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INTRODUCTION

Forests are one of the largest conduits in the transfer of 
carbon from Earth's atmosphere to the terrestrial bio-
sphere, providing a sink for ca. 2.4 Pg C annually and 
accounting for nearly half of terrestrial net primary pro-
ductivity (NPP) (Field, 1998; Pan et al., 2011). However, 
NPP represents only a fraction of the total amount of 
carbon fixed during photosynthesis (GPP), as a substan-
tial amount of CO2 is released back to the atmosphere 
through autotrophic respiration (Ra) (Field, 1998). 
Indeed, observations from trees around the world show 
between ca. 20 and 80% of GPP may be partitioned to 
Ra (Collalti & Prentice, 2019; DeLucia et al., 2007). This 
translates to a similarly large range in tree carbon use 
efficiency (CUE), or the ratio of tree NPP to GPP, which 
is an integrated index that tracks and allows direct com-
parison of tree carbon metabolism across a range of pro-
ductivity (DeLucia et al., 2007).

Some of the spatial patterns in tree CUE can be ex-
plained by tree age (DeLucia et al., 2007; Mäkelä & 
Valentine, 2001), disturbance history (Kunert et al., 
2019), species richness (Kunert et al., 2019) and tree func-
tional type (Chen & Yu, 2019; Collalti & Prentice, 2019). 
Tree CUE also varies appreciably across climate- space, 
tending to decrease with increasing temperature in ju-
venile (Drake et al., 2019) and mature trees (Chen & Yu, 
2019; He et al., 2018). Yet, how tree CUE may change as 
a result of increasing atmospheric CO2 (eCO2) has been 
given less attention. On one hand, eCO2 stimulates leaf- 
level photosynthesis (i.e. GPP) (Ainsworth & Rogers, 
2007) and has driven increases in tree leaf area (Zhu et al., 
2016), which may be reflected in higher NPP (Mathias & 
Thomas, 2018; Norby et al., 2005; Walker et al., 2019), 
and result in increasing tree CUE, especially if NPP is 
stimulated proportionally more than GPP. Alternatively, 
if eCO2- driven increases in leaf area, which requires sim-
ilar additional investment in roots for water uptake and 
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Abstract

Carbon use efficiency (CUE) represents how efficient a plant is at translating car-

bon gains through gross primary productivity (GPP) into net primary productiv-

ity (NPP) after respiratory costs (Ra). CUE varies across space with climate and 

species composition, but how CUE will respond to climate change is largely un-

known due to uncertainty in Ra at novel high temperatures. We use a plant physi-

ological model validated against global CUE observations and LIDAR vegetation 

canopy height data and find that model- predicted decreases in CUE are diagnostic 

of transitions from forests to shrubland at dry range edges. Under future climate 

scenarios, we show mean growing season CUE increases in core forested areas, but 

forest extent decreases at dry range edges, with substantial uncertainty in absolute 

CUE due to uncertainty in Ra. Our results highlight that future forest resilience is 

nuanced and controlled by multiple competing mechanisms.
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transport (Litton et al., 2007; Nie et al., 2013), result in 
proportionately higher costs (Ra) than benefits (NPP or 
GPP), tree CUE may decline.

The future trajectory of tree CUE may be even more 
uncertain when considering the combined effects of eCO2 
and climate change on NPP, GPP and Ra. While the short-  
and long- term responses of leaf- level photosynthesis to 
eCO2 and environment are relatively well documented 
(Ainsworth & Rogers, 2007; Bernacchi et al., 2001, 2013; 
Farquhar et al., 1980; Farquhar & Sharkey, 1982) and 
have been incorporated widely into process- based mod-
els, future changes in Ra may contribute a large source of 
uncertainty, and therefore a potential source of variabil-
ity in estimates of future forest CUE and the terrestrial 
carbon cycle. Some uncertainty is related to the nature 
and extent of acclimation of Ra over longer time periods 
(Atkin & Tjoelker, 2003; Lombardozzi et al., 2015; Slot 
et al., 2014; Smith et al., 2016). However, the explicit rep-
resentation of the temperature– respiration relationship 
is also critical to consider (Heskel et al., 2016; Reich et al., 
2016). A wide range of functions grounded on robust 
empirical relationships has been developed to represent 
how Ra varies across a range of temperatures (Arrhenius, 
1889; Gillooly, 2001; Heskel et al., 2016; Lloyd & Taylor, 
1994), with each predicting similar Ra at moderate tem-
peratures. However, across the suite of temperature– 
respiration functions, predictions of Ra diverge at novel 
high temperatures that are anticipated in some regions 
of the globe with warming under future climate change, 
with potential CUE and carbon cycle consequences that 
are important to understand.

