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Tübingen, 72076 Germany

Maria Eckstein
maria.eckstein@berkeley.edu

Department of Psychology
Berkeley, CA 94720 USA

Linda Wilbrecht
wilbrecht@berkeley.edu

Department of Psychology
Helen Wills Neuroscience institute

Berkeley, CA 94720 USA

Anne G. E. Collins
annecollins@berkeley.edu
Department of Psychology

Helen Wills Neuroscience institute
Berkeley, CA 94720 USA

Abstract
As we transition from child to adult, we navigate the world
differently. In this world, many of the relationships between
events are unclear or uncertain because they are probabilistic
in nature. We wanted to know how learning about probabilis-
tic relationships changes with development and to interrogate
the underlying processes. We investigated these questions in a
probabilistic reinforcement learning task (The Butterfly Task)
with 302 participants aged 8-30. We found performance in this
task increased with age through early-twenties, then stabilized.
Using hierarchical Bayesian methods to fit computational rein-
forcement learning models, we showed that this performance
increase was driven by 1) an increase in learning rate (i.e. de-
crease in integration time horizon); 2) a decrease in exploratory
choices. By contrast, forgetting rates did not change with age.
We discuss our findings in the context of other studies and hy-
potheses about adolescent brain development.
Keywords: reinforcement learning; computational modeling;
uncertainty; development

Introduction
In the everyday world, perfectly predictable outcomes are
rare. Yet, we still need to track important events and their
relationships to other events and actions. For example, we
might want to learn where the best place to obtain food is,
or where a potential mate likes to hang out – this might help
us decide where to go, expecting a positive outcome to occur
frequently, but not always. Our ability to learn about these
probabilistic relationships is therefore crucial for our daily
life and decision making. It follows that this challenge needs
to be met by the developing brain. From a naive perspective,
one might assume that the brain simply gets better at this (and
possibly all) forms of learning with brain maturation. How-
ever, what does better mean in this context? Most learning
mechanisms are subject to tradeoffs between speed and sta-
bility. Fast learning may be suitable for a highly certain en-
vironment with deterministic relationships/statistics, but can
lead to impulsive behavior in more uncertain environment
with probabilistic relationships/statistics (Behrens, Woolrich,
Walton, & Rushworth, 2007). By contrast, slower and more
integrated learning may lead to more robust and stable perfor-
mance in probabilistic environments. During development,
there may be periods where one form of learning may be em-
phasized over the other. Changes could be gradual and mono-

tonic, but there may also be non-monotonic changes (e.g. in-
verted U shapes (Master et al., 2020)) that accommodate the
expected increase in uncertainty in the environment with the
transition to independence during adolescence (Dahl, Allen,
Wilbrecht, & Suleiman, 2018).

Here, we investigate these changes across adolescence us-
ing a theoretical framework commonly used to investigate
learning from reward outcomes, reinforcement learning (RL).
Computational RL models assume that we estimate the long
term values of actions by aggregating the feedback we re-
ceive for them over time, through a trial-and-error process
(Sutton & Barto, 2018). RL has greatly enhanced our un-
derstanding of human behavior and the neural processes that
underlie learning and decision-making in both certain and un-
certain environments (Niv, 2009; Gläscher, Daw, Dayan, &
O’Doherty, 2010; Collins & Frank, 2012).

We examined how 302 participants age 8-30 learned prob-
abilistic relationships in the Butterfly task. The Butterfly task
has been used in developmental studies before (Davidow, Fo-
erde, Galván, & Shohamy, 2016), and tests participants’ abil-
ity to learn about four butterflies preferences for two possible
flowers. Each butterfly is programmed to choose one flower
80% of the time and the other 20% of the time. The challenge
for the participant is to correctly predict the flower the but-
terfly will choose. We examined trial-by-trial learning about
the preferences of the butterflies. We found that performance
increased through early twenties, then stabilized, peaking at
around 24 years. We next used hierarchical Bayesian methods
to fit computational RL models to the trial-by-trial data (see
Computational modeling) and examined how subjects inte-
grated information across trials and made decisions.

