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ABSTRACT OF THE DISSERTATION

Fixed Smoothing Asymptotic Theory in Over-identified Econometric

Models in the Presence of Time-series and Clustered Dependence
by

Jungbin Hwang

Doctor of Philosophy in Economics
University of California, San Diego, 2016

Professor Yixiao Sun, Chair

In the widely used over-identified econometric model, the two-step Gen-
eralized Methods of Moments (GMM) estimator and inference, first suggested by
(Hansen, 1982), require the estimation of optimal weighting matrix at the initial
stages. For time series data and clustered dependent data, which is our focus here,
the optimal weighting matrix is usually referred to as the long run variance (LRV)
of the (scaled) sample moment conditions. To maintain generality and avoid mis-
specification, nowadays we do not model serial dependence and within-cluster de-
pendence parametrically but use the heteroscedasticity and autocorrelation robust
(HAR) variance estimator in standard practice. These estimators are nonparamet-
ric in nature with high variation in finite samples, but the conventional increasing
smoothing asymptotics, so called small-bandwidth asymptotics, completely ignores
the finite sample variation of the estimated GMM weighting matrix. As a conse-
quence, empirical researchers are often in danger of making unreliable inferences

and false assessments of the (efficient) two-step GMM methods. Motivated by

x1ii



this issue, my dissertation consists of three papers which explore the efficiency
and approximation issues in the two-step GMM methods by developing new, more
accurate, and easy-to-use approximations to the GMM weighting matrix.

The first chapter, “Simple and Trustworthy Cluster-Robust GMM Inference”
explores new asymptotic theory for two-step GMM estimation and inference in the
presence of clustered dependence. Clustering is a common phenomenon for many
cross-sectional and panel data sets in applied economics, where individuals in the
same cluster will be interdependent while those from different clusters are more
likely to be independent. The core of new approximation scheme here is that we
treat the number of clusters G fixed as the sample size increases. Under the new
fixed-G asymptotics, the centered two-step GMM estimator and two continuously-
updating estimators have the same asymptotic mixed normal distribution. Also,
the t statistic, J statistic, as well as the trinity of two-step GMM statistics (QLR,
LM and Wald) are all asymptotically pivotal, and each can be modified to have
an asymptotic standard F distribution or t distribution. We also suggest a finite
sample variance correction further to improve the accuracy of the F or t approxi-
mation. Our proposed asymptotic F and t tests are very appealing to practitioners,
as test statistics are simple modifications of the usual test statistics, and the F or t
critical values are readily available from standard statistical tables. We also apply
our methods to an empirical study on the causal effect of access to domestic and
international markets on household consumption in rural China.

The second paper “Should we go one step further? An Accurate Compar-
ison of One-step and Two-step procedures in a Generalized Method of Moments
Framework” (coauthored with Yixiao Sun) focuses on GMM procedure in time-
series setting and provides an accurate comparison of one-step and two-step GMM
procedures in a fixed-smoothing asymptotics framework. The theory developed in
this paper shows that the two-step procedure outperforms the one-step method
only when the benefit of using the optimal weighting matrix outweighs the cost of

estimating it. We also provide clear guidance on how to choose a more efficient

Xiv



(or powerful) GMM estimator (or test) in practice.

While our fixed smoothing asymptotic theory accurately describes sampling
distribution of two-step GMM test statistic, the limiting distribution of conven-
tional GMM statistics is non-standard, and its critical values need to be simu-
lated or approximated by standard distributions in practice. In the last chapter,
“Asymptotic F and t Tests in an Efficient GMM Setting” (coauthored with Yix-
iao Sun), we propose a simple and easy-to-implement modification to the trinity
(QLM, LM, and Wald) of two-step GMM statistics and show that the modified test
statistics are all asymptotically F distributed under the fixed-smoothing asymp-
totics. The modification is multiplicative and only involves the J statistic for
testing over-identifying restrictions. In fact, what we propose can be regarded
as the multiplicative variance correction for two-step GMM statistics that takes
into account the additional asymptotic variance term under the fixed-smoothing
asymptotics. The results in this paper can be immediately generalized to the GMM

setting in the presence of clustered dependence.
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Chapter 1

Simple and Trustworthy
Cluster-Robust GMM Inference

Abstract. This paper develops a new asymptotic theory for two-step GMM
estimation and inference in the presence of clustered dependence. While conven-
tional asymptotic theory completely ignores the variability in the cluster-robust
GMM weighting matrix, the new asymptotic theory takes it into account, leading
to more accurate approximations. The key difference between these two types of
asymptotics is whether the number of clusters G is regarded as fixed or growing
when the sample size increases. Under the new fixed-G asymptotics, the centered
two-step GMM estimator and the two continuously-updating estimators have the
same asymptotic mixed normal distribution. In addition, the J-statistic, the trin-
ity of two-step GMM statistics (QLR, LM and Wald), and the t-statistic are all
asymptotically pivotal, and each can be modified to have an asymptotic standard
F distribution or t distribution. We suggest a finite sample variance correction to
further improve the accuracy of the F and t approximations. Our proposed asymp-
totic F and t tests are very appealing to practitioners because our test statistics
are simple modifications of the usual test statistics, and the F and t critical values
are readily available from standard statistical tables. A Monte Carlo study shows

that our proposed tests are much more accurate than existing tests. We also ap-



ply our methods to an empirical study on the causal effect of access to domestic
and international markets on household consumption in rural China. The results

suggest that the effect of access to markets may be lower than the previous finding.



1.1 Introduction

Clustering is a common feature for many cross-sectional and panel data
sets in applied economics. The data often come from a number of independent
clusters with a general dependence structure within each cluster. For example, in
development economics, data are often clustered by geographical regions, such as
village, county and province, e.g., (De Brauw and Giles, 2012; Pepper, 2002; Dube
et al., 2010). In empirical finance and industrial organization, firm level data are
often clustered at the industry level ,e.g., Samila and Sorenson, 2011; Bharath
et al., 2014, and in many educational studies, students’ test scores are clustered
at the classroom or school level (Andrabi et al., 2011). Because of learning from
daily interactions, the presence of common shocks, and for many other reasons,
individuals in the same cluster will be interdependent while those from different
clusters tend to be independent. Failure to control for within group or cluster cor-
relation often leads to downwardly biased standard errors and spurious statistical
significance.

Seeking to robustify inference, many practical methods employ clustered
covariance estimators (CCE). See White (1980), Liang and Zeger (1986), and Arel-
lano and Bond (1991) for overviews of the CCE and its applications. It is now well
known that standard test statistics based on the CCE are either asymptotically
chi-squared or normal. The chi-squared and normal approximations are obtained
under the so-called large-G asymptotic specification, which requires the number of
clusters G to grow with the sample size. The key ingredient behind these approx-
imations is that the CCE becomes concentrated at the true asymptotic variance
as (G diverges to infinity. In effect, this type of asymptotics ignores the estimation
uncertainty in the CCE despite its high variation in finite samples, especially when
the number of clusters is small. In practice, it is not unusual to have a data set
that has a small number of clusters. For example, if clustering is based on large ge-

ographical regions such as U.S. states and regional blocks of neighboring countries,



(e.g., Duflo et al., 2004; Obstfeld et al., 2008; Bester et al., 2011; Ibragimov and
Miiller; 2011), we cannot convincingly claim that the number of cluster is large so
that the large-G asymptotic approximations are applicable. In fact, there is ample
simulation evidence that the large-G approximation can be very poor when the
number of clusters is not large (e.g., Donald and Lang, 2007; Cameron et al., 2008
; Bester et al., 2011; MacKinnon and Webb, 2014).

In this paper, we introduce a new approach that yields more accurate ap-
proximations, and that works well whether or not the number of clusters is large.
In fact, our approximations work especially well when the chi-squared and normal
approximations are poor. They are obtained from a limiting thought experiment
where the number of clusters G is held fixed. Under this fixed-G asymptotics, the
CCE no longer asymptotically degenerates; instead, it converges in distribution to
a random matrix that is proportional to the true asymptotic variance. The ran-
dom limit of the CCE has profound implications for the analyses of the asymptotic
properties of GMM estimators and the corresponding test statistics.

We start with the first-step GMM estimator where the underlying model
is possibly over-identified and show that suitably modified Wald and t-statistics
converge weakly to standard F and t distributions, respectively. The modification
is easy to implement because it involves only a known multiplicative factor. Similar
results have been obtained by Hansen (2007) and Bester et al. (2011) ,which employ
a CCE type HAC estimator but consider only linear regressions and M-estimators
for an exactly identified model.

We then consider the two-step GMM estimator that uses the CCE as a
weighting matrix. Because the weighting matrix is random even in the limit, the
two-step estimator is not asymptotically normal. The form of the limiting distribu-
tion depends on how the CCE is constructed. If the CCE is based on the uncentered
moment process, we obtain the so-called uncentered two-step GMM estimator. We
show that the asymptotic distribution of this two-step GMM estimator is highly

nonstandard. As a result, the associated Wald statistic is not asymptotically piv-



otal. However, it is surprising that the J-statistic is still asymptotically pivotal.
Furthermore, we show that the limiting distribution of the J-statistic can be rep-
resented as an increasing function of a standard F random variable. So critical
values are readily available from standard statistical tables and software packages.

Next, we establish the asymptotic properties of the “centered” two-step
GMM estimator! whose weighting matrix is constructed using recentered moment
conditions. Invoking centering is not innocuous for an over-identified GMM model
because the empirical moment conditions, in this case, are not equal to zero in
general. Under the traditional large-G asymptotics, recentering does not matter
in large samples because the empirical moment conditions are asymptotically zero
and here are ignorable, even though they are not identically zero in finite sample.
In contrast, under the fixed-G asymptotics, recentering plays two important roles:
it removes the first order effect of the estimation error in the first-step estimator,
and it ensures that the weighting matrix is asymptotically independent of the em-
pirical moment conditions. With the recentered CCE as the weighting matrix, the
two-step GMM estimator is asymptotically mixed normal. The mixed normality
reflects the high variation of the feasible two-step GMM estimator as compared to
the infeasible two-step GMM estimator, which is obtained under the assumption
that the ‘efficient’ weighing matrix is known. The mixed-normality allows us to
construct the Wald and t-statistics that are asymptotically nuisance parameter
free.

We also consider two types of continuous updating (CU) estimators. The
first type continuously updates the first order conditions (FOC) underlying the
two-step GMM estimator. Given that FOC’s can be regarded as the empirical
version of generalized estimating equations (GEE), we call this type of CU esti-
mator the CU-GEE estimator. The second type continuously updates the GMM

criterion function, leading to the CU-GMM estimator, which was first suggested

LOur definition of the centered two-step GMM estimator is originated from the recentered (or
demeaned) GMM weighting matrix, and it should not be confused with “centering” the estimator
itself.



by Hansen et al. (1996). Both CU estimators are designed to improve the finite
sample performance of two-step GMM estimators. Interestingly, we show that the
continuous updating scheme has a built-in recentering feature. So in terms of the
first order asymptotics, it does not matter whether the empirical moment condi-
tions are recentered or not. We find that the centered two-step GMM estimator
and the two CU estimators are all first-order asymptotically equivalent under the
fixed-G asymptotics. This result provides a theoretical justification for using the
recentered CCE in a two-step GMM framework.

To relate the fixed-G asymptotic pivotal distributions to standard distri-
butions, we introduce simple modifications to the Wald and t statistics associated
with the centered two-step GMM and CU estimators. We show that the mod-
ified Wald and t statistics are asymptotically F and t distributed, respectively.
This result resembles the corresponding result that is based on the first-step GMM
estimator. It is important to point out that the proposed modifications are indis-
pensable for our asymptotic F and t theory. In the absence of the modifications,
the Wald and t statistics converge in distribution to nonstandard distributions, and
as a result, critical values have to be simulated. The modifications involve only
the standard J-statistic, and it is very easy to implement because the modified test
statistics are scaled versions of the original Wald test statistics with the scaling
factor depending on the J-statistic. Significantly, the combination of the Wald
statistic and the J-statistic enables us to develop the F' approximation theory.

Finally, although recentering removes the first order effect of the first-step
estimation error, the centered two-step GMM estimator still faces some extra esti-
mation uncertainty in the first-step estimator. The main source of the problem is
that we have to estimate the unobserved moment process based on the first-step
estimator. To capture the higher order effect, we propose to retain one more term
in our stochastic approximation that is asymptotically negligible. The expansion
helps us develop a finite sample correction to the asymptotic variance estimator.

Our correction resembles that of Windmeijer, (2005) , which considers variance



correction for a two-step GMM estimator but only in the i.i.d. setting. We show
that the finite sample variance correction does not change the limiting distributions
of the test statistics, but they can help improve the finite sample performance of
our tests.

Monte Carlo simulations clearly show that our new tests have a much more
accurate size than existing tests via standard normal and chi-square critical val-
ues, especially when the number of clusters G is not large. An advantage of our
procedure is that the test statistics do not entail much extra computational cost
because the main ingredient for the modification is the usual J-statistic. There is
also no need to simulate critical values because the F and t critical values can be
readily obtained from standard statistical tables.

Our fixed-G asymptotics is related to fixed-smoothing asymptotics for a
long run variance (LRV) estimation in a time series setting. The latter was ini-
tiated and developed in econometric literature by Kiefer et al. (2000), Kiefer and
Vogelsang (2002b), Miiller (2007), Sun et al. (2008), Sun (2014a, 2014b), and
Politis, (2011) among others. Our new asymptotics is in the same spirit in that
both lines of research attempt to capture the estimation uncertainty in covari-
ance estimation. With regards to orthonormal series LRV estimation, a recent
paper by Hwang and Sun (2015b) modifies the two-step GMM statistics using
the J-statistic, and shows that the modified statistics are asymptotically F and
t distributed. The F and t limit theory presented in this paper is similar, but
our cluster-robust limiting distributions differ from those of our predecessors in
terms of the multiplicative adjustment and the degrees of freedom. Moreover, we
propose a finite sample variance correction to capture the uncertainty embodied
in the estimated moment process adequately. To our knowledge, the finite sample
variance correction provided in this paper has not been considered in the literature
on the fixed-smoothing asymptotics.

There is also a growing literature that uses the fixed-G asymptotics to design

more accurate cluster-robust inference. For instance, Ibragimov and Miiller (2010,



2011) proposes a t-test for a scalar parameter that is robust to potentially heteroge-
neous clusters. Hansen (2007), Stock and Watson (2008), and Bester et al. (2011)
propose a cluster-robust F or t tests under cluster-size homogeneity. Bell and Mc-
Caffrey (2002) and Imbens and Kolesar (2012) suggest an adjusted t-critical value
employing data-determined degrees of freedom. Recently, Canay et al., (2014) es-
tablishes a theory of randomization tests and suggests an alternative cluster-robust
test. For other approaches, see Carter et al. (2013) which proposes a measure of
the effective number of clusters under the large-G' asymptotics.; Cameron et al.
(2008), MacKinnon and Webb (2014) which provide cluster bootstrap approaches
with asymptotic refinement. All these studies, however, mainly focus on a sim-
ple location model or linear regressions that are special cases of exactly identified
models.

The remainder of the paper is organized as follows. Section 1.2 presents
the basic setting and establishes the approximation results for the first-step GMM
estimator under the fixed-G asymptotics. Sections 1.3 and 1.4 establish the fixed-
G asymptotics for two-step GMM estimators and the CU estimators, respectively.
Section 1.5 is devoted to developing asymptotic F and t tests based on the cen-
tered two-step GMM estimator and the CU estimators. Section 1.6 proposes a
finite sample variance correction. The next two sections apply our methods to the
popular linear dynamic panel model and report a simulation evidence in the con-
text of this model. Section 1.10 applies our methods to an empirical study on the
causal effect of access to markets on household consumption in some rural Chinese

areas. The last section concludes. Proofs are given in the appendix

1.2 Basic Setting and the First-step GMM Esti-
mator

We want to estimate the d x 1 vector of parameters § € ©. The true

parameter vector 6, is assumed to be an interior point of © C R¢, which is a



compact parameter space. The moment condition
Ef(Y;,0) = 0 holds if and only if § = 6y, (1.1)

where f;(0) = f(Y;,0) is an m x 1 vector of twice continuously differentiable func-
tions. We assume that ¢ = m — d > 0 and the rank of I' = F [0f(Y;,0,)/00'] is
d. So the model is possibly over-identified with the degree of over-identification q.
The number of observations is V.

Define gy(0) = N1 Zf\il fi(0). Given the moment condition in (1.1), the

initial “first-step” GMM estimator of 6, is given by
N . xr—1
0, = arg min gn(0) Wy gn(0),

where Wy is an m x m positive definite and a symmetric weighting matrix that
does not depend on the unknown parameter 6y and plimy_ . ,Wny = W > 0. In
the context of instrumental variable (IV) regression, one popular choice for Wy is
Z'Z/N where Z is the data matrix of instruments.

Let

afi(0
=N Z L
To establish the asymptotic properties of él, we assume that for any v/ N consistent

estimator 0, plim N_mof‘(é) = [" and that I is of full column rank. Also, under some

regularity conditions, we have the following Central Limit Theorem (CLT):

VNgn(0o) % N(0,Q) where
0= nggo - (Z f:(6o) ) (Z fj(90>> : (1.2)

Here €2 is analogous to the long run variance in a time series setting but the com-
ponents of {2 are contributed by cross-sectional dependences over all locations. For

easy reference, we follow Sun and Kim (2015) and call €2 the global variance. Prim-
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itive conditions for the above CLT in the presence of cross-sectional dependence

are provided in Jenish and Prucha (2009, 2012). Under these conditions, we have
VN, - 6p) % N[0, (WD) W lQW o D (W)

Since I' and W can be accurately estimated by f(él) and Wy, we need only
estimate €2 to make reliable inference about 6,. The main issue is how to properly
account for cross-sectional dependence in the moment process { fj(Go)}é-Vzl. In
this paper, we assume that the cross-sectional dependence has a cluster structure,
which is not uncommon in many microeconomic applications. More specifically, our
data consists of a number of independent clusters, each of which has an unknown
dependence structure. Let G be the total number of clusters and L, be the size
of cluster g. For simplicity, we assume that every cluster has the common size

L, ie, L =L =Ly = .. = Lg. The identical cluster size assumption can be

g
relaxed to the assumption that each cluster has the same size asymptotically, i.e.,
limy o0 Ly/(G™1 Zlel L;) = 1 for every g = 1,...,G. The following assumption

formally characterizes the cluster dependence.

Assumption 1 (i) The data {Y;}}_, consists of G clusters. (ii) Observations are
independent across clusters. (iii) The number of clusters G is fized, and the size

of each cluster L grows with the total sample size N.

Assumption 1-i) implies that the set {fi(6y),i = 1,2,..., N} can be parti-
tioned into G nonoverlapping clusters UG, where G, = {f{(6y) : k = 1,...,L}.
In the context of this clustered structure, Assumption 1-ii) implies that the within-
cluster dependence for each cluster can be arbitrary but E f{(6y) f1*(6y) = 0if g # h.
That is, f{(6p) and f(6y) are independent if they belong to different clusters. In-
dependence across clusters in Assumption 1-ii) can be generalized to allow weak
dependence among clusters by restricting the number of observations located on

the boundaries between clusters. See Bester et al. (2011) for the detailed primitive
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conditions. Under Assumption 1-ii), we have

R . /
0= A}l_l)T;ONE (; f¢(90)> (; fj(%))

N N
o1 . /
— ]\P_Igoﬁ ;:1 ]E:l 1(i, j € same cluster)E f;(6o)f;(6o)". (1.3)

Assumption 1-iii) specifies the direction of asymptotics we consider. Under

this fixed-G asymptotic specification, we have

1 & 1 & 1
Q=— lim Var | —= 7(0 ==Y Q,.
nglL—ﬂ)O (\/Z;fl(o)) GZ g
Thus, the global covariance matrix €2 can be represented as the simple average
of Q4, g = 1,...,G, where Q,’s are the limiting variances within individual clus-
ters. Motivated by this, we construct the clustered covariance estimator (CCE) as

follows:

N N
Q(6,) = %Z Z 1(4,j € the same group) fi(61) f;(61)’

1 & 1, L& )
= 5; (ﬁgf <91>> (E;fjwl)) }

To ensure that Q(él) is positive definite, we assume that G' > m, and we maintain
this condition throughout the rest of the paper.

Suppose we want to test the null hypothesis Hy : Ry = r against the al-
ternative Hy : ROy # r, where R is a p X d matrix. We focus on linear restrictions
without loss of generality because the Delta method can be used to convert non-
linear restrictions into linear ones in an asymptotic sense. The F-test version of

the Wald test statistic is given by

-1

F(0:) := (Rby —r) { REar(B) R} (RO, —r)/p.
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1 1.~ R R A . L -1
-+ [F(el)'wjglr(el)} [r(@l)'wzglﬂ(egwjglr(el)] [r(el)'wjglr(el)] .
When p = 1 and the alternative is one sided, we can construct the t-statistic:

. RO, —
t(6,) = I—AT
Rvar(0;)R!
To formally characterize the asymptotic distributions of F\(6;) and t(6;) under
the fixed-G' asymptotics, we further maintain the following high level conditions.
Assumption 2 0, 5 0,.

Assumption 3 (i) For each g =1,...,G, let

[y(0):= lim E|—

LNHOO el
Then,
L
1 < 9f10) p
sup ||— -, @) =0,
0EN (60) L; oo’ o(0)

holds, where N (6y) is an open neighborhood of 6y and ||-|| is the Euclidean norm.
(i) Ty(0) is continuous at 6 = 0y, and for Ty =Ty(6p), I' = G! 290:1 L'y has full

rank.

Assumption 4 Let B,, , ~i.i.d.N(0, 1) for g =1,...,G, then

L
(%Zf (6o) <x> =P (AyBpg <z )+o0(l) as L — oo.

1

h

for each g = 1,...,G where x € R™ and A4 is the matriz square oot of €),.

Assumption 5 (Homogeneity of I'y) Forallg=1,...,G, ', =T.
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Assumption 6 (Homogeneity of Q) For allg=1,...,G, Q4 = (L.

Assumption 2 is made for convenience, and primitive sufficient conditions
are available from the standard GMM asymptotic theory. Assumption 3 is a uni-
form law of large numbers (ULLN), from which we obtain I'(4;) = G~ 2521 Ly+
0p(1) = I' + 0,(1). Together with Assumption 1-(ii), Assumption 4 implies that
L1/ Zle f (o) follows a central limit theorem jointly over ¢ = 1,...,G with
zero asymptotic covariance between any two clusters. The homogeneity conditions
in Assumptions 5 and 6 guarantee the asymptotic pivotality of the cluster-robust
GMM statistics we consider. Similar assumptions are made in Bester et al. (2011)
and Sun and Kim (2015), which develop asymptotically valid F tests that are
robust to spatial autocorrelation in the same spirit as our fixed-G' asymptotics.
Let . G

Bp= G By and §:= G5 (Buy — Bu) (Bug — B’
g=1 g=1
where B, , as in Assumption 4. Also, let W,(K,II) denote a Wishart distribution
with K degrees of freedom and p x p positive definite scale matrix II. By construc-
tion, VGB,, ~ N(0,1,), S ~ G7'W,(G — 1,1,,) and B,, L S. To present our

asymptotic results, we partition B,, and S as follows:

Bd Bp Sdd qu
Bm _ di<1 7 Bd _ fXI ,S _ tiXd zi><q :
B, Bap Sqd Sqq
gx1 (d—p)x1 gxd gqXq
Spp S:wl—z7 Spq
Sy = pXxp px(d—p) and Sy, = pXq
_ _ ) q
Sd—p,p Sd—p,d—p Sd—IMI
(d—p)xp (d—p)x(d—p) (d—p)xq

Proposition 1 Let Assumptions 1~6 hold. Then
(a) F(6y) & Flo = GB!S,'B,/p;

p—pp

(b) t(6,) T 1= \/% where N(0,1) L y/x%_,.

Remark 2 The limiting distribution Fis follows Hotelling’s T*distribution. Us-
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ing the well-known relationship between the T? and standard F distributions, we
obtain Fio = (G/G P)Fp.c—p Where Fpc_p, is a random variable that follows the
F distribution with degree of freedom (p,G — p). Similarly, T1oo < (G/G — Dt
where tg_1 18 a random variable that follows the t distribution with degree of free-

dom G — 1.

Remark 3 As an ezample of the general GMM setting, consider the linear regres-
sion model y; = 20 + ¢;. Under the assumption that cov(z;,€;) = 0, the moment
function is f;(00) = x;(y; — x0). With the moment condition Ef;(0y) = 0, the
model is exactly identified. This setting was employed in Hansen, 2007; Stock and
Watson, 2008; Bester et al., 2011, indeed, our F and t approximations in Propo-

sititon 1 are identical to what is obtained in these papers.

Remark 4 Under the large-G asymptotics where G — oo but L is fixed, one can

show that the CCE Q(él) converges in probability to Q0 for

L
Q_c,lg%oszar< L;f,f 60>.

The convergence of Q(él) to Q does not require the homogeneity of {0, in Assump-
tion 6 (Hansen, 2007; Carter et al., 2013). Under this type of asymptotics, the
test statistics F(0y) and t(0,) are asymptotically Xz/p and N(0,1). Let F, i and
X})_a be the 1 — « quantiles of F,—, and the X?g distributions, respectively. As
G/(G—p) >1 cmd]: ap > Xp “/p, it is easy to see that

G
G—]-"IG 1> Xp —/p.

However, the difference between the two critical values G(G — p)~ 1pr *, and
1‘“ /p shrinks to zero as G increases. Therefore, the fized-G critical value G(G —
) L vCop 18 asymptotically valid under the large-G asymptotics. The asymptotic

validity holds even if the homogeneity conditions of Assumptions 5 and 6 are not
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satisfied. The fized-G critical value is robust in the sense that it works whether G

18 small or large.

Remark 5 Let A the matriz square root of Q,i.e. AN = Q. Then, it follows from
the proof of Proposition 1 that Q(él) converges in distribution to a random matriz

N1 given by

G
- 1 -~
Qoo = ADA" where D = = 3 D, D,
g=1
Dy = By g — DA(D\W D) AW B, (1.4)

for Ty = AT and Wy = A7'W (A) . f)g is a quasi-demeaned version of
B, 4 with quasi-demeaning attributable to the estimation error in 0,. Note that
the quasi-demeaning factor Tx(D\W'TA)ITA\W it depends on all of T',Q) and
W, and cannot be further simplified in general. The estimation error in 6, affects
Qoo i a complicated way. However, for the first-step Wald and t statistics, we do
not care about Q(él) per se. Instead, we care about the scaled covariance matriz
D6, WRIQO)W'T(0y), which converges in distribution to T'W=1Q W IT.
But

D\Wi'Dy =T\Wi' (Bmg — Bn)
and thus

G
N 1 . N
DWW T = Ty DTy = & Y T4 'D, (F’AWX 1Dg)

g=1

G
LT 23 (Brg — Bu) (Bug — Bu) (M)
g=1

So, to the first order fived-G asymptotics, the estimation error in 6, affects T'W 1
QoW IT wia simple demeaning only. This is a key result that drives the asymp-

totic pivotality of F(él) and t(él).
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1.3 Two-step GMM Estimation and Inference

In an overidentified GMM framework, we often employ a two-step proce-
dure to improve the efficiency of the initial GMM estimator and the power of the
associated tests. It is now well-known that the optimal weighting matrix is the
(inverted) asymptotic variance of the sample moment conditions. There are two
different ways to estimate the asymptotic variance, and these lead to two different

estimators Q(6;) and Q¢(6;) where

G L L !
Q°(6) = éz { > I0) gNw)]} {% > If0) - m@]}

While () employs the uncentered moment process {f(61)}Y,, Q¢(6;) employs
the recentered moment process {f?(0;) — gn(61)}S.,. For inference based on the
first-step estimator él, it does not matter which asymptotic variance estimator is
used. This is so because for any asymptotic variance estimator Q(él), the Wald
statistic depends on Q(6;) only via T'(0;) W5 'Q(0,) Wy T (6;). Tt is easy to show

that the following asymptotic equivalence:

(6, Wy Q) Wy 'T ()
= T(0,) W' Qe(0) W T (61) + 0, (1)
= T'WQ(0)W T + 0, (1)

Thus, the limiting distribution of the Wald statistic is the same whether the esti-
mated moment process is recentered or not. It is important to point out that the
asymptotic equivalence holds because two asymptotic variance estimators are pre-
multiplied by f‘(él)’ W' and post-multiplied by W&lf (él) The two asymptotic

variance estimators are not asymptotically equivalent by themselves under fixed-G
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asymptotics.
Depending on whether we use Q(6;) or Q°(6;), we have different two-step

GMM estimators:

~

R . -1
62 = arg Ial’élél gN(Q)/ |:Q(61>i| gN(9>7
R -1
05 = arg Ieneiél gn(0) [90(91)} gn(0).

Given that Q(él) and Qc(él) are not asymptotically equivalent and that they en-

ter the definitions of 6, and ég by themselves, the two estimators have different

asymptotic behaviors, as shown in the next two subsections.

1.3.1 Uncentered Two-step GMM Estimator

In this subsection, we consider the two-step GMM estimator 05 based on
the uncentered moment process. We establish the asymptotic properties of 0y
and the associated Wald statistic and J-statistic. We show that the J-statistic is
asymptotically pivotal, even though the Wald statistic is not.

It follows from standard asymptotic arguments that
G L
- ) =~ [P ] et 3 (23700 + ot
Using the joint convergence of the following
a6, R 1 & 1 & 9 d 5
(61) 5 Qoo = ADA’ and 7= > (— ka(eo)> = VGAB,, (1.6)

we obtain:
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where as before

G
- 1 - - _
D= —Y D,D, for Dy = By — Cx(T\W; 'T2) ' T\W ' B,

g=1
Since D is random, the limiting distribution is not normal. Even though both [?g
and B,, are normal, there is a nonzero correlation between them. As a result, D
and B,, are correlated, too. This makes the limiting distribution of v N (92 — 6o)
highly nonstandard.

To understand the limiting distribution, we define the infeasible estimator

0, by assuming that Q(6,) is known, which leads to
0, = arg Igréiél gn (0) Q1 (06)gn (6).

Now

VN(y — 6p) % — [[)S™'Ty] 7' IS WGB,,

where S = G~1 Zle BB, ,- The only difference between the asymptotic distri-
butions of v N (ég —0p) and VN (ég — Bp) is the quasi-demeaning embedded in the
definition of [)g. This difference captures the first order effect of having to estimate
the optimal weighting matrix, which is needed to construct the feasible two-step
estimator é?.

To make further links between the limiting distributions, let’s partition S
in the same way that S is partitioned. Also, define U to be the m x m matrix of
the eigen vectors of I',T'y = IVQ™!'T" and UXV’ be a singular value decomposition
(SVD) of I'y. By construction, U'U = UU’ = I,,,, V'V = V'V = I;, and ¥’ =
[ Aixa Oaxq |- We then define W = U'W,U and partition W as before. We also
introduce

Bs = SasS:t, By = WaWot and kg = G - B/S !B,

a9’ qaq qa-q9q9

By construction, s is the “random” regression coefficient induced by S while 3
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is the regression coefficient induced by the constant matrix W. Also, k¢ is the
quadratic form of normal random vector vG B, with random matrix S,,. Finally,

on the basis of 6, the J-statistic for testing over-identification restrictions is

-1

J(02) == Non (@) (261))  gn(8a)/a (1.7)

The following proposition characterizes and connects the limiting distributions of
the three estimators: the first-step estimator él, the feasible two-step estimator ég,

and the infeasible two-step estimator 6.

Proposition 6 Let Assumptions 1~6 hold. Then
(a) VN(0y — o) > —VAWG(By — By By);
(b) VN(By — 6y) 5 —VA-'WG(By — BsB,):
() VN (03—0y) 5 VA 'WG(By—BsB,)~V A VG(By— By By)- (ki) G);
(d) VN(B> —b0) = VN (62 — o) + VN (61 — o) - (ri;/G) + 0,(1);
(e) J(65) % ke where (a),(b),(c), and (e) hold jointly.

)
)

Part (d) of the proposition shows that v/ N (ég — ) is asymptotically equiv-
alent to a linear combination of the infeasible two-step estimator v/N (6, — 6;)
and the first-step estimator v/ N (91 — 0p). This contrasts with the conventional
GMM asymptotics, wherein feasible and infeasible estimators are asymptotically
equivalent.

It is interesting to see that the linear coefficient in Parts (c¢) and (d) is
proportional to the limit of the J-statistic. Given kg = O,(1) as G increases, the
limiting distribution of v/N (6, — ) becomes closer to that of v N (f; — ). In the
special case where ¢ = 0, i.e., when the model is exactly identified, kg = 0 and
VN (05—6,) and v/ N (6, —6;) have the same limiting distribution. This is expected
given that the weighting matrix is irrelevant in the exactly identified GMM model.
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Using the Sherman—Morrison formula?, it is straightforward to show

p d (G) Gifq]:qﬂ—q
=\ :
q 1 + %}Fq,G—q

It is perhaps surprising that while the asymptotic distributions of 0y is complicated
and nonstandard, the limiting distribution of the J-statistic is not only pivotal but
is also an increasing function of the standard F distribution. For the J test at the

significance level «, say 5%, the critical value from kg can be obtained from

q 11—«
<g) EIFQ7G_Q
l—a
q) 1+ GL—q‘FtLG*q

Equivalently, we have
G—q qrg

¢ G—qgrg ~ "0
and so .
<A G — J (0
J(o) = E=9 90 a4 g

That is, the transformed J-statistic J (ég) is asymptotically F distributed. This is
very convenient in empirical applications.

It is important to point out that the convenient F limit of J(6,) holds only
if the J-statistic is equal to the GMM criterion function evaluated at the two-step
GMM estimator 65. This effectively imposes a constraint on the weighting matrix.
If we use a weighting matrix that is different from Q(él), then the resulting J-
statistic may not be asymptotically pivotal any longer.

Define the F-statistic and variance estimate for the two-step estimator 0y

-1 Y -1 . . .
C+ab)t=C"1 - Ci—&-b?% for any invertable square matrix C' and conforming column

vectors such that 1+ C~'a # 0.
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as

~

~ N —1 N
Feyay)(62) = (RO, — 1) (Rvarﬁ(él)(%)R') (R — 1) /p for

— A 1 5NN A — A /A -1
W o (02) =+ (FOYQ (00 (@))
In the above definitions, we use a subscript notation Q(6;) to clarify the choice
of CCE in F.(y) and var.(6s). Is the above F-statistic asymptotically pivotal as
the J-statistic J (éQ)? Unfortunately, the answer is no, as implied by the following

proposition which uses the additional notation:

E o Epp By _ Spp Spq + B%BqBé(ﬁ%), B%/BQB:]
P+¢:ptq T - 5 D5 5 D
E,, Eg Sh, Saq B,By(8%) BB,

where st is the p x ¢ matrix and consists of the first p rows of V' By where Vs

the d x d matrix of the eigen vector of (RVA~') RVA~!.

Proposition 7 Let Assumptions 1~6 hold. Then

~od G- . L o
FQ(él)(QQ) ~ E<BP - quququ), (Eppq) ! (B — quququ)
_ / 1 -
1 B E, E B ) )
= — G 7p rp Pq 7p . GB(/]]E;qqu ’ (18)
Y By E;Dq Eqq B,

where

]Epp-q = ]Epp - EPQE;;E;Q'

Due to the presence of the second term in [E,,,+,, which depends on BW,
the F-statistic is not asymptotically pivotal. It depends on several nuisance pa-
rameters including €. To see this, we note that the second term in (1.8) is the
same as (G/q) - B,S,/ B; = kg. So the second term is the limit of the J-statistic,

which is nuisance parameter free. However, the first term in (1.8) is not pivotal
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because we have

/ —1

a B, Epp Epg B,
B, E, Eq B,
/ -1
_ = = = = &— L 52
_C B, Spp Spq B, . (B;)+ggpiq,pirqw3q2
B, S B, | 1+ByiS,iiB,

~ /
where W = <(B€V)’,Iq) . Here, as in the case of the J-statistic, the first term in
the above equation is nuisance parameter free. But the second term is clearly a

nonconstant function of Bﬁ,, which, in turn, depends on R,I', W and (2.

1.3.2 Centered Two-step GMM estimator

Given that the estimation error in 6, affects the limiting distribution of
Q(6;), the Wald statistic based on the uncentered two-step GMM estimator 6,
is not asymptotically pivotal. In view of (1.4), the effect of the estimator error
is manifested via a location shift in 139; the shifting amount depends on 6;. A
key observation is that the location shift is the same for all groups under the
homogeneity Assumptions 5 and 6. So if we demean the empirical moment process,
we can remove the location shift that is caused by the estimator error in 6;. This
leads to the recentered asymptotic variance estimator and a pivotal inference for
both the Wald test and J test.

It is important to note that recentering is not innocuous for an over-
identified GMM model because N~ SN | £;(6)) is not zero in general. In the time
series HAR variance estimation, recentering is known to have several advantages.
For example, as Hall (2000) observes, in conventional increasing smoothing asymp-
totic theory, recentering can potentially improve the power of the J-test using a
HAR variance estimator when the model is misspecified. Building on this intuition,
Lee (2014) recently proposes a nonparametric misspecification robust GMM boot-

strap employing the recentered GMM weight matrix. Also, shows that, under the
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fixed smoothing asymptotics, recentering is necessary to yield an asymptotically
pivotal inference from the two-step Wald test statistic.

In our fixed-G asymptotic framework, recentering plays an important role in
the CCE estimation. It ensures that the limiting distribution of Q°(6; ) is invariant
to the initial estimator ;. The following lemma proves a more general result and
characterizes the fixed-G limiting distribution of the centered CCE matrix for any

v/ N consistent estimator 0.

Lemma 8 Let Assumptions 1~6 hold. Let 0 be any VN consistent estimator of
0y. Then

(@) O(0) = (6y) + 0,(1);

(b) Q(8p) 5 Q2. where Q5 = ASN'.

Lemma 8 indicates that the centered CCE Qc(él) converges in distribu-
tion to the random matrix limit Q¢ = ASA’, which follows a (scaled) Wishart

distribution G7*W,,(G — 1,9). Using Lemma 8, it is possible to show
VN5 —60) & — [T (@)™ T] ' T () AVGB,,. (1.9)

Since (Q¢.)~" is independent with vVGAB,, ~ N(0,), the limiting distribution of
ég is mixed normal.

