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Sleep-like unsupervised replay reduces
catastrophic forgetting in artificial neural
networks

Timothy Tadros 1,2, Giri P. Krishnan2, Ramyaa Ramyaa3 &
Maxim Bazhenov 1,2

Artificial neural networks are known to suffer from catastrophic forgetting:
when learning multiple tasks sequentially, they perform well on the most
recent task at the expense of previously learned tasks. In the brain, sleep is
known to play an important role in incremental learning by replaying recent
and old conflicting memory traces. Here we tested the hypothesis that
implementing a sleep-like phase in artificial neural networks can protect old
memories during new training and alleviate catastrophic forgetting. Sleep was
implemented as off-line training with local unsupervised Hebbian plasticity
rules and noisy input. In an incremental learning framework, sleep was able to
recover old tasks that were otherwise forgotten. Previously learned memories
were replayed spontaneously during sleep, forming unique representations
for each class of inputs. Representational sparseness and neuronal activity
corresponding to the old tasks increased while new task related activity
decreased. The study suggests that spontaneous replay simulating sleep-like
dynamics can alleviate catastrophic forgetting in artificial neural networks.

Humans and animals have a remarkable ability to learn continuously
and to incorporate newdata into their corpus of existing knowledge. In
contrast, artificial neural networks (ANNs) suffer from catastrophic
forgetting whereby they achieve optimal performance on newer tasks
at the expense of performance on previously learned tasks1–4. This
dichotomy between continual learning in biological brains and cata-
strophic forgetting in machine learning models has given rise to the
stability-plasticity dilemma5–8. On the one hand, a network must be
plastic such that the parameters of the network can change in order to
accurately represent and respond to new tasks. On the other hand, a
network must be stable such that it maintains knowledge of older
tasks. Although deep neural networks9 can achieve supra-human level
of performance on tasks ranging from complex games10 to image
recognition11, they lie at a suboptimal point on the stability-plasticity
spectrum.

Sleep has been hypothesized to play an important role inmemory
consolidation and generalization of knowledge in biological

systems12–14. During sleep, neurons are spontaneously active without
external input and generate complex patterns of synchronized activity
across brain regions15,16. Two critical componentswhich are believed to
underlie memory consolidation during sleep are spontaneous replay
ofmemory traces and local unsupervised synaptic plasticity17–19. Replay
of recently learned memories along with relevant old memories20–25

enables the network to form orthogonal memory representations to
enable coexistence of competing memories within overlapping
populations of neurons19,26–28. Local plasticity allows synaptic changes
to affect only relevant memories. While consolidation of declarative
memories presumably depends on the interplay between fast-learning
hippocampus and slow-learning cortex20 (‘Complementary Learning
Systems Theory’1), several types of procedural memories (e.g., skills)
are believed to be hippocampus-independent and still require con-
solidation during sleep, particulartly during Rapid Eye Movement
(REM) sleep29. These results from neuroscience suggest that sleep
replay principles applied to ANNs may reduce catastrophic forgetting
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in machine learning models. In this new study, we focus on the
hippocampus-independent consolidation of memories during REM
sleep-like activity.

We show that implementing a sleep-like phase after an ANN learns
a new task enables replay and makes possible continual learning of
multiple tasks without forgetting. These results are formalized as a
Sleep Replay Consolidation (SRC) algorithm as follows. First, an ANN is
trained using the backpropagation algorithm, denoted below as awake
training. Next, spontaneous brain dynamics, similar to those found in
sleep16,30, are simulated and we run one-time step of network simula-
tion propagating spontaneous activity forward through the network.
Next, we do a backward pass through the network in order to apply
localHebbianplasticity rules tomodifyweights. After runningmultiple
steps of this unsupervised training phase, testing or further training
using regular backpropagation is performed. SRC canbe applied alone
or in combination with state-of-the-art rehearsal methods to further
improve these methods’ performance. We recently found that this
approach canpromotedomaingeneralization and improve robustness
against adversarial attacks31. Here,wedeveloped the sleep algorithm to
address continual learning problem. We show that spontaneous reac-
tivation of neurons during sleep engages local plasticity rules that can
recover performance on tasks that were thought to be lost due to
catastrophic forgetting after new task training.

Results
Sleep Replay Consolidation (SRC) algorithm implementation
and testing strategy
In animals and humans, spontaneous neuronal activity during sleep
correlates with that during awake learning12. This phenomenon, called
sleep replay, along with Hebbian plasticity, plays a role in strength-
ening important and pruning irrelevant synaptic connections under-
lying sleep-dependent memory consolidation20,32. To integrate the
effect of sleep into artificial neuronal systems, we interleaved incre-
mental ANN training using backpropagation with periods of simulated
sleep-like activity based on local unsupervised plasticity rules (see
Methods for details). With this approach we were able to combine the
“best of both worlds”—state of the art training performance delivered
by modern deep neural network architectures33 and important prop-
erties of biological sleep, including local plasticity and spontaneous
reactivation20. Importantly, our approach is fully executed within a
standardmachine learning environment, and the sleep function can be
easily added to any ANN type and any training algorithm.

In order to implement a sleep replay phase with local plasticity
rules (referred to as the Sleep Replay Consolidation (SRC) algorithm
below), the network’s activation function was replaced by a Heaviside
function (to mimic spike-based communications that occur in the
brain) and network weights were scaled by the maximum activation in
each layer observed during last training, in order to increase activity
during the sleep phase. The scaling factor was determined based on
pre-existing algorithms developed to run trained ANNs on neuro-
morphic hardware, such as spiking neural networks34, while Heaviside-
neuronal spiking thresholds were determined based on a hyperpara-
meter search. To modify network connectivity during sleep phase we
used an unsupervised, simplified Hebbian-type learning rule, which
was implemented as follows: synaptic weights between two neurons
are increased when both pre- and post-synaptic neurons are activated
sequentially; synaptic weights are decreased between two neurons
when the post-synaptic node is activated but the pre-synaptic node is
silent (does not reach activation threshold). Further, to ensure suffi-
cient network activity during the sleep phase, the input layer of the
network was activated with noisy binary inputs. In each input vector at
each time step of SRC, the probability of assigning a value of 1 to a
given input pixel is taken from a Poisson distribution with mean rate
calculated as the mean intensity of that input element across all the
inputs observed during all of the preceding training sessions. Thus,

e.g., a pixel that was typically bright in all training inputs would be
assigned a value of 1more often than a pixel with lowermean intensity.
Therefore, the only old task information that needs to be stored for
future SRCapplications is themean input layer activation across all the
past tasks and this information does not scale with the number of
tasks. Importantly, no inputs representing specificmemorieswere ever
presented to the network during sleep; the state of the network
(weight matrices) implicitly determined the patterns of reactivation
and, ultimately, what was replayed during sleep.