Here, we leverage a physiologically based tree model 
that couples carbon allocation to local environmental 
conditions through gas exchange and plant hydraulic 
transport (Trugman, Detto, et al., 2018) to examine the 
consequences of eCO2 and climate change on future tree 
CUE globally. We first update the model to incorporate 
the temperature dependency of C3 photosynthesis and 
tissue respiration. We then ask 1) how does the model- 
predicted CUE across six different respiration functions 
commonly utilised in Earth system models compare 
with observations of CUE from trees around the world 
across a range of climates, 2) what are the consequences 
of eCO2 and future projections of climate change on tree 
CUE globally and 3) what do changes in the distribution 
of CUE globally tell us about the future of forests in a 
changing climate?

M ATERI A LS A N D M ETHODS

Model overview

The physiologically based tree model, adapted from 
Trugman, Detto, et al. (2018), couples carbon allocation 
to local environmental conditions through gas exchange 
and plant hydraulic transport. The original model (see 

Trugman, Detto, et al., 2018 for full model description) 
requires inputs of atmospheric CO2 (Ca, ppm), vapour 
pressure deficit (VPD, Pa) and soil water potential (Ψsoil, 
MPa). Here, we update the model to include a tree physio-
logical response of photosynthesis and respiration to tem-
perature (Tair, °C), such that in the updated model inputs 
include Ca, VPD, Ψsoil and Tair, as described below. The 
rate of carbon fixation during photosynthesis is assumed 
to be limited by Rubisco (Trugman, Detto, et al., 2018) 
with a full description in the supporting information.

The temperature dependence of respiration has been 
documented empirically using a range of functions, all 
of which result in similar predictions for Ra at tempera-
tures below 36.5°C. However, estimates of Ra diverge 
at temperatures above 36.5°C. The divergence of data- 
constrained respiration functions at higher temperatures 
has significant consequences for our understanding of 
carbon partitioning under novel expected high tempera-
tures and therefore tree CUE under climate change. Thus, 
we calculated the sensitivity of leaf (light and dark), stem 
(xylem and phloem) and root respiration using each of 
six temperature– respiration response functions (Figure 
S1) which represent a spectrum of decreasing sensitiv-
ity to temperature, in turn: 1) Arrhenius, 2) fixed Q10, 
3) universal temperature dependence, 4) log- polynomial, 
5) Lloyd- Taylor or a 6) variable Q10 function in the ab-
sence of short-  or long- term thermal acclimation (see 
Supporting Information Methods for the full equations). 
When simulating the sensitivity of CUE to respiration 
functional form, the same respiration function was used 
across all biomass pools.

Across all respiration functions, leaf respiration 
in light (Rleaflight) was calculated as a temperature- 
dependent variable fraction (0.66– 0.80) of leaf respira-
tion in dark (Rleafdark) following Way et al. (2015) using

A tree stem respiration at 25°C of 0.719  µmol 
CO2  m−2  s−1 was used (Edwards & Hanson, 1996) and 
partitioned into the xylem (~21% of total stem respira-
tion) and phloem respiration (~79% of total) following 
Stockfors and Linder (1998). Whole- tree NPP is calcu-
lated as GPP minus Ra, and tree CUE as the ratio of NPP 
to GPP.

Model validation

We validated model performance in two ways. First, we 
directly compared model- simulated CUE with a com-
pilation of site- level estimates of forest CUE (N =  228) 
(Collalti & Prentice, 2019) across a range of mean grow-
ing season temperatures (10– 28°C). We ran separate 
model simulations for each of the six respiration func-
tions, in turn. Second, we examined model skill in 
capturing vegetation transitions at dry range edges by 

(1)Rleaflight = Rleafdark × (0.0039 × T + 0.6219) .
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performing a series of global simulations and examining 
spatial patterns of CUE.

