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ABSTRACT OF THE DISSERTATION

Fixed Smoothing Asymptotic Theory in Over-identified Econometric

Models in the Presence of Time-series and Clustered Dependence

by

Jungbin Hwang

Doctor of Philosophy in Economics

University of California, San Diego, 2016

Professor Yixiao Sun, Chair

In the widely used over-identified econometric model, the two-step Gen-

eralized Methods of Moments (GMM) estimator and inference, first suggested by

(Hansen, 1982), require the estimation of optimal weighting matrix at the initial

stages. For time series data and clustered dependent data, which is our focus here,

the optimal weighting matrix is usually referred to as the long run variance (LRV)

of the (scaled) sample moment conditions. To maintain generality and avoid mis-

specification, nowadays we do not model serial dependence and within-cluster de-

pendence parametrically but use the heteroscedasticity and autocorrelation robust

(HAR) variance estimator in standard practice. These estimators are nonparamet-

ric in nature with high variation in finite samples, but the conventional increasing

smoothing asymptotics, so called small-bandwidth asymptotics, completely ignores

the finite sample variation of the estimated GMM weighting matrix. As a conse-

quence, empirical researchers are often in danger of making unreliable inferences

and false assessments of the (efficient) two-step GMM methods. Motivated by

xiii



this issue, my dissertation consists of three papers which explore the efficiency

and approximation issues in the two-step GMM methods by developing new, more

accurate, and easy-to-use approximations to the GMM weighting matrix.

The first chapter, “Simple and Trustworthy Cluster-Robust GMM Inference′′

explores new asymptotic theory for two-step GMM estimation and inference in the

presence of clustered dependence. Clustering is a common phenomenon for many

cross-sectional and panel data sets in applied economics, where individuals in the

same cluster will be interdependent while those from different clusters are more

likely to be independent. The core of new approximation scheme here is that we

treat the number of clusters G fixed as the sample size increases. Under the new

fixed-G asymptotics, the centered two-step GMM estimator and two continuously-

updating estimators have the same asymptotic mixed normal distribution. Also,

the t statistic, J statistic, as well as the trinity of two-step GMM statistics (QLR,

LM and Wald) are all asymptotically pivotal, and each can be modified to have

an asymptotic standard F distribution or t distribution. We also suggest a finite

sample variance correction further to improve the accuracy of the F or t approxi-

mation. Our proposed asymptotic F and t tests are very appealing to practitioners,

as test statistics are simple modifications of the usual test statistics, and the F or t

critical values are readily available from standard statistical tables. We also apply

our methods to an empirical study on the causal effect of access to domestic and

international markets on household consumption in rural China.

The second paper “Should we go one step further? An Accurate Compar-

ison of One-step and Two-step procedures in a Generalized Method of Moments

Framework′′ (coauthored with Yixiao Sun) focuses on GMM procedure in time-

series setting and provides an accurate comparison of one-step and two-step GMM

procedures in a fixed-smoothing asymptotics framework. The theory developed in

this paper shows that the two-step procedure outperforms the one-step method

only when the benefit of using the optimal weighting matrix outweighs the cost of

estimating it. We also provide clear guidance on how to choose a more efficient

xiv



(or powerful) GMM estimator (or test) in practice.

While our fixed smoothing asymptotic theory accurately describes sampling

distribution of two-step GMM test statistic, the limiting distribution of conven-

tional GMM statistics is non-standard, and its critical values need to be simu-

lated or approximated by standard distributions in practice. In the last chapter,

“Asymptotic F and t Tests in an Efficient GMM Setting′′ (coauthored with Yix-

iao Sun), we propose a simple and easy-to-implement modification to the trinity

(QLM, LM, and Wald) of two-step GMM statistics and show that the modified test

statistics are all asymptotically F distributed under the fixed-smoothing asymp-

totics. The modification is multiplicative and only involves the J statistic for

testing over-identifying restrictions. In fact, what we propose can be regarded

as the multiplicative variance correction for two-step GMM statistics that takes

into account the additional asymptotic variance term under the fixed-smoothing

asymptotics. The results in this paper can be immediately generalized to the GMM

setting in the presence of clustered dependence.

xv



Chapter 1

Simple and Trustworthy

Cluster-Robust GMM Inference

Abstract. This paper develops a new asymptotic theory for two-step GMM

estimation and inference in the presence of clustered dependence. While conven-

tional asymptotic theory completely ignores the variability in the cluster-robust

GMM weighting matrix, the new asymptotic theory takes it into account, leading

to more accurate approximations. The key difference between these two types of

asymptotics is whether the number of clusters G is regarded as fixed or growing

when the sample size increases. Under the new fixed-G asymptotics, the centered

two-step GMM estimator and the two continuously-updating estimators have the

same asymptotic mixed normal distribution. In addition, the J-statistic, the trin-

ity of two-step GMM statistics (QLR, LM and Wald), and the t-statistic are all

asymptotically pivotal, and each can be modified to have an asymptotic standard

F distribution or t distribution. We suggest a finite sample variance correction to

further improve the accuracy of the F and t approximations. Our proposed asymp-

totic F and t tests are very appealing to practitioners because our test statistics

are simple modifications of the usual test statistics, and the F and t critical values

are readily available from standard statistical tables. A Monte Carlo study shows

that our proposed tests are much more accurate than existing tests. We also ap-

1
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ply our methods to an empirical study on the causal effect of access to domestic

and international markets on household consumption in rural China. The results

suggest that the effect of access to markets may be lower than the previous finding.



3

1.1 Introduction

Clustering is a common feature for many cross-sectional and panel data

sets in applied economics. The data often come from a number of independent

clusters with a general dependence structure within each cluster. For example, in

development economics, data are often clustered by geographical regions, such as

village, county and province, e.g., (De Brauw and Giles, 2012; Pepper, 2002; Dube

et al., 2010). In empirical finance and industrial organization, firm level data are

often clustered at the industry level ,e.g., Samila and Sorenson, 2011; Bharath

et al., 2014, and in many educational studies, students’ test scores are clustered

at the classroom or school level (Andrabi et al., 2011). Because of learning from

daily interactions, the presence of common shocks, and for many other reasons,

individuals in the same cluster will be interdependent while those from different

clusters tend to be independent. Failure to control for within group or cluster cor-

relation often leads to downwardly biased standard errors and spurious statistical

significance.

Seeking to robustify inference, many practical methods employ clustered

covariance estimators (CCE). See White (1980), Liang and Zeger (1986), and Arel-

lano and Bond (1991) for overviews of the CCE and its applications. It is now well

known that standard test statistics based on the CCE are either asymptotically

chi-squared or normal. The chi-squared and normal approximations are obtained

under the so-called large-G asymptotic specification, which requires the number of

clusters G to grow with the sample size. The key ingredient behind these approx-

imations is that the CCE becomes concentrated at the true asymptotic variance

as G diverges to infinity. In effect, this type of asymptotics ignores the estimation

uncertainty in the CCE despite its high variation in finite samples, especially when

the number of clusters is small. In practice, it is not unusual to have a data set

that has a small number of clusters. For example, if clustering is based on large ge-

ographical regions such as U.S. states and regional blocks of neighboring countries,
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(e.g., Duflo et al., 2004; Obstfeld et al., 2008; Bester et al., 2011; Ibragimov and

Müller; 2011), we cannot convincingly claim that the number of cluster is large so

that the large-G asymptotic approximations are applicable. In fact, there is ample

simulation evidence that the large-G approximation can be very poor when the

number of clusters is not large (e.g., Donald and Lang, 2007; Cameron et al., 2008

; Bester et al., 2011; MacKinnon and Webb, 2014).

In this paper, we introduce a new approach that yields more accurate ap-

proximations, and that works well whether or not the number of clusters is large.

In fact, our approximations work especially well when the chi-squared and normal

approximations are poor. They are obtained from a limiting thought experiment

where the number of clusters G is held fixed. Under this fixed-G asymptotics, the

CCE no longer asymptotically degenerates; instead, it converges in distribution to

a random matrix that is proportional to the true asymptotic variance. The ran-

dom limit of the CCE has profound implications for the analyses of the asymptotic

properties of GMM estimators and the corresponding test statistics.

We start with the first-step GMM estimator where the underlying model

is possibly over-identified and show that suitably modified Wald and t-statistics

converge weakly to standard F and t distributions, respectively. The modification

is easy to implement because it involves only a known multiplicative factor. Similar

results have been obtained by Hansen (2007) and Bester et al. (2011) ,which employ

a CCE type HAC estimator but consider only linear regressions and M-estimators

for an exactly identified model.

We then consider the two-step GMM estimator that uses the CCE as a

weighting matrix. Because the weighting matrix is random even in the limit, the

two-step estimator is not asymptotically normal. The form of the limiting distribu-

tion depends on how the CCE is constructed. If the CCE is based on the uncentered

moment process, we obtain the so-called uncentered two-step GMM estimator. We

show that the asymptotic distribution of this two-step GMM estimator is highly

nonstandard. As a result, the associated Wald statistic is not asymptotically piv-
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otal. However, it is surprising that the J-statistic is still asymptotically pivotal.

Furthermore, we show that the limiting distribution of the J-statistic can be rep-

resented as an increasing function of a standard F random variable. So critical

values are readily available from standard statistical tables and software packages.