In this study we analyzed SRC in the context of both class-
incremental learning and cross-modal tasks. Class-incremental learn-
ing occurswhen a network learns a series of classes (e.g.,MNIST digits)
incrementally without access topreviously learned classes. In this case,
performance is measured as the network’s ability to classify and dis-
tinguish all classes. Cross-modal tasksmeasure the network’s ability to
store two distinct tasks (e.g., MNIST digits and FashionMNIST images)
in the same parameter space. We first utilized a toy example of binary
patterns to analyze how synaptic weights change during sleep to
support incremental learning. We then tested SRC in an incremental
learning framework on the MNIST, Fashion MNIST, CUB-200, and
CIFAR10 datasets (see Methods). For cross-modal tasks, we measured
the ability of an ANN to learn sequentially both theMNIST and Fashion
MNIST datasets when the network could only access one dataset
during training time.

SRC promotes consolidation of overlapping binary patches
Wefirst tested the sleep algorithmby training a small networkwith just
an input and output layer to distinguish four binary 10 × 10 images (see
Fig. 1A) presented sequentially as two tasks (Task 1—first two images;
Task 2—second two images). The network was always tested on its
ability to classify all four images using a softmax classifier with no
momentum. The amount of interference was measured as the number
of overlapping pixels between images. Catastrophic forgetting should
not occurwhen there is no interferencebetween the images but, as the
number of overlapping pixels increases, new task training can lead to
forgetting. Our studies using biophysical models of the thalamocor-
tical network27,28 revealed that catastrophic forgetting occurs because
the network connectivity becomes dominated by the most recently
learned task, so input patterns for old tasks are insufficient to activate
their respective output neurons; sleep replay can redistribute the
network resources more equally between tasks to allow correct recall
of the old and new memories.

After training on the first two images (denoted T1), the network
could classify T1 images accurately but has not yet learned the other
two images, so overall performancewas 50% (Fig. 1B, dashedblue line).
Here, when, e.g., the first imagewas presented to the network, input to
its corresponding output neuron was greater than the inputs to the
other output neurons (Fig. 1C, left group of bars, 12 pixel overlap)—
correct classification. After training on the second two images (deno-
ted T2), the network either learned them without interference to T1
(performance increased to 100%—all four images are classified cor-
rectly), when therewas little overlapbetween tasks (Fig. 1B, dashed red
line, overlap is less than 12 pixels), or forgot the first two images
(performance remained at 50%—T1 is erased and everything is classi-
fied as T2),when therewas large overlapbetween tasks (Fig. 1B, dashed
red line, overlap is more than 12 pixels). In the last case, presenting the
first image resulted in greater activation of T2 output neurons (Fig. 1C,
red bar in middle group) than T1 output neurons (Fig. 1C, black bar in
middle group)—catastrophic forgetting. When SRC was applied fol-
lowing T2 (Fig. 1B, yellow line), T1 was recovered even for large over-
laps between tasks (compare yellow and red lines for overlaps in range
12–16 pixels in Fig. 1B). Here, we observed that although input to the T1
output neuron (upon first image presentation) remained unchanged
(Fig. 1C, black bar in rightmost group), the input to the T2 output
neurons decreased following SRC (Fig. 1C, red bar in rightmost group).
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Thus, after SRC, the network was able to withstand larger amounts of
interference, indicating that SRC is beneficial in reducing catastrophic
interference for this simplified task.

We next examined the synaptic weight changes after training the
second task, and after SRC. Figure 1D shows histograms of synaptic
weights from input layer neurons to four output neurons (T1 neurons
on the left and T2 neurons on the right) for the 14-pixel overlap con-
dition, which results in catastrophic forgetting following T2 training
and complete recovery following SRC. We separated weights from
input neurons representing uniquely T1 and T2 pixels (Fig. 1D, green,
orange), aswell asoverlappingpixels betweenT1andT2 (purple). After
T1 training (Fig. 1D, top row), the weights from T1 pixels (both unique
and overlapping) to T1 decision neurons increased (purple and green

distributions on the left), while connections to T2 decision neurons
became negative (purple and green on the right). After T2 training
(Fig. 1D, middle row), the weights from T2 pixels (both unique and
overlapping) to T1 output neurons decreased (purple and orange on
the left),while connection toT2 output neurons increased and became
positive (purple and orange on the right). Strong input to T2 output
neurons from T1 overlapping pixels (purple on the right) overcame
input toT1output neurons fromuniqueT1pixels (greenon the left, see
also Fig. 1C, middle group). This resulted in catastrophic forgetting of
T1, asT1 inputs led tohigher activationof T2output neurons.After SRC
(Fig. 1D, bottom), weights from T1 unique pixels to T2 output neurons
became inhibitory (green distribution on the right) while most other
categories of weights remained unchanged. Thus, before SRC, pre-
senting T1 images resulted in preferential activation of T2 output
neurons and misclassification. After SRC the same T1 inputs inhibited
T2 output neurons, so T1 output neurons displayed relatively higher
activation leading to correct classification.

Since T1 neurons did not spike during sleep in this simple model,
the weights to T1 output neurons did not change (compare Fig. 1D left,
middle vs bottom row); however, formore complex tasks and network
architectures, all the weights could change after sleep phase (see
below). This simple model analysis revealed that SRC down-scales
synapticweights from task-irrelevant neurons, thereby reducing cross-
talk between tasks. Amore rigorous analysis of this toymodel revealed
that following sequential training on T1 and T2, the network weights
still had positive cosine similarity to theweights of the network trained
on T1 alone (See Supplementary Information, Section 1). This
demonstrates that evenwhen catastrophic forgetting is observed from
classification perspective, the network weights may still preserve
information about previous tasks.

SRC algorithm reduces catastrophic forgetting on standard
datasets
ANNs have been shown to suffer from catastrophic forgetting for
various standard image datasets including MNIST, CUB-200, and
CIFAR-1035. To test SRC for these datasets, we created 5 tasks (per
dataset) for the MNIST, Fashion MNIST, and CIFAR-10 datasets and 2
tasks for the CUB200 dataset. Each pair of items in the MNIST (e.g.,
digits 0 and 1), Fashion MNIST and CIFAR-10 datasets was defined as a
single task, and half of the classes in CUB200 was considered a single
task. Tasks were trained sequentially and each new task training was
followed by a sleep phase until all tasks were trained. This mimics
interleaving periods of awake training with periods of sleep in the
biological brain.

