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ABSTRACT
Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration,
cloud formation and hence the climate.The clustering of acid and base molecules is a major mechanism
driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster
composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high
formation rate of new particles. Here we present strong evidence for the existence of base molecules such as
amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We
demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine
nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4
clusters.The proposed mechanism is very consistent with measured new particle formation in urban
Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia
may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines,
even at low concentrations and when undetected in the smallest clusters, can be crucial to particle
formation in the planetary boundary layer.

Keywords: new particle formation, acid-base nucleation, aerosol, polluted urban environment

INTRODUCTION
New particle formation (NPF) events occur fre-
quently in various atmospheric environments [1,2].
These newly formed particles, after subsequent
growth, constitute a major source of cloud conden-
sation nuclei [3,4]. To assess the influences of NPF
on radiative forcing [5], it is of fundamental impor-
tance to understand the NPF mechanisms. The first
and key step of NPF is nucleation, during which
gaseous precursors form the smallest stable clusters
that are more likely to grow into large particles than
to evaporate [6,7]. Among the reported nucleation
mechanisms for atmospheric environments [8–17],
acid–base nucleation is unique for its effectiveness

in forming neutral clusters at ambient temperatures
and typical precursor concentrations in the plane-
tary boundary layer. Laboratory experiments [8,18–
20] and theoretical studies [21,22] have shown that
many bases can stabilize H2SO4 clusters and drive
fast NPF. The atmosphere is a complex system con-
taining various bases such as amines and ammonia.
Identifying key base molecules in the small H2SO4
clusters from a large pool of candidate base va-
pors [23] is pivotal to understanding atmospheric
H2SO4-base nucleation.

Measurements of cluster composition via chem-
ical ionization mass spectrometry can provide evi-
dence for bases involved in NPF [8,20,24,25]; how-
ever, some base molecules are missing from the
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observed cluster signals obtained from these instru-
ments. For instance, theoretical calculations based
on quantum chemistry indicate that the acid–base
ratio of most H2SO4-base clusters is 1:1 [21,26,27],
as also hypothesized in some laboratory studies
[18,20,24,28]. In contrast, signals from ambient
H2SO4 clusters contain fewer base molecules with
many containing no base molecules at all [10,29].
This is likely a measurement artifact.

Due to the missing base molecules, the de-
tected cluster signals cannot be used to exclusively
identify the key bases. To be measured in a mass
spectrometer, clusters must either be charged via
chemical ionization or be naturally charged in the
atmosphere. In either case, a cluster, especially a key
cluster formed in the rate-limiting steps of H2SO4
nucleation, may lose base molecules upon charging.
This is because acid and base molecules nucleate
effectively by forming strong hydrogen bonds (as
well as other intermolecular forces). For instance,
charging a neutral (H2SO4)1(base)1 cluster by
deprotonation converts the acid–base pair to an
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unstable base–base pair, with HSO4
− as a very

strong base.The unstable (HSO4
−)1(base)1 cluster

subsequently loses the base molecule and hence is
detected as a bare HSO4

− ion. Charging by clus-
tering with a reagent ion also affects cluster stability
and may cause base evaporation [27]. Additionally,
charged clusters may also lose base molecules inside
the mass spectrometer due to collisions between
cluster and carrier gas molecules [30].

Formuch the same reason, matching the compo-
sition of large atmospheric H2SO4 clusters to those
measured in laboratory experiments cannot exclu-
sively identify the key base. With many candidate
bases in the atmosphere, the basesmeasured in large
clusters may not be the key bases for forming the
smallest clusters.

Comparing H2SO4 concentrations and particle
formation rates [9,10,19,31] also cannot exclusively
identify the key base. The same particle formation
rate may be driven by either weak bases with high
concentrations or strong bases with concentrations
even lower than the instrumental detection limit
[22].

Understanding nucleation mechanisms at the
molecular level is also substantially challenged by
themissingbases fromdetected atmosphericH2SO4
cluster signals. As previously mentioned, nucleation
pathways and themost relevant stable clusters canbe
predicted with cluster kinetics and quantum calcula-
tions [7,32]. It has been suggested that H2SO4 and
the key base form (H2SO4)1(base)1 during nucle-
ation [21,26,27]. Considering the uncertainties of
quantum chemistry results, theoretical predictions
require experimental verification; this verification of

cluster composition and rate-limiting steps has been
largely precluded by the missing bases in those mea-
surements. Well-controlled laboratory experiments
[18,20] have demonstrated that a small cluster con-
taining two H2SO4 and one or two strong bases
can already be stable against evaporation. However,
the stability of various (H2SO4)1(base)1 clusters re-
mains uncertain. Because (H2SO4)1(base)1 clusters
have not been detected in the atmosphere, a previ-
ous study proposed that stabilization of (H2SO4)2
by adding a strong base to it may be the rate-limiting
step for atmospheric nucleation [9].