On the basis of ég, we can construct the “trinity” of GMM test statistics.
The first one is the normalized Wald statistic defined by

Foe(ay(05) := (RO5 — 1) { Roarqe g (05) R’} ' (RO5 — r)/p where  (1.10)

. 1 -1

A A A A -1 .
o, 08) = (E@) (20) " 169)
When p = 1 and the alternative is one sided, we can construct the t-statistic below:

. <Ré§ — r)
taeas (65) = - )
Q (91)( 2) {RWQC(é1)<9§)R/}1/2
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The second test statistic is the Quasi-Likelihood Ratio (QLR) type of statistic.

Define the restricted and centered two-step estimator é;r :
. R
05" = arg ropiélgN(H)’ [96(91)] gn(0) s.t. RO =r.
S

The QLR statistic is given by

A A ~ A o~ 11 ~ ~ A~ ~71 N
LRa.(o,)(05,057) = N {gNw;)' [°@)]  an(85) — an(d57) [2(01)| g (85 >} /p.
The third test statistic is the Lagrange Multiplier (LM) or score statistic in the
GMM setting. Let Aq.,(0) be the gradient of the GMM criterion function INCO%

. -1
[QC()} gn(0), then the GMM score test statistic is given by

A / A . 1, . -t A
LMQc(él)@;’r) =N [Aﬁc(él)(eg’rﬂ {f<9§”)’ [Qc(el)} F(HS”“)} [Agc(@l)(%”)} /p.

In the definition of all three types of the GMM test statistics, we plug the first-
step estimator 6 into QC(-), but Lemma 8 indicates that replacing 6, with any
VN consistent estimator (e.g., 0, and ég) does not affect the fixed-G asymptotic
results. This contrasts with the fixed-G asymptotics for the uncentered two-step

estimator . Lastly, we also construct the standard J- statistic based on ég :
N ney/ A 2 -t ne
J(05) == Nan(@5) (2(8)  an(05)/a,

where Q¢(6;) can be replaced by Q¢(6S) without affecting the limiting distribution
of the J statistic.

Using (1.9) and Lemma 8, we have FQc(él)(ég) % Fyeo where

-1

R’} (1.11)

1

Fow = G [R(T487T0) " T4 B [R (148 7'T0)”

x [R (M,§7T,) " FAS”Bm] /p.
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When p =1, we get th(el)(ﬁ ) % Tyoo with

R(I\S™'Ty) ' I\SVGB,,
VRIS R

200 —

Also, it follows in a similar way that

J(05) 5 Juo o= G { B — Ty (TS7'T,) F’AS*Bm}'S* (1.12)

X {Bm NN Fj\S*IBm} /4.

The remaining question is whether the above representations for Fo, and
Joo are free of nuisance parameters. The following proposition provides a positive

answer.

Proposition 9 Let Assumptions 1~6 hold and define Spp.q = Spp — SpgSye Sep-
() Faep,)(05) > G (B, — S,,S,' B ) Spke (By = SpeS;By) /p < Fou
(0) toes, (96) < \/_( — SpeSy4 By) / m Ty for p=1;

(¢) LR,y (05,057) = Foega,) (05) + 0,(1);

(d) LMQC (057) = Fgc( (é )+ 0p(1);

(¢) <

J(05) 5 (G/a)BiSy By = Jee.

e

To simplify the representations of Fo,, and Ts., in the above proposition,

we note that

Spp S G _
G v < Z P+q,9 p+q) (Bp+q,g o Bp+f1)/>

Sop Seq g=1
where By1,, = (B, ,, B, ,)"- The above random matrix has a standard Wishart

distribution W,,,(G — 1,1,,,). It follows from the well-known properties of a

Wishart distribution that S,,, ~ W,(G — 1 — ¢,1,)/G and S,,., is independent
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of Spq and Sqq.3 Therefore, if we condition on A := SpqS;;\/@Bq, the limiting

distribution Fa., satisfies

G-p—q. 4 G—p—q(VGBy+A)S,,(VGB,+A) 4
T]Fgoo: ( p ) PPQ< D ):Fp,G—p—q (HA||2),

G p
(1.13)

where F, ¢, 4(|A]|?) is a noncentral F distribution with random noncentrality

parameter ||A|”. Similarly, the limiting distribution Tys can be represented as

G—l—q d G—l—Q\/GBp+Ad
- 47, < , L ta1_q(A), (1.14)
G N

which is a noncentral t distribution with a noncentrality parameter A. The non-

standard limiting distributions are similar to those in Sun (2014) which provides
the fixed-smoothing asymptotic result in the case of the series LRV estimation.
However, in our setting of clustered dependence, the scale adjustment and degrees
of freedom parameter in (1.13) and (1.14) are different from those in Sun (2014).

The critical values from the nonstandard limiting distribution Fs., can be
obtained through simulation, but Sun (2014b) shows that Fy., can be approximated
by a noncentral F distribution. With regard to the QLR and LM types of test
statistics, Proposition 9-(c) and (d) shows that they are asymptotically equivalent
to Fﬂc(él)(ég). This also implies that all three types of test statistics share the
same fixed-G limit as given in (1.13) and (1.14). Similar results are obtained by
Sun (2014b) and Hwang and Sun (2015a; 2015b), which focus on two-step GMM

estimation and HAR inference in a time series setting.

For the J-statistic J(65), it follows from Proposition 9-(e) that

G — .
T I (05) 5 T

2G4

This is consistent with Kim and Sun’s (2012) results except that our adjustment

and degrees of freedom parameter are different.

3See Proposition 7.9 in Bilodeau and Brenner.
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1.4 Iterative Two-step and Continuous Updat-
ing Schemes

Another class of popular GMM estimators is the continuous updating (CU)
estimators, which are designed to improve the poor finite sample performance of
two-step GMM estimators. For more discussion on the CU estimators, see Hansen
et al. (1996).

Here we consider two types of continuous updating schemes. The first is the
iterative scheme that iterates the second steps in the two-step GMM estimation
until convergence. The j-th iterated GMM estimator é} g 1s defined as the solution

of the following minimization problem:

01w = argmingn(0)'Q (05" )gn (0) for j > 1,
0co

where 09, = 0, is the two-step estimator 6,. The FOC for é}E is
P(01) 2 (01 )gn (1) = 0 for j > 1.

In view of the above FOC, é}E can be regarded as a generalized-estimating-
equations (GEE) estimator, which is a class of estimators first studied by Liang
and Zeger (1986).

When the number of iterations j goes to infinity until éﬁE converges, we
obtain the continuously updated generalized estimating equations (CU-GEE) es-
timator égJEE The FOC for éé“EE is given by

1Aﬂ(ééu]«:]«:),ﬁ_l(QACU-GEE)QN(QACG“EE) =0. (1.15)

In the above definition of §3, we employ the uncentered CCE, Q(-). However, it
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is not difficult to show that

[(0%5)' Q" (Oov-crr)gv (05ks)

~rpcu V[ el peu -1 2 1
= D(0%e) (2 08ke))  gn(Bovcrs) -

1+ VN(éE;uEE)

where

~ ~ ~ -1 ~
v (85m) = L - gnlOcvces) (Oov.cre) ) gx(0im).

Since 1/[1 4 vy (08;)] is always positive, the first-order condition in (1.15) holds
if and only if

[(0g) [QC(OGEE)} B gn(Bcuces) = 0. (1.16)

So recentering has no effect on the CU-GEE estimator.
The second CU scheme continuously updates the GMM criterion function,

which leads to the familiar continuous updating GMM (CU-GMM) estimator:

0t = arg gingNw)/frl(e)gN(e).
S

Although we use the uncentered CEE Q(6) in the above definition, the original
definition of A%, in Hansen et al. (1996) is based on the centered CCE weighting
matrix Q°(9). It is easy to show that

~

Law (697 (0)gn(0) = Lgn(6Y2(0) [026) — Lon(0)ox(0)'] [2(0)] " an(6)

- [
= Lon(8) ((0))  gn(®) {1~ Lon(6YQ ' (O)n(0)}
So we have

LQN(Q)’Q_I(Q)QN(Q) .
1— Lgn(0)Q-1(0)gn(0)

Low(6) (2(6)) " gn(6) =

The above equation reveals the fact that the CU-GMM estimator will not change
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if the uncentered weighting matrix €(0) is replaced by the centered one Q¢(0), i.e.,

Ot = ang mingu(0) (°6)) " (0)av(©). (1.17)

Similar to the centered two-step GMM estimator, the two CU estimators
can be regarded as having a built-in recentering mechanism. For this reason, the
limiting distributions of the two CU estimators are the same as that of the centered

two-step GMM estimator, as is shown below.

Proposition 10 Let Assumptions 1, 3~6 hold. Assume that Ag‘EE and Oy

are vV N consistent. Then

VN (O — 00) > — [T/ (%) ' T] o Q)" AVGB,,
VN0 — 00) 5 — [T (25) 7' T] ' T (2%) ' AVGB,.

The proposition shows that the CU estimators and the centered two-step
GMM estimator are asymptotically equivalent under the fixed-G asymptotics.
We can construct the Wald statistics based on the two CU estimators as

follows:

Ffzc(ég;EE)( AE;uEE) = (Rég}uEE - T),{RWQc(éauEE)(éCU—GEE>R/}_1(RéE}uEE —7)/p

Ffzc(ég;uMM)(Q(C;uMW = (RO — T)/{Rmﬁc(ég}uMM)( G U (ROG N — 1) /p

~

We construct ¢q. (fcu-ces) and toe(gen, (0 ) in a similar way when p = 1.

0E}HEE ) M )

It follows from Proposition 10 that the Wald statistics based on éCU_GEE and ég‘MM

are asymptotically equivalent to F, Ac(é‘)(ég). As a result,
jcu d neu d
Fﬂc(éa“EE)( GEE) — ]FQOO and FAC(éE;%\/IM)(eGMM) — IF?OO'

Similarly,

Hcu d Act d
th( )(GGEE) — TQOO and tQC(éCGuMM( GMM) — TQOO'

Hcu
QGEE
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cu

In summary, we have shown that all three estimators ég, Gpp and égLMM, and the
corresponding Wald test statistics converge in distribution to the same nonstandard
distributions. Proposition 9-(c) and (d) continues to hold for the CU estimators,
leading to the asymptotic equivalence of the three test statistics based on the CU
estimators.

The findings in this subsection are quite interesting. Under the first or-
der large-G asymptotics, the CU estimators and the default (uncentered) two-step
GMM are all asymptotically equivalent. In other words, the first-order large-G
asymptotics is not informative about the merits of the CU estimators. One may
develop a high order expansion under the large-G asymptotics to reveal the advan-
tages of CU estimators. In fact, Newey and Smith (2004) develops the stochastic
expansion of CU estimators in the i.i.d setting and shows that the CU schemes
automatically remove the high order estimation error of two-step estimator which
is caused by the non-optimal weighting matrix in the first-step estimator. See also
Anatolyev (2005) which extends the work of Newey and Smith (2004) to a time se-
ries setting. We could adopt these approaches, instead of the fixed-G asymptotics,
to capture the estimation uncertainty of the first-step estimator in the default (un-
centered) two-step GMM procedures. But the high order asymptotic analysis is
technically very challenging and often requires strong assumptions on the smooth-
ness of moment process. Although the fixed-G asymptotics we develop here is just
a first order theory, it is powerful enough to reveal the asymptotic difference be-
tween the CU and the plain uncentered two-step GMM estimators. Moreover, the
built-in recentering function behind the CU estimators provides some justification

for the use of the centered CCE in a two-step GMM framework.

1.5 Asymptotic F and t tests

Under the fixed-G asymptotics, the limiting distributions of two-step test
statistics, including Wald, QLR and LM, and the t statistics, are nonstandard and
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hence critical values have to be simulated in practice. This contrasts with the con-
ventional large-G asymptotics, where the limiting distributions are the standard
chi-square and normal distributions. In this section, we show that a simple mod-
ification of the two-step Wald and t statistics enables us to develop the standard
F and t asymptotic theory under the fixed-G' asymptotics. The asymptotic F and
t tests are more appealing in empirical applications because the standard F and t
distributions are more accessible than the nonstandard Fo. and Ty, distributions.

The modified two-step Wald, QLR and LM statistics are
ﬁmﬁm@:G—g—iffgﬁg, (1.18)

cJ\b
— e pery . G—p—q . LRQc(él)(éga égT)

G 1+ 2.J(65)
it ey = G P4 Moy (%)
Q< (61 T Ne

@) G 1+ ZJ(65)

and the corresponding version of the t-statistic is

7 (éc) |G- 1—¢q th(ég)(ég)
Qe(0)\Y2) = G ' ~
v/ 1+ %J(@g)

The modified test statistics involve a scale multiplication factor that uses the usual

J-statistic and a constant factor that adjusts the degrees of freedom.

It follows from Proposition 9 and Theorem 12 that

(FQc(ég)<é§)aJ<é§)> % (Faoer Jo) (1.19)
L3 (G (B, — $,S:1By) S50 (B — $0sS20By) /1, (G/q>3;g;;§q) (1.20)

pp-q

So

i G—p—q Fow aG-P—gq

He rQ—1
Fﬂc(ég)(02> - G 1 + %Joo pG §pSpp-q§p7
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where o
. VG(B, —S,,S;; By)
p = .
\/1+ B:S,'B,
Similarly,

G_l_q TQOO d gp

G V1+8le s

Spp-q

In the proof of Theorem 11 we show that ¢, follows a standard normal
distribution N(0, I,) and that &, is independent of gp_pl,q. So the limiting distribution
of Fﬁc(ég)(ég) is proportional to a quadratic form in the standard normal vector
&y with an independent inverse-Wishart distributed weighting matrix S;pl,q It
follows from a theory of multivariate statistics that the limiting distribution of
Fgc(ég)(ég) is F), g_p—q. Similarly, the limiting distribution of Zﬁc(ég)(ég) is tg_1-q-

This is formalized in the following theorem.

Theorem 11 Let Assumptions 1~6 hold. Then
(a) Py (05)  Fpap-gi

(b) LRoee)(05,057) = Fopgs

(¢) ZMQC 0 057) 5 Foopegs

(

ISH
SN—
o
A

%>

N O
SN—
ig
~
Q
._.
Q

Together with the asymptotic equivalence between é;, éCU_GEE and égMM
established in Proposition 10, the proof of Theorem 11 implies that the modified
Wald, LR,LM, and t statistics based on éCU_GEE and éé“MM are all asymptotically F
and t distributed under the fixed-G asymptotics. This equivalence relationship is
consistent with the recent paper by Hwang and Sun (2015b) which establishes the
asymptotic F' and t limit theory of two-step GMM in time series setting. But our
cluster-robust limiting distributions in Theorem 11 are different from Hwang and
Sun (2015b) in terms of the multiplicative adjustment and the degrees of freedom

correction.
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It follows from the proofs of Theorem 11 and Proposition 9 that

VN (ég — 90> 4 MN (0, (o)~ (14 B{]S;;Bq)> (1.21)
and  J(05) % (G/q)B'S, B,

holds jointly under fixed-G asymptotics. Here, M N(0,V) denotes a random vari-
able that follows a mixed normal distribution with conditional variance V. The
random multiplication term (1 + B;gq_qqu) in (1.21) reflects the estimation un-
certainty of CCE weighting matrix on the limiting distribution of v N (65 — 6;).
The fixed-G limiting distribution in (1.21) is in sharp contrast to that of under the

conventional large-G asymptotics as the latter completely ignores the variability

in the cluster-robust GMM weighting matrix. By continuous mapping theorem,

VN (95— o)
1+ (Gla)T(65)

S (0, ()T (1.22)

and this shows that the J-statistic modification factor in the denominator ef-
fectively cancels out the uncertainty of CCE to recover the limiting distribu-
tion of VN (ég — 6p) under the conventional large-G asymptotics. In view of
(1.22), the finite sample distribution of vN(#5 — 6y) can be well-approximated

~

by N(0,varg.,(63)) where
— ne — Ae q ne
var g g, (03) = varg. g\ (63) - <1 + aJ(%)) : (1.23)

The modification term (1 + (¢/G)J(05))~" degenerates to one as G increases so
that the two variance estimates in (1.23) become close to each other. Thus, the
multiplicative term (14 (¢/G)J(A5))~" in (1.18) can be regarded as a finite sam-
ple modification to the standard variance estimate mmél)(ég) under the large-G

asymptotics. For more discussions about the role of J-statistic modification, see

Hwang and Sun (2015b) which casts the two-step GMM problems into OLS esti-
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mation and inference in classical normal linear regression.

1.6 Finite Sample Variance Correction

1.6.1 Centered Two-step GMM Estimation

Define the infeasible two-step GMM estimator with the centered CCE weight-

ing matrix Q°(6,):

~ ~ -1
05 = angmin g (0) (2°(60)) g (6).

Then

-1

VN (05— 6,) = - [r' (600 r] I (Q6(00)) VNaw(60) +0,(1)

. But we also have
VN (ég - 90> S {r' (QC(@}))1 r} Y (ch}))l VNgn(0o) + 0,(1) (1.24)
Together with Lemma 8, this implies that
VN(05 = 60) = VN (05 — 6p) + 0, (1) .

That is, the estimation error in #; has no effect on the asymptotic distribution of
VN (05 — 6) in the first-order asymptotic analysis. However, in finite samples 65
does have higher variation than 9~§, and this can be attributed to the high variation
in Q°(6,) than Q°(y). To account for this extra variation, we could develop a higher
order asymptotic theory under the fixed-G' asymptotics. But this is a formidable
task that requires new technical machinery and lengthy calculations. Instead, we
keep one additional term in the stochastic expansion of v N (ég — 6y) in hopes of

developing a finite sample correction to our asymptotic variance estimator.
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To this end, we first introduce the notion of asymptotic equivalence in
distribution &y ~ ny for two stochastically bounded sequences of random vectors
énv € RY and ny € RY when &y and ny coverge in distribution to each other. Now

under the fixed-G asymptotics we have:

1

VN (5~ 05) & — {F’ )] P}_ r [0(60)] " VNgx ()

+ (& + &) VNG, — b))

where

o{r o)) Tl 3
&=~ { | 89,} } ' [240)]  gn(00)

o= {rfro] ) G

0=0¢

1
gn (0o)
in & by T(05)[Q(0,)] g (05), then the estimate will be identically zero because

are d X d matrices. In finite samples, if we estimate the term I [QC(HO)]

of the FOC’s. For this reason, we drop & and keep only &, which leads to the

distributional approximation:

1

. u . -1 )~ . -1 .
VN (S — 05) & - {r’ [0(60)] r} I [Q4(00)] VN (0o) + EV/N (B — o),
(1.25)
Using element by element differentiation with respect to 6, for 1 < j < d, we can

write the j-th column of & as
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where

aQ<(6,)
a0,
L

) =5 | =3 (f;?(@o) - %Zﬁ(%))

1 0f9(00) 1 = 0f(00)\
S CONEE L0 |

s=1

= Tj (Qo) -+ T;(eo) and

Note that the term Ev/N (él — 0p) has no first order effect on the asymptotic
distribution of v/ N (A5—6,). This is true because & converges to zero in probability.
In fact, it follows from (1.26) and (1.27) that & = O,(N~1/?).

It follows from (1.25) that

. . _ IV (Q) " AZ
\/N(gg —0p) ~ — ( [F’ (ng)—l F] 1 5N(F’W_1F)_1 ) (Q25)
'W—AZ
(1.28)
where Z ~ N(0,1;), Z is independent of Q¢ , Ey has the same marginal distribu-
tion as & but it is independent of Z and Q¢,. It then follows that /N (95 — 6o)

is asymptotically equivalent in distribution to the mixed normal distribution with

the conditional variance given by

1 /

[ (©5) 1] Q%) Q)T T (Q5) T ewT
(C'WIT) 1y, Wl Qe)”'r 'wolQwoln
-1

(05T
(D'W1T) L&

Motivated by the above approximation, we propose to use the following
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corrected variance estimator:

= ( {r/ [96(91)} rr En(TWRT) )
I ey
Dy (6) Wit

(@

(CWi'T) ey

- Wﬂc(él)(ég) + gNWQc(él)(ég) + m(zc(él)(ég)gf\f + éNW(él)EJI\/ (1.29)

where
Evlil = {T" [mén]lf'}lrgv{[fz%él)]l LG [fz%él)]l}g]v(ég),
T o=,
I = 1.

The last three terms in (1.29), which are of smaller order, serve as a finite sample
correction to the original variance estimator.

Windmeijer, (2005), too, has used the idea of variance correction, and his
proposed correction has been widely implemented in applied work for simple mod-
els such as linear IV models and linear dynamic panel data models. However,
Windmeijer, (2005) considers only an i.i.d. setting. Two principal differences
distinguish Windmeijer’s approach and ours. First, our asymptotic variance es-
timator involves a centered CCE; in contrast, Windmeijer’s involves only a plain
variance estimator. Second, we consider the fixed-G asymptotics; Windmeijer,
(2005) considers the traditional asymptotics. More broadly, we often have to keep
higher-order terms to develop a high order Edgeworth expansion. Here we choose

to focus on variance correction instead of distribution correction, which is often
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the real target behind the Edgeworth expansion. In addition to technical reasons,
a principal reason for our choice is that we have already developed more accurate
fixed-G asymptotic approximations.

With the finite sample corrected variance estimator, we can construct the

variance-corrected Wald statistic:

@%W)m@wzmr(mﬂ(Mpwp

When p = 1 and for one-sided alternative hypotheses, we can construct the
variance-corrected t-statistic:

(Rd5 — )
VBTG 6, (05) B

adj (96) _

Qc 91

Given that the variance correction terms are of smaller order, the variance-corrected

statistic will have the same limiting distribution as the original statistic.

Assumption 7 For each g=1,...,G and s =1,...,d, define Q4(0) as

L
. 1 o (9f(0)
g - 7 k
mm}%EL;w(ws
Then,
L
sup ||= 3 — QU || & o.
QM%L;W<%S {(9)

holds for each g =1,...,G and s = 1, ...,d where N'(0,) is an open neighborhood of
0o and ||-|| is the Euclidean norm. Also, Q(0y) = Qs(0y) for g =1,...G.

This assumption trivially holds if the moment conditions are linear in pa-

rameters.
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Theorem 12 Let Assumptions 1~7 hold. Then
Fi. (85) = Fap 3, (05) + 0,(1) and

5{?91 (@C) toed, )(é )+ 0p(1).

In the proof of Theorem 12, we show that Ey = (1 + 0p(1))&;. That is,
the high order correction term has been consistently estimated in a relative sense.
This guarantees that 3 ~ is a reasonable estimator for &, which is of order o,(1).

As a direct implication of Theorem 12, the fixed-G asymptotic distributions
of FC (QC) and t%c(él)(ﬁg) are

dj A d dj A d
Fgczél)(gg) - ]FQOO and t?zcj(él)(eg) — P:lI‘Qoo-

Note that the corrected variance estimator is not necessarily larger than
the original estimator in finite samples. In the simulation work we consider
later, we observe that the smaller value of corrected variance estimate rather

deteriorates the finite sample performance of variance-corrected statistics. To

avoid this undesirable situation, we make an adjustment to var (96) so that
W?;J(e )(éC) Uarﬁc(él)(ég) is guaranteed to be positive semideﬁnlte. This is an

ecasy task. Let
/\ad. A —_ )
My = WTQCJ(él)(@g) — VAT ge g, (03),

{Ai}le be the eigenvalues of My and VyLyV} be the eigen-decomposition of My
where Py = diag (\;) € R™?. Define

Py = diag (max(\;,0)) and My = VyPyVy.

The corresponding regularized version of var var (QC) is given by
var-dt (90) varsd (ég) + My (1.30)

Qe(by) "oe @)
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The corresponding modified Wald statistic is

Fyr (85) = (Rl —r) | Roarsst (QC)R] (RO — 1) /p. (1.31)

Similarly, the modified t-statistic is

) \/R@\radH o)

The limiting distributions of the modified Wald and t statistics are again o, and
Tono.

1.6.2 CU Estimation

For the CU-GEE estimator, we have the following expansion

VN (0% — 6o)
-1

— (r’ (96(90))_1 r) I (Q%e@)‘l VNgy(6o) + EVN (cv-crs — 6o)
(1.32)

+0,(1). (1.33)

This can be regarded as a special case of (1.25) wherein the first-step estimator 0,

is replaced by the CU-GEE estimator. So

. " B . -1\ ! . -1
VN (O — 00) & — (I — &)™ (r' ((60)) r> I (9(00))  VNon(6).
(1.34)
We can obtain the same expression for the CU-GMM estimator VN (éCU_GMM —0o).

In view of the representation in (1.34), the corrected variance estimator for
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the CU type estimators can be constructed as follows:

—1 N -, -1
var?;]( o (QGEE) (Id — & GEE) var <‘92}uEE) (Id - ‘%U‘GEE>

W;dcj(ew )(GGMM) (Id - gCU-GMM) var (GE}UMM> (Id - S/CU-GMM)
where

. -1 7!
Ecv-crnl., F Q GEE)} F/}

-1 9Q°(fcu. e =
QCU GEE } M [QC(QCU—GEE)] gN(‘QGEE)
80,

and SCU oMM 18 defined in the same way but with @ Ggp replaced by éCU_GMM. The
adjusted variance estimators can be defined using the same formula provided in
(1.30).

The adjusted (and regularized) test statistics associated with the CU type
estimators are

di+ A
FX Ocu-GEE

= (R ASIEE - T)l (RUGT?S(ZCU )(éCU—GEE)R,> - (RéCU—GEE - 7">/ /p;

and
(adi+ (RQGEE — )

el 90U GEE)
27QC(QCU adﬁ- Y
GE \/RUCLT’QC 9°“ QCU GEE)R

when p = 1. We can easily show that the Wald statistic converge weakly to Fo
and the t-statistic converge weakly to To.

With the finite sample corrected and adjusted variance estimators in place,
the test statistics based on all three estimators ég, éCU_GEE and éngM converge in
distribution to the same nonstandard distributions. A multiplicative modification
provided in Section 1.5 can then turn the nonstandard distributions Fo., and To.

into standard F and t distributions.
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1.7 Application to Linear Dynamic Panel Model

This section discusses how to implement our inference procedures in the

context of a linear dynamic panel model:

Yit = VWYir—1 + TS+ 0i + Uy, (1.35)

for i = 1,...,N, t = 1,..,T, where zy = (z,,...,2% ") € R¥!. The unknown
parameter vector is 6 = (v,3) € R% We assume that the vector of regressors
Wi = (Yu—1, 25 ) is correlated with 7; and is predetermined with respect to w;,
ie., E(wyuyrs) =0 for s =0,...,T —t.

When T' is small, popular panel estimators such as the fixed-effects esti-

mator or first-differenced estimator suffer from the Nickel bias (Nickell, 1981).
Arellano and Bond (1991) consider the first-differenced equation

Ay = Aw,0 + Aug, t=2,...,T

and propose a consistent IV estimator that employs the lagged w;; as the instru-
ment. Building upon Anderson and Hsiao (1981), Arellano and Bond (1991, AB
hereafter) examine the problem in a GMM framework and find dT'(T — 1)/2 se-

quential instruments:

Zi = dz’ag(zgz, ooy ZZI'T)
(T=1)xd(T—1)T/2

Zit = (Yi0s s Yit—2, 1, s Tyy_1), 2 < < T
The moment conditions are then given by
E(Z!Au;) =0,

where Aw; is the (T'—1) vector (Aua, ..., Au;r)'. The original AB method assumes



43

away cross-sectional dependence, but clustered dependence can be easily accom-
modated. Here we assume that the moment vector {Z/Au;}¥, can be partitioned
into independent clusters. That is, {Z]Au;};L, = UY C A ZY AW, with Z9 Au?

and Z” Au}} being independent for all g # h.

The first-step GMM estimator with weighting matrix Wy is given by
0 = (AW ZWi'Z' Aw) ™ Aw' ZWR' Z' Ay,

where 7’ is the dT(T — 1)/2 x N(T — 1) matrix (2,7}, ...,Zy), Aw; is the
(T — 1) x d matrix (Awg,..., Aw;r)', Ay; is the (Ayso,..., Ayir), Aw and Ay are
(Awt, ..., Awly) and (Ay), ..., Ayly)’, respectively. The corresponding Wald statis-
tic* for testing Hy : Ry = r vs H, : ROy # r is given by

F(6)) := (R, — 7Y {Rm(élm} (RO, —7)/p

where

~

Gar(0) = N (Aw'ZWy' 2/Aw) ™ (Aw ZWQ(0)WR 2 Aw) (Aw' ZWR 2/ Aw)

-1

Let Z4) be the Ly(T — 1) x dT'(T — 1)/2 matrix obtained by stacking all
Z;’s belonging to cluster g. Similarly, let Aty be the Ly (T — 1) stacked vector of
the estimated first-differenced errors Au; = Ay; — Awgél. Then, in the presence of

clustered dependence, the CCE and centered CCE are constructed as follows:
. /
i Z Au ZEQ)AU(Q)
i g i) 1A i\ [ ZyDi i Zl Ny |
— LN Gh:1 vV Ly VLy h:

g

Q |

QIH

Using the centered CCE Q¢(6;) as the weighting matrix, the two-step GMM

4The formula for the t-statistic, which is omitted here, is straightforward.
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estimator ég 1s
R R -1 R
s — {Aw’Z [96(91)] Z’Aw} Aw'Z [96(91)} Z'Ay,
and the Wald statistic for 65 is

Foe,)(05) == (RO5 — r) {RUGT g g, (02) R’} (ROS — 1) /p,

~ A -1 -1
WQC@)(Q;) =N {Aw’Z [QC(QI)} Z’Aw} .

Under the conventional large-G asymptotics, both F(6;) and F, (él)(ég) are asymp-
totically X;Q; /p. Under our fixed-G asymptotics, we have

~ a4 G
F(Ql) — G——pr’G_p and
ren d G
FQC(él)(QQ) — G—p— qu,G—p—q (HAHZ) . (1.36)

In addition to utilizing these new approximations, we suggest a variance correction
in order to capture the higher order effect of 6; on Qc(él) The finite sample

corrected variance is

0aT e g,y (05) = VaTqe g, (03) + ENDAT e, (03) + VaT e g, (03)EN + Envar(01)Ey
(1.37)

where the j-th column is given by

o~

Enl il = — {Aw’Z () B Z’Aw}

- 09°(0)
0,

1 ~1
Aw'Z [QC(él)]

[QC(@)} 2 A,

0=0
Aty = Ay — Awb
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and
90°(0)
09j o—ds ]( 1)+ ]( 1)7
T(6) = -~ S ZpAwig) 1 Ly Awi
j\U1 G p VL G P NG

h
Aw; = (Awi, ..., Awg;) and  Awgy = (Awy (g, ..., Awg g))

(T—-1)xd Ly(T-1)xd
for each j = 1,...,d. Here, Aw(, is a Ly (T —1) x d matrix that stacks {Aw;} Y| be-
longing to the group g. The extra adjustment toward a ‘larger’ corrected estimator
W;ij(: )(95) directly follows from (1.30).
Based on the finite sample corrected variance estimator in (1.37) and the
usual J-statistic, we construct the modified Wald statistic:

. B adH- <9c)
prait gy ~ P74 Foran) (1.38)

Qe(61) G 1+ QJ(QE)

where
J(05) = Non (85 (2185)) " (0)g (65).

From the F limit theory in Section 1.5, we have

radj Aey @,
Fch(-;t)(%) - Fp,G—p—q (1'39>

and

G — .
~=J(05) S Fyo-y

Critical values for from the F distribution are readily available from statistical

tables.
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1.8 Simulation Evidence

1.8.1 Design

We continue focusing on the dynamic panel data model in the previous

section with d = 4,

Yit = VYit—1 + T1,i1 + Toit B2 + X33t B3 + 0 + Uiy

The unknown parameter vector is 0 = (v, 51, P2, 53) and the corresponding co-
variates are wy = (Yir—1, %) With x; = (14, T2, 34)". The true value of 6 is
chosen as 0y = (0.5,1,1,1). We denote s}, = (s{,,...,s{ ) as any vector valued
observations in cluster g, and stack all observations at same period by cluster to
define s+ = (81}, ..., 57,,)"- The j-th predetermined regressor x%,, are generated

according to the following process:

T = PTG g 0]+ UGy ey

for j=1,2,3,1=1,...,Ly,and t = 1,...,T. We characterize the within-cluster
dependence in 7y, €(4), and u , by spatial locations that are indexed by a one-
dimensional lattice. Define 3, and ¥, to be Ly x Ly matrices whose (i, j)-th
elements are o, = A=l and ol = A=l respectively, and . to be a 3Ly X 3Ly
block diagonal matrix with diagonal matrix ¥;. of size Ly X Ly for d =1, ..., 3.
The (4,7)-th element of ¥4, is 07, = Ni=il for d = 1,...,3. The parameter A
governs the degree of spatial dependence in each cluster. When A = 0, there is no
clustered dependence and our model reduces to that of Windmeijer, (2005) which

considers a static panel data model with only one regressor.
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The individual fixed effects and shocks in group ¢ are generated by:

g ~ 1id.N(0,%,), vec(ey),) ~iid.N(0,X,), (1.40)
Ug)t = thtm((sgwi‘n AP 6%,\,“%1\,15)/7

6 ~ 1i.d.U[0.5,1.5], and wf, ~d.i.d.x] — 1

)

fori=1,..,Lyand t =1,...,T where 7, = 0.5+0.1(t—1). The DGP of individual
shock w(g); in (1.41) features a non-Gaussian process which is heteroskedastic over

both time t and individual 7. Also, the clustered dependence structure implies

{ng)> vec(eg)t), 9tg), Wig)t 12 L {nny, vec(emy ), Oqnys Wiyt }

for g # h at any t and s.

Before we draw an estimation sample for ¢t = 1,..., T, 50 initial values are
generated with 7, = 0.5 for t = —49,...,0, 2§, 49 ~.L.d.N(n!/(1—p),(1—p) " Sa.)
ford =1,...,3, and 4! _,4 = (3, wai—aoBa + 10 + ul _49)/(1 —7). We fix the
values of A and p at 0.75 and 0.70, respectively; thus each observation is reasonably
persistent with respect to both time and spatial dimensions. We set the number
of time periods to be T" = 4. The parameters are estimated by the first differenced
GMM (AB estimator) as described in the previous section. The initial first-step
estimator is the two stage least square (2SLS) with Wy = (1/N) 2N, Z/H Z,
where H is a matrix that consists with 2’s on the main diagonal, with -1’s on
the main diagonal, and zeros elsewhere. With all possible lagged instruments, the
number of moment conditions for the AB estimator is d7(T" — 1)/2 = 24 and the
degrees of over-identification is ¢ = 20. It could be better to use only a subset of
full moment conditions because using this full set of instruments may lead to poor
finite sample properties, especially when the number of clusters G is small. Thus,
we also employ a reduced set of instruments; that is, we use the most recent lag

zit = (Yir—2, 1), leading to d(T — 1) = 12 moment conditions.



48

1.8.2 Choice of tests

We focus on the Wald type of tests as the Monte Carlo results for other types
of tests are qualitatively similar. We examine the empirical size of a variety of test-
ing procedures, all of which are based on first-step or two-step GMM estimators.
For the first-step procedures, we consider the unmodified F-statistic F} := Fl(él)
and the degrees-of-freedom modified F-statistic [(G — P) /G| F} where the asso-
ciated critical values are X;}_a /p and f;’z;oip, respectively. These two tests have
the same size-adjusted power, because the modification only involves a constant
multiplier factor.

For the two-step GMM estimation and related tests, we examine five dif-
ferent procedures. The first three tests use different test statistics but the same
critical value X;_a /p. The first test uses the “plain” F-statistic F; := Fﬁc(él)(ég) as
defined in (1.10). The second test uses the statistic [(G —p —q) /G] - F> where
(G —p—q) /G is the degree-of-freedom correction factor. The third test uses
Fy = FAC(él)(ég) as defined in (1.18). Note that

~ (G—p—q) ) Ey
G 1+ (q/G)J(05)

Compared to the second test statistic, F has the additional J-statistic correction
factor (1+ (¢/G)J(05))~ . The three tests use increasingly more sophisticated test
statistics. Because [(G —p—q) /G] = 1 and (1 + (¢/G)J(#5))' = 1 as G — oo,
both corrections can be regarded as devices for finite sample improvement under

the large-G asymptotics.
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1.9 Simulation Evidence

1.9.1 Design

We continue focusing on the dynamic panel data model in the previous

section with d = 4,

Yit = VYit—1 + T1,i1 + Toit B2 + X33t B3 + 0 + Uiy

The unknown parameter vector is 0 = (v, 51, P2, 53) and the corresponding co-
variates are wy = (Yir—1, %) With x; = (14, T2, 34)". The true value of 6 is
chosen as 0y = (0.5,1,1,1). We denote s}, = (s{,,...,s{ ) as any vector valued
observations in cluster g, and stack all observations at same period by cluster to
define s+ = (81}, ..., 57,,)"- The j-th predetermined regressor x%,, are generated

according to the following process:

T = PTG g 0]+ UGy ey

for j=1,2,3,1=1,...,Ly,and t = 1,...,T. We characterize the within-cluster
dependence in 7y, €(4), and u , by spatial locations that are indexed by a one-
dimensional lattice. Define 3, and ¥, to be Ly x Ly matrices whose (i, j)-th
elements are o, = A=l and ol = A=l respectively, and . to be a 3Ly X 3Ly
block diagonal matrix with diagonal matrix ¥;. of size Ly X Ly for d =1, ..., 3.
The (4,7)-th element of ¥4, is 07, = Ni=il for d = 1,...,3. The parameter A
governs the degree of spatial dependence in each cluster. When A = 0, there is no
clustered dependence and our model reduces to that of Windmeijer, (2005) which

considers a static panel data model with only one regressor.
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The individual fixed effects and shocks in group ¢ are generated by:

g ~ 1id.N(0,%,), vec(ey),) ~iid.N(0,X,), (1.41)
Ug)t = thtm((sgwi‘n AP 6%,\,“%1\,15)/7

6 ~ 1i.d.U[0.5,1.5], and wf, ~d.i.d.x] — 1

)

fori=1,..,Lyand t =1,...,T where 7, = 0.5+0.1(t—1). The DGP of individual
shock w(g); in (1.41) features a non-Gaussian process which is heteroskedastic over

both time t and individual 7. Also, the clustered dependence structure implies

{ng)> vec(eg)t), 9tg), Wig)t 12 L {nny, vec(emy ), Oqnys Wiyt }

for g # h at any t and s.