A baseline ANN with two hidden layers (see Methods for details)
trained incrementally without sleep suffered from catastrophic for-
getting, representing the lower bound on performance (Table 1,
Sequential Training). The ideal accuracy of the same network trained
on all tasks at once represents the upper bound (Table 1, Parallel
Training). We found a significant improvement in the overall perfor-
mance compared to the lower bound (Table 1, SRC vs Sequential
Training), as well as task-specific performance (Fig. 2) when SRC was
incorporated into the training cycle. On CUB-200, the baseline ANN
suffered from catastrophic forgetting after it was trained sequentially
on two tasks (first task—5%, second task—95%). Incorporating SRCafter
each task training resulted in much higher and balanced classification
accuracy (first task—63.2%, second task—45.4%). Similar results were
found for CIFAR-10, where the network implementing SRC achieved
overall accuracy values of 44%, significantly higher than the control
ANN without SRC (19%). Errors in Table 1 represent the standard
deviation across 5 trials with different network initialization and dif-
ferent task orders. Note that computational costs for running SRC are
comparable with the costs of training each additional task (when task
training is implemented in batches). However, sleep required much
less inputs to pass through the network; thus, the computational

Fig. 1 | SRC reduces catastrophic forgetting for sequential task training.
A Example of four binary images with 15 pixel overlap divided into task 1 (T1, top
two images: #0,1) and task 2 (T2, bottom two images: #2,3). T2was trained after T1.
B Classification accuracy as a function of number of overlapping pixels (inter-
ference) after training T1 (blue), T2 (red), and SRC (yellow). The networkwas always
tested for all 4 images. Note, that performance is significantly higher after SRC in
the range of pixel overlap 12–16 (error bars indicate standard error of the mean).
C Input to the T1 output neuron 0 (black) and max input to the T2 output neurons
2 and 3 (red) when presented with T1 image 0 after subsequent stages of training
(T1 = TRT1, T2 = TRT2) and sleep (SRC).D Distribution of weights connecting to T1
(left) or T2 (right) output neurons. Color is based on category of connections:
Unique—connections from neurons representing pixels unique for T1 or T2;
Overlapping—connections from neurons representing overlapping pixels between
T1 and T2. Rows show subsequent stages of training and sleep.
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performance of sleep phase can be likely improved by incorporating
the idea of mini-batches (see Supplementary Information Fig. 2 for
more detail).

We next tested the SRC algorithm using a cross-modal task,
where the network first learned the MNIST and next the Fashion
MNIST dataset. An ideal network trained on both datasets at once
achieved a classification accuracy of around 90%. When trained
incrementally, the baseline ANN failed to accurately classify the
MNIST data, achieving overall classification accuracy of 47%
(Table 1). Incorporating SRC into the training boosted overall clas-
sification accuracy to 61%. While we primarily tested a network with
only two hidden layers, the analysis of 4-hidden layer networks on
MNIST task revealed that SRC can be applied in deeper architectures
to recover old tasks’ performance.

Although we report here SRC performance numbers lower than
those for some generative models36,37, SRC was able to reduce cata-
strophic forgetting with only limited (average statistics) knowledge of
previously learned examples and solely by utilizing spontaneous
replay driven by the weights important for representation of old tasks.
Among methods operating without access to old data, SRC surpassed
regularization methods, such as ElasticWeight Consolidation (Table 1,
EWC) andSynaptic Intelligence (Table 1, SI)38,39, on all class-incremental
learning tasks and revealed reduced performance only for the multi-

modal task (see Discussion and Supplementary Information). How-
ever, a recently developed regularization method (Orthogonal Weight
Modification, OWM) slightly surpasses performance of SRC on most
tasks, suggesting that regularization methods can successfully pro-
mote recovery of old tasks in a class-incremental learning setting40.
One implementation advantage of SRC over OWM is that SRC is an
offline method (just like biological sleep), so it can be run after the
normal training process is completed. Therefore, SRC can be directly
combined with the state-of-the-art rehearsal methods for continual
learning to further improve these methods’ performance and/or
reduce amount of old data they need to store (see below). For tasks
where it is unknown a priori if/when new training would be needed,
SRCcanbe easily appliedpost fact, as onlypast average inputwouldbe
needed to run SRC.

Ultimately, our results suggest that information about old tasks is
not completely lost even when catastrophic forgetting is observed
from the performance-level perspective. Instead, information about
old tasks remains present in the synaptic weights and can be resur-
rected by offline processing, such as sleep replay. Biological sleep is a
complex phenomenon andour implementation of sleep replay is likely
oversimplified. Future studies, can improve SRC implementation (e.g.,
by combining REM-type and NREM-type sleep) to further improve
performance.

SRC is complementary to state-of-the-art rehearsal methods
Many generative solutions aimed at solving catastrophic forgetting
train a separate generator network to recreate and make use of the
old data during new training sessions—commonly called replay—to
prevent forgetting36,37. We next tested the complementary effect of
incorporating old training data during new training sessions along
with SRC. In this scenario, we included a small percentage of old task
data during new task training and modified the loss function to
promote balanced learning of both new and old tasks (see Methods
and Supplementary Information). The small amount of old task
examples alone (without SRC) resulted in an increase in network
classification accuracy on most tasks, compared to a sequentially
trained network (Table 1, Rehearsal, Fig. 3, black lines). When SRC
was run after rehearsal (Table 1, Rehearsal+SRC, Fig. 3, red lines), this
significantly boosted the overall classification accuracy even further
when compared to using a small fraction of old data alone. These
results suggest that SRC can reduce the amount of data needed to be
generated or stored with state-of-the-art rehearsal methods, while
still obtaining near ideal accuracy. Rehearsal benefits from longer
training time (see Supplementary Information, Fig. 7). Our results
suggest that SRC could support rehearsal methods by reducing the
training time in addition to reducing memory capacity require-
ments. This point is further explored below.

Table 1 | Average test accuracy ( ± standard deviation; performance is averaged across different task orders) for baseline
sequential training, Elastic Weight Consolidation, Synaptic Intelligence, Orthogonal Weight Modification, SRC algorithm,
Rehearsal with 0.75% of old data stored, SRC algorithm + Rehearsal (0.75% of old data stored), and the ideal performance of a
network trained on all data at once

Method Inc. MNIST Inc. Fashion MNIST Multi-modal MNIST Inc. CUB-200 Inc. CIFAR10

Sequential training 19.49±0.002 19.67 ± 0.003 47.18 ± 0.0020 5.32, 95.41 19.01 ± 0.002

EWC 20.37 ± 0.24 21.39 ± 2.93 74.55± 0.83 0.0, 63.85 18.54± 0.39

SI 21.38 ± 1.34 22.05± 2.05 74.15 ± 0.80 0.07, 60.01 22.84± 0.129

OWM 77.038 ± 2.91 58.35 ± 2.05 91.29± 1.05 71.4, 21.5 34.234± 1.87

SRC 48.47 ± 5.03 41.68± 5.04 61.33 ± 0.0150 63.2, 45.4 44.55 ± 1.45

Rehearsal (0.75% data) 79.91 ± 5.34 55.192 ± 7.74 83.13± 0.89 42.32, 51.49 39.39± 0.64

Rehearsal (0.75% data) + SRC 86.47 ± 1.061 67.818± 3.64 83.18 ± 1.91 56.55, 38.05 58.24± 0.561

Parallel training 98.02±0.006 87.86±0.005 90.05 ±0.0028 85.49, 79.15 72.43 ± 0.002

Ten batches of training were used to ensure a complete convergence of the training method. For CUB-200, we report task 1 performance and task 2 performance separately.