To summarize, the missing bases in the smallest
H2SO4 clusters are key to a better understanding of
atmospheric H2SO4-base nucleation. In this study,
we provide strong evidence for the existence and im-
portance of themissing bases in atmosphericH2SO4
clusters using data from atmospheric measurements
and laboratory experiments as well as process model
simulations. We demonstrate that the first and
rate-limiting step of neutral H2SO4-base nucleation,
which is often referred to as the step in which the
‘critical cluster’ is formed in classical nucleation
theory [33], is to form (H2SO4)1(amine)1, instead
of the formation and subsequent stabilization of
(H2SO4)2. In polluted urban environments such
as Beijing and Shanghai, a considerable fraction
(up to 70%) of the H2SO4 molecules is clustered
with amines, with dimethylamine (DMA) as the
key base. Depending on vapor concentrations and
temperature, formation of (H2SO4)1(DMA)1 is
either amajor rate-limiting step or nucleation occurs
close to the H2SO4 + DMA amine-saturation limit
without a free energy barrier. Right after nucleation,
the dominant cluster growth mechanism depends
on the available DMA and other bases. At a high
DMAconcentration, cluster growth ismainly driven
by the addition of (H2SO4)1(DMA)1. At a low
DMA concentration, synergy with other weaker
but more abundant bases, e.g. ammonia or other
amines, may enhance H2SO4 cluster growth and
hence increase the particle formation rate.

RESULTS
To identify the key base(s) for nucleation in pol-
luted atmospheres, we first focus on H2SO4-DMA
nucleation and demonstrate that the key step is the
formation of the undetected (H2SO4)1(DMA)1.
After that, we discuss H2SO4-base nucleation in
the complex atmosphere with various candidate
bases including DMA, ammonia and other amines.
Following convention [8,9,34], we refer to the
measured H2SO4 clusters as n-mers according to
the number of constituent H2SO4 molecules. For
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Figure 1. Molecules and clusters measured during atmospheric acid–base NPF events from H2SO4 and amines. Neutral
molecules and clusters were negatively charged by NO3

− and HN2O6
− during the detection using chemical ionization mass

spectrometry. The detected H2SO4 clusters in urban Beijing contained 0–1 amine molecules. The detected amine molecules in
H2SO4 clusters were mainly dimethylamine (DMA, D) and trimethylamine (T). Deprotonated or NO3

− clustered AnDn clusters
were not detected in urban Beijing. Clusters composed of more than five H2SO4 or two DMAmolecules have been reported for
laboratory experiments [20,24,35] with high DMA concentrations, such as the CLOUD chamber experiments. All the H2SO4-
DMA clusters detected in urban Beijing were also detected in these laboratory experiments. The colors of markers for H2SO4

clusters indicate the number of H2SO4 molecules contained in each cluster. The sizes of H2SO4 clusters and other species
measured in urban Beijing indicate their signal intensities, yet they follow a different size scale in order to emphasize the
H2SO4 clusters. The dashed grid indicates the numbers of H2SO4 and DMAmolecules contained in each deprotonated H2SO4-
DMA cluster. The dash-dotted line indicates the deprotonated AnDn clusters, which were not detected. The shaded ellipses
are drawn to guide the eye.

instance, all clusters containing two H2SO4
molecules and any number of bases are referred to
as H2SO4 dimers. The acid–base cluster composi-
tion is written as AmBn, where A represents H2SO4,
B represents a certain base and the subscripts
indicate the numbers of molecules contained in a
given cluster.

Measured cluster composition
We observed neutral H2SO4 clusters in urban
Beijing during NPF events using advanced on-
line chemical ionization mass spectrometers. As
shown in Fig. 1, the signals of atmospheric H2SO4
monomers and dimers contain no base molecules,
while trimers and tetramers contain up to one
amine molecule. The detected dominant species of
monomers, dimers and trimers are A1

−, A2
− and

A3
−, respectively, and tetramers were mainly de-

tected as A4D1
− (D for DMA). In urban Beijing,

we have not identified larger neutral cluster sig-
nals containing more than four H2SO4 molecules
or more than one amine molecule. The naturally
charged H2SO4 clusters, detected using an atmo-
spheric pressure interface time-of-flight mass spec-
trometer, showmuch the same pattern, with no base

molecules present in H2SO4 monomers and dimers
(Fig. S1 in SupplementaryData online).TheH2SO4
clusters measured in urban Beijing have also been
observed in laboratory experiments [20,24,35]. Due
to the more abundant H2SO4 and DMA vapors
in these laboratory experiments, large clusters con-
taining more H2SO4 and DMA molecules were de-
tected. Despite these, theH2SO4 monomers therein
were also observed only in the form of bare H2SO4
molecules, A1, i.e. the base molecule was missing.

The directly measured H2SO4 monomer sig-
nals could be misinterpreted as an indication that
most H2SO4 monomers are bare molecules (or per-
haps hydrated clusters with undetected water). This
would suggest that H2SO4-DMA nucleation is ini-
tialized by the clustering between two bare H2SO4
molecules and the addition of a DMA to an A2
[9], or that A3 is the rate-limiting step in stabi-
lizing clusters against evaporation. However, such
interpretations based on the directly observed sig-
nals from H2SO4 clusters are very likely flawed. As
discussed in the introduction, base molecules are
missing from clusters measured under atmospheric
conditions. This is mainly because a neutral cluster
has to be charged during detection. The additional
charge or reagent ion converts a stableH2SO4-DMA
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cluster into a potentially unstable cluster. As the base
strength of HSO4

− is higher than DMA, the unsta-
ble cluster tends to become stable by evaporating
DMAmolecules [27]. The collision between a clus-
ter and carrier gases in the mass spectrometer may
also cause DMA evaporation [30]. In particular, the
ubiquitous, large fractions of bareA1

−, A2
− andA3

−

are artifacts of the detection process.The evidence is
given below.

