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ABSTRACT OF THE THESIS

CRC-Aided List Decoding

of Short Convolutional and Polar Codes

for Binary and Non-binary Signaling

by

Jacob Aaron King

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Richard D. Wesel, Chair

This thesis consists of two main sections investigating the performance of cyclic-redundancy-

check-aided (CRC-aided) list decoding on short block codes. The first section analyzes the

performance of tail biting convolutional codes with CRC (CRC-TBCCs) and polar codes

with CRC (CRC-Polar) with an eye toward the 5G standard. The second section concerns

designing optimal CRC-convolutional codes for nonbinary orthogonal noncoherent signaling.

The first section focuses on designing a code for the physical broadcast channel of the

5G standard. The 5G standard encodes a 32-bit message with a 24-bit CRC and a (512,

32+24) polar code, with bit repetition to arrive at a final blocklength of 864 bits. We de-

sign shorter CRCs for this polar code in order to improve its performance. We also design

low rate CRC-TBCCs with 32 bit messages as an alternative to the CRC-Polar in the 5G

PBCH. CRCs are designed to optimize the distance spectrum of the concatenated CRC-Polar

or CRC-TBCC. We call these CRCs distance-spectrum-optimal (DSO). We consider both

adaptive and nonadaptive list decoders for these codes and compare their performance and

ii



complexity. Simulation results show that our CRC-TBCC and CRC-Polar designs signifi-

cantly outperform the polar code in the 5G standard, with some CRC-TBCC designs closely

approaching the random coding union (RCU) bound.

The second section presents designs for CRC-TBCCs and zero-terminated convolutional

codes with CRC (CRC-ZTCCs) for communication with noncoherent orthogonal signaling.

We design Q-ary convolutional codes to maximize the minimum distance, and then design

Q-ary DSO CRCs for these convolutional codes, extending the work of Lou et. al. and Yang

et. al. to nonbinary fields. The Q-ary code symbols are mapped to a Q-ary orthogonal signal

set and sent over an AWGN channel with noncoherent reception. We consider cases where

Q is a power of 2. We also derive a saddlepoint approximation for the calculation of the

RCU bound for this channel. The RCU bound is a useful benchmark for the performance of

CRC-convolutional codes, and we compare the performance of our codes to this bound.
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CHAPTER 1

Introduction

Design of low complexity short blocklength codes is instrumental for modern reliable com-

munication. Many such codes have been presented throughout the years, including con-

volutional codes, turbo codes, low-density parity-check (LDPC) codes, and polar codes. In

recent years, list decoding with cyclic redundancy check (CRC) concatenated codes has been

shown to perform very well at short blocklengths [3] [4]. In this thesis, we present designs and

performances of CRC-aided convolutional and polar codes for a variety of practical contexts.

Polar codes, introduced by Arıkan in [5], have received wide attention as a provably ca-

pacity achieving class of codes, even making their way into the 5G standard [1] [6]. However,

polar codes under successive cancellation (SC) decoding are well known to be sub-optimal for

short blocklengths. To solve this, a common approach is to precode with a CRC before polar

encoding and to decode with a successive cancellation list (SCL) decoder. This CRC-aided

SCL decoding of polar codes has been shown to significantly improve polar code performance

over SC decoding [4] [7]. In this thesis, we call the concatenation of a CRC and polar code

a CRC-Polar code.

In contrast, convolutional codes are a much older class of code, first introduced by Peter

Elias in the 1950s [8]. In the decades since, two main classes of convolutional codes have

emerged. These are zero terminated convolutional codes (ZTCCs) and tail biting convo-

lutional codes (TBCCs) [9]. Recently, many publications have shown the effectiveness of

CRC-aided list decoding of convolutional codes [10], [3]. Following the notation of CRC-

Polar codes, we denote these concatenated codes by CRC-ZTCC or CRC-TBCC codes.

1



These works design CRCs for each specific convolutional code used in order to minimize the

frame error rate (FER) union bound based on the distance spectrum of the concatenated

CRC-convolutional code. CRCs with this property are known as distance-spectrum-optimal

(DSO) [11].

We consider two different channels for the design of our codes. The first is a standard

binary input additive white Gaussian noise (BI-AWGN) channel with BPSK modulation.

The second is a noncoherent orthogonal Q-ary frequency shift keying channel (QFSK) with

AWGN, where Q is a power of two. We aim to design good short blocklength codes for these

channels. For our work, we focus on designs for polar codes and convolutional codes with

CRC-aided list decoding.

In 2010, Polyanskiy, Poor, and Verdú presented tight bounds for the performance of finite

blocklength codes [12]. For a code with a fixed blocklength n and fixed number of codewords

M , the FER of the best (n,M) code is upper bounded by the random-coding union bound

(RCU bound) and lower bounded by the meta-converse bound (MC bound). While the RCU

bound acts as an achievability bound, in practice it is very difficult to design codes that can

beat the RCU bound. As a result, the RCU bound acts as a good benchmark to compare

against for the performance of short blocklength codes.

This thesis consists of two largely unrelated parts. In the first part, we compare CRC-

TBCC and CRC-Polar codes on the BI-AWGN BPSK channel, with an eye toward the

blocklengths used in the 5G standard. We design DSO CRCs for each code and compare the

FER performance, undetected error rates, and decoding complexities of these two classes of

codes. We also compare the distance spectra of these two classes of codes, analyzing the dif-

ferences between the distance spectra and how these differences affect the error performance.

In the second part, we instead consider the Q-ary noncoherent orthogonal signaling chan-

nel and design CRC-convolutional codes for this channel. We build on work by Ryan and

Wilson [2] and design Q-ary DSO CRCs for good Q-ary convolutional codes. We also ex-

tend the work of Font-Segura et al. [13], who derived a saddlepoint approximation for the

2



RCU bound, by modifying their equations for the Q-ary noncoherent orthogonal channel.

We compare our CRC-ZTCC and CRC-TBCC designs to the RCU bound found by this

saddlepoint approximation.

1.1 Summary of Contributions

Chapter 2 Contributions

In Chapter 2, we present two different ways to improve the FER performance of the CRC-

Polar concatenated code used for the 5G PBCH channel.

The first way is to shorten the length of the CRC. A shorter CRC for a polar code

results in more frozen bits, which have 100% reliability. As a trade off, a shorter CRC has

less powerful detection capabilities, making undetected errors more likely. We show that

shortening the CRC length from 24 bits to 11 bits significantly improves the overall error

rate performance, at the cost of undetected error rate.

The second way is to replace the CRC-Polar concatenated code with a CRC-TBCC

concatenated code. Following [14], we design distance-spectrum-optimal CRCs for a specific

rate-1/5 TBCC from [10]. With this design, we show that we can further improve the error

rate performance. Our best design approaches within 0.2 dB of the RCU bound.

We also analyze the decoding complexity of both the Polar and TBCC decoders through

decoding run time. We find that the LVA decoder for CRC-TBCC codes is significantly

faster than the SCL decoder for CRC-Polar codes, and is therefore able to support much

higher list sizes with equivalent decoding run times.

Chapter 3 Contributions

Building on ideas from Chapter 2, in Chapter 3 we design CRC-TBCCs and CRC-Polar

codes with equivalent rates, blocklengths, and CRC lengths to compare their performance
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and distance properties.

We take the design idea of DSO CRCs for convolutional codes presented in [11] and

develop efficient design procedures for the design of DSO CRCs for polar codes. We then

design DSO 11-bit CRCs for the (512,43) polar code in 5G and a (516, 43) rate-1/12 TBCC,

and we puncture four bits of the CRC-TBCC to rate match the CRC-Polar code.

The distance spectra of the CRC-Polar and punctured CRC-TBCC codes are then an-

alyzed. At high SNR, the FER performance of block codes converges on the union bound,

which is determined by the distance spectrum of the code. We show that the distance spec-

tra of these two codes are qualitatively different and result in different effects on the union

bounds.

Finally, we simulate our optimal CRC-TBCC and CRC-Polar codes using various list

decoders and analyze the FER performance, undetected error rate, and decoding complexity.

We show that our CRC-TBCC design has better error rate performance and a significantly

faster decoder than the CRC-Polar. Similar to the CRC-TBCC in Chapter 2, our best

CRC-TBCC design approaches within 0.2 dB of the RCU bound.

Chapter 4 Contributions

In Chapter 4, we are interested in CRC-aided list decoding of convolutional codes for non-

coherent orthogonal signaling with non-binary alphabets. Once again building on [11], we

generalize the design procedure to Q-ary alphabets to design Q-ary DSO CRCs for Q-ary

zero-state terminated convolutional codes (ZTCCs), where Q is a power of two.

Once again, the RCU bound is used as a benchmark for the performance of our codes.

The calculation of the RCU bound as presented in Polyanskiy et al. [12] is generally in-

tractable for most practical codes, including the codes we use. Instead, we use a saddlepoint

approximation of the RCU bound presented by Font-Segura et al. in [13]. Given the exotic

nature of our channel, we derive a channel equation for this channel and a set of modifications
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to the equations in [13] to work for our channel.

Finally, we present simulation results for a set of 4-ary CRC-ZTCCs. We use 4-ary

ZTCCs given by Ryan and Wilson in [2] and design optimal 4-ary CRCs for these ZTCCs.

We then compare the TFR performance of these CRC-ZTCCs against the RCU bound and

normal approximation. We find that our best performing CRC-ZTCC has a gap to RCU

bound of 0.6 dB at TFR = 10−4.

Chapter 5 Contributions

In Chapter 5, we extend the work in Chapter 4 to Q-ary CRC-TBCCs and higher orders of

Q. We generalize the DSO CRC search algorithm for TBCCs in [14] for non-binary CRC-

TBCCs. We discuss the challenges in using this algorithm for large values of Q, and we

present optimizations to reduce the complexity of the algorithm.

We design CRC-TBCCs for Q ∈ {4, 8, 16} and present simulation results for these codes.

We find that our 4-ary CRC-TBCCs gain about 0.2 dB over our 4-ary CRC-ZTCC designs

in Chapter 4, resulting in a gap to RCU bound of roughly 0.45 dB at a TFR of 10−4. Our

best 8-ary CRC-TBCC design has a gap to normal approximation of about 0.6 dB, and our

16-ary CRC-TBCC designs have a gap to the normal approximation of around 0.8 dB.
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Part I

Comparison of Convolutional and Polar

Coding with CRC-Aided List Decoding

on the BI-AWGN BPSK Channel
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CHAPTER 2

CRC-Aided List Decoding of Convolutional and Polar

Codes for Short Messages in 5G

This chapter was first presented at the IEEE International Conference on Communications

(ICC) in May 2022. A written version of the presentation is available in [15].

Polar codes have seen wide interest since Arıkan first described the paradigm and showed

that it could achieve channel capacity [5]. Polar codes have found application in the physical

broadcast channel (PBCH) of the 5G standard [1], [6]. In particular, Fig. 2.1 shows how a

polar code is used to transmit a 32-bit message over the 5G PBCH. First the 32-bit message

is protected by a 24-bit CRC to provide a 56-bit input to the polar code. The polar code

produces 512 bits, which are augmented by repetition to produce an 864-bit 5G PBCH

codeword. This chapter explores ways to improve the frame error rate (FER) vs. Eb/N0

performance of this 5G PBCH code and considers alternatives.

For example, FER vs Eb/N0 improvement is achieved by reducing the length of the CRC.

CRCs, as described in [16], are very powerful as error detecting outer codes. However, for

the best FER vs Eb/N0 performance, the error detection benefit provided by the CRC needs

to be balanced with the corresponding overhead requirement. We show that replacing the

24-bit CRC with the smaller 11-bit or 12-bit CRC increases the number of frozen bits and

reduces the FER for a given Eb/N0.

This paper further improves the Eb/N0 performance by replacing the polar code with

a tail-biting convolutional code (TBCC). Specifically, a rate-1/5 TBCC is concatenated
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32-bit

message
24-bit CRC Encode

(512,56) Polar Encode

Subset Repetition

864-bit

5G PBCH

Codeword

56-bit CRC word

512-bit polar codeword

Figure 2.1: Block diagram of 5G PBCH polar encoding scheme. The PBCH uses a 24 bit

CRC, then polar encodes to 512 bits before applying repetition to get to 864 bits.

with a CRC optimized for the specific TBCC. Lou et al. [11] introduced distance-spectrum-

optimal (DSO) CRCs for zero-terminated convolutional codes. Recently, Yang et al. [3], [14]

presented an algorithm for finding DSO CRCs for tail-biting convolutional codes, which this

paper employs to find the optimized CRCs used in this paper.

As is the case for polar codes, CRC-TBCC performance is enhanced by optimizing the

CRC length. Using DSO CRCs and the CRC length that minimizes the FER for a specific

Eb/N0 yields a CRC-TBCC concatenated code that has better performance than the CRC-

Polar concatenation. Decoder complexity and performance depend on list size, but the

list decoder for the CRC-TBCC code required less run time on our computer for better

performance than the list decoder for the CRC-Polar concatenation.

2.1 Background

This section describes the polar and TBCC codes that we will consider, presents a list decoder

for CRC-TBCC and CRC-Polar concatenated codes that employs parallel list decoding with

exponentially increasing list sizes, and defines erasure failures and undetected errors.
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2.1.1 Polar Codes

Polar codes were first introduced by Arıkan in [5] as a code suitable to take advantage of

the channel polarization paradigm that he discovered. Polar codes compute the codeword

by multiplying a message vector by a polar coding matrix. The message vector contains

both actual message bits and “frozen” bits that are set to a fixed value and do not convey

information. The polarization paradigm ensures that the actual message bits have very high

reliability, while low reliability bits are frozen and convey no information. Polar codes have

been shown to achieve channel capacity for asymptotically long blocklengths; however, they

are less reliable with short messages.

Also presented in [5] is a proposed decoder for polar codes called a Successive Cancellation

(SC) decoder. This decoding algorithm decodes the received codeword one bit at a time,

using previously decoded bits to help decide the current bit. Frozen bits carry no information

and are known to the decoder, so a decision only needs to be made on the message bits in

the codeword. As noted in [17], the SC decoder is effective for decoding long messages, but

is less effective for decoding the short messages used in 5G.

This is addressed in 5G by using Successive Cancellation List (SCL) decoding in con-

junction with CRC precoding [1]. Instead of making a hard decision on each message bit of

the received codeword, the SCL algorithm [4] instead implements parallel decoders, one for

each of a set of possible decisions about the previous bits. When all the parallel decoders

have each selected their distinct prospective codewords, these candidate codewords are then

checked to see which pass the CRC check, and the most likely candidate that passes the

check is selected. If no candidate passes the CRC, then a decoding failure is reported.

The performance of SCL improves as the number of parallel decoders, i.e. the list size, is

increased. However, this improved performance comes with a significant complexity increase

to support the parallel decoding [4]. For a specified list size, SCL retains the most likely

codeword candidates at each step. In addition to the SCL algorithm, there have been many
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other proposed improvements to Arıkan’s initial SC decoder to increase decoding accuracy,

decrease latency, and decrease complexity [18–20].

The polar code used in this paper is the PBCH polar code from the 5G standard [1].