Fig. 2 | Interleavingnewtask trainingwith sleep results in recovery of old tasks’
performance onMNIST dataset. Sleep phase (S) was implemented after each new
task training (T). Task 1–0/1, Task 2–2/3, Task 3–4/5, Task 4–6/7, Task 5–8/9. Each
column shows performance for all tasks after either new task training or sleep as
labeled below.
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From a neuroscience standpoint, this result predicts that learning
new memories first by a separate, such as hippocampal, network, that
stores not only new memories but also some high-level information
about old memories (“indexes”41), and subsequently training another,
such as cortical, network using output of the hippocampal network,
followed by pure cortical replay, gives an optimal solution to embed
new memories to cortex and to protect old memories. This is indeed
how we believe brain learns hippocampus dependent declarative
memory tasks during slow-wave sleep20.

Next, we discuss in more details how incorporating SRC on top of
a state-of-the-art rehearsal method, iCaRL, can result in better con-
tinual learning performance than iCaRL alone (details on iCaRL
implementation can be found in Supplementary Information or the
original paper42). Table 2 shows performance when different memory
capacities (K, number of stored examples from previous classes) were
used. In the case ofMNIST, iCaRLwith K = 100 achieved a performance
of 65.5% after 10 epochs/task and iCaRL with K = 200 achieved a per-
formance of 76.9% after 10 epochs/task. iCaRL+SRC with K = 100
(K = 200) achieved a classification performance of 78.1% (84.5%). Thus,
a higher accuracy can be obtained by combining iCaRL with SRC and it
may even be achieved with a lower memory capacity. For MNIST,
Fashion MNIST and CIFAR10 datasets, in almost all cases (except
K = 2000 for MNIST) iCaRL + SRC had higher performance than iCaRL
alone for the same memory capacity. Previously, we reported that
OWM could surpass performance of SRC alone. However, the perfor-
mance of iCaRL + SRC with K = 100 always exceeded OWM perfor-
mance, suggesting that rehearsal methods are still the state-of-the-art
in class-incremental continual learning settings and combining them
with SRC may deliver the most accurate solution for a given memory
capacity.

In addition to lowering memory requirements, SRC could also
reduce training time (denoted as a number of epochs per task) needed
to achieve optimal results. Indeed, we found that iCaRL + SRC con-
verges more rapidly than iCaRL alone. For example, for K = 50, iCaRL +

SRC achieved after just one epoch/task of training the same accuracy
as iCaRL alone after 10 training epochs/task (see Supplementary
Information Fig. 7). For K = 100, only 4 epochs/task were required with
iCaRL + SRC before the same accuracy was obtained after 10 epochs/
task with iCaRL alone. For K = 1000, iCaRL + SRC after 8 epochs/task
had a final accuracy of 87.7%, whereas iCaRL alone even after 10
epochs/task only achieved a final accuracy of 87.32%. In general, the
benefits of SRC were higher for lower values of K. We defined the
training savings as the number of epochs/task after which iCaRL + SRC
achieves a greater performance than iCaRL alone after 10 epochs/task.
The training savings on all 3 datasets (averaged across all memory
capacities and task orders) were: 3.73 epochs/task for MNIST, 3.67
epochs/task for FashionMNIST, and 2.80 epochs/task for CIFAR10 (see
Supplementary Information Fig. 7 for example plots).

In sum, we found that the SRC algorithm can support various
rehearsal methods by (a) reducing the amount of old data that are
stored (or allowing only replay of the highest-quality generated
examples); (b) reducing training time.

SRC reduces catastrophic forgetting by replaying old task
activity
How does SRC work? From a neuroscience perspective, sleep reduces
interference by replaying activity of recently learned tasks and old
relevant (interfering) tasks20. Using biophysical models of brain net-
work and testing them for simplified task of learning overlapping
memory sequences, we showed that sleep replaymodifies the synaptic
weights to create unique synaptic representation for each task28. Such
differential allocation of resources leads to reduced representational
overlap and therefore diminishes catastrophic forgetting.

To address how SRC works for ANNs, we examined a reduced
class-incremental learning MNIST task. The network was first trained
on digits 0 and 1 (Task 1), followed by sleep. Next, the network was
trained ondigits 2 and 3 (Task 2), leading to Task 1 forgetting, followed
by second sleep phase. We then analyzed the second period of sleep

Fig. 3 | SRC is complementary to rehearsal - replay methods which store/gen-
erate old examples and combine new data with these examples during train-
ing. The classification accuracy as a function of percent of old data included is

shown forAMNIST,B FashionMNIST,C CrossModal MNIST, andDCIFAR10. Error
bars represent standard errors across 5 training sessions with different task orders.
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that resulted in recovery of performance on the first task (overall
accuracy on both tasks after SRC = 90%).

To test if after SRC the neurons are differentially allocated to
represent digits from different tasks, we first looked at the correlation
of activities in thehidden layers. TheANNwas presentedwith all inputs
from the test sets of both tasks and we calculated the average corre-
lation within the first and second hidden layers before and after
application of SRC (Fig. 4). In both layers, before SRC (when all inputs
were classified as either 2 or 3), correlations of activity for digits from
different classes were almost as high as correlations of activity for
digits from the same class (with exception of classes 2 and 3 in the 2nd
hidden layer) (Fig. 4B, left). After SRCweobserveddecorrelation (near-
zero correlations between representation of digits from different
classes) and an increase in representational sparseness (where each
stimulus strongly activates only a small subset of neurons) for all four
digits (Fig. 4, right and Supplementary Information Fig. 9). This sug-
gests that SRC prevents interference between classes by allocating
different neurons to different tasks, thereby creating a distinct popu-
lation code for different input classes.

Decorrelation of activity alone may not explain the old task
recovery. Indeed, if activity of neurons representing the earlier task
remains lower than that for the later task, then catastrophic forgetting
would still occur. Therefore, we next analyzed activation properties of

the neurons representing individual tasks (Fig. 5). In each hidden layer,
we selected the top 100 neurons that were most active in response to
Task 1 or Task 2 inputs (see Methods for details on selection process)
and analyzed how input to these neurons changes after SRC. In thefirst
hidden layer, both Task 1 andTask 2 neurons experienced adecrease in
input strength, but the effect was generally stronger for Task 2 neu-
rons, reflecting a greater decrease in the weights connecting to Task 2
neurons (Fig. 5, left). More notably, in the second hidden layer, we
observed an increase of the input to the Task 1 neurons but a decrease
of the input to the Task 2 neurons (Fig. 5, right). This suggests that a
relative increase in activity of Task 1 neurons along with an overall
decorrelation of representations between the tasks explains recovery
of performance on the old task.