Evidence for the existence of
(H2SO4)1(amine)1
In this section, we show experimental evidence that
a large fraction of A1D1 clusters contributes to the
signal of ambient H2SO4 monomers using the mea-
sured H2SO4 dimer concentration and its varia-
tion with DMA concentration and temperature.The
measured dimer concentration and its variation can
only bewell explainedby the existence of a large frac-
tion of A1D1 clusters in ambient H2SO4 monomers,
with A1 + D1 → A1D1 being the rate-limiting step
for nucleation.

In order to show the influence of DMA concen-
tration and temperature, we eliminate the strong
dependence of dimer concentration on monomer
concentration by comparing dimer concentration
to its amine-saturation limit. The amine-saturation
limit is herein referred to as the dimer concentration
calculated with the assumption that each collision
between two H2SO4 monomers generates a stable
H2SO4 dimer, i.e. base concentration is not a
rate-limiting factor. Hence, dimer concentration
at the amine-saturation limit is approximately
the theoretical maximum for a given monomer
concentration and cluster scavenging rate.

H2SO4 dimers are mainly formed via

A1 + A1 → A2,

A1 + A1D1 → A2D1,

and

A1D1 + A1D1 → A2D2.

The latter two reactions should be efficient as A2D1
and A2D2 are stable against evaporation [20,22,36].
However, anA2 cluster needs to be further stabilized
by adding one base molecule [9]; hence, the effec-
tiveness of dimer formation via A1 +A1 is governed
by the stability of A2 against evaporation and its as-
sociation rate with stabilizing bases.

The measured high concentrations of atmo-
spheric H2SO4 clusters provide indirect but strong
experimental evidence for the existence of A1D1
rather than only A1. As shown in Fig. 2, if all the
H2SO4 monomers existed in the form of A1 but not
A1D1, H2SO4 dimer, trimer and tetramer concen-

trations would be orders of magnitude lower than
themeasured values.This shows that themechanism
with dimer stabilization via A2 +D1 [9] as the rate-
limiting step is not effective for nucleation due to
the instability of A2 [22]. This inefficiency is also
supported by chamber experimentswithH2SO4 and
ammonia [8],whichhave shown that despite the sta-
bility of ammonia-stabilized A2 [22] and a high am-
monia concentration, the dimer stabilization mech-
anism is insufficient to explain the measured clus-
ter concentrations (see Fig. S2). In contrast, if A1D1
constituted a large fraction of H2SO4 monomers
and nucleation is rate-limited by forming A1D1, this
could explain the cluster concentrations in Beijing
[37,38], Shanghai [10] and also in Cosmics Leav-
ing OUtdoor Droplets (CLOUD) chamber experi-
ments [28].

Themeasured dependence of H2SO4 dimer con-
centration on DMA concentration provides further
strong support for the existence of A1D1 as well
as its importance. As shown in Fig. 3, the mea-
sured H2SO4 dimer concentration increases with
an increasing DMA concentration, which can be
well explained by an increasing A1D1 fraction in the
H2SO4 monomers. That is, with the same H2SO4
monomer concentration, there are more A1D1 clus-
ters at a higher DMA concentration, driving more
efficient H2SO4 dimer formation towards its amine-
saturation limit.

The measured temperature dependence of the
H2SO4 dimer concentration gives further evidence
for the existence of A1D1 and its significant frac-
tion in ambient H2SO4 monomers. Figure 4b shows
that H2SO4 dimer concentrations decrease with in-
creasing temperature [39] for the measured NPF
events in Beijing and Shanghai [10] (see also
Fig. S3).This temperature dependence is consistent
with the existence of A1D1. The evaporation rate of
A1D1 increases with an increasing temperature, and
the A1D1 fraction in monomers thus decreases sig-
nificantly (Fig. 4a), causing the decreasing H2SO4
dimer concentration (Fig. 4b).

The DMA-dependent A1D1 fraction in H2SO4
monomers is also very consistent with the CLOUD
experiments [20]. During those experiments, high
DMA concentrations (>5 ppt) and a low tempera-
ture (278 K) forced a high A1D1 fraction that drove
dimer formation close to its amine-saturation limit,
and hence nucleation was found to be insensitive to
DMA concentration in the (DMA-saturated) exper-
imental conditions.

The experimental evidence above confirms the
existence of A1D1 and its importance in H2SO4-
DMA nucleation. For the observed NPF events
in urban Beijing, the median DMA concentra-
tion was 1.8 ppt and the A1D1 fraction H2SO4
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Figure 2. (a) H2SO4 cluster concentrations and (b) particle formation rates as a function
of H2SO4 monomer concentration. Themeasured H2SO4 cluster concentrations andNPF
rate were consistent with the simulation results for which forming an (H2SO4)1(amine)1
cluster is the first and critical step of NPF. The amine molecule is mainly dimethylamine
(D) for themoderate stability of A1D1 against evaporation. The simulationwithout form-
ing A1D1 yields H2SO4 cluster concentrations and a particle formation rate that are or-
ders of magnitude lower than those measured in urban Beijing. The measured data in
urban Beijing were collected during daytime (9:00–16:00 local time) NPF events with
a 5-min temporal resolution. The H2SO4 dimer concentrations for Shanghai [10] and
CLOUD experiments [28] were previously reported. The concentrations of clusters con-
taining the same number of H2SO4 molecules were summed up, e.g. [A2,tot] is the total
concentration of measured or simulated H2SO4 dimers containing any number of base
molecules. The influencing factors, such as the cluster loss rate characterized by the
condensation sink (CS), amine concentrations and temperature (T), affect cluster con-
centrations and formation rate, and their slope versus [A1,tot] [54, 68]. These influences
are not corrected in this figure because they are minor compared to the differences
between the simulation results with and without forming A1D1. The curves were sim-
ulated for [DMA]= 1.8 ppt (∼4.7× 107 cm−3), CS= 0.011 s−1 and T= 281 K, which
are the medians of the measured data.

in monomers could be as high as 70% with 4-ppt
DMA.