Next, we establish the asymptotic properties of the “centered” two-step

GMM estimator1 whose weighting matrix is constructed using recentered moment

conditions. Invoking centering is not innocuous for an over-identified GMM model

because the empirical moment conditions, in this case, are not equal to zero in

general. Under the traditional large-G asymptotics, recentering does not matter

in large samples because the empirical moment conditions are asymptotically zero

and here are ignorable, even though they are not identically zero in finite sample.

In contrast, under the fixed-G asymptotics, recentering plays two important roles:

it removes the first order effect of the estimation error in the first-step estimator,

and it ensures that the weighting matrix is asymptotically independent of the em-

pirical moment conditions. With the recentered CCE as the weighting matrix, the

two-step GMM estimator is asymptotically mixed normal. The mixed normality

reflects the high variation of the feasible two-step GMM estimator as compared to

the infeasible two-step GMM estimator, which is obtained under the assumption

that the ‘efficient’ weighing matrix is known. The mixed-normality allows us to

construct the Wald and t-statistics that are asymptotically nuisance parameter

free.

We also consider two types of continuous updating (CU) estimators. The

first type continuously updates the first order conditions (FOC) underlying the

two-step GMM estimator. Given that FOC’s can be regarded as the empirical

version of generalized estimating equations (GEE), we call this type of CU esti-

mator the CU-GEE estimator. The second type continuously updates the GMM

criterion function, leading to the CU-GMM estimator, which was first suggested

1Our definition of the centered two-step GMM estimator is originated from the recentered (or
demeaned) GMM weighting matrix, and it should not be confused with “centering” the estimator
itself.
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by Hansen et al. (1996). Both CU estimators are designed to improve the finite

sample performance of two-step GMM estimators. Interestingly, we show that the

continuous updating scheme has a built-in recentering feature. So in terms of the

first order asymptotics, it does not matter whether the empirical moment condi-

tions are recentered or not. We find that the centered two-step GMM estimator

and the two CU estimators are all first-order asymptotically equivalent under the

fixed-G asymptotics. This result provides a theoretical justification for using the

recentered CCE in a two-step GMM framework.

To relate the fixed-G asymptotic pivotal distributions to standard distri-

butions, we introduce simple modifications to the Wald and t statistics associated

with the centered two-step GMM and CU estimators. We show that the mod-

ified Wald and t statistics are asymptotically F and t distributed, respectively.

This result resembles the corresponding result that is based on the first-step GMM

estimator. It is important to point out that the proposed modifications are indis-

pensable for our asymptotic F and t theory. In the absence of the modifications,

the Wald and t statistics converge in distribution to nonstandard distributions, and

as a result, critical values have to be simulated. The modifications involve only

the standard J-statistic, and it is very easy to implement because the modified test

statistics are scaled versions of the original Wald test statistics with the scaling

factor depending on the J-statistic. Significantly, the combination of the Wald

statistic and the J-statistic enables us to develop the F approximation theory.

Finally, although recentering removes the first order effect of the first-step

estimation error, the centered two-step GMM estimator still faces some extra esti-

mation uncertainty in the first-step estimator. The main source of the problem is

that we have to estimate the unobserved moment process based on the first-step

estimator. To capture the higher order effect, we propose to retain one more term

in our stochastic approximation that is asymptotically negligible. The expansion

helps us develop a finite sample correction to the asymptotic variance estimator.

Our correction resembles that of Windmeijer, (2005) , which considers variance
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correction for a two-step GMM estimator but only in the i.i.d. setting. We show

that the finite sample variance correction does not change the limiting distributions

of the test statistics, but they can help improve the finite sample performance of

our tests.

Monte Carlo simulations clearly show that our new tests have a much more

accurate size than existing tests via standard normal and chi-square critical val-

ues, especially when the number of clusters G is not large. An advantage of our

procedure is that the test statistics do not entail much extra computational cost

because the main ingredient for the modification is the usual J-statistic. There is

also no need to simulate critical values because the F and t critical values can be

readily obtained from standard statistical tables.

Our fixed-G asymptotics is related to fixed-smoothing asymptotics for a

long run variance (LRV) estimation in a time series setting. The latter was ini-

tiated and developed in econometric literature by Kiefer et al. (2000), Kiefer and

Vogelsang (2002b), Müller (2007), Sun et al. (2008), Sun (2014a, 2014b), and

Politis, (2011) among others. Our new asymptotics is in the same spirit in that

both lines of research attempt to capture the estimation uncertainty in covari-

ance estimation. With regards to orthonormal series LRV estimation, a recent

paper by Hwang and Sun (2015b) modifies the two-step GMM statistics using

the J-statistic, and shows that the modified statistics are asymptotically F and

t distributed. The F and t limit theory presented in this paper is similar, but

our cluster-robust limiting distributions differ from those of our predecessors in

terms of the multiplicative adjustment and the degrees of freedom. Moreover, we

propose a finite sample variance correction to capture the uncertainty embodied

in the estimated moment process adequately. To our knowledge, the finite sample

variance correction provided in this paper has not been considered in the literature

on the fixed-smoothing asymptotics.

There is also a growing literature that uses the fixed-G asymptotics to design

more accurate cluster-robust inference. For instance, Ibragimov and Müller (2010,
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2011) proposes a t-test for a scalar parameter that is robust to potentially heteroge-

neous clusters. Hansen (2007), Stock and Watson (2008), and Bester et al. (2011)

propose a cluster-robust F or t tests under cluster-size homogeneity. Bell and Mc-

Caffrey (2002) and Imbens and Kolesar (2012) suggest an adjusted t-critical value

employing data-determined degrees of freedom. Recently, Canay et al., (2014) es-

tablishes a theory of randomization tests and suggests an alternative cluster-robust

test. For other approaches, see Carter et al. (2013) which proposes a measure of

the effective number of clusters under the large-G asymptotics.; Cameron et al.

(2008), MacKinnon and Webb (2014) which provide cluster bootstrap approaches

with asymptotic refinement. All these studies, however, mainly focus on a sim-

ple location model or linear regressions that are special cases of exactly identified

models.

The remainder of the paper is organized as follows. Section 1.2 presents

the basic setting and establishes the approximation results for the first-step GMM

estimator under the fixed-G asymptotics. Sections 1.3 and 1.4 establish the fixed-

G asymptotics for two-step GMM estimators and the CU estimators, respectively.

Section 1.5 is devoted to developing asymptotic F and t tests based on the cen-

tered two-step GMM estimator and the CU estimators. Section 1.6 proposes a

finite sample variance correction. The next two sections apply our methods to the

popular linear dynamic panel model and report a simulation evidence in the con-

text of this model. Section 1.10 applies our methods to an empirical study on the

causal effect of access to markets on household consumption in some rural Chinese

areas. The last section concludes. Proofs are given in the appendix

1.2 Basic Setting and the First-step GMM Esti-

mator

We want to estimate the d × 1 vector of parameters θ ∈ Θ. The true

parameter vector θ0 is assumed to be an interior point of Θ ⊆ Rd, which is a
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compact parameter space. The moment condition

Ef(Yi, θ) = 0 holds if and only if θ = θ0, (1.1)

where fi(θ) = f(Yi, θ) is an m× 1 vector of twice continuously differentiable func-

tions. We assume that q = m − d ≥ 0 and the rank of Γ = E [∂f(Yi, θ0)/∂θ′] is

d. So the model is possibly over-identified with the degree of over-identification q.

The number of observations is N.

Define gN(θ) = N−1
∑N

i=1 fi(θ). Given the moment condition in (1.1), the

initial “first-step” GMM estimator of θ0 is given by

θ̂1 = arg min
θ∈Θ

gN(θ)′W−1
N gN(θ),

where WN is an m ×m positive definite and a symmetric weighting matrix that

does not depend on the unknown parameter θ0 and plimN→∞WN = W > 0. In

the context of instrumental variable (IV) regression, one popular choice for WN is

Z ′Z/N where Z is the data matrix of instruments.

Let

Γ̂(θ) = N−1

N∑
i=1

∂fi(θ)

∂θ′
.

To establish the asymptotic properties of θ̂1, we assume that for any
√
N consistent

estimator θ̃, plimN→∞Γ̂(θ̃) = Γ and that Γ is of full column rank. Also, under some

regularity conditions, we have the following Central Limit Theorem (CLT):

√
NgN(θ0)

d→ N(0,Ω) where

Ω = lim
N→∞

1

N
E

(
N∑
i=1

fi(θ0)

)(
N∑
j=1

fj(θ0)

)′
. (1.2)

Here Ω is analogous to the long run variance in a time series setting but the com-

ponents of Ω are contributed by cross-sectional dependences over all locations. For

easy reference, we follow Sun and Kim (2015) and call Ω the global variance. Prim-
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itive conditions for the above CLT in the presence of cross-sectional dependence

are provided in Jenish and Prucha (2009, 2012). Under these conditions, we have

√
N(θ̂1 − θ0)

d→ N
[
0, (Γ′W−1Γ)−1Γ′W−1ΩW−1Γ(Γ′W−1Γ)−1

]
.