In the biological brain, sleep-dependent memory consolidation
occurs through memory replay, i.e., patterns of neurons activated
during task learning are reactivated spontaneously during sleep12. To
test if replay happens during SRC, we looked at the firing activity of
Task 1 and Task 2 neurons during sleep. To avoid possible bias from
using task averaged input, here the network was stimulated during
sleep by a completely random input. We calculated the average firing
rates of neurons andwe found in the first hidden layer that the top 100
most active neurons involved in representation of the previously
learned Task 1 and Task 2 digits had a higher average firing rate during
sleep than a randomly selected subset of neurons (Fig. 6A). In the
second layer, this result was more pronounced for the most recently
learned task (digits 2 and 3) (Fig. 6B). To compare firing rates of digit-
specific neurons, we concatenated the firing rates of digit-2 and digit-3
(Task 2) neurons and compared them with the concatenated firing

Table 2 | SRC improves upon iCaRL method with different memory capacities

K = 50 K= 100 K = 200 K= 500 K = 1000 K= 2000

iCaRL, MNIST 53.428± 5.20 65.502 ± 4.66 76.856 ± 5.29 87.326± 1.30 90.628±0.41 92.850±0.44

SRC + iCaRL, MNIST 69.97± 3.74 78.086 ± 3.16 84.498± 1.39 88.862 ±0.44 91.130 ±0.58 92.742 ± 0.41

iCaRL, Fashion MNIST 49.342 ± 6.83 57.786 ± 3.13 62.828± 2.97 69.038 ± 2.78 73.972 ± 1.58 78.030±0.62

SRC + iCaRL, Fashion MNIST 51.554 ± 11.63 61.916 ± 5.25 65.110 ± 2.95 69.798± 2.48 75.226± 1.28 78.542 ± 1.17

iCaRL, CIFAR10 35.156 ± 3.41 43.244 ± 1.99 49.102 ± 2.07 54.898± 1.49 59.528 ±0.77 62.878 ±0.65

SRC + iCaRL, CIFAR10 39.382 ± 3.61 46.002± 2.07 51.324± 1.86 57.504±0.61 61.23 ± 0.88 64.018± 0.56

Standard deviations reported across 5 randomly initialized networks and task orders.

Fig. 4 | SRC reduces correlations between image classes while maintaining
strong correlations within classes. Correlation matrices of activations in hidden
layer 1 (A) and layer 2 (B). Labels (0–3) indicate image class: Task 1–0/1, Task 2–2/3.
Note that before SRC (left) correlations between classes, e.g., images of 1 and 2, are
almost as high as correlations within classes, e.g., different images of 1.

Fig. 5 | SRC changes input to the hidden layer neurons to favor old tasks. A In
layer 1 (left), input to the neurons representing old task is reduced less than input to
the neurons representing most recently learned task. B In layer 2 (right), SRC
increases input to the neurons representing old task while decreasing input to the
neurons representing most recently learned task.
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rates of digit-0 and digit-1 (Task 1) neurons. We found that digit-2
neurons and digit-3 neuronswere significantlymore active in layer one
(t(200) = 3.456,p = 0.004, one-sided t-test, Bonferroni Correction) and
layer two (t(200) = 5.215, p <0.001, one-sided t-test, Bonferroni Cor-
rection). Together, this suggests that spontaneous firing patterns
during sleep are correlatedwith activity observed during task learning,
in agreement with neuroscience data12,20. Interestingly, sleep replay
improved performance not only by increasing connectivity for the old
tasks but also by reducing connectivity representing the most
recent task.

If replay indeed provides a mechanism of how sleep protects
memories from interference, then sleep replay should increase per-
formance for a single task. Indeed, the most well-established neural
effect of sleep on memory in the brain is augmenting memory traces
for recent tasks20. In this new study we typically observed a reduction
in performance on the most recent task. Do we have contradiction
here? To test this, we tested effect of SRC on a single task memory
performance as a function of the amount of initial training. We found
(see Supplementary Information, Fig. 5) that when the network is
undertrained, i.e., initial performance is low, SRC can greatly increase
performance without involving any new training data. However, if the
memory is well trained, SRC cannot improve or even slightly reduces
performance. This is consistent with neuroscience data suggesting an
inverse association between learning performance pre-sleep and gains
in procedural skills post-sleep in humans, i.e., good learners exhibit
smaller performance gains after sleep than poor learners43.

Discussion
We implemented an unsupervised sleep replay consolidation (SRC)
algorithm for artificial neural networks and we showed that SRC can
alleviate catastrophic forgetting for several different datasets, ranging
from binary patterns to natural images. SRC simulates fundamental
properties of a biological sleep replay, including: (a) spontaneous
activity of neurons during sleep leads to replay of previously learned
activation patterns, (b) unsupervised Hebbian-type plasticity modifies
the connectivity matrix to increase task-specific connections and to
prune excessive connections between neurons. This increases spar-
seness of representation and reduces representational overlap
amongst distinct input classes. Our results suggest that unsupervised
Hebbian-type plasticity combined with spontaneous activity to simu-
late sleep-like dynamics can help alleviate catastrophic forgetting in an
incremental learning setting.

Existing approaches to prevent catastrophic forgetting generally
fall under two categories: rehearsal and regularization methods35.
Rehearsal methods combine previously learned data, either stored or

generated, with novel inputs in the next training to avoid
forgetting36,44–48. This approach includes models where distinct net-
works, loosely representing hippocampus and cortex, are used to
generate examples from a distribution of the previously learned
tasks37. As the number of previously learned tasks grows, this approach
would require increasingly complex generative networks capable of
potentially generating everything that was learned before. In contrast,
in a biological brain, sleep replay is spontaneous and occurs without
any external input. Thus, although rehearsal methods work well from
an engineering standpoint, they unlikely capture the mechanisms that
nature developed to enable continual learning. While current SRC
performance, as we report here, is somewhat inferior compared to the
state-of-the-art rehearsal techniques36,37,44, our approach does not
require storing any task-specific information or training newgenerator
networks. Furthermore, SRC can be complementary to rehearsal
methods by incorporating partial olddata replay, reducing the amount
of old data needed for new task training. Importantly, SRC was also
shown to performothermemory functions associatedwith sleep, such
as promoting generalization and improving robustness against
adversarial attacks31. While actual training data were used to generate
replay to improve generalization in ref. 31, here we show that sleep
replay can alleviate catastrophic forgetting on class-incremental
learning task by only having access to the basic input statistics.

Regularization approaches49 for reducing catastrophic forget-
ting aim to modify plasticity rules by incorporating additional
constraints on gradient descent such that important weights from
previously trained tasks are maintained. The Elastic Weight Con-
solidation (EWC) and Synaptic Intelligence (SI) methods penalize
updates to weights deemed important for previous tasks38,39.
Although these studies report positive results on preventing cata-
strophic forgetting in various tasks (MNIST permutation task, Split
MNIST, Atari games), they may not work well in a class-incremental
learning framework, where one class of inputs is learned at a time36.
Since these approaches support continual learning by stabilizing
weights that are deemed important for earlier tasks, high overlap in
representation between tasks belonging to the same dataset may
reduce their performance (see Supplementary Information). In
terms of memory constraints, SRC is similar to regularization
methods since only a fixed amount of information, independent of
the number of tasks trained, is needed to be stored, but SRC
exceeds performanace of EWC and SI approaches in an incremental
learning framework that is natural for biological systems. Ortho-
gonal Weight Modification (OWM) improves upon these methods
by computing a projector matrix for old tasks and only allowing
weight updates in an orthogonal direction to this projector40.