The existence of ambient A1D1 clusters indicates
moderate evaporation of A1D1, which is consistent
with the evaporation rate obtained from quantum
chemistry and laboratory experiments. We use clus-
ter kinetics to derive the temperature-dependent
evaporation rates of A1D1 from atmospheric mea-
surements (see Methods). These rates are consis-
tentwith reportedquantumchemical results [22,36]
(Fig. S4). Laboratory experiments have also esti-
mated upper limits for the evaporation rate of A1D1

clusters using high DMA concentrations (>5 ppt at
278 K) [28,35], yet our atmospheric measurements
provide consistent but lower evaporation rates at
lower atmospheric DMA concentrations.

Themeasured NPF rate provides support for the
above experimental evidence.Therapid formationof
stable H2SO4 dimers fromA1D1 enables a rapid for-
mation of new particles. As shown in Fig. 2, the sim-
ulatedNPF ratewith a largeA1D1 fraction inH2SO4
monomers is consistent with the measured forma-
tion rate in Beijing; otherwise, the simulated forma-
tion rate would be orders of magnitude lower. In
Fig. 4c, NPF rates in Beijing and Shanghai decrease
with increasing temperature, which can be explained
by the decreasing stability of A1D1 against evapora-
tion as a function of increasing temperature. Besides,
the existence of A1D1 is also consistent with the pos-
itive correlation between NPF rate and DMA con-
centration for NPF in urban Beijing [37].

Atmospheric nucleation with various
bases
The above results also demonstrate that forming
A1D1 is the key rate-limiting step for atmospheric
H2SO4-DMA nucleation. The key role of A1D1
for H2SO4-DMA nucleation can be generalized to
H2SO4 nucleation with other bases: forming A1B1
is often the rate-limiting step. H2SO4 can nucleate
close to its amine-saturation limit only when a con-
siderable fraction of H2SO4 monomers exist in the
form of A1B1 clusters.We use this criterion below to
show that DMA is themissing key base from various
candidates for nucleation in urban Beijing.

In addition to C2-amine (probably DMA), we
detected gas-phase methylamine (MA), C3-amine
(probably trimethylamine, TMA), C4-amine and
ammonia in urban Beijing [29] using mass spec-
trometry.Themeasured neutral H2SO4 clusters also
contain TMA (T) in the form of A4T1 (Fig. 1). C4-
amine and ammonia were detected in the naturally
charged H2SO4 clusters (Fig. S1). The measured
cluster signals are consistent with the measured gas-
phase bases. Other candidate bases for H2SO4-base
nucleation, such as ethylene diamine [19], were not
detected in the gas-phase or H2SO4 clusters.

The free energy barrier of H2SO4 monomers and
dimers containing different bases shows that de-
spite the contributions from other amines, form-
ing A1D1 is still the key rate-limiting step for fast
H2SO4-base nucleation in this complex urban at-
mosphere. An increasing value of free energy upon
adding one molecule corresponds to a significant
evaporation rate, and a decreasing value indicates
that the growth of the cluster is faster than its
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Figure 3. H2SO4 dimer concentration as a function of theoretical (H2SO4)1(amine)1 con-
centration. The measured H2SO4 dimer concentration ([A2,tot]) is consistent with the
simulated A1D1 concentration, where D represents DMA.With a given H2SO4 monomer
concentration ([A1,tot]), increasing [A1D1] improves the effectiveness of clustering be-
tween H2SO4 monomers in terms of forming stable H2SO4 dimers. [A2,tot] approaches
its maximum, characterized by the amine-saturation limit ([A2,tot]AS), as the simulated
ratio of [A1D1] to [A1,tot] increases. The simulation also shows that [A2D2] comprises a
major fraction in [A2,tot]. Hence, [A2,tot] can be used as an agent for the missing A1D1

(see Methods). The Beijing data are shown in edged markers that represent the mean
value of the measured 5-min resolution data group by [A1D1]/[A1,tot], with [A1D1] cal-
culated using Equation (2). The marker size indicates the mean CS of each group. The
variation bars indicate the standard deviation for each group. The data from CLOUD
chamber studies were reported in ref. [20]. The [A1D1]/[A1,tot] shown by the crossed
marker and horizontal variation bar was estimated for [DMA] = 20 ppt and 5–32 ppt,
respectively. In this figure, [A1,tot] and the [A2,tot] shown in markers are measured data.
[A1D1] and the [A2,tot] shown in curves are simulation results. [A2,tot]AS is calculated
using the measured [A1,tot] and coagulation sink.

evaporation. As shown in Fig. 5, DMA governs the
formation of stable H2SO4 dimers because the free
energy of A1D1 is the lowest among the H2SO4
monomers stabilizedwithothermeasuredbases. For
the typical conditions in urban Beijing, an H2SO4
molecule needs to overcome a low free energy bar-
rier to become an A1D1 cluster. After that, the A1D1
cluster grows into a particle via pathways with con-
secutively descending free energy.