For the first model validation (Figure S2, Table S2), 
we held all model parameters and inputs constant except 
Tair, which we varied from 10 to 45°C. Given that most 
measurements did not include detailed demographic or 
climate information, we used CO2, DBH, Ψsoil, and VPD 
values of 415 ppm, 30 cm, −0.3 MPa and 800 Pa, respec-
tively. Tree leaf area (m2) was calculated to maximise 
whole tree NPP (Trugman et al., 2019) while varying Tair 
across 10– 45°C and keeping other climate factors fixed 
using the optimise() function from the ‘stats’ package in 
R (R Core Team, 2018). We limited the maximum leaf 
area to 1600 m2, assuming the relationship between tree 
DBH and leaf area described in Forrester et al. (2017) 
for broadleaf and needle leaf trees is widely conserved 
(Figure S3). We then compared model- predicted CUE 
with the distribution of published tree CUE observa-
tions across temperatures (Collalti & Prentice, 2019). 
Given that growing season Tair was not included with 
the CUE observations (Collalti & Prentice, 2019), we 
extracted growing season Tair for the time period 1980– 
2009 for each study location (based on documented 
site GPS coordinates) with a unique CUE observation 
using the Climatic Research Unit (CRU TS4.03) global- 
gridded data product (Harris & Jones, 2019), which we 
then used to calculate 30- year growing season mean Tair, 
assuming that photosynthesis primarily occurs during 
June, July and August for the northern hemisphere (≥0° 
latitude) and December, January and February for the 
southern hemisphere (≤0° latitude). To determine where 
model- prognosed CUE significantly diverged among the 
functions examined, we performed a breakpoint anal-
ysis of the range in model- predicted CUE (i.e. CUEmax 
–  CUEmin) as a function of temperature across the six 
respiration functions using the R package ‘segmented’ 
(Muggeo, 2008). Linear regression was used to determine 
the relationship between temperature and modelled tree 
CUE prior to the estimated breakpoint.

For the second model validation, we ran global simu-
lations with one modelled tree per grid cell and examined 
the spatial patterns in CUE (Figure S3). We compared 
spatial patterns in model- predicted CUE to a LIDAR- 
based canopy height data set that documents transitions 
from forests to shrubland to examine whether the model 
was a useful tool for predicting where trees could exist at 
dry range edges. Specifically, for our global model simu-
lations, we initialised each pixel with a tree 14 m in height 
(though we found CUE to be invariant to tree size, Table 
S3) and calculated tree DBH (13.5 cm) from height fol-
lowing Farrior et al. (2013). Functional tree xylem cross- 
sectional area (Ax, m2) was estimated from DBH as ca. 
62% of total xylem cross- sectional area (Trugman, Detto, 
et al., 2018). Environmental forcings for the model includ-
ing mean temperature (Tair, °C; calculated as the average of 
Tmax and Tmin) and VPD were extracted from TerraClimate 
(Abatzoglou et al., 2018). Soil moisture (SM, kg H2O m−2 

soil) was extracted from the NASA Global Land Data 
Assimilation System Version 2 (GLDAS- 2) (Beaudoing 
& Rodell, 2020; Rodell et al., 2004) for 2005, the same 
year during which LIDAR canopy height retrievals were 
made. We converted SM to soil volumetric water content 
(θ, m3 H2O m−3 soil), integrating over the soil depth pro-
file for each soil layer down to 2 m, which we weighted 
by the biome- specific distribution of roots throughout 
the soil horizon (Schenk & Jackson, 2002) within each re-
spective biome in which trees grow, excluding mangroves 
(Dinerstein et al., 2017). We then calculated soil water po-
tential (Ψsoil, MPa) from θ using

where Ψsat is the saturated soil water potential (MPa), 
θsat is the saturated volumetric water content of the soil 
(m3 H2O m−3 soil), and b is the Clapp- Hornberger coeffi-
cient (unitless) (Clapp & Hornberger, 1978), which are spe-
cific to a given soil type and were determined using data 
products from the Global Soil Wetness Project –  Phase 2 
(Dirmeyer et al., 2002). In cases, where Ψsoil became highly 
negative (i.e. <−10 MPa), a value of −10 MPa was assigned. 
We calculated growing season means for each environ-
mental factor for each respective period as described pre-
viously. All global gridded data products were resampled 
to the same extent (0.1° × 0.1°) using the resample() func-
tion in the ‘raster’ package in R using a bilinear method 
(Hijmans, 2020) for analyses. We optimised leaf area for 
each tree within each grid cell, given grid- specific environ-
mental forcings to calculate the tree CUE.

We compared simulated tree CUE against a high- 
resolution (1 ×  1 km) LIDAR vegetation canopy height 
data product from the Geoscience Laser Altimeter System 
(GLAS) on the Ice, Cloud, and land Elevation Satellite 
(ICESat) retrieved during 2005 (Simard et al., 2011). 
Vegetation with canopy height <2 m was excluded from 
analyses following the International Geosphere- Biosphere 
Land classification system (Loveland & Belward, 1997). 
This analysis allowed us to examine the relationship be-
tween forest canopy height and model- predicted CUE for 
each grid cell using a two- dimensional density kernel esti-
mation, breakpoint analysis, and linear regression.