This code has 32 message bits and is encoded with a 24-bit CRC. The 24-bit CRC has

polynomial 0x1B2B117, with the most significant bit corresponding to the degree-24 term of

the polynomial. This 56-bit message and CRC is then encoded with a (512,56) polar code,

and then the first 352 bits are repeated to arrive at a final 864-bit codeword, as illustrated in

Fig. 2.1. We omit the bit interleaving and CRC parity distribution used in the 5G standard,

as these have no impact on the performance over an AWGN channel with no inter-symbol

interference.

In addition to the 24-bit CRC that is used by the PBCH code, we also simulate this

code with an 11-bit CRC provided in [1] that is used for the physical uplink control channel

(PUCCH) code, followed by a (512,43) polar code and the same bit repetition. This 11-

bit CRC has polynomial 0xE21. Recently, Baicheva and Kazakov [21], [22] performed an

analysis on the 5G CRCs and presented alternative CRCs for polar codes than those in [1].

We also simulate the polar code with the 11-bit CRC 0xB5F and the 12-bit CRC 0x1395,

provided by Peter Kazakov to achieve the best performance for this polar code.

A sequence of expected reliabilities is also provided in [1] to select the bits having the

lowest expected reliabilities to be frozen bits. This paper uses adaptive SCL decoding for all

polar codes we consider, as described in Section 2.1.3.

2.1.2 Tail-Biting Convolutional Codes

In contrast to polar codes, convolutional codes have been in use for decades [8]. Convolutional

codes can be used for transmitting streams of data with continuous decoding [23], but they

can also function as block codes. One form of block convolutional codes is the class of

TBCCs [9], which avoid the overhead incurred by zero termination.
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Our paper focuses on TBCCs because of their rate efficiency. The TBCC proposed in

this paper as an alternative to polar coding for the 5G PBCH is taken from [10]. This code

is a rate-1/5 TBCC with 32 message bits, concatenated with a CRC. The encoder has 8

memory elements with generator polynomials (575, 623, 727, 561, 753) in octal. We do not

use an interleaver for this code, and this is not a serially concatenated turbo code. The use

of such a code is explored in [24].

Lou et. al. [11] show how low undetected error rate performance of a convolutional code

is dominated by the minimum distance spectrum of the code. They present an algorithm

to find DSO CRCs for a zero-terminated convolutional code by maximizing the minimum

distance of the CRC-ZTCC concatenated code. This process is generalized to tail biting

convolutional codes in [14].

In [10], CRCs were designed for zero-terminated convolutional codes even though some

simulations in [10] involved TBCCs. In this paper, we deployed the algorithm described in

[14] to identify optimal CRCs for the TBCC implementation of (575, 623, 727, 561, 753) with

CRC lengths varying from 8 to 16 bits. Table 2.1.2 provides the optimal CRC polynomials

that resulted form our search.

CRC length 8 9 10 11 12 13 14 15 16

CRC poly (hex) 101 21F 4D5 A9D 123B 27C5 7CCF 8441 18077

Table 2.1: CRC polynomials for the TBCC at different CRC lengths. Each polynomial is

given in hexadecimal with the most significant bit corresponding to the highest order term.

The Viterbi algorithm is a maximum-likelihood decoder for convolutional codes. The

decoder traverses the trellis identifying the most likely path to each state in the trellis based

on the received codeword. When multiple paths converge to the same state in the trellis, the

decoder selects the most likely path, making an arbitrary choice to break ties. At the end

of the trellis, the decoder selects the most likely surviving path. The Viterbi algorithm can
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be augmented to support parallel list decoding [25], where every state stores a list of the L

most likely paths instead of a single most likely path.

The TBCCs in this paper are decoded using an adaptive parallel list Viterbi algorithm

(LVA) decoder based on the one described in [25]. The details of this decoder are also

described in Section 2.1.3.

2.1.3 Adaptive List Decoding

This paper uses parallel list decoding with a doubling list size to explore the FER performance

and decoding run time of both the 5G PBCH polar code and the proposed TBCC alternative.

The parallel list decoder is implemented as an SCL decoder for polar codes and as an LVA [25]

for convolutional codes.

This approach was proposed in [26] for polar codes, where it was called an “adaptive

SCL” decoder. Each iteration of the algorithm acts like a parallel LVA or SCL decoder for

the given list size. If a message candidate is not found that passes the CRC check, then the

list size doubles until either a codeword is found that passes the CRC check or the maximum

list size is reached. A block diagram of this list decoding algorithm is shown in Fig. 2.2.

There are two types of errors that can occur when using our list decoder. An erasure

occurs when none of the decoded message candidates that the list decoder finds have a valid

CRC when the decoder reaches the maximum list size. An undetected error occurs when

one of the message candidates passes the CRC check, but it is not the same as the codeword

sent. In this paper, we use the sum of the erasure rate and the undetected error rate (UER)

as a primary metric for performance, which we refer to as the Total Failure Rate (TFR).
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List size L = 1

Parallel LVA/SCL

decoder with list size L

Does a candidate code-

word pass CRC check?

Select candi-

date codeword

Does L = Lmax? Record erasure

Double list size L
Yes

No
Yes

No

Figure 2.2: Block diagram of the adaptive parallel list decoder algorithm. It starts with a

list size of 1 and runs the parallel LVA or SCL algorithm. This is repeated with the list

size doubling every iteration until either a candidate codeword is found that passes the CRC

check or the maximum list size is reached.

2.2 Optimal CRC Length for TBCC

This section shows how a specified TBCC has an optimal CRC length that minimizes the

TFR. As an initial matter, a longer CRC should lead to an improved TFR at a fixed signal-

to-noise ratio (SNR), but the longer CRC also reduces the code rate. To fairly compare the

CRCs, we consider the TFR as a function of Eb/N0, which accounts for the rate loss incurred

by a longer CRC.

For two different fixed values of Eb/N0, 2.5 dB and 3.5 dB, Fig. 2.3 shows the erasure

rate, UER, and TFR for simulating the CRC-TBCC with different CRC lengths with a

maximum list size of 2048. The CRCs used in these simulations are shown in Table 2.1.2,

and for each length the CRC used is optimal according to the procedure from [14].

Fig. 2.3 shows that, for this example, as CRC length increases, erasure rate monotonically

increases and UER monotonically decreases. Combining these two effects, TFR is convex or
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Figure 2.3: Plot of erasure failure rate, undetected error rate, and total failure rate vs.

number of bits in the CRC for the TBCC. The solid curves correspond to a Eb/N0 of 2.5

dB, and the dashed curves have an Eb/N0 of 3.5 dB. A maximum list size of 2048 was used.

The CRC length that minimizes TFR is 11 bits at 2.5 dB and 12 bits at 3.5 dB, but nearby

CRC lengths have nearly equivalent TFRs.

quasi-convex with a single global minimum.

Thus, there is a CRC length that minimizes the TFR for a specified value of Eb/N0 and

a specified maximum list size. The optimal CRC length depends on the value of Eb/N0. At

Eb/N0 = 2.5 dB, the CRC length that minimizes the TFR is 11 bits. At Eb/N0 = 3.5 dB,

the optimal length is 12 bits. However, the difference in FER between 11-bit and 12-bit

CRCs at these values of Eb/N0 is almost negligible, and can change when the maximum list

size is changed.

2.3 Comparison of TBCCs and Polar Codes

Consider the problem of transmitting a 32-bit message. This section begins by comparing

four CRC-Polar solutions to a rate-1/5 TBCC with an optimized CRC. For the TBCC, the
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TBCC, m = 12, R = 32/220, Lmax = 32
TBCC, m = 13, R = 32/225, Lmax = 32
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PC, m = 11, B&K CRC 0xB5F, R = 32/864, Lmax = 32
PC, m = 12, B&K CRC 0x1395, R = 32/864, Lmax = 32

Figure 2.4: TFR vs. Eb/N0 of CRC-TBCC and CRC-Polar codes with various CRCs. A

maximum list size of 32 is used for all codes. The CRC-TBCCs and m = 11 and m = 12

CRC-Polar codes achieve similar performance, with the CRC-Polar codes exhibiting a floor

at high Eb/N0. These codes significantly outperform the m = 24 5G CRC-Polar code.

optimal CRCs for each length, shown in Table 2.1.2, are designed according to [14]. The

optimal CRC length, as discussed in Sec. 2.2, is also considered.

2.3.1 TFR vs. Eb/N0 and TFR vs. Run Time

For a fixed maximum list size of 32, Fig. 2.4 shows TFR vs. Eb/N0 for the 5G PC with

24-bit CRC solution, a rate-1/5 TBCC with CRCs of length m = 11, 12, and 13, and three

additional PC/CRC solutions. The CRC-TBCC solutions all have similar performance, but

the best performance is seen for CRC length m = 11 for all Eb/N0. Note that the maximum

list size Lmax = 32 is significantly smaller than the maximum list size Lmax = 2048 considered

in Sec. 2.2 where the m = 12 CRC is optimal at Eb/N0 = 3.5 dB.

In Fig. 2.4, the 5G PC with the m = 24 CRC specified in the 5G standard performs
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significantly worse than the the CRC-TBCC solutions. To improve the PC performance, the

CRC length was reduced to match the CRC length used for the convolutional code by using

two m = 11 and one m = 12 CRC. The TFR vs. Eb/N0 performance of the CRC-Polar

codes with the shorter CRCs is similar to that of the TBCC/CC solutions, except for a TFR

degradation seen at high Eb/N0. This TFR degradation for adaptive list decoding of polar

codes is further explored in Chapter 3.

While all the curves in Fig. 2.4 used the same maximum list size, the decoders do not

have the same complexity or run time. To explore complexity vs. TFR performance, Fig.

2.5 shows TFR as a function of average simulation run time 1 at Eb/N0 = 3.5dB for all the

CRC-Polar codes and the best-performing CRC-TBCC from Fig. 2.4. All decoders used C

implementations of the adaptive list decoding paradigm of [26]. We tried to make both the

LVA and SCL implementations as efficient as possible, but of course other implementations

may result in different run-time comparisons.

In general, the CRC-TBCC is able to support a higher maximum list size and achieve a

lower TFR for a specified run time. For example, Fig. 2.5 shows that at an average decoding

run time of 2.4 ms per decoded codeword, the CRC-TBCC achieves a TFR of 1.74 × 10−6

using a maximum list size of 1024, while the best polar code with a short CRC only achieves

2.23× 10−5 with a list size of 64. The 5G polar code with a 24-bit CRC achieves a TFR of

2.05× 10−3 with a list size of 32.

When the maximum list size is small in Fig. 2.5, increasing the list size can dramatically

reduce TFR while having a negligible impact on decoding run time. Further increases in list

size provide diminishing returns in TFR performance but carry significant run time penalties.

Essentially, when the list size required to pass the CRC check is very large, the codeword

that finally passes the CRC check will often be an undetected error failure so that TFR is

not improved.

1All simulations were performed on a System76 Galaga Pro Ubuntu laptop with an Intel Core i7-8565U
CPU @1.8GHz x 8 Processor.
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Figure 2.5: Average decoding run time in milliseconds of m = 11 TBCC and all PCs vs.

TFR at Eb/N0 = 3.5dB. Both m = 11 PCs and the m = 12 PC achieve far greater TFR

performance at equivalent decoding run times than the 5G PC, and the m = 11 TBCC

performs even better. There exists a trade-off between TFR and average decoding time

when varying list size. Eventually, increasing list size further does not provide any benefit

to reducing TFR.

We did not consider list sizes that required more than 5 ms of average run time. For

the polar codes, this limited maximum list sizes to 64 or 128. However, Fig. 2.5 shows that

negligible improvement in TFR would be expected for larger maximum list sizes for these

codes.

For the list sizes that resulted in run times of about2 2.4 ms at Eb/N0 = 3.5dB, Fig. 2.6

provides curves showing TFR vs. Eb/N0 for the codes shown in Fig. 2.5.

2The run times are as follows: 2.44 ms per codeword for TBCC with Lmax = 1024, 2.38 ms per codeword
for 5G 0xE21 m = 11 PC with Lmax = 64, 2.35 ms per codeword for B&K 0xB5F m = 11 PC, 2.4 ms per
codeword for B&K 0x1395 m = 12 PC with Lmax = 64, and 2.45 ms per codeword for 5G m = 24 PC with
Lmax = 32
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Figure 2.6: TFR vs. Eb/N0 of m = 11 TBCC, 5G PC, and all m = 11 and m = 12 PCs. Each

code is has a nearly equivalent average decoding runtime of around 2.4 ms per codeword,

with the list sizes set according to Fig. 2.5 to achieve this.

2.3.2 Comparison to RCU and MC bounds

In 2010, Polyanskiy, Poor, and Verdú presented the RCU and MC bounds for finite block-

length codes [12]. These bounds act as an achievability and a converse bound on FER for

codes of a given rate and blocklength, and serve as good benchmarks for the performance of

finite blocklength codes. Fig. 2.7 shows TFR vs. Eb/N0 for the CRC-TBCC with m = 11,

as well as saddlepoint approximations [13] for the RCU bound and MC bound for this CRC-

TBCC. At Lmax = 2048, the CRC-TBCC TFR approaches the RCU bound.

Fig. 2.8 shows the Eb/N0 gap from the RCU bound for all CRC-TBCC and CRC-Polar

codes that were considered in the earlier figures. For TBCCs with Lmax = 2048, the m = 11

CRC has the smallest gap across the entire TFR range. For example, at TFR of 1.46× 10−6

the gap to the RCU bound is 0.19 dB.
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Figure 2.7: Plots of TFR, RCU Bound, and Meta Converse Bound of the m = 11, Rate

32/215 TBCC vs. Eb/N0 dB. The Lmax = 2048 curve approaches very close to the RCU

bound. However, as shown in Fig. 2.5, increasing the list size further is unlikely to improve

TFR further.

2.4 Exactly Matching Polar Rates via Repetition

The 5G CRC-Polar solution for the PBCH has rate 32/864, which is about 4 times lower

than the CRC-TBCC solutions we propose. However, the number of transmitted bits can be

increased through repetition to 864 bits so that our CRC-TBCC solutions can be deployed

with exactly the same rate as the PC/CRC solution of 5G. Our proposed rate 1/5 TBCC

with an 11-bit CRC has an overall rate of 32/215. Repeating 211 of the 215 code bits four

times, and repeating the remaining 4 bits five times times produces an overall rate of 32/864,

which exactly matches the CRC-Polar solution.

Consider a base code C. The code resulting from M times repetition of every code bit

of C has exactly the same TFR performance as the original code at a fixed value of Eb/N0.

To see this, note that for fixed Eb/N0 repeating each individual code bit M times increases

the value of Eb by M , which requires a noise level M times higher in order to maintain
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Figure 2.8: Gap to RCU bound vs TFR for all TBCC and polar codes simulated in this

section. Solid lines have Lmax = 32, and dashed lines have Lmax = 2048. The TBCCs with

Lmax = 2048 get very close to RCU Bound. The TBCCs with Lmax = 32 also get closer

to the RCU bound than all polar codes with Lmax = 32. All m = 11 and m = 12 PCs

outperform the m = 24 5G PC.
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Figure 2.9: TFR vs. Eb/N0 curves for m = 11 CRC-TBCC with and without bit repetition.

These two codes have identical TFR performance.

an equivalent Eb/N0. However, each received instance of the repeated code bits may be

averaged together before decoding with no loss in performance, creating an effective symbol

that reduces the noise level by a factor of M . These effects cancel each other out, so the

symbols in the two codes will have the exact same level of effective noise, so that the decoder

performance is equivalent.