In addition toDMA, TMAmay have a secondary
contribution to nucleation in urban Beijing. Consid-
ering the free energyofA1D1 andA1T1 [21] (Fig. 5),
TMA is comparable to DMA in forming stabilized
H2SO4 dimers [18]. After accounting for the base
concentrations, however, we find that the contribu-
tion of TMA does not affect the key role of DMA in
nucleation in urban Beijing.

Weak bases, such as MA and ammonia (N), are
thermodynamically unfavorable for atmospheric nu-
cleation. Figure 5 shows the high free energy of
A1M1 and A1N1, despite the high ammonia concen-
tration (∼1 ppb during the observed NPF events
in urban Beijing). As a result, the unstable A1M1 or
A1N1 clusters with low concentrations significantly

limit H2SO4-MA and H2SO4-ammonia nucleation
and they cannot explain the measured high H2SO4
dimer concentration and particle formation rate.

Strong bases with low concentrations are kineti-
cally unfavorable for atmospheric nucleation despite
their ability to form very stable clusters. We did not
detect bases stronger than DMA (except HSO4

−),
such as diamines [19], in the measured neutral and
naturally charged H2SO4 clusters or the gas phase,
indicating their concentrations are below the instru-
mental detection limit. A lowbase concentration, es-
pecially when it is lower than the H2SO4 concen-
tration, may kinetically limit the fraction of A1B1 in
H2SO4 monomers [19] even though A1B1 might be
thermodynamically favorable for nucleation. For in-
stance, taking HSO4

− as a base, the free energy of
A2

− is extremely low [27,40], yet formingA2
− in the

atmosphere is kinetically limited by the low ambi-
ent HSO4

− concentration (typically<10 ions/cm3

for urban Beijing). In other words, ion-induced nu-
cleation even at the ion-pair formation rate of a few
particles cm−3 s−1 is simply not competitivewith the
high nucleation rateswe observe (J� 10 cm−3 s−1).

The temperature dependence of the H2SO4
dimer concentration also provides evidence that
DMA, rather than some unidentified strong base, is
the missing key base for H2SO4 nucleation in urban
Beijing. Although the dimer concentration could
reach the same value with a low concentration of an
unidentified strong base [19,22], it is unlikely that
this strong base would cause the similar tempera-
ture dependence of the dimer concentration (see
Fig. S5).

DISCUSSION
We have presented strong evidence that DMA is
the missing key base for H2SO4-base nucleation in
polluted urban environments, and the formation of
A1D1 up to a considerable fraction (70% for urban
Beijing) in H2SO4 monomers is the rate-limiting
step.The existence of A1D1 is robust despite the fast
formation and depletion of H2SO4 monomers. We
find that ambient A1D1 reaches its pseudo-steady-
state concentration within minutes due to its short
overall lifetime, and this pseudo-steady-state is not
sensitive to a rapid change in the production rate of
A1 molecules (see Fig. S6).

Although DMA is found to dominate nucleation
in urban Beijing, other bases, particularly strong
bases, may also contribute to nucleation at condi-
tions such as low DMA concentrations and high
temperatures. As shown in Fig. 3, the formation
of A1D1 cannot fully explain the measured dimer
concentration at a low A1D1 fraction (<0.1) in
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Figure 4. H2SO4 dimer concentration and particle formation rate as a function of tem-
perature. (a) The simulated fraction of A1D1 in H2SO4 monomers, where D is dimethy-
lamine; (b) normalized H2SO4 dimer concentration ([A2,tot]) as a function of tempera-
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The evaporation rate of A1D1 (γ ) increases with an increasing temperature, which de-
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perature. The temperature dependence of [A1D1] is consistent with the measured data
in urban Beijing and Shanghai. [A2,tot]AS and JAS are the total H2SO4 dimer concentra-
tion and particle formation rate, respectively, at the amine-saturation limit (see Fig. 3
andMethods). The curves were simulated at the median CS (0.011 s−1) and the median
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The measured [A2,tot] for urban Shanghai, shown in (b), was scaled with a multiplicative
factor of 3 (see Methods) but this scaling does not affect the measured temperature
dependence of [A2,tot].

H2SO4 monomers. Further, with proper environ-
mental conditions, other strong bases such as TMA
and diamines may play important roles if they are
more abundant than DMA [18,19].

Despite theirminor roles in nucleation, ammonia
and abundant weak amines may have synergistic ef-
fects on the initial growth of H2SO4-DMA clusters.
Especially at relatively low DMA concentrations, a
large fraction of H2SO4 monomers are bare (or hy-
drated) H2SO4 molecules (Figs 3 and 5). This bare
H2SO4 may not effectively contribute to the initial
growth ofH2SO4-DMAclusters due to the potential
high evaporation rates of An+1Dn clusters (n ≥ 2).
For instance, some quantum chemical results [22]
have suggested that A4D3 might be more likely to
evaporate back into A3D3 than to grow into A4D4.
That is, H2SO4 might not contribute effectively to
the growth of ambient A3D3. However, with a high
concentration of ammonia, a potentially unstable
A4D3 cluster can be rapidly stabilized by ammonia
and form A4D3N1 (N stands for ammonia) [41].
This synergy enhances cluster growth via the
condensation of A1 molecules and also increases
the particle formation rate (see Fig. S7), which is
consistent with laboratory results [42].