Model experiments: Historical and future 
climate forcing data

To understand the sensitivity of forest CUE to poten-
tial changes in climate associated with anthropogenic 
climate change, we used globally gridded data prod-
ucts from a representative subset of 7 coupled climate- 
Earth System Models (ESMs) from the Coupled Model 
Intercomparison Project- Phase 5 (CMIP5) for the periods 
1976– 2005 (historical) and 2071– 2100 (future Respective 
Concentration Pathway 8.5, hereafter RCP8.5) for our 

(2)Ψs = Ψsat ×

(

�

�sat

)−b

,
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analyses (see, Figure S5, Table S4) (Taylor et al., 2012). We 
accessed the Centre for Environmental Data Access data 
portal (https://www.ceda.ac.uk) to download monthly 
averages for each climate variable, mean air tempera-
ture (Tair, °C), surface air pressure (Ps, Pa), soil moisture 
(SM, kg H2O m−2 soil), and relative humidity (RH, %) 
for each respective period of interest. We calculated va-
pour pressure deficit (VPD, Pa) from RH, Tair, and Ps 
using the function RHtoVPD() in the ‘plantecophys’ R 
package (Duursma, 2015) and Ψsoil from soil moisture 
as described previously. Similar to our model validation 
simulations, we calculated growing season mean cli-
matologies over the 30- year period for all environmen-
tal factors. We then computed the multi- model median 
value for each environmental factor for each grid cell 
when forcing the physiologically based tree model under 
historical and future scenarios. All global gridded data 
products were resampled to the same extent (0.1° × 0.1°) 
and were masked using the vegetation canopy height 
LIDAR product. Concentrations of atmospheric CO2 
used in our analysis for the historical and future periods 
were 354 ppm and 807 ppm (Meinshausen et al., 2011), 
respectively. We used two- dimensional kernel density es-
timation using the function kde2d() from the R package 
‘MASS’ (Venables & Ripley, 2002), and linear regression, 
to quantify the relationship between temperature and 
tree height with modelled CUE at the global scale.

Model experiments: CUE under future climate

We examined the sensitivity of model- predicted CUE to 
two distinct climatological periods of 30 years: historical 
(1976– 2005) and end- of- century (2071– 2100, RCP8.5). 
Tree height was assigned according to LIDAR estimates 
(Simard et al., 2011). Tree leaf area was optimised based 
on grid cell- specific climate for each respective period 
(historical and future) using the CMIP5 growing season 
multi- model median value for each environmental factor 
(i.e. VPD, Ψsoil, Tair) and the respective mean mid- year at-
mospheric CO2 concentration (historical: 354 ppm, future: 
807 ppm). We assumed no change in tree characteristics 
beyond leaf area between the historical and future simu-
lations. We performed a series of model experiments de-
signed to understand the sensitivity of tree CUE and forest 
extent to eCO2 and climate change by first simulating his-
torical and then future tree CUE, using leaf area and envi-
ronmental factors specific to each time period. Finally, we 
examined the relative contribution of each environmental 
factor, CO2, VPD, Ψsoil and Tair, in isolation to the change 
in CUE between historical and future periods (∆CUE) 
through factorial model experiments where we varied the 
environmental factor of interest each in isolation between 
the historical and future periods. For our global model ex-
periments, we performed a one- way ANOVA to determine 
the change in global CUE across all respiration functions 
between historical and future climate scenarios.

CUE and forest biogeography

Our two- dimensional kernel density estimation indicated 
that model- predicted decreases in CUE corresponded 
to decreases in observed vegetation canopy height as-
sociated with transitions from taller forests to shorter 
shrubland at dry edge range limits for forests. Thus, 
we used model- predicted CUE to diagnose geographic 
areas where future forest range shifts may occur due to 
changes in hydroclimate. We consider geographic areas 
where future environmental conditions are insufficient 
to support tree growth as diagnosed by model- predicted 
negative CUE (i.e. Ra >GPP), as well as those areas that 
may experience possible forest expansion where future 
CUE is positive and historical CUE is negative. For this 
analysis, we examine three potential cases leveraging re-
sults from our historical– future climate simulations: 1) 
no change in forest range (i.e. no change in sign of CUE), 
2) forest range expansion (i.e. negative CUEhistorical to 
positive CUEfuture) and 3) forest range decline (i.e. posi-
tive CUEhistorical to negative CUEfuture). We then exam-
ine the nature of the relationship between environmental 
factors and model CUE- derived range shifts, including 
non- forested biomes such as grasslands and shrublands, 
where future forest encroachment could be possible.