We now analyze applying repetition to our rate-32/215 TBCC with an 11-bit CRC to get

a new code that is rate-32/864. Importantly, not every bit is repeated the same number of

times. 211 of the 215 code bits are repeated 4 times, but the remaining 4 bits are repeated 5

times. Thus, in the repetition code, the 4 bits repeated an extra time will have significantly

lower noise than if every bit was repeated an equal number of times, and the remaining 211

bits will have slightly higher noise.

If we include the rate penalty but not the noise benefit of repeating those last four bits an

extra time, we can bound the loss of the rate-32/864 to within 0.02 dB of the performance

of the original rate-32/215 CRC-TBCC code or the equivalent rate-32/860 code. Even if we
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assume the worst case of a 0.02 dB loss in TFR performance with the repetition code, the

difference between the repetition code and the original code is negligible. So, we expect the

repetition code to have nearly equivalent performance to the original.

We simulated the repetition code to confirm the tightness of this bound, which can be

seen in Figure 2.9. When simulated, the curves for the original code and the repetition code

lie directly on top of each other, being nearly impossible to distinguish between.

2.5 Conclusion

This chapter shows two ways to improve the TFR vs. Eb/N0 performance of the current

5G PBCH CRC-Polar code. Reducing the CRC from 24 bits to 11 or 12 bits, which allows

significantly more bits to be frozen, improves performance while still utilizing the paradigm

of a polar code that uses CRC-aided list decoding. It is worth noting that the 24-bit CRC

has a significantly lower undetected error rate than the polar codes with shorter CRCs, due

to the extra bits allocated to the CRC for error checking. Even better TFR performance is

achieved by replacing the polar code with a rate-1/5 TBCC with CRC-aided list decoding.

Repetition coding can be used to exactly match the rate of the current 5G PBCH code, but

provides no benefit to TFR performance.

For the TBCC, the length of the CRC was optimized and the CRC polynomial was de-

signed to optimize the distance spectrum of the concatenated CRC-TBCC so as to minimize

the TFR. The CRC-TBCC solution has TFR vs. Eb/N0 performance very close to the RCU

bound when the maximum list size is allowed to be large, so that the CRC-TBCC solution is

approaching the best performance that is theoretically guaranteed to be possible. Notably,

the decoding complexity for a given list size is lower for the TBCCs than for the polar codes,

which allows the CRC-TBCC to benefit from larger maximum list sizes.

Our CRC-TBCC designs utilize [14], which shows how to optimize CRCs for use with

TBCCs. We tried to find the best available CRC to use with the polar code. We considered
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the 11-bit CRC specified in the 5G standard [1], although that CRC is not specified for this

polar code. We also noted the work of Baicheva and Kazakov [21], [22] focused on designing

CRCs to be used with polar codes and contacted them for assistance. We are grateful to

Peter Kazakov for providing the 11-bit and 12-bit CRCs that provided the best performance

that we observed for CRC-aided decoding of the polar code. These CRCs maximize the free

distance of the CRC error detection code for the specific overall code lengths of 43 and 44

bits, respectively.

This chapter focused on ways to improve the performance of the PBCH code in the 5G

standard, which resulted in an empirical comparison between polar and convolutional codes.

The next chapter takes a more theoretical approach to these comparisons, where we analyze

the distance spectra of these two classes of codes and study more in depth the effects of

CRC-aided adaptive list decoding.
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CHAPTER 3

Design, Performance, and Complexity of CRC-Aided List

Decoding of Convolutional and Polar Codes for Short

Messages

This chapter is an adaptation of a paper submitted to IEEE Transactions on Communica-

tions.

In the previous chapter, we showed that the design of this CRC-Polar concatenated code

in the 5G standard is sub-optimal when attempting to minimize TFR. Specifically, it is shown

that using a shorter CRC with the polar code significantly improves TFR performance of the

code. It is also shown there that a TBCC [9] concatenated with a CRC and decoded with

a LVA decoder can outperform the improved CRC-Polar code. CRC-aided list decoding

of TBCCs has recently been shown [3], [10] to perform very well at short blocklengths,

approaching and even surpassing the random coding union (RCU) bound.

The comparison in Chapter 2 suggests that CRC-TBCCs are a better solution than CRC-

Polar codes for the 5G standard, but the analysis is incomplete. In this chapter, we expand

on the work in Chapter 2 by designing the best CRC-TBCC and CRC-Polar codes we can,

and we perform a direct comparison between our code designs. In addition to comparing

simulation results, we also compare the distance spectra of the CRC-Polar and CRC-TBCC.

Lou et al. [11] show the importance of designing DSO CRC codes for specific convolutional

codes. In this chapter, we design a DSO 11-bit CRC for a specific TBCC using the algorithm

in [14]. We also design a DSO 11-bit CRC for the 5G Polar code by extending the ideas
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Figure 3.1: Encoding Scheme for CRC-Polar and punctured CRC-TBCC codes.

in [11] to CRC-Polar codes. This improves the design over the CRC-Polar in the previous

chapter, where we did not design CRCs for the specific polar code used.

We wish to design CRC-Polar and CRC-TBCC codes with equivalent message lengths,

CRC lengths, and blocklengths so as to facilitate a fair comparison. We also want to avoid

rate matching through bit repetition or puncturing as much as possible. Given that polar

encoding is limited to blocklengths that are powers of two, we aim for a target blocklength

of 512 bits in our CRC-Polar and CRC-TBCC designs. The encoding schemes of the CRC-

TBCC and CRC-Polar are shown in Figure 3.1.

3.1 Polar Code Design

In the 5G New Radio (5G NR) technical specification [1], six CRCs are proposed to concate-

nate with polar codes and LDPC codes for different message lengths. We list the six proposed

CRCs in Table 3.1. The generator polynomials of the CRCs are denoted in hexadecimals,

where the high-order coefficients correspond to the most significant bits. For example, the

generator polynomial x11 + x10 + x9 + x5 + 1 for CRC11 in Table 3.1 is denoted as 0xE21.

For the PBCH polar code in 5G, the 32 message bits are first encoded with CRC24C listed
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Table 3.1: CRCs proposed in the 5G NR technical specification [1]

Label Generator Polynomial

CRC24A 0x1864CFB

CRC24B 0x1800063

CRC24C 0x1B2B117

CRC16 0x11021

CRC11 0xE21

CRC6 0x61

in Table 3.1. Then, both the 32 message bits and the appended 24 CRC bits are interleaved

together and encoded using a (512,56) polar code. The frozen set of the polar code is

determined using the reliability sequence in the 5G standard [1]. A detailed description of

the encoding process is given in [27], and a simplified description is also shown in Figure 2.1.

Because they do not impact performance on a binary-input AWGN channel, in our work

we omitted the rate matching, interleaving, and CRC parity distribution described in [27].

As in Chapter 2, we decode our CRC-Polar codes with a successive cancellation list (SCL)

decoder [4].

For a CRC-Polar code with 32 message bits and m CRC bits, (32 +m) synthesized bit

channels of the inner polar code need to be unfrozen. Regarding the length of the CRC,

the following trade off can be observed. By using a longer CRC, the probability that a

random decoding path passes the CRC check at the end of the list decoding process will

be smaller, resulting in an expected lower undetected frame error rate. However, a longer

CRC corresponds to more unfrozen bit channels for the inner polar code. In this way, the

total failure rate of the code might be damaged by introducing too many low reliability bit

channels.

This trade off is very similar to the trade off of CRC length m vs. TFR for CRC-TBCC

26



1 1.5 2 2.5 3 3.5 4

Eb/N0(dB)

10-6

10-4

10-2

100

T
ot

al
 F

ai
lu

re
 R

at
e

5G CRC24A
5G CRC24B
5G CRC24C
5G CRC16
5G CRC11 0xE21
DSO CRC11 0xD41
5G CRC6

Figure 3.2: List decoding performance (list size L = 32) of length-512 5G polar codes with

32 message bits and different CRCs

codes in Figure 2.3, although for CRC-Polar codes the mechanism of the trade off is different.

For CRC-Polar codes, a longer CRC results in fewer frozen bits, and thus fewer completely

reliable bit channels. For CRC-TBCC codes, a longer CRC increases the blocklength of the

codeword, resulting in less energy per code symbol at constant Eb/N0. Figure 2.3 shows that

there is a CRC length that minimizes total failure rate for a CRC-TBCC, and we can expect

a similar behavior from CRC-Polar codes.

To find a good CRC length for our CRC-Polar code, we simulate the list decoding perfor-

mance of all the CRCs (listed in Table 3.1) proposed in the 5G NR technical specification.

The total frame error rates of those CRCs are shown in Figure 3.2. In this comparison,

the list size is set to L = 32, and the channels are binary-input additive white Gaussian

noise (AWGN) channels. Our result shows that among all the 5G CRCs, CRC6 has the

best performance at low SNRs, while the best performance at high SNRs is obtained by

CRC11. Following this result, if we limit our search space to CRC lengths specified in the

5G standard, CRCs with 11 bits achieve the best list decoding performance at high SNR.
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This matches the results in Chapter 2, where an 11-bit CRC significantly outperformed a

24-bit CRC for the CRC-Polar code.

However, CRC11 in the 5G standard is not known to be specifically designed together

with the inner polar code. Lou [11] and Yang [14] give algorithms for designing DSO CRCs

for ZTCCs and TBCCs respectively. In the next subsection, we present analogous design

procedures for designing DSO CRCs for polar codes.

3.1.1 Design of Distance Spectrum Optimal 11-bit CRC

It is known that on AWGN channels, the maximum-likelihood (ML) decoding performance of

binary linear codes is governed by their weight distribution, and can be well approximated

by the union bound. Here, we seek to design an 11-bit CRC that provides the best ML

decoding performance at high SNRs. For this purpose, we design a DSO 11-bit CRC.

The union bound on FER based on the distance spectrum is given by

FER <
n∑

d=dmin

A(d)P2(d).

Here, A(d) is the number of codewords at weight d, P2(d) is the pairwise error probability of

two codewords at distance d, and n is the blocklength of the code. We wish to find the 11-bit

CRC that minimizes this union bound of the CRC-Polar concatenated code. As SNR grows

large, this minimization problem can be well approximated by maximizing the minimum

distance dmin and minimizing A(dmin). We design an 11-bit CRC according to these criteria.

In the first step of our design procedure, we use the algorithm in [28] to compute the entire

weight distribution of the (512,43) inner polar code, whose frozen set is chosen according to

the reliability sequence in the 5G standard [1]. The partial weight distribution of this polar

code for codewords with weight up to 128 is shown in Table 3.1.1.

In the second step, we use the method in [29] to obtain all codewords of weight 64, and

all codewords of weight 96 for this polar code. Consider the following experiment devised
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Table 3.2: Partial weight distribution of the (512,43) 5G polar code

d 0 64 96 128

A(d) 1 536 9600 496988

in [29]. Transmit the all-zero codeword through AWGN channels in the extremely high SNR

regime, and decode the channel output using a list decoder. It is reasonable to expect that

in this experiment, the list decoder will produce codewords of low weight. As the list size

L increases, since the decoder is forced to generate a list of size exactly L, more and more

low-weight codewords emerge. For the (512,43) 5G polar code, by using list size L = 32768 in

this experiment, we are able to obtain all 536 codewords of weight 64, and all 9600 codewords

of weight 96. The list size required for us to obtain all codewords of weight 128 is too large.

Hence we stop this experiment at L = 32768.

In the third step, we go over all CRCs with 11 bits, and check which one of them

can eliminate most of those low weight codewords. We consider all the 11-bit CRCs with

generator polynomials in the form x11 + · · ·+ 1, such that the leading coefficient of x11 and

the constant term at the end are both fixed to be 1. There are 210 = 1024 11-bit CRCs in

our search space, and we find out that 79 of them can eliminate all codewords of weight 64

and weight 96 for the (512,43) inner polar code.

In the fourth step, we compute the complete weight distribution of the concatenated

CRC-Polar codes using all those 79 CRCs by the brute-force search, and find out that the

distance spectrum optimal CRC has generator polynomial 0xD41. This CRC-Polar code has

dmin = 128 and A(dmin) = 219. In Section 3.3, we present the distance spectra of the inner

5G polar code and the CRC-Polar code with CRC 0xD41.
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3.1.2 Adaptive List Decoding

In this paper, we decode our CRC-Polar code using a successive cancellation list (SCL) [19]

decoder. For large list sizes (L > 64), it is very computationally costly to always generate a

list of L codewords for every message sent. However, a large list size does tend to significantly

improve TFR performance compared to small list sizes.

We choose to implement an adaptive parallel list decoder to balance these effects, as

in [29], [15], and Chapter 2 of this thesis. The adaptive list decoding algorithm is as follows.

We begin by running a parallel list decoder with an initial list size L = Lmin. If the

decoder finds a codeword that passes the CRC check, it selects that codeword and terminates.

However, if no codeword on the list passes the CRC check, we double L and run another

parallel list decoder. This continues until a valid codeword is found or the maximum list size

Lmax is reached. We will call such a decoder an (Lmin, Lmax) adaptive list decoder.

Unfortunately, the SCL decoder is not maximum likelihood, so changing the list size can

change whether a codeword appears in the list or not. As a result of this, the performance

of the (Lmin, Lmax) adaptive SCL decoder performance is not identical to that of the non-

adaptive SCL decoder with L = Lmax. This is true when the CRC overhead is only 11 bits

because a valid but incorrect codeword is more likely to be chosen. Care must be taken with

selecting Lmin and Lmax of the adaptive SCL decoder.

3.2 TBCC Code Design

Recent results by Yang et al. [3] show that CRC-TBCCs with list decoding can approach

and even surpass the RCU bound [12]. In this section we present this design procedure for

a low rate CRC-TBCC to compare to the CRC-Polar designed in the previous section.

A comparison of CRC-TBCCs with list decoding to the 5G PBCH CRC-Polar code was

performed in Chapter 2. However, the TBCC design used in Chapter 2 was not a fully proper
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comparison to the 5G CRC-Polar code. The TBCC in Chapter 2 was a memory-8, rate-1/5

convolutional code, borrowed from [10]. With a 32-bit message and 11-bit CRC, the CRC-

TBCC has a blocklength of 215 bits. However, the 5G CRC-Polar has a 512-bit blocklength

before bit repetition, resulting in a significantly lower rate code than the CRC-TBCC. This

significant difference in blocklength results in a comparison that is not completely fair. We

solve this problem by designing a much lower rate TBCC to match the 512-bit blocklength

of the CRC-Polar code.

For this paper, we designed a memory-8, rate-1/12 TBCC which we concatenate with

an 11-bit CRC, resulting in a (516, 32+11) CRC-TBCC. We puncture four bits to arrive at

a (512, 32+11) punctured CRC-TBCC, matching the rate of the 5G CRC-Polar code. We

credit Dr. Dariush Divsalar with the suggestion to use such a low rate convolutional code

design.

3.2.1 Design of TBCC and CRC Polynomials

Similar to the design criteria for DSO CRCs, we can define a distance-spectrum-optimal

TBCC as the set of convolutional code polynomials that minimizes the union bound on the

distance spectrum of the TBCC. We once again approximate this optimization by searching

for the set of polynomials that maximize the minimum distance and minimize the number

of codewords at the minimum distance.

A memory-8 binary convolutional code has 27 = 128 possibilities for each polynomial.