However, the synergy of weak bases should not
boost particle formation when DMA is sufficient.
When most H2SO4 monomers exist in the form of
A1D1 at a high DMA concentration, AnDn + A1D1
is the governing pathway for cluster growth [21,43]
(Fig. S8) and the particle formation rate is limited
by the other losses (e.g. coagulation loss) rather
than cluster evaporation. In this case, adding weak
bases such as ammonia should not significantly in-
crease the formation rate of sub-2 nm particles [8].
Note that base substitution [41,44] is still possible
via the fast formation and evaporation of unstable
clusters such as A3D3N1. Since these unstable clus-
ters are more likely to evaporate than grow, observ-
ing a minor fraction of ammonia molecules in large
H2SO4 clusters [20,24] does not necessarily indi-
cate a contribution of ammonia to the growth rate
of the H2SO4-DMA clusters.

In addition to bases, water molecules may con-
tribute to stabilizing H2SO4 clusters and they are
also missing from the detected cluster signals [45].
However, no significant dependence of H2SO4
dimer concentration and particle formation rate on
water vapor concentration was observed after ac-
counting for the influences of other factors. This
insignificant effect of hydration on H2SO4-DMA
nucleation is consistent with quantum chemical
calculations [21].

Although the nucleation rate of H2SO4 and base
is close to the amine-saturation limit (Fig. 3), sub-
2 nm particle growth is mainly driven by the mea-
sured H2SO4 monomers with only a minor con-
tribution from dimers and larger H2SO4 clusters.
This is because the high coagulation sink in pol-
luted urban environments suppresses the cluster
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Forming stable clusters against evaporation corresponds to a low free energy barrier
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tive�G corresponds to a free energy barrier that limits the nucleation rate and cluster
concentrations. With typical concentrations of gaseous precursors in urban Beijing,
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way. The results for this figure were simulated for the following conditions: [A1,tot] =
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concentrations (Fig. 2), which is different from low-
sink conditions such as in chamber experiments
[46].

To summarize, the key cluster for ambient
H2SO4-base nucleation is missing from the cluster
signals detected using state-of-the-art instruments.
Using consistent evidence from atmospheric mea-
surements, laboratory experiments and a process
model based on cluster kinetics and quantum
chemistry, we demonstrate that (H2SO4)1(amine)1
must be the missing key cluster for the polluted
atmosphere, with DMA as the key base and
forming (H2SO4)1(DMA)1 as the rate-limiting
step. During H2SO4-amine nucleation, a sub-
stantial fraction of H2SO4 monomers exist in the
form of (H2SO4)1(amine)1 and the uptake of
(H2SO4)1(amine)1 is a major mechanism for the
initial growth of clusters. Other abundant weak
bases may have synergistic effects on the growth of
H2SO4-DMA clusters by stabilizing larger H2SO4-
DMA clusters before their evaporation and thus
enhance the particle formation rate.

Further, we argue that atmospheric nucleation
should be characterized using the rate-limiting fac-
tors and steps, instead of only the concept of the

‘critical cluster’. According to the definition of clas-
sical nucleation theory [7], the undetected key
(H2SO4)1(DMA)1 cluster is the ‘critical cluster’ at
typical atmospheric conditions for urban Beijing.
It is worth clarifying that the ‘critical cluster’ de-
pends on the vapor concentrations. For H2SO4-
DMA nucleation with a high DMA concentration
(20 ppt), as shown in Fig. S8, nucleation occurs
without a free energy barrier and the particle for-
mation rate is mainly limited by the coagulation
sink.Conversely, in conditionswith very lowH2SO4
and DMA concentrations, the ‘critical cluster’ can
be H2SO4 dimers or larger clusters, despite the ex-
tremely low evaporation rates of A2D1 and A2D2
[20,22,36]. As a result, it is crucial for both labora-
tory and theoretical studies to better represent atmo-
spheric conditions or properly apply the results to at-
mospheric conditions.

MATERIALS AND METHODS
Atmospheric measurements
Thedataused in this studywereobtained fromatmo-
spheric measurements in urban Beijing and urban
Shanghai.TheNPFprocess fromgaseous precursors
to particles was measured at both sites. The Beijing
site is located at the west campus of the Beijing Uni-
versity of Chemical Technology (39◦56′ N, 116◦17′

E),∼500 m away from the west 3rd Ring Road.The
data set used for this studywas from16 January 2018
to 13 March 2019, with gaseous amines and ammo-
nia measurements available after 20 October 2018.
Neutral gaseousH2SO4 molecules and clusters, C1–
C3 amines, ammonia, and aerosol size distribu-
tions weremeasured. H2SO4 molecules and clusters
were measured using high-resolution chemical ion-
ization time-of-flight mass spectrometers (HToF-
CIMS, Aerodyne Research, Inc.) with NO3

− and
HN2O6

− as the reagent ions [47]. Amines and
ammonia were measured using a modified HToF-
CIMS with H3O+ or its hydrated clusters as the
reagent ions [48]. Since isomers cannot be differen-
tiated by an HToF-CIMS, the C2-amines and C3-
amines were taken as DMA and TMA, respectively.
Therefore, themeasuredDMAandTMAconcentra-
tions might be overestimated. However, since ethy-
lamine is less effective than DMA in forming A1B1
clusters [49], a major fraction of the measured C2-
amines are likely to be DMA. Other bases such as
ethylene diamine were not identified. Aerosol size
distributions were measured using a diethylene gly-
col scanning mobility particle spectrometer (DEG-
SMPS) for sub-5 nm aerosols [50–52] and a parti-
cle size distribution system for 3nm–10μmaerosols
[53]. Ambient temperature was monitored using
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a weather station (AWS310, Vaisala Inc.). Details
of the measurement site, instruments and measure-
ment uncertainties have been reported previously
[37,38,54,55].