Before we draw an estimation sample for ¢t = 1,..., T, 50 initial values are
generated with 7, = 0.5 for t = —49,...,0, 2§, 49 ~.L.d.N(n!/(1—p),(1—p) " Sa.)
ford =1,...,3, and 4! _,4 = (3, wai—aoBa + 10 + ul _49)/(1 —7). We fix the
values of A and p at 0.75 and 0.70, respectively; thus each observation is reasonably
persistent with respect to both time and spatial dimensions. We set the number
of time periods to be T" = 4. The parameters are estimated by the first differenced
GMM (AB estimator) as described in the previous section. The initial first-step
estimator is the two stage least square (2SLS) with Wy = (1/N) 2N, Z/H Z,
where H is a matrix that consists with 2’s on the main diagonal, with -1’s on
the main diagonal, and zeros elsewhere. With all possible lagged instruments, the
number of moment conditions for the AB estimator is d7(T" — 1)/2 = 24 and the
degrees of over-identification is ¢ = 20. It could be better to use only a subset of
full moment conditions because using this full set of instruments may lead to poor
finite sample properties, especially when the number of clusters G is small. Thus,
we also employ a reduced set of instruments; that is, we use the most recent lag

zit = (Yir—2, 1), leading to d(T — 1) = 12 moment conditions.
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1.9.2 Choice of tests

We focus on the Wald type of tests as the Monte Carlo results for other types
of tests are qualitatively similar. We examine the empirical size of a variety of test-
ing procedures, all of which are based on first-step or two-step GMM estimators.
For the first-step procedures, we consider the unmodified F-statistic F} := Fl(él)
and the degrees-of-freedom modified F-statistic [(G — P) /G| F} where the asso-
ciated critical values are X;}_a /p and f;’z;oip, respectively. These two tests have
the same size-adjusted power, because the modification only involves a constant
multiplier factor.

For the two-step GMM estimation and related tests, we examine five dif-
ferent procedures. The first three tests use different test statistics but the same
critical value X;_a /p. The first test uses the “plain” F-statistic F; := Fﬁc(él)(ég) as
defined in (1.10). The second test uses the statistic [(G —p —q) /G] - F> where
(G —p—q) /G is the degree-of-freedom correction factor. The third test uses
Fy = FAC(él)(ég) as defined in (1.18). Note that

~ (G—p—q) ) Ey
G 1+ (q/G)J(05)

Compared to the second test statistic, F has the additional J-statistic correction
factor (1+ (¢/G)J(05))~ . The three tests use increasingly more sophisticated test
statistics. Because [(G —p—q) /G] = 1 and (1 + (¢/G)J(#5))' = 1 as G — oo,
both corrections can be regarded as devices for finite sample improvement under

the large-G asymptotics.
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1.9.3 Results

Balanced Cluster Size

We first consider the case when all clusters have an equal number of indi-
viduals and take different values of G € {30, 35,50,100} and Ly € {50,100}. The

null hypotheses of interests are

Hoy, 1510: 1
Hoo : fro= P20 =1

Hoz : Bro = B2 = P30 = 1

with the corresponding number of joint hypotheses p = 1,2 and 3, respectively,
and the significance level is 5%. The number of simulation replications is 5000.

Tables 1.2~1.5 report the empirical size of the first-step and two-step tests
for different values of G € {30, 35,50,100} and Ly = {50,100}. The results indi-
cate that both the first-step and two-step tests based on unmodified statistics Fj
and Fy suffer from severe size distortions, when the conventional chi-square critical
values are used. For example, with G = 50, Ly = 50, and p = 3, the empirical
size of the first-step chi-square test (using the full set of IVs, and m = 24) is
around 43%. This size distortion becomes more severe, as the number of clusters
becomes smaller, say, for example when G is between 30 and 35. The empirical
size of the first-step F test with G = 50 reduces to 36.3% when the F critical value
is employed. This finding is consistent with the findings in Bester et al., (2011)
and which highlights the improved finite sample performance of the fixed-G ap-
proximation in some exactly identified models. Tables 1.2~1.5 also indicate that
the finite sample size distortion of all tests become less severe as the number of
moment conditions decreases or the cluster size increases.

For the two-step test that employs the plain two-step statistic F5 and chi-

squared critical value, the empirical size is 63.4% for the above mentioned values
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of Ly,G, m, and p. In view of the large size distortion, we can conclude that the
two-step chi-square test suffers more size distortion than the first-step chi-square
test. This relatively large size distortion reflects the additional cost in estimating
the weighting matrix, which is not captured by the chi-square approximation. The
degrees-of-freedom adjusted F» reduces the size distortion by almost one third,
but the empirical size of 40.1% is still far away from the nominal size of 5%. This
motivates us to implement an additional correction via the J-statistic multiplier
coupled with the new critical value .7-";7_Goip_q. Tables 1.2~1.5 show that using
the additional modification and the F critical value significantly alleviates the
remaining size distortion. The size distortion in the previous example becomes
13.5% which is much closer to the targeted level 5%. Lastly, we find evidence
that the most refined statistic F; it equipped with the finite sample variance
correction, successfully captures the higher order estimation uncertainty and yields
more accurate finite sample size. For instance, while the empirical size of the most
basic two-step chi-square test is 63.4%, the empirical size of the most refined two-
step F test is 5.7%, which is very close to the nominal size of 5%. Figure 1.1
summarizes the outstanding performance of our modified two-step tests with F
critical values.

Next we investigate the finite sample power performances of the first-step
procedure and the two-step procedures F, Fy, and 15; 4t We use the finite sample
critical values under the null, so the power is size-adjusted and the power compar-
ison is meaningful. The DGPs are the same as before except that the parameters
are generated from the local null alternatives 8, = f10 4 ¢/v/N for ¢ € [0,15], and
d =2 and p = 1. Figures 1.2~1.5 report the power curves for the first-step and
two-step tests for G € {30, 35,50, 100}. The degree of over-identification ¢ consid-
ered here is 10 for the full instrument set, and is 4 for the reduced instrument set.
The results first indicate that there is no real difference between power curves of
the modified (F) and unmodified (F}) two-step tests. In fact, some simulation

results not reported here indicate the modified F test can be slightly more power-
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ful as the number of parameters gets larger. Also, the finite sample corrected test
F; 4T does not lead to a loss of power compared with the uncorrected one Fy.

Figures 1.2~1.5 also indicate that two-step tests are more powerful than
first-step tests. The power gain of the two-step procedures becomes more signifi-
cant as the number of GG increases. This is because the two-step estimator becomes
more efficient. However, there is a cost in estimating the CCE weighting matrix,
the power of first-step procedures might dominate the power of the two-step ones in
other scenarios, i.e., when the cost of employing CCE weighting matrix outweighs
the benefit of estimating it. Some simulation results not reported here show that
the power of the first-step test can be higher than that of a two-step test when the
number of parameters d and the number of joint hypotheses p are large.

Lastly, Tables 1.2~1.5 show that the finite sample size distortion of the
(centered) J test and the transformed (uncentered) J test is substantially reduced
when we employ F critical values instead of conventional chi-squared critical values.

In sum, our simulation evidence clearly demonstrates the size accuracy of
our most refined F test regardless of whether the number of clusters G is small or

moderate.

Unbalanced Cluster Size

Although our fixed-G asymptotics is valid as long as the cluster sizes are
approximately equal, we remain wary of the effect of the cluster size heterogene-
ity on the quality of the fixed-G' approximation. In this subsection, we turn to
simulation designs with heterogeneous cluster sizes.

Each simulated data set consists of 5, 000 observations that are divided into
50 clusters. The sequence of alternative cluster-size designs starts by assigning 120
individuals to each of first 10 clusters and 95 individuals to each of next 40 clusters.
In each succeeding cluster-size design, we subtract 10 individuals from the second
group of clusters and add them to the first group of clusters. In this manner,

we construct a series of four cluster-size designs, in which the proportion of the
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samples in the first group of clusters grows monotonically from 24% to 48%. The
design is similar to Carter, Schnepel and Steigerwald (2013) which investigates
the behavior of cluster-robust t-statistic under cluster heterogeneity. Table 1.6
describes the heterogeneous cluster-size designs we consider. All other parameter
values are the same as before.

Tables 1.7~1.8 report the empirical size of the first-step, two-step, and J
tests for ¢ = 20 and p = 3. The results immediately indicate that the two-step
tests suffer from severe size distortion when the conventional chi-square critical
value is employed. For example, under design II, the empirical size of the “plain”
two-step chi-square test is around 60.4% for G = 50, ¢ = 20, and p = 3. The size
distortion become more severe when the degree of heterogeneity across cluster-size
increases. However, our fixed-G asymptotics still performs very well as they reduce
the empirical sizes to 4.3% ~ 7.9%, which are much closer to the nominal size of
5%. Figures 1.6~1.9 summarize the outstanding performance of our modified two-
step F tests, even with unbalanced cluster sizes. The results of J tests are omitted

here as they are qualitatively similar to those of the F tests.

1.10 Empirical Application

In this section we employ the proposed procedures to revisit the study of
Emran and Hou (2013), which investigates the casual effects of access to domestic
and international markets on household consumption in rural China. They use a
survey data of 7998 rural households across 19 provinces in China. The survey
data comes from Chinese Household Income Project (ICPSR 3012) in 1995.°

The regression equation for per capita consumption for household 7, C;, in

®The data set is downloadable from the Review of Economics and Statistics website.
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1995 (yuan) is specified as

C; = ap+ ay+ BaAT + BoAS + Bas (AL x AS) + X[ By (1.42)

+X}"By + X Be + €,

where A¢ and A$ are the log distances of access to domestic (km) and international
markets (km), respectively. X; is the vector of household characteristics that may
affect consumption choice, and X7, X¢ are village, county level controls, respec-
tively, which capture the heterogeneity in economic environments across different
regions, and «,, is the province level fixed effect.

Among the unknown parameters in vector 6 = («g, o, 5,,,, By, 5., 5.)', our
focus of interest is 8, = (B4, Bs, Bas) which measures the casual effect of access to
domestic and international markets on household consumption in the rural areas.
To identify these parameters, Emran and Hou (2013) employs geographic instru-
mental variables that capture exogeneous variations in access to markets, e.g.,
straight-line distances to the nearest navigable river and coastline, along with the
topographic and agroclimatic features of the counties.® There are 21 instrument
variables and 31 control variables, including province dummy variables so that the
number of moment conditions m is 52. The number of estimated parameters d is
34, and the degree of over-identification ¢ is 18. Because of the close economic and
cultural ties within the same county in rural Chinese areas, the study clusters the
data by the county level and estimates the model using 2SLS and two-step GMM
with uncentered cluster-robust weighting matrix. The data set consists of 7462
observations divided into 86 clusters where the number of households vary across
from a low of 49 to a high of 270. Statistical inferences in Emran and Hou (2013)
are conducted using the large-G' asymptotics only. We apply our more accurate
asymptotics to Emran and Hou’s study. The inference methods we use here are

described in Tables 1.9 and 1.10 which present the test statistics, the reference dis-

SFor the detailed description of the control variables and instrument variables, see the ap-
pendix in Emran and Hou (2013).
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tribution, and the standard error formula (finite sample corrected or not) for each
method. Here we view all corrections, including the degree-of-freedom correction,
the J correction, and the finite sample variance corrections as corrections to the
variance estimator.

Table 1.11 shows the point estimation results, standard error estimates,
and associated confidence intervals (Cls) for each of 2SLS and the uncentered
and centered two-step GMM estimators. Similar to Emran and Hou (2013), our
results show that the better access to domestic and international markets has a
substantial positive effect on household consumption, and that the domestic market
effect is significantly higher. For the 2SLS method, there are no much differences
in confidence interval and standard error between the large-G and fixed-G results.
This is well expected because the number of clusters G = 86 is large enough so
that the large-G and fixed-G approximations are close to each other.

The uncentered two-step GMM estimate of the effect of access to domestic
market is 5y = —2722.22. The reported standard error 400.5 is about 40% smaller
than that of 2SLS. However, the plain two-step standard error estimate might be
downward biased because the variation of the cluster-robust weighting matrix is
not considered. The centered two-step GMM estimator gives a smaller effect of
market access ;3 = —2670.0 with the modified standard error of 519.2, which is
25% larger than the plain two-step standard error. However, the modified standard
error is still smaller than that based on the 2SLS method. So the two-step estimator
still enjoys the benefit of using the cluster-robust weighting matrix. The results
for other parameters deliver similar qualitative messages. Table 1.11 also provides
the finite sample corrected standard error estimates of two-step estimators that
capture the extra variation of feasible CCE, leading to slightly larger standard
errors and wider CIs than the uncorrected ones. Overall, our results suggest that
the effect of access to markets may be lower than the previous finding after we take

into account the randomness of the estimated optimal GMM weighting matrix.
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1.11 Conclusion

This paper studies GMM estimation and inference under clustered depen-
dence. To obtain more accurate asymptotic approximations, we utilize an alterna-
tive asymptotics under which the sample size of each cluster is growing, but the
number of cluster size G is fixed. The paper is comprehensive in that it covers the
first-step GMM, the second-step GMM, and continuously-updating GMM estima-
tors. For the two-step GMM estimator, we show that only if centered moment
processes are used in constructing the weighting matrix can we obtain asymptoti-
cally pivotal Wald statistic and t-statistic. We also find that the centered two-step
GMM estimator and CU estimators are all first-order equivalent under the fixed-G
asymptotics. With the help of the standard J-statistic, the Wald statistic and
t-statistic based on these estimators can be modified to have to standard F and t
limiting distributions. A finite sample variance correction is suggested to further
improve the performance of the asymptotic F and t tests. The advantages of our
procedures are clearly reflected in finite samples as demonstrated by our simulation
study and empirical application.

In an overidentified GMM model, the set of moment conditions can be di-
vided into two blocks: the moment conditions that are for identifying unknown
parameters, and the rest of ones for improving the efficiency of the GMM estima-
tor. We expect that the spatial dependence between these two blocks of moment
conditions is the key information to assess the relative power performance of first-
step and two-step tests. Recently, Hwang and Sun (2015a) compares these two
types of tests by employing more accurate asymptotic approximations in a time
series GMM framework. We leave the extension of this analysis to the spatial

setting to future research.
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1.13 Figures and Tables
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Figure 1.1: Emprical size of the first-step and two-step tests when G = 50, Ly =
50,m = 24,d = 4, and p = 3 with the nominal size 5% (red line).



61

Full instrument set, G =30, L =50,d =2, and p =1 Reduced instrument set, G =30, L =50,d =2, and p =1
1 T 0.9 T T

Power
Power

Figure 1.2: Size-adjusted power of the first-step (2SLS) and two-step tests with
G =30 and Ly = 50.

Full instrument set, G =35, L =50,d =2, and p =1 Reduced instrument set, G =35, L =50,d =2, and p =1
1 T 0.9 T T

Power
Power

Figure 1.3: Size-adjusted power of the first-step (2SLS) and two-step tests with
G =35 and Ly = 50.
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Full instrument set, G =50, L =50,d =2, and p =1 Reduced instrument set, G =50, L =50,d =2, and p =1
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Figure 1.4: Size-adjusted power of the first-step (2SLS) and two-step tests with
G =50 and Ly = 50.

Full instrument set, G =100, L =50,d =2, and p =1 Reduced instrument set, G =100, L =50,d =2, and p =1
1 T T 0.9 T T

Power
Power

Figure 1.5: Size-adjusted power of the first-step (2SLS) and two-step tests with
G =100 and Ly = 50.



Emprical size of GMM tests G=50, g=20, and p=3 - Design 1
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Figure 1.6: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red

line): Design I with G = 50, ¢ = 20, and p = 3.

Emprical size of GMM tests G=50, q=20, and p=3 : Design 2
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Figure 1.7: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red

line): Design II with G = 50, ¢ = 20, and p = 3.



Emprical size of GMM tests G=50, ¢=20, and p=3 : Design 3
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Figure 1.8: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red

line): Design III with G = 50, ¢ = 20, and p = 3.

Emprical size of GMM tests G=50, g=20, and p=3 : Design 4
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Figure 1.9: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red

line): Design IV with G = 50, ¢ = 20, and p = 3.
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Table 1.1: Summary of the first-step, two-step tests, and J test

First-step GMM tests

statistic ~ d.f. adj. f;}aoip
F - - - B
T S - -
Two-step GMM tests
statistic ~ d.f. adj. J-modification f;&oip_q variance correction
2 - - - -
G*Cz;*q F Y — — -
2 Y Y B B
Fy Y Y Y -
Fadj+ Y Y Y Y
J-tests
statistic ~ d.f. adj. }—ql,aoiq
5 — — _ _
Sar v Y - -

Notes: The first-step tests are based on the first-step GMM estimator éQSLs. They
use the associated F-statistic Fyi= F'1(0;) with critical value lefo‘/p or Fplz;ojp. The

, and the second J test

first J test employs the statistic J(6,) and critical value x

11—«
q

employs the statistic %J ¢ = %J (ég) and critical value f;’&oiq. All two-step tests

are based on the centered two-step GMM estimator ég but use different test statistics
~C

and critical values: the unmodified F-statistic Fy = Fﬂc(él)w?)’ J-statistic and degrees-

of-freedom corrected statistic F = Fﬂc(él)(é;), and J-statistic, degrees-of-freedom, and
+ _ Fadj—F

Qc(él)(é;)’ coupled with critical

finite-sample-variance corrected F-statistic FQa dj

value X;*O‘/p or f;’_coip_q.
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Table 1.2: Empirical size of first-step and two-step tests based on the centered
CCE when Ly = 50, number of clusters G = 30 and 35, number of joint hypothesis
p =1~ 3 and number of moment conditions m = 12, 24.

Test
G =30  statistic  critical values m = 24 m =12
p=1 p=2 p=3 p=1 p=2 p=3
first-step o Xo/p 0.374 0475 0.528 0274 0.302 0.332
Grp Faak, 0.333  0.389 0.417 0.236 0.232 0.220
2 xX,/p 0.659 0.857 0.939 0.308 0.415 0.492
“pa, XL/p 0.414 0.562 0.658 0.229 0.276  0.308
two-step I xi/p 0.128 0.159 0.192 0.147 0.164 0.182
o8 Foct,_, 0087 0082 0079 0124 0128 0.129
Fyt oy 0015 0015 0012 0.063 0063 0.058
J-test J xi-e — 0935 - - 0329 -
BLY OGS T ogh DT e -
G ,G—q : :
Test m = 24 m =12
G =35 Statistic Critical values p=1 p=2 p=3 p=1 p=2 p=
first-step P XL /p 0.381 0.482 0.538 0.268 0.292 0.316
GPR i 0.348  0.407 0429 0236 0.236 0.218
Fy Xy */p 0572 0.756 0.864 0.292 0357 0.416
“paF, XL~/ p 0.366  0.483 0.561 0.199 0.248 0.275
two-step F, Xy “/p 0.145 0.174 0.195 0.143 0.156 0.159
h28 Foct, g 0111 0119 0115 0128 0126 0.117
T e 0038 0.034 0033 0066 0060 0.057
J-test J Xy © - 0869 — - 0307 -
Er A
q 7,.G—q : :

Notes: See footnote to Table 1.1.
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Table 1.3: Empirical size of first-step and two-step tests based on the centered CCE
when Ly = 50, number of clusters G = 50 and 100, number of joint hypothesis
p =1 ~ 3 and number of moment conditions m = 12, 24.

Test
G =50  statistic  critical values m =24 m =12
p=1 p=2 p=3 p=1 p=2 p=
first-step o) XL 7/p 0.347  0.399 0429 0.247 0.258 0.273
=g Fod, 0.325 0356 0.363 0.227 0.222 0217
Fy XL/p 0.399 0.538 0.634 0.208 0.255 0.299
Cpap,  xleyp 0.269 0.344 0401 0.168 0.192  0.206
two-step Fy XL/p 0.142 0.158 0.175 0.120 0.140 0.139
28 Foc,, 0123 0120 0135 0119 0116 0.115
Py Focy 0067 0064 0057 0.064 0.060 0.058
J-test J Xy © - 0666 — - 023 -
A d ey Foca — 0093 - — 0098 -
Je Focta - 0072 - - 0072 -
Test
G =100 Statistic  Critical values m = 24 m =12
p=1 p=2 p=3 p=1 p=2 p=3
first-step F X2 /p 0.266 0.292 0.303 0.195 0.200 0.200
=g Fact, 0.254 0274 0274 0.188 0.183 0.172
J28 XL /p 0213  0.271 0.305 0.120 0.142  0.156
Cpap,  xleyp 0.163 0.185 0.202 0.102 0.105 0.110
two-step J28 XL /p 0.115 0.119 0.113 0.086 0.085 0.084
28 Focy 0109 0108 0.099 0.082 0.079 0.076
Rt Foc oy  0.078 0.069 0063 0.053 0.049 0.049
J-test J Xy “ - 0342 — - 0156  —
it Focs — 0106  — — 0095 -
Je Focy — 0069 — — 0065 —

Notes: See footnote to Table 1.1.
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Table 1.4: Empirical size of first-step and two-step tests based on the centered
CCE when Ly = 50, number of clusters G = 30 and 35, number of joint hypothesis
p =1 ~ 3 and number of moment conditions m = 12, 24.

Test
G =30 Statistic  Critical values m =24 m =12
p=1 p=2 p=s5 p=1 p=2 p=
first-step F Xy “/p 0.344 0.402 0.440 0.249 0.117 0.289
%Fl f;g?_ » 0.300 0.328 0.333 0.217 0.208 0.195
Fy X, */p 0.610 0.798 0.883 0.275 0.347 0.436
G*TP:QFQ Xy “/p 0.371 0.517 0.612 0.191 0.220 0.246
two-step F Xy “/p 0.101  0.130 0.164 0.116 0.117 0.124
F, Foc g 0.061 0.064 0.059 0.095 0.088 0.124
Fadit J—“;gi - 0.017 0.015 0.013 0.045 0.043 0.040
J-test J Xy “ - 0930 - - 0336  —
G—q _qJ 11—« o _ _ _
2 G0 J—“ql’G,q 0.073 0.098
“—q —x _ _ _ _
e Foct 114 0.077
Test m =24 m =12
G =35  Statistic Ref.dist. p=1 p=2 p=3 p=1 p=2 p=
first-step F Xy “/p 0.321 0.373 0.393 0.237 0.257 0.269
%Fl f;g?_ » 0.292 0.303 0.300 0.213 0.207 0.187
Fy X, © 0.522  0.697 0.826 0.224 0.301  0.362
G*ijqFQ Xy “/p 0.306 0.411 0.484 0.162 0.196 0.224
two-step F Xy © 0.105 0.125 0.136 0.107 0.115 0.118
F, Foc g 0.079 0.079 0.076 0.090 0.090 0.087
Fadit J—“;g;i - 0.038 0.032 0.026 0.049 0.049 0.044
J-test J Xy “ - 083  — - 0288  —
— J 1—
Fq &7 Focta — 0.080 — — 0098 —
G—gq 1-a _ _ _ _
L Focta 0.078 0.075

Notes: See footnote to Table 1.1.
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Table 1.5: Empirical size of first-step and two-step tests based on the centered CCE
when Ly = 50, number of clusters G = 50 and 100, number of joint hypothesis
p =1 ~ 3 and number of moment conditions m = 12, 24.

Test
G =50  Statistic  Critical values m = 24 m =12
p=1 p=2 p=3 p=1 p=2 p=
first-step £ X2 /p 0.269 0305 0.324 0.206 0.214 0.222
GPR Fod, 0.250 0.260 0.257 0.189 0.180 0.175
F XL /p 0.341 0469 0575 0.176 0.211  0.250
SR X Yp 0.209 0.268 0.324 0.129 0.146 0.164
two-step §28 xL/p 0.099 0.115 0125 0.094 0.098 0.105
J28 Foc oy  0.088 0091 0093 0.086 0.083 0.084
FRT Foto o 0059 0.056 0052 0.057 0.052 0.055
J-test J Xy © - 0.629 - - 0.221 -
s J—“%ffi . — 0087 - — 0094 -
Je Foca — 0064 — — 0063 —
Test
G =100 Statistic  Critical values m = 24 m =12
p=1 p=2 p=3 p=1 p=2 p=
first-step F XL/p 0.185 0.203 0.209 0.149 0.147 0.152
! Foc, 0.176  0.185 0.182 0.143 0.136 0.128
28 X2 /p 0.168 0.225 0.258 0.100 0.120 0.129
LR 0.125 0.149 0.161 0.082 0.089 0.093
two-step J28 xL/p 0.085 0.091 0.094 0.069 0.073 0.071
j28 Foc,, 0081 0082 0083 0.065 0.067 0.064
FRAt Foco_, 0067 0065 0.064 0.056 0.055 0.051
J-test J Xy - 0203 - - 0135 —
Ce s Fod, - 0081 - - 0081 -
Je Focy - 0055  — - 0053  —

Notes: See footnote to Table 1.1.



Table 1.6: Design of heterogeneity in cluster size

G=50 Ly =..=Ly, =Ly, N
Design I 120 95 5000
Design 11 160 85 5000
Design 111 200 75 5000
Design IV 240 65 5000
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Table 1.7: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size: Design [~II

Design I
test statistic critical values m =24 m =12

p=1 p=2 p=3 p=1 p=2 p=
first-step F XL 7/p 0.265 0.303 0.322 0.205 0.201 0.217
G PR Foit s 0.246 0.264 0.261 0.186 0.168 0.165
F, Xy “/p 0.335 0.472 0.575 0.153 0.194 0.242
G*GP:‘IF X5 /p 0.209 0.265 0.319 0.118 0.132 0.153
two-step F, Xo/p 0.095 0.104 0.119 0.086 0.087 0.091
F, Foctpg 0082 0.083 0085 0074 0071 0.072
[T Foc g 0.054 0048 0.043 0.046 0.046 0.047

J-test J Xy “ - 0632 - - 0228  —

P N S

q 9,G—q : :
Design II
m = 24 m =12

G =35 test statistic critical values p=1 p=2 p= p=1 p= p=
first-step F X2/p 0.268 0.304 0.323 0.206 0.213  0.220
2R Foit, 0250 0265 0261 0193 0182 0.171
F, X5~/p 0.361 0.501 0.601 0.160 0.209 0.254
Gpoip, X5~/p 0.231 0.291 0.338 0.124 0.141  0.170
two-step Fy Xy “/p 0.112  0.120 0.132 0.088 0.092 0.100
F, Focpg 0097 0.098 0102 0.079 0.076 0.082
Fadi+ Focpg 0063 0.060 0.057 0.053 0.052 0.056

J-test J Xy “ — 0638 — - 0214 —

il ol -

Gq ,G—q : :

Notes: See footnote to Table 1.1.
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Table 1.8: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size: Design 11~V

Design II1
test statistic critical values m =24 m =12

p=1 p=2 p=3 p=1 p=2 p=
first-step F X5 */p 0.276 0.315 0.327 0.203 0.215 0.228
G PR Foit s 0.254 0.276 0.268 0.186 0.186 0.178
Fy Xy /P 0.378 0.532 0.632 0.168 0222 0274
G*GP:‘IF X5 /p 0.244 0.323 0.374 0.134 0.164 0.184
two-step Fy X */p 0.117 0.132 0.145 0.097 0.109 0.117
F, Focpg 0101 0107 0.110 0.088 0.091 0.092
[T Fodto_, 004 0057 0.061 0.061 0.062 0.060

J-test J Xy “ - 0631 — - 0213 -

Pl S

q .G—q : :
Design IV
m =24 m =12

G =35 test statistic critical values p=1 p=2 p= p=1 p= p=
first-step F X5 */p 0.255 0.306 0.327 0.200 0.214 0.226
Grp Foits 0.232  0.265 0.266 0.180 0.179 0.171
F, X5~/p 0.397 0.555 0.664 0.185 0.243 0.304
Gpoip, X5~/p 0.264 0.363 0.429 0.139 0.174 0.205
two-step Fy Xy “/p 0.131 0.155 0.176 0.104 0.120 0.136
F, Focpg 0115 0125 0140 0.094 0.102 0.110
Fadi+ Focpg 0075 0.077 0079 0.062 0.070 0.077

J-test J Xy “ - 0621 — - 0206  —

T T am T T

Gq .G—q : :

Notes: See footnote to Table 1.1.
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Table 1.11: Results for Emran and Hou (2013) data

2SLS

Variables Large-G' Asymptotics Fixed-G Asymptotics
Domestic market (A%) —2713.2 (712.1) —2713.2 (716.8)
[—4109.9,—1316.4]  [—4138.0, —1288.0]
International market (A?) —1993.5 (514.8) —1993.5 (517.9)
[—3002.5,—-984.4]  [-3023.10, —963.8]
Interaction (A4 x A?) 345.8 (105.0) 345.8 (105.6)
[140.0, 551.7] [135.8,555.9]
Hy : B4 = Ps —2.3218 (2.02%) —2.771 (2.26%)

Two-step GMM
Variables Large-G' Asymptotics Fixed-G' Asymptotics
—2722.8 (400.5) —2670.0 (519.2)
Domestic market (A?) (520.7)
[—3507.7, —1937.9] [—3706.2, —1633.8]
[—3709.2, —1630.7]
—2000.2 (344.3) “1981.3 (446.4)
International market (A?) (447.7)
[—2675.0, —1325.5] [—2872.3, —1090.3]
[—2874.9, —1087.7]
362.7 (68.7) 364.1 (89.1)
Interaction (AjXAf») (89.4)
[228.0,497.3| [186.2, 541.9]
[187.5,542.4]
Hy : By =5, —5.239 (0%) —3.3318 (0%)
—3.3217 (0%)
J-statistic (¢ = 18) 1.1708 (99.8%) 0.3096 (45.83%)

Notes: Standard errors for 2SLS and the weighting matrix for (centered) two-step GMM
estimators are clustered at the county level. Numbers in parentheses are standard er-
rors and intervals are 95% confidence intervals. For hypothesis testing, the numbers in
parentheses are P-values.
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1.14 Appendix of Proofs

Proof of Proposition 1. Part (a). For each g =1, ...,G,

T = 2 {fﬁ(Go) + P g, g } ,

where 0* is between 0; and 6. Here, 6* may be different for different rows of

off (é*) /06'. For notational simplicity, we do not make this explicit. By Assump-

tions 2 and 5, we have

1 & s 1 &
LZflg(&):ﬁZfiq(eo)
L 0F200%) o g L [ 1 s
_E; L (WD) 5; ﬁ;f]h(@o) +0,(1)
1 & 11
= S (00) - Fg(F’W‘lF)‘lF’W_Ia > (—L > fﬁ(@@) +0,(1)
=1 h=1 i=1

Using Assumptions 46, we then have

L
1 A
—=) [0
\/Z =1
& NgBog — T, (W) 'I'WAB,,

= AB,, — D('W'T) " 'T'"W'AB,,
where By, := G137 | By, ,. It follows that
1 L
D6 We'—= 9(0
(61) Wy \/Z;fz( 1)

& W [ABy, — (W 'T) ' I'W ' AB,,]

—T'W'AB,,, — T'W 'AB,, = T'W A (B, — By) -



So, the scaled CCE matrix converges in distribution to a random matrix

1G AA/_lngA 1LgA _1AA/
= 5; (Pwl) Wy ﬁ;fz <01>> (E;L (6)Wy r<91>> }
t F’WlA{é;(Bmy B) (Bumg — Bm) } (MW 1A)
Therefore,
N Rvar(6,)R'
_ [f(él)'wjglf(él)}l [0 W 6 W T (6] [f(él)'wjglf(él)}l
G
— R[O'WT) T W IA{éZ(Bmg Bin) (Bn.g Bm)/}

AW W] TR
(1 & 3
=R {5 > (Bug — Bu) (Big — Bm)’} R
g=1

where R := R[I'WT] ' I'WA. Also, it follows by Assumption 4 that

VN(RO;, —7) = —R('W D) "WV Ny (6o) + 0,(1)

—RIO'W D)W \/_2(7223 90>+o,, 1)
_Rﬁ ; By = —RVGB,y.

Combining the results so far yields:
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Define the p x p matrix A such that AN’ = RR'. Then we have the following

distributional equivalence

- _ .. G _ _ ~ ..
R\/@Bm, Ré Z (Bm,g - Bm) (Bm,g - Bm)/R, :| i [ \/@ABP, ASppA/ :| :

g=1

Using this, we get

as desired for Part (a). Part (b) can be similarly proved. m

Proof of Proposition 6. Parts (a), (b) and (c). All three estimators can be

represented in the following form
—('MTT) "M *AVGB,, + 0,(1)
for some weighing matrix M which may be random. Let
My=A"'"MA) " and Ty = AT
Then
—('M™'T) 'T"M'AVGB,, = —(CAM;'T)\) 'TAM VG By,

Let UXV’ be a singular value decomposition (SVD) of I'y. By construction,
UU=UU =1, V'V=V'V =1, and

Y Adxd ’
qud

where A is a diagonal matrix. Denoting



we have
(CAM'TA) ' TAM!
= [VveU M UV T Ve M

—1
_ [vz’ (U MUY EV’] VS (UMD U

=v(anma) (g, o) o | U
= VAT ( Ly, Ouy ) o | U

= VA LM ( MU, N ) U =vVA! ( Iy, (MMW)=1412 ) U

=vaT (1, iz ) U

So
C(CAM{T) 'DAMTVGB,, = — VA~ ( I, —Nhyiy; ) UGBy
For él, the matrix M is W, and so
N Wy W,
M=W=u)"'wan) = " "
War Wa
Therefore

VN(0; — 0p) & —VGV A~ (By - By, By,)

4

where we have used U'B,, = B,, = (B}, B})' for any orthonormal matrix U.
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For 6, the matrix M, is S, and so

VN(ly — 60) & — [VvEU' M USRSV VEU' M 'WGU'B,,
— —V(SU'STUY)ISUS T UVGU' By,

L _y(SSY)'ES WG B,,

using the asymptotic equivalence (S, B,,) 4 (U'SU,U'B,,) for any orthonormal

matrix U. Therefore,
VN(By — 65) % —VAG(By — BsB,).
For the estimator ég, the matrix M, is D,,. We have

VN(y — 0p) & — [T\ DT\~ T\ DVGB,,
71 _
_ [vz' (U'DU) EV’] VS (U'DLU) " UGB,

— —V [¥DY] " ©DIUVEB,,

= -vA" (1, ~Duby} )U'VGB, (1.44)
where
Dy Dyo
DOO — U/DOOU — dxd d><q
Dy Doy
gxd  gxgq

To investigate each component of Dy, = G~* Zngl U’ Dg[?;U , we first look

at the term U’f)g foreach g =1,...,G :

U'Dy=U'Bpy — UT\(T\WT) ' T\WL B,
=U'B,,, — UUSV' (T\W ' TA) VY UWLUU'B,,
=Bl , —S(EUWUS) 'S U'WLUB, (1.45)



where BY, | = U'Bp,, and B = U'B,,. But

BY , - S(EWTE)TIS' W BY,

A ~ Wll Wl? .
-BY - (awtayta o | | B
? O W21 W22
L - . ) )
11
_ B%g - (W ) O/ I/I/ll VI/H B%
g O O W21 W22
~ -1
11 12
— B,%g — ! (W ) W BY
O O
[ BU . BU ) i
:B%g_ d 5W a :(B%g—Bg)+ng
; o ,
for
w = B e R™*9,

I

q

So, the matrix D, can be represented by

From this, the block matrix components of D, are

Dy = ggo,ll + 517[/35(35),&{5/;
Dip = SOU<>,12 + 5VI/BqU(BqU)/a
Dy = S’o[{),Ql + 35(35)'5{5/,

Doe = ggo,ZQ + 35(35)' - Sgo,22‘

81

(1.46)
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Using these representations, we can rewrite (1.44) as

VN6 =) 5 VA~ ( 1, -DuDy} ) VGBY,

= VAWG [BY - DiyDy, BY]

= VA WG [BY — (8L, + B BY(BY)) (8%0) " BY
= ~VAG{BY — [8L,, — (BY - 83 B)(BY)] (SL.2) " BY }
L VA WG (By— Bs.By) — VA'VG {By— BBy} - (k) G).

(d) It is easy to check that the weak convergences in (a)~(c) hold jointly.

By continuous mapping theorem we have
VN0 — 0y) = VN (B — ) — VN (b — 0o) - (56/G) 5 0,
which implies that
VN (05 — 0y) — VN (0y — 0) — VN(0y — by) - (5/G) = 0, (1) .
That is
VN (s — 85) = VN (B — 05) + VN1 — 6y) - (ka/G) + 0, (1).

(e) Using the same argument in the proof of Proposition 1, we have

G Ly
~ 1 1 ~
a0 - 23 (=3 o)
g=1 i=1
A4 AVG (UU’Bm Ty [y DET,] F’ADo‘Ole)

L AVG [UBY —~TaVA™ (BY — D1sDy BY)]
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with D5 and Dgy given in (1.46). Therefore,

~

7(62) = Now(6a) (96)) " a(0o)

& G{UBY ~T\VA™ (BY — DDy BY)Y x A (ADLA) ™' A
x {UB,, —TAVA™" (BY —DiyDy; BY)}

=G{BY ~UT\VA™ (BY — DDy, BY)} U'DU

x {Bl, —UT\VA™" (B — DDy BY)}

!/

_ I _ _
=G{BY - OdXd (BY — D133 BY) p D!
gxd
U lgxa U —1pU
gxd
/
. DyoDy, BY Dt D15y, BY
B/ B/

— G(BYYDy BY =1 GBS0 B, = Ko,

q™~ 00,22

where the second last equality follows from straightforward calculations. The joint

convergence can be proved easily. m

Proof of Proposition 7. It follows from

VN(fy — ) 5 VAWG [BY — DiuDy BY] and Q(6;) % ADL A’
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jointly that

Fy a0, (02)
. e N S

_ [3(92 _90)} (RvarQ(él)(Qg)R> Ry — 00) /p

_ _ -1 17!
4 G(BY — DDy, BUY A VV'R [R (r/ (AD A r) R’]
X RVA_I(BC[{ — DHDQ_QIB;])/}?