Model limitations

In the current model formulation and model predic-
tions, we neglected the effects of spatial variability in 
plant traits that mediate forest biogeographic patterns. 
Although we do not account for spatial variability in 
functional traits, we found that model adjustments in 
leaf area covary with key traits regulating plant water 
demand (Table S1), largely compensating for poten-
tial spatial variability in traits such as Vcmax25. We also 
do not explicitly represent tree age in our framework. 
However, model predictions for forest transitions at dry 
range limits are consistent with observed spatial patterns 
in vegetation canopy height. Thus, we contend that our 
simple model framework will help inform understanding 
of how climate change and CO2 fertilisation will impact 
forest extent and inform the uncertainty in these projec-
tions associated with our understanding of Ra.

RESU LTS

Model validation and the sensitivity of CUE to 
climate

Compared to a meta- analysis of observed CUE across 
a range of climates globally spanning mean growing 
season temperatures of 12– 28°C, model- predicted CUE 
intersected median observed CUE for temperatures 15 
and 21°C (Figure 1a). As the temperature increased, 

https://www.ceda.ac.uk
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model- predicted CUE fell well within the interquartile 
range of observed CUE, however, model predictions 
were biased low relative to the observed median CUE 
values at a given temperature by 0.033 ± 0.008 (Table S2). 
Further, across the observed temperature ranges, model 
performance did not differ appreciably across the six res-
piration functions.

Despite the fact that model performance was roughly 
independent of respiration function choice across the 
observed range of CUE, the choice of respiration mat-
ters for high- temperature conditions expected with an-
thropogenic climate change. Specifically, across all six 
respiration functions, model- predicted CUE decreased, 
on average, by 0.12 for each 10°C increase in tempera-
ture (R2 = 0.97, p < 0.001) up to 36.5 ± 0.45°C (Figure 1a), 
which is ~4.5°C higher than current average highs (ca. 
32°C) observed in the tropics. However, as temperature 
increased above 36.5°C, CUE significantly diverged 
across the six respiration functions considered (Figure 
S5). At high temperature, the choice of respiration func-
tion is of critical importance, as CUE is least sensitive 
to increasing temperature under a variable Q10 represen-
tation of respiration sensitivity to temperature (analo-
gous to some acclimation of respiration to temperature) 
and is most sensitive under an Arrhenius representation 
of respiration sensitivity to temperature (Figure 1a). 
Notably, no current observations of CUE exist at the 
high- temperature limit (36.5°C), where we find the respi-
ration functions significantly diverge (Figure 1a, Figure 
S6). Thus, it is not currently possible to evaluate the 
functional performance of these respiration functions 
when it matters most. As a result, there is significant un-
certainty related to future plant CUE in locations such 
as central North America, central South America and 
central Eurasia, where climate change is projected to in-
crease growing season temperature above 36.5°C under 
some emissions scenarios (Figure S7).

Plant CUE is sensitive not only to temperature, be-
cause of the impact of temperature on respiration and 
GPP, but also plant available water, which influences the 
balance of plant productivity relative to maintenance res-
piration. We therefore quantified the sensitivity of plant 

CUE through our model to changes in environmental 
factors that influence water use based on global clima-
tologies. Interestingly, we found that model- predicted 
CUE varies with the environment globally and the spa-
tial variation is driven by two climatic regions with dis-
tinct mechanisms at play— cool high latitude forest areas 
with a relatively high CUE due to low respiration and 
warm forested areas that transition from wet forests with 
intermediate CUE values to dry forests with low CUE 
(Figure 2a; Figure S8), and ultimately shrublands and 
grasslands (which our model is not designed to repre-
sent). The bimodal distribution of modelled CUE val-
ues ranged from ca. 0– 0.70, with a median value of 0.42 
across the six respiration representations (Figure 2), and 
the highest densities of model- predicted CUE occurred 
at growing season temperatures ca. 14.7 and ca. 26.5°C, 
corresponding to tree CUE of 0.48 and 0.35, respectively 
(Figure 2b, Figures S9, S10a). Compared to observa-
tions of canopy height across hydroclimate gradients, we 
found that transitions from taller forests at 13.4 ± 0.01 m 
to shorter shrubland corresponded with rapid decreases 
in model- prognosed CUE from ~0.5 to values that are 
unsustainable by trees over prolonged periods at a rate 
of ~0.021 CUE/m decrease in canopy height (p < 0.001) 
(Figure 2c; Figures S10b, S11), particularly at dry range 
limits of forests (Figure 2a). Thus, the model was able to 
reproduce dry range edges based on tree CUE.