Finding the optimal rate-1/12 convolutional code via brute force search requires searching(
128
12

)
≈ 2.4 × 1016 polynomial combinations. Even after eliminating equivalent polynomial

combinations, the space of possible polynomial combinations is still far too large to ex-

haustively search through. Thus, a non-exhaustive search is performed. The search was

done by examining the initial weight spectra of thousands of randomly generated memory-8,

rate-1/12 convolutional codes and storing the one(s) with the largest dfree and the smallest

A(dfree), A(dfree+1), A(dfree+2), and A(dfree+3). From there, we selected the best polynomial
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combination found by this search.

Once the TBCC polynomials were selected, we then searched all 210 = 1024 possible

11-bit CRCs to find which CRC maximized dmin of the CRC-TBCC concatenated code and

minimized A(dmin). We performed this search via an efficient CRC search algorithm for

TBCCs described in [14].

3.2.2 Optimal CRC-TBCC Parameters

The best memory-8, rate-1/12, (516,43) TBCC that we found through our non-exhaustive

search has generator polynomials {533, 727, 765, 445, 715, 635, 563, 555, 737, 557, 677, 511}

in octal. This TBCC has a minimum distance of dfree = 75, with a total of 86 codewords at

weight 75. Table 3.2.2 shows the weight distribution for the first few weights.

Table 3.3: Partial weight distribution of the (516,43) TBCC

d 0 75 76 79 80 84 87 88 91 92

A(d) 1 86 86 86 43 129 129 129 215 43

The 11-bit DSO CRC for this TBCC is 0xF69, where the most significant bit corresponds

to the x11 term of the polynomial. The concatenated CRC-TBCC has a minimum distance

of dmin = 132 and A(dmin) = 37.

We also must select four bits of the CRC-TBCC to puncture to match the length and

rate of the CRC-Polar code. To select the optimal puncture pattern, we searched for the

puncture positions that have the smallest effect on the minimum weight codewords of the

CRC-TBCC; that is, we searched all weight-132 codewords for the positions that had the

most 0’s in that position. This way, by puncturing these positions, there would be as small

an impact on the minimum weight codewords as possible, thus maximizing the dmin of the

punctured codes.

Figure 3.3 shows the weight of each bit for the 37 weight-132 codewords of the CRC-
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Figure 3.3: Bit weight for each bit index for all weight-132 codewords. These weights vary

from 4 to 15 codewords, so it is very important to select low weight indices to puncture.

TBCC; that is, we show the number of weight-132 codewords for which the bit at each bit

index is set to 1. This plot shows that there is a large variation in bit weights across different

bit indices, so selecting which bits to puncture is very important to minimize the number of

codewords we reduce in weight. We find that the bit indices 60 and 504 have the smallest

bit weight at four codewords, and there are a total of 13 bit indices with a weight of five

codewords. So, we select indices 60 and 504 as two of our punctured bits, and we also select

two of the weight-5 indices to fill out the remaining two puncture positions.

Through exhaustive search of weight-5 bit indices, we found that puncturing bit positions

{47, 60, 129, 504} results in the largest dmin and the smallest A(dmin). This resulted in a

punctured (512,32) CRC-TBCC code with dmin = 130 and A(dmin) = 1. Unfortunately,

there is no puncture pattern of the weight-4 and weight-5 indices that results in a dmin of

131, so a puncture pattern with only a single codeword at 130 is the best result.

3.2.3 Adaptive List Decoding

We use an adaptive list Viterbi decoder for our CRC-TBCCs. The algorithm is conceptually

similar to that of the adaptive SCL decoder, but with a parallel LVA decoder [25] instead of

a parallel SCL decoder. A critical difference is that the LVA decoder for list size L gathers

the L trellis paths that have the L highest likelihoods for each possible end state. The
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decoder then combines the trellis paths of each end state into one list and orders them in

terms of likelihood, and then selects the most likely codeword that passes both the tail-biting

condition and the CRC check. As the list size L tends to ∞, the LVA decoder becomes the

maximum likelihood decoder for CRC-TBCCs.

For each beginning/ending state, a parallel LVA decoder always finds the L most likely

codewords given the received noisy vector, ranked in order of most to least likely. For

example, if the correct codeword is the kth most likely codeword for a given end state and

the given received noisy vector, then the codeword will not appear on the list if L < k,

and it will appear at position k if L ≥ k. Similarly, if there is an incorrect codeword with

the same beginning/ending state as the correct codeword, the incorrect codeword passes the

CRC check, and the incorrect codeword is more likely than the correct codeword, then the

incorrect codeword will always appear before the correct one on the list.

A common practice for decoding TBCCs is to use the wrap around Viterbi algorithm

(WAVA), which tends to improve performance over standard Viterbi decoding of TBCCs

[30]. For our CRC-TBCC, we use a WAVA inspired algorithm where we perform a single

pass through the trellis to initialize metrics before transitioning to adaptive LVA decoding.

Simulation results show that adaptive and nonadaptive LVA decoding with this single pass

metric initialization have functionally identical TFR performance.

Results in [3] show that as SNR increases, the average list rank of the decoded codeword

converges very quickly to one. For this reason, it makes sense to initialize our adaptive

decoder with Lmin = 1. This also implies that the adaptive decoder is significantly faster

than the nonadaptive decoder. If the correct codeword is also the most likely, the adaptive

decoder will terminate after its first iteration with Lmin = 1, but the nonadaptive decoder

will find all L most likely codewords before selecting the correct one. Simulation results in

Section 3.4 confirm this fact.

We also include the TFR and throughput of the 24-bit CRC-polar code used in [15]

and the previous chapter. Figure 3.9 suggests that under optimal decoding this should
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Figure 3.4: Partial weight distribution of (512,43) Polar and (516,43) TBCC. Polar codewords

are concentrated at specific weights, while TBCC codewords are more spread out between

weights.

outperform the 11-bit CRC-polar, but as discussed in Section V.A, the maximum list size of

1024 is not large enough for this result. Instead, for L = (32, 1024), the 24-bit CRC-polar

has similar decoding speed but significantly worse TFR performance compared to the 11-bit

DSO CRC-polar.

3.3 Distance Spectra Analysis

In the previous sections, we have presented data of the partial distance spectra of the Polar

code, CRC-Polar, TBCC, and punctured CRC-TBCC. In this section, we present an in depth

comparison of the distance spectra between these codes.

Since the codes we are working with have a relatively small number of codewords (232 ≈

4.3 billion), we were able to compute the complete distance spectrum of the punctured

CRC-TBCC and the CRC-Polar codes. Figure 3.4 shows the partial distance spectra of
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the (512, 43) Polar code and the (516, 43) convolutional code up to weight 128, plotted on

a log scale. This plot shows the distance spectra of both codes before the 11-bit CRC is

applied to expurgate non-CRC-compliant codewords. We can see that these two distance

spectra are very different qualitatively. The Polar code has a very sparse distance spectrum,

with codewords only appearing at weights that are multiples of 32, with large numbers of

codewords concentrated at these distances. By contrast, the TBCC distance spectrum is

denser, with codewords appearing at every value of d, but with relatively low multiplicities

at each individual distance.

Another property of the TBCC distance spectrum is that, at low weights, the number

of codewords that appear at each weight is a multiple of the message length 43. This stems

from the fact that if you cyclic shift the message word of a TBCC by any amount, the

codeword after convolutional encoding will also be a cyclic shift of the original codeword, so

it will also have the same weight. At low weights, codewords consist of a single error pattern

surrounded by zeros, which means that low weight codewords are never cyclic. This results

in every cyclic shift of a low weight codeword being a unique codeword, and since there are

43 bits in the word before encoding, there are 43 unique cyclic shifts. This breaks down at

higher weights, where it is possible for a cyclic shift to produce a duplicate codeword.

Figure 3.5 shows the full distance spectra of the (512, 32) CRC-Polar and the (512, 32)

punctured CRC-TBCC codes on a log scale. These codes have a very similar dmin, with

the CRC-Polar code having dmin = 128, and the punctured CRC-TBCC having dmin = 130.

Once again, the codewords of the CRC-Polar code are concentrated at discrete weights

(multiples of 16), while the CRC-TBCC distance spectrum forms a more continuous shape.

Figure 3.5 also shows the cumulative codeword distance spectra of each code. That is,

we plot the number of codewords with weight less than or equal to d as a function of d.

We see that the cumulative codeword spectra of the two codes actually hug quite closely

together. The CRC-TBCC has fewer cumulative codewords at the smallest weights, and

visual inspection seems to show that it tends to have fewer cumulative codewords than the
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Figure 3.5: Distance spectra (inner plot) and cumulative distance spectra (outer plot) of

CRC-Polar and punctured CRC-TBCC.

CRC-Polar at most weights. However, the CRC-TBCC is not strictly better than the CRC-

Polar, as there are several points where the CRC-Polar has fewer cumulative codewords.

To better understand the effects of the distance spectra, Figure 3.6 plots the truncated

union bound up to weight d vs. max weight d for the punctured CRC-TBCC, the DSO

CRC-polar, and the 5G CRC-polar codes. We can observe a number of effects from Figure

3.6.

Firstly, when comparing the CRC-TBCC and the DSO CRC-polar, the CRC-TBCC is

the clear winner from the perspective of truncated union bound at both values of Eb/N0.

The DSO CRC-polar code is unable to overcome the large union bound penalty that the 219

codewords at d = 128 incurs at the start, and the CRC-TBCC has a strictly better truncated

union bound at every maximum distance. The same is true for the comparison between the

DSO CRC-polar and the 5G CRC-polar code. The 5G CRC-polar has a much worse dmin,

and this manifests as a large union bound penalty when compared to the DSO CRC-polar.

From this comparison, we can see that replacing the 5G CRC with a DSO CRC for the polar

37



0 100 200 300 400 500
Maximum Distance

10-12

10-10

10-8

10-6

10-4

T
ru

nc
at

ed
 U

ni
on

 B
ou

nd

5G CRC-Polar 0xE21
DSO CRC-Polar 0xD41
Punctured CRC-TBCC

Figure 3.6: Truncated union bound of both codes vs. maximum distance. The punctured

CRC-TBCC has a strictly better truncated union bound than the DSO CRC-polar, which

itself is better than the 5G CRC-polar code. The CRC-TBCC has dmin = 130, the DSO

CRC-polar has dmin = 128 and the 5G CRC-polar has dmin = 96. As Eb/N0 increases, the

codewords at dmin dominate the union bound.

code does noticeably improve the union bound.

Secondly, we notice a qualitative difference between the union bound curves for Eb/N0 = 3

dB and Eb/N0 = 5 dB. At Eb/N0 = 3 dB, we can see that the union bound keeps increasing

by significant amounts until codeword weights of around 250. This is roughly twice the dmin

of the CRC-TBCC and DSO CRC-polar codes, and 2.5× the dmin of the 5G CRC-polar.

For this value of Eb/N0, while the dmin does impact the union bound, it is not the sole

contributor to the final union bound value.

In contrast, when Eb/N0 = 5 dB, the codewords at dmin play a much more significant

role in the value of the union bound. For the CRC-TBCC, codewords stop mattering above

a weight of around 150, and both CRC-polar codes have their union bounds determined

almost entirely by their codewords at dmin.

As a consequence of the union bound becoming dominated by dmin as Eb/N0 increases,
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we notice that the gaps between the union bounds of the codes is larger at 5 dB than it is at

3 dB. The CRC-TBCC has a larger dmin and a A(dmin) than the other two codes, so its union

bound performs significantly better as Eb/N0 increases. Figure 3.6 shows that our design

algorithm for finding DSO CRCs by maximizing dmin and minimizing A(dmin) becomes a

better approximation as Eb/N0 increases, and it also shows the importance of maximizing

dmin for codes operating at high Eb/N0.

3.4 Simulation Results

We now present simulation results for our CRC-TBCC and CRC-Polar designs. We analyze

the total failure rate performance of these codes, the trade off between list size and undetected

error rate, and the decoding speed of our decoders.

3.4.1 Total Failure Rate

Figure 3.7 shows the TFR performance of the CRC-TBCCs and CRC-Polar codes with

various list decoding schemes, plotted together with a saddlepoint approximation of the

RCU bound [13]. We use maximum list sizes of Lmax = 32 and Lmax = 1024. For the

adaptive SCL decoder with Lmax = 1024, we also vary the minimum list size, Lmin, between

1, 4, and 32. Once again, we use the notation L = (a, b) to refer to an adaptive list decoder

with Lmin = a and Lmax = b.

For Lmax = 32, the CRC-Polar with nonadaptive SCL decoder has a slightly better TFR

performance than its adaptive counterpart. Both of these codes perform worse than the

CRC-TBCC.

For Lmax = 1024, all codes have comparable TFR performances at low Eb/N0. For the

adaptive CRC-Polar curves, we see that changing Lmin has a significant impact on TFR

performance at high Eb/N0. When Lmin = 1, there is a significant error floor starting at

Eb/N0 = 2.5 dB. This error flooring effect is present in the comparisons in Chapter 2, where
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Figure 3.7: TFR vs. Eb/N0 for all CRC-Polar and CRC-TBCC codes. The notation

L = (a, b) refers to an adaptive list decoder with Lmin = a and Lmax = b. The CRC-TBCC

has the best performance and is within 0.2 dB of the RCU bound.

an adaptive SCL decoder with Lmin = 1 was also used. A SC decoder with list size 1 and

11-bit CRC turns out to have a high undetected error rate at high Eb/N0, which explains

this error floor.

As we increase Lmin, we see that the performance of the adaptive CRC-Polar improves

until it is about equal to the performance of the nonadaptive CRC-Polar when Lmin = 32.

Due to the extremely slow speed of the nonadaptive SCL decoder with L = 1024 (shown

later) and the low target TFR, the 3 dB point of the nonadaptive CRC-Polar curve was

computed with a relatively small sample size of error events (100). As such, this data point

is not completely reliable, which explains why the adaptive CRC-Polar with Lmin = 32 is

slightly better.

Once again, the best performing code for Lmax = 1024 is the CRC-TBCC, outperforming

the best CRC-Polar by nearly a factor of two at Eb/N0 = 3 dB. The CRC-TBCC TFR curve

is about 0.2 dB away from the RCU bound, which matches the gap to RCU bound of the
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Figure 3.8: TFR curves of CRC-Polar and CRC-TBCC and Union Bound curves. The CR-

C-TBCC union bound separates from the CRC-Polar union bound at high Eb/N0, performing

a little better. This effect is also seen in the TFR curves of the codes as they converge on

union bound.

CRC-TBCC in the previous chapter.

In the previous Section 3.3, we found the complete distance spectrum of the CRC-Polar

and CRC-TBCC codes. With this information, we can plot the union bound of these codes

against the simulation results. Figure 3.8 shows the union bound and the TFR curves for

the best performing CRC-Polar and CRC-TBCC with Lmax = 1024. We can see that at

high Eb/N0, both codes hug very closely to the union bound. Also, the CRC-TBCC has a

slightly better union bound curve at high Eb/N0, following the results from Figure 3.6. We

expect the TFR curves to converge on the union bound as Eb/N0 increases, meaning the

CRC-TBCC will continue to outperform the CRC-Polar.

Given how tightly our CRC-TBCC and CRC-polar codes hug the union bounds, we can

get an idea for how well a code can do by looking at the union bound. We decide to plot

the union bounds of CRC-polar codes with every CRC from the 5G standard in Table I.
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Figure 3.9: Union Bound curves for all 5G CRC-polar codes, as well as the 11-bit DSO

CRC-polar and the CRC-TBCC. Union bound tends to improve as CRC length improves,

but the DSO CRC-polar and CRC-TBCC union bounds perform significantly better than

the 5G CRC11 polar code, showing the importance of designing DSO CRCs.