Increases in performance with age were explained by an in-
crease in learning from rewarded outcomes and a decrease in
exploration. These data are largely consistent with a general
picture emerging from studies of learning and decision mak-
ing across development (Davidow et al., 2016; Master et al.,
2020; Nussenbaum & Hartley, 2019). We also discuss some
notable differences (Davidow et al., 2016).



Methods
Participants
All procedures were approved by the Committee for the Pro-
tection of Human Subjects at the University of California,
Berkeley (UCB). A total of 302 participants completed the
task: 187 children and adolescents (age 8-17) from the com-
munity, 60 UCB undergraduates (age 18-25), and 55 adults
(age 25-30) from the community.

Community subjects were compensated with a $25 Ama-
zon gift card for completing the experimental session; under-
graduate participants received course credits for participation.
All participants were pre-screened for the absence of present
or past psychological and neurological disorders.

Experimental design

Figure 1: Experimental design. On each trial, participants
needed to select the flower that the butterfly preferred. Each
butterfly had the same preferred flower throughout the exper-
iment. If participants selected the butterfly’s preferred flower,
they observed a Win! feedback with probability 0.8, and
Lose! otherwise. For non-preferred choices, they received
a Win! feedback with probability 0.2, and Lose! otherwise.

This task was one of four tasks participants completed in
the experimental session (Master et al., 2020). The task in-
volved learning from probabilistic binary feedback in a con-
textual 2-armed bandit task. Participants were instructed to
figure out, for each of four butterflies (blue, purple, red, and
yellow), which of two flowers (pink or white) the butterfly
preferred through trial and error. Each butterfly had the same
preferred flower throughout the experiment.

On each trial (Fig. 1), participants saw one butterfly and
chose one of the two flowers using a video game controller.
Participants had 7s to respond following the onset of the
butterfly and the flowers, but were instructed to respond as
quickly as possible. Once a flower was chosen, it stayed on
the screen for 1s. If participants correctly chose the preferred
flower, they were rewarded (Win!) 80% of the time and re-
ceived negative feedback Lose! 20% of the time. If the other
flower was chosen, participants only received reward 20% of
the time. After the participants made their selection, the feed-
back stayed on the screen for 2s. There were 120 trials (30
trials for each butterfly) in total. The butterfly-flower map-
ping, position of flowers, sequence of butterflies and the prob-
abilistic feedback were pre-randomized and counterbalanced
across participants.

Exclusion criteria
To ensure that participants understood the task and stayed en-
gaged, we excluded any participants who were more likely
to change their flower choice for a given butterfly after a win
trial than after a lose trial. This criterion allowed us to in-
clude every participant who showed evidence of being sensi-
tive to feedback, even if their overall performance was close
to chance. We excluded 20 community participants and 1
undergraduate participant based on this criterion. One more
community participant was excluded because only 18 out of
120 learning trials were completed. Data from 5 more un-
dergraduate participants were excluded for being outside our
age range. In total, we excluded 21 participants under 18,
and 6 participants in the 18-25 age range. Our final analysis
included a total of 275 participants (166 under age 18).

Computational models
We used computational modeling to characterize participants’
trial-by-trial responses. We used hierarchical Bayesian mod-
eling to fit parameters and compare five models.

Classic RL (αβ) The αβ model is the simplest Q-learning
model with just 2 free parameters, α (learning rate) and β

(inverse temperature), that learns to estimate Q(b,a), the ex-
pected value of choosing flower a for butterfly b. All Q-values
are initialized to the uninformative value of 0.5. On trial t, the
probability of choosing a is computed by transforming the Q-
value with a softmax:

P(a|b) = exp(βQt(b,a))

∑
2
i=1 exp(βQt(b,ai))

, (1)

where β is the inverse temperature, and Qt(b,a) is the Q-value
until trial t. After reward rt (0 for “Lose!” or 1 for “Win!”) is
presented, the Q-value corresponding to butterfly b and flower
a is updated through the classic delta rule:

Qt+1(b,a) = Qt(b,a)+αRPE, (2)

where α is the learning rate parameter, and RPE = rt −
Qt(b,a) is the reward prediction error.