Since Γ and W can be accurately estimated by Γ̂(θ̂1) and WN , we need only

estimate Ω to make reliable inference about θ0. The main issue is how to properly

account for cross-sectional dependence in the moment process {fj(θ0)}Nj=1. In

this paper, we assume that the cross-sectional dependence has a cluster structure,

which is not uncommon in many microeconomic applications. More specifically, our

data consists of a number of independent clusters, each of which has an unknown

dependence structure. Let G be the total number of clusters and Lg be the size

of cluster g. For simplicity, we assume that every cluster has the common size

Lg, i.e., L = L1 = L2 = .... = LG. The identical cluster size assumption can be

relaxed to the assumption that each cluster has the same size asymptotically, i.e.,

limN→∞ Lg/(G
−1
∑G

i=1 Li) = 1 for every g = 1, ..., G. The following assumption

formally characterizes the cluster dependence.

Assumption 1 (i) The data {Yj}Nj=1 consists of G clusters. (ii) Observations are

independent across clusters. (iii) The number of clusters G is fixed, and the size

of each cluster L grows with the total sample size N.

Assumption 1-i) implies that the set {fi(θ0), i = 1, 2, ..., N} can be parti-

tioned into G nonoverlapping clusters ∪Gg=1Gg where Gg = {f gk (θ0) : k = 1, ..., L}.

In the context of this clustered structure, Assumption 1-ii) implies that the within-

cluster dependence for each cluster can be arbitrary but Ef gk (θ0)fhl (θ0) = 0 if g 6= h.

That is, f gk (θ0) and fhl (θ0) are independent if they belong to different clusters. In-

dependence across clusters in Assumption 1-ii) can be generalized to allow weak

dependence among clusters by restricting the number of observations located on

the boundaries between clusters. See Bester et al. (2011) for the detailed primitive
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conditions. Under Assumption 1-ii), we have

Ω = lim
N→∞

1

N
E

(
N∑
i=1

fi(θ0)

)(
N∑
j=1

fj(θ0)

)′

= lim
N→∞

1

N

N∑
i=1

N∑
j=1

1(i, j ∈ same cluster)Efi(θ0)fj(θ0)′. (1.3)

Assumption 1-iii) specifies the direction of asymptotics we consider. Under

this fixed-G asymptotic specification, we have

Ω =
1

G

G∑
g=1

lim
L→∞

V ar

(
1√
L

L∑
i=1

f gi (θ0)

)
:=

1

G

G∑
g=1

Ωg.

Thus, the global covariance matrix Ω can be represented as the simple average

of Ωg, g = 1, ..., G, where Ωg’s are the limiting variances within individual clus-

ters. Motivated by this, we construct the clustered covariance estimator (CCE) as

follows:

Ω̂(θ̂1) =
1

N

N∑
i=1

N∑
j=1

1(i, j ∈ the same group)fi(θ̂1)fj(θ̂1)′

=
1

G

G∑
g=1

{(
1√
L

L∑
i=1

f gi (θ̂1)

)(
1√
L

L∑
j=1

f gj (θ̂1)

)′}
.

To ensure that Ω̂(θ̂1) is positive definite, we assume that G ≥ m, and we maintain

this condition throughout the rest of the paper.

Suppose we want to test the null hypothesis H0 : Rθ0 = r against the al-

ternative H1 : Rθ0 6= r, where R is a p× d matrix. We focus on linear restrictions

without loss of generality because the Delta method can be used to convert non-

linear restrictions into linear ones in an asymptotic sense. The F-test version of

the Wald test statistic is given by

F (θ̂1) := (Rθ̂1 − r)′
{
Rv̂ar(θ̂1)R′

}−1

(Rθ̂1 − r)/p,
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where

v̂ar(θ̂1)

=
1

N

[
Γ̂(θ̂1)′W−1

N Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
N Γ̂(θ̂1)

]−1

.

When p = 1 and the alternative is one sided, we can construct the t-statistic:

t(θ̂1) :=
Rθ̂1 − r√
Rv̂ar(θ̂1)R′

.

To formally characterize the asymptotic distributions of F\(θ̂1) and t(θ̂1) under

the fixed-G asymptotics, we further maintain the following high level conditions.

Assumption 2 θ̂1
p→ θ0.

Assumption 3 (i) For each g = 1, ..., G, let

Γg(θ) := lim
LN→∞

E

[
1

L

L∑
k=1

∂f gk (θ)

∂θ′

]
.

Then,

sup
θ∈N (θ0)

∥∥∥∥∥ 1

L

L∑
k=1

∂f gk (θ)

∂θ′
− Γg(θ)

∥∥∥∥∥ p→ 0,

holds, where N (θ0) is an open neighborhood of θ0 and ‖·‖ is the Euclidean norm.

(ii) Γg(θ) is continuous at θ = θ0, and for Γg = Γg(θ0), Γ = G−1
∑G

g=1 Γg has full

rank.

Assumption 4 Let Bm,g ∼i.i.d.N(0, Im) for g = 1, ..., G, then

P

(
1√
L

L∑
k=1

f gk (θ0) ≤ x

)
= P (ΛgBm,g ≤ x ) + o(1) as L→∞.

for each g = 1, ..., G where x ∈ Rm and Λg is the matrix square root of Ωg.

Assumption 5 (Homogeneity of Γg) For all g = 1, ..., G, Γg = Γ.
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Assumption 6 (Homogeneity of Ωg) For all g = 1, ..., G, Ωg = Ω.

Assumption 2 is made for convenience, and primitive sufficient conditions

are available from the standard GMM asymptotic theory. Assumption 3 is a uni-

form law of large numbers (ULLN), from which we obtain Γ̂(θ̂1) = G−1
∑G

g=1 Γg +

op(1) = Γ + op(1). Together with Assumption 1-(ii), Assumption 4 implies that

L−1/2
∑L

j=1 f
g
j (θ0) follows a central limit theorem jointly over g = 1, ..., G with

zero asymptotic covariance between any two clusters. The homogeneity conditions

in Assumptions 5 and 6 guarantee the asymptotic pivotality of the cluster-robust

GMM statistics we consider. Similar assumptions are made in Bester et al. (2011)

and Sun and Kim (2015), which develop asymptotically valid F tests that are

robust to spatial autocorrelation in the same spirit as our fixed-G asymptotics.

Let

B̄m := G−1

G∑
g=1

Bm,g and S̄ := G−1

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
where B′m,g as in Assumption 4. Also, let Wp(K,Π) denote a Wishart distribution

with K degrees of freedom and p×p positive definite scale matrix Π. By construc-

tion,
√
GB̄m ∼ N(0, Im), S̄ ∼ G−1Wp(G − 1, Im) and B̄m ⊥ S̄. To present our

asymptotic results, we partition B̄m and S̄ as follows:

B̄m =

 B̄d
d×1

B̄q
q×1

 , B̄d =

 B̄p
p×1

B̄d−p
(d−p)×1

 , S̄ =

 S̄dd
d×d

S̄dq
d×q

S̄qd
q×d

S̄qq
q×q

 ,

S̄dd =

 S̄pp
p×p

S̄p,d−p
p×(d−p)

S̄d−p,p
(d−p)×p

S̄d−p,d−p
(d−p)×(d−p)

 , and S̄dq =

 S̄pq
p×q

S̄d−p,q
(d−p)×q

 .

Proposition 1 Let Assumptions 1∼6 hold. Then

(a) F (θ̂1)
d→ F1∞ := GB̄′pS̄−1

pp B̄p/p;

(b) t(θ̂1)
d→ T1∞ := N(0,1)√

χ2
G−1/G

where N(0, 1) ⊥
√
χ2
G−1.

Remark 2 The limiting distribution F1∞ follows Hotelling’s T2distribution. Us-
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ing the well-known relationship between the T 2 and standard F distributions, we

obtain F1∞
d
= (G/G− p)Fp,G−p where Fp,G−p is a random variable that follows the

F distribution with degree of freedom (p,G− p). Similarly, T1∞
d
= (G/G− 1)tG−1

where tG−1 is a random variable that follows the t distribution with degree of free-

dom G− 1.

Remark 3 As an example of the general GMM setting, consider the linear regres-

sion model yj = x′jθ + εj. Under the assumption that cov(xj, εj) = 0, the moment

function is fj(θ0) = xj(yj − x′jθ). With the moment condition Efj(θ0) = 0, the

model is exactly identified. This setting was employed in Hansen, 2007; Stock and

Watson, 2008; Bester et al., 2011, indeed, our F and t approximations in Propo-

sition 1 are identical to what is obtained in these papers.

Remark 4 Under the large-G asymptotics where G → ∞ but L is fixed, one can

show that the CCE Ω̂(θ̂1) converges in probability to Ω for

Ω = lim
G→∞

1

G

G∑
g=1

V ar

(
1√
L

L∑
k=1

f gk (θ0)

)
.

The convergence of Ω̂(θ̂1) to Ω does not require the homogeneity of Ωg in Assump-

tion 6 (Hansen, 2007; Carter et al., 2013). Under this type of asymptotics, the

test statistics F (θ̂1) and t(θ̂1) are asymptotically χ2
p/p and N(0, 1). Let F1−α

p,G−p and

χ1−α
p be the 1 − α quantiles of Fp,G−p and the χ2

p distributions, respectively. As

G/(G− p) > 1 and F1−α
p,G−p > χ1−α

p /p, it is easy to see that

G

G− p
F1−α
p,G−p > χ1−α

p /p.