These union bounds are shown in Figure 3.9, along with the union bounds of the punctured

CRC-TBCC and our 11-bit DSO CRC-polar code.

Firstly, we can see that at high SNR, larger CRCs result in better union bounds, with the

CRC6 polar code performing the worst, and the CRC24C polar code performing the best.

However, this conflicts with the simulation results in [15], which shows the the CRC24C

polar code performs significantly worse than a CRC-polar with 11-bit CRC.

In practice, the problem with a CRC-polar code with a 24-bit CRC is the list size neces-

sary to achieve good TFR performance. In all of our simulations of CRC-polar codes with

a 24-bit CRC, up to a maximum list size of 1024, we have never found an undetected error.

In other words, every single failure found has been a result of the maximum list size being

too small. Our 11-bit DSO CRC-polar, in contrast, has a large proportion of its failures as

undetected errors, upwards of 80% for high Eb/N0. As such, its TFR curve converges closely
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to its union bound curve.

From these results, in order for a code to achieve performance comparable to or better

than the union bound, we expect that the maximum list size must be sufficiently large

enough that most failures are undetected. This intuitively makes sense, as the calculation of

the union bound assumes all failures are undetected. We conjecture that for a code with an

m-bit CRC, a maximum list size of around 2m is necessary for this union bound matching

performance, motivated by simulation results in this paper and [15], and by results in [3]

showing the expected list rank of CRC-convolutional codes converges to 2m at low SNR.

Figure 3.9 also demonstrate the importance of designing DSO CRCs. We can see that the

DSO CRC-polar union bound outperforms the 5G CRC11 union bound by roughly a decade

at Eb/N0 = 5 dB, and even outperforms the union bound for CRC16. In addition, the union

bound for the CRC-TBCC performs nearly as well as one of the 24-bit CRC-polar codes.

This demonstrates that DSO CRC design becomes very important in the high SNR/low TFR

region.

3.4.2 Undetected Error Rate

So far we have focused on the TFR performance of these codes and how different list sizes

affects the TFR. We will now explore the undetected error rate of these codes and its relation

to TFR.

Figure 3.10 plots the TFR, undetected error rate, and erasure rate of the Lmin = 1

CRC-TBCC and the Lmin = 32 CRC-Polar codes at Eb/N0 = 2.5 dB against maximum list

size. When Lmax is small, almost all errors are erasures, implying that Lmax is not large

enough for optimal performance. We confirm this when we increase Lmax and see that TFR

performance improves significantly. At large Lmax, almost all errors are undetected, but even

at Lmax = 1024 that data imply that we could still improve TFR further by increasing Lmax.

These data also suggest that an 11-bit CRC may be too short for applications where
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Figure 3.10: TFR, undetected error rate, and erasure rate curves as a function of maxi-

mum list size of adaptive decoder at Eb/N0 = 2.5 dB. Blue curves with square markers are

L = (32, Lmax) CRC-Polar, and orange curves with circle markers are L = (1, Lmax) CR-

C-TBCC.

minimizing undetected errors is very important. For these situations, a longer CRC will

improve undetected error rate, but at the cost of TFR performance. For example, the 24-bit

CRC in the 5G standard has significantly worse TFR performance than an 11-bit CRC [15],

but its undetected error rate is substantially lower. Alternatively, concatenating a second

CRC will also substantially improve undetected error performance.

3.4.3 Decoding Complexity

Finally, we present the decoding complexity for each decoder. Figure 3.11 shows TFR

performance at Eb/N0 = 3 dB plotted against decoding run time1.

1All simulations were performed on a System76 Galaga Pro Ubuntu laptop with an Intel Core i7-8565U
CPU @1.8GHz x 8 Processor.
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Figure 3.11: TFR at Eb/N0 = 3 dB vs. decoded codewords per second for each decoder. The

Lmax = 1024 LVA decoder for CRC-TBCC has the best TFR performance and significantly

larger codeword throughput than the SCL decoders for CRC-Polar.

For both Lmax = 32 and Lmax = 1024 decoders, the CRC-TBCC with LVA decoder has

both the fastest decoding speed and the best TFR performance. In fact, for Lmax = 1024,

the LVA decoder is well over 10 times faster its SCL counterparts.

We also see that for the Lmax = 1024 SCL decoders, increasing the minimum list size

has negligible impact on decoding speed, but significant impact on TFR performance. This

is because Lmin is still small enough that the increase in complexity is small. If we were

to increase Lmin further, we would expect decoding complexity to converge toward the non-

adaptive SCL decoder.

3.5 Conclusion

In this chapter we presented design methods for optimal low-rate CRC-Polar and CRC-

TBCC codes compatible with the 5G PBCH coding standard. We designed these codes to
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have equivalent rate, blocklength, and CRC length in order to make the comparison between

them as fair as possible. We then did a direct comparison of these two codes, analyzing the

properties of their distance spectra and comparing their error rates under simulation. We

found that, compared to the CRC-Polar, the CRC-TBCC has a superior distance spectrum,

a faster decoder, and better TFR performance.

We use a blocklength of 512 for our codes in this paper, which matches the blocklength

of the polar encoder in the 5G PBCH code. However, the 5G PBCH polar code actually

has a blocklength of 864, where the first 352 bits of the 512-bit polar code are repeated. We

decided to ignore this repetition in this paper since repetition generates no improvement in

TFR performance when compared against Eb/N0 [15]. However, a rate-1/20 TBCC with

a 32-bit message and 11-bit CRC has a blocklength of 860 bits, which is very close to the

864-bit blocklength of the PBCH without repetition. A well designed rate-1/20 CRC-TBCC

could outperform the rate-1/12 CRC-TBCC we present in this paper and fit even better into

the 5G standard. This is an area of future interest.

In 2019, Arıkan presented an improvement on his polar codes, named polarization-

adjusted-convolutional (PAC) codes [31]. These codes have been shown to perform very

well at short blocklengths, outperforming CRC-Polar codes [7]. We are interested in the

performance of CRC-aided list decoding of PAC codes at these very low rates.
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Part II

Design of CRC-convolutional codes for

Noncoherent Q-ary Orthogonal Signaling

47



CHAPTER 4

CRC-Aided Short Convolutional Codes and RCU

Bounds for Orthogonal Signaling

This chapter was first presented at the IEEE Global Communications Conference (GLOBE-

COM) in December 2022. A written version of this presentation is available in [32].

Phase coherency between transmitter and receiver is necessary for optimal reception.

However, phase coherency can be difficult to achieve in certain contexts, so orthogonal sig-

naling with noncoherent reception is often used. The most common examples of orthogonal

signal sets are Q-ary Hadamard sequences and Q-ary frequency shift keying (QFSK) [33], the

later of which we will focus on for this chapter. Non-coherent FSK signaling is of practical

importance. It is currently used in Bluetooth [34]. More recently the LoRa standard has

adopted noncoherent QFSK signaling [35] [36].

For values of Q greater than 8, noncoherent QFSK loss is small compared to coherent

QFSK. In addition, for large values ofQ, noncoherent QFSK performs nearly as well as BPSK

signaling, at the expense of bandwidth. With these facts in mind, developing good codes for

noncoherent QFSK is very important for contexts in which phase coherency is difficult or

impossible. This occurs when there is a high relative velocity between the transmitter and

the receiver or when the receiver must be very simple or inexpensive. A natural code choice

for QFSK is a code based on a Q-ary alphabet so that code symbols are directly mapped to

modulation symbols.

Binary convolutional codes concatenated with binary CRC codes have been shown to
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perform very well on BPSK/QPSK channels earlier in this thesis, as well as in [10], [3], [11].

Following [11], we design Q-ary cyclic redundancy check (CRC) codes to be concatenated

with optimal, Q-ary, zero-state-terminated convolutional codes (ZTCC). Consistent with the

notation throughout this thesis, we denote this concatenated code by CRC-ZTCC.

The Q-ary CRC code design criterion is optimization of the distance spectrum of the

concatenation of the CRC code represented by g(x) and the convolutional code represented

by [g1(x) g2(x)], where each polynomial has Q-ary coefficients. With all operations over

GF(Q), this concatenation is equivalent to a Q-ary convolutional code with polynomials

[g(x)g1(x) g(x)g2(x)], which is ostensibly a catastrophic convolutional code. However, rather

than applying a Viterbi decoder to this resultant code, we employ the list Viterbi algorithm

(LVA) [25]. For this chapter, we focus on 4-ary CRC-ZTCC code designs. Chapter 5 will

explore larger values of Q.

Design of codes for noncoherent orthogonal signaling has been done for long messages

in [37–40]. Here, we analyze Q-ary CRC-ZTCC codes for short messages. Optimal Q-ary

convolutional codes for orthogonal signaling were described by Ryan and Wilson [2]. We

design distance-spectrum optimal (DSO) CRCs for two of the codes in [2].

Since the pioneering work of Polyanskiy et al. [12], the random coding union (RCU) bound

has been used as a measure of the performance quality of short-message binary codes. The

RCU bound is very difficult to calculate, but Font-Segura et al. [13] derived a saddlepoint

approximation for the RCU bound that is more practical to calculate. In this chapter

we extend their work in [13] to the noncoherent QFSK channel. We also include in our

comparisons the normal approximation [41] for its simplicity.

4.1 System Model

A block diagram of the full system model can be seen in Figure 4.1. We begin with a

K symbol Q-ary message. This message is encoded with an m symbol CRC to create
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Figure 4.1: Block diagram of full system model.

a (K + m) symbol Q-ary CRC word, and then this CRC word is passed through a zero

terminated convolutional encoder to create an N symbol Q-ary CRC-ZTCC codeword. For

this encoding, all arithmetic is done in the finite Galois field GF (Q).

At this point, each symbol of the Q-ary CRC-ZTCC codeword is mapped to a corre-

sponding frequency in our QFSK signal set. These signals are sent over an AWGN channel

and detected by a noncoherent receiver. Rather than making a hard decision, the detector

passes its information as metrics to an adaptive LVA decoder. This adaptive decoding al-

gorithm is the same as the adaptive LVA decoders used in the previous chapters, adapted

to work in GF (Q) rather than binary. More details on the noncoherent receiver and LVA

decoder are given in the following subsections.

4.1.1 Noncoherent QFSK Signaling

Our discussion here of the noncoherent QFSK channel follows [42]. For a codeword symbol

x ∈ {1, 2, ..., Q}, the transmitter takes x = i and transmits the corresponding duration-T

signal si(t, ϕ) = A cos(ωit+ ϕ), where A =
√

2Es/T so that the energy of the signal is Es, ϕ

is uniform over [0, 2π), and the frequencies ωi/2π are separated by a multiple of the symbol
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Figure 4.2: A single correlator bank for the noncoherent QFSK receiver

rate to ensure mutual orthogonality among the signals si(t). The detector receives the signal

r(t) = si(t, ϕ) + n(t), where n(t) is zero mean AWGN with power spectral density N0/2.

The noncoherent detector consists of Q pairs of correlators, with the jth pair correlating

r(t) against 2
N0
sj(t, 0) and 2

N0
sj(t,

π
2
). Figure 4.2 shows a correlator bank for the carrier

frequency sj [42]. The two correlator outputs are then squared and summed, and a square

root is taken of the result. We denote this root-sum-square of the two values by yj. The

vector y = [y1, ..., yQ]
T is the soft decision output of the detector.

In the absence of coding, the magnitudes in y would be used to make a hard decision

on the symbol sent. However, in our model we use CRC-ZTCC codes, so instead these

magnitudes are passed as metrics to the LVA decoder.

If i ̸= j, the correlation of si(t, ϕ) and sj(t, 0) is 0 due to orthogonality, and the same

is true for the correlation of si(t, ϕ) and sj(t,
π
2
). As such, the value yj will be the root-

sum-square of two zero-mean Gaussian random variables with variance σ2 = 2Es/N0. Thus,

yj will have a Rayleigh distribution with parameter σ2 = 2Es/N0. If i = j, however, the

Gaussian random variables that are root-sum-squared will not be zero mean. As a result, yj

will instead have a Rice distribution with parameters µ = 2Es/N0 and σ2 = 2Es/N0. The
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Rayleigh and Rice distributions are as follows:

fRayleigh(yj |x = i) =
yj
σ2

exp

[
−
y2j
2σ2

]
(1)

fRice(yi |x = i) =
yi
σ2
I0(yi) exp

[
−y

2
i + µ2

2σ2

]
(2)

where I0(.) is the zeroth-order modified Bessel function of the first kind.

Given the message symbol x = i, the received vector y has a density function that is

the product of one Rice density function, corresponding to yi, and Q − 1 Rayleigh density

functions, corresponding to all yj for j ̸= i. This yields the following channel equation for

the noncoherent QFSK channel:

W (y |x = i) =

∏Q
k=1 yk
σ2Q

I0(yi) exp

[
−µ

2 +
∑Q

k=1 y
2
k

2σ2

]
(3)

4.1.2 Viterbi Algorithm Decoder and Metrics

For a BI-AWGN channel with BPSK modulation, the LVA decoder finds the trellis paths in

the trellis that minimize the sum of euclidean distances between the received noisy BPSK

values and the expected noiseless BPSK values for the path. This algorithm is a computa-

tionally efficient way of finding the path that maximizes sum of the optimal decoding metrics

for the BI-AWGN channel with BPSK modulation.

For the noncoherent QFSK channel, the optimal decoding metrics (i.e. log likelihoods)

involve maximizing the logarithm of the Bessel function I0(.) of the received values y. How-

ever, the calculation of log I0(.) is very complex and thus impractical when LVA decoding.

Figure 4.3 shows the optimal metrics log I0(yj) and several approximations as yj varies.

Van Trees [43] gives the approximation log I0(yj) ≈ eyj√
2πyj

, which is very accurate for

moderate to large values of yj, but diverges to infinity for very small values of yj. In
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Figure 4.3: Comparison of several approximations for the optimal metrics log I0(yj)

practice, the so called "square-law metric" y2j (or y2j
4
, as is in [43]) is often used instead of

optimal metrics [2,37,44]. However, the square law metric does a poor job of approximating

the optimal metric, and only works well as blocklength tends to infinity.

We see by visual inspection on Figure 4.3 that the optimal metric is roughly linear for

most values of yj, so we can also linearly approximate the optimal metrics by the so called

"magnitude metric" 0.96yj−1.6. This magnitude metric has the benefit of being very simple

to calculate, and unlike the Van Trees approximation it doesn’t explode to infinity at small

values of yj. This magnitude metric is the metric primarily used for simulations in Section

4.4.
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4.2 CRC-ZTCC Code Design for QFSK

As in previous chapters, the frame error rate for a length-n block code with minimum distance

dmin on the QFSK/AWGN channel is union upper bounded [2] as

FER <
n∑

d=dmin

A(d)P2(d) (4)

where A(d) is the number of weight-d codewords in the code and P2(d) is the pairwise error

probability for two codewords at distance d. A DSO CRC-ZTCC attempts to minimize this

union bound, which can be well approximated for high SNR by maximizing the minimum

distance dmin and minimizing A(dmin). In this section, we present the design procedure for

the DSO CRC-ZTCCs we use in this chapter.