The Shanghai data set was reported in a previ-
ous study [10]. The Shanghai site is located at the
campus of Fudan University (31◦18′ N, 121◦30′

E), ∼100 m from the Middle Ring Road. Neutral
gaseous H2SO4 and aerosol size distributions were
measured simultaneously from 4December 2015 to
10 February 2016. H2SO4 molecules and clusters
were measured using an HToF-CIMS with NO3

−

and HN2O6
− as the reagent ions. Aerosol size dis-

tributions were measured using a particle size mag-
nifier [56] (Airmodus Inc.) for 1–3 nm aerosols,
and two scanning mobility particle spectrometers
(SMPSs) (TSI Inc.) for 3–65 nm aerosols and 14–
736 nm aerosols. No measured C2-amine concen-
tration was available during this period, yet it was
measured at the same site in August 2015 using
an HToF-CIMS with protonated ethanol as reagent
ions [57]. Ambient temperature was recorded at a
site∼5 km away.

The concentrations of H2SO4 dimers, trimers
and tetramers were evaluated using the same cal-
ibration factor for H2SO4 monomers. The mass-
dependent transmission efficiency of HToF-CIMS
was calibrated and corrected [58]. Due to the frag-
mentation of H2SO4 clusters within HToF-CIMS
[30], theH2SO4 dimer, trimer and tetramer concen-
trations might be underestimated. For the Beijing
data set, the underestimation of H2SO4 dimer con-
centration was estimated to be∼30%, which is close
to the estimated values in a laboratory experiment
[20]. This value is within the uncertainty range of
H2SO4 measurements and it does not affect the con-
clusions based on both the absolute value of H2SO4
dimers and its dependence on amine concentration
and temperature. The measured H2SO4 dimer con-
centration in Shanghai was multiplied by three, yet
only its temperature dependence is used for discus-
sion in this analysis.

The formation rate of 1.4 nm particles (J1.4) in
urban Beijing was retrieved from measured aerosol
size distributions using apopulationbalance formula
[59] improved for intensive NPF events in polluted
atmospheric environments.The J1.4 in urban Shang-
hai was calculated from the reported J1.7 using parti-
cle growth rate and the coagulation sink [60].

Theory
Here we present a theory with reasonable ap-
proximations to illustrate the importance of
(H2SO4)1(amine)1 to the formation of clusters

containing two or more H2SO4 molecules, though
the figures in the main text are obtained using nu-
merical simulation without these approximations.
A dimensionless parameter, η, is defined to char-
acterize the ratio of (H2SO4)1(base)1 to H2SO4
monomers. For a simplified system containing
only H2SO4 (A), a certain species of base (B), and
aerosols, the population balance equation for A1B1
is

d [A1B1]
dt

= βAB [A1] [B1]

− (γ (T) + CS) [A1B1] , (1)

where [A1B1], [A1] and [B1] are the concentra-
tions (cm−3) of A1B1 clusters, bare A1 molecules
and B1 molecules, respectively; t is time (s); βAB
is the coagulation coefficient (cm3 s−1) between an
A1 molecule and a B1 molecule; γ is the evapora-
tion rate (s−1) of A1B1 as a function of temperature
T (K); and CS is the condensation sink (s−1) of
A1B1 contributed by aerosols and H2SO4-amine
clusters. The growth of A1B1, e.g. the clustering be-
tween two A1B1 molecules, is herein accounted for
in CS. In urban Beijing and Shanghai, background
aerosols contribute majorly to this CS term [37,61].

The overall lifetime of A1B1, τ (s), can be es-
timated using Equation (1). τ characterizes the
typical time A1B1 concentration takes to reach its
pseudo-steady-state value and it is equal to 1/(γ (T)
+ CS). For instance, by setting the source term in
Equation (1) to zero at the moment t0 and keeping
γ (T)+CS constant, [A1B1] at t0 + τ will reduce to
1/e of its concentration at t0. Considering the high
CS for polluted environments, τ is usually<10min.
Hence, A1B1 is close to its pseudo-steady-state con-
centration regardless of a fast variation of atmo-
sphericH2SO4 production rate orH2SO4 monomer
concentration (Fig. S6).

Settingd[A1B1]/dt inEquation (1) to zero yields
the formula for the pseudo-steady-state value of η

[62]:

η = [A1B1]
[A1,tot]

= [A1B1]
[A1] + [A1B1]

= βAB [B1]
βAB [B1] + γ (T) + CS

.

(2)

The amine-saturation limit is the formation rate of
clusters or particles with no evaporation and a unity
coagulation efficiency. In this study, we refer to the
amine-saturation limit as that for H2SO4 monomers
corresponding to a sufficient base concentration.
Accordingly, the H2SO4 dimer concentration at
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the amine-saturation limit can be calculated using
Equation (3),

[A2,tot]AS = β11[A1,tot]2

2CS
, (3)

where [A1,tot] and [A2,tot] are H2SO4 monomer and
dimer concentrations (cm−3), respectively; the sub-
script AS stands for amine-saturation limit; [A1,tot]
= [A1] + [A1B1]; β11 is the coagulation coeffi-
cient (cm3 s−1) between two H2SO4 monomers;
and CS is the condensation sink (s−1) for H2SO4
monomers.