_ _ -1 -1
= G(BY — DDy BY)AT"V'R’ - {R [F’ (MU (U'DLU) ! U’A‘IF} R’}
x RVA Y (BY — D,y BY) /p
= G(BY = DiaDy BYY A™VV'R {RV A" Dy, A VV'R'}
x RVAYBY — DDy BY) /p.

Let UpupSVL, be a SVD of RVA~L, where 3 = (Apxp,()px(d_p)) By
definition, V' is the matrix of eigenvectors of (RVA™") (RVA™). Let

A ‘N/dxd O
0 Ioxq

and define
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which implies that

5 D D, 4
Dy = | 7 P (1.47)
Dd—pp Dd—p d—p
da 1 ¢ _ _
=G (Bag — Ba)(Bay — Ba)' (1.48)
=1
~g _ ~ /
+ V’ﬁv*v) B,B, (V'ﬁvv) : (1.49)
and
3 D 1 _ _ 5 L
D= | | £ 53 (Bag— Ba)(Bug — By) + (V"84 ) ByBy. (1.50)
ID)dﬂw g=1
Now
Ey a5, (62)

1

_ _ -~ o~ o~ o~ - o~ Y1 . _
4 G(BY — Dy, BYY VST {UEV’D11.2VZ’U/} USV'(BY — DDy BY) /p
— G(BY — DDy BY) VS - {if/’ﬂ)mf/i’}_ .SV/(BY —DyuDy; BY) /p

_ ~ o~ ~ y—1 _
Uy .5y {211))11.22’} 5

where qu, ]ﬁ)qq, and Hi)qp in the last two equalities are understood to equals the

corresponding components on the right hand sides of (1.49) and (1.50). Here we

have abused the notation a little bit. We have

D,, D Spp S, _
Npp ~pq — Npp Npq —f-ﬁ}BqB;/IDI (151)
]D);q ]D)qq SIINI Sqq
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for

We have therefore shown that the first representation of the limit of F, ¢, (92)
holds. Direct calculations show that the second representation is numerically iden-

tical to the first representation. This completes the proof of Proposition 7. m

Proof of Lemma 8. The centered CCE Q°(fy) can be represented as:

h=1 =1 g=1 s=1

1 Ly 1 G Ly !
X hly) — — 190

TN;(M HILE

To prove Part (a), it suffices to show that
| v | C.In
—Z f1(6w) ——Zng 9N> (1.52)
e (103
a
- =3 (- 4

=1 glsl

holds for each h = 1,...,G. By Assumption 3 and using a Taylor expansion, we

have

th (B) = (1+0,(1)) <¢%—N RS 3 OIN) /vt - 90))

Using VN (0 — 6y) = O,(1) and Assumption 5, we have

Ly

=D F10) = (1 +0,(1) <¢%—N S 14(00) + T/ - 90))

=1
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for each h = 1,...,G. That is, the effect of the estimation uncertainty in Ox does

not change with the cluster. It then follows that

Ly G Ln
VD3 (fz%éN) ) ff(ém)

1 LNg:l s=1 1 g 1 .
= (14 0,(1)) (\/T_N Zfih(@o) - > NP ff(%)) :

which completes the proof of part (a).
To prove Part (b), we apply CLT in Assumption 4 together with 6 to obtain:

1 o

1 G 1 L ) i
— "(00) — =Y ——= > fI(0) 5 A _
vV Ly ZfZ( O> G o /_LN o fz( 0) (Bm,h Bm)a

i=1

where the convergence holds jointly for h =1, ..., G. As a result,

G
o 1 _ _
Oc(0,) 5 A (Bug = Bu) (Bug — Bu)

g=1

A

Proof of Proposition 9. The proof of part (a) is essentially the same as the
proof of Proposition 7. The only difference is that the second term in (1.51) will
not be present for the centered two-step GMM estimator 65. The proof of part (b)
is similar. The proof of part (e) is similar to that of Proposition 6(e).

To prove part (c), recall that the restricted two-step GMM estimator é;r
minimizes

1

gn(0) [(0)]  gw(0)/2+ Ny (R — 7). (1.53)

The first order conditions are

~ A~ -1 ~
D (657 [90(91)} gn(65T) + R'ay = 0, (1.54)

RO —r =0.
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Using a Taylor expansion and Assumption 3, we can combine two FOC’s to get

VN (92 - 90> = ¢ [QC(él)]l VNgn(6o) (1.55)

~ ~ —1 ~ " ~ —1
IR (Rcb*lR’) RO [90(91)] VNgn (0) + 0,(1),
- N N —1
where ¢ :=T" [90(01)] ['. Subtracting (1.55) from (1.9), we have

VN (ég - ég*) — _$R (Ri)‘lR’> " R [QC(@O)]l VNgw (6o) + 0,(1).

(1.56)
By Taylor expansion and Assumption 3 we have
Iy (05x) = gy (05) + (05" = 65)'T" + 0,(N7'/?)
and
1 rpeN | Oern -t He 1 pery | Ocrn -t ne
Nan(05) [0°00)]  gw(fsn) — Non(057) [2°B0)| o (05) (1.57)

~ ~ ~ ~ A -1 ~
= N0 - 057 YT ) [00)] 089+ 0,

-0, ().

Here the last equality follows from the FOC’s for ég In a similar way, we can write

7o)

the second term in (1.57) as

Ng'(057) [0(8)] " on(65)

= Ny (05") [°(00)] g (857 + N (05 — 857)'B(05 — 657) + 0,(1).



Combining this and (1.56), we get
LR, (65,657)
N A A ~ A~ Ao~ 71 ~
= {Wantds) [000] " (@) — Nox(G57Y [0 an @) b1y

= N(65" — 05)'D(05" — 05)/p + 0,(1)

-1

— VNgly(80) | (6)] e R (re'R) RSV Naw (60)/p + 0p(1)
= VN (Bl —r) (ROR) VN (R —r) /o + 0,(1)

~

= £ 009, (02) + 0p(1).

as desired.

To prove part (d), we rewrite the FOC in (1.54) as

VNAg.,(057) = —R'VNAy
- -1 . A -1
— _R (Rcb*lR’) ROIT [90(91)} VN (00) + 0,(1)

— VN (é;N - 92) +o,(1).

So,
LMoy (857) = N [ Do (857)] 7 [Bs (85 /o
=N (65— 657) SVN (G — 057 /0 -+ 0,(1)
= LRQc(él)(égNa 057) + 0,(1)
= F, sy (05) + 0p(1).
| |

89

Proof of Proposition 10. For the result with CU-GEE estimator éauEE, we
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have

-1

VR~ 00 = - (1 (@) T) 1 (20e)) VEax(@) + o)

Since 0%, is v/N consistent, we can apply Lemma 8 to obtain Q°(0%) = Q°(6p)+

0p(1). Invoking the continuous mapping theorem yields
VN Os — 00) % — {1 (%) T} {1 (95) " AVGB,. |

as desired.
For the CU-GMM estimator, we let T (854 ;) be the j-th column of Ty (624 y,).
Then, the FOC with respect to the j-th element of éé“UE is

RN ~ -1 ~
0= F?V(QEHMM), [in(egLMM)} gN(QgLMM)
1

N A A -1 A~ A A ~
— gx (0na) [ 000]  Til0cuaann) [2000]  ov0Eng,  (158)

where
OB (Z ff<e>> (Z 8@—;9)) - Lvax®) (552 )

The second term in (1.58) can be written as

A A -1 ~ A A -1
gv (B’ [ 0cnn]  Ti0%m) [20%n)]  ov (@)

R R -1
=V LNQN(HEUMM)/ [Q?V(eéuMM)]

: ( ST ) \/_ gn OGMM
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Given that 0%, = 0 + O,(L 1/2) we have

QC@%MM) = Op(l)

Vv On) = > (i D> J: (%) ) + TV L (O = f0) + 0p(1)
)

L L L ~
1 & 1 1 & af9(h)

_ g ecu - g 9 - S cu _
- ;:1 f20cm) In ;:1 f2(0) + Tn ;:1 90 (0Gnm — 0o)

and for each g =1, ..., G,

. 1 9208 )
(e 2o (2 )

s=1
R Z@fﬁ(éa“m
G LN 06

o) 0-a )

Combining these together, the second term in FOC in (1.58) is op(L;Vl/z).

As a result,

and so

VR (@t~ 00) = = {1 [ Ghn0)] r}l O [0 @hnn)| VNon(00)

+op(1) B —{I"(Q5) ' T} T () AVGB,.
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q

Proof of Theorem 11. Define B, = (B,

o1: - By ) and denote

-1

B

G

Z (Bq,g - Bq) (qug - Bq)l

g=1

9 — (qug - Bq)

q-

92

Then, the distribution of \/@gpng_qléq conditional on B, can be represented as

B (32 - 8 (51 8} (32 00 50 (5 5 ) s,

g=1 g=1
G G
= \/EZ (prg — Bp) Vg = \/EZ By, gvg — \/EB,, Z Vg
g=1 g=1 g=1
N (O,szj : Ip)
g=1

where the last line holds because ZQG:1 vy = 0. Note that

g=1 g=1 g=1
G 71
- By |Y " (Byg— By) (B — By)'|  (Bug Bq)}
g=1
G -l ra
_ _ _ ., _
- GB; Z (B%g - Bq) (qu Bq) Z (qu Bq)
g9=1 g=1
G
= \/ — _ ] =
X (Byg — By) ] Z (Byg — By) (Byg — By) | By
=1
G ’ -1
= B:; Z (qu - Bq) (Bq,g - BQ)/ /G Bq
g=1
= B.S.'B,.

So conditional on B, \/Eépqégqqu is distributed as N (0, B;S;;Bq - 1,)

. It then
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follows that the distribution of vG (Bp — SpqS(;]qu) conditional on B, is
VG (By = Sy By) ~ N (0.(1+ By, By) - 1)

using the independence of B, from gpng_qléq conditional on B,. Therefore the

conditional distribution of , is

© & s
£ = VG(By — S5y Br) ~ N(0,1,).

\J1+B.5.1B,

Given that the conditional distribution of £, does not depend on B, the uncondi-

tional distribution of ¢, is also N(0, I,,).
Using &, ~ N(0,1,), Sppg ~ G'W,,(G — q — 1,1,) and &, is independent
of S,,.4, we have
. -1
(GO Hotelling’s 7% distribution 7~
& G——q—l ¢y ~ Hotelling’s istribution T4, 4.

It then follows that

- -1
G—p—q GS,).
)gz/) (G _— > &p ~ Fpc—p-g-

p(G—q-1 —q—1

That is

G-r—a, (s \*

p—Ggﬁ/o (Spp~q) &p ~ Fp.G-—p—g-
Together with Proposition 9(c)(d), this completes the proof of the F limit theory
in parts (a), (b) and (c¢). The proof of the t limit theory is similar and is omitted

here. m

Proof of Theorem 12.
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We first show that Ey = Ex (14 0,(1)). For each j =1, ...,d, we have

vt = {ri o] "o} o] 2

=61

(14 0,(1))

where the second equality holds by Assumption 3, 5 and Lemma 8. Using a Taylor

expansion, we have

-1

o(85) = (o) =T {1 [2r@)] T} 1 [600)] " ox(@0)1+ 0, (1)

So
Eul.d) = {r ot Ty )] FEE|  [eren] " ovtd
(14 0,(1))
e ] e ] 20 et

{ o) F}_l [0 (60)] 9N(90)} (1+0,(1))

for each 7 =1, ..., d. For the term,m%ﬂ‘eié , recall that

99°(6) :

89]' A = T](01> + T] (01),
0=01n
G | Ly N Ly N !
| | of1(6) 1 L aL(6)

= — 9 - S S

T - 33|35 (0 - 5 3 am) (3 (2 - L 2%




95

[t remains to show that Tj(él) = T;(6p)(1+ 0,(1)). From the proof of Lemma 8,

we have

=3 (ff(él) - %Zﬁ(e}))
=¢2_NZ<T szseo) (1+0y(1) (1.59)

for each g =1, ...,G. By Assumption 3, 7 and a Taylor expansion, we have:

1 L af(h)

VIy & 09,

(1 &Ko) 1N 9 (0f9(0) i
‘(mz 26, +Eza_e( 20, )m@—eo))
(14 0,(1))

_ <\/1L_NZ @fgéf@ +Q00)V/In(0: — 90>) (14 0,(1))

=1

for j=1,...,d and g = 1,...,G. This implies that

z(afg—el NZaf”l)

s=1 ]

_ Z <3fg - a%éf())) (1+ 0,(1)) (1.60)

Combining these together, we have Y (6;) = Y (6p)(1+0,(1)) from which we obtain

the desired result

En=Ex(1+0,(1)). (1.61)
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Now, define the infeasible corrected variance

/\cmf c
sy ()
= VAT e 5, (03)

+ SNWQC(él)(HQN) +0aT g g, (QC)EN + ENvar(0,)El

and the corresponding infeasible Wald statistic

FS e,y (05) = (RO5 — )" | Roarg," s (05)R' | (RO5 —1)/p.

The result in (1.61) implies

Ey ey (05) = F5 5, (05)(1 + 0,(1)).

2,0¢(0 2,0¢(6,)

Also, Exy = 0,(1) and we have

——c,inf (4c
varﬂc(él)(ﬁ )= vach(G )(9 )(1+0,(1)),

and so

FS i (85) = FS g (05) + 0,(1)

= £ 009, (02) + 0p(1).



Chapter 2

Should We Go One Step Further?
An Accurate Comparison of
One-step and Two-step

Procedures in a Generalized

Method of Moments Framework

Abstract. According to the conventional asymptotic theory, the two-step
Generalized Method of Moments (GMM) estimator and test perform at least as
well as the one-step estimator and test in large samples. The conventional asymp-
totic theory, as elegant and convenient as it is, completely ignores the estimation
uncertainty in the weighting matrix, and as a result it may not reflect finite sample
situations well. In this paper, we employ the fixed-smoothing asymptotic theory
that accounts for the estimation uncertainty, and compare the performance of the
one-step and two-step procedures in this more accurate asymptotic framework. We
show the two-step procedure outperforms the one-step procedure only when the
benefit of using the optimal weighting matrix outweighs the cost of estimating it.

This qualitative message applies to both the asymptotic variance comparison and

97
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power comparison of the associated tests. A Monte Carlo study lends support to

our asymptotic results.



99

2.1 Introduction

Efficiency is one of the most important problems in statistics and econo-
metrics. In the widely-used GMM framework, it is standard practice to employ
a two-step procedure to improve the efficiency of the GMM estimator and the
power of the associated tests. The two-step procedure requires the estimation of a
weighting matrix. According to the Hansen (1982), the optimal weighting matrix is
the asymptotic variance of the (scaled) sample moment conditions. For time series
data, which is our focus here, the optimal weighting matrix is usually referred to as
the long run variance (LRV) of the moment conditions. To be completely general,
we often estimate the LRV using the nonparametric kernel or series method.

Under the conventional asymptotics, both the one-step and two-step GMM
estimators are asymptotically normal®. In general, the two-step GMM estimator
has a smaller asymptotic variance. Statistical tests based on the two-step estimator
are also asymptotically more powerful than those based on the one-step estimator.
A driving force behind these results is that the two-step estimator and the asso-
ciated tests have the same asymptotic properties as the corresponding ones when
the optimal weighting matrix is known. However, given that the optimal weight-
ing matrix is estimated nonparametrically in the time series setting, there is large
estimation uncertainty. A good approximation to the distributions of the two-step
estimator and the associated tests should reflect this relatively high estimation
uncertainty.

One of the goals of this paper is to compare the asymptotic properties
of the one-step and two-step procedures when the estimation uncertainty in the
weighing matrix is accounted for. There are two ways to capture the estimation
uncertainty. One is to use the high order conventional asymptotic theory under

which the amount of nonparametric smoothing in the LRV estimator increases with

'In this paper, the one-step estimator refers to the first-step estimator in a typical two-step
GMM framework. This is not to be confused with the continuous updating GMM estimator that
involves only one step. We use the terms “one-step” and “first-step” interchangingly. Our use of
“one-step” and “two-step” is the same as what are used in the Stata “gmm” command.
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the sample size but at a slower rate. While the estimation uncertainty vanishes in
the first order asymptotics, we expect it to remain in high order asymptotics. The
second way is to use an alternative asymptotic approximation that can capture
the estimation uncertainty even with just a first-order asymptotics. To this end,
we consider a limiting thought experiment in which the amount of nonparametric
smoothing is held fixed as the sample size increases. This leads to the so-called
fixed-smoothing asymptotics in the recent literature.

In this paper, we employ the fixed-smoothing asymptotics to compare the
one-step and two-step procedures. For the one-step procedure, the LRV estimator
is used in computing the standard errors, leading to the popular heteroskedasticity
and autocorrelation robust (HAR) standard errors. See, for example, Newey and
West (1986) and Andrews (1991). For the two-step procedure, the LRV estimator
not only appears in the standard error estimation but also plays the role of the
optimal weighting matrix in the second-step GMM criterion function. Under the
fixed-smoothing asymptotics, the weighting matrix converges to a random matrix.
As a result, the second-step GMM estimator is not asymptotically normal but
rather asymptotically mixed normal. The asymptotic mixed normality reflects the
estimation uncertainty of the GMM weighting matrix and is expected to be closer
to the finite sample distribution of the second-step GMM estimator. In a recent
paper, Sun (2014b) shows that both the one-step and two-step test statistics are
asymptotically pivotal under this new asymptotic theory. So a nuisance-parameter-
free comparison of the one-step and two-step tests is possible.

Comparing the one-step and two-step procedures under the new asymp-
totics is fundamentally different from that under the conventional asymptotics.
Under the new asymptotics, the two-step procedure outperforms the one-step pro-
cedure only when the benefit of using the optimal weighting matrix outweighs the
cost of estimating it. This qualitative message applies to both the asymptotic
variance comparison and the local asymptotic power comparison of the associated

tests. This is in sharp contrast with the conventional asymptotics where the cost
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of estimating the optimal weighting matrix is completely ignored. Since the new
asymptotic approximation is more accurate than the conventional asymptotic ap-
proximation, comparing the two procedures under this new asymptotics will give
an honest assessment of their relative merits. This is confirmed by a Monte Carlo
study:.

There is a large and growing literature on the fixed-smoothing asymptotics.
For kernel LRV estimators, the fixed-smoothing asymptotics is the so-called the
fixed-b asymptotics first studied by Kiefer et al. (2000) and Kiefer and Vogelsang
(2002b, 2005) in the econometrics literature. For other studies, see, for example,
Jansson )2004), Sun, Phillips and Jin (2008), Sun and Phillips (2009), Goncalves
and Vogelsang (2011), and Zhang et al. (2013) in the time series setting; Bester
et al. (2016) in the spatial setting; and Gongalves (2011), Kim and Sun (2013),
and Vogelsang (2012) in the panel data setting. For orthonormal series LRV es-
timators, the fixed-smoothing asymptotics is the so-called fixed-K asymptotics.
For its theoretical development and related simulation evidence, see, for example,
Phillips (2005), Miiller (2007), Sun (2011a, 2013) and Sun and Kim (2015). The
approximation approaches in some other papers can also be regarded as special
cases of the fixed-smoothing asymptotics. This includes, among others, Ibragimov
and Miiller (2010), Shao (2010) and Bester, Conley, and Hansen (2011). The fixed-
smoothing asymptotics can be regarded as a convenient device to obtain some high
order terms under the conventional increasing-smoothing asymptotics.

The rest of the paper is organized as follows. The next section presents a
simple overidentified GMM framework. Section 2.3 compares the two procedures
from the perspective of point estimation. Section 2.4 compares them from the
testing perspective. Section 2.5 extends the ideas to a general GMM framework.
Section 2.6 reports simulation evidence and provides some practical guidance. The
last section concludes. Proofs are provided in the Appendix.

A word on notation: for a symmetric matrix A, AY? (or A;;) is a ma-

trix square root of A such that A2 (Al/z), = A. Note that A'/? does not have
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to be symmetric. We will specify A'/? explicitly when it is not symmetric. If
not specified, A2 is a symmetric matrix square root of A based on its eigen-
decomposition. For matrices A and B, we use “A > B” to signify that A — B is
positive (semi)definite. We use “0” and “O” interchangeably to denote a matrix of
zeros whose dimension may be different at different occurrences. For two random
variables X and Y, we use X L Y to indicate that X and Y are independent. For
a matrix A, we use v (A), Vpin (A) and vpax (A) to denote the set of all singular
values, the smallest singular value, and the largest singular value of A, respec-
tively. For an estimator é, we use avar(é) to denote the asymptotic variance of the

limiting distribution of /T (é— plimr_, é) where T is the sample size.

2.2 A Simple Overidentified GMM Framework

To illustrate the basic ideas of this paper, we consider a simple overidentified

time series model of the form:

Y1t = Oy + U1, Y1t € Rd,

Yor = U, Yo € RY (2.1)

for t = 1,...,T where 6, € R? is the parameter of interest and the vector process
ug = (u),, ub,) is stationary with mean zero. We allow u; to have autocorrelation

of unknown forms so that the long run variance €2 of u; :

Q = lrvar(u) = Z Eutu;_j

j=—o0

takes a general form. However, for simplicity, we assume that var(u,) = 0214y, for

the moment?. Our model is just a location model. We initially consider a general

21f
Vi, V
var (ue) = ( Vo Vi ) # 0 iy
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GMM framework but later find out that our points can be made more clearly in

the simple location model. From the asymptotic point of view, we show later that

a general GMM framework can be reduced to the above simple location model.
Embedding the location model in a GMM framework, the moment condi-

tions are

where y; = (y},,v5;)". Let

T (- 0)

QT(Q) =
\/LT Zthl Yot

Then a GMM estimator of 8y can be defined as
Bcnin = arg mgin gr(0)Witgr(0)

for some positive definite weighting matrix Wp. Writing

Wiy W
Wi = 11 12 ’
War Wa

where Wiy is a d X d matrix and Was is a ¢ X ¢ matrix, then it is easy to show that

T
A 1
Ocvm = T tzz; (Y1 — Bwya) for By = Wi W'

There are at least two different choices of Wyp. First, we can take Wy to be

for any o2 > 0, we can let

e (081 Vi
0 (Vo)

where Vi = V1 — V12V§21V21. Then Vf/lz (Y1 y’zt)/ can be written as a location model whose
error variance is the identity matrix I414. The estimation uncertainty in estimating V will not
affect our asymptotic results.
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the identity matrix Wr = I,,, for m = d + q. In this case, Sy = 0 and the GMM

estimator ;7 is simply
T
- 1
Ohr = T ; Yit-

Second, we can take Wy to be the ‘optimal’ weighting matrix Wy = 2. With this

choice, we obtain the GMM estimator:

T

~ 1
Oor = T Z (ylt - 592::) )

t=1

where 8 = Q5€,) is the long run regression coefficient matrix. While 017 com-
pletely ignores the information in {ys}, Oyr takes advantage of this source of
information.

Under some moment and mixing conditions, we have
\/T (élT — 90) :d> N(O, Qll) and \/T <9~2T - 00) :d> N (O, 91.2> s

where

Qo = Oy — Q1292_21921-

So avar(égT) < avar(élT) unless Q15 = 0. This is a well known result in the
literature. Since we do not know € in practice, fop is infeasible. However, given
the feasible estimator élT, we can estimate ) and construct a feasible version of

for. The common two-step estimation strategy is as follows.

i) Estimate the long run covariance matrix by

N N Y/
where u; = (v, — 017, Yh,)'-

ii) Obtain the feasible two-step estimator Oyp = T-! Zle(yu — Bygt) where
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B = Q120

In the above definition of €, Q,, (r,s) is a symmetric weighting function that
depends on the smoothing parameter h. For conventional kernel LRV estimators,
Qn(r,s) = k((r—s)/b) and we take h = 1/b. For the orthonormal series (OS)
LRV estimators, Q, (r,s) = K! Z]K:1 ¢j (1) ¢; (s) and we take h = K, where
{¢; (r)} are orthonormal basis functions on L?[0, 1] satisfying fol ¢; (r)dr =0. We
parametrize h in such a way so that h indicates the level or amount of smoothing
for both types of LRV estimators.

Note that we use the demeaned process {@; — 7' S2'_, @} in constructing
Q (4) . For the location model, Q2 (4) is numerically identical to Q (u) where the un-
known error process {u;} is used. The moment estimation uncertainty is reflected
in the demeaning operation. Had we known the true value of 6, and hence the
true moment process {u;}, we would not need to demean {u;}.

While 0~2T is asymptotically more efficient than élT, is éQT necessarily more
efficient than élT and in what sense? Is the Wald test based on égT necessary more
powerful than that based on 6,77 One of the objectives of this paper is to address

these questions.

2.3 A Tale of Two Asymptotics: Point Estima-
tion

We first consider the conventional asymptotics where h — oo as T" — oo but
at a slower rate, i.e., h/T — 0. Sun (2014a, 2014b) calls this type of asymptotics the
“Increasing-smoothing Asymptotics,” as h increases with the sample size. Under
this type of asymptotics and some regularity conditions, we have Q2 Q. It can
then be shown that fop is asymptotically equivalent to Oy, ie., VT (§2T - éQT) =

0p (1). As a direct consequence, we have

VT (élT - 90> L N(0,Q0), VT (éQT . 90) Ly N[0, Q41 — 1205001 ] .
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So égT is still asymptotically more efficient than élT.

The conventional asymptotics, as elegant and convenient as it is, does not
reflect the finite sample situations well. Under this type of asymptotics, we es-
sentially approximate the distribution of QO by the degenerate distribution concen-
trating on ). That is, we completely ignore the estimation uncertainty in Q). The
degenerate approximation is too optimistic, as Qs a nonparametric estimator,
which by definition can have high variation in finite samples.

To obtain a more accurate distributional approximation of v/T' (égT — 0o),
we could develop a high order increasing-smoothing asymptotics that reflects the
estimation uncertainty in (). This is possible but requires strong assumptions
that cannot be easily verified. In addition, it is also technically challenging and
tedious to rigorously justify the high order asymptotic theory. Instead of high
order asymptotic theory under the conventional asymptotics, we adopt the type
of asymptotics that holds h fixed (at a positive value) as T — co. Given that h is
fixed, we follow Sun (2014a, 2014b) and call this type of asymptotics the “Fixed-
smoothing Asymptotics.” This type of asymptotics takes the sampling variability
of  into consideration.

Sun (2013, 2014a) has shown that critical values from the fixed-smoothing
asymptotic distribution are higher order correct under the conventional increasing-
smoothing asymptotics. So the fixed-smoothing asymptotics can be regarded as
a convenient device to obtain some higher order terms under the conventional
increasing-smoothing asymptotics.

To establish the fixed-smoothing asymptotics, we maintain Assumption 8

on the kernel function and basis functions.

Assumption 8 (i) For kernel LRV estimators, the kernel function k(-) satisfies
the following conditions: for any b € (0, 1], ky (x) = k (x/b) is symmetric, continu-
ous, piecewise monotonic, and piecewise continuously differentiable on [—1,1]. (i)
For the OS LRV wvariance estimator, the basis functions ¢; (-) are piecewise mono-

tonic, continuously differentiable and orthonormal in L*[0,1] and fol ¢ (x)dx = 0.
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Assumption 8 on the kernel function is very mild. It includes many com-
monly used kernel functions such as the Bartlett kernel, Parzen kernel, and Quadratic
Spectral (QS) kernel.

Define

1 1 1 1
Qp(r,s) ZQh(TaS)—/O Qh(7'73>d7'_/0 Qh(T77)dT+/O /0 Qn (71, T2)dT1dTs,

which is a centered version of @Qy(r, s), and

~ 1 St
Assumption 8 ensures that (2 and ) are asymptotically equivalent. Furthermore,
under this assumption, Sun (2014a) shows that, for both kernel LRV and OS LRV

estimation, the centered weighting function Qj (7, s) satisfies :
Qhlr,s) = A®;(r)®;(s)
j=1

where {®;(r)} is a sequence of continuously differentiable functions satisfying
fol ®;(r)dr = 0 and the series on the right hand side converges to @ (r,s) ab-
solutely and uniformly over (r,s) € [0,1] x [0,1]. The representation can be re-
garded as a spectral decomposition of the compact Fredholm operator with kernel
Q5 (r,s). See Sun (2014a) for more discussion.

Now, letting ®¢(-) := 1 and using the basis functions {®;(-)}32, in the series

representation of the weighting function, we make the following assumptions.
Assumption 9 The vector process {u;}_, satisfies:

(i) T2 52T ®,(t/T)u, converges weakly to a continuous distribution, jointly
over 1 =0,1,...,J for every fixed J;
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(ii) For every fized J and x € R™,

T
1 t
Pl|l—=) ®(=)uwy<x forj=0,1,..,J
S )

T
1 t
=P (Ql/Qﬁ E <I>j(f)et <z forj=0,1,.., J> +o(l) as T — ¢
t=1

where
Oy Q205,77

Qe = >0
0 0

s a matrixz square root of the nonsingular LRV matriz = Z;’i_m Buyuy_

and e; ~ iid N(0, I,,,).

Assumption 10 Z?‘;_oo | Buyuy_ |< oo.

Proposition 13 Let Assumptions 8-10 hold. As T — oo for a fired h > 0, we

have:
(a) © L5 Qo where

~ Qoo,ll Qoo,lZ
Qoo = Ql/QQolel/Q =
Q00721 Qc>o,22
3 11 Qo O
Q. — / / Qi (r, $)dBy (F)dBy(s) = | ot o
0 Jo Qooo1 Do 22

and B, (+) is a standard Brownian motion of dimension m = d + g;
(b) VT <é2T - 90) =< ( Iy, —Bo ) Q1/2Bn(1) where Bos = Boo(h, d, q) ==

Qoo 1290 9y is independent of By, (1).
Conditional on f., the asymptotic distribution of /T (égT —0p) is a normal
distribution with variance

Qll Ql2 Id
Vom (I, b ) = Q1 — Q12— Poo 1 + e 2.
QQI 922 _ﬂ(/x;



109

Given that V5 is random, v/T' (égT —0p) is asymptotically mixed-normal rather than

normal. Since

avar(éggp) — aVaI'(égT) = E‘/g — (Qll — 912Q2_21921)
=FE (91292_21921 — W8, — Booflo1 + 5009225:)0)
= E (21205 — Boo) Qa2 (21205, — 600)/ >0,

the feasible estimator éQT has a large variation than the infeasible estimator égT.
This is consistent with our intuition. The difference avar(far) — avar(for) can be
regarded as the cost of implementing the two-step estimator, i.e., the cost of having
to estimate the weighting matrix.

Under the fixed-smoothing asymptotics, we still have v/T(617 — 6;) N
N(0,£4;) as 6,7 does not depend on the smoothing parameter h. So

avar(élT) — avar(égT) = Qll — (Qll — 91292_21921) = Q1292_21921 Z O,

which can be regarded as the benefit of going to the second step.
To compare the asymptotic variances of vT'(f17 — 6,) and VT (a1 — 6,),

we need to evaluate the relative magnitudes of the cost and the benefit. Define
Boo = Boo (ha da Q> = Qoo,12§2;ol,227 (22)

which does not depend on any nuisance parameter but depends on h,d,q. For
notational economy, we sometimes suppress this dependence. Direct calculations
show that

Boo = Q}-/; ~o<>Q2_21/2 + Q1292721- (2.3)
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Using this, we have:

avar(for) — avar(y7) = avar(for) — avar(fay) — [avar(fi7) — avar(for)]
cost benefit
= O BBl (3) = Q1205 Qo (2.4)

If the cost is larger than the benefit, i.e., Q},/;EBOOB{)O(Q},/;)’ > 019055 a1, then

the asymptotic variance of égT is larger than that of élT.

!/

The following lemma gives a characterization of Ffw (h,d,q) Bso (h, d, q)

Lemma 14 For any d > 1, we have
B (h,d.q) B (h,d,0)' = (Bl|B (b 1,9) 1)) x Lo
Using the lemma, we can prove that
avar(far) — avar(ir) = (1 + E||fa (b, 1,q) |[)QY2 [g(h, ¢) Lo — pp'] (Q2)

where ~
E||fx(h,1,9)|?
g = B 10
1+ E||Bs(h, 1,9

€ (0,1),

and

p =0 200,17 € R,

which is the long run correlation matrix between uy; and usg;. The proposition

below then follows immediately.

Proposition 15 Let Assumptions 8—10 hold. Consider the fized-smoothing asymp-
totics.

(@) If vmax (pp') < g(h,q), then bsr has a larger asymptotic variance than
Orr.

(0) If Vimin (pp) > g(h,q), then Oyp has a smaller asymptotic variance than

O17.
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To compute the eigenvalues of pp’, we can use the fact that v (pp’) =
v (91292_2192191_11) . The eigenvalues of pp’ are the squared long run correlation
coefficients between cjuy; and chug; for some c¢; and ¢y, i.e., the squared long run
canonical correlation coefficients between wuy; and ug. So the conditions in the
proposition can be presented in terms of the smallest and largest square long run
canonical correlation coefficients.

If p =0, then vnax (pp') < g(h,q) holds trivially. In this case, the asymp-
totic variance of fyr is larger than the asymptotic variance of 017 Intuitively, when
the long run correlation is zero, there is no information that can be explored to
improve efficiency. If we insist on using the long run correlation matrix in attempt
to improve the efficiency, we may end up with a less efficient estimator, due to the
noise in estimating the zero long run correlation matrix. On the other hand, if
pp’ = 1, after some possible rotation, which holds when the long run variation of uy;
is perfectly predicted by wugy, then vy, (pp’) = 1 and we have vy, (pp') > g(h, q).
In this case, it is worthwhile estimating the long run variance and using it to
improve the efficiency Oor.

The two conditions vmin (pp’) > g(h,q) and vmax (pp’) < g(h,q) in the
proposition may appear to be strong. However, the conclusions are also very
strong. For example, f5r has a smaller asymptotic variance than 017 means that
avar(Rfyr) < avar(Rf,7) for any matrix R € R?*4 and for all 1 < p < d. In fact,
in the proof of the proposition, we show that the conditions are both necessary
and sufficient.

The two conditions v, (pp') > g(h,q) and vmax (pp’) < g(h,q) are not
mutually exclusive unless d = 1. When d > 1, it is possible that neither of two
conditions is satisfied, in which case avar(fyr) — avar(fy7) is indefinite. So, as a
whole vector, the relative asymptotic efficiency of for to 017 cannot be compared.
However, there exist two matrices RT € R%+*4 and R~ € R**? with d, +d_ = d,
d, < d, and d_ < d such that avar(R*fyr) < avar(R6;7) and avar(R 0yr) >

avar(R*élT). An example of the indefinite case is when ¢ < d and vy (pp) >
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g(h,q). In this case, v (pp") = 0 and v, (pp') > g(h, q) does not hold. A direct
implication is that avar(R_égT) > avar(R_élT) for some R~. So when the degree
of overidentification is not large enough, there are some directions characterized by
R~ along which the two-step estimator is less efficient than the one-step estimator.

When d = 1, pp’ is a scalar, and two conditions v, (pp’) > g(h,q) and
Vmax (pP') < g(h,q) becomes mutually exclusive. So if pp’ > g(h,q), then Oy is
asymptotically more efficient than 017 Otherwise, it is asymptotically less efficient.

In the case of kernel LRV estimation, it is hard to obtain an analytical
expression for E| Boo(h 1, q)||? and hence g(h, q), although we can always simulate
g(h, q) numerically. The threshold g(h,q) depends on the smoothing parameter
h = 1/b and the degree of overidentification g. Tables 2.1-2.3 report the simulated
values of g(h,q) for b = 0.00 : 0.01 : 0.20 and ¢ = 1 ~ 5. These values are
nontrivial in that they are close to neither zero nor one. It is clear that g(h,q)
increases with ¢ and decreases with the smoothing parameter h = 1/b.

When the OS LRV estimation is used, we do not need to simulate g(h, q),

as we can obtain a closed form expression.

Corollary 16 Let Assumptions 8—10 hold. In the case of OS LRV estimation, we

have

q
K—-1

g(h,q) =

S0 if Umax (pp') < 755 (07 Vinin (pp') > #5), then Oor has a larger (or smaller)

asymptotic variance than b17 under the fized-smoothing asymptotics.

Since égT is not asymptotically normal, asymptotic variance comparison
does not paint the whole picture. To compare the asymptotic distributions of 017
and égT, we consider the case of OS LRV estimation with d = ¢ =1 and K =4
as an example. We use the sine and cosine basis functions as given in (??) later
in Section 2.6. Figure 2.1 reports the shapes of probability density functions when
(1,92, Q) = (1,0.10,1). In this case, Qp = Q1 — 212055 Qo = 0.9. The
first graph shows VT (617 — 6y) ~ N(0,1) and VT (67 — 6p) ~ N(0,0.9) under the
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conventional asymptotics. The conventional limiting distributions for /T (élT—HO)
and VT (égT — ) are both normal but the latter has a smaller variance, so the
asymptotic efficiency of Oy is always guaranteed. However, this is not true in
the second graph of Figure 2.1, which represents the limiting distributions under
the fixed-smoothing asymptotics. While we still have vT(fir — 6y) ~ N(0,1),
VT (O3 — 00) ~ MNJ0,0.9(1 + 52)]. The mixed normality can be obtained by
using a conditional version of (2.4). More specifically, the conditional asymptotic

variance of é2T is
A P - - 1/25 1/2\s o =92
avar(far|Bs) = Va = Q)5 BooSo (21/5) 4+ Q1.0 = 0.9(1 + B2,). (2.5)

Comparing these two different families of distributions, we find that the asymptotic
distribution of fyr has fatter tail than that of ;7. The asymptotic variance of Oy

18

K=l :o.9><§:1.35,

avar(fyr) = EVy = Qua{1+ E[[|fuc(h, 1, 9)|I’]} = QMK_—q_l 5

which is larger than the asymptotic variance of 017

2.4 A Tale of Two Asymptotics: Hypothesis Test-
ing

We are interested in testing the null hypothesis Hy : Rfy = r against the
local alternative Hy : ROy = r+ 6o/ VT for some p x d full rank matrix R and p x 1
vectors r and dy. Nonlinear restrictions can be converted into linear ones using the

Delta method. We construct the following two Wald statistics:

~ ~ -1 ~
WlT = T(RQlT — 7“)/ (RQHRI) (RHlT — 7’)

N A -1 A~
WQT = T(RQQT — ’f‘)l (RQLQR’) (RHQT — 7“)
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where Ql.g = QH — 912@2_21@21. When p = 1 and the alternative is one sided, we

can construct the following two ¢ statistics:

(s

Ty : = N (2.6)
\/T (RéQT - 7”)

TQT .= . (27)

VRO o R

No matter whether the test is based on élT or éQT, we have to employ the long run

covariance estimator ). Define the p x p matrices A; and Ay according to
AlA/l = RQUR/ and AQAIQ = RQl.QR/.