Ryan and Wilson [2] have found optimal non-binary convolutional codes for small mem-

ory. These codes are optimal in the sense of maximizing the free distance dfree and min-

imizing the information symbol weight at each weight w ≥ dfree. We aim to design DSO

CRCs for these convolutional codes by maximizing dmin and minimizing A(dmin) for the

concatenated CRC-ZTCC block code.

In this section, we adapt the methods in [11] to find DSO CRCs for 4-ary convolutional

codes. We consider a memory-2 (ν = 2) and a memory-4 (ν = 4) code from [2]. The

convolutional code generator polynomials g1 and g2 can be found in Table 4.1 and the

optimal CRC polynomials are in Table 4.2, with the x0 coefficient appearing on the left.

These polynomials are elements of GF (4)[x], with GF (4) = {0, 1, α, β} where α is a primitive

element of GF (4) and β = α2.

The DSO CRC polynomials for each convolutional code and each CRC-ZTCC are found

through an exhaustive search. We begin by initializing a list with every CRC polynomial of

degree m and setting a max weight to search to d̃. For every weight from w = dfree to w = d̃,

we find the number of codewords of Hamming weight w for each CRC-ZTCC concatenated

code with polynomials [g(x)g1(x) g(x)g2(x)].
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Table 4.1: Generator Polynomials for the Memory-2 and Memory-4 4-ary Convolutional

Codes
ν g1 g2 dfree Nt(dfree) Nc(dfree)

2 (1, 1, 1) (1, α, 1) 6 6 381

4 (1, 1, 1, β, α) (1, α, 1, α, β) 9 6 378

Codewords are found by the same process used in [11], adapted for CRC-ZTCC codes in

GF (4). This is done by traversing through the trellis of the CRC-ZTCC code for each CRC.

We begin in the zero state. For 4-ary CRC-ZTCC codes, each state can transition into four

possible new states, one for each element of GF (4). We traverse through the trellis, allowing

all possible state transitions, and we maintain a list of every codeword constructed this way.

A trellis path is eliminated from contention if the corresponding codeword reaches a weight

of d̃ before rejoining the zero state. If a path reaches the end of the trellis in the zero state

with a codeword weight w ≤ d̃, we increment the count of the number of codewords at weight

w for this CRC-ZTCC.

After the distance spectra up to d̃ for every CRC-ZTCC is found, we find which CRC-

ZTCC has the largest dmin. If multiple CRC-ZTCCs have the same dmin, we select whichever

CRC-ZTCC has the least number of codewords at dmin. If there is a tie for the smallest

number of codewords at dmin, we compare the number of codewords at dmin + 1, and we

continue incriminating until the tie is broken. Table 4.1 and Table 4.2 show the minimum

distances dfree and dmin for the convolutional codes and CRC-ZTCCs, respectively.

Often, the distance spectrum for a convolutional code is given in terms of of the number

of error events at each weight w, as in [45]. This metric only cares about the number of

paths on the trellis that diverge from the zero state and eventually rejoin, independent of

codeword length. However, in this paper we analyze CRC-ZTCCs as a block code, so the

more important metric is the number of codewords of weight w. Table 4.1 and Table 4.2

provide both the number of error events on the trellis at w = dmin, Nt(dmin), and the number
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Table 4.2: DSO CRC Polynomials for the Memory-2 and Memory-4 4-ary CRC-ZTCCs

ν m g dmin Nt(dmin) Nc(dmin)

2 3 (1, β, 1, α) 11 21 1305

2 4 (1, 0, 0, β, α) 12 18 612

2 5 (1, 0, 0, α, β, 1) 13 6 273

2 6 (1, α, β, 0, 1, 1, α) 15 48 2442

2 7 (1, 0, 1, β, β, β, 0, α ) 16 21 1029

2 8 (1, α, α, α, 1, α, α, α, β) 17 9 345

4 3 (1, β, α, β) 14 30 1839

4 4 (1, 0, 0, β, β) 15 15 921

4 5 (1, 0, β, β, 0, 1) 16 3 174

4 6 (1, β, 1, α, α, 1, β) 18 21 1266

4 7 (1, 1, 1, α, β, β, 1, α) 19 9 561

of codewords for the block code, Nc(dmin).

Nt(dmin) and Nc(dmin) are related, since low weight codewords will always consist of

a single error event of the [g1(x)g(x) g2(x)g(x)] concatenated trellis, and the rest of the

codeword will remain in the zero state. In that sense, Nc(dmin) effectively counts the number

of possible offsets each trellis error event can take in the codeword. For example, for a CRC-

ZTCC block code with a length-70 trellis, a length-10 trellis error event can appear at 60

different offsets in the codeword. As a result, this error event is only counted once for Nt(.),

but is counted 60 times for Nc(.).

4.3 RCU Bound Equations

The RCU bound is an achievability bound for codes of a given rate and finite blocklength,

first described by Polyanskiy, Poor, and Verdú in 2010 [12]. The RCU bound is defined
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in [12] as follows: let n and M be positive integers. Let P n(x) be a probability distribution

for a random coding ensemble for codewords of length n, and let W n(y|x) be a length-n

channel transition probability. The RCU bound for a length-n code with M codewords is

given by

rcu(n,M) = EX,Y [min {1, (M − 1)pep(X, Y )}] (5)

where EX,Y is the expectation over X and Y , X is a random variable drawn from P n(x), Y

is a random variable drawn from W n(y|X),

pep(X, Y ) = P[i(X̄;Y ) ≥ i(X;Y ) | X, Y ] (6)

is the pairwise error probability with X̄ drawn from P n(x), and i(X;Y ) is the mutual

information density of X and Y .

Calculating the RCU bound using this definition is computationally hard for most practi-

cal situations. In 2018, Font-Segura et. al. [13] presented a saddlepoint approximation for the

RCU bound to reduce computation complexity. In this section, we will present the equations

for the saddlepoint approximation of the RCU bound, find expressions for the derivatives

of necessary functions, and apply the noncoherent orthogonal signal channel model from

Section 4.1 to the equations in [13].

We start with Gallager’s E0-function [46], which is a function of a distribution over

the message symbol alphabet P (x) and channel W (y |x = i). We will write W (y | i) for

W (y |x = i) for notational simplicity. The Gallager E0 function is defined as

E0(ρ) = − log

∫ ( Q∑
i=1

P (x = i)W (y | i)
1

1+ρ

)1+ρ

dy (7)

where log is the natural logarithm. For the saddlepoint approximation of the RCU bound,

we must find the first and second derivatives of E0(ρ) with respect to ρ. We will assume a
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uniform distribution P (x) = 1/Q, as this is optimal for symmetric channels as is the case

for our channel.

These derivatives are notationally complex due to exponentiation in ρ, so to simplify we

define the following functions:

f(y, ρ) =

Q∑
i=1

W (y |x = i)
1

1+ρ (8)

g(y, ρ) =
∂

∂ρ

(
f(y, ρ)1+ρ

)
(9)

We now find the derivatives of E0 in terms of f and g. Note that we will use the notation

f ′(y, ρ) = ∂
∂ρ
f(y, ρ) since all derivatives are with respect to ρ.

We can rewrite E0(ρ) as

E0(ρ) = (1 + ρ) logQ− log

(∫
f(y, ρ)1+ρdy

)
(10)

This yields the following for the derivatives of E0(ρ):

E ′
0(ρ) = logQ−

∫
g(y, ρ)dy∫

f(y, ρ)1+ρdy
(11)

E ′′
0 (ρ) =

(
∫
g(y, ρ)dy)2

(
∫
f(y, ρ)1+ρdy)2

−
∫
g′(y, ρ)dy∫
f(y, ρ)1+ρdy

(12)

The relevant derivatives of f and g are shown in equations (13)-(16).
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f ′(y, ρ) = −
Q∑
i=1

W (y | i)
1

1+ρ logW (y | i)
(1 + ρ)2

(13)

f ′′(y, ρ) =

Q∑
i=i

W (y | i)
1

1+ρ logW (y | i)
(1 + ρ)3

(
logW (y | i)

1 + ρ
+ 2

)
(14)

g(y, ρ) = f(y, ρ)1+ρ

(
log f(y, ρ) +

(1 + ρ)f ′(y, ρ)

f(y, ρ)

)
(15)

g′(y, ρ) = g(y, ρ)

(
log f(y, ρ) +

(1 + ρ)f ′(y, ρ)

f(y, ρ)

)
+ f(y, ρ)1+ρ

(
2f ′(y, ρ)

f(y, ρ)
+ (1 + ρ)

(
f ′′(y, ρ)

f(y, ρ)
−
(
f ′(y, ρ)

f(y, ρ)

)2
))

(16)

With these derivatives, we finally give the saddlepoint approximation for the RCU bound

as given in [13]. Let R = 1
n
logM be the code rate. We define ρ̂ to be the unique solution

to the equation E ′
0(ρ̂) = R. We also define the channel dispersion V (ρ̂) = −E ′′

0 (ρ̂). The

saddlepoint approximation of the RCU bound is given by

rcu(n,M) ≃ ξ̃n(ρ̂) + ψn(ρ̂)e
−n(E0(ρ̂)−ρ̂R) (17)

where the functions ξ̃(.) and ψn(.) are given by

ξ̃(ρ̂) =


1 ρ̂ < 0

0 0 ≤ ρ̂ ≤ 1

e−n(E0(1,P )−R)θn(1) ρ̂ > 1

(18)

ψn(ρ̂) = θn(ρ̂)
(
Ψ(ρ̂

√
nV (ρ̂)) + Ψ((1−ρ̂)

√
nV (ρ̂)

)
(19)

The function ψn(.) is given in terms of the functions Ψ(.) and θn(.) which are defined as

Ψ(z) =
1

2
erfc

(
|z|√
2

)
exp

(
z2

2

)
sign(z) (20)
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θn(ρ̂) ≃
1√
1 + ρ̂

(
1 + ρ̂√
2πnω̄′′(ρ̂)

)ρ̂

(21)

where ω̄′′(ρ̂) is given as

ω̄′′(ρ̂) =

∫
Qρ̂(y)

[
∂2

∂τ 2
α(y, τ)τ=τ̂

]
dy (22)

and the derivative in ω̄′′(ρ̂) is evaluated at τ̂ = 1/(1 + ρ̂). The closed form expression for
∂2

∂τ2
α(y, τ) is given by equations (23)-(26).

∂2

∂τ 2
α(y, τ) =

β(y, τ) ∂2

∂τ2
β(y, τ)−

(
∂
∂τ
β(y, τ)

)2
β(y, τ)2

(23)

β(y, τ) =
1

M

M∑
i=1

W (y|i)τ (24)

∂

∂τ
β(y, τ) =

1

M

M∑
i=1

W (y|i)τ logW (y|i) (25)

∂2

∂τ 2
β(y, τ) =

1

M

M∑
i=1

W (y|i)τ (logW (y|i))2 (26)

Finally, the distribution Qρ̂(.) is defined as

Qρ̂(y) =
1

µ(ρ̂)

(
1

M

M∑
i=1

W (y|i)
1

1+ρ̂

)1+ρ̂

(27)

where µ(ρ̂) is a normalization constant for the distribution Qρ̂(y).

The noncoherent QFSK channel has the channel transition probability W (y |x) given in

Section 4.1. Noteworthy about these equations is that the y in the integrals is the vector y

of correlator outputs from Section 4.1. This vector y consists of a total of Q elements (one

for each signal in our signal set), and every yj of y exists in the domain [0,∞). As such, the
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integrals with respect to y in the saddlepoint approximation must be evaluated over the full

domain of y, RQ
+, or the space of length-Q real vectors with all positive elements.

While the calculation of the saddlepoint approximation of the RCU bound is less complex

than the true calculation of the RCU bound, it is still very complex. Much of this complexity

comes from solving E ′
0(ρ̂) = R, since we must do multi-dimensional numerical integration to

solve for ρ̂ in the integrand of the equation. The normal approximation [41], by contrast, only

relies on simple numerical integration to find the channel capacity of the noncoherent QFSK

channel [44] and the channel dispersion V , and is thus much less complex to calculate. We

now present the normal approximation for the noncoherent QFSK/AWGN channel, following

[41].

Over the ensemble of length-n, rate-R codes, according to the normal approximation the

frame-error rate (FER) is approximately given by

FER = q

(
n(C −R) + 0.5 log2(n) + O(1)√

nV

)
(28)

where q(x) =
∫∞
x
e−z2/2dz/

√
2π and C and R are both in units of bits per channel use.

The channel capacity C in this expression is given [44] by the expectation of the channel

information density, i(X;Y ),

C = E [i(X;Y )] (29)

which can be rearranged [44] into

C = log2(Q)− Ey|x=1

[
log2

(
1 +

Q∑
i=2

Λi(y)

)]
(bits/use) (30)

where

Λi(y) =
I0 (yi)

I0 (y1)
(31)
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and y1 is Rician and each yi is Rayleigh. In the FER expression, V is the channel dispersion

given by

V = E

(log2(Q)− log2

(
1 +

Q∑
i=2

Λi(y)

)
− C

)2
 (32)

4.4 Results

4.4.1 TFR for Various CRC Lengths

We simulate CRC-ZTCC codes with the convolutional generator polynomials shown in Table

4.1 and the CRC polynomials in Table 4.2. We used a message length of K = 64 4-ary

symbols, i.e. 128 bits, for all CRC-ZTCCs. Our codes are rate-K/(2 ∗ (K +m+ ν)), where

m symbols are added for the CRC code and ν symbols are added for zero-state termination.

Similar to the previous chapters, we plot the TFR of these codes, or the sum of the undetected

error rate and the erasure rate.

The decoder we used was an adaptive list Viterbi algorithm (LVA) decoder with a max-

imum list size of 2048, as in [15]. The adaptive LVA uses the same algorithm as in the

previous chapters, employing parallel list decoding with an initial list size of 1 and doubling

the list size until either a message candidate is found that passes the CRC check or the

maximum list size of 2048 is reached. Unless stated otherwise, all codes are decoded using

the magnitude metric as described in Section 4.1.2.

Fig. 4.4 shows the FER vs. Eb/N0 of the ν = 2 rate-1/2 CRC-ZTCC codes. The values

of m vary from m = 3 to m = 8. We also include the FER curve of the ZTCC without

CRC concatenation (m = 0). We see that increasing the length of the CRC improves the

performance of the CRC-ZTCC code. However, there is still a 1 dB gap between the best

FER performance and the RCU bound.

Fig. 4.5 shows FER vs. Eb/N0 for the ν = 4 rate-1/2 CRC-ZTCC codes. As in Fig.
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Figure 4.4: FER vs. Eb/N0 for all ν = 2 CRC-ZTCC codes. The solid lines are the data

for codes, and the dashed lines are the corresponding RCU bounds. Each message had a

length of K = 64 4-ary symbols, and the decoder had a maximum list size of 2048. The best

CRC-ZTCC code has a gap of about 0.9 dB to RCU bound at an FER of 10−4.

4.4, the performance of the CRC-ZTCC improves as m increases. Fig. 4.5 shows ν = 4

CRC-ZTCCs approach the RCU bound more closely than the ν = 2 CRC-ZTCCs, reducing

the gap down to 0.59 dB at FER = 10−4.