Fig. 6 | Task-specific neurons are more likely to be activated during sleep.
Spiking activity of digit-specific neurons during sleep is greater than activity of a
randomsubset of neurons inbothfirst (A) and second (B) hidden layers. Neurons are

activated by random (not averaged) inputs to the input layer. Error bars represent
standard deviation. p-values computed from two-sided t-test comparing firing rates
of digit-specific neurons vs. random subset of neurons with Bonferroni Correction.
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OWM was shown to be more successful than EWC and SI on class-
incremental learning tasks.

Why can a noise driven reactivation, as proposed in the SRC
algorithm here, recover memories, including higher-order associa-
tions, learned during training? In biology, while the brain generates
sleep activity spontaneously, the sleep firing patterns still reflect the
synaptic weight structure that was learned during training. In fact, it
was reported in vivo that similar spatial patterns of population activity
were observed both when the neuron fired spontaneously and when it
was driven by its optimal stimulus50. While the noisy input applied in
the SRC algorithmmaynot include higher-order structure found in the
training data, replay during sleep involves extracting such higher-
order interactions, because the information is already present in the
patterns of synaptic weights. Many results from biological sleep replay
suggest that replay events are complex patterns, and not a simple
repetition of the past inputs51. From that perspective, spontaneous
replay found in the biological brain and implemented in the SRC
algorithm here, is very different compared to explicit replay of past
inputs often found inmachine learning rehearsalmethods (reviewed in
refs. 52,53).

Our approach is implemented using a machine learning frame-
work, where during the sleep phase we simply substitute in the
Heaviside-activation function and modify the learning rule. Since the
idea of SRC is inspired by biological spiking networks (SNNs), we also
tested SNN-only implementation by performing “awake” training on
MNIST data in an SNN via backpropagation54 and found that incre-
mental learning can lead to catastrophic forgetting. When sleep phase
was implemented after each new task training using noise driven
spontaneous replay, this recovered the old task performance
(see Supplementary Information). While such framework may be
suboptimal for ANNs, it has an advantage of avoiding explicitmapping
ANN to SNN andmay be efficient in the neuromorphic solutions where
SNN is explicitly trained55.

It remains an open question whether SRC would benefit con-
volution layers of the network, which were kept frozen in this study.
Recent studies suggest that catastrophic forgetting does not occur in
the feature extractor but takes place in the later layers, which moti-
vated the use of SRC in these layers56,57. From a neuroscience per-
spective convolutional layers are somewhat equivalent to the primary
visual cortex which is less plastic beyond development and unlikely to
be involved in significant rewiring during sleep replay, in contrast, e.g.,
to the associative cortices.

Sleep replay helps to resurrect performance on tasks that were
damaged after new training. This suggests that while ANN perfor-
mance for old tasks is reduced, the network connectivity retains partial
information about these tasks and spontaneous activity combined
with unsupervised plasticity during sleep may reverse damage and
reorganize connectivity to accommodate both tasks. Previously, it was
shown that a wake-sleep algorithm developed for recurrent spiking
neural networks, which does capture some principles of memory
consolidation during sleep, can reduce the number of training exam-
ples needed to achieve optimal performance on single tasks58. The
wake-sleep algorithm for BoltzmannMachineswas shown to be able to
learn representations of inputs and highlighted the role of incorpor-
ating a sleep phase to improve learning59. Ourwork further adds to this
literature by exploring the role of sleep and local plasticity rules in
overcoming catastrophic forgetting.

Our study makes several predictions for neuroscience: (a)
Synaptic dynamics during sleep remain poorly understood. Some
studies suggest net reductions of synaptic weights32, while others
argue for net increase60. Our work (extending ideas of ref. 28) predicts
that sleep replay leads to complex reorganization of synaptic con-
nectivity, including potentiation of some synapses and pruning of
others with the goal of increasing separation between memories. We
found that sleep replay may increase the contrast between memory

traces by enhancing lateral inhibition, such that activation of one
memory inhibits other similar memories to avoid interference61.
Recent studies suggest that local learning rules can orthogonalize
memories with different temporal contexts62,63. Our current (and
recent ref. 28) work agrees with this idea and further suggests that
local learning rules and sleep can orthogonalize representation of
interfering memories, even with limited contextual information. (b)
Sleep increases the sparseness of memory representations, which is in
line with previous theoretical ideas about the role of interleaved
training1. (c) Currently, sleep replay ideas are best developed for Non-
Rapid Eye Movement (NREM) sleep when neuronal activity is struc-
tured by global network oscillations, such as sleep slow waves64. Our
model predicts that sleep replay can bemediated by sparse patterns of
excitation propagating through the network, which is typical for REM
sleep (indeed, memory replay was also reported in REM sleep65). (d)
Ourmodel predicts the importanceof neuromodulatory changes from
learning (wake) to consolidation (sleep) phase, including strengthen-
ing of intracortical synapses and reduction of intrinsic excitability, as
found in NREM sleep66,67. We suggest that these changes effectively
increase the signal-to-noise ratio in network dynamics to promote the
strongermemories, that are replayed and consolidated, while allowing
forgetting of the weaker memory traces.

Catastrophic forgetting may be interpreted as asymmetry of the
weight configuration that becamebiased towards themost recent task
after new training. From this perspective, SRC may be seen as a
“symmetry-correcting”mechanism. Indeed,Hebbian learning has been
shown to orthogonalize neural codes and our recent biophysical
modeling work28, as well as results here, suggest that sleep orthogo-
nalizes memory representations by “assigning” distinct weights to
represent distinct memories. We found that rather than engage com-
pletion between memories, sleep allows chunks of competing mem-
ories to replay simultaneously and independently, so each memory
would reach its optimal representation, which can be seen as a way of
recovering the symmetry of weight distribution across tasks.

In sum, in this study we proposed an unsupervised sleep replay
consolidation algorithm, inspired by the known role of biological
sleep, to recover synaptic connectivity that otherwise would be for-
gotten after new training in ANNs. We tested a simplified model of
sleep (noisy reactivation) and a Hebbian-type plasticity rule. Future
work may need to explore more complex patterns of sleep activity
(e.g., sleepwaves) and learning rules (e.g., ref. 68), which could further
improve performance.