However, the difference between the two critical values G(G − p)−1F1−α
p,G−p and

χ1−α
p /p shrinks to zero as G increases. Therefore, the fixed-G critical value G(G−

p)−1F1−α
p,G−p is asymptotically valid under the large-G asymptotics. The asymptotic

validity holds even if the homogeneity conditions of Assumptions 5 and 6 are not
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satisfied. The fixed-G critical value is robust in the sense that it works whether G

is small or large.

Remark 5 Let Λ the matrix square root of Ω,i.e. ΛΛ′ = Ω. Then, it follows from

the proof of Proposition 1 that Ω̂(θ̂1) converges in distribution to a random matrix

Ω1∞ given by

Ω1∞ = ΛD̃Λ′ where D =
1

G

G∑
g=1

D̃gD̃
′
g

D̃g = Bm,g − ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m (1.4)

for ΓΛ = Λ−1Γ and WΛ = Λ−1W (Λ′)−1. D̃g is a quasi-demeaned version of

Bm,g with quasi-demeaning attributable to the estimation error in θ̂1. Note that

the quasi-demeaning factor ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ depends on all of Γ,Ω and

W , and cannot be further simplified in general. The estimation error in θ̂1 affects

Ω1∞ in a complicated way. However, for the first-step Wald and t statistics, we do

not care about Ω̂(θ̂1) per se. Instead, we care about the scaled covariance matrix

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1), which converges in distribution to Γ′W−1Ω1∞W
−1Γ.

But

Γ′ΛW
−1
Λ D̃g = Γ′ΛW

−1
Λ

(
Bm,g − B̄m

)
,

and thus

Γ′W−1Ω1∞W
−1Γ = Γ′ΛW

−1
Λ D̃W−1

Λ ΓΛ =
1

G

G∑
g=1

Γ′ΛW
−1
Λ D̃g

(
Γ′ΛW

−1
Λ D̃g

)′
d
= Γ′ΛW

−1
Λ

1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′ (
Γ′ΛW

−1
Λ

)′
.

So, to the first order fixed-G asymptotics, the estimation error in θ̂1 affects Γ′W−1

Ω1∞W
−1Γ via simple demeaning only. This is a key result that drives the asymp-

totic pivotality of F (θ̂1) and t(θ̂1).
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1.3 Two-step GMM Estimation and Inference

In an overidentified GMM framework, we often employ a two-step proce-

dure to improve the efficiency of the initial GMM estimator and the power of the

associated tests. It is now well-known that the optimal weighting matrix is the

(inverted) asymptotic variance of the sample moment conditions. There are two

different ways to estimate the asymptotic variance, and these lead to two different

estimators Ω̂(θ̂1) and Ω̂c(θ̂1) where

Ω̂(θ) =
1

G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ)

)(
1√
L

L∑
l=1

f gl (θ)

)′
,

Ω̂c(θ) =
1

G

G∑
g=1

{
1√
L

L∑
k=1

[f gk (θ)− gN(θ)]

}{
1√
L

L∑
l=1

[f gl (θ)− gN(θ)]

}′
.

While Ω̂(θ̂1) employs the uncentered moment process {f gi (θ̂1)}Ni=1, Ω̂c(θ̂1) employs

the recentered moment process {f gi (θ̂1) − gN(θ̂1)}Gi=1. For inference based on the

first-step estimator θ̂1, it does not matter which asymptotic variance estimator is

used. This is so because for any asymptotic variance estimator Ω̂(θ̂1), the Wald

statistic depends on Ω̂(θ̂1) only via Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1). It is easy to show

that the following asymptotic equivalence:

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1)

= Γ̂(θ̂1)′W−1
N Ω̂c(θ̂1)W−1

N Γ̂(θ̂1) + op (1)

= Γ′W−1Ω̂c(θ0)W−1Γ + op (1) .

Thus, the limiting distribution of the Wald statistic is the same whether the esti-

mated moment process is recentered or not. It is important to point out that the

asymptotic equivalence holds because two asymptotic variance estimators are pre-

multiplied by Γ̂(θ̂1)′W−1
N and post-multiplied by W−1

N Γ̂(θ̂1). The two asymptotic

variance estimators are not asymptotically equivalent by themselves under fixed-G
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asymptotics.

Depending on whether we use Ω̂(θ̂1) or Ω̂c(θ̂1), we have different two-step

GMM estimators:

θ̂2 = arg min
θ∈Θ

gN(θ)′
[
Ω̂(θ̂1)

]−1

gN(θ),

θ̂c2 = arg min
θ∈Θ

gN(θ)′
[
Ω̂c(θ̂1)

]−1

gN(θ).

Given that Ω̂(θ̂1) and Ω̂c(θ̂1) are not asymptotically equivalent and that they en-

ter the definitions of θ̂2 and θ̂c2 by themselves, the two estimators have different

asymptotic behaviors, as shown in the next two subsections.

1.3.1 Uncentered Two-step GMM Estimator

In this subsection, we consider the two-step GMM estimator θ̂2 based on

the uncentered moment process. We establish the asymptotic properties of θ̂2

and the associated Wald statistic and J-statistic. We show that the J-statistic is

asymptotically pivotal, even though the Wald statistic is not.

It follows from standard asymptotic arguments that

√
N(θ̂2 − θ0) = −

[
Γ′Ω̂−1(θ̂1)Γ

]−1

Γ′Ω̂−1(θ̂1)
1√
G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ0)

)
+ op(1).

(1.5)

Using the joint convergence of the following

Ω̂(θ̂1)
d→ Ω1∞ = ΛD̃Λ′ and

1√
G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ0)

)
d→
√
GΛB̄m, (1.6)

we obtain:

√
N(θ̂2 − θ0)

d→ −
[
Γ′Λ

(
D̃
)−1

ΓΛ

]−1

Γ′Λ

(
D̃
)−1√

GB̄m
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where as before

D̃ =
1

G

G∑
g=1

D̃gD̃
′
g for D̃g = Bm,g − ΓΛ(Γ′ΛW

−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m.

Since D̃ is random, the limiting distribution is not normal. Even though both D̃g

and B̄m are normal, there is a nonzero correlation between them. As a result, D̃

and B̄m are correlated, too. This makes the limiting distribution of
√
N(θ̂2 − θ0)

highly nonstandard.

To understand the limiting distribution, we define the infeasible estimator

θ̃2 by assuming that Ω̂(θ0) is known, which leads to

θ̃2 = arg min
θ∈Θ

gN(θ)′Ω̂−1(θ0)gN(θ).

Now
√
N(θ̃2 − θ0)

d→ −
[
Γ′ΛS−1ΓΛ

]−1
Γ′ΛS−1

√
GB̄m

where S = G−1
∑G

g=1Bm,gB
′
m,g. The only difference between the asymptotic distri-

butions of
√
N(θ̂2− θ0) and

√
N(θ̃2− θ0) is the quasi-demeaning embedded in the

definition of D̃g. This difference captures the first order effect of having to estimate

the optimal weighting matrix, which is needed to construct the feasible two-step

estimator θ̂2.

To make further links between the limiting distributions, let’s partition S

in the same way that S̄ is partitioned. Also, define U to be the m ×m matrix of

the eigen vectors of Γ′ΛΓΛ = Γ′Ω−1Γ and UΣV ′ be a singular value decomposition

(SVD) of ΓΛ. By construction, U ′U = UU ′ = Im, V ′V = V ′V = Id, and Σ′ =[
Ad×d Od×q

]
. We then define W̃ = U ′WΛU and partition W̃ as before. We also

introduce

βS = SdqS−1
qq , βW̃ = W̃dqW̃

−1
qq and κG = G · B̄′qS−1

qq B̄q.

By construction, βS is the “random” regression coefficient induced by S while βW̃
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is the regression coefficient induced by the constant matrix W̃ . Also, κG is the

quadratic form of normal random vector
√
G B̄q with random matrix Sqq. Finally,

on the basis of θ̂2, the J-statistic for testing over-identification restrictions is

J(θ̂2) := NgN(θ̂2)′
(

Ω̂(θ̂1)
)−1

gN(θ̂2)/q. (1.7)

The following proposition characterizes and connects the limiting distributions of

the three estimators: the first-step estimator θ̂1, the feasible two-step estimator θ̂2,

and the infeasible two-step estimator θ̃2.

Proposition 6 Let Assumptions 1∼6 hold. Then

(a)
√
N(θ̂1 − θ0)

d→ −V A−1
√
G(B̄d − βW̃ B̄q);

(b)
√
N(θ̃2 − θ0)

d→ −V A−1
√
G(B̄d − βSB̄q);

(c)
√
N(θ̂2−θ0)

d→ −V A−1
√
G(B̄d−βSB̄q)−V A−1

√
G(B̄d−βW̃ B̄q)·(κG/G);

(d)
√
N(θ̂2 − θ0) =

√
N(θ̃2 − θ0) +

√
N(θ̂1 − θ0) · (κG/G) + op(1);

(e) J(θ̂2)
d→ κG where (a) , (b) , (c) , and (e) hold jointly.