Model experiments: Climate change impacts on 
CUE and forest dry range edge extent

At the global scale, model- predicted CUE increased, on 
average, by 6.2% (ca. 0.024 ± 0.002, mean ± SE) between 
the historical (1976– 2005) and the future (2071– 2100) 
time periods (F = 21.7, p < 0.001; Table 1), driven predom-
inantly by large increases in CO2 which stimulated GPP 
(Figure 3). Future increases in Tair and VPD (Table S4) 
strongly reduced the realised increases due to CO2, while 
future changes in Ψsoil did not have an appreciable impact 
on mean global CUE (Figure 3, Table S4). However, the 
choice of respiration function introduced uncertainty 

F I G U R E  1  Model- predicted CUE across a range of temperature for six temperature- respiration functions (a) and locations of tree CUE 
observations (b). Solid colour lines in (a) represent model- predicted CUE using each of six temperature– respiration representations, while the 
boxplots in (a) correspond to published observations of CUE globally (Collalti & Prentice, 2019). Boxplots highlight the median, interquartile 
range and 95% CI for CUE observations across a range of temperatures. The colour of location markers in (b) represent the site- level estimate 
of CUE from Collalti and Prentice (2019) and correspond to the boxplots in panel (a). The horizontal dashed line in (a) is at 0, which represents 
the point at which model- predicted autotrophic respiration equals gross primary productivity. All respiration functions were solved to 25°C 
and exhibit larger differences as temperature increases above 36.5 ± 0.45°C, denoted by the vertical dark blue line and grey shading in (a)
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into our predictions for both historical and future CUE, 
primarily due to the function- specific response of in-
creasing Tair on respiration and therefore CUE (Table 1). 
Importantly, the variable Q10 respiration– temperature 
response function had the highest historical and future 
mean CUE values across all forested pixels (due to lower 
respiratory fluxes), while the fixed Q10 respiration rep-
resentation showed the lowest global mean CUE within 
each respective period (Table 1), with a range in CUE 
across the six respiration functions (including historical 
and future CUE) of 0.036 or ca. 8.7%.

Given model skill in determining dry range limits in 
forest extent, we used model- predicted CUE to constrain 
where forest range shifts may occur under future climate 
scenarios. We found, on average across all respiration 
functions, a net reduction in ca. 105,124 km2 of the for-
ested area by 2100, driven by a decline of forested lands by 
0.34% and an increase in forested lands by 0.19% (Table 
S5). Importantly, the balance between forest decline and 
increase is variable spatially, such that some biomes only 
experience forest range expansion or encroachment (i.e. 
flooded grasslands and tropical dry broadleaf) or no 
change (i.e. tundra), which is unsurprising because the 
model does not include mechanisms expected to gov-
ern forest cold edge limits, while the majority exhibit a 
variable range in the balance between forest range de-
cline and increase (Figure 4, Table S6). Model- predicted 
CUE between historical and future periods shows bo-
real forests exhibit the largest net decline in forest range 
(−61,895 ± 528 km2) through the end of the 20th century, 
while land areas currently designated as flooded grass-
lands exhibit the largest potential for net forest area in-
crease (+373,939 ± 74,545 km2) (Table S6). Furthermore, 
the choice of temperature– respiration representation 
mediated the sensitivity of our estimates of changes in 
future forested areas, with a variable Q10 representation 
resulting in larger increases and smaller declines in the 
net forested area and an Arrhenius representation result-
ing in larger declines and smaller increases in the net for-
ested area (Figure 4, Table S6). As such, the differences 
in the temperature– respiration representation resulted 
in as little as a ca. 38,097 km2 decline (variable Q10) or as 
much as a ca. 150,313 km2 decline (Arrhenius) in the net 
forested area globally in this analysis.

DISCUSSION

In this study, we use a physiologically based tree model 
to diagnose the underlying mechanisms and future un-
certainties for forest resilience with anthropogenic- 
driven climate change. We capture observed dry range 
forest edges using a CUE framework where progressively 
lower model- predicted CUE corresponds with global 
vegetation height transitions from taller forested areas 
to shorter shrubland (Figure 2). We find that the future 
resilience of forests globally is nuanced, such that total 

