation (columns) for each image (rows). A similarity matrix Ŝ, in which the entry ŝij

gives the similarity between images i and j in the network’s representation space, can then be
computed by the matrix product

Ŝ = FFT , (4.1)
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Figure 4.1:Exampleimagestimulifromoursixdomains.
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modeling ŝij as the inner product of the vectors representing images i and j. Given human simi-
larity judgmentsS and an artificial feature representationF, we can evaluate the correspondence
between the two by computing the correlation between the entries in S and Ŝ.

For each image in all six categories, deep feature representations were extracted using four
highly popular convolutional neural network image classifiers that were pretrained in Caffe (Jia
et al., 2014) on ILSVRC12, a large dataset of 1.2 million images taken from 1000 objects cate-
gories in the ImageNet database (Deng et al., 2009). This dataset serves as a central benchmark
in the computer vision community. Our own image datasets were not explicitly sampled from
categories in ILSVRC12 and likely diverge to some degree. For example, of the 1000 ILSVRC12
classes, 120 are different dog breeds, whereas our animal set contains no dogs. The networks,
in order of depth, are AlexNet (Krizhevsky et al., 2012, 7 layers), VGG (Simonyan & Zisserman,
2014, 19 layers), GoogLeNet (Szegedy et al., 2014, 22 layers), and ResNet (He, Zhang, Ren, &
Sun, 2016, 152 layers), three of which are ILSVRC12 competition winners. VGG, GoogLeNet,
and ResNet all achieve at least half the error rate of AlexNet.

Images are fed forward through each network as non-flattened tensors, and activations are
recorded at each layer of the network. Formost of our analyses besides theAlexNet layer analysis,
activations at the final hidden layer only of each network are extracted. For AlexNet and VGG,
this is a 4096-dimensional fully-connected layer, while the last layers in GoogleNet and ResNet
are 1024- and 2048-dimensional pooling layers respectively. As an example, feature extraction
for the animals training image set provides a 120×4096matrix. All feature sets were then z-score
normalized.

4.3.1.4 Unsupervised Baseline Representations

Anothermodel of interestwas a recent state-of-the-art unsupervised network (Donahue, Krähen-
bühl, & Darrell, 2016; Dumoulin et al., 2016), a generative model trained to capture the distri-
bution of the entire ILSVRC12 dataset. This network (BiGAN) is a bidirectional variant of a
Generative Adversarial Network (Goodfellow et al., 2014) that can both generate images from a
uniform latent variable and perform inference to project real images into this latent space. This
200-dimensional latent encoding was used as the image representation for this network. As an
additional baseline, two forms of shallow (non-deep) feature sets were also included, both being
previously popular methods from computer vision: the Scale-invariant feature transform (SIFT;
Lowe, 2004), using the bag-of-words technique trained on a large image database, andHistogram
of Oriented Gradients (HOG; Dalal & Triggs, 2005), with a best-performing bin size of 2× 2.
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Figure 4.2: Modelperformance(proportionofvarianceaccountedfor,R2)inpredictinghumansimilarityjudg-
mentsforeachimagesetusingthebestraw(lightcolors)andbesttransformed(darkcolors)DNNrepresenta-
tions.

Table 4.1: Varianceexplainedinhumansimilarityjudgmentsforrawandtransformedrepresentationsforthe
bestperformingnetwork(VGG).
Dataset Raw R2 Transformed R2 CV Control R2 Human Inter-reliability

Animals 0.58 0.84 0.74 0.90
Automobiles 0.51 0.79 0.58 0.83
Fruits 0.27 0.53 0.36 0.57
Furniture 0.19 0.67 0.35 0.65
Various 0.37 0.72 0.54 0.70
Vegetables 0.27 0.52 0.35 0.62

4.3.2 Results and Discussion

Thevariance explained in human similarity judgments by the best performingDNN architecture
(this was VGG in all cases) is plotted in Figure 4.2 (lighter colors) and given in Table 4.1 (“raw”),
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and indicates that the raw deep representations provide a reasonable first approximation to hu-
man similarity judgments, although the level of precision depends on the domain. Animals were
the best approximated of the six image sets, reaching up to nearly 60% variance explained. Al-
ternative metrics such as Euclidean distance yielded essentially identical results (not shown).

4.3.2.1 Visualizating Representations

Tobetter understand howDNNs succeed and fail to reproduce the structure of psychological rep-
resentations, we can apply two classic psychological tools: non-metric multidimensional scaling,
which converts similarities into a spatial representation, and hierarchical clustering, which pro-
duces a tree structure (dendrogram) (Shepard, 1980). For our NMDS analysis, the scikit-learn
Python library was used to obtain only two-dimensional solutions, with a maximum iteration
limit of 10,000 in fitting the models through gradient descent, and a convergence tolerance of
1e-100. Embeddings were first initialized with standard metric MDS, then taking the best fitting
solution of four independent initializations. For HCA, the scipy Python library was used along
with a centroid linkage function in all models.

The results for the best-performing DNN on the animals stimuli are shown in Figure 4.3,
and point out the most crucial differences in these two representations. Human representations
exhibit highly distinguished clusters in the spatial projections and intuitive taxonomic structure
in the dendrograms, neither of which are present in the DNN representations. This gives us
an idea of what relevant information is missing from the deep representations in order to fully
approximate human representations.

4.3.2.2 Predictive Variability Across Network Architectures

Beyond identifying the DNN that best captures human similarity judgments, it is useful to un-
derstand how competing networks compare in their predictive ability. Figure 4.4 shows the re-
sults of comparing the representations from all four classification networks, as well as a recent
high-performing unsupervised deep architecture (BiGAN; Donahue et al., 2016; Dumoulin et
al., 2016) and two older, non-deep standards from computer vision: HOG (Lowe, 2004) and
SIFT (Dalal & Triggs, 2005) features. Most classification networks perform similarly, yet VGG
is slightly better on average. Surprisingly, representations from the BiGAN, while useful for ma-
chine object classification (Donahue et al., 2016), don’t seem to correspond as well to human
representations, and are even less effective than shallow methods like HOG+SIFT.
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Figure 4.3: RepresentationsofAnimals.(a)Non-metricmultidimensionalscalingsolutionsforhumansimilarity
judgments(left),rawDNNrepresentations(middle),andtransformedDNNrepresentations(right).(b),Dendro-
gramsofhierarchicalclusterings(centroidmethod)forhumansimilarityjudgments(top),rawDNNrepresenta-
tions(middle),andthetransformedDNNrepresentations(bottom).
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Figure 4.4: Similaritypredictionperformanceusingthebestweightedrepresentationsfromfourpopulardeep
classifiers,anunsupervisednetwork(BiGAN),andanon-deepbaseline(HOG+SIFT).Resultsareaveragedacross
allsiximagesets.

4.3.2.3 Representational Abstraction Analysis

Using AlexNet, which has a manageable yet still large number of layers, performance at each
layer of the network was examined, including final class probabilities from the softmax layer and
discrete “one-hot” labels for the predictedmost probable class. Since early layers represent lower-
level features, and later layers represent increasingly abstract structure, we can ask which level
of abstraction best fits our human judgments. As Figure 4.5 shows, performance climbs as the
depth of the network increases, but falls off near the endwhen the final classification outputs near.
For all datasets, the best layer was the final hidden layer, yielding a 4096-dimensional vector, as
opposed to the classification layer which by design must shrink to merely 1000 dimensions. This
indicates that relatively high-level, yet non-semantic information is most relevant to the human
judgments obtained.
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Figure 4.5: SimilaritypredictionperformanceusingtransformedrepresentationsateachlayerofAlexNetfor
eachdataset(“softmax”ispredictedclassprobabilities,and“one-hot”ispredictedclasslabels).
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4.4 Transforming Deep Representations

Experiment 1 showed that the raw representations discovered by deep neural networks perform
reasonably well as predictors of human similarity judgments. This correspondence suggests that
deep neural networks could potentially provide an indispensable tool to psychologists aiming to
test theories with naturalistic stimuli. Even a crude approximation of a complex representation
may vastly outperform classic low-level features often used to characterize natural stimuli (e.g.,
Gabor wavelet responses). More importantly, having a representation that approximates human
similarity judgments provides a starting point for identifying representations that are even more
closely aligned with people’s intuitions. This section explores how DNN representations can be
transformed to increase the alignment with psychological representations.