In other words, A; and Ay are matrix square roots of R{)1; R’ and RQ; R respec-
tively.
Under the conventional increasing-smoothing asymptotics, it is straightfor-

ward to show that under H; : ROy =r + 50/\/T :

Wiz =5 (|| AT 60|, War =2 x2(|| A5 5]),

Tir =2 N(A7'00, 1), Top == N (A5, 1),

where X2 (A\*) is the noncentral chi-square distribution with noncentrality param-

eter \2. When §y = 0, we obtain the null distributions:
WlT,WQT é X; and TlTa TQT é N(O, 1)

So under the conventional increasing-smoothing asymptotics, the null limiting dis-
tributions of W7 and Wy are identical. Since HA1_150H2 < HA2_150H2, under the
conventional asymptotics, the local asymptotic power function of the test based
on Wyr is higher than that based on W.

The key driving force behind the conventional asymptotics is that we ap-
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proximate the distribution of Q by the degenerate distribution concentrating on €2.
The degenerate approximation does not reflect the finite sample distribution well.
As in the previous section, we employ the fixed-smoothing asymptotics to derive

more accurate distributional approximations. Let

o= [ [ @itraB,0an, ). o= [ [ @itr 51,0003,

1 pl
qu:/O /0 Q;(T,S)qu(T)qu(S)/,qu:C;,q

and

Dpp = Cpp - Cquq_ql ngq

where B,(-) € RP and B,(-) € R? are independent standard Brownian motion

processes.

Proposition 17 Let Assumptions 8-10 hold. As'T — oo for a fized h, we have,
under Hy : ROy =1 + 50/ﬁ :
(a) Wip N Wloo(||A1’150||2) where

Wi (I€1%) = [B, (1) + €)' G, [By (1) + €] for € € R”. (2:8)
(b) Wor N Wgoo(HAglégHg) where

Waso([€11%) = [By (1) = CpaCo By (1) + €] Dyt [B, (1) = CpgCly By (1) + ] -
(2.9)
(€) Tir =5 Tioo (A7160) == [Bp(1)+A7'80] //Cpp for p=1.
(d) Tor =5 Taw (A5100) := [By (1) = CypuCli By (1) + A;'8) /A/Dpp for p= 1.

In Proposition 17, we use the notation Wy (||€]|*), which implies that the
right hand side of (2.8) depends on ¢ only through ||£||*. This is true, because for
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any orthogonal matrix H :

(B, (1) + €' CH B, (1) + €] = [HB, (1) + HE) HC, ' H' [HB, (1) + HE]
< (B, (1) + HE!' C1 (B, (1) + HE].

If we choose H = (¢/ ||¢||, H)' for some H such that H is orthogonal, then

(B, (1) + €)' Gt [By (1) + €] = [B, (1) + [Ié] €] C) [By (1) + €]l 5]

where e, = (1,0,...,0)" € R?. So the distribution of [B, (1) + &)’ C;} [B, (1) + ¢
depends on ¢ only through ||£||. Similarly, the distribution of the right hand side
of (2.9) depends only on ||€]|*.

When dy = 0, we obtain the limiting distributions of Wy, Wop, T, and

Ty7 under the null hypothesis:

Wip =2 Wia 1= Wi (0) = Bp( ) OB, (1),
War =5 Wan, := Wouo(0) = [B, (1) = CypyCiit By (1)] DY [B, (1) — CpyCiit By (1]
Tir :d> T := Tloo 0) Bp( /\/ P>
) =

[Bo(1)=CpeCr' By (1] / /Dy

TQT :d> TQOO = TQOO (0

These distributions are different from those under the conventional asymptotics.
For Wyp and Ty, the difference lies in the random scaling factor C,, or \/C_pp.
The random scaling factor captures the estimation uncertainty of the LRV estima-
tor. For Wy and Top, there is an additional difference embodied by the random
location shift CpC;.' B, (1) with a consequent change in the random scaling factor.

The proposition below provides some characterization of the two limiting

distributions Wi, and Wy.,.

Proposition 18 For any x > 0, the following hold:
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(@) Was (0) first-order stochastically dominates Wi, (0) in that
P[Ws (0) > z] > P[Wi (0) > 2.
(b) P [Wloo(||§||2) > x| strictly increases with €11 and

lim P [Wio(]|¢]?) > 2] = 1.

€l =00

(c) P [Wgoo(||f||2) > x| strictly increases with €11 and

lim P [Wao([|€]]%) > 2] = 1.

€l =00

Proposition 18(a) is intuitive. Ws., first-order stochastically dominates
Wi because W, first-order stochastically dominates B, (1)/ Dp_p1 B, (1), which in
turn first-order stochastically B, (1) C, !B, (1), which is just Wi According to

a property of the first-order stochastic dominance, we have
d
WQoo - Wloo + We

for some W, > 0. Intuitively, Wy, shifts some of the probability mass of W, to
the right. A direct implication is that the asymptotic critical values for Wy are
larger than the corresponding ones for Wyp. The difference in critical values has
implications on the power properties of the two tests.

For x > 0, we have
1 2 1 2
P(Tloo>$):§P(WloOZx) andP(T2m>x):§P(W2m21).

It then follows from Proposition 18(a) that P (Tas > x) > P (Tis > x) for > 0.
So for a one-sided test with the alternative H; : Ry > r, critical values from T,
are larger than those from T;... Similarly, we have P (Toy < z) > P (Tie < )

for x < 0. This implies that for a one-sided test with the alternative H; : ROy < r,
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critical values from Ty, are smaller than those from T;.
Let W¢_ and Wg__ be the (1 — «) quantile from the distributions W, and

Wseo, respectively. The local asymptotic power functions of the two tests are

m (1A 8]) = m (475

(I3 0]) 1= (475

2;h,zo,q,oc> =P [Wloo(HAIl%HQ) > W‘foo} ,

2;h,p,q,oz) =P [Wgoo(||A2_150H2) > Wgoo} )

While HA;I&)HQ > HA{I&]‘ 2 , we also have Wg > W¢ . The effects of the critical

values and the noncentrality parameter move in opposite directions. It is not
straightforward to compare the two power functions. However, Proposition 18
suggests that if the difference in the noncentrality parameters HA; 6o H2 — HAfléo H2
is large enough to offset the increase in critical values, then the two-step test based

on Wy will be more powerful.

To evaluate HA;lfsoH2 — ||Af150||2, we define
pr = (RO R (RO1) Q5572 (2.10)

which is the long run correlation matrix pg between Ruy; and ug. In terms of

pr € RP*? we have

1A5280]|” — || AT 60"
= 6 (RO R — R0 O RY) ™ 6y — 6y (RO R) ™ b
-1
= 0 (M) |1 = AT R0 0 R ()] (AT80) — 6 () (A7)

=0y () {1l — ool = I} (A1)

So the difference in the noncentrality parameters depends on the matrix pgp'y.
Let prpz = Y04 Virairajr be the eigen decomposition of prpf, where
{vir} are the eigenvalues of prpf, and {a; g} are the corresponding eigenvectors.

Sorted in the descending order, {v; g} are the (squared) long run canonical corre-
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lation coefficients between Ruq; and usg;. Then

p .
A5 60" = |7 80]* = D 77— [ah iy o]

= 1w

Consider a special case that v), g := minj_; {; r} approaches 1. If a;, R 100 #
0, then [|A5 6> — ||A1’150||2 and hence ||A; 0|2 approaches co as v,  approaches
1 from below. This case happens when the second block of moment conditions has
very high long run prediction power for the first block. In this case, we expect the
Wor test to be more powerful, as lim,, .1 Wg(“Agléo“Q) = 1. Consider another
special case that max!_, {v; g} = 0, i.e., pg is a matrix of zeros. In this case,
the second block of moment conditions contains no additional information, and
we have HA;l(Son = HA;150H2. In this case, we expect the Wyr test to be less
powerful.

It follows from Proposition 18(b) and (c) that for any A, there exists a
unique 7 (A) := 7 (A; b, p, ¢, &) such that

s (V) = 7 (%) |

As a function of A, 7()) is defined implicitly via the above equation. Then
W2(||A;150||2) < 7r1(||Af150||2) if and only if HA;1(50H2 < T(||A;150||2) : HAIléoHQ.
Using

A5 0all” = (12500 °) 147 0]

_ i( ! _T<HA2150H2>> [al AT,

i=1 L=vip
R S S _T(HA2_150H2)_1> o AT 12 (A1 12
; 1_Vi,R ( b 7_(HA2—160H2) [ 3, R } (H 2 H )

S|
= > (e SUASRIP) [ah et 0] 70 00 (21)
1 b

1=
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where f (-) is defined according to

T(A; hap7 q, CM) —1
T (A h,p, q, @)

FQ) = fAhpga)=
we can prove the proposition below.

Proposition 19 Let Assumptions 8-10 hold. Define
A(No) = {6: 0" (RQ2R) "6 = Ao}

Consider the local alternative Hy (N\g) : ROy =1 + 50/\/7 for 6o € A(Ng) and the
fized-smoothing asymptotics.

(@) If Vmax (PrPR) < f(Xo; hyp,q, ), then the two-step test based on Wor
has a lower local asymptotic power than the one-step test based on Wy for any
dp € A (o) -

(0) If vimin (PrPR) > f(Xo; hyp,q, @), then the two-step test based on Wayr

has a higher local asymptotic power than the one-step test based on Wir for any

0o € Q[()\()) .

To compute Viax (PrPR) and Vmin (PrPR), We can use the relationship that

1% (pRle) =V { (R9129521921R/) (RQllR/)_l} .

There is no need to compute the matrix square roots (R R’ )_1/ * and Q;QI/ 2,

As in the case of variance comparison, the conditions on the canonical cor-
relation coefficients in Proposition 19(a) and (b) are both sufficient and necessary.
See the proof of the proposition for details. The conditions may appear to be
strong but the conclusions are equally strong — the power comparison results
hold regardless of the value of d, that characterizes the direction of the local de-
parture. If we have a particular direction in mind so that J, is fixed and given,

then we can evaluate HA;léo“2 -7 (A;léo) HA{150H2 directly for the given dy. If



121

HA2_160H2 — 7 (A3'%) ||A1_150H2 is positive (negative), then the two-step test has a
higher (lower) local asymptotic power.

When p = 1, which is of ultimate importance in empirical studies, prp’
is equal to the sum of the squared long run canonical correlation coefficients. In
this case, f(Ao;h,p,q,a) is the threshold value of prpl, for assessing the relative
efficiency of the two tests. More specifically, when prp%x > f(Ao;h,p,q, @), the
two-step test is more powerful than the one-step test. Otherwise, the two-step test
is less powerful.

Proposition 19 is in parallel with Proposition 15. The qualitative messages
of these two propositions are the same — when the long run correlation is high
enough, we should estimate and exploit it to reduce the variation of our point
estimator and improve the power of the associated tests. However, the thresholds
are different quantitatively. The two propositions fully characterize the threshold

for each criterion under consideration.

Proposition 20 Consider the case of OS LRV estimation. For any A € R, we
have m (A) > w5 (A) and hence 7 (\; h,p,q,a) > 1 and f(\; h,p,q,a) > 0.

Proposition 20 is intuitive. When there is no long run correlation between
Ruq; and ug, we have ||A2’150||2 = HAfléoHQ. In this case, the two-step Wor test
is necessarily less powerful. The proof uses the theory of uniformly most powerful
invariant tests and the theory of complete and sufficient statistics. It is an open
question whether the same strategy can be adopted to prove Proposition 20 in
the case of kernel LRV estimation. Our extensive numerical work supports that
T (A h,p,q,a) > 1 and f(A; h,p,q,a) > 0 continue to hold in the kernel case.

It is not easy to give an analytical expression for f(\;h,p, ¢, a) but we can
compute it numerically without any difficulty. In Table 2.4, we consider the case
of OS LRV estimation and compute the values of f(\; K,p,q,«) for A = 1 ~
25, K =8,10,12,14, p=1 ~ 3 and ¢ = 1 ~ 3. The values are nontrivial in that

they are not close to the bounary value of zero or one. Similar to the asymptotic
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variance comparison, we find that these threshold values increase as the degree of
overidentification increases and decrease as the smoothing parameter K increases.

For the case of kernel LRV estimation, results not reported here show that
f(A;h, p, q, ) increases with ¢ and decreases with h. This is entirely analogous to

the case of OS LRV estimation.

2.5 General Overidentified GMM Framework

In this section, we consider the general GMM framework. The parameter
of interest is a d x 1 vector § € © C R? Let v, € R% denote the vector of
observations at time t. We assume that 6, is the true value, an interior point of

the parameter space ©. The moment conditions
Ef(v,0)=0,t=1,2,..,T.

hold if and only if § = 6 where f (v;,-) is an m x 1 vector of continuously differ-
entiable functions. The process f (vt, 0p) may exhibit autocorrelation of unknown
forms. We assume that m > d and that the rank of E[f (v;,0,) /00'] is equal to
d. That is, we consider a model that is possibly overidentified with the degree of

overidentification ¢ = m — d.

2.5.1 One-step and Two-step Estimation and Inference

Define the mxm contemporaneous covariance matrix 3 and the LRV matrix

%

2 as:
S = Ef(vr,00)f (vr,00) and Q = Z Q; where Q; = Ef(ve,00) f(vi—;, 00’
j=—00

Let

t
Z
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Given a simple positive-definite weighting matrix Wor that does not depend on

any unknown parameter, we can obtain an initial GMM estimator of y as
Oor = arg rgleiél ar(0)Wor gr(0).

For example, we may set Wor equal to I,,. In the case of IV regression, we may
set WOT equal to Z7.Zr /T where Zp is the matrix of the instruments.
Using S or 2 as the weighting matrix, we obtain the following two (infea-

sible) GMM estimators:

br : :arggnggT(e)'i-lgT(e), (2.12)
S
Oor zargrgggéT@)’Q‘léT(@)- (2.13)

For the estimator 9~1T, we use the contemporaneous covariance matrix Y as the
weighting matrix and ignore all the serial dependency in the moment vector process
{f(v;,00)}C,. In contrast to this procedure, the second estimator 6y accounts for
the long run dependency. The feasible versions of these two estimators 017 and
for can be naturally defined by replacing Y and Q with their estimates iest(éOT)
and Qest(éOT) where

Beal®) =5 D Flon O (w6, (214)

o 1 t? T s t.v v

Qest (9) L= ? ZZQZ(T? f)f(vbe)f(vsae),' (215)
s=1 t=1

To test the null hypothesis Hy : Rty = r against Hy : Ry = r + 50/ﬁ, we

construct two different Wald statistics as follows:

~ ~ -1 ~
WlT .= T(RQlT - T)/ {RVlTR/} (RQlT - 7")7 (216)

A N -1 ~
Wor : =T(Rbyr — 1) {RVQTRI} (Rbor — 1),
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where

~ v ~ v -1 o v
Vir = |GaSa@mCir| | CrSiOm)QeBir) S Gir)CGar | (217)

x [ChrSd )G (2.15)

and

T v
A o 1 8f(vt7 9)
G =7 2 o6

T v
A o 1 af(vta 0)
Gir =7 2 6" :

t=1 0=017 t=1

6=y
These are the standard Wald test statistics in the GMM framework. To compare
the two estimators élT and égT and associated tests, we maintain the standard

assumptions below.

Assumption 11 As T — oo for a fized h, Oy = 0y + 0, (1), 017 = 0y + 0, (1),

Oor = 0y + 0, (1) for an interior point 6, € ©.

Assumption 12 Define

v 1 0g 8f v, 0 v
= > =
G(0) = Nt E T f rt>1and Go(6) =0

For any 01 = 0y + 0,(1), the following hold: (i) plimT%ova?[,.T](GT) rG uniformly
in 1 where G = G(60y) and G(0) = Edf(vy,0)/00'; (i1) Leg (07) 2> 5> 0; (iid) %,
Q, G'S71G, and G'Q7'G are all nonsingular.

With these assumptions and some mild conditions, the standard GMM

theory gives us

VT (byg — 0y) = — ET:[ ] G5 f (ur, 0) + 0,(1).
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Under the fixed-smoothing asymptotics, Sun (2014b) establishes the representa-
tion:

T
~ vy 11 o o v
VT (far — 6y) = E:P?Q;G] GO F vy, 0) + 0,(1),

where Qoo is defined in the similar way as €2, in Proposition 13: Qoo = Ql/QQOOQ’I/Q.
Due to the complicated structure of two transformed moment vector pro-
cesses, it is not straightforward to compare the asymptotic distributions of 6,7 and

éQT as in Sections 2.3 and 2.4. To confront this challenge, we let

Ais a d x d diagonal matrix and O is a matrix of zeros. Also, we define

(v, 60) = (fikl(’l}t,eo), fg*/(’Ut,@o))/ = U’f(vt,ﬁo) € R™,

where f7(vi,00) € R? and f5 (v, 6p) € R? are the rotated moment conditions. The

variance and long run variance matrices of {f*(vy, 6y)} are

. X
S=UsU=| TP
Y51 U
and Q* = U'QU , respectively. To convert the variance matrix into an identity

matrix, we define the normalized moment conditions below:

f(ve,60) = [fl(vt,ﬁo)’,fz(vt,ﬁo)’]' = ( T/Q)_lf*(UhQO)
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where
L G TR .
0 (25)
More specifically,
Filvebo) = = (S, [f1 (1, 00) — 55 (Z55) 7" 5 (ve, 00)] € RY,
fa(v, 6) = = (E§2>_1/2 f3 (ve, 00) € RY.

Then the contemporaneous variance of the time series {f(vy,60)} is I, and the

long run variance is ) := (Z*{/Q)*lQ*(ZT’/z)*l.

Lemma 21 Let Assumptions 8-12 hold with u; replaced by f(vy,0y) in Assump-
tions 9 and 10. Then as T — oo for a fixed h > 0,

(S, V2 AVINT (0ir — 0)) = Filve, 00) + 0p(1) =% N(0,941)  (2.20)

[M] =

t=1

(25,) P AVVT (Bor — 0)) = [f1 (v, 60) — Boo fo(vr, 00)] + 0,(1) (2.21)

1

N (0,1 — Q128 — Boofl21 + Boc2265)

I~ 5= gl-
e

=T

where o 1= QOOJQQ;},QQ is the same as in Proposition 13.

Lemma 21 casts the stochastic expansions of two estimators in the same
form. To the best of our knowledge, these representations are new in the econo-
metric literature and may be of independent interest. Lemma 21 enables us to
directly compare the asymptotic properties of one-step and two-step estimators
and the associated tests.

It follows from the proof of the lemma that

T
(2?2)*1/2 Avlﬁ(éQT — 90) = LT Z [fl(vt, 90) — Bofg(?}t, 00)] + Op(].),

where By = Q15€5, as defined before. So the difference between the feasible
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and infeasible two-step GMM estimators lies in the uncertainty in estimating f.
While the true value of # appears in the asymptotic distribution of the infeasible
estimator 9~2T, the fixed-smoothing limit of the implied estimator B = QlZQ;;
appears in that of the feasible estimator Oorp. Tt is important to point out that the
estimation uncertainty in the whole weighting matrix Qs matters only through
that in B .

If we let (wyg, uar) = (fi(ve, 00), f2(ve, 0p)), then the right hand sides of (2.20)
and (2.21) are exactly the same as what we would obtain in the location model.
The location model, as simple as it is, has implications for general settings from

an asymptotic point of view. More specifically, define

g = (31,) Y2 AV0, + uyy,

Yor = Uat,

where uy; = fi(v, 6p) and ug = fo(vy, 0p). The estimation and inference problems
in the GMM setting are asymptotically equivalent to those in the above simple
location model with {14, y2:} as the observations.

To present our next theorem, we transform R into R using
R=RVA(2,)"?, (2.22)

which has the same dimension as R. We let

1

e (1o, 0) [//QhrsdBmdB H//QhrsdBmdB()_,

which is compatible with the definition in (2.2). We define
p= Ql—ll 29129—1/2 RX4 and PR = (RQMR’)_l/Q(RQm)Q;;/Q c RPX4.

While p is the long run correlation matrix between fi(vy, 6y) and fo(vy, 0p), pr is the
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long run correlation matrix between Rf;(vy, 6y) and fo(ve,6y). The corresponding

long run canonical correlation coefficients are
vi(pp') = v {(1205 Q1) Q' } and v (prpl) = v {(RQI2Q2_21Q21R,)(RQHR/)_l} :

For the location model considered before, G = (14, O4xq) and so U = I,
A =1; and V = I;. Given the assumption that Y= = I,,,, which implies that
»i, = I, we have R = R. So the above definition of py is identical to that in
(2.10).

Theorem 22 Let the assumptions in Lemma 21 hold. Define
A(No) = {0: V[RIGQG) IR = A}

Consider the local alternative Hy (\) : ROy = r + 50/\/7 for 6o € A(Ng) and the
fized-smoothing asymptotics.

(@) If Umax (prP%) < 9(h,q), then ROyp has a larger asymptotic variance
than RélT.

(b) If Vmin (prPR) > 9(h,q), then ROyr has a smaller asymptotic variance
than RélT.

(¢) If Vmax (PrPR) < [ (Xo; hyD, q, &), then the two-step test is asymptotically
less powerful than the first-step test for any dg € A (Ag).

(d) If vmin (PrPR) > [ (Xo; b, p, q, @) , then the two-step test is asymptotically
more powerful than the first-step test for any dy € A (Ao).

If R = I,, then R is a square matrix with a full rank. Since the long
canonical correlation coefficient is invariant to a full-rank linear transformation,

we have v (prp) = v (pp’) . It then follows from Theorem 22(a) (b) that

(i) if Vimax (pp') < g(h, q), then avar(for) > avar(fy7).

~ A

(ii) if v (pp') > g(h, q), then avar(fyr) < avar(7).
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These results are identical to what we obtain for the location model. The
only difference is that in the general GMM case we need to rotate and standardize
the original moment conditions before computing the long run correlation matrix.
Theorem 22 can also be applied to a general location model with a nonscalar error

variance, in which case R = R (31,)"%.

2.5.2 GMM Estimation and Inference with a Working Weight-
ing Matrix

In the previous subsection, we employ two specific weighting matrices —
the variance and long run variance estimators. In this subsection, we consider a
general weighting matrix WT(éOT), which may depend on the initial estimator Oor

and the sample size T', leading to yet another GMM estimator:

~

o R —1
0,0 = arg %gél gr(0)' [WT(HOT)] gr(0)

where the subscript ‘a’ signifies ‘another’ or ‘alternative’.

An example of WT(éOT) is the implied LRV matrix when we employ a
simple approximating parametric model to capture the dynamics in the moment
process. We could also use the general LRV estimator but we choose a large h
so that the variation in WT(éOT) is small. In the kernel LRV estimation, this
amounts to including only autocovariances of low orders in constructing WT(éOT).
We assume that WT(éOT) 2 W, a positive definite nonrandom matrix under the
fixed-smoothing asymptotics. W may not be equal to the variance or long run
variance of the moment process. We call WT(éOT) a working weighting matrix.
This is in the same spirit of using a working correlation matrix rather than a true
correlation matrix in the generalized estimating equations (GEE) setting. See, for

example, Liang and Zeger (1986).
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In parallel to (2.16), we construct the test statistic
A ~ -1 A
War i= T(Rlar — 1) {RVar B’} (Rbar 1),

Var is defined according to
0=0,1

where, for Gor = %Zle df (v, 0)/00

~ v

Vir = Gy Gur)Car] (G B2 Bur) W5 Bur) o |
< [ ) Gr |

which is a standard variance estimator for 8,7.

Define

Wll W12

W*=U'WU and W = 5} W*(S7),) ! =
W21 W22

and ﬁa = W12W251.
Using the same argument for proving Lemma 21, we can show that

(315) "2 AVNT (fur — 0) = iT > " [fi (vr,00) = Bafa (v, 00)] + 0,(1). (2.23)

The above representation is the same as that in (2.21) except that [, is now
replaced by f3,.

Let V, and V, g be the long run variances of

Lf1 (v, 00) — Bafa (ve,6p)] and R [f1 (ve, 00) — Bafa (vi,00)],

respectively. The long run correlation matrices are

Pa = V;UQ (12 — Ba2a2) 9521/2 and pg r = V;;E/Q R (12 — 5aQ22)] 9521/2-
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The corresponding long run canonical correlation coefficients are

v(papy) = v{(Qa = BaQ22) Uy (2 — Fuf2e2)' V, '} and
v (Pa,RP;,R) = Vv {R (D12 — Baf22) Qo (12 — Baf222)’ R/V;}g} :

Theorem 23 Let the assumptions in Lemma 21 hold. Assume further that WT(éOT)
LW, a positive definite nonrandom matriz. Consider the local alternative Hy (Ao)
and the fized-smoothing asymptotics.

(@) If Vmax(Pa,rPor) < 9(h,q), then Rbyr has a larger asymptotic variance
than RéaT.

(0) If Vmin(pa,rPo.r) > 9(h, q), then ROsr has a smaller asymptotic variance
than RéaT.

(¢) If Vmax(Pa,rP4r) < f(Ao; hyp,q, ), then the two-step test based on Wo
is asymptotically less powerful than the test based on W, for any &y € A (Ng).

(d) If Vmin(pa,rPyr) > [ (Aos h,p,q, ), then the two-step test based on Wy
is asymptotically more powerful than the test based on W, for any dy € 2A (o).

Theorem 23 is entirely analogous to Theorem 22. The only difference is that
the second block of moment conditions is removed from the first block using the
implied matrix coefficient S, before computing the long run correlation coefficient.

When R = I;, R becomes a square matrix, and we have V(pa,RPYy R) =
v (papl,). Theorem 23(a) and (b) gives the conditions under which for is asymp-
totically more efficient than Our.

To understand the theorem, we can see that the effective moment conditions

behind RéaT are:

Efia (v1,600) = 0 for fi, (ve,00) = R[f1 (vi,00) — Bafa (vr,60)].

RéaT uses the information in Efy (v,00) = 0 to some extent, but it ignores the

residual information that is still potentially available from FEfs (vs,60y) = 0. In
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contrast, ROy attempts to explore the residual information. If there is no long run
correlation between fi, (vg, 0p) and fo (ve,6p) , i.e., po.r = 0, then all the information
in Efy(v,00) = 0 has been fully captured by the effective moment conditions
underlying RO,r. As a result, the test based on RO necessarily outperforms that
based on Rfyr. If the long run correlation p, g is large enough in the sense given
in Theorem 23(d), the test based on Rfyy could be more powerful than that based

on RéaT in large samples.

2.6 Simulation Evidence and Practical Guidance

This section compares the finite sample performances of one-step and two-
step estimators and tests using the fixed-smoothing approximations. We consider
the location model given in (2.1) with the true parameter value 6y = (0, ...,0) € R?
but we allow for a nonscalar error variance. The error {u;} follows a VAR(1)

process:
. . ’Y a . .
uip = guti g+ —=> sl teffori=1,..d (2.24)
VS
uy, = pust |+ ey fori=1,..q

where e}l ~ iid N(0,1) across i and t, €5 ~ iid N(0,1) across i and ¢, and
{et,,t =1,2,...,T} are independent of {e%,,t = 1,2, ..., T}. Let u} := ((u3,)’, (ub,)) €
R™ € R™, then u} = Tu} | + ¢} where

¢Id \/laJd,q eit

w0, %
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and Jg, is the d x ¢ matrix of ones. Direct calculations give us the expressions for

the long run and contemporaneous variances of {u;} as

O = > Bui(uy ) =Ty -T) " Iy - T
Jj=—00
_ . ) 2la+ o yadaa —(1_7;)3\/6Jd,q
1
(1—w)3\/a°7qu o la
and ( 2)

Z* _ ’UCI,’T‘(U,:) _ 1—)2 Id + (1— Jdd \/6(1-'4[)2)2 Jd,q

Y 1

%W 0 gzl

Let upy = (5,) 2 [ul, — 5%, (35,) " ug,] and ugy = (235,) % u, and p be the long
run correlation matrix between wi; and ug;. With some algebraic manipulations,

we have

a2\ L
ppl = (d + “,y—;Z))) Jd,d~ (225)

So the maximum eigenvalue of pp’ is given by Vmax(pp') = [1 4 (1 — 12)2/(d+?)] ",
which is also the only nonzero eigenvalue.
In addition to the VAR(1) error process, we also consider the following

VARMA(1,1) process for u; :

q
W=l e+ =Y e fori=1,...d (2.26)
Vi

uy = pus | +esifori=1,...,q

where e} N (0,1,,). The corresponding long run covariance matrix 2* and

contemporaneous covariance matrix »* are

0l
o = | - )21d+< ad Gy Jaa

1
(1—w)2\/a ' Jq’d (-9 Iy
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and
s _ ﬁ[d + %Jd,d \%ﬁ% “Jag
\/Lali% +Jod 171w2 1
With some additional algebras, we have
/ 1 -
pp = (d+ m) Ja,d, (2.27)

and Vmax (pp) = (1 +1/[d (L —9)* 7))~
Under the VARMA(1,1) design, a working weighting matrix W (6,7) using
VAR(1) is misspecified and it is not hard to obtain the probability limit of W (far)

as

y _ -1 _ L . -1
W= (Im “T-A (z*)*l) (1 A TA AA') ([m D (z)! A') ,
which is different from the true long run variance matrix 2*. Based on W, Q*, and
3", we can compute p,p, and pq rp, -

For the basis functions in OS LRV estimation, we choose the following

orthonormal basis functions {®;}32, in the L?[0, 1] space:
®y; 1 () = V2cos(2jmz) and ®yj(x) = V2sin(2j7z) for j = 1,..., K/2,

where K is an even integer. We also consider kernel based LRV estimators with
the three commonly-used kernels: Bartlett, Parzen, QS kernels. For the choice
of K in OS LRV estimation, we employ the following AMSE-optimal formula in
Phillips (2005):

_ tr [(In2 + Konn) (27 @ Q)N 5
Kysp =2 % {0.5( toec(BYvee(BY) ) T w
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where [-] is the ceiling function, K, is m?* x m? commutation matrix and

Similarly, in the case of kernel LRV estimation, we select the smoothing parame-
ter b according to the AMSE-optimal formula in Andrews (1991). The unknown
parameters in the AMSE are either calibrated or data-driven using the VAR(1)
plug-in approach. The qualitative messages remain the same regardless of how the
unknown parameters are obtained.

In all our simulations, the sample size T"is 200, and the number of simulation

replications is s 10, 000.

2.6.1 Point Estimation

We focus on the case with d = 1, under which pp’ is a scalar and v (pp’) =
pp'. For both simulation designs, vmay(pp’) is increasing in 2 for a given . We
fix the value of ¥ at 0.75 so that each time series is reasonably persistent. For this
value of ¥, we consider vy (pp’) = 0,0.09,0.18, ...,0.90,0.99, which are obtained
by setting v to appropriate values using (2.25) or (2.27).

According to Proposition 15, if pp’ is greater than a threshold value, then
Var(fyr) is expected to be smaller than Var(6y7). Otherwise, Var(far) is expected
to be larger. We simulate Var(élT), Var(égT) and Var(éaT). Here, 0,7 is based
on a working weighting matrix W (fy7) using VAR(1) as the approximating model
for the estimated error process {@}(6yr)}.

Tables 2.5~2.6 report the simulated variances under the VAR(1) design
with ¢ = 3 and 4 for some given values of K and b. These values are calibrated
by using the AMSE optimal formulae under the VAR(1) design with ¢) = 0.75 and
Y2 = (pp' (1 —*)?) / (d(1 — pp’) for d = 1 and pp’ = 0.40. We first discuss the case
when the OS LRV estimator is used. It is clear that Var(égT) becomes smaller than

Var(élT) only when pp’ is large enough. For example, when ¢ = 4 and there is no
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long run correlation, i.e., pp’ = 0, we have Var(fir) = 0.081 < Var(fyr) = 0.112,
and so élT is more efficient than éQT with 28% efficiency gain. These numerical
observations are consistent with our theoretical result in Proposition 13: égT be-
comes more efficient relative to 617 only when the benefit of using the LRV matrix
outweighs the cost of estimating it. With the choice of K = 14 and ¢ = 4, Table 2.5
indicates that Var(égT) starts to become smaller than Var(élT) when pp’ crosses
a value in the interval [0.270,0.360] from below. This agrees with the theoretical
threshold value pp’ = q/(K — 1) ~ 0.307 given in Corollary 16.

In the case of kernel LRV estimation, we get exactly the same qualitative
messages. For example, consider the case with the Bartlett kernel, b = 0.08, and
¢ = 3. We observe that Var(fyr) starts to become smaller than Var(f17) when
pp’ crosses a value in the interval [0.09, 0.18] from below. This is compatible with
the threshold value 0.152 given in Table 2.1.

Finally, we note that Var(6,r) is smaller than Var(fy7) for all values of pp’
considered. This is well expected. In constructing éaT, we employ a correctly spec-
ified parametric model to estimate the weighting matrix and so W(éOT) converges
in probability to the true long run variance matrix 2*. However, when the true
DGP is VARMA(1,1), the results in Tables 2.7~2.8 indicate that the efficiency of
f,r is reduced due to the misspecification bias in the working weighting matrix
W (Gar). The tables also report the values of pop,. We find that 6,7 is more ef-
ficient than Gy only when p,p/ is below a certain threshold value. This confirms

the qualitative messages in Theorem 23(a) and (b).

2.6.2 Hypothesis Testing

We implement three testing procedures on the basis of Wi, Wor and W, .
Here, W, is based on the same working weighting matrix W(éOT) as in the point
estimation case. The nominal significance level is a« = 0.05. As before, ¢» = 0.75.
We use (2.25) and (2.27) to set v and obtain vyax(pp’) € {0.00,0.35,0.50, 0.60, 0.80,
0.90}. We focus on the case with d = 3 and ¢ = 3. The null hypotheses of interest
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are:

HOQ . 61:82:0

where p = 1,2 respectively. For the smoothing parameters, we employ the data
driven AMSE optimal bandwidth through VAR(1) plug-in implementation devel-
oped by Andrews (1991) and Phillips (2005).

Tables 2.9~2.16 report the empirical size of three nominal 5% testing pro-
cedures based on the two types of asymptotic approximations. It is clear that all of
the three tests based on Wi, W,r and Wy suffer from severe size distortion if the
conventional normal (or chi-square) critical values are used. For example, when
the DGP is VAR(1) and OS LRV estimation is implemented, the empirical sizes of
the three tests using the OS LRV estimator are reported to be around 14% ~ 29%
when p = 2. The relatively large size distortion of the Wy test comes from the
additional cost in estimating the weighting matrix. However, if the nonstandard
critical values W{, and W¢  are used, we observe that the size distortion of all
three procedures is substantially reduced. The result agrees with the previous lit-
erature such as Sun (2013, 2014a,b, and ¢) and Kiefer and Vogelsang (2005) which
highlight the higher accuracy of the fixed-smoothing approximations. Also, we
observe that when the fixed-smoothing approximations are used, the Wi test is
more size-distorted than the Wy test in most cases. Similar results for the kernel
cases are reported in Tables 2.11~2.16.

Next, we investigate the finite sample power performances of the three
procedures. We use the finite sample critical values under the null, so the power is
size-adjusted and the power comparison is meaningful. The DGPs are the same as
before except the parameters are from the local null alternatives Rfy = 7+ do/v/T.
The degree of overidentification considered here is ¢ = 3. Also, the domain of each

power curve is rescaled to be A 1= §,(RQ.oR) "6, with R = R(X*,)"/? as in
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Section 2.4 and 2.5.

Figures 2.2~2.3 show the size-adjusted finite sample power of the three
procedures in the case of OS LRV estimation. We can see that in all figures,
the power curve of the two-step test shifts upward as the degree of the long run
correlation Vpax(prp’R) increases and it starts to dominate that of the one-step
test from certain point vmax(prpr) € (0,1). This is consistent with Proposition
19. For example, with K = 14 and p = 1, the power curves in Figure 2.2 show
that the power curve of the two-step test Wor starts to dominate that of the
one-step test Wir when vpax(prps) reaches 0.25. This matches our theoretical
results in Proposition 19 and Table 2.4 which indicate that the threshold value
maxep1,25] f (A K, p, ¢, ) is about 0.275 when K = 14,p = 1 and ¢ = 3. Also, if
Vmax(PrPR) is as high as 0.75, we can see that the two-step test is more powerful
than the one-step test in most of cases.

Lastly, in the presence of VAR(1) error, the performance of W, dominates
that of Wy and War for all vmax(prpR) € (0,1). This is analogous to the point
estimation results. The working weighting matrix W(éOT) based on VAR(1) plug-
in model is close to the true long run variance matrix 2*. This leads to power
improvement whenever there is some long run correlation between uj, and uj,.
However, under the VARMA(1,1) error, Figures ??~2.3 show that the advantages
of W,r are reduced and W, is more powerful than the two-step test Wor only
when Viax(pa,r0; z) is below the threshold value f(Ao; K, p,q, ). This is due to
the misspecification bias in W(éOT) which is attributed to the use of a wrong
plug-in model. Nevertheless, we still observe comparable performances of W, for
most of non-zero Vyax (pa, RP%a, r) values. Figures 2.4~2.7 for the cases of kernel LRV

estimators deliver the same qualitative messages.