RL with asymmetric learning rates (α+α−β) The
α+α−β model differs from the αβ model by using two dis-
tinct learning rate parameters, α+ and α− to capture different
sensitivity to wins and losses (Frank, Seeberger, & O’Reilly,
2004). Specifically, the update in equation (2) occurs with α+

when RPE > 0, and α− otherwise.

Asymmetric RL with α− = 0 (α+0β) The α+0β model
stems from our observation that the fitted α− parameters from
the α+α−β model were very low, suggesting that partici-
pants might not be integrating much information from neg-
ative feedback. To test this possibility, we also included a
model where we fixed α− = 0.

RL with forgetting (α+0β f ) The α+0β f model builds
upon the α+0β model by introducing the forgetting param-
eter, f . On each trial, after the learning update in equation



(2), Q-values decay toward the uninformative value of 0.5,
mimicking forgetting:

Qt+1(b,a) = (1− f )∗Qt+1(b,a)+ f ∗0.5. (3)

Forgetting occurs for all butterfly-flower pairs except the but-
terfly and the selected flower on the current trial.

RL with asymmetric learning rates and forgetting
(α+α−β f ) The α+α−β f model is the same as the α+0β f
model, except the learning rate for negative RPE, α−, is a free
parameter, and not fixed to 0.

Results
Human behavior

Figure 2: Performance by age group. (A) Average probability
of a correct choice over 30-trial learning blocks. Learning
curves show that 13-17 year-olds perform better than 8-12
year-olds, but worse than adults. (B) Overall performance of
participants (solid line) and model simulations (dashed line)
for each age group. The winning α+α−β f model was used
for model simulations. Colors indicate different age groups;
error bars indicate standard error.

We characterized performance in terms of correct choices:
trials in which the participant selected the butterfly’s
experimenter-defined preferred flower (different from trials
in which they were rewarded). We first analyzed the aver-
age number of correct choices within each of the four 30-trial
learning blocks to assess participants’ learning performance.
To visualize the effect of age on learning curves, we aver-
aged participants’ performance within different age groups
(Fig. 2A). In particular, we grouped all participants under
18 into an age 8-12 group (N = 80) and age 13-17 group (N
= 86). Undergraduate participants (age 18-25, N = 54) and
adult community participants (age 25-30, N = 55) constituted
the other 2 age groups.

All age groups exhibited learning over the course of the
experiment. Specifically, we found a significant main effect
of age group and block on participants’ performance (2-way
mixed-effects ANOVA, age group: F(3,264) = 15.6, p <
0.0001; block: F(3,792) = 133, p < 0.0001). There was
no interaction between age group and block (2-way mixed-
effects ANOVA: F(9,792) = 1.1, p = 0.33).

To further characterize the effect of age on overall per-
formance, we computed the proportion of correct trials over
all four learning blocks (Fig. 2B). Because this propor-
tion was not normally distributed across participants (Kol-
mogorov–Smirnov test, p = 0.002), we instead used log odds
for all later statistical tests. The distribution of log odds was
normally distributed (Kolmogorov–Smirnov test, p = 0.13).

We found that the overall performance of the 13-17 year-
olds was significantly higher than 8-12 year-olds (unpaired t-
test, t(1,164) = 4.3, p< 0.0001), and significantly lower than
18-25 year-olds (unpaired t-test, t(1,138) = 2.5, p = 0.013).
However, there was no significant difference between the per-
formance of 25-30 year-olds and 18-25 year-olds (unpaired
t-test, t(1,107) = 0.24, p = 0.8).

Figure 3: Age effects on participants’ behavior. Scatter plot
of age (x-axis) and (A) probability of choosing the correct
response, (B) log odd of probability of choosing the correct
response, (C) median reaction time (in milliseconds), and
(D) log of median reaction time. Each black dot represents
one participant. The blue curve represents the regression
line (quadratic for age, linear for reaction time, see results).
Shaded region represents 95% confidence interval.