4.4.1 Transforming representations

Formally, given the ground truth human similarity kernel s(xi, xj) for stimuli xi and xj , and
some starting set of deep featuresF, our goal is to find an additional transformation ϕ, such that

s(xi, xj) = ϕ(Fi) · ϕ(Fj), (4.2)

whereFi is row i of featurematrixF. The space of possibleϕ transformations to search ismassive,
and one would hope that most of the “work” has already been done by the deep network, such
thatϕ is simple and easy to find. Thiswould also be an indication that our deep network is already
a good approximation. This assumption is built in to the model formulation below.

The model of similarity judgments given in Equation 4.1 can be augmented with a set of
weights on the features used to compute similarity, with

S = FWFT , (4.3)

where W is a diagonal matrix of dimension weights. This formulation is similar to that em-
ployed by additive clustering models (Shepard & Arabie, 1979), wherein F represents a binary
feature identity matrix, and is similar to Tversky’s classic model of similarity (Navarro & Lee,
2004; Tversky, 1977). Concretely, it provides a way to specify the relationship between a feature
representation and stimulus similarities. When used with continuous features, this approach is
akin to factor analysis.

Given an existing feature-by-object matrixF, we can show that the diagonal ofW, the vector
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of weightsw, can be expressed as the solution to a linear regression problemwhere the predictors
for each similarity sij are the (elementwise) product of the values of each feature for objects i and
j (i.e. each row Xi of the regression design matrix X can be written as Fi ◦ Fj, where ◦ is the
Hadamard product). The predicted similarity ŝij between objects i and j is therefore

ŝ(xi, xj) = ŝij =
∑
k

wkfikfjk, (4.4)

where fik is the kth feature of image i and wk is its weight. The squared error in reconstruct-
ing the human similarity judgments can be minimized by convex optimization. Gershman and
Tenenbaum (2015) proposed a similar method using a fullWmatrix, which is amore expressive
model, but requires fitting more parameters. The current model employs a diagonal W matrix
to minimize the amount of data and regularization needed to find a good solution, and assumes
that the needed transformation is as simple as possible.

The resulting alignmentmethod is akin tometric learningmethods inmachine learning (Kulis,
2013). Estimating both the features and the weights that contribute to human similarity judg-
ments, even for simple stimuli, is a historically challenging problem (Shepard & Arabie, 1979).
Our main contribution is to propose that F be substituted by features from a deep neural net-
work, and only w be learned. This both coheres with our comparison framework and greatly
simplifies the problem of estimating human representations.

If w is also constrained to be nonnegative, then the square root of these weights can be inter-
preted as a multiplicative rescaling of the feature space:

ŝij =
∑
k

√
wkfik ·

√
wkfjk, (4.5)

where each √wk is a scaling factor for feature k. This makes it possible to directly construct
transformed spatial representations of stimuli, and also implies that ϕ is linear. Since a direct
feature transformation is not necessary for the present evaluations, no such constraint is included
in the results that follow. However, it should be noted that this variation allows for applications
where it is essential that transformed features be exposed (i.e., when similarities will not suffice).

4.4.2 Learning the transformations

Freely identifying the w that best predicts human similarity judgments runs the risk of overfit-
ting, since our DNNs generate thousands of features. To address this, all of our models use L2
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regularization on w, penalizing models for which the inner product wTw is large. Minimizing
the squared error in the reconstruction of sij with L2 regularization onw results in a convex op-
timization problem that is equivalent to ridge regression (Friedman, Hastie, & Tibshirani, 2001),
and our loss function becomes

L = (
∑
k

wkfikfjk − sij)
2 + λ

∑
k

(wk)
2, (4.6)

Given the size of the problem,w can be found by gradient descent on an objective function com-
bining the squared error andwTw, with the latter weighted by a regularization parameter λ. To
accomplish this, we used the ridge regression implementation in the scikit-learn Python library
with a stochastic average gradient solver in order to reduce high memory consumption during
fitting. We use 6-fold cross-validation to find the best value for this regularization parameter,
optimizing generalization performance on held-out data. We chose 6 folds as a rule of thumb,
although the results did not appear to be largely dependent on the number of folds used. We
report variance explained only for models predicting non-redundant similarity values (only the
lower triangle of the similarity matrix, excluding the diagonal).

4.4.3 Improvements through feature adaptation

We applied the method for adapting the DNN representations outlined above to the human sim-
ilarity judgments and network representations used in Experiment 1. The best λ values for each
dataset were comparable, in the range of 2000 − 9000. After learning the best cross-validated
weights w that map these features to human similarity judgments, the new representation that
emerges explained nearly twice the variance for all datasets after cross-validating predictions
(Figs. 4.2 and 4.4, darker colors). We also provide the raw scores for the best performing model
(VGG) in Table 4.1, along with the results of a control cross-validation (“CV Control”) scheme
in which no single image occurred in both the training fold sets and test folds (as opposed to
exclusivity with respect only to pairs of images). The MDS and dendrogram plots for the trans-
formed representations in Figure 4.3 show a strong resemblance to the original human judg-
ments. Notably, taxonomic structure and spatial clustering is almost entirely reconstructed, ef-
fectively bridging the gap between human and deep representations with only linear corrections.
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4.4.4 Additional baseline models

As an additional check for overfitting, we constructed baseline models for each set of deep rep-
resentations for each image dataset in which either (1) the rows, (2) the columns (separately
for each row), or (3) both row and columns of the regression design matrix X were randomly
permuted. The order of the target similarities from S remained unchanged. When all three
models were subject to the same cross-validation procedure as the unshuffled models, variance
explained (R2) never reached or exceeded 0.01. This confirms that our regularization procedure
was successful in controlling overfitting.

4.4.5 Inter-domain transfer

The transformations learned are highly contingent on the domain, and do not generalize well to
others (e.g., a transformation trained on fruits is not effective when tested on animals). Table 4.2
shows the performance of the best DNN representations for each domain when applied to each
other domain. The correlations are relatively poor, and worse than those produced by the best
untransformed representations.

This pattern of poor inter-domain transfer is to be expected, since the number ofDNN features
is large and each domain only covers a small subset of the space of images and thus only provides
information about the value of a small subset of features. However, it is possible to use the same
adaptation method to produce a more robust transformation of the DNN representations for the
purposes of predicting human similarity judgments. To do so, we learned a transformation using
all six domains at once. This can also be thought of as a test of the robustness of ourmethodwhen
provided with an incomplete similarity matrix, specifically one containing only within-domain
comparisons, yet still using all domains to constrain the ultimatemodel solution. This also allows
for larger sets of images to be leveraged simultaneously for better learning.

We found this method to be highly effective, doubling the variance explained in human sim-
ilarity judgments by the DNN representations from 30% to 60% after the transformation. A
leave-one-out procedure in which every combination of five domains predicted the sixth pro-
vided similar improvements, as shown in Table 4.3. This is a strong control given that no images
(and no similar images) are shared between the training and test sets in this formulation.
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Table 4.2: Inter-domaingeneralizationofbestperformingDNNtransformations
Training Set Test Set R2

Animals Fruits 0.11
Animals Furniture 0.02
Animals Vegetables 0.11
Animals Automobiles 0.17
Animals Various 0.12
Fruits Animals 0.14
Fruits Furniture 0.12
Fruits Vegetables 0.14
Fruits Automobiles 0.25
Fruits Various 0.13
Furniture Animals 0.20
Furniture Fruits 0.07
Furniture Vegetables 0.11
Furniture Automobiles 0.10
Furniture Various 0.06
Vegetables Animals 0.30
Vegetables Fruits 0.10
Vegetables Furniture 0.11
Vegetables Automobiles 0.21
Vegetables Various 0.08
Automobiles Animals 0.36
Automobiles Fruits 0.11
Automobiles Furniture 0.07
Automobiles Vegetables 0.13
Automobiles Various 0.12
Various Animals 0.41
Various Fruits 0.05
Various Furniture 0.06
Various Vegetables 0.11
Various Automobiles 0.21
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Table 4.3:Generalizationperformanceleavingoutasingledomainandtrainingontheremainingfive.
Leave-out R2

Animals 0.53
Automobiles 0.57
Fruits 0.63
Furniture 0.62
Various 0.59
Vegetables 0.63

4.5 Experiment2: PredictingtheDifficultyofLearningCategories
of Natural Images

A simple linear transformationwas able to adapt DNN representations to predict human similar-
ity judgments at a level that is close to the inter-rater reliability. The transformed representation
also corrected for the qualitative differences between the raw DNN representation and psycho-
logical representations. These results indicate that the rich features formed by DNNs can be used
to capture psychological representations of natural images, potentially making it possible to run
a much wider range of psychological experiments with natural images as stimuli.