Methods
Task protocols
To demonstrate catastrophic forgetting, we utilized an incremental
learning framework, where a groups of classes are learned in a
sequential fashion.Weutilized 5 datasets to illustrate the prevalence of
catastrophic forgetting as well as the beneficial role of sleep: a toy
dataset termed “Patches”, MNIST, Fashion MNIST, CUB-200, and
CIFAR-1069–72. The Patches dataset consisted of binary patterns each
belonging to its own class. The main advantage of this toy dataset is
that it allows direct control over the amount of interference (number
of overlapping pixels) in each of the binary patterns. This dataset was
used to show the benefits of the sleep algorithm in a simpler setting
and to reveal the exact weight changes during sleep replay, which led
to a reduction in catastrophic forgetting. To ensure generalizability of
our approach, we tested the sleep algorithm on the MNIST, Fashion
MNIST, CIFAR10, and CUB-200 datasets. The MNIST and Fashion
MNIST datasets are widely used in machine learning, consisting of
60,000 training images of hand-written digits or fashion items and
10,000 testing images.

CIFAR-10 is a similarly sized dataset with 10 classes of low-
resolution natural images ranging from airplanes to frogs. For CIFAR-
10, we used extracted features from a convolutional network with 3
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VGG blocks. The first block consists of 2 convolutional layers with 32
3 × 3 filters in each layer, followed by a max pooling layer. The second
block uses 2 convolutional layers with 64 3 × 3 filters, followed by a
max pooling layer. The last convolutional block consists of 2 con-
volutional layers with 128 3 × 3 filters, again followed by amax pooling
layer and a flattening operation. To train the convolutional model, we
used two dense layers with 1028 and 256 units in each layer. For
extraction,we tookall inputs following the 3 convolutional blocks after
the flattening layer, and used these input features to perform incre-
mental learning. The original convolutional backbone was trained on
the Tiny Imagenet dataset and CIFAR-10 images were fed through this
network to extract intermediate feature representations73. The net-
work was trained on Tiny Imagenet for 200 epochs using stochastic
gradient descent with the following parameters: momentum=0.9,
learning rate = 0.005, batch size = 100, and the categorical cross-
entropy loss function. CUB-200 contains natural images of 200 dif-
ferent bird species, with relatively few images per class. For CUB-200,
following work done by ref. 37, we used the pre-trained Res-Net 50
embeddings. Here, the Res-Net 50 architecture was pre-trained on the
ImageNet dataset37,74.

The ANNwas trained sequentially on five groups of two classes for
MNIST, Fashion MNIST, and CIFAR-10 and 2 groups of 100 classes for
CUB200, following previous studies36. In addition to testing the
incremental MNIST and Fashion MNIST tasks (where two classes are
learned during each task in training), we also tested the Multi-Modal
MNIST task where first either MNIST or Fashion MNIST is learned and
then during task 2, the other dataset is learned. This task tests the
network’s ability to develop representations of both datasets, digits
and clothing, without catastrophic forgetting. After training on a single
task, we run SRC algorithm as described below before training on the
next task.

Network details
Dataset specific parameters for training ANNs are shown in Table 3.
This table includes the network architecture used to train the tasks in a
sequential fashion (number of hidden units per layer), the learning rate
used for each task, number of epochs per task, number of classes per
task, as well as the dropout percentage used to train the network. The
accuracy of the network on the entire dataset is listed in Table 1 in
the main paper under Parallel Training. This denotes the accuracy of
the network trained with the parameters listed in Table 3 but when the
network has access to all training data during training time. Addi-
tionally, the Sequential Training row in Table 1 illustrates the perfor-
mance of the ANN architecture when it is trained in an incremental
fashion without the use of sleep or any other methods. These metrics
serve both as an upper and lower bound, respectively.

The same network architecture and training parameters were
used in all comparisons. For the MNIST, Fashion MNIST, and Multi-
modal MNIST tasks, we used a fully connected architecture with two
hidden layers consisting of 1200 nodes in each layer, followed by a
classification layer with 10 output neurons. The network was trained
for 10 epochs per task (two epochs in the case of Multi-modalMNIST),
with mini-batch size of 100 images. For Multi-modal MNIST, the same
network architecture was used, again with 10 output neurons. Thus,

the same output neuron was used to represent both a digit and an
article of clothing. For the CIFAR-10 dataset, we used extracted fea-
tures from a convolutional network as denoted above. Extracted fea-
tures were fed into a fully connected network with two hidden layers,
with 1028 and 256 nodes in each hidden layer, respectively. These
hidden layers also fed into a classification layer with 10 output neurons
for each of the 10 classes in the dataset. This network was also trained
for 10 epochs per task with mini-batch size of 100 images/feature
vectors. For CUB-200, we used a network architecture consisting of
two hidden layers with 350 and 300 nodes, connecting to a classifi-
cation layer of 200 units, following work done by37. The network was
trained for 50 epochs per task.

For all datasets, the ReLU nonlinear activation function was used
during awake training in all layers. Each neuron in the network was
trained without a bias term, which aids in the conversion to a spiking
neural network (with Heaviside-activation function) during the sleep
stage34. The networks were trained using the basic stochastic gradient
descent optimizerwithmomentum.All networkswere trainedwith the
multi-class cross-entropy loss function. For incremental learning, this
loss function was evaluated solely on the task being presented to the
network during training time. Network weights were initialized using a
random uniform distribution between −0.02 and 0.02 for MNIST,
Fashion MNIST, Cross Modal MNIST and CUB-200, or −0.1 and 0.1 for
CIFAR10. For comparisons between different methods, such as EWC
and SI, the same training parameters and architectures were used.
See Supplementary Information for more details on these regulariza-
tion methods used to alleviate catastrophic forgetting.

Sleep Replay Consolidation (SRC) algorithm
Here, we provide pseudocode (Algorithm 1) and more information
about the SleepReplayConsolidation algorithm (SRC) described in the
main text. The intuition behind SRC is that a period of offline, noisy
activity may reactivate network nodes that are responsible for repre-
senting earlier tasks. If network reactivation is combined with unsu-
pervised plasticity, SRCwill then strengthen the necessary andweaken
unnecessary pathways through the network. If information about
previously learned tasks is still present in the synaptic weightmatrices,
then SRCmaybeable to rescue apparently lost information.We start in
the Main procedure, where first a network is initialized, e.g., within
PyTorch or Matlab environment. Then, a task t is presented to the
network and the network is trained, as usual, via backpropagation and
stochastic gradient descent. After supervised training phase, SRC is
implementedwithin the same environment. During the SRC phase, the
network’s activation function is replaced by a Heaviside function and
weights are scaled by the maximum activation in each layer observed
during last training. The scaling factor and layer-wide Heaviside-acti-
vation thresholds are determined based on a pre-existing algorithm
aimed at ensuring the network maintains reasonable firing activity in
each layer34. This algorithm applies a scaling factor to each layer based
on the maximum input to that layer and the maximum weight in that
layer. During the SRC phase, we start with a forward pass, when the
noisy input is created and fed through the network in order to get
activity (spiking behavior) of all layers. Following the forward pass, a
backward pass is run to update synaptic weights. To modify network
connectivity during sleep we use an unsupervised simplified Hebbian-
type learning rule, which is implemented as following: a weight is
increased between two nodes when both pre- and post-synaptic nodes
are activated (i.e., input exceeds Heaviside-activation function
threshold); and a weight is decreased between two nodes when the
post-synaptic node is activated but the pre-synaptic node is not (in this
case, another pre-synaptic node is responsible for activity in the post-
synaptic node). After running multiple steps of this unsupervised
training during sleep, the final weights are rescaled again (simply by
removing the original scaling factor), the Heaviside-type activation
function is replacedbyReLU, and testingor further supervised training