To examine the continuous relationship between partici-
pants’ behavior and age, we ran a multiple regression anal-
ysis (Fig. 3AB). We found that including a quadratic term
improved fit in terms of the Akaike Information Criterion
(AIC; AIC(linear) = 712; AIC(quadratic) = 705). The regres-
sion analysis revealed both linear and quadratic effects (lin-
ear: βage = 0.06, p < 0.0001; quadratic: β2

age = −0.005, p =
0.002). This indicated an inverse U-shape performance curve,
with maximal performance around age 24, confirming the
previous group analysis. There was no significant effect of
sex or interaction with age (multiple linear regression, both
p’s > 0.57).

We also computed the median (Fig. 3CD) and standard



deviation of reaction time for each participant. Because re-
action time was not normally distributed across participants
(Kolmogorov–Smirnov test, p = 0.02), for all later statisti-
cal tests, we used log reaction time, which was normally dis-
tributed (Kolmogorov–Smirnov test, p = 0.89).

Confirming previous results (Master et al., 2020), we found
a significant linear effect of age on the median of reaction
time (βage =−0.01, p= 0.001), indicating that reaction times
became faster with age; including a quadratic term did not
improve fit. We also found a significant linear effect of age
on the standard deviation of reaction time (linear regression:
βage = −0.02, p < 0.0001); adding a quadratic term pro-
vided a better fit (AIC(linear) = 352, AIC(quadratic) = 330,
β2

age = 0.004, p < 0.0001). This indicates that the variabil-
ity in reaction time decreased with age, and this decrease it-
self slowed down with age, consistent with previous findings
(Master et al., 2020; Larsen & Luna, 2018). There was no
significant effect of sex on the median reaction time (unpaired
t-test, median: t(1,273) = 0.77, p = 0.44), but female partici-
pants had a significantly smaller standard deviation than male
participants (unpaired t-test: t(1,273) = 2.72, p = 0.007).

These results indicate better performance and faster re-
sponse in older participants. Age group (Fig. 2) and con-
tinuous age (Fig. 3AB) analysis both revealed an inverse-U
shape with performance, suggesting that the age effect slowed
down in adulthood, and might even invert.

Computational modeling

Figure 4: Graphical representation of hierarchical Bayesian
Modeling (Gelman et al., 2013). At the group level (top),
we sampled the group mean and group standard deviation of
α and β parameters from weakly informative priors (uniform
and bounded). At the individual level (middle), we sampled α

and β for each participant from the group mean and standard
deviation just sampled. Individual participants’ parameters
were used to calculate the likelihood of each action on every
trial based on the αβ model. T [m,n] indicates truncation of
distribution. Unfilled circles represented latent variables (in
this case, group and individual level model parameters); the
filled circle represented observed variable (in this case, par-
ticipants’ choices on each trial).

Fitting procedure We used computational modeling and
model comparison to probe trial-by-trial learning dynamics.
We fitted five RL models (see Computational models) using
hierarchical Bayesian Methods (Gelman et al., 2013) jointly
to all participants, instead of to each participant indepen-
dently. Compared to the classic participant-wise maximum
likelihood estimation approach, hierarchical model fitting
provides better point estimates for individual participants and
allows inference of effects on parameters at the group level
(Katahira, 2016). We used a state-of-the-art Markov Chain
Monte Carlo (MCMC) sampling, no-U-Turn sampler, im-
plemented in the probabilistic programming language STAN
(Carpenter et al., 2017), to sample from the joint posterior
distribution. The empirical distribution of the samples ap-
proximates the true posterior, which additionally provides a
measure of uncertainty, besides point estimates of individual
model parameters, allowing more robust statistical inference.