The value of these representations for broadening the scope of psychological research can only
be assessed by establishing that they generalize to new stimuli, and are predictive of other aspects
of human behavior. To further explore the generalizability and applicability of this approach, we
applied the learned transformation to the DNN representations (from VGG) of six new 120-
image sets drawn from the same domains and assessed the ease with which people could learn
categories constructed from the raw and transformed similarities.

Since our transformation is applied to the representational similaritymeasure (weighted inner
product) as opposed to the feature space itself, we constructed categories via k-means clustering
based on the rows of either the raw or transformed similarities (representing images as vectors of
similarities to other images), ensuring that each category consisted of a coherent group of images
as assessed by the appropriate similarity measure. Consequently, we should expect the ease of
learning these category constructions to reflect the extent to which people’s sense of similarity
has been captured by the underlying models. In addition, traditional image features such as
HOG and SIFT should make category learning more difficult than using DNN features, given
the mismatch between representations observed in our previous analyses.
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4.5.1 Methods

4.5.1.1 Stimuli

Using the best performing network and layer for each image dataset, we applied the learned trans-
formation to a second set of 120 new images in each category (see Appendix A). This produced
six predicted similarity matrices for each set. Using the rows of these matrices as image repre-
sentations, we calculated k-means clusterings where the number of clusters (k) was either 2, 3,
or 4. We repeated this process using the untransformed representations, for which similarities
were simply inner products. This resulted in the following between-subjects conditions for our
experiment: space (transformed, raw) × k (2,3,4) × domain (e.g., animals). We also replicated
these experiments using baseline HOG+SIFT representations, yielding a total of 72 between-
subjects conditions. An example of the clusterings used in the animal experiments where k = 3

are shown in Figure 4.6.

4.5.1.2 Procedure

A total of 2, 880 participants (40 per condition) were recruited on Amazon Mechanical Turk,
paid $1.00, and were not allowed to participate in multiple conditions. Participants in each
condition were shown a single random sequence of the images from the dataset corresponding
to their assigned condition and were instructed to press a key to indicate the correct category
(where the correct category was the pre-defined cluster). Subjects could take as much time as
they wanted to make their decisions. If a participant guessed incorrectly, an “incorrect” mes-
sage was shown for 1.5 seconds. If they guessed correctly, this message read “correct”. Initially,
participants performed poorly as they had little information to associate keys with clusters, but
showed consistent progress after a few examples from each cluster.

4.5.2 Results and Discussion

Figure 4.7 shows the difference in the ease with which people learned 2-, 3-, and 4-category
partitions derived from the raw and transformed similarities. Using DNN features, categoriza-
tion performance is higher for categories derived from the transformed spaces, and a three-way
ANOVA (k×image set×transformation, see Table 4.4) confirmed that this effect was statistically
significant (F1,1404 = 66.28, p < .0001). Participants also performed worse in the HOG+SIFT
baseline condition, confirmed by a large main effect of feature set in a model including both fea-
ture sets (F1,2845 = 3833.35, p < .0001, see Table 4.5). Notably, the effect of the transformation
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Figure 4.6: Examplesofanimalclusteringsusedinourcategorizationexperimentswherek = 3 for(a)theraw
deeprepresentations,and(b)thetransformeddeeprepresentations.Thetransformationwaslearnedonadif-
ferentsetofanimalimages,andappearstoimproveclusteringinsomeaspectsofthespace.Forexample,the
transformationmakesprimatesmoreunique(i.e.,notgroupedwithquadrupeds),anddoesn’tgroupsmallland
andmarineanimals.
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was reversed for the baseline features, confirmed by a significant interaction between feature set
and transformation (F5,2845 = 65.22, p < .0001, see Table 4.6), indicating that HOG+SIFT
feature tuning may not generalize, in sharp contrast with the DNN features. To assess learning
effects, we grouped trials into five learning blocks. Average learning curves for the experiments
using DNN features are shown in Figure 4.8. An ANOVA with learning block as a factor in Ta-
ble 4.7 confirms a large main effect of block (F4,5616 = 752.91, p < .0001), and an interaction
between block and transformation (F4,5616 = 5.96, p < .0001), likely due to the more rapid
increase in performance in the first block for the transformed representation condition.

Table 4.4:ANOVAresultsforExperiment2usingonlyDNNfeatures.
df F p

k 2 614.95 < 0.0001
image set 5 137.52 < 0.0001
transformation 1 66.28 < 0.0001
k× image set 10 7.14 < 0.0001
k× transformation 2 3.42 < 0.01
image set× transformation 5 29.20 < 0.0001
k× image set× transformation 10 3.17 < 0.001

Table 4.5:ANOVAresultsforExperiment2usingfeaturesetasafactor.
df F p

k 2 2021.39 < 0.0001
image set 5 169.89 < 0.0001
transformation 1 139.96 < 0.0001
feature set 1 3833.35 < 0.0001
k× image set 10 14.96 < 0.0001
k× transformation 2 35.86 < 0.0001
k× feature set 2 13.38 < 0.0001
set× transformation 5 65.22 < 0.0001
image set× feature set 5 64.19 < 0.0001
transformation× feature set 1 645.71 < 0.0001
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Table 4.6:ANOVAresultsforExperiment2usingonlybaselineHOG+SIFTfeatures.
df F p

k 2 3005.96 < 0.0001
image set 5 108.98 < 0.0001
transformation 1 1767.70 < 0.0001
k× image set 10 25.67 < 0.0001
k× transformation 2 101.38 < 0.0001
image set× transformation 5 123.82 < 0.0001
k× image set× transformation 10 27.85 < 0.0001

Table 4.7:ANOVAresultsforExperiment2usingonlyDNNfeaturesandlearningblockasafactor.
df F p

k 2 605.49 < 0.0001
image set 5 137.10 < 0.0001
transformation 1 66.86 < 0.0001
block 4 752.91 < 0.0001
k× image set 10 7.23 < 0.0001
k× transformation 2 3.68 < 0.001
k× block 8 39.32 < 0.0001
image set× transformation 5 29.17 < 0.0001
image set× block 20 9.51 < 0.0001
transformation× block 4 5.96 < 0.0001
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Figure 4.7:AveragehumancategorizationperformanceoneachimagesetusingrawandtransformedDNNrep-
resentations(top)andbaselineHOG+SIFTfeatures(bottom).Darkercolorsrepresenttransformedversionsof
therawrepresentations(lightercolors).Thethreesetsofbarsforeachimagesetrepresent2-,3-,and4-category
versionsoftheexperiment.Thickdashedlinesrepresentaverageaccuracyfortherawrepresentations,andthick
dashedlinesrepresentaverageaccuracyforthetransformedrepresentations.

4.6 General Discussion

The framework presented here, inspired by classic psychological methods, is the first compre-
hensive comparison between modern deep neural networks and human psychological represen-
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Figure 4.8:Averagehumancategorizationperformanceforeachoffivelearningblocks.

tations. These artificial neural networks appear to make surprisingly good approximations to
human similarities. Importantly, they also diverge in systematic ways (e.g., lacking taxonomic
representational information) (Mur et al., 2013). However, the representations formed by these
networks can easily be transformed to produce extremely good predictions of human similarity
judgments for natural images. The resulting models transfer to new stimuli, and can be used to
predict complex behaviors such as the ease of category learning. Since these representations and
artificial networks are easy and cheap to manipulate, they present a valuable resource for rapidly
probing and mimicking human-like representations and a potential path towards studying hu-
man cognition using more naturalistic stimuli.

Were these deep representations different enough from humans (i.e., requiring nonlinear
transformations and therefore additional complex feature learning), adapting them to people
would require either vastly more human judgments or significantly revised network architec-
tures, the former being quite costly and the latter presenting a massive search problem. The
method we propose to transform representations is extremely effective despite being constrained
to a simple reweighting of the features. The linear transformation learned can be interpreted as
an analogue of dimensional attention (Nosofsky, 1987), highlighting the possibility that the gap
between these two sets of representations may be even smaller than we think. In fact, given that
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our stimulus sets are mostly restricted to single domains (e.g., fruits), whereas the DNN clas-
sifiers make all output discriminations with respect to 1000 highly diverse object classes, one
would expect that certain features should become more salient, while still others should be sup-
pressed when making judgments in context (an important real-life situation not often incorpo-
rated inmachine learningmodels). Finally, the ability of these adapted representations to predict
human categorization behavior with novel stimuli demonstrates their applicability to studying
downstream cognitive processes that rely on these representations, and may have applications in
the optimal design of learning software.