2.6.3 Practical Recommendation

Both our theoretical result and simulation evidence suggest that we should

go one more step and employ the two-step estimator and test when the long run



139

canonical correlation coefficients are large enough. In empirical applications, we
often care about only a linear combination of model parameters or a single model
parameter. In this case, there is only one long run canonical correlation coefficient
and it provides the necessary and sufficient condition for going the extra step.
However, it is hard to estimate the long run canonical correlation coefficient with
good precision. This is exactly the source of the problem why the two-step esti-
mator and test may not outperform. In the absence of any prior knowledge of the
long run canonical correlation, we propose to use the two-step estimator and test
only when the estimated long run canonical correlation coefficient is larger than
our theoretical threshold by a margin, say 10%. On the other hand, when the
estimated long run canonical correlation coefficient is smaller than our theoretical
threshold by 10%, we stick with the first-step estimator and test. When the es-
timated long run canonical correlation coefficient is within 10% of the theoretical
threshold, we propose to use the GMM estimator and test based on a working
weighting matrix using VAR(1) as the approximating parametric model. Our rec-
ommendation in the not so clear-cut case is based on the simulation evidence that
the working weighting matrix can deliver a robust performance in finite samples.

We now formalize our recommendation using hypothesis testing as an ex-
ample. Given the set of moment conditions Ef(v;,6,) = 0 and the data {v},
suppose that we want to test Hy : Rfy = r against RO, # r for some R € RP*?,

We follow the steps below to decide on which test to use.

2

1. Compute the initial estimator Oor = arg mingceo HZtT:1 f(vt, 0)

2. On the basis of fyr, use a data-driven method such as Andrews (1991) or
Phillips (2005) to select the smoothing parameter. Denote the data-driven
value by h.

3. Based on the smoothing parameter fL, compute iest(éOT) and Qest(éOT) using

the formulae in (2.15).
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4. Compute Gr(fyr) = . - %b:éw and its singular value decomposi-

tion UZV’ where =/ = (Agxa, Odxq) and Agyq is diagonal.

. Estimate the variance and the long run variance of the rotated moment

processes by

~ A~ ~

Y= U/iest(égT)[j and Q* = U/Qest(QOT)U'

. Compute the normalized LRV estimator:

- NS Qi Qp
Q= 1/2) 19( 1,/2> b= . .
Qo1 Qoo
where
W N2 L e, T2
S <Z1-2> 2o (23

s . (2.28)

. Let Rey = RVA~Y(31,)/2. Compute the eigenvalues:
v(prPR) =V [(RSSthQilQl?é/est)(RGStQHR/est)il] :

Let Viax (PrPR) and vmin (prPR) be the largest and smallest eigenvalues,

respectively.

. Choose the value of A° such that P (x2 (X°) > x; ) = 75%. This choice of
A° is consistent with the optimal testing literature. We may also choose a

value of \° to reflect scientific interest or economic significance.

(&) If vmin (PRAR) > 1.1f()\";ﬁ,p,q,oz), then we use the second-step test
based on Wyr.

(b) If Vimax (PrAR) < 0.9f (N h,p,q, a), then we use the first-step test based

on Wir.
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(c) If neither condition (a) nor condition (b) is satisfied, then we use the
testing procedure based on W, using the VAR(1) as the approximating

parametric model to estimate the weighting matrix.

2.7 Conclusion

In this paper we have provided more accurate and honest comparisons be-
tween the popular one-step and two-step GMM estimators and the associated in-
ference procedures. We have given some clear guidance on when we should go one
step further and use a two-step procedure. Qualitatively, we want to go one step
further only if the benefit of doing so clearly outweighs the cost. When the benefit
and cost comparison is not clear-cut, we recommend using the GMM procedure
with a working weighting matrix.

The qualitative message of the paper is applicable more broadly. As long as
there is additional nonparametric estimation uncertainty in a two-step procedure
relative to the one-step procedure, we have to be very cautious about using the
two-step procedure. While some asymptotic theory may indicate that the two-step
procedure is always more efficient, the efficiency gain may not materialize in finite
samples. In fact, it may do more harm than good sometimes if we blindly use the
two-step procedure.

There are many extensions of the paper. We give some examples here. First,
we can use the more accurate approximations to compare the continuous updating
GMM and other generalized empirical likelihood estimators with the one-step and
two-step GMM estimators. While the fixed-smoothing asymptotics captures the
nonparametric estimation uncertainty of the weighting matrix estimator, it does
not fully capture the estimation uncertainty embodied in the first-step estimator.
The source of the problem is that we do not observe the moment process and
have to use the estimated moment process based on the first-step estimator to

construct the nonparametric variance estimator. It is interesting to develop a
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further refinement to the fixed-smoothing approximation to capture the first-step
estimation uncertainty more adequately. Finally, it will be also very interesting to
give an honest assessment of the relative merits of the OLS and GLS estimators

which are popular in empirical applications.
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Figure 2.1: Limiting distributions of élT and égT based on the OS LRV estimator

with K = 4.
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Figure 2.2: Size-adjusted power of the three tests based on the OS LRV estimator
under VAR(1) error with p =1, ¢ =3, v = 0.75, T'= 200, and K = 14.
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Figure 2.3: Size-adjusted power of the three tests based on the OS LRV estimator
under VARMA (1,1) error with p =2, ¢ = 3, ¢ = 0.75, T = 200, and K = 14.
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Figure 2.5: Size-adjusted power of the three tests based on the OS LRV estimator
under VAR(1) error with p =2, ¢ =3, v = 0.75, T'= 200, and K = 14.
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Figure 2.6: Size-adjusted power of the three tests based on the Parzen LRV esti-
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Table 2.1: Threshold values g(h,q) for asymptotic variance comparison with

Bartlett kernel

b

qg=1

q=2

q=3

q=4

qg=>5

0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110
0.120
0.130
0.140
0.150
0.160
0.170
0.180
0.190
0.200

0.007
0.014
0.020
0.027
0.034
0.040
0.047
0.054
0.061
0.068
0.074
0.081
0.088
0.094
0.101
0.107
0.113
0.119
0.124
0.130

0.014
0.027
0.040
0.053
0.066
0.079
0.092
0.104
0.117
0.129
0.141
0.153
0.164
0.175
0.186
0.196
0.206
0.216
0.226
0.235

0.020
0.040
0.059
0.079
0.098
0.116
0.135
0.152
0.170
0.186
0.203
0.218
0.233
0.247
0.260
0.273
0.284
0.295
0.306
0.316

0.027
0.053
0.078
0.104
0.128
0.152
0.175
0.197
0.218
0.238
0.257
0.274
0.291
0.306
0.321
0.334
0.347
0.358
0.369
0.380

0.033
0.065
0.097
0.128
0.157
0.185
0.211
0.237
0.260
0.282
0.303
0.322
0.340
0.356
0.371
0.384
0.397
0.407
0.417
0.425

Note: h = 1/b indicates the level of smoothing and ¢ is the degrees of overidentification.
If the largest squared long run canonical correlation between the two blocks of (rotated
and transformed) moment conditions is less than g (h, ¢) , then the two-step estimator A7
is asymptotically less efficient than the one-step estimator f17. If the smallest squared
long run canonical correlation is greater than g (h,q), then the two-step estimator Oor
is asymptotically more efficient than the one-step estimator O17.
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Table 2.2: Threshold values g(h, q) for asymptotic variance comparison with Parzen
kernel

b qg=11q=2|q=3|q=4]q=5

0.010 | 0.006 | 0.011 | 0.016 | 0.022 | 0.027
0.020 | 0.011 | 0.022 | 0.033 | 0.043 | 0.054
0.030 | 0.017 | 0.033 | 0.049 | 0.065 | 0.081
0.040 | 0.022 | 0.044 | 0.065 | 0.087 | 0.107
0.050 | 0.028 | 0.055 | 0.082 | 0.108 | 0.134
0.060 | 0.033 | 0.066 | 0.099 | 0.130 | 0.161
0.070 | 0.039 | 0.077 | 0.115 | 0.152 | 0.187
0.080 | 0.045 | 0.088 | 0.132 | 0.173 | 0.213
0.090 | 0.051 | 0.100 | 0.148 | 0.194 | 0.238
0.100 | 0.057 | 0.111 | 0.164 | 0.215 | 0.263
0.110 | 0.063 | 0.122 | 0.181 | 0.236 | 0.288
0.120 | 0.069 | 0.133 | 0.197 | 0.257 | 0.312
0.130 | 0.075 | 0.145 | 0.213 | 0.277 | 0.336
0.140 | 0.081 | 0.156 | 0.229 | 0.297 | 0.359
0.150 | 0.087 | 0.168 | 0.245 | 0.317 | 0.382
0.160 | 0.093 | 0.179 | 0.261 | 0.337 | 0.404
0.170 | 0.100 | 0.191 | 0.277 | 0.356 | 0.426
0.180 | 0.106 | 0.202 | 0.293 | 0.375 | 0.448
0.190 | 0.112 | 0.214 | 0.308 | 0.393 | 0.469

0.200 | 0.118 | 0.225 | 0.323 | 0.411 | 0.489

Note: See notes to Table 2.1
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Table 2.3: Threshold values g(h,q) for asymptotic variance comparison with QS
kernel

b g=1|q=2|q=3|q=4|q=5

0.010 | 0.010 | 0.020 | 0.030 | 0.040 | 0.050
0.020 | 0.021 | 0.041 | 0.061 | 0.082 | 0.102
0.030 | 0.031 | 0.062 | 0.093 | 0.124 | 0.154
0.040 | 0.042 | 0.084 | 0.126 | 0.166 | 0.206
0.050 | 0.053 | 0.106 | 0.158 | 0.209 | 0.258
0.060 | 0.065 | 0.128 | 0.191 | 0.252 | 0.311
0.070 | 0.077 | 0.151 | 0.225 | 0.296 | 0.362
0.080 | 0.089 | 0.175 | 0.259 | 0.340 | 0.414
0.090 | 0.102 | 0.198 | 0.293 | 0.382 | 0.464
0.100 | 0.115 | 0.222 | 0.326 | 0.423 | 0.516
0.110 | 0.127 | 0.247 | 0.359 | 0.463 | 0.565
0.120 | 0.140 | 0.271 | 0.392 | 0.502 | 0.612
0.130 | 0.153 | 0.296 | 0.426 | 0.542 | 0.655
0.140 | 0.166 | 0.321 | 0.458 | 0.581 | 0.697
0.150 | 0.179 | 0.346 | 0.489 | 0.619 | 0.736
0.160 | 0.193 | 0.371 | 0.520 | 0.655 | 0.773
0.170 | 0.206 | 0.395 | 0.549 | 0.690 | 0.806
0.180 | 0.220 | 0.418 | 0.578 | 0.722 | 0.834
0.190 | 0.233 | 0.441 | 0.605 | 0.752 | 0.859
0.200 | 0.246 | 0.463 | 0.630 | 0.779 | 0.879

Note: See notes to Table 2.1.
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Table 2.4: Threshold Values f(\; K, p,q,«) for power comparison with OS LRV
estimation when o = 0.05 and K = §8,10,12,14.

p=1 p=2 p=3
K A g=1 q=2 ¢q=3 q=1 q=2 q=3 g=1 q=2 ¢qg=3
1.000 | 0.162 0.378 0.514 0.223 0.367 0.581 0.242 0.433 0.576
5.000 0.151  0.364 0.503 0.214 0.370 0.582 0.225 0.469 0.623
9.000 0.154  0.352 0.493 0.213 0.377 0.597 0.226 0.488 0.639
8 | 13.000 | 0.153 0.345 0.496 0.213 0.397 0.600 0.226 0.495 0.645
17.000 | 0.160 0.352 0.489 0.217 0.399 0.608 0.230 0.498 0.652
21.000 | 0.165 0.356 0.493 0.211 0.405 0.604 0.234 0.503 0.657
25.000 | 0.171  0.355 0.492 0.208 0.399 0.611 0.231 0.510 0.665
1.000 | 0.082 0.283 0.474 0.162 0.277 0.461 0.171  0.369 0.507
5.000 | 0.130 0.281 0.426 0.133 0.310 0.439 0.192 0.348 0.507
9.000 | 0.138 0.269 0.423 0.136 0.305 0.431 0.196 0.328 0.506
10 | 13.000 | 0.135 0.261 0.416 0.132 0.308 0.432 0.200 0.339 0.507
17.000 | 0.128 0.267 0.406 0.137 0.308 0.431 0.209 0.341 0.509
21.000 | 0.136  0.276 0.406 0.137 0.308 0.436 0.210 0.346 0.508
25.000 | 0.134 0.270 0.418 0.135 0.308 0.439 0.203 0.344 0.509
1.000 0.085 0.198 0.322 0.128 0.203 0.345 0.151 0.325 0.314
5.000 0.106  0.218 0.298 0.127 0.244 0.336 0.129 0.301 0.345
9.000 | 0.103 0.210 0.301 0.122  0.233 0.353 0.119 0.284 0.352
12 | 13.000 | 0.098 0.205 0.308 0.125 0.232 0.353 0.124 0.274 0.359
17.000 | 0.105 0.193 0.318 0.128 0.230 0.359 0.124 0.277 0.366
21.000 | 0.100 0.197 0.325 0.119 0.243 0.363 0.123 0.274 0.369
25.000 | 0.118 0.197 0.325 0.110 0.236 0.360 0.121 0.284 0.378
1.000 | 0.062 0.316 0.260 0.089 0.184 0.367 0.155 0.287 0.394
5.000 0.091 0.232 0.275 0.133 0.181 0.287 0.112  0.220 0.341
9.000 0.093 0.214 0.274 0.117 0.188 0.273 0.124 0.209 0.341
14 | 13.000 | 0.087 0.211 0.265 0.109 0.192 0.281 0.126  0.213 0.338
17.000 | 0.097 0.200 0.263 0.109 0.201 0.285 0.125 0.214 0.338
21.000 | 0.093 0.213 0.257 0.105 0.197 0.285 0.130 0.208 0.332
25.000 | 0.110 0.226 0.268 0.101 0.191 0.289 0.122  0.209 0.334
Note: If the largest squared long run canonical correlation between the two blocks of

(rotated and transformed) moment conditions is smaller than f (A; K, p,q, «), then the
two-step test is asymptotically less powerful; If the smallest squared long run canonical
correlation is greater than f (\; K, p, q, @), then the two-step test is asymptotically more
powerful.
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Table 2.5: Finite sample variance comparison for the three estimators élT, ézT and

~

0,7 under VAR(1) error with 7" = 200, and ¢ = 3.

Vmax(pp') | Var(fi7) Var(f7) Var(0q7)
0S Bartlett | Parzen QS
K=14 | b=0.08 | b=0.15 | b=0.08
0.000 0.081 0.103 0.100 0.108 0.109 0.089
0.090 0.093 0.105 0.103 0.110 0.111 0.093
0.180 0.107 0.108 0.105 0.112 0.113 0.096
0.270 0.124 0.111 0.108 0.114 0.115 0.099
0.360 0.146 0.115 0.111 0.117 0.118 0.102
0.450 0.174 0.120 0.116 0.120 0.122 0.106
0.540 0.214 0.127 0.122 0.125 0.127 0.110
0.630 0.272 0.137 0.131 0.132 0.134 0.116
0.720 0.368 0.154 0.145 0.144 0.146 0.123
0.810 0.554 0.185 0.174 0.166 0.170 0.135
0.900 1.073 0.274 0.253 0.227 0.235 0.166
0.990 10.892 1.937 1.731 1.372 1.451 0.714
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Table 2.6: Finite sample variance comparison for the three estimators 91T, éQT and

~

0,7 under VAR(1) error with 7" = 200, and ¢ = 4.

Vmax(pp') | Var(6i7) Var(far) Var(f,7)
(ON) Bartlett | Parzen QS
K=14 | b=0.07 | b=0.150 | b=0.07
0.000 0.081 0.112 0.104 0.120 0.114 0.089
0.090 0.092 0.114 0.106 0.121 0.115 0.093
0.180 0.106 0.117 0.108 0.123 0.118 0.096
0.270 0.122 0.124 0.111 0.126 0.120 0.100
0.360 0.146 0.125 0.115 0.129 0.124 0.105
0.450 0.175 0.130 0.121 0.133 0.129 0.110
0.540 0.217 0.139 0.129 0.139 0.135 0.116
0.630 0.278 0.151 0.141 0.148 0.146 0.123
0.720 0.379 0.172 0.160 0.163 0.162 0.134
0.810 0.576 0.213 0.198 0.193 0.196 0.152
0.900 1.128 0.328 0.305 0.276 0.289 0.197
0.990 11.627 2.538 2.364 1.884 2.089 1.013
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Table 2.7: Finite sample variance comparison for the three estimators élT, égT and

~

0,7 under VARMA(1,1) error with 7" = 200, and g = 3

~

~

Vmax(pp') | Var(6ir) Var(far) Vmax(Papy) | Var(bar)
(O] Bartlett | Parzen QS
K=14|b=0.08 | b=0.15 | b=0.08
0.000 0.081 0.103 0.100 0.108 0.109 0.000 0.089
0.090 0.104 0.105 0.102 0.110 0.110 0.152 0.087
0.180 0.129 0.107 0.103 0.111 0.112 0.199 0.090
0.270 0.161 0.109 0.105 0.113 0.114 0.250 0.096
0.360 0.202 0.112 0.108 0.116 0.117 0.306 0.104
0.450 0.255 0.116 0.111 0.119 0.121 0.368 0.115
0.540 0.329 0.121 0.116 0.124 0.126 0.439 0.130
0.630 0.439 0.129 0.123 0.131 0.133 0.519 0.153
0.720 0.620 0.143 0.134 0.143 0.145 0.611 0.191
0.810 0.970 0.168 0.155 0.165 0.168 0.716 0.265
0.900 1.950 0.240 0.215 0.228 0.233 0.838 0.471
0.990 20.496 1.589 1.357 1.411 1.462 0.982 4.356
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Table 2.8: Finite sample variance comparison for the three estimators élT, égT and

~

0,7 under VARMA(1,1) error with 7" = 200, and ¢ = 4.

~

~

Vmax(pp') | Var(6ir) Var(far) Vmax(Papy) | Var(bar)
(O] Bartlett | Parzen QS
K=14|b=0.07 | b=0.15| b =0.07
0.000 0.081 0.112 0.104 0.120 0.114 0.000 0.089
0.090 0.103 0.113 0.105 0.121 0.115 0.152 0.086
0.180 0.132 0.115 0.106 0.123 0.117 0.199 0.091
0.270 0.167 0.118 0.108 0.125 0.119 0.250 0.098
0.360 0.212 0.121 0.111 0.128 0.122 0.306 0.109
0.450 0.272 0.126 0.114 0.132 0.126 0.368 0.123
0.540 0.356 0.132 0.119 0.137 0.131 0.439 0.144
0.630 0.481 0.142 0.127 0.145 0.139 0.519 0.174
0.720 0.686 0.158 0.140 0.159 0.153 0.611 0.225
0.810 1.086 0.190 0.164 0.186 0.180 0.716 0.325
0.900 2.206 0.279 0.235 0.262 0.257 0.838 0.605
0.990 23.519 2.013 1.598 1.735 1.742 0.982 5.954
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Table 2.9: Empirical size of one-step and two-step tests based on the series LRV

estimator under VAR(1) error when ¢» = 0.75,p =1 ~ 2, and T = 200

p=1land ¢g=3
One Step(3*) | One Step(W) Two Step
Umax(PRPR) | X2 | Wise | X% | Wi | Xx? | Wase
0.00 0.128 | 0.098 | 0.151 | 0.119 | 0.187 | 0.076
0.15 0.126 | 0.096 | 0.135 | 0.103 | 0.177 | 0.061
0.25 0.135 | 0.102 | 0.138 | 0.105 | 0.187 | 0.063
0.33 0.135 | 0.105 | 0.127 | 0.094 | 0.174 | 0.059
0.57 0.139 | 0.107 | 0.086 | 0.061 | 0.154 | 0.044
0.75 0.143 | 0.116 | 0.046 | 0.031 | 0.118 | 0.032
p=2and ¢g=3
One Step(2*) | One Step(WW) Two Step
Umax(PRPR) | X2 | Wise | X* | Wi | X* | Was
0.00 0.181 | 0.111 | 0.222 | 0.138 | 0.290 | 0.077
0.26 0.191 | 0.118 | 0.219 | 0.136 | 0.296 | 0.069
0.40 0.192 | 0.115 | 0.201 | 0.120 | 0.290 | 0.065
0.50 0.195 | 0.119 | 0.194 | 0.112 | 0.290 | 0.057
0.73 0.206 | 0.120 | 0.168 | 0.095 | 0.272 | 0.057
0.86 0.206 | 0.124 | 0.143 | 0.082 | 0.245 | 0.051

Note: “One Step(3*) test” is based on the first-step GMM estimator using the contem-
poraneous variance estimator as the weighing matrix; “One Step(W) test” is based on
the GMM estimator using the VAR (1) parametric plug-in LRV estimator as the weighing
matrix; “T'wo Step test” is based on the two-step GMM estimator using the data driven
nonparametric LRV estimator as the weighing matrix.
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Table 2.10: Empirical size of one-step and two-step tests based on the series LRV

estimator under VARMA(1,1) error when ¢ = 0.75,p = 1 ~ 2, and T = 200

p=1land ¢q=3
One Step(S*) | One Step(W) Two Step
Vmax(PRPR) | X2 | Wie | X% | Wi | Xx? | Wase
0.00 0.117 | 0.091 | 0.138 | 0.108 | 0.181 | 0.068
0.15 0.140 | 0.113 | 0.142 | 0.113 | 0.173 | 0.071
0.25 0.144 | 0.117 | 0.140 | 0.113 | 0.165 | 0.065
0.33 0.155 | 0.127 | 0.141 | 0.111 | 0.160 | 0.060
0.57 0.167 | 0.138 | 0.128 | 0.106 | 0.121 | 0.043
0.75 0.168 | 0.141 | 0.118 | 0.096 | 0.087 | 0.025
p=2and ¢g=3
One Step(2*) | One Step(WW) Two Step
Umax(PRAR) | X2 | Wise | X% | Wise | X% | Wan
0.00 0.188 | 0.119 | 0.227 | 0.146 | 0.290 | 0.080
0.26 0.202 | 0.129 | 0.209 | 0.136 | 0.270 | 0.073
0.40 0.206 | 0.135 | 0.204 | 0.134 | 0.254 | 0.069
0.50 0.223 | 0.148 | 0.215 | 0.144 | 0.251 | 0.065
0.73 0.221 | 0.148 | 0.205 | 0.138 | 0.214 | 0.053
0.86 0.222 | 0.156 | 0.194 | 0.132 | 0.178 | 0.044

Note: See notes to Table 2.9.



160

Table 2.11: Empirical size of one-step and two-step tests based on the Bartlett
kernel variance estimator under VAR(1) error when ¢ = 0.75, p = 1 ~ 2 and
T =200

p=1and q¢g=3

v

One Step(3*) | One Step(W) Two Step

Umax(PRPR) | X7 | Wise | X° | Wi | X* | Waw
0.00 0.156 | 0.138 | 0.192 | 0.172 | 0.201 | 0.133
0.15 0.163 | 0.138 | 0.175 | 0.154 | 0.201 | 0.120
0.25 0.161 | 0.138 | 0.164 | 0.141 | 0.196 | 0.112
0.33 0.154 | 0.127 | 0.140 | 0.115 | 0.181 | 0.100
0.57 0.147 | 0.119 | 0.085 | 0.066 | 0.144 | 0.069
0.75 0.152 | 0.128 | 0.035 | 0.023 | 0.115 | 0.053

p=2and ¢g=3

v

One Step(2*) | One Step(WW) Two Step

Umax(PRAR) | X2 | Wise | X% | Wise | X% | Wan
0.00 0.239 | 0.183 | 0.287 | 0.228 | 0.305 | 0.177
0.26 0.230 | 0.166 | 0.263 | 0.196 | 0.298 | 0.150
0.40 0.231 | 0.169 | 0.243 | 0.170 | 0.296 | 0.138
0.50 0.228 | 0.161 | 0.234 | 0.159 | 0.286 | 0.130
0.73 0.228 | 0.157 | 0.179 | 0.118 | 0.263 | 0.108
0.86 0.230 | 0.159 | 0.161 | 0.108 | 0.240 | 0.098

Note: See notes to Table 2.9.
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Table 2.12: Empirical size of one-step and two-step tests based on the Bartlett
kernel variance estimator under VARMA(1,1) error when ¢ = 0.75, p =1 ~ 2 and
T = 200

p=1and q¢g=3

v

One Step(3*) | One Step(W) Two Step

Umax(PRPR) | X7 | Wise | X° | Wi | X* | Waw
0.00 0.161 | 0.142 | 0.196 | 0.177 | 0.203 | 0.134
0.15 0.147 | 0.127 | 0.165 | 0.144 | 0.188 | 0.116
0.25 0.140 | 0.117 | 0.149 | 0.129 | 0.174 | 0.105
0.33 0.131 | 0.115 | 0.134 | 0.113 | 0.158 | 0.090
0.57 0.117 | 0.099 | 0.083 | 0.068 | 0.109 | 0.051
0.75 0.109 | 0.092 | 0.035 | 0.026 | 0.058 | 0.024

p=2and ¢g=3

v

One Step(2*) | One Step(WW) Two Step

Umax(PRAR) | X2 | Wise | X% | Wise | X% | Wan
0.00 0.235 | 0.180 | 0.292 | 0.230 | 0.307 | 0.174
0.26 0.213 | 0.157 | 0.239 | 0.181 | 0.278 | 0.146
0.40 0.203 | 0.147 | 0.224 | 0.165 | 0.262 | 0.124
0.50 0.205 | 0.146 | 0.209 | 0.151 | 0.246 | 0.115
0.73 0.191 | 0.136 | 0.167 | 0.114 | 0.195 | 0.085
0.86 0.190 | 0.133 | 0.147 | 0.105 | 0.174 | 0.078

Note: See notes to Table 2.9.
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Table 2.13: Empirical size of one-step and two-step tests based on the Parzen
kernel variance estimator under VAR(1) error when ¢ = 0.75, p = 1 ~ 2 and

T =200
p=1land ¢q=3
One Step(2*) | One Step(W) Two Step
Vmax(PRAR) | X2 | Wiee | X2 | Wiee | X2 | Was
0.00 0.145 | 0.108 | 0.182 | 0.139 | 0.214 | 0.090
0.15 0.148 | 0.105 | 0.173 | 0.125 | 0.223 | 0.076
0.25 0.142 | 0.102 | 0.161 | 0.115 | 0.220 | 0.070
0.33 0.142 | 0.101 | 0.142 | 0.099 | 0.211 | 0.063
0.57 0.150 | 0.105 | 0.107 | 0.068 | 0.186 | 0.050
0.75 0.141 | 0.101 | 0.054 | 0.030 | 0.147 | 0.034
p=2and ¢g=3
One Step(2*) | One Step(W) Two Step
VmaX(PRP/R) X2 Wico X2 Wi X2 Waoo
0.00 0.216 | 0.123 | 0.278 | 0.169 | 0.340 | 0.102
0.26 0.225 | 0.117 | 0.267 | 0.149 | 0.348 | 0.085
0.40 0.221 | 0.117 | 0.260 | 0.140 | 0.346 | 0.081
0.50 0.219 | 0.112 | 0.241 | 0.123 | 0.331 | 0.072
0.73 0.217 | 0.102 | 0.199 | 0.097 | 0.310 | 0.059
0.86 0.226 | 0.116 | 0.175 | 0.080 | 0.292 | 0.054

Note: See notes to Table 2.9.
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Table 2.14: Empirical size of one-step and two-step tests based on the Parzen
kernel variance estimator under VAR(1) error when ¢ = 0.75, p = 1 ~ 2 and

T =200
p=1land ¢q=3
One Step(3*) | One Step(W) Two Step
Vax(PRAR) | X° | Wise | X% | Wi | X° | Wax
0.00 0.142 | 0.104 | 0.186 | 0.141 | 0.218 | 0.088
0.15 0.134 | 0.099 | 0.164 | 0.125 | 0.210 | 0.082
0.25 0.136 | 0.099 | 0.155 | 0.117 | 0.200 | 0.076
0.33 0.127 | 0.096 | 0.150 | 0.113 | 0.191 | 0.074
0.57 0.122 | 0.087 | 0.110 | 0.079 | 0.156 | 0.052
0.75 0.111 | 0.082 | 0.070 | 0.046 | 0.114 | 0.033
p=2and ¢g=3
One Step(2*) | One Step(WW) Two Step
Viax(PRPR) | X° | Wise | X* | Wiee | X* | Was
0.00 0.220 | 0.124 | 0.279 | 0.171 | 0.338 | 0.100
0.26 0.204 | 0.112 | 0.248 | 0.142 | 0.320 | 0.094
0.40 0.198 | 0.108 | 0.226 | 0.135 | 0.303 | 0.083
0.50 0.196 | 0.112 | 0.225 | 0.131 | 0.291 | 0.085
0.73 0.186 | 0.106 | 0.188 | 0.102 | 0.255 | 0.063
0.86 0.182 | 0.105 | 0.156 | 0.083 | 0.219 | 0.055

Note: See notes to Table 2.9.
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Table 2.15: Empirical size of one-step and two-step tests based on the QS kernel
variance estimator under VAR(1) error when ¢) = 0.75, p =1 ~ 2 and T = 200

p=1land ¢q=3
One Step(S*) | One Step(W) Two Step
Vmax(PRPR) | X2 | Wie | X% | Wi | Xx? | Wase
0.00 0.138 | 0.107 | 0.174 | 0.144 | 0.204 | 0.089
0.15 0.138 | 0.103 | 0.164 | 0.126 | 0.209 | 0.077
0.25 0.141 | 0.106 | 0.151 | 0.115 | 0.214 | 0.076
0.33 0.135 | 0.099 | 0.145 | 0.106 | 0.208 | 0.069
0.57 0.149 | 0.110 | 0.101 | 0.068 | 0.187 | 0.056
0.75 0.132 | 0.099 | 0.049 | 0.029 | 0.136 | 0.036
p=2and ¢g=3
One Step(2*) | One Step(WW) Two Step
Umax(PRAR) | X2 | Wise | X% | Wise | X% | Wan
0.00 0.210 | 0.124 | 0.265 | 0.168 | 0.312 | 0.101
0.26 0.217 | 0.122 | 0.261 | 0.151 | 0.335 | 0.089
0.40 0.216 | 0.119 | 0.244 | 0.141 | 0.327 | 0.084
0.50 0.214 | 0.114 | 0.234 | 0.130 | 0.332 | 0.077
0.73 0.204 | 0.113 | 0.188 | 0.099 | 0.295 | 0.063
0.86 0.214 | 0.121 | 0.158 | 0.082 | 0.277 | 0.063

Note: See notes to Table 2.9.
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Table 2.16: Empirical size of one-step and two-step tests based on the QS kernel
variance estimator under VARMA(1,1) error when ¢ = 0.75, p = 1 ~ 2 and

T =200
p=1land ¢q=3
One Step(3*) | One Step(W) Two Step
Vax(PRAR) | X° | Wise | X% | Wi | X° | Wax
0.00 0.141 | 0.112 | 0.175 | 0.141 | 0.204 | 0.090
0.15 0.137 | 0.110 | 0.164 | 0.132 | 0.201 | 0.089
0.25 0.130 | 0.104 | 0.149 | 0.117 | 0.188 | 0.076
0.33 0.123 | 0.096 | 0.140 | 0.111 | 0.178 | 0.074
0.57 0.117 | 0.094 | 0.113 | 0.088 | 0.152 | 0.058
0.75 0.110 | 0.085 | 0.060 | 0.042 | 0.110 | 0.034
p=2and ¢g=3
One Step(2*) | One Step(WW) Two Step
Viax(PRPR) | X° | Wise | X* | Wiee | X* | Was
0.00 0.213 | 0.128 | 0.271 | 0.176 | 0.323 | 0.106
0.26 0.199 | 0.123 | 0.249 | 0.160 | 0.310 | 0.104
0.40 0.194 | 0.122 | 0.231 | 0.147 | 0.297 | 0.096
0.50 0.183 | 0.108 | 0.212 | 0.130 | 0.278 | 0.083
0.73 0.188 | 0.114 | 0.187 | 0.113 | 0.250 | 0.072
0.86 0.182 | 0.113 | 0.156 | 0.091 | 0.217 | 0.061

Note: See notes to Table 2.9.
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2.10 Appendix of Proofs

Proof of Proposition 13. Part (a) follows from Lemma 1 of Sun (2014b). For

part (b), we note that B N Bso and so
. -
\/T(QQT_90>: Z[y — Eyit) 5?/2]

(o ()

JT Zt—l Yot

N ( I, —B. )91/2Bm(1).

'ﬂ

Proof of Lemma 14. For any a € R, we have

Ed' B (h,d, q) Bso (h,d,q) a

—E[tm(//cghrsdBd ) dB. ( )
x(//@hrsdB )dB, ( ) (//QhrsdB )dB, ( )]

tr(//@hrsdB dB(s)
x(//@hrsdB ) B ( ) ( /QhrsdBd )dB())}

tr(//@hrsdB dB(s)
(f [ asnamorwaaen) ([ [ i woioraanyco)|

. =rk(h,q)da,

= F

= F

X
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where

k(h,q) =Etr (/01 /01 Qj, (r,8)dB, (r) dB, (s)>2

' Uol/ol (/OIQZ(T,T)QZ(T,s)dT) qu(r)dB;(s)]

EBOO (h> da Q) Boo (h> da Q)/ = H(hv Q) : Id-

So

Since this holds for any d, we have Ef (h,1,q) B (h,1,q) = k(h,q). It then
follows that

2

)L

B (hyd,0) B (h,d, ) = (E |3 (1.1,0)

Proof of Proposition 15. Using (2.4) and Lemma 14, we have

avar(éggp) — avar(élT)

(E[1Bs (B, 1,9) )12 — Q159255 Q1
(Elloo (h, 1,0) [[1)Q1 = (1 + E||Boc (h, 1, 9) |1*) 21295 Qa1

= (1+ BB (B, 1,9) [|?) [9(h, @)1 — Q12055 Qi |
(1+ Bl (h, 1, ) P41 [0, 0) s — 000050 0 (20, | (1Y
(

1+ BB (h, 1,9) )07 [g(h, @) L — pp'] (2177

So avar(for) > avar(fy7) if and only if g(h,q)I; > pp'. Let pp/ = Q,A,Q), be
the eigen-decomposition of pp’ where A, is a diagonal matrix with the eigenvalues
of pp' as the diagonal elements and (), is an orthogonal matrix that consists of

the corresponding eigenvectors. Then g(h, q)Is > pp" if and only if @) g(h,q)Q, >
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A,, which is equivalent to g(h,q)l; — A, > 0. The latter holds if and only if
Vmax (pp') < g(h,q). We have therefore proved that avar(éggp) > avar(élT) if and
only if Umax (pp') < g(h,q). Similarly, we can prove that avar(fyr) < avar(f7) if

and only if v, (pp') > g(h,q). =

Proof of Corollary 16. For the OS LRV estimator, we have

Qi) = 2 @) B (9),

and so
1 1 1 K K
[ aenaimae = [ &3 0mnm e me
1 & )
= ﬁ;q’i(r)@(s):?@h(ﬂs)-

As a result, for k(h, q) defined in (??), we have:

n(h,q):%Etr < /O /0 Q; (r,s)dB, (r) B, (s)) |
Let )
— [ &, (") dB,(r) ~ i#dN(0, I
&= [ @B, () ~ AN . 1,),
then

X -1
k(h,q) =trE <JZI §]§j> SK_g-1

where the last equality follows from the mean of an inverse Wishart distribution.
Using this, we have
k(h, q) ¢/(K—q-1) ¢

g(h‘7Q): 1+K(h7q) - 1+Q/(K_q_1) B
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The corollary then follows from Proposition 15. =

Proof of Proposition 17. It suffices to prove parts (a) and (b) as parts (c) and
(d) follow from similar arguments. Part (b) is a special case of Theorem 6(a) of Sun
(2014b) with G' = [I4, Ox,]’- It remains to prove part (a). Under Ry = r+36,/V/T,

we have:
VT(ROir — 1) = VTR(O11 — 0p) + 6 == RQYZBy(1) + &.
Using Proposition 13(a), we have
(RO R') =5 ROy Caa( RO

where Cyy = fol fol Q3 (r,s)dBy(r)dBy(s) and Cyg L By(1). The continuous map-

ping theorem yields

Wir = VT(Rbir — r) (RO R) VT (Rbyr — 1)
/ —1
L [ROIPBa(1) + 00| [ROICarROYY] T [ROIB(1) + 0]

Now, [Rﬂi{zBd(l), RQ%?CM(RQ%?)’ } is distributionally equivalent to
[A1B, (1), M Cp,AY ], and so

Wir =5 [AiB, (1) + o) [MCppAy] ™ [AB, (1) + 6]
LB, (1) + A7) C 1 [B, (1) + AT 00] £ Wi ([|AT 6],

pp

as desired. m



170

Proof of Proposition 18.

Part (a) Let x7(6°) be a random variable following the noncentral chi-
squared distribution with degrees of freedom p and noncentrality parameter 62
We first prove that P (x2(6%) > x) increases with 6% for any integer p and z > 0.

Note that
> 6_52/2((52/2)j

PG () > ) = >0

P (XZHJ' > x) ;
=0

where X; 197 18 a (central) chi-squared variate with degrees of freedom p + 2j, we

have

1 o= (62/2)7 2
+§Z( 12 52 (G242 > @)
I,
=_ +)6_6 /2 [P (X127+2+2j > :15) - P (X127+2j = x)} >0,

as needed.
Let ¢ ~ N(0,1) and ¢ be a zero mean random variable that satisfies 12 > 0

a.e. and ©» L ¢. Using the monotonicity of P (X;% (6%) > :v) in 62, we have

Plo+vl* > 2)=E[POd (1?) > o))
> P(x?>z)=P(|¢|* > z) for any x.