Part (d) of the proposition shows that
√
N(θ̂2−θ0) is asymptotically equiv-

alent to a linear combination of the infeasible two-step estimator
√
N(θ̃2 − θ0)

and the first-step estimator
√
N(θ̂1 − θ0). This contrasts with the conventional

GMM asymptotics, wherein feasible and infeasible estimators are asymptotically

equivalent.

It is interesting to see that the linear coefficient in Parts (c) and (d) is

proportional to the limit of the J-statistic. Given κG = Op(1) as G increases, the

limiting distribution of
√
N(θ̂2− θ0) becomes closer to that of

√
N(θ̃2− θ0). In the

special case where q = 0, i.e., when the model is exactly identified, κG = 0 and
√
N(θ̂2−θ0) and

√
N(θ̃2−θ0) have the same limiting distribution. This is expected

given that the weighting matrix is irrelevant in the exactly identified GMM model.
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Using the Sherman–Morrison formula2, it is straightforward to show

κG
d
=

(
G

q

) q
G−qFq,G−q

1 + q
G−qFq,G−q

.

It is perhaps surprising that while the asymptotic distributions of θ̂2 is complicated

and nonstandard, the limiting distribution of the J-statistic is not only pivotal but

is also an increasing function of the standard F distribution. For the J test at the

significance level α, say 5%, the critical value from κG can be obtained from

(
G

q

) q
G−qF

1−α
q,G−q

1 + q
G−qF

1−α
q,G−q

.

Equivalently, we have
G− q
q

qκG
G− qκG

d
= Fq,G−q,

and so

J̃(θ̂2) :=
G− q
q

qJ(θ̂2)

G− qJ(θ̂2)

d→ Fq,G−q.

That is, the transformed J-statistic J̃(θ̂2) is asymptotically F distributed. This is

very convenient in empirical applications.

It is important to point out that the convenient F limit of J̃(θ̂2) holds only

if the J-statistic is equal to the GMM criterion function evaluated at the two-step

GMM estimator θ̂2. This effectively imposes a constraint on the weighting matrix.

If we use a weighting matrix that is different from Ω̂(θ̂1), then the resulting J-

statistic may not be asymptotically pivotal any longer.

Define the F-statistic and variance estimate for the two-step estimator θ̂2

2(C + ab′)−1 = C−1 − C−1ab′C−1

1+b′C−1a for any invertable square matrix C and conforming column

vectors such that 1 + b′C−1a 6= 0.
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as

FΩ̂(θ̂1)(θ̂2) = (Rθ̂2 − r)′
(
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1

(Rθ̂2 − r)/p for

v̂arΩ̂(θ̂1)(θ̂2) =
1

N

(
Γ̂(θ̂2)′Ω̂−1(θ̂1)Γ̂(θ̂2)

)−1

.

In the above definitions, we use a subscript notation Ω̂(θ̂1) to clarify the choice

of CCE in F·(θ̂2) and v̂ar·(θ̂2). Is the above F-statistic asymptotically pivotal as

the J-statistic J(θ̂2)? Unfortunately, the answer is no, as implied by the following

proposition which uses the additional notation:

Ep+q,p+q :=

 Epp Epq
E′pq Eqq

 =

 Spp Spq
S′pq Sqq

+

 β̃p
W̃
B̄qB̄

′
q(β̃

p

W̃
)′ β̃p

W̃
B̄qB̄

′
q

B̄qB̄
′
q(β̃

p

W̃
)′ B̄qB̄

′
q


where β̃p

W̃
is the p× q matrix and consists of the first p rows of Ṽ ′βW̃ where Ṽ is

the d× d matrix of the eigen vector of (RV A−1)
′
RV A−1.

Proposition 7 Let Assumptions 1∼6 hold. Then

FΩ̂(θ̂1)(θ̂2)
d→ G

p
(B̄p − EpqE−1

qq B̄q)
′ (Epp·q)−1 (B̄p − EpqE−1

qq B̄q)

=
1

p

G
 B̄p

B̄q

′ Epp Epq
E′pq Eqq

−1 B̄p

B̄q

−GB̄′qE−1
qq B̄q

 , (1.8)

where

Epp·q = Epp − EpqE−1
qq E′pq.

Due to the presence of the second term in Ep+q,p+q, which depends on β̃W̃ ,

the F-statistic is not asymptotically pivotal. It depends on several nuisance pa-

rameters including Ω. To see this, we note that the second term in (1.8) is the

same as (G/q) · B̄′qS−1
qq B̄q = κG. So the second term is the limit of the J-statistic,

which is nuisance parameter free. However, the first term in (1.8) is not pivotal
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because we have

G

 B̄p

B̄q

′ Epp Epq
E′pq Eqq

−1 B̄p

B̄q


= G

 B̄p

B̄q

′ S̄pp S̄pq
S̄′pq S̄qq

−1 B̄p

B̄q

− (B̄′p+qS̄−1
p+q,p+qw̃B̄q

)2

1 + B̄′qw̃
′
p+qS̄−1

p+qw̃B̄q


where w̃ =

(
(β̃pW )′, Iq

)′
. Here, as in the case of the J-statistic, the first term in

the above equation is nuisance parameter free. But the second term is clearly a

nonconstant function of β̃pW , which, in turn, depends on R,Γ,W and Ω.

1.3.2 Centered Two-step GMM estimator

Given that the estimation error in θ̂1 affects the limiting distribution of

Ω̂(θ̂1), the Wald statistic based on the uncentered two-step GMM estimator θ̂2

is not asymptotically pivotal. In view of (1.4), the effect of the estimator error

is manifested via a location shift in D̃g; the shifting amount depends on θ̂1. A

key observation is that the location shift is the same for all groups under the

homogeneity Assumptions 5 and 6. So if we demean the empirical moment process,

we can remove the location shift that is caused by the estimator error in θ̂1. This

leads to the recentered asymptotic variance estimator and a pivotal inference for

both the Wald test and J test.

It is important to note that recentering is not innocuous for an over-

identified GMM model because N−1
∑N

i=1 fi(θ̂1) is not zero in general. In the time

series HAR variance estimation, recentering is known to have several advantages.

For example, as Hall (2000) observes, in conventional increasing smoothing asymp-

totic theory, recentering can potentially improve the power of the J-test using a

HAR variance estimator when the model is misspecified. Building on this intuition,

Lee (2014) recently proposes a nonparametric misspecification robust GMM boot-

strap employing the recentered GMM weight matrix. Also, shows that, under the
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fixed smoothing asymptotics, recentering is necessary to yield an asymptotically

pivotal inference from the two-step Wald test statistic.

In our fixed-G asymptotic framework, recentering plays an important role in

the CCE estimation. It ensures that the limiting distribution of Ω̂c(θ̂1) is invariant

to the initial estimator θ̂1. The following lemma proves a more general result and

characterizes the fixed-G limiting distribution of the centered CCE matrix for any
√
N consistent estimator θ̃.

Lemma 8 Let Assumptions 1∼6 hold. Let θ̃ be any
√
N consistent estimator of

θ0. Then

(a) Ω̂c(θ̃) = Ω̂c(θ0) + op(1);

(b) Ω̂c(θ0)
d→ Ωc

∞ where Ωc
∞ = ΛS̄Λ′.

Lemma 8 indicates that the centered CCE Ωc(θ̂1) converges in distribu-

tion to the random matrix limit Ωc
∞ = ΛS̄Λ′, which follows a (scaled) Wishart

distribution G−1Wm(G− 1,Ω). Using Lemma 8, it is possible to show

√
N(θ̂c2 − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m. (1.9)

Since (Ωc
∞)−1 is independent with

√
GΛB̄m ∼ N(0,Ω), the limiting distribution of

θ̂c2 is mixed normal.

On the basis of θ̂c2, we can construct the “trinity” of GMM test statistics.

The first one is the normalized Wald statistic defined by

FΩ̂c(θ̂1)(θ̂
c
2) := (Rθ̂c2 − r)′{Rv̂arΩ̂c(θ̂c2)(θ̂

c
2)R′}−1(Rθ̂c2 − r)/p where (1.10)

v̂arΩ̂c(θ̂1)(θ̂
c
2) =

1

N

(
Γ̂(θ̂c2)′

(
Ω̂c(θ̂c2)

)−1

Γ̂(θ̂c2)

)−1

.

When p = 1 and the alternative is one sided, we can construct the t-statistic below:

tΩ̂c(θ̂1)(θ̂
c
2) :=

(
Rθ̂c2 − r

)
{Rv̂arΩ̂c(θ̂1)(θ̂

c
2)R′}1/2

.
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The second test statistic is the Quasi-Likelihood Ratio (QLR) type of statistic.

Define the restricted and centered two-step estimator θ̂c,r2 :

θ̂c,r2 = arg min
θ∈Θ

gN(θ)′
[
Ω̂c(θ̂1)

]−1

gN(θ) s.t. Rθ = r.

The QLR statistic is given by

LRΩ̂c(θ̂1)(θ̂
c
2, θ̂

c,r
2 ) := N

{
gN(θ̂c2)′

[
Ω̂c(θ̂1)

]−1

gN(θ̂c2)− gN(θ̂c,r2 )′
[
Ω̂c(θ̂1)

]−1

gN(θ̂c,r2 )

}
/p.