4.7 Conclusion

The proliferation of machine learning methods for representing complex stimuli is likely to con-
tinue. We can think of the present approach as a way to leverage these advances and combine
themwith decades of research on psychologicalmethods to shed light on questions about human
cognition. This allows us to learn something about the potential weaknesses in artificial systems,
and inspires new ideas for engineering those systems tomore closely match human abilities (e.g.,
incorportating taxonomic information). Most significantly, it provides a way for psychologists
to begin to answer questions about the exercise of intelligence in a complex world, abstracting
over the representational challenges that can make it difficult to identify higher-level principles
of cognition (Shepard, 1987) in natural settings.
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Unanticipated novelty, the new discovery, can emerge
only to the extent that his anticipations about nature
and his instruments prove wrong.

Thomas S. Kuhn, The Structure of Scientific
Revolutions

5
EstimatingCategories inDeep Feature Spaces

Probabilistic models of cognition provide important, high-level abstractions for thinking
about the problems that humans solve involving subjective probability, or inherent uncertainty
(Chater, Tenenbaum, & Yuille, 2006). Inductive problems, as introduced in Chapter 1, are of this
kind. Shepard for example reposed the problem of similarity as one of probabilistic generaliza-
tion (i.e., what is the probability we will generalize a property of stimulus x to stimulus y?) to
derive his method for inferring psychological representations. Like all modeling problems we
have considered so far, inferring human subjective probability is difficult for naturalistic stimuli
like images, since representing distributions over pixels directly is intractable.

In this chapter, we continue with our familiar example of categorization, and present amethod
for integrating deep generative neural networks with human-in-the-loop experimental designs
for inferring subjective probability. In our case, the goal is to capture to human visual concepts
or categories. Along the way, we will try to quantify our progress, but more interestingly, the
immediate experimental result leaves us with a model that can dream up new images with a
likeness closelymirroring human imagination, a feat not previously possiblewith classicmethods
alone, and an important qualitative test for truly human-like models.

Much of this chapter was published in Peterson, Suchow, Aghi, Alexander, and Griffiths (2018).
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5.1 The Categorization Problem

Human visual category knowledge is inherently fuzzy (Reed, 1972). That is, we cannot observe
every possible instance of a cat (such that any subsequent cat stimulus to identify is not new)
without infinite time. Instead, given a new animal we might encounter, with both dog-like and
cat-like features, we can only assign a probability that the animal is indeed a cat, based on the
cats we have seen and conceptualized in the past.

More formally, given an encounter with stimulus x, we can ask about the probability that it
belongs to the “cat” category, i.e., p(cat|x). To solve this problem, we can make use of Bayes’
theorem:

p(c|x) = p(x|c)p(c)
p(x)

(5.1)

The category label prior p(c) is not particularly interesting or problematic to model, since it just
describes for example how likely we are to encounter a cat as opposed to a dog etc. Similarly,
the marginal p(x) is just a normalization constant that can be computed if we know the value
of the numerator for all categories (which we will indeed need to know). Of most interest is the
likelihood p(x|c). To see why this is the case, note that in order tomake a categorization decision
(i.e., when p(cat|x) is higher than p(dog|x)), we can simply evaluate the ratio

p(cat|x)
p(dog|x)

, (5.2)

where a value of the ratio larger than 1 indicates that the stimulus is more likely a cat. A value
of exactly 1 indicates that we can do no better than guess uniformly randomly. When p(c) is
uninformative, and we expand the above ratio using Bayes’ rule, note that p(x) is eliminated,
leaving

p(x|cat)
p(x|dog)

(5.3)

Indeed, p(x|cat) is a crucial quantity because it describes the probability of all cat stimuli in
the world, which undoubtedly overlaps with perhaps smaller, more exotic dog breeds. Not sur-
prisingly, models of category learning can be formalized as methods for estimating the class-
conditional density p(x|c) given some training examples, or samples from the distribution (Ashby
& Alfonso-Reese, 1995).
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5.2 Representing Categories

Modeling how humans efficiently estimate categories from complex inputs or testing the density
estimation hypothesis is is a formidable challenge of its own (a deep neural network classifier
is an interesting model of this phenomenon). The issue is that such models cannot be evalu-
ated, because understanding precisely what category knowledge humans have learned has never
been fully accomplished for natural images. That is, we have no way of knowing if pD(x|cat)
as estimated by a deep CNN classifier is equivalent or not to pH(x|cat) estimated by a human,
even though the former is readily available. For this reason, we need a method for estimating
pH(x|cat) in a tractable way. While generic methods exist for such an experiment, they are lim-
ited to stimuli that can be easily represented, parameterized, and generated.

In what follows, a method is proposed that uses a human in the loop to estimate arbitrary dis-
tributions over complex feature spaces, adapting an existing experimental paradigm to exploit
advances in deep architectures to capture the precise structure of human category representa-
tions, and iteratively sharpen them. Such knowledge is crucial to forming an ecological theory
of intelligent categorization behavior and to providing a ground-truth benchmark to guide future
work in cognitive modeling and machine learning.

5.3 Estimating the Structure of Human Categories

Methods for estimating human category templates have existed for some time. In psychophysics,
the most popular and well-understood method is known as classification images (CI; Ahumada,
1996).

5.3.1 Classification Images

In the classification images experimental procedure, a human participant is presented with an
image from one of a set of categories (e.g., A and B), each with white noise overlaid, and asked
to identify the true category. On most trials, the participant will obviously select the correct
category. However, if the added white noise significantly perturbs features of the image that are
important to making the distinction, they may fail. Exploiting this, we can estimate the decision
boundary from a number of these trials using the simple formula:

(nAA + nBA)− (nAB + nBB), (5.4)
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or

Which is more like a cat?

,

Decoder Inference

Figure 5.1: DeepMCMCP.Acurrentstatez andproposalz∗ (topmiddle)arefedtoapretraineddeepimage
generator/decodernetwork(topleft).Thecorrespondingdecodedimagesxandx∗ forthetwostatesarepre-
sentedtohumanratersonacomputerscreen(leftmostarrowandbottomleft). Humanratersthenviewthe
imagesinanexperiment(bottommiddlearrow)andactaspartofanMCMCsamplingloop,choosingbetween
thetwostates/imagesinaccordancewiththeBarkeracceptancefunction(bottomright).Thechosenimagecan
thenbesenttotheinferencenetwork(rightmostarrow)anddecodedinordertoselectthestateforthenext
trial,howeverthisstepisunnecessarywhenweknowexactlywhichstatescorrespondstowhichimages.
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where nXY is the average of the noise across trials where the correct class isX and the observer
chooses Y . Because the boundary is a difference of two class means, it can be regarded as a
nearest-mean classifier. Interpreted probabilistically, the method assumes that the likelihood
p(c|x) for each category is Gaussian distributed with equal, spherical variance. Even if these
assumptions are reasonable for a particular domain, the estimate may be biased depending by
the experimenter’s choice of base stimuli with which to overlay noise.

Vondrick, Pirsiavash, Oliva, and Torralba (2015) used a variation on classification images us-
ing deep image representations that could be inverted back to images using an external algo-
rithm. In order to avoid dataset bias introduced by perturbing real class exemplars, white noise
in the feature space was used to generate stimuli. In this special case, category templates become

nA − nB . (5.5)

On each trial of the experiment, participants were asked to select which of two images (inverted
from feature noise) most resembled a particular category. Because the feature vectors for all tri-
als were random, thousands of stimuli could be rendered in advance of the experiment using
relatively slow methods that require access to large datasets. This early inversion method was
applied to mean feature vectors for thousands of positive choices in the experiments and yielded
qualitatively decipherable category template images, as well as better objective classification de-
cision boundaries that were guided human bias. However, this variant of CI requires an even
more massive number of trials to be successful.

5.3.2 Estimating Arbitrary Category Structures by Sampling from People

To explicitly make use of rich probabilistic information as opposed to class boundaries, we need
to turn to procedures for sampling. The following section reviews one such procedure, and how
it has been integrated into experiments with human participants.