Table 3 | Neural network training parameters

MNIST/f. MNIST CUB-200 CIFAR-10

Arch. size 1200, 1200, 10 350, 300, 200 1028, 256, 10

Learn rate 0.065 0.1,0.01 0.1

Epochs/task 10 50 10

# class/task 2 100 2

Momentum 0.5 0.5 0.5

Dropout 0.2 0.25 0.2
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on new data is performed. This all is implemented by a simple SRC
function call after each new task training. Code is available on Github
with the exact parameters dictating neuronal firing thresholds and
synaptic scaling factors for each dataset and each architecture. These
parameters were determined using a genetic algorithm aimed at
maximizing performance on the training set. In the future, we would
like to optimize these parameters based on ideal neuronal firing rates
observed during sleep.

Stimulation during sleep phase
During sleep phase, to ensure network activity, the input layer of the
network is activated with noisy input (on/off pixels randomly assigned
across the input layer). In each input vector (i.e., for each forward SRC
pass), the probability of assigning a value of 1 (bright or spiking) to a
given element (input pixel) is taken from a Poisson distribution with
mean rate calculated as a mean intensity of that input element across
all the inputs observed during all of the preceding training sessions.
Thus, e.g., a pixel that was typically bright in all training inputs would
be assigned a value of 1 more often than a pixel with lower mean
intensity. Alternatively, the mean rate of the Poisson distribution used
to create inputs may be chosen independently on the past ANN acti-
vation which still leads to the partial recovery of the old tasks.

Algorithm 1. Sleep:

1: procedure ANNTOSLEEPANN(nn)
2: Change ReLU activation in ANN to Heaviside function in Slee-

pANN and determine layer-wide specific threshold
3: Apply weight normalization and return scale, threshold for

each layer return SleepANN, scales, threshold
4: procedure SLEEPANNTOANN(nn)
5: Directly map the new, unscaled weights from Heaviside-

network (SleepANN) to ReLU network (ANN) return ann
6: procedure SLEEP(nn, I, scales, thresholds) ⊳ I is input
7: Initialize v (voltage) = 0 vectors for all neurons
8: for t← 1 to Ts do ⊳ Ts - duration of sleep
9: S(1)←Convert input I to Poisson - distributed spiking activity
10: S = ForwardPass(S, v,W, scales, thresholds)
11: W = BackwardPass(S,W)
12: procedure FORWARDPASS(S, v,W, scales, threshold)
13: for l← 2 ton do ⊳ n - number of layers
14: v(l)← v(l) + (scales(l− 1)W(l, l− 1)S(l− 1)) ⊳W(l, l-1) - weights
15: S(l)← v(l) > threshold(l) ⊳ Propagate spikes
16: v(l)(v(l) > threshold(l)) =0 ⊳ Reset spiking neurons’ voltages

return S
17: procedure BACKWARD PASS(S,W)
18: for l← 2 to n do ⊳ n - number of layers

19: Wðl, l � 1Þ  Wðl, l � 1Þ+ inc ifSðl, tÞ= 1&Sðl � 1, tÞ= 1
Wðl, l � 1Þ � dec ifSðl, tÞ= 1&Sðl � 1, tÞ=0

�
⊳ STDP

return W
20: procedure MAIN

21: Initialize neural network (ANN) with ReLUneurons and bias = 0.
22: for task t = 1: T do
23: Train ANN using backpropagation on task t.
24: SleepANN, scales, thresholds = ANNtoSleepANN(ANN)
25: SleepANN= Sleep(SleepANN, TrainingdataX, scales, thresholds)
26: ANN = SleepANNtoANN(SleepANN)

Including old data during training
In addition to testing the basic SRC when only mean input activation
across all previous tasks is saved, we also tested how SRC can be
complementary to existing state-of-the-art generative/rehearsal
methods. To test this, we performed two additional experiments: one
denoted rehearsal and another based on a near state-of-the-art
method, iCaRL. The reherasal method included a percentage of old

task data during new task learning sessions. This is a simplification of
current rehearsal methods, which commonly use a separate network
to generate old data, rather than storing old examples, but it still
illustrates the complementary effect of utilizing both explicit replay
during training and implicit spontaneous replay during sleep. The
exact images from the old tasks were randomized and the fraction of
old images storedwasdefinedbydegreeof rehearsal. Thus, if task 1 has
5000 images and task 2 has 5000 images, then during training with 2%
rehearsal, 2% of task 1 imageswere stored (i.e., 100 random images and
their corresponding hard-target labels were stored from task 1) and
incorporated into the task 2 training dataset. With more tasks (e.g.,
task 3), 2% of task 1 and task 2 images would be stored (i.e., 200
random images across tasks 1 and 2). In the “rehearsal” condition, we
also used a weighted loss function to promote quick recovery of the
old tasks as follows (see36 for details):

Ltotal =
1

Ntasks
Lcurrent + 1� 1

Ntasks

� �
Lold ð1Þ

When iCaRLmethodwas tested, the fraction of stored images was
defined bymemory capacity, K42, and these images were chosen based
on the herding exemplar method used in iCaRL. In addition, iCaRL
utilizes the nearestmean of exemplar classification scheme aswell as a
loss function incorporating distillation on old tasks and classification
on new tasks. A more detailed description of these other methods
tested in the paper can be found in the Supplementary Information
and the original papers describing these methods.

Analysis of replay
For Figs. 5 and 6 (main text), we defined the neurons that were
specific to certain input classes. To define task-specific neurons, we
presented inputs from each class for 25 forward passes to the net-
work after sleep conversion and recorded the number of spikes
(number of times each neuron exceeded its Heaviside-based acti-
vation threshold) in each neuron for each class of input. We ignored
connections from the last hidden layer to the output layer in order
to identify neurons that were more responsive to Task 1 or Task 2,
while ignoring the actual classification component of the network.
These spike counts were averaged across all input classes and sor-
ted based on which input class maximally activated a given neuron.
We defined task-specific neurons as the top 100 neurons that
responded to a specific class of inputs. After task-specific neurons
were labeled, we performed SRC and analyzed the change in acti-
vation input before and after sleep and firing rates during sleep of
these task-specific neurons to create Figs. 5 and 6.

Data availability
Data are available at the following Github repository: https://github.
com/tmtadros/SleepReplayConsolidation. This includes links to the
standard datasets or actual data that have been used to train the
models.

Code availability
Code is available at the following Github repository: https://github.
com/tmtadros/SleepReplayConsolidation.
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