The third test statistic is the Lagrange Multiplier (LM) or score statistic in the

GMM setting. Let ∆Ω̂c(·)(θ) be the gradient of the GMM criterion function Γ̂(θ)′[
Ω̂c(·)

]−1

gN(θ), then the GMM score test statistic is given by

LMΩ̂c(θ̂1)(θ̂
c,r
2 ) := N

[
∆Ω̂c(θ̂1)(θ̂

c,r
2 )
]′{

Γ̂(θ̂c,r2 )′
[
Ω̂c(θ̂1)

]−1

Γ̂(θ̂c,r2 )

}−1 [
∆Ω̂c(θ̂1)(θ̂

c,r
2 )
]
/p.

In the definition of all three types of the GMM test statistics, we plug the first-

step estimator θ̂1 into Ω̂c(·), but Lemma 8 indicates that replacing θ̂1 with any
√
N consistent estimator (e.g., θ̂2 and θ̂c2) does not affect the fixed-G asymptotic

results. This contrasts with the fixed-G asymptotics for the uncentered two-step

estimator θ̂2. Lastly, we also construct the standard J- statistic based on θ̂c2 :

J(θ̂c2) := NgN(θ̂c2)′
(

Ω̂c(θ̂1)
)−1

gN(θ̂c2)/q,

where Ω̂c(θ̂1) can be replaced by Ω̂c(θ̂c2) without affecting the limiting distribution

of the J statistic.

Using (1.9) and Lemma 8, we have FΩ̂c(θ̂1)(θ̂
c
2)

d→ F2∞ where

F2∞ = G
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]′ [
R
(
Γ′ΛS̄−1ΓΛ

)−1
R′
]−1

(1.11)

×
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]
/p.
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When p = 1, we get tΩ̂c(θ̂1)(θ̂
c
2)

d→ T2∞ with

T2∞ =
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1

√
GB̄m√

R
(
Γ′ΛS̄−1ΓΛ

)−1
R′

.

Also, it follows in a similar way that

J(θ̂c2)
d→ J∞ := G

{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}′
S̄−1 (1.12)

×
{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}
/q.

The remaining question is whether the above representations for F2∞ and

J∞ are free of nuisance parameters. The following proposition provides a positive

answer.

Proposition 9 Let Assumptions 1∼6 hold and define S̄pp·q = S̄pp − S̄pqS̄−1
qq S̄qp.

(a) FΩ̂c(θ̂1)(θ̂
c
2)

d→ G
(
B̄p − S̄pqS̄−1

qq B̄q

)′ S̄−1
pp·q
(
B̄p − S̄pqS̄−1

qq B̄q

)′
/p

d
= F2∞;

(b) tΩ̂c(θ̂1)(θ̂
c
2)

d→
√
G
(
B̄p − S̄pqS̄−1

qq B̄q

)
/
√
S̄pp·q

d
= T2∞ for p = 1;

(c) LRΩ̂c(θ̂1)(θ̂
c
2, θ̂

c,r
2 ) = FΩ̂c(θ̂1)(θ̂

c
2) + op(1);

(d) LMΩ̂c(θ̂1)(θ̂
c,r
2 ) = FΩ̂c(θ̂1)(θ̂

c
2) + op(1);

(e) J(θ̂c2)
d→ (G/q)B̄′qS̄−1

qq B̄q
d
= J∞.

To simplify the representations of F2∞ and T2∞ in the above proposition,

we note that

G

 S̄pp S̄pq
S̄qp S̄qq

 d
=

G∑
g=1

(
Bp+q,g − B̄p+q

) (
Bp+q,g − B̄p+q

)′
,

where Bp+q,g := (B′p,g, B
′
p,g)
′. The above random matrix has a standard Wishart

distribution Wp+q(G − 1, Ip+q). It follows from the well-known properties of a

Wishart distribution that S̄pp·q ∼ Wp(G − 1 − q, Ip)/G and S̄pp·q is independent
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of S̄pq and S̄qq.3 Therefore, if we condition on ∆ := S̄pqS̄−1
qq

√
GB̄q, the limiting

distribution F2∞ satisfies

G− p− q
G

F2∞
d
=
G− p− q

G

(
√
GB̄p + ∆)′S̄pp·q(

√
GB̄p + ∆)

p
d
= Fp,G−p−q

(
‖∆‖2) ,

(1.13)

where Fp,G−p−q(‖∆‖2) is a noncentral F distribution with random noncentrality

parameter ‖∆‖2 . Similarly, the limiting distribution T2∞ can be represented as

√
G− 1− q

G
T2∞

d
=

√
G− 1− q

G

√
GB̄p + ∆√

S̄pp·q
d
= tG−1−q(∆), (1.14)

which is a noncentral t distribution with a noncentrality parameter ∆. The non-

standard limiting distributions are similar to those in Sun (2014) which provides

the fixed-smoothing asymptotic result in the case of the series LRV estimation.

However, in our setting of clustered dependence, the scale adjustment and degrees

of freedom parameter in (1.13) and (1.14) are different from those in Sun (2014).

The critical values from the nonstandard limiting distribution F2∞ can be

obtained through simulation, but Sun (2014b) shows that F2∞ can be approximated

by a noncentral F distribution. With regard to the QLR and LM types of test

statistics, Proposition 9-(c) and (d) shows that they are asymptotically equivalent

to FΩ̂c(θ̂1)(θ̂
c
2). This also implies that all three types of test statistics share the

same fixed-G limit as given in (1.13) and (1.14). Similar results are obtained by

Sun (2014b) and Hwang and Sun (2015a; 2015b), which focus on two-step GMM

estimation and HAR inference in a time series setting.

For the J-statistic J(θ̂c2), it follows from Proposition 9-(e) that

G− q
G

J(θ̂c2)
d→ J∞

d
=
G− q
G

B̄′qS̄−1
qq B̄q

d
= Fq,G−q.

This is consistent with Kim and Sun’s (2012) results except that our adjustment

and degrees of freedom parameter are different.

3See Proposition 7.9 in Bilodeau and Brenner.
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1.4 Iterative Two-step and Continuous Updat-

ing Schemes

Another class of popular GMM estimators is the continuous updating (CU)

estimators, which are designed to improve the poor finite sample performance of

two-step GMM estimators. For more discussion on the CU estimators, see Hansen

et al. (1996).

Here we consider two types of continuous updating schemes. The first is the

iterative scheme that iterates the second steps in the two-step GMM estimation

until convergence. The j-th iterated GMM estimator θ̂jIE is defined as the solution

of the following minimization problem:

θ̂jIE = arg min
θ∈Θ

gN(θ)′Ω̂−1(θ̂j−1
IE )gN(θ) for j ≥ 1,

where θ̂0
IE = θ̂2 is the two-step estimator θ̂2. The FOC for θ̂jIE is

Γ̂(θ̂jIE)′Ω̂−1(θ̂j−1
IE )gN(θ̂jIE) = 0 for j ≥ 1.

In view of the above FOC, θ̂jIE can be regarded as a generalized-estimating-

equations (GEE) estimator, which is a class of estimators first studied by Liang

and Zeger (1986).

When the number of iterations j goes to infinity until θ̂jIE converges, we

obtain the continuously updated generalized estimating equations (CU-GEE) es-

timator θ̂cu
GEE. The FOC for θ̂cu

GEE is given by

Γ̂(θ̂cu
GEE)′Ω̂−1(θ̂CU-GEE)gN(θ̂cu

GEE) = 0. (1.15)

In the above definition of θ̂cu
GEE, we employ the uncentered CCE, Ω̂(·). However, it
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is not difficult to show that

Γ̂(θ̂cu
GEE)′Ω̂−1(θ̂CU-GEE)gN(θ̂cu

GEE)

= Γ̂(θ̂cu
GEE)′

(
Ω̂c(θ̂cu

GEE)
)−1

gN(θ̂CU-GEE) · 1

1 + νN(θ̂cu
GEE)

where

νN(θ̂cu
GEE) = L · gN(θ̂CU-GEE)′

(
Ω̂c(θ̂CU-GEE)

)−1

gN(θ̂cu
GEE).

Since 1/[1 + νN(θ̂cu
GEE)] is always positive, the first-order condition in (1.15) holds

if and only if

Γ̂(θ̂cu
GEE)′

[
Ω̂c(θ̂cu

GEE)
]−1

gN(θ̂CU-GEE) = 0. (1.16)

So recentering has no effect on the CU-GEE estimator.

The second CU scheme continuously updates the GMM criterion function,

which leads to the familiar continuous updating GMM (CU-GMM) estimator:

θ̂cuGMM = arg min
θ∈Θ

gN(θ)′Ω̂−1(θ)gN(θ).

Although we use the uncentered CEE Ω̂(θ) in the above definition, the original

definition of θ̂cuGMM in Hansen et al. (1996) is based on the centered CCE weighting

matrix Ω̂c(θ). It is easy to show that

LgN(θ)′Ω̂−1(θ)gN(θ) = LgN(θ)′Ω̂−1(θ)
[
Ω̂(θ)− LgN(θ)gN(θ)′

] [
Ω̂c(θ)

]−1

gN(θ)

= LgN(θ)′
(

Ω̂c(θ)
)−1

gN(θ)
{

1− LgN(θ)′Ω̂−1(θ)gN(θ)
}
.