5.3.2.1 Markov Chain Monte Carlo

Only a handful of simple types of probability distributions have direct methods for sampling
(e.g., Gaussians, Gaussian mixtures, etc). To sample from arbitrary distributions, one must often
turn to one of a family of Monte Carlo methods, in our case, a popular method called Markov
chain Monte Carlo (MCMC). This method does not require that the distribution in question
be normalized (i.e., it can be multiplied by an unknown constant), as is often the case in its
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application.
AMarkov chain is a sequence of randomvariables that take on theMarkov assumption, namely

that the value of each variable in the chain depends only on the previous value from the previous
variable (i.e., ignoring the values from the rest of the chain at all times):

p(xt|xt−1, xt−2, ..., xt−n) = p(xt|xt−1) (5.6)

By repeatedly sampling from the above, we generate a sequence of states of the chain. The tran-
sition probabilities of moving between particular states are what differentiate a chain, and fully
define what is referred to as the stationary or target distribution of the chain.

5.3.2.2 The Metropolis Method

A popular procedure for the construction Markov chains is the Metropolis method (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953), in which the transition probabilities are jointly
defined by a proposal distribution q(x∗|x), which proposes subsequent states x∗ of the chain
conditioned on the current state of the chain x, and an acceptance functionA(x∗;x), which gives
the probability of accepting a proposal. In the simplest case, the proposal distribution q(x∗|x)
can be any symmetric distribution, meaning that

q(x∗|x) = q(x|x∗) (5.7)

for all possible states x and x∗, and the acceptance function is given by

A(x∗;x) = min
(p(x∗)
p(x)

, 1
)
, (5.8)

requiring that all proposals with a higher probability than the current state are automatically
accepted, and all others with probability

p(x∗)

p(x)
. (5.9)

Sincewe only need know this ratio, anymultiplicative constant, such as a normalization constant,
will cancel out (including it would make no difference, and so it is therefore not required). For
non-symmetric q distributions, this method is further generalized to the Metropolis–Hastings
method (Hastings, 1970).
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5.3.2.3 Sampling with (from) People

Markov Chain Monte Carlo with People (MCMCP; Sanborn & Griffiths, 2007), an alternative
to classification images, is an experimental procedure in which humans act as a valid accep-
tance function in theMetropolis-Hastings algorithm, exploiting the fact that Luce’s choice axiom
(Luce, 1963), a well-known model of human choice behavior, is equivalent to a valid acceptance
function, the Barker acceptance function

p(x∗)

p(x∗) + p(x)
. (5.10)

Sanborn, Griffiths, and Shiffrin (2010) also provide a proof that a rational Bayesian learner should
behave in this way, and provide extensive empirical validation.

On the first trial of an MCMCP experiment, a stimulus x is drawn arbitrarily from the pa-
rameter space and compared to a new proposed stimulus x∗ that is nearby in that parameter
space. The participant makes a forced choice as to which is the better exemplar of some cate-
gory (e.g., dog), acting as the acceptance function A(x∗;x). If the initial stimulus is chosen, the
Markov chain remains in that state. If the proposed stimulus is chosen, the chain moves to the
proposed state. The process then repeats until the chain converges to the target category dis-
tribution p(x|c). In practice, convergence is assessed heuristically, or limited by the number of
human trials that can be practically obtained.

MCMCP has been successfully employed to capture mental categories from a number of do-
mains, such as parameterized stick figure animals (Sanborn & Griffiths, 2007), and emotional
faces (Martin, Griffiths, & Sanborn, 2012), and though these spaces are higher-dimensional than
those in previous laboratory experiments, they are still relatively small and artificial compared to
real images. Unlike classification images, this methodmakes no assumptions about the structure
of the category distributions and thus can estimatemeans, variances, and higher ordermoments.
Therefore, we take it as a starting point for the current method.

5.4 MCMCP in Deep Feature Spaces

Typical MCMCP experiments, as well both variants of the classification images procedure dis-
cussed earlier, are effective so long as noise can be added to dimensions in the stimulus parameter
space to create meaningful changes in content. In the case of natural images, noise in the space
of all pixel intensities is very unlikely to modify the stimulus in meaningful ways. Sanborn et
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al. (2010) avoid this problem by representing stimuli that have a well-known structure (and can
be easily rendered in pixels for participants to view), and Martin et al. (2012) use an image do-
main (faces) where image content is easy to align (reducing the dimensionality considerably),
but neither of these strategies is immediately applicable to more complex stimuli.

As a first approach to solving this problem, we propose to perturb images in the latent space of
a deep generative adversarial network (Goodfellow et al., 2014). This latent encoding z, is much
lower-dimensional than pixel space, and captures only essential variation in the image content.
Further, the generator network G can systematically translate these image parameterizations in
real time into images viewable by the participant.

Themapping from features to images learned by aGAN is deterministic, and thereforeMCMCP
in low-dimensional feature space approximates the same process in high-dimensional image
space. The resulting human judgments (accepted samples), with respect to images parameter-
ized by z, can be used to approximate arbitrary category distributions. Given the true class-
conditional likelihoods for a set of categories, the Bayes’ optimal category boundaries are im-
plicitly defined where the likelihood ratio is 1, and unlike CI, can be both linear or nonlinear.
Moreover, samples from each density over z along with the generator network G define an ap-
proximation of the human generative model for each concept (from which we can sample new
examples).

Since trials in anMCMCPexperiment are not independent, we employ real-time, web-accessible
generative adversarial networks to render high quality inversions from their latent features dur-
ing online experiments. A schematic of the overall procedure is illustrated in Figure 5.1, and the
algorithm is given below.

Algorithm 1: MCMCP using a a deep generator network G

Initialize starting state z ← N (0, I ) ;
while trial < num_trials do

z∗ ← z∗ +N (0, I ) ∗ σ ;
x← G(z);
x∗ ← G(z∗);
if x∗ a better example? then

z ← z∗ ;
end
Store z in list of trials

end
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There are several theoretical and practical advantages to our method over previous efforts.
First, MCMCP can capture arbitrary distributions, so it is not as sensitive to the structure of the
underlying low-dimensional feature space and should provide better category boundaries than
classification images when required. This is important when using various deep features spaces
that were learned with different training objectives and architectures. MCMC inherently spends
less time in low probability regions and should in theory waste fewer trials. Having generated the
images online and as a function of the participantss decisions, there is no dataset or sampling bias,
and auto-correlation can be addressed by removing temporally adjacent samples from the chain.
Finally, using a deep generator provides drastically clearer samples than shallow reconstruction
methods, and can be trained end-to-end with an inference network that allows us to categorize
new images using the learned distribution.

Importantly, the proposed method of capturing categories in most ways avoids the identifi-
ability problem discussed in Chapter 1. That is, while the distribution of features in the latent
space of the GAN may be a distortion or warping of psychological space, MCMC ensures that
the probability mass will be distributed across that space in such a way so as to yield identical val-
ues of p(x|c) given a corresponding (xi, zi) pair. This could for example allow us to eventually
test for Bayes’ optimal categorization behavior in humans, simply by having a complex image
representation that is relevant to humans, even though the correspondence may not be linear
(although note we could apply the mapping strategy from Chapter 4 if it is linear).

5.5 Experiments

For our experiments, we explored two image generator networks trained on various datasets.
Since even relatively low-dimensional deep image embeddings are large compared to controlled
laboratory stimulus parameter spaces, we use a hybrid proposal distribution in which a Gaussian
with a low variance is used with probability P and a Gaussian with a high variance is used with
probability 1−P . This allows participants to both refine and escape nearby modes, but is simple
enough to avoid excessive experimental piloting that more advanced proposal methods often
require.

Participants in all experiments completed exactly 64 trials (image comparisons), collectively
taking about 5minutes, containing segments of several chains for multiple categories. The order
of the categories and chains within those categories were always interleaved. Each participant’s
set of chains for each categorywere initializedwith the previous participant’s final states, resulting
in large,multi-participant chains. All experimentswere conducted onAmazonMechanical Turk.
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If a single image did not load for a single trial, the data for the subject undergoing that trial was
completely discarded, and a new subject was recruited to continue on from the original chain
state.

Figure 5.2: Visualizing MCMCP chains for faces. FisherLinearDiscriminantprojectionsofallfourMCMCP
chainsforeachofthefourfacecategoriesareshown.Thefoursetsofchainsoverlaptosomedegree,butare
alsowell-separatedoverall.Meansofindividualchainsareclosertoothermeansfromthesameclassthanto
thoseofotherclasses.
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5.5.1 Experiment 1: Initial test with face categories

5.5.1.1 Methods

We first test our method using DCGAN (Radford et al., 2015) trained on a large dataset of asian
faces. We chose this dataset because it requires a deep architecture to produce reasonable sam-
ples (unlike MNIST, for example), yet it is constrained enough to test-drive our method using a
relatively simple latent space. Four chains for each of four categories (male, female, happy, and
sad) were used. Proposals were generated from an isometric Gaussian with a standard deviation
of 0.25 50% of the time, and 2 otherwise. In addition, an analogous experiment was run using
the classification images method. The final dataset contained 50 participants and over 3,200 tri-
als (samples) in total for all chains. The baseline classification images (CI) dataset contained the
same number of trials and participants.