Fig. 4.6 compares every code we have simulated to its respective RCU bound, to visualize

the performance of all the codes, plotting the gap between each code’s performance and the

RCU bound as a function of the FER. Larger values of m achieve smaller gaps to the RCU

bound. Generally, the ν = 4 CRC-ZTCCs have smaller gaps to the RCU bound than ν = 2

CRC-ZTCCs. The gap to RCU bound increases as the FER decreases.

Our best 4-ary CRC-ZTCC has a gap to RCU bound of around 0.59 dB at FER =

10−4. This matches closely with the results in [3] for the analysis of binary CRC-ZTCCs.

This motivates the search for optimal CRCs for 4-ary tail biting convolutional codes (CRC-

TBCCs), since binary CRC-TBCCs in [3] approach the RCU bound closely. This will be
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Figure 4.5: FER vs. Eb/N0 for all ν = 4 CRC-ZTCC codes. The solid lines are the data

for codes, and the dashed lines are the corresponding RCU bounds. Each message had a

length of K = 64 4-ary symbols, and the decoder had a maximum list size of 2048. The best

CRC-ZTCC code has a gap of about 0.59 dB to RCU bound at an FER of 10−4.

explored in Chapter 5.
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Figure 4.6: Gap to RCU bound vs. FER for every CRC-ZTCC code. Higher values for m

have a smaller gap, and the ν = 4 codes have a smaller gap than the ν = 2 codes. The gap

also increases as FER decreases.
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Figure 4.7: Average List Size vs. FER of ν = 4 CRC-ZTCCs.

4.4.2 Expected List Rank

In [3], Yang analyzes the expected list rank when decoding binary CRC-ZTCCs. He finds

that at very low SNR (or equivalently high FER), the expected list rank roughly converges

on 2m, where m is the length of the CRC. The probability that a randomly selected codeword

passes the CRC check for an m-bit CRC is about 2−m, and at very low SNR we expect each

codeword to be effectively random, so this result makes sense. For our non-binary case, an

m-symbol Q-ary CRC passes random codewords with probability Q−m. So we would expect

the average list rank of our LVA decoder to converge to around Qm at very low SNR.

Also found in [3] is that expected list rank converges to one very quickly as SNR increases,

since at high SNR the first codeword on the list is very likely to be the correct codeword.

For the Q-ary case, we expect a similarly quick convergence to one.

Figure 4.7 shows simulations for expected list rank for the v = 4 4-ary CRC-ZTCC

with CRC lengths m = {3, 4, 5, 6}. These simulation results match exactly what we would

expect from [3]. At Eb/N0 < 3.5 dB, expected list rank is very close to 22m = 4m, and at
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Eb/N0 > 6.5 dB, the expected list rank is effectively one. For the m = 6, curve, we would

expect the average list rank to converge to 46 = 212, but we are limited by our maximum

list size of 2048 = 211.

Our CRC-ZTCCs achieve a target FER of 10−4 at Eb/N0 between 6 and 6.5 dB according

to Figure 4.5, depending on CRC length. Looking to Figure 4.7, we see that all of our CRC-

ZTCCs have an expected list rank less than four in this range. So, even at moderate FER,

the vast majority of codewords selected by the LVA decoder are very small. The adaptive

LVA decoding algorithm takes advantage of this fact. A parallel list decoder with L = 2048

will always generate a list of 2048 codewords, even though most of the time the codeword it

selects is within the first 10. The adaptive LVA decoder starts with small list sizes, and it

only has to go up to large list sizes very rarely.

4.4.3 Decoding Metrics

In Section 4.1.2, we discussed the various decoding metrics that can be used to approximate

the optimal log likelihood metrics for this channel. Figure 4.8 plots the v = 4,m = 6

CRC-ZTCC with the square-law, van trees approximation, and magnitude metrics. We see

that the magnitude metric performs the best of these three, which we can attribute to the

magnitude metric best approximating the optimal metrics over its entire domain.

We can approximate the optimal metrics even better by using a piecewise approximation.

Van Trees [43] shows that log I0(x) is well approximated by the square-law metric x2

4
for small

x and by x− log
√
2πx for large x. Through visual inspection, we choose x = 1 as the cutoff

between these two metrics. Figure 4.8 also includes this piecewise metric, which marginally

improves on the magnitude metric. This implies that decoding with the optimal metric

does offer an improvement over the magnitude metric, but only a small one. Given the

computational simplicity of the magnitude metric, it appears to be a good approximation

for practical use.
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Figure 4.8: Performance of the v = 4,m = 6 CRC-ZTCC with various decoding metrics.

4.5 Conclusion

This chapter presents CRC-ZTCC concatenated codes for Q-ary orthogonal signaling, de-

signing CRCs for specific ZTCCs to optimize the distance spectrum to achieve the best

possible FER performance. To compare with our simulations, the paper also derives sad-

dlepoint approximations of the RCU bound and presents the normal approximation for the

noncoherent QFSK channel.

List decoding using a distance-spectrum optimal CRC significantly improves the min-

imum distance and the FER performance compared to the ZTCC decoded without the

benefit of CRC-aided list decoding. At FER 10−4, CRC-aided list decoding improves the

ν = 2 ZTCC by between 1.2 and 1.4 dB and the ν = 4 ZTCC by between 0.7 and 0.8 dB.

The performance improvement increases as the size of the CRC is increased. At low FER (or

equivalently high SNR) the expected list rank quickly approaches 1, which we take advantage

of with an adaptive LVA decoding algorithm so that the average complexity burden of such
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list decoding is minimal. Our best CRC-ZTCC design is within 0.59 dB of the RCU bound

at an FER of 10−4.

This paper focuses onQ = 4 ZTCC-CRC code designs, but TBCC-CRCs have been shown

to approach very close to the RCU bound at short blocklengths. In the next chapter, we

present design procedures non-binary CRC-TBCCs for this noncoherent orthogonal QFSK

channel, and we also explore values of Q larger then 4. List decoding with optimal log

likelihood metrics is also an area of future interest.
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CHAPTER 5

Design and Performance of CRC-Aided Tail-Biting

Convolutional Codes for Orthogonal Signaling

The previous chapter presents design procedures for DSO Q-ary CRCs for Q-ary ZTCCs,

and gives results for some specific 4-ary examples. In this chapter, we extend those ideas

to design DSO Q-ary CRCs for Q-ary TBCCs. In [3], Yang shows that CRC-TBCCs tend

to outperform CRC-ZTCCs on the BI-AWGN channel, even managing to surpass the RCU

bound. This motivates the search for good CRC-TBCC codes for the noncoherent Q-ary

orthogonal channel.

In [14], Yang et al. detail an efficient search algorithm to find DSO CRCs for TBCCs.

This algorithm is a generalization of the algorithm in [11] for ZTCCs. We further generalize

the algorithm in [14] for Q-ary TBCCs, much like the previous chapter where we generalized

[11] to Q-ary ZTCCs. We also design DSO CRCs using this generalized algorithm, and we

present simulation results for the performance of our designed Q-ary CRC-TBCC codes.

The previous chapter limits its scope to Q = 4 CRC-ZTCCs. In this chapter, we expand

the scope to include CRC-TBCCs for Q = 4, Q = 8, and Q = 16. We also discuss the

challenges presented by increasing Q.

5.1 System Model

The system model for this chapter is nearly identical to the system model in the previous

chapter for CRC-ZTCCs, but with a few minor differences. The convolutional encoder is
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now a rate-1/2 tail-biting convolutional encoder rather than a rate-1/2 zero terminated

convolutional encoder. This eliminates the overhead symbols incurred by zero-termination,

so the overall rate of the code is now K
2(K+m)

.

We still use an adaptive LVA decoder, but now the decoder is a tail-biting decoder. A

common TBCC decoder is the wrap-around Viterbi algorithm (WAVA) decoder [47] [30].

We use the same WAVA inspired adaptive decoding algorithm as in Chapters 2 and 3, where

we run a single pass through the trellis to initialize metrics before transitioning to adaptive

LVA decoding. At the end of decoding, we check if the codewords found meet the tail-biting

condition, and ignore codewords that don’t.

All other blocks in the system (CRC encoding, symbol to signal mapping, AWGN channel,

and noncoherent reception) remain unchanged from the previous chapter.

5.2 DSO CRC Search

In this section, we will present a high level overview of the algorithm in [14] and discuss

the challenges in adapting it to Q-ary codes. A full description of the algorithm is available

in [14].

5.2.1 Search Algorithm Overview

The CRC search consists of three main phases: irreducible error event collection, tail biting

path construction, and CRC search. Rather than finding all codewords of a TBCC, this

algorithm is efficient by only finding the codewords with weight less than d̃, where d̃ is a

hyperparameter set before the search begins. We will give high level description of each of

these steps.
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IEE Collection

An irreducible error event (IEE) is defined as a length-l path through the TBCC trellis such

that the initial state s0 and the final state sl are the same, and every other state si is larger

than the initial state s0. Mathematically speaking, a sequence s = {s0, s1, ..., sl−1, sl} is a

length-l IEE if s0 = sl and si > s0 for every 0 < i < l. We also define the set

IEE(σi, l, w) = {s = {s0, ..., sl} | s is an IEE, s0 = σi,weight(s) = w}

as the set of all length-l IEEs with initial state σi and Hamming weight w.

The IEE Collection algorithm constructs the sets IEE(σi, l, w) for all states 0 < σi < smax,

all lengths l less than the trellis length, and all weights 0 <= w <= d̃. Here, smax is the

largest state on the trellis, and for a memory-v binary TBCC is defined by smax = 2v − 1.

Starting with state σi = 0, we traverse through the trellis to create a list of all paths

starting at state σi. If a path ever reaches a weight greater than d̃ or passes through a state

σj < σi, the path is dropped from the list. Once a path returns to state σi, the path is added

to the set IEE(σi, l, w). Once all IEEs have been found for σi = 0, we repeat the collection

for σi = 1, and continue until all starting states have been searched. This constructs all IEEs

for the TBCC.

TBP Construction

Similar to an IEE, we define a tail-biting path (TBP) for a length-L trellis to be a sequence

of states {s0, s1, ..., sL−2, sL−1} such that s0 = sL−1 and all other states si > s0 for every

0 < i < L− 1. In essence, a TBP is an IEE that is the length of the trellis.

Yang shows [14] that any TBP with initial state σ can be constructed by concatenating

IEEs with initial state σ. The TBP construction step constructs all TBP with weight less

than d̃ via dynamic programming by concatenating IEEs. If a TBP has a weight greater

than d̃, it is thrown out. Otherwise, it is stored for the third phase.
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CRC Search

Once we have a list of all TBPs for all starting states, [14] shows that every TBCC codeword

path is a cyclic shift of one of the TBPs. So, we generate a list of all low weight codewords

by storing all cyclic shifts of TBPs found, and we also store the corresponding message word

for each codeword. We organize these codewords into lists based on Hamming weight.

Next, we initialize a list of all length-m CRCs. For binary codes, there are a total of 2m−1

m-bit CRCs. We aim to find the CRC with the largest dmin and the least A(dmin). To do

this, we start by initializing d = dmin, and we traverse through the list of TBCC codewords

with weight d and find the value of A(d) for each CRC on the list. We then remove any

CRC from the least whose value of A(d) is greater than the smallest value of A(d). If there

are more than one CRC remaining on the list, we increment d by one and repeat until there

is only one CRC left. This CRC is the DSO m-bit CRC for the TBCC.

5.2.2 Adapting to Non-binary CRC-TBCCs

This DSO CRC search algorithm is largely agnostic to binary vs. nonbinary CRC-TBCCs,

but a few parameters need to be generalized from the binary to the Q-ary case. For a

memory-v Q-ary TBCC, the total number of states is given by Qv. An m-symbol Q-ary

CRC consists of m + 1 coefficients, of which the first coefficient is always one, and the last

coefficient is never zero. Thus, the total number of possible m-symbol Q-ary CRCs is given

by (Q − 1) ∗ Qm−1. Notice that when Q = 2, these two parameters become 2v and 2m−1,

matching the results for the binary case.

As we increase the value of Q, the memory requirements and complexity of the IEE

Collection scale exponentially. For a given state Q in the trellis at time t, the number of

connections to states in the trellis at time t+ 1 is equal to Q, since there is one connection

for every possible input in the field Q. As a result, when traversing through the trellis, the

number of paths grows roughly by a factor of Q for every time step further in the trellis. This
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can be a monumental memory burden for even moderate values of Q and d̃, easily requiring

many gigabytes of memory to store all the paths during the collection. Luckily, we are able

to reduce this complexity and memory usage through some clever optimizations.

First, so long as the trellis length is not too small in relation to d̃, every codeword with

weight less than d̃ will mostly consist of remaining in the zero state, with only one or two

error events that deviate from the zero state. This results from the fact that any sufficiently

long path that stays away from the zero state will always accumulate a nonzero Hamming

weight, so the only way to keep the weight low is to stay in the zero state for most of the

trellis 1. Because of this, we can assume that every codeword found by this algorithm will

eventually touch the zero state, and as a result we only need to perform a search for the

sets IEE(0, l, w); that is, we only need to search for IEEs starting from state zero. This

reduces complexity somewhat, but unfortunately a large proportion of IEEs start in state

zero anyway, so the benefit is marginal.

We can further reduce the memory requirements by exploiting symmetries in GF (Q),

the field in which arithmetic is done for Q-ary CRC-TBCCs. A property of GF (Q) is

that the entire field can be generated by the zero element and a single generator element

α. That is, we can write GF (Q) = {0, α, α2, ..., αQ−2, αQ−1 = 1} 2. Now, consider the

IEE s = {0, s1, s2, ..., sl−1, 0}. Using the structure of GF (Q), we can rewrite this IEE as

s = {0, αp1 , αp2 , ..., αpl−1 , 0}, where si = αpi . We can now divide every element by αp1 , to

arrive at a new IEE s̄ = {0, 1, αp2−p1 , ..., αpl−1−p1 , 0}. Importantly, the length and weight of

s̄ is identical to those of s.

This shows that, for a given IEE with s1 ̸= 1, we can find a related IEE with s1 = 1.

As a corollary, for an IEE s = {0, 1, s2, ..., sl−1, 0}, we can generate a family of (Q− 1) IEEs

{s, αs, α2s, ..., αQ−2s}, where αps = {0, αp, αp ∗ s2, ..., αp ∗ sl−1, 0}, and every IEE in this

1This is true so long as the convolutional code is not catastrophic. Catastrophic convolutional codes are
generally avoided in practical use, so this restriction is not an issue

2This structure can be proven with the fundamental theorem of finitely generated abelian groups
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family will have the same length and weight as s. The consequence for reducing memory

usage and complexity in the collection phase is that we only have to search for IEEs with

s1 = 1. Once the collection phase is finished, we can then generate all of the families of IEEs

from the IEEs found during the collection. This reduces memory and complexity by a factor

of (Q− 1) for this phase.

5.3 Results

With the CRC search algorithm adapted for Q-ary CRC-TBCCs, we now find DSO CRCs

for our Q-ary TBCCs and present the results. For this section, we will analyze each value

of Q used in its own subsection.

5.3.1 4ary CRC-TBCC

Design and Parameters

We begin with the simplest non-binary case, where Q = 4. Given the small value of Q, we

are able to design CRC-TBCCs with more memory elements and longer CRCs. We first

design a good pair of 4-ary TBCC polynomials to use by finding the pair with the largest

dmin and the smallest A(dmin), which is exactly the same criterion we use to design DSO

CRCs. We will focus on v = 4 TBCCs for this subsection.