Now we proceed to prove the theorem. Note that B, (1) and B, (1) are
independent of C,, Cpp, and Cy,. Let D;pl =" | Apid;d; be the spectral decom-

position of D' where Ap; > 0 almost surely and {d;} are orthonormal in R”.
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Then

[B, (1) = CpeCp By (1 )} D [By (1) = CpeCrll By (1)]

p p
=5 — diCpCit By (D])* =" Api (65 + 1)’
i=1 i=1
where ¢; = dB, (1), ¢; = —djCpqCi' By (1), {¢:} is independent of {¢;} condi-
tional on Cy, Cpp, and Cy,. In addition, ¢; ~ iidN (0, 1) conditionally on C,,, C,,,

and Cy, and unconditionally. So for any z > 0,

P (W (0) > 1) = EP(Way, (0) > 2|Cpq, Cpp, Cyq)
p
P (Z ADi (¢z + ¢1>2 > I|Cpq= Cops qu)
i=1

=FEP )\Dl (¢1 + ?/)1) > T — Z )\Dz ¢z + 77Z)z) |Cpqa Cpp7 qua {¢z =2 {77ij 5;1)

=2

p
2 EP >\D1¢% > T — Z )\Dz’ (sz + %)2 ‘Cpqa Cpp: qu7 {¢z7 %}ﬁ;)

=2

P
=EP /\Dlﬁb% > T = Z Api (¢ + %)2 |Opq7 Cop Cags {vi f2> :
i=2

Using the above argument repeatedly, we have

p
P (Wo (0) > z) > EP (Z Apid? > x| Chg, Cop, cqq>
=1

=P (zp: Api¢? > $) =P[B,(1)' D, B, (1) > |

> P (B, (1) C, B, (1) > z] = P(Wi (0) > ),

where the last inequality follows from the fact that Dp_p1 > C’p_p1 almost surely.
Part (b). Let C.' = Y77 | Acicicj be the spectral decomposition of C, '
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Since Cp, > 0 with probability one, A;; > 0 with probability one. We have

Wioo ([€17) £ [B, (1) + €]l e,) Oyt [B, (1) + [1€]| )
—ZACZcB )+ 1€l ey’

where [¢/B, (1) + ||€]| cie,]? follows independent noncentral chi-square distributions
with noncentrality parameter ||€]|* (cle,)”, conditional on {\¢;}7_, and {¢;}2_,

Now consider two vectors &; and & such that ||&1]] < ||&2||. We have

P [Wi (JlEa]f*) > 2]
—P{Z)\Cz CB +||§1||C€p] >l’}

p
= EP {)\Cl (4B, (1) + &l chep)” > 2 =Y~ s (6B, (1) + I ey

=2

{Aeidi etz

p
<EP {Am (4B, (1) + lI&2l chep)” > 7 =Y e (6B, (1) + |I&1 ] e

=2

|{)‘Cz i= 1»{Cz 1}

p
=P {Am (4B, (1) + [|Eall i)™ + D Aci 6By (1) + 161 ciey)” > x}

=2

where we have used the strict monotonicity of P (x} (%) > ) in 6%. Repeating the
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above argument, we have

P Wi (&)%) > =]
<P{&ﬂd&ﬂ%ﬂbW¥ﬁ+Nm%&NU+Mﬁé%2

p
+§pﬁmmawW&me>%
=3

<P{§:Mm#%OHW&W%f>x}

=1

= P{[B,(1) + &' C,,} [B, (1) + &] > v} = P Wi ([|&2]%) > ]

as desired.

Part (c). We note that

Waso (11€]I%)

= [Bp (1) — CPqu_qqu (1) + [i€]] ep]/ Dzo_p1 [Bp (1) - OPqu_qqu (1) + [€]] ep}
I+ CopyCagt Co Cp) ™ [B, (1) = Gy Cigt By (D] + €1 8}

1/2

_ {[
X (I + CpaColC Co )2 DV (1, + CpyCiit i Oy
3 { [y + CpuCig C Cp) 7% [By (1) = G By (1] + €]l &, }

where

&y = [Ip + CpyCi C1Cy ] 2 e

P p Pq~"qq qq qp P
Let >0, A DM; be the spectral decomposition of [Ip + C’quq_qlC(;lqup] 1/2 Dp_p1
[I, + CpCot Cot | 2 Define

Gai = d. [T, + CoyCtCotC) T2 [B, (1) = CpyCit B, (1)]

Then conditional on C,,, Cp, and Cy, bui ~ iidN (0,1). Since the conditional

distribution does not depend on Cy, Cp, and Cy, bai ~ 1idN (0, 1) unconditionally.
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Now
2
Waos ([1€2117)
- 7 —1,—1 -1/2 -1 s ?
= Z >\Di { i [[p + Cpchq qu Ol]p] [Bp (1) - Cpchq Bq (1)} + HélH diep}
=1

L N
=3, (Gt &l )
i=1
and so for two vectors & and & such that ||| < ||&]| we have

P {Wao([|&1]1*) > =}

L - N
=LpP {Z Ap, (dez' + [|& ] d;ép) > x| Cpg, Cpp, qu}
i=1

L NG
<EP {Z)\Di <¢di + [|&]] d;ép) > x| Cpg, Cpp, CQQ}

=1

i=1

p
=P {Z o, (dut 6l dey) > } = P {Wan(&ll") > 2}

Proof of Proposition 19. We prove part (b) only as part (a) can be proved

using the same argument. Using (2.11), we have, for \g = HA2_150H2 :

A3 60l = 7(h0) | AT 0o

= (M) : Vir = [ 0)] (] AT 60)°

i=1 1 —vir
o~ 1 As \
= 7’(}\0) HAII(SUH ; 1_ Vin [V@R — f()\o)] <ai’R, m> s (229)

where v; p € [0,1) and (-, -) is the usual inner product.
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We proceed to show that HAQ_I(SOHZ —7(No) ||A_150||2 > 0 for all p € A (o)
if and only if v; g — f(Ao) > 0 for all i = 1,...,p. The “if” part is obvious. To
show the “only if” part, we prove by contradiction. Suppose that HAQ_ 1(50H
f(No) HAII&]HQ > 0 for all 0y € A (N\g) but there exists an ¢* such that vz —
f(Xo) < 0. Choosing dy € A (Xo) such that (A7"do) /||A7"0o|| = ai- g, we have

ol

— Vi R

1A5100]]” = 7(h) | AT 60| = = FQ0)] () <0, (2.30)
leading to a contradiction.

Note that the condition v; g — f(Xg) > 0 for all ¢ = 1,...,p is equivalent
to min {r; g} > f(Ao), which is the same as v (PrPR) > f(Xo; b, p, ¢, ). This
completes the proof of part (b). m

Proof of Proposition 20. Instead of directly proving m; (\) > mg (A) for any
A > 0, we consider the following testing problem: we observe (Y,S) € RPTIx

RP+0x(P+9) with Y L S from the following distributions:

" do Oy 0
Y = ((le)) ~ P+Q(M> Q) with n= ((pxl)) , Q= (pxp) (pxq)
(p+q)x1 Y, : 0 "
(gx1) (gx1) (gxp) (axq)
Sll 512
S - (pxp)  (xq) | _ w
(p+q) x (p+q) S S T

(gxp) (g%xq)

where (217 and (g, are non-singular matrices and W, (K, ) is the Wishart distri-
bution with K degrees of freedom. We want to test Hy : 09 = 0 against H; : §p # 0.
The testing problem is partially motivated by Das Gupta and Perlman (1974)
andMarden and Perlman (1980).
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The joint pdf of (Y,S) can be written as

f(Y7 S|507 Qlla QQQ)
= Oé<507 9117922)11(5)

exp {—%tr [ (VY] + KSu) + Qg (YaY5 + K S)] + 3/1’911150}
for some functions «a(-) and h(-). It follows from the exponential structure that
II:= (Y1, S11, YaYs + K So)
is a complete sufficient statistic for
I := (do, Q1, Q22).

We note that }/1 ~ N(éo, Qll>7 KSll ~ WP(K, Qll) and )/2)/2/ + KSQQ ~ Wq(K +
1,Q99) and these three random variables are mutually independent.

Now, we define the following two test functions for testing Hy : 99 = 0

against Hy : oy # 0:

Gr(I) = L(V,(IT) > W)
Go(Il) = E[L(Wy(Y, 5) > W3, )|

where

Vl(H) = }/1,51_111/1 and WQ(Y, S) = (Yi—31252_21}/2)/(311—51252_21521)_1(le—SlQSQ_QlYVQ).

We can show that the distributions of V;(II) and Wy (Y, S) depend on the param-

eter I only via §)€;'6o. First, it is easy to show that

! —1
Y; S S Y;
Wa(Y, ) = 1 11 912 ) YI551Ys.
Y, So1 Sz Y,
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Let
i y Y . N EUTRC
Voo T —ame| T NG, Iprg), & = w0 and
Ys Yy 0
g _ k?11 k?12 — Q2 Su S (9—1/2>/ ~ Wp+q(§? Ip-ﬁ-q)'
521 SQQ 521 522

Then Y L S and

I~

W,(Y, S) = (f/+5) g1 (f/+5) — V385,15

It is now obvious that the distribution of W,(Y, S) depends on T' only via ||d][2,

which is equal to 6,7, d. Second, we have
~ I~ ~
V(D) = (Vi + 030 ) St (Vi + 0070

and so the distribution of V;(II) depends on I" only via HQl_ll/ 250H2 which is also
equal to 5,827, 6.

It is easy to show that the null distributions of V;(II) and Wy (Y, .S) are the
same as Wi, and Wy, respectively. In view of the critical values used, both the

tests ¢1(II) and ¢o(II) have the correct level c. Since

E¢i (1) = P(Vy(I) > Wi,) and E¢y(II) = E{E[L(Wy(Y, S) > W3 )[I1]}
= P(W,(Y,5) > Wi,),

the power functions of the two tests ¢y (IT) and ¢y (IT) are 71 (5,62, 60) and 7o (5527 0o ),
respectively.
We consider a group of transformations GG, which consists of the elements in

APP .= {A € RP xRP: Ais a (p X p) non-singular matrix} and acts on the sample
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space IT := RP x RP*P x R9*9 for the sufficient statistic II through the mapping
G : (Y1, 511, VoY, + KSy) = (AY1, AS A, Yo Yy 4 K Sp).

The induced group of transformations G acting on the parameter space I' :=

RP x SP*P x §9%1 is given by
G = (50,911, 922) = (Aéo,AQllA/,QQQ).

Our testing problem is obviously invariant to this group of transformations.

Define
V(D) := (Y{S,' Y1, YaY5 + K So) := (Vi (ID), Vo(II)) .

It is clear that V(II) is invariant under G. We can also show that V(II) is maximal
invariant under G. To do so, we consider two different samples IT := (Y7, S11, Yo Y5 +
K Sy and 1T := (Y7, Si1, VoYY + K Sas) such that V(IT) = V(II). We want to show
that there exists a p x p non-singular matrix A such that Y, = A}vfl and Si; =
AS1 A’ whenever Y]S5V, = Y{S5'Y1. By Theorem A9.5 (Vinograd’s Theorem) in
Muirhead (2009), there exists an orthogonal p x p matrix H such that Sl_ll/ %Y =
H gfll/ ’Y; and this gives us the non-singular matrix A := 511{21'{ 5’;11/ ? satisfying
Y, = A}Vfl and Si; = ASVHA’. Similarly, we can show that

’U(F) = ((569;11507922)

is maximal invariant under the induced group G. Therefore, restricting attention

to G-invariant tests, testing Hy : 0o = 0 against H; : dp # 0 reduces to testing
H| : 6,Q 60 = 0 against H} : §5,Q;;'0p > 0

based on the maximal invariant statistic V(II).
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Let f(Vy; 8091 00) and f(Vy; Q) be the marginal pdf’s of V; := V,(II) and
Vo := Vy(II). By construction, V;(IT) K /(K —p+1) follows the noncentral F distri-
bution F, rc_ 1+ 1(0525100)- So f(V1; 5587 0o) is the (scaled) pdf of the noncentral F
distribution. It is well known that the noncentral F' distribution has the Monotone
Likelihood Ratio (MLR) property in V; with respect to the parameter 6,;,'d (e.g.
Chapter 7.9 in Lehmann et al. (1986)). Also, in view of the independence between
V1 and V,, the joint distribution of V(IT) also has the MLR property in V;. By
the virtue of the Neyman-Pearson lemma, the test ¢;(II) := 1(Vy(II) > W) is
the unique Uniformly Most Powerful Invariant (UMPI) test among all G-invariant
tests based on the complete sufficient statistic I1. So if ¢o(II) is equivalent to a G-
invariant test, then 7 (5562;,'60) > m2(6521, 60) for any 5, do > 0. To show that
¢2(IT) has this property, we let g € G be any element of G with the corresponding

matrix A, and induced transformation g € G. Then,

Er[¢o(gI)] = Egr[¢o(IT)] = ma ((Agdo)' (Ag€h1A;) ™ (Agdo))
= (62 %) = Er[¢o(1D)]

for all T". It follows from the completeness of I1 that ¢o(gIl) = ¢o(I1) almost surely

and this drives the desired result. m

Proof of Lemma 21. We prove a more general result by establishing a repre-

sentation for

—_

S (e it oo

t=1

35/~

in terms of the rotated and normalized moment conditions for any m x m (almost

surely) positive definite matrix M which can be random. Let

Mll M12
M21 M22

M*=UMUM =S M (350 =

1/2 1/2
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and My = My — M12M2_21M21 where M;; € R and My, € R?4. Using the
SVD U=V’ of G, we have

G'M™'G = VEU'MU) =V’

- VA( I, O ) (M%)~ ( I, O )lAV’
-1 /
= va( 5, o)ERY [EEw e =5 (L o) A
— VA< I, O ) (Zj/—;)’M—lxj/—; ( I, O )lAV’
= VA (1 0 )M VAL (1, 0 )}
= VA VM (s, Ay, (2.31)

where we have used

1y (51,) 72 0
(m o)y = (i o) ([@;2)1/22;2@;2)1}/ <2;2>”2)

= (@™ 0)= (1 0).
In addition,

é,M_lf(Ut, 00)
= VE(U'MU)U f (v, 0) = VA< L, O ) (M*) ™ £ (v, 0))

-1
= vA( L, 0)ERY [EEMERY] S5 ()
= VA( 1, 0)(SYM7 (0 00) = VA ™ (1, 0 ) M7 (u1,60)
M, — M5 Mg My,
= VA (1, 0) TR ), 6)
= (M M My,') My,

= VA, V2 ( My, —Miy MyasMsy! )f(vt,éo)
= VA1) 2 Mg [fi (v 00) — MiaM3' fo (vr,65)] -
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Hence

[ém—lé}l N f (01, 60)

t=1

5= 5=
(]~ 10~

-1
VASL) ™ M3 (S1a) 2 av| VA ™ M

t=1

X [flzvtﬁo) — MiyMsy' fo (v, 6o)]
T
_ % STVAT ()Y [ (01, 60) — MMz fs (v, 60)] (2.32)
t=1

Let M = %, we have M* = U'SU = ¥* and M = 3}, M*(%},)) = Lx. So
M12M2’21 = 0. As a result

T
Z[é’]\“ﬁ“} G/M f (v, 0y) = ZVA (522 fr (v, 60) -

t=1

35/~

Using this and the stochastic expansion of vT (017 — 6;), we have

VT (017 — ) =

IIM’%

L)Y fi (v, 0o) + 0p(1).
It then follows that

(510) 2 AVVT (011 — 6p) = Zﬁ Ve, 00) + 0p(1) == N(0, Q11).

Let M = Qu, we have M = S U US; " = Qu, and so My My,' =
Qoo 12900 99 = Poo- As a result,

I
—_
S
(]~
S
N
™
= %
)
~
[
~
)
=
—~
F
\.%
N

— Boofa (ve,00)] -
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Using this, we have

VT (fyr — 0)) = —T;[GQ G] GO F (v, 00) + 0, (1)
1 T

= —VA_l (ET,2)1/2 Z (fl (Ut; 90) - ﬁoon('Ut? 90)) + Op(l)‘

t=1

It then follows that

T

(502 AV T (G — 6) = % S a0, 80) — o fo0,00)] + 0p(1) (2:33)

t=1

= MN (0,1 — Q28 — BocC21 + Bocfl2255) -

Proof of Theorem 22. Parts (a) and (b). Instead of comparing the asymp-
totic variances of Rv/T (617 —0y) and Rv/T (67 — 0,) directly, we equivalently com-
pare the asymptotic variances of (RR')~Y2Rv/T (0,7—0) and (RR')~Y2R\/T (0yp—
0y). We can do so because (RR')~'/2? is nonsingular. Note that the latter two
asymptotic variances are the same as those of the respective one-step estimator
éfT and two-step estimator HAfT of ft in the following simple location model:
=0 +ull eRP
Y1t 0 1t (2.34)
Yor = ug € RY
where

o = (RR)™2Roy, ult = (RE)™ R,

and the (contemporaneous) variance and long run variance of u, = (u,, u),)" are
I,, and 2 respectively.

It suffices to compare the asymptotic variances of %, and «%%T in the above
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/
location model. By construction, the variance of ul* := ((uﬁ)/ ; (U2t>/> is

wr) = [ 79 ) =1
O 1,
So the above location model has exactly the same form as the model in Section
2.3. We can invoke Proposition 15 to complete the proof.
The long run canonical correlation coefficients between uﬁ and wuq; are the
same as those between Rult and uy. This follows because uf is equal to Rult

pre-multiplied by a full rank square matrix. But the long run correlation matrix

between Rult and uo; 18
(RO R) V2 RO} x Q5% = pr.

So the long run canonical correlation coefficients between uﬁ and uy; are the eigen-
values of prpl, i.e., v (prpR) . Parts (a) and (b) then follow from Proposition 15.

Parts (c) and (d). The local asymptotic power of the one-step test and
two-step test are the same as the local asymptotic power of respective one-step
and two-step tests in the location model given in (2.34). We use Proposition 19 to
complete the proof. For the above location model, the asymptotic variance of the

infeasible two-step GMM estimator is
R P PN\—1/2 1 D D! 12~/
Offy, = |(RR) 2R Qs [(RE)2R]

In addition, the local alternative parameter corresponding to H; : ROy = r +
60/V/T for the location model is (RR')~"/26y/v/T. So the set of dy’s considered in
Proposition 19 is given by

Wi (Ng) = {5: [(RR’)—U?(S]'(Q{?Q)* [(RR’)‘W&]:)\O}

_ {5 5 (R R) 16 = AO} . (2.35)
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It remains to show that the above set is the same as what is given in the theorem.

Using (2.31) with M~ = Q| we have M = Q and so

So the set of dp’s considered in the theorem is exactly the same as that given in

(2.35). =

Proof of Theorem 23. The theorem is similar to Theorem 22. We only give the

proof for part (d) in some details. It is easy to show that under the local alterative

Hy : ROy =1+ 6/VT, we have W,p N Wloo(||V;}%/260||2) where

Va,R

Similarly, we have

RVA™Y (25" (Ia, —Ba)

R(G'W'G)'\GWIQWIG(G'WIG) 'R

Iq

. [RVA (2;2)1/2]'. (2.36)

War =5 Waoo ([ V31 *0ll),
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where

Vor = R(G'OG)'R
L4

—B4

= RVA™(Z1,)"% Iy, —B0) [RVA_l @T'Z)W] ’

which is the asymptotic variance of RVT <§2T - 90) with §2T being the infeasible
optimal two-step GMM estimator.

The difference in the two matrices V, r and Vs g is
/
Vo = Vo = RVA™ (1) (B = o) 22 (B — Bo)' RV AT (57)"?
Now for any 7 > 0,

(Vai“80ll* = lVa i 80l [* = G [Vak = 7V ko

a7

= & Vi) RV - e} vk,

a,

= & [V‘”Q] {[V‘”ZVM(V‘”?)] 1—71,,}1/‘1/250

But
Vol VoVl = I, = Vo il? Var — Vor) Vo

and

Vo> Var — Vor) Vo )

a, a,

= V,/PRVAT(S1)" (Ba — Q12Q51) Qoo (Ba — Q1205)

/
|RVAT (1))

/
pa7Rpa,R'
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So
_ — — —1 —
V5260l = r1Vak 260l = 8 [Vik?] [ = pursher) ™ = 78] Va2 - 7
for any 7.
Let pa,rpy r = P Vi,a,rbia,r; , p De the eigen decomposition of p, rpy, g,
then

Vol 20|12 — 7 (M) |V i 200

_ i {%_T(Ao)]( V_1/250>2

i Via,R
2
V. 12
= ‘ —1/250H Z VzaR ) bz‘ya’R, ci]f/2 0 ’
— Via,R Va,R 50H

which has the same form as the representation given in (2.29). The rest of the

proof is then identical to the proof of Proposition 19 and is omitted here. m



Chapter 3

Asymptotic F and t Tests in an
Efficient GMM Setting

Abstract. This paper considers two-step efficient GMM estimation and in-
ference where the weighting matrix and asymptotic variance matrix are based on
the series long run variance estimator. We propose a simple and easy-to-implement
modification to the trinity of test statistics in the two-step efficient GMM setting
and show that the modified test statistics are all asymptotically F distributed un-
der the so-called fixed-smoothing asymptotics. The modification is multiplicative
and involves the J statistic for testing over-identifying restrictions. This leads
to convenient asymptotic F tests that use standard F critical values. Simulation
shows that, in terms of both size and power, the asymptotic F tests perform as
well as the nonstandard tests proposed recently by Sun (2014b) in finite samples.
But the F tests are more appealing as the critical values are readily available from
standard statistical tables. Compared to the conventional chi-square tests, the F

tests are as powerful, but are much more accurate in size.

187
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3.1 Introduction

This paper considers the optimal two-step GMM estimator and the asso-
ciated tests in a time series setting. In the presence of nonparametric temporal
dependence, the optimal weighting matrix is the inverted long run variance (LRV)
of the moment process. To implement the two-step GMM method, we often esti-
mate the LRV using the nonparametric kernel or series method. Given the non-
parametric nature of the LRV estimator, there is a high variation in the weighting
matrix with consequent effects on the two-step point estimator and the associ-
ated tests. Recently Sun (2014b) employs the fixed-smoothing asymptotics and
establishes a new asymptotic approximation that captures the estimation uncer-
tainty in the LRV estimator. Under the fixed-smoothing asymptotics, the point
estimator is asymptotically mixed normal and the test statistics converge to a non-
standard distribution. In the case of series LRV estimation, Sun (2014b) shows
that the nonstandard limiting distribution can be approximated by a noncentral
F distribution.

In this paper, we follow Sun (2014b) but focus on the series LRV estimator.
We modify the usual test statistics, including the Wald statistic, the quasi LR
statistic, and the LM statistic and show that the modified test statistics are all
asymptotically standard F distributed. The standard F distribution is the exact
limiting distribution. No additional approximation is needed. This is in contrast
to Sun (2014b) where the noncentral F distribution is an approximation to the
fixed-smoothing limiting distribution. The standard F distribution is more acces-
sible than the noncentral F distribution, as standard F critical values are readily
available from standard statistical tables.

The modification involves the usual J statistic for testing overidentifying
restrictions. The modified test statistics are scaled versions of the original test
statistics with the scaling factor depending on the J statistic. So the modification

is very easy to implement. To understand the modification, we cast the two-step
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GMM estimation and inference into OLS estimation and inference in a classical
normal linear regression (CNLR). We show that the modified Wald statistic in the
GMM framework is exactly the usual Wald statistic constructed in the standard
way in the CNLR framework. Our proposed asymptotic F tests, which are based
on the modified test statistics and use the standard F approximation, can be
regarded as conditional tests conditioning on the J statistic. The conditioning
argument is entirely analogous to that used in the linear regression model with
stochastic regressors that are independent of the regression error.

Monte Carlo simulations show that our proposed asymptotic F tests are
as accurate in size as the corresponding nonstandard tests of Sun (2014b). They
are also as powerful as the latter tests. So there is no power loss in using the
asymptotic F tests. Like the nonstandard tests of Sun (2014b), the asymptotic
F tests are much more accurate in size than the usual chi-square tests without
any power sacrifice. Given the convenience of the standard F approximation, we
recommend the asymptotic F tests for practical use.

The paper contributes to a growing body of literature on the fixed-smoothing
asymptotics. For kernel LRV estimators such as the Newey-West estimator (Newey
and West (1987)), the fixed-smoothing asymptotics is the so-called the fixed-b
asymptotics first studied by Vogelsang (2002a, 2002b, 2005) in the econometrics
literature. Subsequent research includes Jansson (2004), Sun, Phillips, Jin (2008),
Sun and Phillips (2009), Gonglaves and Vogelsang (2011) and among others. Pa-
pers that are most closely related to this paper are those that use the series LRV
estimators. In this case, the fixed-smoothing asymptotics is the so-called fixed-K
asymptotics. Some examples of these papers are Phillips (2005), Miiller (2007),
Sun (2011, 2013, 2014a&Db), and Sun and Kim (2012).

In the case of series LRV estimation, the F limit theory has been established
in Sun (2011) for trend regression, Sun (2013) for stationary moment processes,
and Sun (2014c) for highly persistent moment processes. See also Sun and Kim

(2012, 2015) for the J test and the Wald test in the spatial setting. All these
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papers focus on the first-step GMM estimator or OLS estimator. This paper is the
first to establish the F limit theory for the trinity of test statistics in a two-step
efficient GMM framework. This is not trivial, as the asymptotic pivotality of these
statistics under the fixed-smoothing asymptotics was not established until very
recently in Sun (2014b).

The rest of the paper is organized as follows. Section 3.2 presents the basic
setting and introduces the modified test statistics. Section 3.3 establishes the fixed-
smoothing asymptotics of the modified test statistics and develops the asymptotic
F and t tests. Section 3.4 casts the GMM estimator as an OLS estimator in a
regression setting and shows that the modified Wald statistic is the usual Wald
statistic in a CNLR model. The next section reports simulation evidence. The last

section concludes. Proofs are given in the appendix.

3.2 Two-step GMM Estimation and Testing

We consider the standard GMM setting with moment conditions
Ef (v,600) =0, t=1,2,...,T, (3.1)

where v, is the vector of observations at time ¢, f, € © C R? is the parameter
of interest, and f (v, #) is the m x 1 vector of moment conditions that are twice
continuously differentiable. We assume that Ef (v, 0) = 0 if and only if § = 6
so that 6y is point identified. The model may be overidentified with the degree of
overidentification ¢ = m — d > 0. We allow {f (v, 6)} to have autocorrelation of

unknown forms.

Define



191

then the GMM estimator of , is given by
Ocain = argmin gr (0) Wr'gr (0)

where Wr is a positive definite weighting matrix. The initial first-step GMM
estimator can be obtained by choosing Wr to be a matrix W, r that does not

depend on any unknown parameter. This gives rise to

_ : I—1
O = arg min gr (0) W,orgr (0) .

Here W, r may depend on the sample size T' but we assume that W, 1 LN Wo oo, @
matrix that is positive definite almost surely.

With the first step estimator 67, we can construct the optimal weighting
matrix Wy, which is the asymptotic variance matrix of v/Tgp (6y). See Hansen
(1982). Most, if not all, estimators of the asymptotic variance take the following
form

Wi (6r) = %ZZQ (% %) (fm,éT) - %if(vﬂéﬂ

=1

where @, (r, s) is a symmetric weighting function that depends on the smoothing

parameter h. In this paper, we focus on the series LRV estimator with
| K
Que(r5) = = D08, (1) @, (5),
j=1

where {®; (r)} are orthonormal basis functions on L?[0, 1] satisfying fol P, (r)dr =

0. In the econometric literature, the series LRV estimator has been recently used,

for example, in Phillips (2005), Miiller (2007), and Sun (2011, 2013, 2014a&b).
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Define the projection coefficient

1 o, ¢ 1 «
A(6>:_ (I)(_) f(vtae)__ f(vﬂe) forj=1,2,... K.
Then «
1
Wr (6) = K ;Aj(90>‘/\;‘<90)' (3.2)

In essence, each outer product A;(6y)A’(6) is an approximately unbiased estimator
of the LRV, and the series LRV estimator is a simple average of these estimators.
Here K is the smoothing parameter underlying the series LRV estimator Wrp. If
®; (r) = v/2sin (2mjr) or V2 cos (2mjr), then the series LRV estimator is propor-
tional to the spectral density estimator at the origin that takes a simple average of
the first K periodograms. The averaged periodogram estimator is a common spec-
tral density estimator. In the traditional asymptotic framework, it can be shown
that the averaged periodogram estimator is asymptotically equivalent to the kernel
LRV estimator based on the Daniell kernel; See for example Phillips (2005). Sun
(2013) provides more discussion on the relationship between the kernel LRV and
series LRV estimators. To ensure that Wy is positive semidefinite, we assume that
K > m throughout the rest of the paper.

With the optimal weighting matrix estimator Wy (fr), the two-step GMM
estimator is:

r = argmin gr (6) Wy (0r)gr (6).

Suppose that we want to perform hypothesis testing based on 7. Without loss
of generality, we consider the linear null hypothesis Hy : Ry = r against the
alternative Hy : Rfy # r where R is a p x d matrix with full row rank. As in Sun

(2014b), we consider the “trinity” of test statistics in the GMM setting. The first
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test statistic is the (normalized) Wald statistic given by

. . . . .71 -t
Wy = WT(QT) = T(RQT —7‘)/ {R [GT(QT)/WI:I(QT)GT(QT)} R,} (RQT —T)/p,
(3.3)
where G7(0) = 8’%9(,9). When p = 1 and for one-sided alternative hypotheses, we

can construct the t statistic:

tT(éT) = ﬁ(RéT =) 1 1/2
{R[GT(éT)/W;(éT)GT(éT)} R’}

The second test statistic is the GMM criterion function statistic, which can
be regarded as the LR analogue in the GMM setting. Let éT,R be the restricted

second-step GMM estimator:
Or g = arg reneiél gr (0) Wz (07)gr () s.t. RO =
The GMM criterion function statistic is given by
Dr = [TQT(éT,R)/Wfl(éT)gT(éT,R) - TgT(éT)/Wfl(éT)gT(éT)] /D,

which is often referred to as the quasi LR statistic.
The third test statistic is the GMM counterpart of the score or LM statistic.
Let Ap (6) = Gy (8) Wi (67)gr () be the gradient of the GMM criterion function.

The score type test statistic is given by
. / . - . ~1 .
Sp=T [AT(QT,R)} [G%(QT,R)W51(9T)GT(9T,R) Ar(07,r)/p-

In the definitions of Dy and S, 7 can be replaced by 07 or any other v/T consistent
estimator without affecting our asymptotic results.
To introduce the modified or corrected versions of the above three test

statistics, we construct the standard J statistic for testing the over-identifying
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restrictions:
Jr = Jr(0r) = Tgr(br) Wy (0r)gr (0r).

The modified or corrected versions of Wy, Dy and Sy are

. K—p—q+1 Wp(b
Wi == W5 (0r) = —2-1 r(fr)

K 1+ %Jr(0r)
i K—p—q+1 Dr(f
D = D§(0r) = pK 1 T( r)
1+ = J (6 T)
s K-p—q+1
S = 85(0r) = ——— Sr(0r)
1+ +Jr(0r)

The multiplicative corrections are the same for all three statistics. The correspond-

ing version of the t statistic is

K —q tT(éT)
K 1+ Lp(6r)

t.(0r) =

Under the conventional asymptotic theory where K diverges to oo with
the sample size T but K/T — 0, both correction factors K — p — ¢+ 1/K and
(1 + Jr(07)/K)~" approach unity in probability. So they do not matter in large
samples and can thus be regarded as finite sample corrections. Under this type of
asymptotics, Wy, Dy and Sy and hence W5, DS, and S%. are all asymptotically Xf, /D
distributed. It is now well known that the chi-square approximation is not accurate
in finite samples. This motivates the more accurate fixed-smoothing asymptotics
under which K is held fixed as T'— oo. We point out in passing that the fixed-K
specification is an asymptotic device to help establish a more accurate approxima-

tion. We do not have to use a fixed K value in finite samples.
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3.3 The Asymptotic F and t Tests

Define

g4 ( d0f(v;,0)
0= 25 3 T

Let uy = f(vg,0p) and ®q (t) = 1, e, ~ 1idN(0, I,,,). We make the following assump-
tions on the basis functions, the GMM estimators, and the data generating process.
These assumptions are the same as those in Sun (2014b) and are commonly used

in the literature on the fixed-smoothing asymptotics.

Assumption 13 The basis functions ®; () are piecewise monotonic, continuously

differentiable and orthonormal in L*0,1] and fol P, (x)dx = 0.

Assumption 14 As T — oo, 07 = 0y + 0, (1), 07 = 0y + 0, (1) for an interior

point By € O, a compact parameter space.
Assumption 15 Y377 ||T';[| < oo where T'; = Euguy_;.

Assumption 16 (a) f(v,0) is twice continuously differentiable in 0 for almost
all ve. (b) For any Oy = 0y + 0, (1), plimr—cGpry (07) = rG uniformly in r where
G = G(0y) has rank d and G(8) = EOf (v, 0)/00".

Assumption 17 (a) T7'/? Zthl ®; (t/T) uy converges weakly to a continuous dis-
tribution, jointly over j =0,1,..., J for every finite J.
(b) The following holds:

T
( Z ( >ut<xf0r]—0,1,...,J>
=1
_P<\/_ZCI> ( )Aet<xforj—0,1,...,J>+0(1) as T — oo

for every finite J where x € R™ and A is the matriz square root of ), i.e., AN =

Q=327 Ty (¢) Qis of full rank.
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Let
Byq(r) == (By(r), By(r)),

where B,(r) and B,(r) are independent standard Brownian motion processes of

dimensions p and ¢, respectively. Denote

o= [ [ @t 1B, 01aB,(51. = [ [ Qutr a1z (s 64

11
Coq = /0 /0 Qr(r,8)dBy(r)dBy(s), Dy = Cpp — OpqO‘I_‘IIOFI’q'

Theorem 24 Let Assumptions 13-17 hold. Then, for a fixred K, the following
weak convergence results hold jointly as T — oo :

(a) WT(éT) i [Bp (1) - Cpch_qqu (DTD_I [Bp (1) - CPCICq_qqu (1)} /p :

pp

d
:Fooa

(b) tr(0r) % [By (1) = CpCiyt By (1)] / /Dy = t,
(¢) Jr(0r) 5 By(1)Cqf! [By(1)] = T,

where (B, (1), B, (1)), is independent of (Cpq, Cyq, Dpp) and Dy, is indepen-
dent of (Cpy, Cyq) -

The weak convergence of the marginal distributions in Theorem 24(a,b) and
24(c) has been established in Sun (2014b) and Sun and Kim (2012), respectively.
It suffices to show that the weak convergence holds jointly. A proof is given in the

appendix.

Remark 25 If Qg (-, ) is replaced by a kernel function, then under some condition
on the kernel function, Theorem 2/ also holds. A key advantage of using the series

LRV estimator is that

!/

Crei= K =3[ [ a0 [[ #0050

follows a standard Wishart distribution Wy q (K, Ip1q) . A well-known property of
a Wishart random matriz is that Dy, = Cpp — CpeCltCl o~ W, (K — ¢, 1) /K.
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The fact that D,, follows a Wishart distribution and its independence of (Cpq, Cyq)
are the two key properties of D,, that drive our F limit theory. For kernel LRV
estimation, Dy, will not be Wishart and will not be independent of (Cpy, Cyq) - S0

an exact F' limit theory is not possible.

Remark 26 Note that A = CpCo' B, (1) is independent of B, (1) and Dy, the

limiting distribution F., in Theorem 24(a) conditional on A satisfies

K-p—q+l, o K-p—q+1[B,(1) - AI'D, [B,(1) — Al
K > K D

L Fykpar (1A%,

which is a noncentral F distribution with noncentrality parameter | Al . Uncondi-
tionally, %Fm follows a mixed noncentral F distribution, i.e., a noncentral
F distribution with a random noncentrality parameter. The noncentral F test pro-
posed in Sun (2014b) is based on the noncentral F approzimation to the mized F

distribution.

Remark 27 It follows from Theorem 24(c) that

K—q+1_ ~ 4
K—qJT(é’T) = Fyr—qi1; (3.5)

where Fy g_q11 15 the standard F distribution with degrees of freedom q and K —

q+ 1. This is a result first established in Sun and Kim (2012).

Using Theorem 24, we have

K—p—q+1 Wg(bp)

WE.(0) = s
r K 1+ L Jp(6r)
dK—p—q—l—l Foo K_p_Q+1/ —1
d _ D
K 1+ £J. K &P S

where
By (1) = CpyCof' By (1) By (1) = CpeCrlt By (1)

& = = )
NI \/1 + LB/(1)C1B,(1)
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Another key result that drives the F limit theory is that &, ~ N(0,1,). This
holds for the case of series LRV estimation but not for the kernel LRV estimation.
The result is proved in the proof of Theorem 28 using the conditioning argument
with J as the conditioning variable. This is in contrast with Sun (2014b) which
uses A or ||Al]” as the conditioning variable. Given that &, ~ N(0,I,) and that
¢, is independent of D,,, Fy (1+ K_IJOOY1 = f;Dp_plfp follows Hotelling’s T2
distribution. Using the relationship between the 72 distribution and the standard
F distribution, we obtain Part (a) of Theorem 28. Other parts can be similarly
obtained. In particular, Parts (b) and (c) follow because, as shown by Sun (2014b),
the asymptotic equivalence of Wy, Dr, and Sy continues to hold under the fixed-

smoothing asymptotics.

Theorem 28 Let Assumptions 13-17 hold. Then, for a fited K asT — oo, we
have:

a) W%<éT) i} Fp,K—p—q+1;
D%(éﬂ i Fp k—p—g+1;

Fyk—p—g+1;

Remark 29 When g = 0, we have JT(éT) = 0 and the multiplicative correction

degenerates. In this case, we have

K—-—p+1 A
TPWT(QT) —d) Fp,K—p+1-

This is identical to a result obtained in Sun (2013) for the Wald test based on the
first-step estimator. This is expected, as when q = 0, the optimal weighting ma-

trix becomes irrelevant and the first-step estimator and two-step estimator become

numerically identical.

Remark 30 It follows from (3.5) that

1 A~ d q d X2
—JT(QT) — —F’K_ 1= 4
K K—q+1"° o X%{—q—i—l
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for two independent chi-square random variables Xg and X%(—q-&-l‘ So, as K increases
for a fixed q, JT(éT) /K approaches zero and the modified Wald statistic becomes
close to the original Wald statistic. The multiplicative correction 1 + JT(éT) /K
can be regarded as a finite sample correction under the conventional increasing-
smoothing asymptotics. For the same reason, the other multiplicative correction
(K —p—q+1)/K can be regarded as a finite sample correction under the conven-
tional increasing-smoothing asymptotics, as (K —p—q+1) /K — 1 as K — oc.
This correction factor can be motivated from the Bartlett correction. See Sun

(2013) for more discussion.