5.5.1.2 Results

An example of trial-level choices for the “person ” category from a single subject is given in Figure
5.6. Full MCMCP chains are visualized using Fisher Linear Discriminant Analysis in Figure 5.2,
along with the resulting averages for each chain and each category. Chain means within a cate-
gory show interesting variation, yet converge to similar regions in the latent space as expected.
Figure 5.3 also shows visualizations of themean faces for bothmethods in the final two columns.
MCMCP means appear to have converged quickly, whereas CI means only moderately resemble
their corresponding category (e.g., the MCMCP mean for “happy” is fully smiling, while the CI
mean barely reveals teeth). All four CI means appear closer to a mean face, which is what one
would expect from averages of noise. We validated this improvement with a human experiment
in which 30 participants made forced choices between CI and MCMCP means. The results are
reported in Figure 5.4. MCMCP means are consistently highly preferred as representations of
each category as compared to CI. This remained true even when an additional 50 participants
(total of 100) completed the CI task, obtaining twice as many trials as MCMCP.

5.5.2 Experiment 2: Larger networks & larger spaces

The results of Experiment 1 show that reasonable category templates can be obtained using our
method, yet the complexity of the stimulus space used does not rival that of large object clas-
sification networks. In Experiment 2, we tackled a more challenging (and interesting) form of
the problem. To do this, we employed a bidirectional generative adversarial network (BiGAN;
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Figure 5.3: Visualizing captured representations. IndividualMCMCPchainmeans(4× 4grid)andoverallcate-
gorymeans(secondtolast)arevisualizedasimagesusingthegeneratornetworkfromourGAN(overallCImeans
arealsoshownforcomparisoninthefinalcolumn).MCMCPmeansaremuchmoredifferentiatedthanCImeans,
andbetterresemblethecategoryinquestion

Donahue et al., 2016) trained on the 1.2 million-image ilsvrc dataset (64×64 center-cropped).
BiGAN includes an inference network, which regularizes the rest of the model and produces un-
conditional samples competitive with the state-of-the-art. This also allows for the later possibility
of comparing humandistributionswith other networks aswell as assessingmachine classification
performance with new images based on the granular human biases captured. To give a sense of
the expressive capability of this network, random samples from the network we used are shown
in Figure 5.5.
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5.5.2.1 Methods

Our generator network was trained given uniform rather than Gaussian noise, which allows us
to avoid proposing highly improbable stimuli to participants. Additionally, we avoid proposing
states outside of this hypercube by forcing z to wrap around (proposals that travel outside of z
are injected back in from the opposite direction by the amount originally exceeded). In partic-
ular, we run our MCMC chains through an unbounded state space by redefining each bounded
dimension zk as

z′k =

−sgn(zk)× [1− (zk − ⌊zk⌋)], if |z| > 1

zk, otherwise.
(5.11)

Proposals were generated from an isometric Gaussian with a standard deviation of 0.1 60% of
the time, and 0.7 otherwise.

We use this network to obtain large chains for two groups of five categories. Group 1 included
bottle, car, fire hydrant, person, and television, following Vondrick et al. (2015). Group 2 included
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Figure 5.4:Humantwo-alternativeforced-choicetasksrevealastrongpreferenceforMCMCPmeansasrepre-
sentationsofacategory,whentwiceasmanytrialsareusedforCI.
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Figure 5.5:RandomsamplesfromBiGANtrainedon1000ImageNetclasses.
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Figure5.6:Examplesfromsevencomparisonsinthefirstfewhundredtrialsofa”person”chain.Findingareason-
ablefirstresulttooksubjectsover200trials,whichmayhelptoindicateburn-in.Ineachsetofimages(proposal
andcurrent,randomizedorder),itcanbeplainlyobservedwhichimageischosenandreusedforthenexttrial.
Trials3-5makenochanges,whiletrial6refinesthehumanbustshapewithfacialfeatures.

bird, body of water, fish, flower, and landscape. Each chain was approximately 1,040 states long,
and four of these chains were used for each category (approximately 4,160). In total, across both
groups of categories, we obtained exactly 41,600 samples from 650 participants.

To demonstrate the efficiency and flexibility of our method compared to alternatives, we ob-
tained an equivalent number of trials for all categories using the variant of classification images
introduced in Vondrick et al. (2015), with the exception that we used our BiGAN generator in-
stead of the offline inversion previously used. This also serves as an important baseline against
which to quantitatively evaluate our method because it estimates the simplest possible template.

5.5.2.2 Results

The acceptance rate was approximately 50% for both category groups. The samples for all ten
categories are shown in Figure 5.7B and D using Fisher Linear Discriminant Analysis. Similar
to the face chains, the four chains for each category converge to similar regions in space, largely
away from other categories. In contrast, classification images shows little separation with so few
trials (5.7C and D). Previous work suggests that at least an order of magnitude higher number
of comparisons may be needed for satisfactory estimation of category means. Our method esti-
mates well-separated category means in a manageable number of trials, allowing for the method
to scale greatly. This makes sense given that unbiased CI must find a signal in arbitrary noise
images, potentially wasting many trials. Beyond yielding a decision rule, our method addition-
ally produces a density estimate of the entire category distribution. In classification images, only
mean template images can be viewed, while we are able to visualize several modes in the cat-
egory distribution. Figure 5.8 visualizes these modes using the means of each component in a
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Figure 5.7:CategoriesarebetterseparatedbyMCMCPrepresentations.FisherLinearDiscriminantprojections
ofA.CIcomparisonsforeachcategoryofgroup1,B. samplesforMCMCPchainsforcategorygroup1,C. CI
comparisonsforeachcategoryofgroup2,andD.samplesforMCMCPchainsforcategorygroup2.ForAandC,
largedotsrepresentcategorymeans.ForBandD,largedotsrepresentchainmeans.

mixture of Gaussians density estimate. This produces realistic-looking multi-modal mental cat-
egory templates, which to our knowledge has never been accomplished with respect to natural
image categories.
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Figure 5.8:40mostinterpretablemixturecomponentmeans(modes)takenfromthe50largestmixtureweights
forcategory.

79



Table 5.1:Classificationperformancecomparedtochanceforbothcategorysets(chanceis0.20).

bird body of water fish flower landscape all
MCMCP Mean .33 .28 .01 .57 .67 .37
MCMCP Density .23 .31 .18 .44 .73 .38
CI Mean .23 .30 .2 .24 .52 .30

bottle fire hydrant car person television all
MCMCP Mean .15 .11 .32 .77 .73 .42
MCMCP Density .25 .26 .56 .19 .50 .35
CI Mean .28 .15 .62 .12 .13 .26

5.5.3 Efficacy in classifying real images

Improvements ofMCMCPover classification imagesmay be both perceptible and detectable, but
their practical differences are also worth considering — do they differ significantly on real-world
tasks? Moreover, if the representations we learn through MCMCP are good approximations
of people, we would expect them to perform reasonably well in categorizing real images. For
this reason, we provide an additional quantitative assessment of the samples we obtained and
compare them to classification images (CI) using an external classification task.

To do this, we scraped approximately 500 images from Flickr for each of the ten categories,
which was used for a classification task. To classify the images using our human-derived sam-
ples, we used (1) the nearest-mean decision rule, and (2) a decision rule based on the highest
log-probability given by our ten density estimates. For classification images, only a nearest-mean
decision rule can be tested. In all cases, decision rules based on our MCMCP-obtained samples
overall outperform a nearest-mean decision rule using classification images (see Table 5.1). In
category group 1, theMCMCPdensity performed best andwasmore even across classes. In cate-
gory group 2, nearest-mean using our MCMCP samples did much better than a density estimate
or CI-based nearest-mean.