F I G U R E  2  Carbon use efficiency (CUE) varies substantially 
globally (a), declines with increasing temperature (b) and explains 
dry edge forest range limits as forests transition to shrubland (c). 
Panel (a) shows model- predicted median CUE across six respiration 
functions for forested land areas (non- forest in white), with CUE 
values ranging from ~0 (dark purple) to 0.70 (yellow), with a global 
median of 0.42 across all forested pixels (0.1° × 0.1°). The inset in the 
lower left corner of (a) corresponds to the frequency distribution 
of tree CUE globally. Each individual data point in (b) and (c) 
corresponds to tree CUE in a 0.1˚ × 0.1˚ forested area predicted from 
the physiologically based tree model parameterised using global- 
gridded climate data (see Methods). The horizontal dashed lines in 
(b) and (c) correspond to the interquartile range (i.e. 25th and 75th 
percentile) of published observations of tree CUE (N = 228), while 
the colour of each data point represents the density of observations, 
with yellow being the highest density and grey being the lowest 
density

TA B L E  1  Model- predicted global mean CUE values across 
seven CMIP5 models and six respiration functions examined in this 
study for two cases: 1) historical and 2) RCP8.5. The historical period 
spans the years 1976– 2005, while the future period (RCP8.5) spans 
the years 2071– 2100. ∆CUE represents the per cent change in CUE 
between the two periods

Historical RCP8.5
∆CUE (%): 
RCP8.5– historical

Variable Q10 0.432 0.452 +4.6

Lloyd- Taylor 0.418 0.448 +7.2

Log- Poly 0.425 0.447 +5.2

UTD 0.421 0.446 +5.9

Fixed Q10 0.416 0.445 +7.0

Arrhenius 0.425 0.447 +5.2
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forested area declines at dry range edges, but core for-
ested areas exhibit overall higher mean CUE by the end 
of the 21st century (Figures 3, 4, Table 1). We show that 
uncertainty in our understanding of the sensitivity of Ra 
to increasing temperature introduces significant varia-
bility into predictions of CUE. Importantly, uncertainty 
is highest at higher temperatures that are expected with 
climate change but is currently unconstrained with ob-
servational data.

There currently exists no standardised representa-
tion of the temperature- Ra response in many widely 
used terrestrial biosphere models, with some adopting 
a fixed Q10 temperature– Ra function (e.g. Pnet- CN, 
ED2) (Medvigy et al., 2009; Thorn et al., 2015), oth-
ers incorporating a variable Q10 function (e.g. CABLE) 
(Wang et al., 2007) and some scaling Ra with tem-
perature and tissue nitrogen concentration (CLM4, 
JULES) (Clark et al., 2011; Oleson et al., 2013; Reich 

et al., 2008). Our results highlight the consequences 
of the choice of temperature- Ra function by illustrat-
ing the large range in model- predicted CUE (driven 
primarily by Ra), which is too large to be ignored at 
high temperature (Figure S1). As autotrophic carbon 
fluxes, including Ra, increase towards warmer equa-
torial regions (Banbury Morgan et al., 2021), careful 
consideration of differences in modelled Ra becomes 
increasingly important for simulating future for-
est CUE, particularly when the temperature exceeds 
36.5°C (Figure S7). Large- scale, data- rich experiments 
like SPRUCE (Hanson et al., 2017) will be invaluable in 
helping to constrain estimates of CUE at higher tem-
peratures and CO2.

Tree Ra is one of the largest, and also most chal-
lenging to measure, carbon fluxes globally. Yet, it is 
critical to accurately represent Ra in terrestrial bio-
sphere models to understand climate change impacts 

F I G U R E  3  Model- predicted CUE increases globally by the end of the 21st century across each of the six temperature– respiration 
representations. Data points correspond to the absolute change in global mean CUE between the historical and the future period (i.e. CUEfuture 
–  CUEhistorical) for each of the six temperature– respiration functions within a given model scenario. Model- predicted tree ∆CUE integrates the 
effects of each of the environmental factors CO2, Tair, VPD and Ψsoil, while each of the four additional scenarios represents a case of ∆CUE 
when only changing the respective factor of interest