So we have

LgN(θ)′
(

Ω̂c(θ)
)−1

gN(θ) =
LgN(θ)′Ω̂−1(θ)gN(θ)

1− LgN(θ)′Ω̂−1(θ)gN(θ)
.

The above equation reveals the fact that the CU-GMM estimator will not change
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if the uncentered weighting matrix Ω̂(θ) is replaced by the centered one Ω̂c(θ), i.e.,

θ̂cuGMM = arg min
θ∈Θ

gN(θ)′
(

Ω̂c(θ)
)−1

(θ)gN(θ). (1.17)

Similar to the centered two-step GMM estimator, the two CU estimators

can be regarded as having a built-in recentering mechanism. For this reason, the

limiting distributions of the two CU estimators are the same as that of the centered

two-step GMM estimator, as is shown below.

Proposition 10 Let Assumptions 1, 3∼6 hold. Assume that θ̂cuGEE and θ̂CU-GMM

are
√
N consistent. Then

√
N(θ̂cuGEE − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m,

√
N(θ̂cuGMM − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m.

The proposition shows that the CU estimators and the centered two-step

GMM estimator are asymptotically equivalent under the fixed-G asymptotics.

We can construct the Wald statistics based on the two CU estimators as

follows:

FΩ̂c(θ̂cuGEE)(θ̂
cu
GEE) = (Rθ̂cu

GEE − r)′{Rv̂arΩ̂c(θ̂cuGEE)(θ̂CU-GEE)R′}−1(Rθ̂cu
GEE − r)/p

FΩ̂c(θ̂cuGMM)(θ̂
cu
GMM) = (Rθ̂cuGMM − r)′{Rv̂arΩ̂c(θ̂cuGMM)(θ̂

cu
GMM)R′}−1(Rθ̂cuGMM − r)/p

We construct tΩ̂c(θ̂cuGEE)(θ̂CU-GEE) and tΩ̂c(θ̂cuGMM)(θ̂
cu
GMM) in a similar way when p = 1.

It follows from Proposition 10 that the Wald statistics based on θ̂CU-GEE and θ̂cuGMM

are asymptotically equivalent to FΩ̂c(θ̂‘)
(θ̂c2). As a result,

FΩ̂c(θ̂cuGEE)(θ̂
cu
GEE)

d→ F2∞ and FΩ̂c(θ̂cuGMM)(θ̂
cu
GMM)

d→ F2∞.

Similarly,

tΩ̂c(θ̂cuGEE)(θ̂
cu
GEE)

d→ T2∞ and tΩ̂c(θ̂cuGMM
(θ̂cuGMM)

d→ T2∞.
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In summary, we have shown that all three estimators θ̂c2, θ̂
cu
GEE and θ̂cuGMM, and the

corresponding Wald test statistics converge in distribution to the same nonstandard

distributions. Proposition 9-(c) and (d) continues to hold for the CU estimators,

leading to the asymptotic equivalence of the three test statistics based on the CU

estimators.

The findings in this subsection are quite interesting. Under the first or-

der large-G asymptotics, the CU estimators and the default (uncentered) two-step

GMM are all asymptotically equivalent. In other words, the first-order large-G

asymptotics is not informative about the merits of the CU estimators. One may

develop a high order expansion under the large-G asymptotics to reveal the advan-

tages of CU estimators. In fact, Newey and Smith (2004) develops the stochastic

expansion of CU estimators in the i.i.d setting and shows that the CU schemes

automatically remove the high order estimation error of two-step estimator which

is caused by the non-optimal weighting matrix in the first-step estimator. See also

Anatolyev (2005) which extends the work of Newey and Smith (2004) to a time se-

ries setting. We could adopt these approaches, instead of the fixed-G asymptotics,

to capture the estimation uncertainty of the first-step estimator in the default (un-

centered) two-step GMM procedures. But the high order asymptotic analysis is

technically very challenging and often requires strong assumptions on the smooth-

ness of moment process. Although the fixed-G asymptotics we develop here is just

a first order theory, it is powerful enough to reveal the asymptotic difference be-

tween the CU and the plain uncentered two-step GMM estimators. Moreover, the

built-in recentering function behind the CU estimators provides some justification

for the use of the centered CCE in a two-step GMM framework.

1.5 Asymptotic F and t tests

Under the fixed-G asymptotics, the limiting distributions of two-step test

statistics, including Wald, QLR and LM, and the t statistics, are nonstandard and
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hence critical values have to be simulated in practice. This contrasts with the con-

ventional large-G asymptotics, where the limiting distributions are the standard

chi-square and normal distributions. In this section, we show that a simple mod-

ification of the two-step Wald and t statistics enables us to develop the standard

F and t asymptotic theory under the fixed-G asymptotics. The asymptotic F and

t tests are more appealing in empirical applications because the standard F and t

distributions are more accessible than the nonstandard F2∞ and T2∞ distributions.

The modified two-step Wald, QLR and LM statistics are

F̃Ω̂c(θ̂c2)(θ̂
c
2) :=

G− p− q
G

·
FΩ̂c(θ̂c2)(θ̂

c
2)

1 + q
G
J(θ̂c2)

, (1.18)

L̃RΩ̂c(θ̂1)(θ̂
c
2, θ̂

c,r
2 ) :=

G− p− q
G

·
LRΩ̂c(θ̂1)(θ̂

c
2, θ̂

c,r
2 )

1 + q
G
J(θ̂c2)

,

L̃M Ω̂c(θ̂1)(θ̂
c,r
2 ) :=

G− p− q
G

·
LMΩ̂c(θ̂1)(θ̂

c,r
2 )

1 + q
G
J(θ̂c2)

,

and the corresponding version of the t-statistic is

t̃Ω̂c(θ̂c2)(θ̂
c
2) :=

√
G− 1− q

G
·

tΩ̂c(θ̂c2)(θ̂
c
2)√

1 + q
G
J(θ̂c2)

.

The modified test statistics involve a scale multiplication factor that uses the usual

J-statistic and a constant factor that adjusts the degrees of freedom.

It follows from Proposition 9 and Theorem 12 that

(
FΩ̂c(θ̂c2)(θ̂

c
2), J(θ̂c2)

)
d→ (F2∞, J∞) (1.19)

d
=
(
G
(
B̄p − S̄pqS̄−1

qq B̄q

)′ S̄−1
pp·q
(
B̄p − S̄pqS̄−1

qq B̄q

)′
/p, (G/q)B̄′qS̄−1

qq B̄q

)
(1.20)

So

FΩ̂c(θ̂c2)(θ̂
c
2)

d→ G− p− q
G

F2∞

1 + q
G
J∞

d
=
G− p− q

pG
ξ′pS̃−1

pp·qξp,
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where

ξp :=

√
G(B̄p − S̄pqS̄−1

qq B̄q)√
1 + B̄′qS̄−1

qq B̄q

.

Similarly,

t̃Ω̂c(θ̂c2)(θ̂
c
2)

d→
√
G− 1− q

G
· T2∞√

1 + q
G
J∞

d
=

ξp√
S̃pp·q

.

In the proof of Theorem 11 we show that ξp follows a standard normal

distribution N(0, Ip) and that ξp is independent of S̃−1
pp·q. So the limiting distribution

of F̃Ω̂c(θ̂c2)(θ̂
c
2) is proportional to a quadratic form in the standard normal vector

ξp with an independent inverse-Wishart distributed weighting matrix S̃−1
pp·q . It

follows from a theory of multivariate statistics that the limiting distribution of

F̃Ωc(θ̂c2)(θ̂
c
2) is Fp,G−p−q. Similarly, the limiting distribution of t̃Ω̂c(θ̂c2)(θ̂

c
2) is tG−1−q.

This is formalized in the following theorem.

Theorem 11 Let Assumptions 1∼6 hold. Then

(a) F̃Ω̂c(θ̂c2)(θ̂
c
2)

d→ Fp,G−p−q;

(b) L̃RΩ̂c(θ̂c2)(θ̂
c
2, θ̂

c,r
2 )

d→ Fp,G−p−q;

(c) L̃M Ω̂c(θ̂1)(θ̂
c,r
2 )

d→ Fp,G−p−q;

(d) t̃Ω̂c(θ̂
c
2)

d→ tG−1−q.

Together with the asymptotic equivalence between θ̂c2, θ̂CU-GEE and θ̂cuGMM

established in Proposition 10, the proof of Theorem 11 implies that the modified

Wald, LR,LM, and t statistics based on θ̂CU-GEE and θ̂cuGMM are all asymptotically F

and t distributed under the fixed-G asymptotics. This equivalence relationship is

consistent with the recent paper by Hwang and Sun (2015b) which establishes the

asymptotic F and t limit theory of two-step GMM in time series setting. But our

cluster-robust limiting distributions in Theorem 11 are different from Hwang and

Sun (2015b) in terms of the multiplicative adjustment and the degrees of freedom

correction.
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It follows from the proofs of Theorem 11 and Proposition 9 that

√
N
(
θ̂c2 − θ0

)
d→MN

(
0,
(
Γ′Ω−1Γ

)−1 · (1 + B̄′qS̄−1
qq B̄q)

)
(1.21)

and J(θ̂c2)
d→ (G/q)B̄′qS̄−1

qq B̄q

holds jointly under fixed-G asymptotics. Here, MN(0,V) denotes a random vari-

able that follows a mixed normal distribution with conditional variance V. The

random multiplication term (1 + B̄′qS̃
−1
qq B̄q) in (1.21) reflects the estimation un-

certainty of CCE weighting matrix on the limiting distribution of
√
N(θ̂c2 − θ0).