5.6 Discussion

Our results demonstrate the potential of our method, which leverages both psychological meth-
ods and deep surrogate representations tomake the problem of capturing human category repre-
sentations tractable. The flexibility of ourmethod in fitting arbitrary generative models allows us
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to visualizemulti-modal category templates for the first time, and improve on human-based clas-
sification performance benchmarks. It is difficult to guarantee that our chains explored enough
of the relevant space to actually capture the concepts in their entirety, but the diversity in the
modes visualized and the improvement in class separation achieved are positive indications that
we are on the right track. Further, the framework we present can be straightforwardly improved
as generative image models advance, and a number of known methods for improving the speed,
reach, and accuracy ofMCMC algorithms can be applied toMCMCP tomake better use of costly
human trials.

There are several obvious limitations of our method. First, the structure of the underlying
feature spaces used may either lack the expressiveness (some features may be missing) or the
constraints (too many irrelevant features) needed to map all characteristics of human mental
categories in a practical number of trials. Even well-behaved spaces are very large and will re-
quire many trials to adequately cover. Addressing this will require continuing exploration of a
variety of generative image models. We see our work as part of an iterative refinement process
that can yield more granular human observations and inform new deep network objectives and
architectures, both of which may yet converge on a proper, yet tractable model of real-world
human categorization.
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6
Conclusion

The present work has attempted to forge powerful machine learning methods into tools that
psychologists can apply to studying complex phenomena that are often out of reach. This is in
contrast to thinking of these models as useful if and only if they are valid cognitive (or for that
matter, abstract biological) models in toto. Instead, machine learning tools solve problems that
we can fix as constants in a larger system of complex cognitive components, the interactions and
entanglement of which in the real world are exceedingly hard to grasp with scientific precision.
However, the practical scope of such a program has not yet been demonstrated through broad
proofs-of-concept. The present goal of this thesis has been to fill this gap, and to jump-start an
ecological revolution of sorts, imperfect as it may be, as a complementary new paradigm for the
rigorous study of intelligent human behavior.

6.1 Summary of the CurrentWork

In Chapter 1, I reanimated the classic problem of external validity in the context of psychology,
and saw that our explanations of human behavior depend on what assumptions we are forced to
make in the face of imperfect methodological tools. A precise science of human behavior is par-
ticularly threatened by the fact that observations of the brain do not guarantee that we will learn
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anything (at least immediately) about mental objects and human computational abstractions—
the mind is not directly observable.

Interestingly, partially rooted in concepts from scientific psychology, machine learning prac-
titioners have inadvertently, in the course of focusing on surprisingly different goals, returned
the favor by stress testing some of our own models in the real world (or something more like
it). It just so happens that what these resulting models now learn and do is harder to hold in
mind—to explain in a fully, scientifically (and traditionally) satisfying way. In retrospect, the
idea that an anything-goes approach to practically solving the problem of robustly detecting an
object in the environment like humans might yield insights about humans doing the exact same
thing is not that surprising. In any case, it is natural to ask how psychologists can best leverage
this outcome, which I have tried my best to motivate in a meaningful way.

In Chapter 2, we discussed the innovative approaches from classic cognitive psychology to
inferring mental content from behavior alone, and a few satisfyingly general assumptions. De-
spite this, we do not have the human participant and physical computational power to regularly
sustain these methods for complex domains like vision, which might otherwise bring these ef-
forts to greater fruition. At least for certain perceptual problems (that are certainly of interest),
machine learning methods that focus on the abstract problem being solved as opposed to labo-
ratory phenomenon have successfully scaled. We then reviewed the primary tools from modern
computer vision, and the well-chosen translation invariance bias that is largely to thank (along
with the internet-led abundance of training data and increased computational resources). Some
psychologists have already begun to experiment with deep neural networks, and with success,
lending further motivation to the current efforts.

In Chapter 3, we set out to answer a question about human behavior (i.e., what are people
likely to remember in busy, natural scenes), with three important departures from the standard
laboratory paradigm. The first was to literally eschew the laboratory in order to obtain a large
sample of human participants. The second was to study the phenomenon of interest with the
largest image (stimulus) dataset we could find that met our requirements. Lastly, and most im-
portantly, after testing a number of hypotheses about aspects of stimulus content that we both
know how tomeasure and thinkmight contribute tomemorability, we turned to the task of max-
imizing predictability of human memory for objects in natural scenes. We learned for example
that simple image category labels and visual saliency (where we are drawn to look in an image)
are broadly explanatory across much (but not all) of the image dataset, but were also able to
demonstrate in parallel and without additional cost that knowledge internalized in deep neural
networks about object discrimination was sufficient to yield superior prediction of our human
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data. This was true compared to both the explanatory factors we revealed as well as several com-
petitive computational baselines. We also came away with a benchmark dataset inspired by the
culture and productivity of machine learning competitions, but focused on rich human behavior
instead of more weakly aligned general goals.

For memory, at least to some degree, deep representations are apparently quite relevant, but
how can we start to get a sense of when we should expect success or failure? In Chapter 4, we
turned to understanding the generality and quantifying the utility of such representations, and
ask a crucial question: can deep representations competewith, or better yet approximate the sorts
of rich content that we often obtain with human similarity judgments in psychology? Further,
how easily and rapidly can they be adapted to a particular task, new set of stimuli, or alternative
cognitive context? We found that raw deep representations are already good approximations
of human psychological content as typically measured, although they are also understandably
more perceptual in nature, and lacking higher level taxonomic distinctions. Encouragingly, we
found that human representations can be better approximated by solving a simple convex prob-
lem, essentially scaling importance of the deep network’s features, and indicating thatmost of the
necessary information is already contained in the network. Lastly, we showed that our simple
correction generalized to a different context involving semi-novel category learning. The result-
ing image dataset and corresponding human judgments were similar in size to those employed
in Chapter 3, and can also serve as a potential benchmark for explaining mental content directly,
especially before being applied to a particular cognitive model.

Finally, in Chapter 5, we set ourselves to the task of re-purposing deep neural networks to aid
in studying an essential component of modern cognitive science—subject probability distribu-
tions that help us describe how humans reason under considerable uncertainty. In particular, we
revisit the topic of categorization, and ask with what resolution we might capture human knowl-
edge about complex visual concepts. By making use of a recent, and successful deep generative
network to both parameterize and synthesize high-dimensional images, as well as modern inno-
vations in psychological methods, we appear to have made some strides, and can both intuitively
visualize and quantitatively evaluate the results. Arguably, there is a good deal of room for im-
provement, but the limitations of this approach are some of the most likely to be improved by
already-nearing developments in machine learning, namely better image renderers.
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6.2 Limitations of Applying Deep Neural Networks

We took categorization as a phenomenon of interest in Chapters 4 and 5 because engaging with
classic theories of category learning with naturalistic stimuli has traditionally been so difficult.
However, this class of models can be thought of as being highly constrained to the simplest form
of categorization behavior (and in some sense, missing the point entirely). Murphy and Medin
(1985) argued that the coherence of a concept should not be limited in this way, since humans
clearly possess a more structured understanding of the world that transcends its feature corre-
lations, and goes a long way in describing more intelligent human behavior. That is, many of
the still popular models discussed in Chapter 1 are feature-based accounts — they only require
that stimuli be represented by a fixed set of continuous or discrete features. The utility in using
deep networks in the present work was indeed such feature representations. Can we also hope
to capture more complex behavior as well?

Lake, Ullman, Tenenbaum, and Gershman (2017) intentionally echo Murphy and Medin
(1985) in arguing that modern machine learning breakthroughs are limited to function approx-
imation, pattern recognition, and feature learning, and do not support a more structured un-
derstanding of the world that includes intuitive theories and casual reasoning. One response to
this is to note that exploiting correlational structure in the world helps guide and interacts with
higher level processes, for example by providing heuristics for fast processing, suggesting that
the two are entangled.

However, it is also the case that, as machine learning practitioners begin to feel for the edges
of current applications, and consequently current limitations, tools for more inherently struc-
tured domains are emerging (Battaglia et al., 2018; Graves, Wayne, & Danihelka, 2014). To the
extent that these developing models continue to solve certain new aspects of human-relevant
problems, the representations they learn may be useful to psychology (e.g., program primitives
and abstractions learned by neural program induction models).

6.3 Directions for FutureWork

6.3.1 The gift that keeps on giving

If a given type of deep network is found to be of use for a particular cognitive modeling context,
it is likely to become more useful with time. The reason is that, due to the culture of standard-
ized datasets and benchmarking, the machine learning community tends to produce regular im-
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provements (by the month or year) to model architectures and training regimes, such as better
classification accuracy, image compression, or image rendering.