We use the simplest model, αβ, as an example to describe
the procedure (Fig. 4). We first sampled group-level pa-
rameters, including means and standard deviations for learn-
ing rate α (µα and σα) and inverse temperature β (µβ and
σβ), from weakly informative priors (uniform and bounded).
We then sampled parameters for each participant using these
group level parameters: for example, α[ j] for participant j
was sampled from a normal distribution, Normal(µα,σα).
Note that since the α parameter should be constrained to
[0,1], we truncated this normal distribution accordingly. The
individual participants’ parameters were then used to calcu-
late the likelihood of each participant’s actions on each trial
a[ j][t] according to the αβ model, where j and t indicate par-
ticipant number and trial number, respectively.

For each model, we ran 4 MCMC chains in parallel, with
each chain generating 5000 samples (2500 warmup samples),
resulting in 10000 samples per model for later inference.
We checked the convergence of all models using bbstanlib
(Baribault, 2019). In particular, none of the models generated
any divergent transitions during sampling; R̂ for all free pa-
rameters were below 1.05; and the effective sample size for
all free parameters were more than 200.

Table 1: WAIC scores

Model αβ α+0β α+α−β α+0β f α+α−β f
WAIC 30042 29054 28846 28460 28337

Model comparison We performed model comparison at
the group level with WAIC (Watanabe, 2013), an informa-
tion criterion that penalizes model complexity appropriately
for hierarchical Bayesian models - smaller WAIC indicates a
better fit to the data, controlling for complexity. The α+α−β f
model with asymmetric learning rates and the forgetting pa-
rameter had the lowest (best) WAIC score (Table 1).

Our results support recent findings in deterministic learn-
ing tasks that including forgetting captured behavior better.



Moreover, the model with α− fitted as a free parameter had a
better WAIC score than simpler models. This confirms that,
at the group level, participants did learn from negative feed-
back.

The group-level mean parameter for α+ was significantly
higher than that for α− (direct comparison of the empiri-
cal distribution of the 10000 posterior samples, p < 0.0001).
Thus, participants learned much more strongly from positive
than negative feedback (µα+ = 0.21 (95% CI = [0.18, 0.26]);
µα− = 0.004 (95% CI = [0.0001, 0.01]); Fig. 5AB). The small
value of group level mean of α− reflects the fact that, when
each participant was fitted individually, the majority of the
participants favored the simpler models without α−. How-
ever, since some participants did learn from negative feed-
backs (α− > 0), when all participants were jointly fitted hier-
archically, having α− still improved WAIC.

We validated the best fitting model, α+α−β f , by simulat-
ing synthetic choice trajectories from fitted parameters (Fig.
2B) (Palminteri, Wyart, & Koechlin, 2017). Model simula-
tions captured age effects on overall performance (inverse-U
shape of performance against age groups; Fig. 2B).

Age differences in model parameters We next investi-
gated which processes drove the changes in performance over
age. Specifically, we tested whether parameters of the best
fitting model systematically changed with age. To do so, we
extended the hierarchical model fitting approach over the pre-
viously best fitting model, α+α−β f . Note that directly as-
sessing this relationship by regressing the individual param-
eters estimated from the previous model against age is not
statistically appropriate: the individual parameters were sam-
pled jointly during MCMC, thus violating linear regression
assumptions of independent and identical distribution of sam-
ples.

The hierarchical Bayesian approach provides a built-in way
to test for effects of external variables on parameter models
(Gelman et al., 2013). Specifically, we incorporated the re-
gression assumptions into the graphical model of hierarchi-
cal Bayesian model, and directly sampled regression coeffi-
cients for age jointly with other model parameters. More pre-
cisely, for each of the free parameters θ,θ ∈ {α+,α−,β, f},
we first sampled an intercept term, θintercept for each partici-
pant, identical to how we sampled parameters for individual
participants from group level parameters (Fig. 4). In addition,
we also sampled a linear term, θlinear from a weakly informa-
tive prior (uniform and bounded). The parameter θ[ j], used to
compute the likelihood of participant j’s choice trajectories,
was defined as:

θ[ j] = θintercept +θlinear ∗age[ j], (4)

where age[ j] was the z-scored age of participant j, thus im-
plementing a regression directly into the full model.