For rate-1/2, v = 4 4-ary convolutional codes, there are Qv = 256 possible CRC polyno-

mials we could use, and
(
256
2

)
= 32640 possible pairs of polynomials. We search through all

of these possible pairs to find which satisfy the DSO criterion. This search is done using the

DSO CRC search algorithm presented in the previous section and setting the CRC length

m = 0. Using the same notation from last chapter, we denote the number weight-d of trellis

error events by Nt(d) and the number of weight-d codewords as Nc(d).

From this search, we find a total of 12 TBCC polynomial pair with dfree = 9 and
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g1(x) g2(x) Nt(9) Nt(10) Nt(11) Nt(12)

(1, 0, 1, 1, α) (1, β, α, β, β) 3 27 60 177

(1, 0, 1, 1, β) (1, α, β, α, α) 3 27 60 177

(1, 0, α, 1, 1) (1, α, β, β, α) 3 27 60 177

(1, 0, α, 1, α) (1, 1, 1, α, 1) 3 27 60 177

(1, 0, β, 1, 1) (1, β, α, α, β) 3 27 60 177

(1, 0, β, 1, β) (1, 1, 1, β, 1) 3 27 60 177

(1, 1, α, 0, 1) (1, α, α, 1, β) 3 27 60 177

(1, 1, α, 1, β) (1, α, α, 0, α) 3 27 60 177

(1, 1, β, 0, 1) (1, β, β, 1, α) 3 27 60 177

(1, 1, β, 1, α) (1, β, β, 0, β) 3 27 60 177

(1, α, 1, 0, α) (1, β, 1, 1, 1) 3 27 60 177

(1, α, 1, 1, 1) (1, β, 1, 0, β) 3 27 60 177

(1, 1, 1, β, α)∗ (1, α, 1, α, β)∗ 6 15 75 153

Table 5.1: DSO TBCC polynomials and partial distance spectra, up to dmin + 3. We also

show the partial distance spectrum of the polynomial pair from [2] (starred) that is used in

the previous chapter.

Nt(dfree) = 3. 3 Table 5.1 shows all 12 DSO TBCC polynomials and their Nt(d) for the first

few weights. Just like Table 4.2, α is the generator of GF(4), and β = α2.

Table 5.1 shows that all 12 TBCC polynomials have equivalent distance spectra up to

d = 12. We can even show an equivalence relation between several of these polynomial

pairs. For instance, it can be shown that β is also a generator of GF(4), so replacing α

with β and vice versa will create an equivalent TBCC. Thus, the first and second pairs of

3We did this search with a message length of 70 symbols. The search returned these polynomials with
Nc(dfree) = 210, which is equal to 3∗70. Since every cyclic shift of the message of a tail-biting codeword also
results in a tail-biting codeword (see Section 3.3), this tells us that these polynomials have three weight-9
error events, with each error event corresponding to 70 codewords. In order to be agnostic to codeword
length, we list the number of trellis error events rather than number of codewords.
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m gCRC(x) dmin Nc(dmin)

3 (1, α, β, 1) 12 12

4 (1, 1, β, 1, 1) 14 204

5 (1, α, 0, β, β, α) 15 30

6 (1, β, α, 1, α, 1, α) 17 660

Table 5.2: DSO 4-ary CRCs for m ∈ {3, 4, 5, 6}.

polynomials are completely equivalent, as an example. We arbitrarily choose the first pair

{(1, 0, 1, 1, α), (1, β, α, β, β)} as the TBCC polynomial pair we will use for the rest of this

subsection.

At the end of Table 5.1, we also show the partial distance spectrum of the polynomial pair

from Ryan and Wilson in [2], which is also the polynomial pair we used for the CRC-ZTCC

in Chapter 4. We see that this polynomial pair is competitive with the DSO TBCCs, having

the same dmin but a larger Nt(dmin).

Now that the TBCC has been designed, we now design DSO CRCs for this TBCC. We

use the algorithm described in Section 5.2 to find these CRCs. We use a message length of

64 symbols, so an m-symbol CRC has a (64 +m)-symbol CRC word. Table 5.2 shows the

DSO CRC polynomials for m ∈ {3, 4, 5, 6}. In this case, m = 6 was the largest CRC we

were able to design before running into significant complexity burdens.

Simulation Results

Now that we have found our DSO CRC-TBCCs, we will present some simulation results for

these codes. We begin by comparing our m = 6 CRC-TBCC to the m = 6 CRC-ZTCC

from the previous chapter. Figure 5.1 shows the results of these simulations. We see that

the CRC-TBCC performance improves by around 0.2− 0.25 dB over the CRC-ZTCC. This

also reduces the gap to RCU bound at FER = 10−4 to around 0.45 dB. Note that these two
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Figure 5.1: TFR curves of 4-ary CRC-ZTCC and CRC-TBCC with m = 6. The CRC-ZTCC

improves over the performance of the CRC-ZTCC by about 0.2 dB.

codes have slightly different rates (since TBCC doesn’t incur the rate penalty from zero-

termination), so the RCU bounds for these codes are also slightly different; however, the

difference is negligible for this case.

We also plot the CRC-TBCC performance for all m-symbol CRCs in Figure 5.2, as well

as the RCU bound and normal approximation4. We see that TFR performance improves

as m increases, approaching to a gap to RCU bound of around 0.45 dB at TFR = 10−4.

However, much like the results for CRC-ZTCCs, it seems that increasing the length of the

CRC m has diminishing returns, as the improvement from m = 3 to m = 4 was much larger

than the improvement from m = 5 to m = 6.

Figure 5.2 shows the TFR of the CRC-TBCC codes, ignoring the undetected error rates.

Figure 5.3 shows the proportion of errors that are undetected. We can see that up to m = 5,

4Changing the value of m also changes the rate of the CRC-TBCC code, so each CRC-TBCC actually has
slightly different RCU bound and normal approximation curves. This differences in these curves is negligible
(see Figure 4.5), so we only plot the RCU bound and normal approximation of the m = 5 CRC-TBCC to
avoid clutter.
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Figure 5.2: TFR curves of 4-ary CRC-TBCCs with m ∈ {3, 4, 5, 6}. As we increase m, TFR

performance improves. The m = 6 CRC-TBCC has a gap to RCU bound of about 0.45 dB

at TFR = 10−4.
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Figure 5.3: Proportion of undetected errors for each CRC-TBCC.
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basically 100% of errors are undetected errors. Once we get to m = 6, the proportion of

undetected errors falls below 100%; however, the proportion is still high, approaching 90%

at high Eb/N0. This graph implies that increasing m can still improve TFR performance, as

this would convert the remaining undetected errors to either correct decisions or erasures.

Finally, we also plot the gap to RCU bound for our CRC-TBCCs, just like we did for

CRC-ZTCCs in the previous chapter. [Do this stuff later].

5.3.2 8ary CRC-TBCC

Now, we design good 8-ary CRC-TBCC codes. For this subsection, we will borrow the v = 2

8-ary rate-1/2 convolutional code from [2]. Since GF(8) is completely generated by a single

generator α (and the zero element), we will give all code parameters in terms of powers of

α. The 8-ary TBCC we use has polynomials {(1, 1, α4), (1, α, α4)}. It has a free distance of

dfree = 6 and Nt(dfree) = 7. We select a memory-2 code for this section since it is easier

to design DSO CRCs for convolutional codes with small memory, due to their relatively low

weight codewords.

m gCRC(x) dmin Nc(dmin)

3 (1, α6, α2, α3) 11 35

4 (1, α4, α3, α, α2) 13 1460

5 (1, 0, α3, α5, α5, α) 14 26

Table 5.3: DSO 8-ary CRCs for m ∈ {3, 4, 5}.

We design three DSO CRCs for this TBCC, for values of m ∈ {3, 4, 5}. We again use a

message length of K = 64 8-ary symbols, so the CRC-TBCC code has a CRC word length

of (64 +m) symbols. The CRC polynomials are given in Table 5.3.

Figure 5.4 shows simulation results for these 8-ary CRC-TBCCs, as well as the normal

approximation. The RCU bound computation becomes prohibitively complex for Q > 4, so
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Figure 5.4: TFR curves for 8-ary CRC-TBCCs with m ∈ {3, 4, 5}.

we do not compare to the RCU bound. More work is needed to simplify the computation

for larger values of Q. We expect the RCU bound to be a few tenths of a dB better than

the normal approximation, similar to the Q = 4 case.

Just like for our Q = 4 codes, as we increase m, the TFR performance of the CRC-TBCCs

improves. The m = 5 CRC-TBCC has a gap to the normal approximation of around 1.5 dB.

This is a large gap, largely due to the fact that a memory-2 convolutional code is not a very

powerful code. Chapter 4 shows how improving the memory of a 4-ary ZTCC significantly

improves the TFR performance. Designing DSO CRCs for more powerful TBCCs is an area

of future interest.

Just like the Q = 4 codes, we also plot the undetected error proportion of these CRC-

TBCCs, shown in Figure 5.5. Again, we see that as we increase m, the proportion of

undetected errors falls, as is expected. In this case, for them = 5 CRC-TBCC, the proportion

of undetected errors is below 0.4 across the range of Eb/N0 we consider, which implies that
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Figure 5.5: Proportion of undetected errors for all 8-ary CRC-TBCCs.

increasing m further will only have a small benefit to TFR performance.

16-ary CRC-TBCC

gCRC(x)

(1, α4, 1, 0, α10, α6, α12)

(1, α13, α11, α4, α2, α8, α13)

(1, α12, α14, α13, α8, α3, α4)

(1, α12, α13, α9, α4, α4, α7)

Table 5.4: 16-ary CRCs for m = 6.

For 16-ary CRC-TBCCs, we once again borrow a v = 2 16-ary convolutional code from [2].

This just like the 8-ary TBCC, this 16-ary TBCC has polynomials {(1, 1, α4), (1, α, α4)}. Of

course, in this case α is the generator of GF(16) rather than GF(8). This code has dfree = 6
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and Nt(dfree) = 15.

Unfortunately, for 16-ary CRC-TBCCs, the search algorithm for DSO CRCs becomes

very computationally complex. Instead, for this section we generate a list of m = 6 16-ary

CRCs at random and compare their performances. Table 5.4 has the CRC polynomials for

all of the 16-ary CRCs used.
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Figure 5.6: TFR curves and normal approximation for 16-ary CRC-TBCCs.

Figure 5.6 shows simulation results for these CRC-TBCCs. We see that all of the CRCs we

choose have roughly equivalent TFR performance. This implies that most CRC polynomials

will perform about as well as any other. Our curves lie about 0.8 dB away from the normal

approximation at TFR = 10−4.

As has been shown for binary CRC-TBCCs, we expect that a DSO CRC will outperform

a randomly selected CRC. Thus, we could improve our TFR performance by designing and

using a DSO CRC for this 16-ary CRC-TBCC. We can also improve TFR performance by

using a TBCC with more memory elements, since a memory-2 convolutional code is not very
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powerful. These are areas of future interest.

5.4 Conclusion

In this chapter, we presented a generalization of the algorithm in [14] to design DSO CRCs

for Q-ary CRC-TBCCs for Q = 2q. We discussed the structure of the GF(Q) fields that these

CRC-TBCCs exist on top of. We also presented a way to exploit this structure to reduce

the complexity of the search algorithm, reducing the computation and memory needed by a

factor (Q− 1).

Using this DSO CRC search algorithm, we designed DSO CRCs for Q = 4 and Q = 8

CRC-TBCCs, and we presented our simulation results. Our best 4-ary CRC-TBCC improves

over our best 4-ary CRC-ZTCC by about 0.2 dB, resulting in a gap to RCU bound of about

0.45 dB and a gap to normal approximation of around 0.3 dB at TFR = 10−4. Our 8-

ary CRC-TBCCs are less powerful, resulting to a gap to normal approximation of around

0.6 dB. We could significantly reduce this gap with a more powerful convolutional code,

but designing optimal CRCs becomes much harder as we increase the free distance of the

convolutional code.

For our maximum list size of 2048, we find that our 4-ary CRC-TBCCs have a very

high undetected error rate. In comparison, the 8-ary CRC-TBCCs have a significantly lower

undetected error rate. This makes sense intuitively, as an m = 5 4-ary CRC fails to detect

one out of every 45 codewords, while an m = 5 8-ary CRC passes one out of every 85

codewords. This shows that we can expect a 8-ary CRCs to be more powerful than 4-ary

CRCs, which is also shown through simulation.

For Q = 16 CRC-TBCCs, the runtime needed to find optimal CRCs becomes pro-

hibitively high, so instead we randomly select CRCs to use for our 16-ary CRC-TBCCs.

We find that the CRCs we selected all have roughly equivalent TFR performance, with a

gap to the normal approximation of around 0.8 dB. We expect an improvement in TFR with
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a designed DSO CRC.

While we have shown some ways to optimize the DSO CRC search algorithm, the search is

still prohibitively complex for even moderate values of Q and moderate CRC lengths m. We

wish to design optimal CRC-TBCCs for up to Q = 64 and beyond, but more optimizations

to the search algorithm are needed in order to reach this goal. This is an area we are very

interested in for the future.
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Part III

Conclusion
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CHAPTER 6

Conclusion

In this thesis, we have shown design methods and performances of CRC-aided list decoding

of zero-terminated convolutional codes, tail-biting convolutional codes, and polar codes.

We consider designs for both a standard binary-input AWGN channel and a noncoherent

orthogonal Q-ary FSK channel for Q = 2q.

For the BI-AWGN channel, we began by presenting ways to improve the performance of

the CRC-Polar code used in the 5G standard. By shortening the 24-bit CRC used in the

standard to an 11-bit CRC, we can improve TFR performance significantly, but at the cost

of undetected error rate. We can further improve performance by instead using a low rate

TBCC with 11-bit DSO CRC, which also has a significantly faster decoder.

In this case of designing for the 5G standard, the CRC-Polar and CRC-TBCC codes we

analyzed had different rates. For a fair comparison, we designed 11-bit DSO CRCs for a

CRC-Polar and CRC-TBCC code such that both codes had the same message length and

block length. By analyzing the qualitative and quantitative differences between the distance

spectra of the two codes, we expected the CRC-TBCC to have slightly better performance

at high SNR. This expectation was then backed up with simulation results, showing the

CRC-TBCC has better TFR performance, better undetected error rate, and a significantly

faster decoder.

We then moved on to designing CRC-convolutional codes for the noncoherent orthogonal

QFSK channel. We generalized DSO CRC search techniques in [11] and [14] for the case

of non-binary alphabets, and designed several CRC-ZTCC and CRC-TBCC codes. We also

87



modified the RCU bound equations in [13] to apply to our Q-ary orthogonal channel, and

presented the difficulties with using this approximation for large values of Q. For 4-ary

CRC-ZTCCs, we show that our best designs approach within 0.6 dB of the RCU bound at

TFR = 10−4. Our 4-ary CRC-TBCC designs improve on the CRC-ZTCC designs by roughly

0.2 dB. Finally, we also present simulation results for Q = 8 and Q = 16 CRC-TBCCs.

There is still much more work to be done in designing codes for the Q-ary orthogonal

channel. We were unable to design DSO CRCs for 16-ary TBCCs in this thesis due to the

complexity required in the search, but a more optimized algorithm and more computing

power could solve this issue. In addition, we are interested in designing codes up to Q = 64

and beyond, so this is another area of future work.
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