F I G U R E  4  Model- simulated CUE informs potential changes in future forest ranges globally. The response ratio (RR) represents the 
natural log of increasing forested area divided by declining forested area within a given biome (i.e. RR = ln(areaincrease/areadecline), such that 
more positive values represent much larger increases in the forested area or forest encroachment (in the case of grass or shrub biomes) relative 
to declines, while negative values indicate net declines in the forested area. Values in parentheses represent the net change in the forested area 
(km2) for each biome. Italicised numbers indicate a case where the change in the forested area for a given biome was not significant. Not shown 
are flooded grasslands, tropical dry broadleaf forests and tundra, given they show only, in turn, increasing, increasing and no change in the 
forested area
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on forest resilience and the terrestrial carbon cycle. 
Multiple independent observations show that tree 
CUE declines with increasing temperature across the 
range of temperatures considered in this study (Chen 
& Yu, 2019; Dillaway & Kruger, 2014; He et al., 2018; 
Piao et al., 2010; Zhang et al., 2009), a phenomenon our 
physiologically based tree model reproduces. When 
considering the combined effects of multiple environ-
mental factors globally, we find model- predicted tree 
CUE is higher in cool, moist ecosystems and lower in 
warm, dry ecosystems, trending to zero at forest dry 
range edges (Figure 2, Figure S8), similar to recent 
predictions using large- scale Earth- system models 
(which couple terrestrial biosphere models to the rest 
of the Earth system) and satellite retrievals (He et al., 
2018). However, uncertainty remains. In an analysis 
by Collalti et al. (2020), the authors find that CUE in-
creased with temperature in an observational range of 
up to ca. 28°C. Further, though the model and obser-
vations are in agreement with absolute CUE values in 
our analysis (Figure 1), a clear temperature trend is not 
evident in the observations. There are many reasons 
why these diverse measurements across space may not 
exhibit a clear temperature trend including diversity in 
species, diversity in tree ages, lack of site- specific soil 
moisture and VPD measurements at the time of obser-
vations and measurement uncertainty. Collectively, 
these results contextualise that our model results are 
in broad agreement with and additive to the literature 
but also highlight several future avenues of research 
(which we detail below).

Globally, variation in model- simulated tree CUE is 
driven by air temperature, VPD and soil water poten-
tial, reflecting our current knowledge of large- scale 
drivers of forest carbon cycling (Banbury Morgan et al., 
2021; Fernández- Martínez et al., 2019; Humphrey et al., 
2021). However, when considering end- of- century mean 
changes in simulated tree CUE, the effect of increasing 
atmospheric CO2 stimulating GPP, on average, out-
weighs those environmental factors that either diminish 
GPP or stimulate Ra (Figure 4). The effects of increasing 
CO2 and VPD on forest function have gained notable at-
tention in recent years (Novick et al., 2016; Swann et al., 
2016; Yuan et al., 2019), given their simultaneous, but 
often counteracting influences over tree physiology. In 
this context, our findings provide a unique framework to 
diagnose the areas where forests are vulnerable to climate 
driven die- off based on tree CUE (Figure 4). Indeed, the 
world's boreal forests, which are currently showing evi-
dence of increasing browning and forest decline (Barber 
et al., 2000; Trugman, Medvigy, et al., 2018; Walker & 
Johnstone, 2014; Walker et al., 2015), experience the larg-
est range decline of all biomes examined at dry range 
edges by the end of the 21st century as inferred through 
model- simulated CUE (Figure 4), and overwhelm-
ingly contribute to the model- predicted global decline 
in forest range extent. The model- predicted declines in 

temperate broadleaf forests are also consistent with re-
ports from the southeastern United States (White et al., 
2021). Moreover, these findings also agree with findings 
from a recent meta- analysis showing observations of 
widespread drought- induced tree mortality at dry range 
edges (Anderegg et al., 2019). However, despite model- 
predicted declines in the total forested area, projected 
increases in CO2 resulted in higher mean CUE in areas 
that are predicted to maintain a positive CUE (Figure 3, 
Table 1). Targeted measurements of tree- level photosyn-
thesis and respiration under experimental warming will 
be invaluable for assessing the extent to which these pre-
dictions are realised.

In conclusion, our analysis of tree CUE and forest 
dry range edges through the lens of a physiologically 
based tree model highlights the potential consequences 
and uncertainty of the choice of the temperature- Ra 
representation is widely used process- based models. 
Particularly, at higher temperatures, we show a variable 
Q10 representation, which represents some acclimation 
of respiration sensitivity to temperature, resulting in 
much less carbon being lost to Ra and consequently 
higher CUE. In contrast, an Arrhenius type representa-
tion yields the lowest tree CUE due to larger predicted 
Ra costs. Importantly, we find that model- predicted 
decreases in CUE correspond to decreases in observed 
vegetation canopy height associated with transitions 
from taller forests to shorter shrubland at dry range 
edges, indicating that model- predicted CUE is a use-
ful tool for understanding future forest resilience to 
climate change- induced drought stress. Under future 
climate conditions, model predictions indicate an ex-
pected higher mean CUE in intact forest regions due to 
CO2 fertilisation, but the declining geographic extent, 
highlighting that the resilience of forests under future 
climate change may be nuanced and controlled by mul-
tiple competing mechanisms.
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