For quadratic regressions, we additionally sampled a
quadratic term, θquadratic, and θ[ j] became:

θ[ j] = θintercept +θlinear ∗age[ j]+θquadratic ∗age[ j]2. (5)

Figure 5: Age effects on model parameters. We directly in-
corporated age-related parameters into MCMC sampling to
test within the hierarchical Bayesian modeling framework
whether age had a linear or quadratic effect on all four model
parameters: α+ (A), α− (B), β (C), f (D). Left panel: in-
dividual parameters from the original α+α−β f model plot-
ted against age. For visualization, we included a quadratic
regression line; the shaded region indicates 95% CI (blue
curves). Right: distribution of 10000 samples for θlinear (top)
and θquadratic (bottom). The blue vertical line represents the
mean of all samples. Shaded region shows 95% confidence
interval. The 10−3 scaling applied only to the quadratic effect
of age on the forgetting parameter f .

To test for significant linear and/or quadratic effects of age
on the model parameters, we examined whether the empirical
distribution of all 10000 samples for θlinear and/or θquadratic
were significantly different from 0 (Fig. 5). We found sig-
nificant linear and quadratic effects of age on α+ (linear:
p < 0.0001; quadratic: p = 0.0002), α− (linear: p < 0.0001;
quadratic: p < 0.0001), and β (linear: p < 0.0001; quadratic:
p = 0.001). We also found that flinear and fquadratic were not
significantly different from 0 (linear: p = 0.88; quadratic:
p = 0.86), indicating that there was no effect of age on for-
getting rate.

We found linear and quadratic effects of age in parameters
α+,α− and β (Fig. 5 left). The trajectory of change over age
for α+ and β closely mimicked that for performance, with an
inverse U-shape peaking around age 22 and 24 respectively.
Moreover, α

+
linear was significantly larger than α

−
linear (p <

0.0001), suggesting that age had a larger effect on sensitivity



to positive over negative feedback, with an increasing bias for
positive learning rate(Fig. 5AB left).

Discussion
How do humans learn to make choices when the outcome is
uncertain? To learn probabilistic contingencies, humans need
to integrate information over multiple trials to avoid reacting
to noise in the environment. But to learn efficiently, they also
need to pay attention to recent information. Here, we inves-
tigated how humans trade off these constraints across devel-
opment, what the underlying computational mechanisms that
support such learning are, and how they change with adoles-
cence.

At the population level, computational model comparison
(Table 1) suggested that two mechanisms modulated learning
of probabilistic contingencies. First, participants did not treat
positive and negative feedback identically; rather, they had a
strong bias to learn more from positive than negative feed-
back. This asymmetry has been widely observed in previ-
ous studies (Master et al., 2020; van den Bos, Cohen, Kahnt,
& Crone, 2012; Hauser, Iannaccone, Walitza, Brandeis, &
Brem, 2015), potentially due to differential mechanisms in-
tegrating positive and negative feedback (Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007). Second, we found
that learning was better explained by including a forgetting
mechanism: more intervening trials between two iterations of
a choice decreased the strength of past information (Master et
al., 2020).

Consistent with the age effects observed in previous
work using tasks with probabilistic (Eckstein, Master, Dahl,
Wilbrecht, & Collins, 2019) and deterministic (Master et al.,
2020) feedback, our behavioral and modeling results suggest
that learning changed markedly from childhood to adulthood.
In particular, we found that overall performance increased
with age, stabilising in early adulthood. This behavioral pat-
tern was mirrored by learning rate parameters (α+,α−) as
well as inverse temperature (β), a parameter indicating a de-
crease in noise or exploration in choice.

Our observations that learning rate α+ and inverse tem-
perature β increase with development are generally consis-
tent with previous work using a deterministic ”RLWM’ learn-
ing task tested in the same participants as data shown here
(Master et al., 2020) and a probabilistic task with same the
same overall task structure as the Butterfly task used here,
but different feedback methods (Davidow et al., 2016).