The amine-saturation limit of [A2,tot] is reached
at an infinite [B1], with which η is equal to 1.0
according to Equation (2). Similarly, the amine-
saturation limit of the particle formation rate is also
reached at an infinite [B1]. In this study, the amine-
saturation limits of [A2,tot] and the particle forma-
tion rate were obtained by setting the DMA concen-
tration at 106 ppt so that nucleation was not limited
by DMA concentration.

The [A2,tot] and particle formation rates in Figs 3
and 4 were compared to their corresponding amine-
saturation limits. With DMA as the base, and con-
sidering the high evaporation rate of neutral A2 and
the negligible evaporation rates of A2D1-2 [22,36],
it can be approximated that only monomer colli-
sions involving at least one A1D1 (i.e. A1D1 + A1
or A1D1 + A1D1) form a stable dimer. Hence, the
[A2,tot] for H2SO4-DMA nucleation can be approxi-
mated with η using Equation (4):

[A2,tot] = [
η2 + 2η (1 − η)

]
[A2,tot]AS

= η (2 − η) [A2,tot]AS. (4)

Equation (4) shows that [A2,tot] increases mono-
tonically with η within the domain of η, and
[A2,tot] = [A2,tot]AS at η = 1. Hence, the measured
[A2,tot]/[A2,tot]AS can be used to indicate η. Note
that to obtain better accuracy, we calculated the re-
sults in Figs 3 and 4 numerically instead of using
Equation (4). Considering these minor differences,
[A2,tot] may slightly exceed [A2,tot]AS because the
amine-saturation limit in Equation (3) is calculated
using A1D1 and the thermal velocity of A1 is slightly
higher than that of A1D1.

A process model is used to simulate the growth
of H2SO4 clusters. The simulated bases, B, include
ammonia, MA, DMA and TMA.The outputs of this
model are the cluster concentrations and formation
rate. This model has been reported previously [37]
and similar models can be found in the literature
[18,32]. Only the neutral nucleation mechanism is
accounted for in this model because the ion produc-
tion rate is not comparable to the high NPF rate in

urban Beijing and Shanghai. The formation rate of
H2SO4 tetramers was taken as the simulated NPF
rate [18] because the electrical mobility diameter of
H2SO4 tetramerswas estimated tobe1.4nmaccord-
ing to previous studies [63,64]. There are potential
uncertainties caused by the difference between di-
ameters for themeasured and simulated particle for-
mation rates, yet theseuncertainties donot influence
the conclusions in this analysis based on the temper-
ature dependence of the particle formation rate.

The temperature-dependent evaporation rates of
A1D1 were estimated by fitting Equations (2) and
(4) to the data set of urban Beijing. We fitted the
evaporation rate (corresponding to standard Gibbs
free energy) at 298 K to minimize the residue of
[A2,tot]/[A2,tot]AS as shown in Fig. 2, whereas the
temperature dependence of standard Gibbs free en-
ergy (corresponding to evaporation rate) was calcu-
lated using enthalpy given by quantum chemical cal-
culations [22].That is, we fitted the absolute value of
the evaporation rate but not its temperature depen-
dence. The evaporation rates of other clusters used
in this process model were calculated using the stan-
dard Gibbs free energy given by quantum chemical
calculations [21,22]. As shown in Fig. S4, the ex-
perimentally determined evaporation rates of A1D1
are within the uncertainty range of quantum chem-
ical results and this uncertainty does not affect the
findings. A coagulation enhancement factor due to
Van der Waals force [65–67] was accounted for in
the calculation of coagulation coefficients and evap-
oration rates. The species included in the process
model were determined according to the evapora-
tion rates. For instance, AnDn+1 clusters were re-
ported to be unstable against evaporation in various
quantum chemical results [22,36] and hence they
are not included in the model.

The free energy barrier shown in Fig. 5 was calcu-
lated using standard Gibbs free energy and the mea-
sured concentrations of acid and base vapors [7].
For an AmBn cluster, the formula for its free energy
is given in Equation (5),

�G (AmBn, T) = �G θ (AmBn, T)

− (m − 1) RT ln
PA
Pref

− n RT ln
PB
Pref

, (5)

where �G is the free energy barrier (also named
formation free energy in some nucleation studies);
�G θ (kcal mol−1) is the standard formation free
energy (also named binding energy in some nucle-
ation studies); T (K) is temperature; R is the ideal
gas constant; PA and PB are the partial pressures of
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A1 andB1, respectively; andPref is the referencepres-
sure used for calculating �fG θ . �fG characterizes
the energy barrier for a bare sulfuric acid molecule
A1 to form a certain cluster. The free energy of A1 is
accordingly equal to zero. A positive free energy of
A1B1 indicates that the association between A1 and
B1 needs to overcome an energy barrier.
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25. Petäjä T, Sipilä M and Paasonen P et al. Experimental observation of strongly
bound dimers of sulfuric acid: application to nucleation in the atmosphere. Phys
Rev Lett 2011; 106: 228302.

26. Chee S, Barsanti K and Smith JN et al. A predictive model for salt nanoparticle
formation using heterodimer stability calculations. Atmos Chem Phys 2021; 21:
11637–54.
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