Remark 31 Let Fi'y . bethe (1 — ) quantile of the F distribution F, x —p—q11-
According to Theorem 28, the critical value for the original test statistic WT(éT)

can be taken to be

1 K §
Lt ol |y B (36)

Compare with the chi-square critical value x5, /p where x; is the (1 — «) quantile of
the chi-squared distribution Xﬁ, the above critical value is larger for three reasons.
First, F'ye o1 > Xp/p due to the random denominator in the F' distribution.
Second, K/(K —p—q+1) > 1 forq>1 orp> 1. Third, 1 + Jp(07)/K > 1
almost surely. A direct implication is that the chi-square critical values are too
small, especially when q is large and K is relatively small. The small value of K
can be empirically very relevant, as the moment process in economic applications
often has high autocorrelation (e.g., Miiller, 2014), which calls for a small value of
K. Using the chi-square critical value can therefore lead to the finding of statistical

significance that does not actually exist.

Remark 32 If we use the kernel LRV estimator, then we can choose an equivalent

K walue and use the critical value in (3.6). According to Sun and Kim (2012), the
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equivalent K value is given by the integer that is closest to

[flkb(r 7“)6[7“}2

fo fo drds

where

e R e - R

b = M/T for the truncation lag parameter M, and k() is the kernel function

used in the LRV estimation. This procedure can be justified under the conventional
asymptotics under which b — 0, bT' — oo as T — o0, as in this case, the equivalent
K wvalue approaches oo and the critical value in (3.6) approaches the chi-squared

critical value X;‘/p. In fact, as b — 0, we can take

1

b [ [t k?(z)dx} ’

K:

which provides a good approzimation to (3.7). Here [°° k*(x)dx = 2/3,0.54, and 1
for the Bartlett, Parzen, and the quadratic spectral kernels, respectively. However,
under the fived-b asymptotics, the standard F distribution is not the exact limiting
distribution. So, strictly speaking, we cannot justify this procedure under the fixed-
b asymptotics. For this reason, one may arque that we should just simulate the
nonstandard distribution and use the exact nonstandard critical value. Howewver,
the approximate critical value in (3.6) with an equivalent K is convenient to use

and may be more appealing in applied research.

Remark 33 In the proof of the theorem, we show that conditional on B, (-), &, ~
N(0,1,). Since the conditional distribution does not depend on By (), we can
conclude that &, is independent of B, (-). As a result, &, is independent of B, (1)
and Cyq. Note that Dy, is also independent of By (1) and Cyq. So & D, ', is
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independent of B, (1)’ Cuq By (1). Now

K—-—p—q+1
Fy
K
«a K—p—q+1 _ 1 _
2 (g;Dpplgp) {1 + ?B;(l)cqqqu(l)}
q
ﬁ}—ﬁﬂ—qﬂ)

Kp
1 d
L+ 20 ) < Fpseopgn - (14

4
— Y p,K—p—q+l~
where Fprpgr1 ~ Fpxpqr1, Too ~ Joos Fpx—qi1 ~ Fpr—qr1 and Fp g p g1

is independent of Jx and F, x_qr1. This gives another characterization of the

nonstandard limiting distribution developed by Sun (2014b). It can be used to
simplify the simulation of the nonstandard distribution F.

Remark 34 Let cv® be the nonstandard critical value for (K —p —q+1) /K]
Wr(07) as proposed in Sun (2014b). Using the characterization in the previous

remark, we have
K—p— 1 ~
P—a+ WT(QT) > CUQ>

Thfo‘op< K
1 03

=r {}—p,K—p—qﬂ : (1+ ?joo) > cv }
p,K—p—q—l—l) = .

cv®
=1-FEG|——F—=
( 1+ Jo/K ‘
where G(x|dy,ds) denotes a CDF of F-distribution with parameters dy and ds.

That is, the asymptotic level of the nonstandard test is o when averaging over all

realizations of J. Conditional on J, the asymptotic level is

cv®
1-G| ——=|pK—p—q+1
e S

which is strictly increasing in Jo. So when the J statistic is large, which implies a
large Js in large samples, the nonstandard Wald test is expected to reject the null
more often. In contrast, the critical value in (3.6) is based on the conditional distri-

bution of [(K —p — q+ 1) /K] Wy(07) conditional on Jr(07). With the conditional
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critical value, the asymptotic conditional level of the test is fized at o regardless of

the value of Jr(07).

3.4 Understanding the Asymptotic F and t Tests

The asymptotic F and t tests may appear mysterious at first sight. To shed
some light on the two tests, we consider the location model, which is perhaps the

simplest model in an overidentified GMM setting:

Y1 = 0o + uye, Y1 € RP,

Yor = Ust, Yor € RY, (3.8)

where 6 is the parameter of interest, and wu, = (u},,ub,) € RP*? is a mean zero
stationary process that can exhibit autocorrelation of unknown forms. The long

run variance of wu; is

Qll Q12
921 922

which has been partitioned conformably with the two blocks of equations. As
simple as it is, the location model captures all the essentials in a GMM setting.
In fact, a general GMM model can be reduced to the above location model in an
asymptotic sense. The location model is an ideal framework to present the basic
ideas and intuition, as it abstracts away the unnecessary details and complications.
For more discussions, see Hwang and Sun (2015).

At the mechanical level, the parameter 6y can be estimated using the GMM.

The moment conditions are
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and the GMM estimator of 6 is Ogya = arg mingeo g (0) Wi 'gr (0) with

% Zthl Yy — 0

gr (0) =
% Zf:l Yat

If we take W, 7 = I,;4, we obtain the initial GMM estimator 0~T =1 =
% Zthl Y1t, which is the OLS estimator based on the first block of equations. If we

take Wy to be the long run variance estimator:

A Qll Ql? L& S
Q= ZEZZQK <%,f> (y: —9) (ys — 9), (3.9)

A A T
Q21 Q22 t=1 s=1

where y, = (y},,95,)", we obtain the efficient two-step GMM estimator: 0y =
71 — By with
B = Q120

which is an estimator of the long run regression coefficient 3y = 21525, . Compared
with the initial estimator 67, which ignores the second block of equations, the two-
step estimator 7 aims to explore the additional information embodied in the
second block. As a special case of the GMM setting, the location model permits
the asymptotic F tests and t test as described in the previous section.

To demystify the asymptotic F and t tests, we cast the GMM estimator as

an OLS estimator in a linear regression model. Let

1 « t 1« t
. - o, [ — . — o, [ —
v DO € PR L S I
T
1 t
w; (u1) = T Z(I)i <T> uyg, wi (uz) = wi (y2)
t=1
T
1 t
T = ——= (I)l — fOI'Z-:O,l,...?K.
720 (7)

These transforms are analogous to the Fourier transforms and are designed to
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capture the long run behavior of the underlying processes. Then

wi (Y1) = Opx; + w; (uq)

wi (Y2) = wi (u2)

for : = 0,1,..., K. This can be regarded as a system of cross-sectional regressions
with dependent variables w; (y1) and w; (yo) and sample size K + 1.

To obtain an efficient estimator of 6y, we use w; (u2) to predict and hence
reduce the error term in the first block of equations. This is equivalent to adding

w; (y2) to the first block of equations, leading to the regression model of the form:

w; (Y1) = Ooz; + Pow; (y2) +w; (),

where as before 60 = 91292_21 S Rpxq7 € =1uy —60U27 and Ws (6) = W (Ul) —ﬁowi (UQ)
is the new error term. Under Assumptions 13-17 for the location model, of which
Assumptions 14 and 16 hold trivially, we have

wilm) ) HdN(0,9).

Wi (Ug)
Hence the error term w; (¢) is asymptotically normal. More specifically, w; (¢) is

asymptotically iid N (0, 211.2) where
Q1o = Qi1 — Q120255 Doy

In addition, w; (¢) is asymptotically independent of w; (y2) .

The above model is close to a CNLR model with fixed regressors. How-
ever, there are three differences. First, the normality of the error term and its
independence from the regressors hold only asymptotically. To remove this differ-
ence and for simplicity, we assume that normality holds exactly from now on, i.e.,

wi (e) ~ 1id N(0,Q41.2) and that w; (¢) is independent of w; (y2) . The finite sample
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results obtained under these assumptions then hold asymptotically without these
assumptions. Second, when p > 1, we have a system of regressions while there is
typically only one regression in a CNLR model. Of course, we can focus on the
case of p =1 to gain some insights but we will consider a general p. Third, w; (y2)
is random rather than fixed. This is innocuous, as we can follow the standard

practice and use the conditioning argument.

Let

wy (Y1) wy (Y2)
wi (1) wi (y2)

w1 = ,Wa = )
wic (1) (K+1)xp wic (42) (K+1)xq
wp (¢) Zo
W (e T

We = ! ( ) s and X = !

/

Wi () (K+1)xp K ) (kayx

Then
wp = X0y + waff) + we.

Based on this, we obtain the OLS estimator of 6] below:
Jrons = (X' MpX) ™ (X' Mawn) ,
where My = I 1 — wo (wéwg)_l wh. Conditional on wy, we have
(07,005 — 06) ~ N |0, Q11 (X/MzX)fl] :

Hence it is mixed normal unconditionally. This result is analogous to the asymp-
totic mixed normality of the two-step GMM estimator. In fact we can show that

éT,OLS and the two-step GMM estimator éTGMM = éT are numerically identi-
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cal under a slightly stronger condition on the basis functions. Here we add the

subscript ‘GMM’ to 67 to signify its origin.

Proposition 35 Let Assumption 13 hold with fol Oy (r) dr = 0 replaced by
TS @ (t/T) =0 fork =1,2,..., K, thenOrors = Or . If [, @ (r) dr =
0 but not T—1 Zle Oy (t/T) =0 for k=1,2,..., K, then under Assumptions 13-
17, we have ﬁ(éT,OLS — HAT,GMM) =0, (1) for a fired K as T — oo.

While the asymptotic equivalence between HAT,O s and éT,GMM is well ex-
pected, it is nontrivial to show that they are numerically identical under the
assumption that 7! Zthl Oy (t/T) = 0. This assumption holds for &y (¢/T) =
V2sin (2rkt/T) , v/2cos (2rkt/T) , which are the basis functions in common use
for the series LRV estimation.

The conditional distribution of (é/T,OLs — 6) conditional on ws depends
on wy only through (X’M,X)™". It then follows that the conditional distribution
of (6.0, — 0) conditional on (X'M>X) ™" is also N[0, Q1 (X'M,X)™"]. In the
proof of the proposition, it is shown that (X'MoX)™" = (1 + TyQ5 5./ K)/T.
Therefore, we can take Tgé@;;gjg as the conditioning variable. But T° QQQQ_;(QQ
is exactly the J statistic in the overidentified location model. So the minimal
conditioning variable in the CNLR coincides with the conditioning variable we use
in the GMM framework.

Now suppose that we follow the mechanics in the CNLR framework to con-
duct inference. Conditional on (X’JMQX)_1 , the variance of éT,OLS is Q1.2 (X’]\/[QX)_1 )
Following a routine in the CNLR framework, we can estimate the conditional vari-

ance by Q110 (X/MQX)il where

Q110 =

A A / A A
/ / / /
K —q (Wl - XQT,OLS - W?ﬁT,OLS) (Wl - XQT,OLS - wQBT,OLS)

and B%,OLS is the OLS estimator of 3;. Here we have used 1/(K —q) = 1/(K +
1—¢g—1) instead of 1/(K + 1) as the scaling function. This is the usual degree-of-

freedom correction in a standard linear regression model. Constructing the Wald
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statistic for testing Hy : §p = r in the same way as what we would do in a CNLR

framework, we obtain the (normalized) Wald statistic

a1
Wenpr = VT (éT,OLS - r)l [011.2 (X,M2X> ' VT (éTOLS - r) /p.

T

We can also construct other type statistics such as the LR, LM and t statistics but
we focus on the Wald statistic here.

To formally compare Wy r with the unmodified GMM Wald statistic as
given in (3.3), we note that for the location model Gr(07) = (I, Opy,)'. Using this

and plugging WT(HATGMM) = Q and R = I, into (3.3), we obtain

1

WT = ﬁ(éT,GMM — r)' [QH.Q] B ﬁ(éTngM — r)/p, (310)

where Q10 = Oy — 9129521921 and Qij are given in (3.9). A formal comparison
of Wenrp with Wp reveals that Wy r has the additional factor (X’MQX/T)f1
in the variance estimator that the GMM Wald statistic W1 ignores. The reason
that W ignores this factor is that the underlying variance estimator is based
on the conventional “sandwich” formula, which is derived under the conventional
increasing-smoothing asymptotics where K — oo as T' — oo. Under this type of
asymptotics, (X'MyX/T)™" —? 1 and so the factor is negligible in large samples.
Under the fixed-smoothing asymptotics, it follows from Hwang and Sun (2015b)

that
A N \/LT Zle (ylt - E?Jlt)
i ) (5, 2) (5
VT Zt:l Yot
=1 (L, B ) AByig(1),
where

Boo = 12 B9 "% + Q1505 and B = Cpy O (3.11)

qq
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Some simple calculations show that the asymptotic variance of OATG ma conditional

on S satisfies:
avar(frcarr) = Qs (Ip + Booﬁéo> (013) = iz + U5Ae Bl (215)

When we use the conventional “sandwich” formula for variance estimation, which
attempts to estimate €241.o only, we effectively ignore the term that involves BOOBc/)o
This will not cause any problem for asymptotic pivotal inference but will prevent us
from developing an F limit theory. The modification we propose can be regarded as
the multiplicative variance correction that takes into account the extra asymptotic
variance term under the fixed-smoothing asymptotics. More specifically, instead
of using Qu.g, we use Qn.g(l + jT/K) as the asymptotic variance estimator.

The following proposition establishes the connection between Weoypr and

W rigorously.

Proposition 36 Let Assumption 13 hold with fol @y, (1) dr = 0 replaced by
T @ (t/T) =0 fori=1,2,..., K. Then

K —q .
K—p—q+1 T

Wenir =

In particular, Wenpr = WG when p = 1. If fol &y (r)dr = 0 but not
T-! Zthl Oy (t/T) = 0, then under Assumptions 153-17, we have Wonpgp =

Kfz{a:ZHWCT + 0p (1) for a fired K as T — oc.

Remark 37 When p = 1, the proposition shows that the Wald statistic constructed
in the standard way is numerically identical to the modified Wald statistic we pro-
pose in the GMM setting. While the modification can be motivated on the ground
of obtaining a convenient standard F limiting distribution, it is a built-in feature of
the standard Wald statistic in a linear regression. The modification may appear to

be mysterious at first sight but it becomes natural from the regression perspective.
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Remark 38 Whenp > 1, Wenpr does not follow an F distribution but a rescaled

version does:
K—-p—q+1
K —q

Wenir ~ Fpg—p—q+1-

This follows from Theorem 28 and Proposition 36. Of course this can be proved
directly in the CNLR setting but there is no need to do so, as the limit theory
established in the GMM setting is directly applicable to the CNLR model.

Remark 39 Looking at the GMM problem from the regression perspective moti-
vates us to use the modified Wald statistic even if there is no serial dependence.

In this case, we can take K =T and the modified Wald statistic becomes

T'—-p—q+1 Wr
T 14 zJp’

Wi =

where Wy and Jp are the standard Wald and J statistics in the GMM frame-
work with #d data. In addition, we use F,p_p_qy1 instead of Xf]/p as the ref-
erence distribution. From an asymptotic point of view, W = Wr + 0, (1) and
Fr g1 = Xo/p+o0(1) as T — oo. So the modified Wald test based on the F
approximation can be justified in the same manner as the conventional chi-square

test. However, in finite samples, the new test can be more accurate in size.

3.5 Simulation Evidence

3.5.1 Asymptotic Size and Power

We follow Sun (2014b) and consider a linear model of the form:
Y =20 + ey,

where x; = (1,214, %9, 23;)" is a vector of endogeneous regressors. The un-

known parameter vector is 6 = (y0,71,...,74)" € R% We have m instruments
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20,4 21ty - - -5 Zm—14 With 29, = 1. The reduced-form equations for z,, z2; and
T34 are given by
m—1
Tjp = Zjt + Z Zig +Exyp for j=1,..,d—1.
i=d

We consider two different experiment designs: the autoregressive (AR) de-
sign and the centered moving average (CMA) design. In the AR design, each z;,
follows an AR(1) process of the form z;; = pz;4—1 + \/1—7p26zi,t where e,,; =
(el, +€%) /v2and e, = [¢%,el,,..., e ) ~ iidN(0, I,). By construction, z; has
unit variance for all for ¢ > 1, and the correlation coefficient between the non-
constant z;; and z;; for i # j is 0.5. The DGP for &, = (g4, €4yt Eunty Exgt) 1S the
same as that for (214, ..., 2,—1+) except that there is a difference in the dimension.
The two vector processes €; and (214, ..., zm—1.) are independent from each other.
We take p = —0.5,0.0,0.5, 0.8 and 0.9.

In the CMA design, ¢, is a scaled and centered moving average of an iid
sequence &, = Zfsz errj/V2L + 1 where e; ~ iidN(0,1) and L is the number
of leads and lags in the average. The instruments are generated according to
ziw = leempvio1 — (2L + 1)71 Zf:_L et+j]\/m fori=1,...,m — 1. The
error term in the reduced-form equation is given by &, ; = (Ey,t + e%t) / v/2 where
€z, ~ 11dN(0,1) and is independent of the sequence {e,} . We take L = 3, 6, and
9.

We consider ¢ = 0,1,2 and d = 4 with corresponding numbers of moment

conditions m = 4,5, 6. The null hypotheses of interest are

Hy 2 =0,
Hyy :y1 =72 =0,

Hog:mi=72=7=0.

The numbers of joint hypotheses are p = 1, 2 and 3, respectively. We consider
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three different sample sizes T' = 100, 200, 500 and two significance levels o = 5%
and o = 10%. We focus on the Wald type of test but the simulation results are
qualitatively similar for other type of tests.

We examine the empirical size of four different two-step tests. The first three
tests are based on the same unmodified Wald test statistic, so they have the same
size-adjusted power. The difference lies in the critical values used. We employ the
following critical values: X, */p, g ergFp k- pqr1 (0°) With 6> = pg/(K —g—1),
and F1*, leading to the x? test, the NCF (noncentral F) test and the nonstandard
F., test. The x? test uses the conventional chi-square approximation. The NCF
test uses the noncentral F approximation. The F, test uses the nonstandard F,
approximation with simulated critical values. The NCF test and the F, test are
developed in Sun (2014b). The fourth test is the test proposed in this paper,
which is based on the modified Wald statistic W5, and uses the standard F critical
value f;’}f_p_q +1- Equivalently, our proposed test is based the unmodified Wald
test statistic as the first three tests but uses the critical values given in (3.6). For
easy reference, we now refer to our test as the standard F test, which should not
be confused with the standard F test in a CNLR model. For each test, the initial
first-step estimator is the IV estimator with weight matrix W, = Z’'Z/T where Z
is the matrix of instruments.

We use the following basis functions ®y; (1) = v/2cos2jmz, Pyj(z) =
V2sin2jrz, j = 1,... ,K/2 and assume that K is even. In this case, the series
LRV estimator can be computed using discrete Fourier transforms. We select K
based on the AMSE criterion implemented using the VAR(1) plug-in procedure in
Phillips (2005), which is similar to the plug-in procedure of Andrews (1991). We
compute the data-driven K on the basis of the initial first step estimator O and
use it in computing both Wi (67) and Wi (07).

We also compare the size-adjusted power of the proposed standard F test

with that of the nonstandard F,, test. The data is generated under the local
alternative Hy : RO = col,/ VT where ¢ is a scalar and ¢, is the p-vector of
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ones. The two tests use the same data driven smoothing parameter K. To make
the power comparison meaningful, we compute the power using the empirical finite
sample critical values obtained from the null distribution. That is, we compare the
size-adjusted power. It should be pointed out that size-adjustment is not feasible
in practice.

Tables 3.1 and 3.2 report the finite sample size of the four tests for T = 100
and a = 5%. The number of simulation replications is 10000. It is clear that the
standard F test has as accurate size as the nonstandard F, test and noncentral F
test. Like the latter two tests, the standard F test is much more accurate in size
than the conventional chi-square test, which can be highly size-distorted. These
qualitative observations remain valid for other sample sizes and significance levels.

Figures 3.1 and 7?7 report the size-adjusted power of the nonstandard F,
test and the standard F test for a = 5% and T' = 100. There is no real difference
between the two power curves. In fact, the standard F test can be slightly more
powerful in some scenarios. Note that the size-adjusted power of the nonstandard
I test is the same as that of the conventional chi-square test, the standard F test
is therefore as powerful as the conventional chi-square test.

Our simulation evidence lends a strong support to the standard F test: it
enjoys the same good size and power properties as the nonstandard F, test but
it is easier to use, as the critical values are readily available from statistical tables

and no simulation or approximation is needed.

3.6 Conclusion

This paper has proposed a modification to the trinity of test statistics in
an efficient two-step GMM framework. Each modified test statistic is a function of
the original test statistic and the usual J statistic for testing overidentification. We
show that the modified test statistics are all asymptotically F distributed. This

leads to standard F tests that are based on the modified test statistics and use
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the standard F critical values. Simulation shows that the standard F tests have
the same finite sample performance as the nonstandard tests recently proposed by
Sun (2014b) but the standard F tests are much easier to use.

The paper complements Sun (2011a, 2013, 2014a) and Sun and Kim (2012)
which establish the F limit theory for the tests based on the first-step GMM
estimation and the J test. When the series LRV estimator is used, the F' limit
theory appears to be applicable to all common tests in the first-step and two-step
GMM settings. The results of the paper can be easily extended to the continuous
updating GMM (CU-GMM) framework. Recently, Zhang (2015) has shown that
the Wald statistic based on the CU-GMM estimator has the same fixed-smoothing
limit as what Sun (2014b) obtains in the two-step GMM framework. Given this,
it is easy to see that our result holds without change if the CU-GMM estimator is
used instead. Following the work of Bester et al. (2016) and Sun and Kim (2015),
we also do not imagine much difficulty in extending our results to the spatial

setting.
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3.9 Appendix of Proofs

Proof of Theorem 24. The marginal weak convergence results in (a) and (b)
have been proved in Sun (2014b, Theorem 1), and the result in (c) has been proved
in Sun and Kim (2012, Theorem 1 and equation (7)). It remains to show that the
convergence results hold jointly. As a representative example, we prove that (a)
and (c) hold jointly.
Let
. 1l
W :/ / QK (r,8)dBp, (1) dBy, (s)
o Jo

and Gy = A~'G, which is an m x d matrix, then it follows from Sun (2014b) and
Sun and Kim (2012) that

) ~ 1 ~ / R _1 —1
Wy (0r) % {R [G’AW;}GA} G'Awongmu)} {R [G’AWOjGA} R’}
~ -1 ~
x {R [G/AW;;GA} G/Awongmu)} /p = Fu,
Jr(br) % {Bm(l) YN [G’A OglGA] ’AW;Bm(n} Wt (3.12)

- —1
X {Bm(l) — G [G'Aw—IGA] G'Aw—leu)} = T

In addition, a careful inspection shows that the above convergence results hold

jointly. It remain to show that (F.., Jy) is equivalent in distribution to

<[Bp (1) - Cquq_qqu (1)]/D_1 [Bp (1) - Cpch_qqu (1)} /p, B;(l)cq_qqu(l)> .

pp

Let UnsmZmxaVyyy be a singular value decomposition (SVD) of G5. By
definition, U'U = UU' = 1,,,, VV' = V'V = I; and

Ad><d
qud

)
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where A is a diagonal matrix with singular values on the main diagonal and O is

a matrix of zeros. Then we have:

~ -1 ~ ~ -1 -
[G’AW‘lGA G\WZlB, (1) = [VE’U’W;UEV/ VEUWILB,, (1)
~ -1 ~
— vV [Z’U’W—le} S U'W By (1)
- -1 ~
— v [E’U’ ;}Uz} > [U’W;}U} U/ B, (1)]

and

~ -1 ~
Bu(1) = G [GAWZ'Ga|  GAWL Bu(1)
. -1 N
— B,(1) — UV’ [VE’U’W;UZV’} VSU'WZB, (1)

—U {U’Bm(l) > [E’U’VT/;UZ] Ty (U’W;W) U’Bm(l)} .

Since [U'W'U, U'B,,(1)] has the same joint distribution as [W_!, By,(1)], we can

write
Fo \ 4 [ Fx
oo oo
where
~ _ _1 _ / _ _1 —1
F =B (1) {Rv [2’WO;12} Z"W;ﬁ} {RV [Z’W;lx] V’R’}
~ -1 ~
x |RV [Z’W;lz} E’W;}} Bu(1),
and
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We proceed to simplify Fi, and Js starting with Fs. We let

. Cn C - cit o2
We=| " 7| andW =
021 022 021 022

where C}; and C'! are dx d matrices, Cy and C?? are ¢ x ¢ matrices, and C1o = C%;,

C'? = (C*'). By definition,

- Cooo,

Oy = / / Qrc(r, )dBy(r)dBy(s) — ( o o (3.13)
0 /0 Czl),d—p Cdfndfp
1 1 C

Chy = ,5)dBy(r)dB,(s)" = r 3.14

" / / Quc(r, $)dBy(r)dB,(s) (C (3.14)
1 1

o — / / Quc(r, $)dB, (r)dB,(s) = C, (3.15)
0 0

where C,,, Cp,, and C,, are defined in (3.4), and Cy_p4—p, Cpa—p and Cy_,, are

similarly defined. It follows from the partitioned inverse formula that

1

CH = [Cy — C12C5 O], CP = —CM 012055

With the above partition of WZ!, we have

> Cll 012 A

[E,W;}IE] R - < A0 021 022 O

= [A’CllA}—l — A-! (011>—1 (an™,
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and so
~ -1 ~
RV [E’W;Iz] 0 Ui
Cll 012

_ -1 11\—1/ 4n—1 , ,

—rvA () (a0 o) (cﬂ 022)

_ RVA—l Cll) 1 (A/)—l A’( CH 012 )

= RVA™! ( I, (CY)Cn ) : (3.16)
and

RV [ 'z VR = RVAT (M) T () VIR,
As a result,

= B, (1) [RVA_1 ( N (011>—1 o2 )]/ [RVA_I (011)—1 (A’)’l V’R’} ~1
. [R ( I, (Ccv)7hon )] Bn(1)/p
= B, (1) [RVA < I, _01202—21 )]/ [RVA—l (011)71 (A,)_l V’R/} -1

< [Rvast (1, —cucs' )] Ba)/p

Let By (1) = [By (1), B, (1)) and UpxpSpxaViyq be a SVD of RV A, where

ip><d = ( Ap><p7 Opx(d*p) ) :
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Then

USV' [Ba (1) - CoCyi' B, (1]} [T577 () 70| :

51

—

[e.9]

x USV' [By (1) — C1oCa3' B, (1)] /p
_ {f}f/’ [Bd (1) . 01202,213[1 (1)} }/ [ivl (011)—1 f/i’} -1
x V! [Bd (1) — Clng’ngq (1)} /p

-1

) [V’Bd (1) = V'C12Cy' B, (D} }, [if/, (Cll)_l f/il]

—

x5 [V'Bd (1) — V'C12C33' B, (1)} .
Using the same steps, we have

- -1 ~
]m -y [ZIWO;12:| E/W_l

oo

A ~ o o2
1, - ) e (o) ( )
0 o2l (022
L (Cll)fl 012 Cll 012
m 021 022 o2 (22

I I (Cten On —(Ch)' e
09 O O21 I
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where O;; are matrices of zeros with the dimensions as Cj;. So

[l o]
Jso = Bn(1)| W
O21 I,
3 K On —(CH)~C¥ ) Bmu)]
021 ]q
B _(011)—10123q(1) ' o o2 —(C“)_lc’qu(l)
N B,(1) o1 o2 B,(1)

[~y tem,) 0
- By(1) 0% =2 ey e By(1)

= B,(1)' |€= — ¢ (™) ] B,(1)

= B,(1)'C,' B,(1).

-1
In the last equality, we have used [022 - % (C’H)_1 C’Ql} = Uy = Cyq, which
follows from the partitioned inverse formula.

Noting that the joint distribution of [V’Bd (1),V'Cha, Coa, V' (C’H)_1 f/]

is invariant to the orthonormal matrix V', we have

£y
Jx

-

g g

v
|

where

Ba(1) — C12C3' B, (1)] /p
A 0) B - Cucy' B, 0]}

-1
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and

J: = B,(1)C;. B,(1).

qq

Writing

Dpp D12

(011)71 =C11 — C12C05' Coy = i

where Dy, = Cp, — CpeCpttC), and D* is a (d — p) x (d — p) matrix and using
equations (3.13)—(3.15), we have

Fo*o = [Bp (1) - Opch_qqu (1)]/ D_l [Bp (1> - Cpch_qqu (1)] /p.

pp

A

Wr(br) \ 4 [ Fs Ey
A % ~
JT(HT) Jso JZ

[l

The theorem then follows if we let (Fio, Joo) = (F%, J%), which is innocuous for

o0 o0

the weak convergence result. m

Proof of Theorem 28. Part (a). Conditional on B, (-) := {B,(r) : r € [0,1]},

both B, (1) and C, are normal. Hence conditional on B, (-), we have

By (1) = CpyCyy By (1) ~ N (0,1, + E [CpyCqy By (1) By (1) Co! Cp| B, (4)]) -
(3.17)
Let BY (r) be the i-th element of B, (r). Define

Cpiya = /QK (r,s) dBI(f) (r) dB; (r) € R4

Copyy = /QK (r,s)dBy (1) dB]gj) (r) € R¥*!

which are the i-th row of ), and j-th column of Cy,, respectively. Then the



224

(i, 7)-th element of the conditional variance in (3.17) can be written as

E {Op(i),qoq_qqu (1) Bq (1), Cz;ylcq,p(j)|Bq ()}

- F {%KZKI (/01 ®y, (r) dB{? (r)>

VY
—
KA
=
Sy
C/
Q
sy
sy
)
==

1=
I~
—
KA
=
o
N

=E{7;(/1¢el<>d3;“<r>)

([ 1<:>dB;<s>)c;Bq<1>B<1>c ([ o0 am,0)

([ onwany o), (';}mz
z%%z< / 0y, (1)@, (r)dr> < / 3, (s)dB;(s))

Ci 8, 8,0/ ¢ ([ @0y, )
“iigs > ([[ow0am o) im0 ,05 05 ([ o @an o)
=6U%f13q<1>0 ([ oname) ([ enrasm) e
= %53, (1) ;' By (1)

where 0;; = 1{i = j}. So, conditional on B, (-),

B, (1) = CpeCtt By (1) ~ N {0, I, (1 + %Bq (1) C' B, (1))} :
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That is, conditional on B, (),

B,(1 )—C C1B, (1)
\/1+ LB, (1) C.1B, (1)

~ N(0,1,).

But N(0, I,) does not depend on By (-), so

B, (1) - CClB()
\/1+B 1B, (1)

~ N(0,1,)

unconditionally. In addition, , is independent of D,,,. Using these results, we have

I 4§D 4 X/p
1+ %Bé (1) Cq_qqu (1) B P B X%(fpfqul/K
d K Xp/p
(B —p—q+ 1) Xk g/ (K —p—q+1)

d K

= Fok oy oit.
(K=p—q+1) P
In view of Theorem 24, we have

K-p—q+1 Wr(lr)
— = Fox oy gi1,
K 14L&y P

completing the proof of Part (a).

Using the same argument, we can prove Part (d). Parts (b) and (c) hold
because the asymptotic equivalence of Wy (67), Dy (67) and S7(07) still holds under
the fixed-smoothing asymptotics. For more details, see Sun (2014b). =

Proof of Proposition 35. If 7! Zthl O, (t/T) =0 for k = 1,2,..., K, then



226

X = V/Tegy where egyy = (1,0,...,0)" is the first unit vector in RK*1. So

VT (015 — 0h)
X  x1'x _
{\/TMz\/Tl \/TMQWEZ (i1 Maercir]

-1
/ / -1 / / / -1
[1 — € w2 (Whwa) w26K+1] [eKkul — € wa (Wowa)  whwy,

!/

where w,, is defined in the same way as w, is defined. Let

Sap = sz‘ (y2) Wi (yz)/ and Sy = sz‘ (y2) Wi (U1)/'

i=1 i=1

Using the Sherman-Morrison formula, we have

/ ( / )*1 /
Cry1W2 (Wol2)  WrlK 41

K

-1
= wo (32)' (Wo (y2) wy (y2) + Zwi (y2) wi (y2),> wo (Y2)
=1
Sas' (T2¥5) S;;} .
1+ TS5 U2
1 \2 1
(Tyésml?h) _ Tyészzlyz
L+ TS0 2 1+ T9,5%' G2

= TG (TG + S22) "' Go = TG [52_21 —

= T455% G2 —
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and

/ ( / )*1 /

= wp (1)’ [wo (y2) wo (y2) + Zwi (y2) wi <y2),]

i=1
K
[wo (o) wh (ur) + Y wi (y2) ] (Ul)]
i=1
= VTG, (TG + Sa2) " [TGol) + Son]
Ss' (T275) S’
— ﬁ—/ |:S—1 . 22 2 22 T— a/ + S
Yo | 922 11 T%S;glgz [ Yoy 21]
= (T5,S5'52) VT, + VTS5 S
(T95%' 12) % (TS5 9>) VT, (T955%' 92) x (\/_92 22)
1+ TS5 G 1+ TS5 G
(Ty2 22 312) \/_U1 + \/_y2522 521
1+ TS5 9

21

Hence

_ THSHE 1
L+ T3So s 1+ T¥Se0 9’

/ / / =1
€ Maerin =1 — € ywa (whwe)  whex1 =

/ / / / -1
E€xr1Mawe = €y, — €W (Whwa)  Whwy,

(T§§S2_21§2) \/Tﬂﬁ + \/7%52_21521 _ \/_U1 \/_92522 521

1+ Ti75% 7 N 1+ T9S5 7

Tuy —
It then follows that
VT (é’T,OLS - 96) = VT (@, — 3555 So1) = VT (@) — @Sy Sa1) -
It is easy to see that 52_21521 = 622_21921. So

Or.oLs — Oy = U1 — Pz = Orgrm — Oo.
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This implies that HATVO L = HATG MM, as desired.
If fol Oy, (r)dr = 0 but not T~ Y1, & (t/T) = 0, then we have X =
VTexi1+0 (1 / VT ) Using this and the assumptions in the proposition, we have

A “1
\/T( 'T’OLS — 96) = [e’KHMQeKH] i1 Mow, + 0, (1)

Following the same argument as above, we have ﬁ(éT,OLS —by) = VT (éTGMM —
00) -+ Op (1) , which implies that ﬁ(éT,OLS — éT,GMM) = 0p (1) .

Proof of Proposition 36. We first give a representation of We 7,z We focus on
the case that T—! Zthl Oy (t/T) =0 for k=1,2,..., K, as the other case follows

from the similar arguments. Using (67015 — ) = [X'MyX] ™" X' Myw., we have

Wener = (éT,OLS — 7”>/ {Qn-z (X'MzX)_l}_l (éT,OLS - 7”) /p

~ 1
= (X' MoX] P X Mow. {Qm (X’MQX)_l} WM X [ XM, X] !
X' Maw, x Qpply X Wl MpX 1
N XM, X P

using the fact that X'M>X is a scalar.

In the proof of Proposition 35, we have shown that

T (1_4/1 — %52_21521)
1+ T55S55 9o
T
1+ TS5 9>

X' Mow, = \/TG’KHMQLUE = and

X'MyX =Tey Myegi1 =

Hence

VT () — 755" Sa1) O VT (1 — S125%'92)

W X 1
CNLR — ————— 11-2 — 1 .
vV1+ TS5, o vV1+ TSy s P

To simplify Q7',, we note that

5 -1
ﬁér,OLs = [WQMXU&] WéMle



where

0 0
0 Ik

MX = IK+1 —X<X/X)71XI = IK+1 —€K+1e/[(+1 =

So Bb IS = 52_21521. Plugging this and éOLS into the estimated residuals yields

wr — X é,T,OLS - W2B/T,0LS

=w. — X (é/T,OLS - 86) — W2 (B/T,OLS - Bé)

= w. — X (@) — 45555 Sa1) — w2S35 Sa1 + wa
VT (2 — @, + S5y Sa1 — Wy Sy Sor + 1 3})

w} (g) — wh (uz) S33"Sa1 + wh (us) B

wh (€) — wi (ug) S35'Sa1 + wh (uz) B
0

wi (u1) — wh (us) S35 San

Wi (u1) — wh (u2) Syy' S

Therefore
3 1 X
M2 = K_q Z [wi (u1) — S1255' w; (u2)] [wi (u1) — S12555'w; (uz)]
i=1
1
- %4 (S11 — 512595 Sa1) -

Using this and noting that S;; = KQU, we have

. K ~ ~ A ~
Q0 = X —o (Qn - Q1292_21921> ;
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and so

Wenrr = K—q VT <a1 — 51252_21%)/
K 1+ T35, 0
o VT (01 — 51252_21%)1
VI+T5:85 G P
N IAVAN A oA A -1 N
K —q vT (711 - ﬁ%) (Qll - Q1292_21921) vT (ﬂl - 5712) 1
K 1+ 2(VTa2) Q55 (Vo) p’

R N |
X (Qn - Q1292_21921>

where we have used S13S555 = BroLs = D120 = .

Next, we give a representation of W%(@ATGMM) when R = I,. For the

p-

location model, GT(QAT,GMM)’ = (1, Opxq) - We have
~ ~ ~ o~ ~ -1 ~
WT = \/T(QT,GMM — T)/ <Qll — Q1292_21Q21> ﬁ(eT,GMM — T)/p

Combining this with

Jr = (VT2) 05 (VT),

we have
W (B carnr) = — L9
VT (al . BaQ)/ (QH . 912522216221)_1 VT (al ~ B@) 1
. 1+ L(vTua) O (V) P
So
Weonir = 7 _}; : Z n 1W§r(éT,GMM)-

In particular, Wenrr = WCT(éT,GMM) whenp=1 =
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