However, we did not find higher performance in adoles-
cents than adults, as had been observed in this previous
Butterfly task study (Davidow et al., 2016) (Fig. 2A, Fig.
3A). Using the same age bin as (Davidow et al., 2016), we
found that the performance in 20-30-year-olds was signifi-
cantly higher than 13-17-year-olds (unpaired t-test, t(172) =
2.23, p = 0.027).

The Davidow et al (2016) finding was interpreted as an up-
side of slower learning that led to more robust integration over
time of information, and thus higher overall performance un-

der uncertainty at younger ages. However, the relationship
between learning rates and performance when learning prob-
abilistic contingencies is complex and non-monotonic: it fol-
lows an inverse U-shape, as very low learning rates lead to in-
tegrating information too slowly, but high learning rates lead
to being too susceptible to noisy feedback. Furthermore, the
inverse U-shape itself is dependent on the degree of explo-
ration (Nussenbaum & Hartley, 2019; Davidow et al., 2016;
Wilson & Collins, 2019). Learning rates were smaller in our
study compared to (Davidow et al., 2016): the group level
mean for α+ in our sample was 0.21, whereas in (Davidow et
al., 2016), the mean was around 0.3 and 0.6 for adolescents
and adults respectively (Fig. 2B in (Davidow et al., 2016)).
Thus, in Davidow et al’s higher range of learning rate, an
increase in learning rate could result in a decrease in perfor-
mance (right side of the inverse U-shape), while in our lower
range, it could lead to an increase in performance (left side
of the inverse U-shape). Thus, the two studies are consistent
in identifying an increase in learning rate, but over a different
baseline value, leading to opposite effects on performance.

Therefore, while we found a similar trend as in (Davidow
et al., 2016) that learning rates increased with age (Fig. 5),
our learning rate values were much smaller, and the result-
ing trend in overall performance was different. Note that
this difference in the range of learning rates could be a re-
sult of differences in the task feedback phase or differences
in socioeconomic status and education level between the sam-
ples. For example, it is possible that the peak in performance
around age 24 in our sample (Fig. 3A) might be driven by the
fact that our 18-25 year-olds are undergraduate students, who
may have a different education level than the 25-30 year-old
community participants in our study or the adults sampled in
Davidow et al. (2016).

Nevertheless, our results support other previous develop-
mental findings. In particular, we found a decrease in explo-
ration with age (Master et al., 2020; Christakou, Gershman,
Niv, & Simmons, 2013), an increase in learning rate previ-
ously observed in both deterministic (Master et al., 2020) and
probabilistic learning tasks (Eckstein et al., 2019). We also
replicated in a probabilistic task a surprising recent finding
in a deterministic task (Master et al., 2020): we found no
change in forgetting, a component usually attributed to work-
ing memory’s role in learning, and thus expected to change
during adolescence.

In conclusion, we sought to examine the development of
learning in a probabilistic environment using a large adoles-
cent and young adult sample with continuous age in the 8-
30 range. Combining behavioral analysis and computational
modeling, we showed developmental gains in performance
from age 8-24 that were explained by an increase in learn-
ing from rewarded outcomes (corresponding to a narrower
window of information integration) and a decrease in explo-
ration. Changes in forgetting and learning from non rewarded
outcomes varied across subjects but did not show systematic
change with development. These data and models help ex-



plain why learning and decision making differ at different
stages of development and why a ’one-size-fit-all’ approach
may not equally serve youth at different stages.

References
Baribault, B. (2019). bbstanlib: A library of helper functions

for stan/matlabstan.
Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rush-

worth, M. F. S. (2007). Learning the value of information
in an uncertain world. Nature Neuroscience, 10(9), 1214–
1221. doi: 10.1038/nn1954

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., . . . Riddell, A. (2017,
January). Stan: A Probabilistic Programming Lan-
guage. Journal of Statistical Software, 76(1), 1–32. doi:
10.18637/jss.v076.i01

Christakou, A., Gershman, S., Niv, Y., & Simmons, A.
(2013). Neural and Psychological Maturation of Decision-
making in Adolescence and Young Adulthood | Journal of
Cognitive Neuroscience |MIT Press Journals.