While improvements to object classifiers may be less drastic (they are already quite similar to
human abilities) and therefore less useful, image generation for example has a longway to go. For
example, in Chapter 4, the depth and overall rank accuracy of the classifier had little correlation
with the weak variation in fit to human representations, but human category approximations
in Chapter 4 were clearly limited considerably by the quality of the image generator network
(only orange blobs could be found in the space to represent fire hydrants). To our luck, since
the MCMCP experiments in the current work were conducted, at least a handful of superior
networks that produce larger and higher quality renderings for the same object dataset, and other
interesting datasets, have been developed (see Karras, Aila, Laine, & Lehtinen, 2017, for just one
stunning example).

6.3.2 From exploitation to intervention

Because psychologists are perhaps the most aware of how deep networks deviate from human
behavior, wemay be particularlywell-positioned to suggest improvements or interesting variants.
Many of these suggestions are likely to be simple augmentations — a source of low-hanging fruit
for perhaps the next few years.

For example, most object classifiers are trained on the same ILSVRC competition set of Im-
ageNet (Deng et al., 2009), and the data source of most of the tools used in this thesis, which
has a curious yet unchanging stratification. For example, it is heavily biased toward dog breeds
(about 20% of the total number of classes), but also contains other animals, different types of au-
tomobiles, and household objects etc. Altering this stratification, and resampling from the much
larger parent ImageNet dataset is a simple change that might yield very different representations
that are useful for different modeling tasks. Another idea is to alter the level (or multiplicity) of
abstraction of the training labels (e.g., learning to classify “dogs” instead of “Dalmatians”). Some
initial results from my own recent follow-up on this topic has yielded similarly useful represen-
tations as those in Chapter 4, and is a much better fit to human generalization out-of-the-box
(Peterson, Soulos, Nematzadeh, &Griffiths, 2018). Moreover, in Chapter 4, I proposed amethod
for adapting deep representations to a particular domain or context using human generalization
data, but could we derive such a transformation by principle, without supervision? I propose a
potential starting point in Peterson and Griffiths (2017).

Other strategies for engaging our cousins in machine learning are more difficult, but have po-
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tential for bringing larger rewards. One interesting phenomenon is the reformation of questions
and criticisms into challenges. Lake, Salakhutdinov, and Tenenbaum (2015) proposed a stronger
focus on human-like abilities to learn quickly, and proposed a challenge dataset to measure it,
now a standard benchmark that has spawned a number of extremely competitive new model
architectures (see Finn, Abbeel, & Levine, 2017; Koch, Zemel, & Salakhutdinov, 2015; Vinyals,
Blundell, Lillicrap, & Wierstra, 2016, although there are many more).

Because such practical challenges are taken seriously, a number of fascinating new tools (and
perhaps even more likely candidates for human cognitive models) have been put forward. If
we can turn reform our observations and criticisms into tangible challenges, we can effectively
outsource some of the highly complex engineering that such a diverse field can provide, and
provide interesting subject matter for machine learning research at the same time.

6.3.3 Moving Beyond Vision

The bulk of the work I have presented here is limited to vision, and more generally perception,
but as we have already pointed out, there have been interesting developments in other domains as
well, such as reinforcement learning (Mnih et al., 2015), program induction (Graves et al., 2014),
language (Luong, Kayser, & Manning, 2015), and relational reasoning (Santoro et al., 2017) to
name just a few examples. Some of my own joint work is in the initial stages of extending the
present framework to non-perceptual domains such as human analogy-making (Chen, Peterson,
& Griffiths, 2017) for example, but there is a great deal more to be done.

6.3.4 More Immediate Questions

Testing Theories of Categorization. In Chapter 1, we introduced an identifiability problem of
categorizationmodels tomotivate the difficulty inmodeling processes that make use of complex,
unobserved representations. However, while we made progress both in capturing human-like
representational spaces and subjective probability information over these spaces that represent
category information, we are still left with a question of which categorization strategy, namely
abstraction versus a memory-based search-and-compare method, is a better characterization
(if either) of human behavior with naturalistic stimuli. If we can use deep networks to cap-
ture enough information about mental content, we can potentially make a good inference about
which models are a better fit.
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Scope andGenerality of Approximated “Psychological Representations”. The selection of im-
age stimuli under consideration in Chapter 4 were obviously small compared to the say roughly
1.2million images in ILSVRC (Deng et al., 2009), but even more pressing is the generality of the
learned representations to different modeling tasks. To what extent can we predict other cogni-
tive processes that operate on top of such representations, for example by improving predictions
for object memorability scores in the large dataset obtained in Chapter 3? Are there important
contexts where these stimulus characterizations will utterly fail?

Unfactoring Representation and Process. A more fundamental limit to the above inquiry is
the fact that we have proceeded with the simplifying assumption that a relatively fixed represen-
tation can be learned to support downstream usage and processing. Deep classifiers used in this
work are themselves and interesting case that breaks this assumption, since the representations
are learned through the pressure to categorize complex stimuli, and not through some general
learning process than occurs in advance (e.g. like many in psychology; Austerweil & Griffiths,
2013; Kemp & Tenenbaum, 2008). In fact, it has not yet been demonstrated that deep unsuper-
vised feature learning can catch up to deep supervised methods (Donahue et al., 2016). Can the
current framework be extended to modeling dynamic and complex changes in representational
content as additional learning and task pressures are experienced by a learner?

6.4 Concluding Remarks

The level of explanation and precision that we wish to obtain as psychologists is ultimately our
decision, but in any case, it is important to consider that the reason that human intelligence is
so fascinating to us, and worth understanding and applying in machines, is that it is surprisingly
complex, efficient, and seemingly ever-expanding (as we continue to use our faculties to grasp
ever more about ourselves and the world in which we find ourselves). Understanding such a
grandnatural system is going to take all of the tricks thatwe have at our disposal, and if something
comes along that looks more like us than our own explicit models of ourselves, we ought to take
a closer look, and possibly even borrow from the parts that work best. What I have presented
here is merely a fragment of what might be possible in mining automated learning systems that
abstract knowledge from large data sources, but it is perhaps also an important and necessary
demonstration that will expand the scope of the field and the sorts of questions we can answer
as a rigorous science of behavior.
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A
Chapter 4 Details

A.1 Experiment 1 & 2 Stimuli

Below is the total set of 1, 440 stimuli used in our experiments, grouped by domain (animals,
fruits, furniture, vegetables, vehicles, and “various”) and experiment (similarity judgments versus
category learning). All corresponding image set pairs (e.g., fruits for similarity experiments, and
fruits for categorization experiments) are perfectly stratified by subordinate class (e.g., exactly
three apples in each, etc), except for the animals domain.
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Figure A.1:Animalstimuliusedinsimilarityexperiments.
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Figure A.2:Animalstimuliusedincategorizationexperiments.
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Figure A.3:Fruitstimuliusedinsimilarityexperiments.
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Figure A.4:Fruitstimuliusedincategorizationexperiments.
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Figure A.5:Furniturestimuliusedinsimilarityexperiments.
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Figure A.6:Furniturestimuliusedincategorizationexperiments.
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Figure A.7:Vegetablestimuliusedinsimilarityexperiments.
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Figure A.8:Vegetablestimuliusedincategorizationexperiments.
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Figure A.9:Vehiclestimuliusedinsimilarityexperiments.
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Figure A.10:Vehiclestimuliusedincategorizationexperiments.
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Figure A.11: “Various”stimuliusedinsimilarityexperiments.
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Figure A.12: “Various”stimuliusedincategorizationexperiments.
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A.2 Human & Estimated Similarity Matrices

Human (Experiment 1), deep network (VGG), and transformed similarity matrices are shown
below for each of the six domains. Each domain appears to exhibit a different level of sparsity
(e.g., animals versus vehicles). For most domains, the ordered alignment of the images reveals
categorical clustering in the judgments that are better represented after the transformation of the
deep features.

Figure A.13: Animals.Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpredicted
similaritiesaftertransformingthedeeprepresentations.

Figure A.14: Fruits. Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpredicted
similaritiesaftertransformingthedeeprepresentations.
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FigureA.15: Furniture.Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpredicted
similaritiesaftertransformingthedeeprepresentations.

Figure A.16: Vegetables. Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpre-
dictedsimilaritiesaftertransformingthedeeprepresentations.
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Figure A.17: Vehicles.Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpredicted
similaritiesaftertransformingthedeeprepresentations.

Figure A.18: Various. Humansimilaritymatrices,innerproductsfromrawdeeprepresentations,andpredicted
similaritiesaftertransformingthedeeprepresentations.
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