Collins, A. G., & Frank, M. J. (2012). How much of rein-
forcement learning is working memory, not reinforcement
learning? a behavioral, computational, and neurogenetic
analysis. European Journal of Neuroscience, 35(7), 1024–
1035.

Dahl, R. E., Allen, N. B., Wilbrecht, L., & Suleiman, A. B.
(2018). Importance of investing in adolescence from a de-
velopmental science perspective. Nature, 554(7693), 441–
450.

Davidow, J., Foerde, K., Galván, A., & Shohamy, D.
(2016, October). An Upside to Reward Sensitivity: The
Hippocampus Supports Enhanced Reinforcement Learn-
ing in Adolescence. Neuron, 92(1), 93–99. doi:
10.1016/j.neuron.2016.08.031

Eckstein, M., Master, S., Dahl, R., Wilbrecht, L., &
Collins, A. (2019). Modeling the development of de-
cision making in volatile environments using strategies,
reinforcement learning, and bayesian inference.. doi:
10.32470/CCN.2019.1409-0

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T.,
& Hutchison, K. E. (2007). Genetic triple dissociation re-
veals multiple roles for dopamine in reinforcement learn-
ing. Proceedings of the National Academy of Sciences,
104(41), 16311–16316. doi: 10.1073/pnas.0706111104

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004, De-
cember). By Carrot or by Stick: Cognitive Reinforcement
Learning in Parkinsonism. Science, 306(5703), 1940–
1943. doi: 10.1126/science.1102941

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
htari, A., & Rubin, D. B. (2013). Bayesian Data Analysis.
Chapman and Hall/CRC. doi: 10.1201/b16018

Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010).
States versus rewards: dissociable neural prediction error
signals underlying model-based and model-free reinforce-
ment learning. Neuron, 66(4), 585–595.

Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D.,
& Brem, S. (2015). Cognitive flexibility in adoles-
cence: Neural and behavioral mechanisms of reward pre-
diction error processing in adaptive decision making dur-
ing development. NeuroImage, 104, 347–354. doi:
10.1016/j.neuroimage.2014.09.018

Katahira, K. (2016, August). How hierarchical models im-
prove point estimates of model parameters at the individ-
ual level. Journal of Mathematical Psychology, 73. doi:
10.1016/j.jmp.2016.03.007

Larsen, B., & Luna, B. (2018). Adolescence as a neuro-
biological critical period for the development of higher-
order cognition. Neuroscience & Biobehavioral Reviews,
94, 179–195. doi: 10.1016/j.neubiorev.2018.09.005

Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R.,
Wilbrecht, L., & Collins, A. G. E. (2020, February). Dis-
tentangling the systems contributing to changes in learn-
ing during adolescence. Developmental Cognitive Neuro-
science, 41, 100732. doi: 10.1016/j.dcn.2019.100732

Niv, Y. (2009, June). Reinforcement learning in the brain.
Journal of Mathematical Psychology, 53(3), 139–154. doi:
10.1016/j.jmp.2008.12.005

Nussenbaum, K., & Hartley, C. A. (2019, December).
Reinforcement learning across development: What in-
sights can we draw from a decade of research? De-
velopmental Cognitive Neuroscience, 40, 100733. doi:
10.1016/j.dcn.2019.100733

Palminteri, S., Wyart, V., & Koechlin, E. (2017, June).
The Importance of Falsification in Computational Cogni-
tive Modeling. Trends in Cognitive Sciences, 21(6), 425–
433. doi: 10.1016/j.tics.2017.03.011

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. MIT Press.

van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A.
(2012). Striatum–Medial Prefrontal Cortex Connectivity
Predicts Developmental Changes in Reinforcement Learn-
ing. Cerebral Cortex, 22(6), 1247–1255. doi: 10.1093/cer-
cor/bhr198

Watanabe, S. (2013). A Widely Applicable Bayesian Infor-
mation Criterion. , 31.

Wilson, R., & Collins, A. G. E. (2019). Ten simple rules for
the computational modeling of behavioral data | eLife.