The fixed-G limiting distribution in (1.21) is in sharp contrast to that of under the

conventional large-G asymptotics as the latter completely ignores the variability

in the cluster-robust GMM weighting matrix. By continuous mapping theorem,

√
N
(
θ̂c2 − θ0

)
√

1 + (G/q)J(θ̂c2)

d→ N
(

0,
(
Γ′Ω−1Γ

)−1
)

. (1.22)

and this shows that the J-statistic modification factor in the denominator ef-

fectively cancels out the uncertainty of CCE to recover the limiting distribu-

tion of
√
N(θ̂c2 − θ0) under the conventional large-G asymptotics. In view of

(1.22), the finite sample distribution of
√
N(θ̂c2 − θ0) can be well-approximated

by N(0, ṽarΩ̂c(θ̂1)(θ̂
c
2)) where

ṽarΩ̂c(θ̂1)(θ̂
c
2) := v̂arΩ̂c(θ̂1)(θ̂

c
2) ·
(

1 +
q

G
J(θ̂c2)

)
. (1.23)

The modification term (1 + (q/G)J(θ̂c2))−1 degenerates to one as G increases so

that the two variance estimates in (1.23) become close to each other. Thus, the

multiplicative term (1 + (q/G)J(θ̂c2))−1 in (1.18) can be regarded as a finite sam-

ple modification to the standard variance estimate v̂arΩ̂c(θ̂1)(θ̂
c
2) under the large-G

asymptotics. For more discussions about the role of J-statistic modification, see

Hwang and Sun (2015b) which casts the two-step GMM problems into OLS esti-
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mation and inference in classical normal linear regression.

1.6 Finite Sample Variance Correction

1.6.1 Centered Two-step GMM Estimation

Define the infeasible two-step GMM estimator with the centered CCE weight-

ing matrix Ω̂c(θ0):

θ̃c2 = arg min
θ∈Θ

gN(θ)′
(

Ω̂c(θ0)
)−1

gN(θ).

Then

√
N
(
θ̃c2 − θ0

)
= −

[
Γ′
(

Ω̂c(θ0)
)−1

Γ

]−1

Γ′
(

Ω̂c(θ0)
)−1√

NgN(θ0) + op(1)

. But we also have

√
N
(
θ̂c2 − θ0

)
= −

[
Γ′
(

Ω̂c(θ̂1)
)−1

Γ

]−1

Γ′
(

Ω̂c(θ̂1)
)−1√

NgN(θ0) + op(1) (1.24)

Together with Lemma 8, this implies that

√
N(θ̂c2 − θ0) =

√
N(θ̃c2 − θ0) + op (1) .

That is, the estimation error in θ̂1 has no effect on the asymptotic distribution of
√
N(θ̂c2 − θ0) in the first-order asymptotic analysis. However, in finite samples θ̂c2

does have higher variation than θ̃c2, and this can be attributed to the high variation

in Ω̂c(θ̂1) than Ω̂c(θ0). To account for this extra variation, we could develop a higher

order asymptotic theory under the fixed-G asymptotics. But this is a formidable

task that requires new technical machinery and lengthy calculations. Instead, we

keep one additional term in the stochastic expansion of
√
N(θ̂c2 − θ0) in hopes of

developing a finite sample correction to our asymptotic variance estimator.



35

To this end, we first introduce the notion of asymptotic equivalence in

distribution ξN
a∼ ηN for two stochastically bounded sequences of random vectors

ξN ∈ R` and ηN ∈ R` when ξN and ηN coverge in distribution to each other. Now

under the fixed-G asymptotics we have:

√
N(θ̂c2 − θ0)

a∼ −
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1√
NgN(θ0)

+ (E1 + E2)
√
N(θ̂1 − θ0)

where

E1 = −
∂

{
Γ′
[
Ω̂c(θ)

]−1

Γ

}−1

∂θ′

∣∣∣∣∣∣∣∣∣
θ=θ0

Γ′
[
Ω̂c(θ)

]−1

gN(θ0)

E2 = −
{

Γ′
[
Ω̂c(θ)

]−1

Γ

}−1 ∂Γ′
[
Ω̂c(θ)

]−1

gN(θ0)

∂θ′

∣∣∣∣∣∣∣
θ=θ0

are d× d matrices. In finite samples, if we estimate the term Γ′
[
Ω̂c(θ0)

]−1

gN(θ0)

in E1 by Γ̂(θ̂c2)[Ω̂c(θ̂1)]−1gN(θ̂c2), then the estimate will be identically zero because

of the FOC’s. For this reason, we drop E1 and keep only E2, which leads to the

distributional approximation:

√
N(θ̂c2 − θ0)

a∼ −
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1√
NgN(θ0) + E2

√
N(θ̂1 − θ0).

(1.25)

Using element by element differentiation with respect to θj for 1 ≤ j ≤ d, we can

write the j-th column of E2 as

E2[., j] = −
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ0

[
Ω̂c(θ0)

]−1

gN(θ0),

(1.26)
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where

∂Ω̂c(θ0)

∂θj
= Υj(θ0) + Υ′j(θ0) and

Υj(θ0) =
1

G

G∑
g=1

[
1√
L

L∑
r=1

(
f gr (θ0)− 1

N

N∑
s=1

fs(θ0)

)

· 1√
L

L∑
s=1

(
∂f gs (θ0)

∂θj
− 1

N

N∑
s=1

∂fs(θ0)

∂θj

)′]
. (1.27)

Note that the term E2

√
N(θ̂1 − θ0) has no first order effect on the asymptotic

distribution of
√
N(θ̂c2−θ0). This is true because E2 converges to zero in probability.

In fact, it follows from (1.26) and (1.27) that E2 = Op(N
−1/2).

It follows from (1.25) that

√
N(θ̂c2 − θ0)

a∼ −
( [

Γ′ (Ωc
∞)−1 Γ

]−1 EN(Γ′W−1Γ)−1

) Γ′ (Ωc
∞)−1 ΛZ

Γ′W−1ΛZ


(1.28)

where Z ∼ N(0, Id), Z is independent of Ωc
∞, EN has the same marginal distribu-

tion as E2 but it is independent of Z and Ωc
∞. It then follows that

√
N(θ̂c2 − θ0)

is asymptotically equivalent in distribution to the mixed normal distribution with

the conditional variance given by

ΞN =

 [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1E ′N

′ Γ′ (Ωc
∞)−1 Ω (Ωc

∞)−1 Γ Γ′ (Ωc
∞)−1 ΩW−1Γ

Γ′W−1Ω′ (Ωc
∞)−1 Γ Γ′W−1ΩW−1Γ


·

 [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1E ′N

 .

Motivated by the above approximation, we propose to use the following
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corrected variance estimator:

v̂aradj

Ω̂c(θ̂1)
(θ̂c2) =

1

N
Ξ̂N

=
1

N

( [
Γ̂′
[
Ω̂c(θ̂1)

]−1

Γ̂

]−1

ÊN(Γ̂′W−1
N Γ̂)−1

)

×

 Γ̂′
[
Ω̂c
(
θ̂1

)]−1

Γ̂ Γ̂′W−1
N Γ̂

Γ̂′W−1
N Γ̂ Γ̂′W−1

N Ω̂c
(
θ̂1

)
W−1
N Γ̂



×


[
Γ̂′
[
Ω̂c
(
θ̂1

)]−1

Γ̂′
]−1

(Γ̂′W−1
N Γ̂)−1Ê ′N


= v̂arΩ̂c(θ̂1)(θ̂

c
2) + ÊN v̂arΩ̂c(θ̂1)(θ̂

c
2) + v̂arΩ̂c(θ̂1)(θ̂

c
2)Ê ′N + ÊN v̂ar(θ̂1)Ê ′N (1.29)

where

ÊN [., j] =

{
Γ̂′
[
Ω̂c(θ̂1)

]−1

Γ̂′
}−1

Γ′N

{[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
}
gN(θ̂c2),

Γ̂ = Γ̂(θ̂c2).

The last three terms in (1.29), which are of smaller order, serve as a finite sample

correction to the original variance estimator.

Windmeijer, (2005), too, has used the idea of variance correction, and his

proposed correction has been widely implemented in applied work for simple mod-

els such as linear IV models and linear dynamic panel data models. However,

Windmeijer, (2005) considers only an i.i.d. setting. Two principal differences

distinguish Windmeijer’s approach and ours. First, our asymptotic variance es-

timator involves a centered CCE; in contrast, Windmeijer’s involves only a plain

variance estimator. Second, we consider the fixed-G asymptotics; Windmeijer,

(2005) considers the traditional asymptotics. More broadly, we often have to keep

higher-order terms to develop a high order Edgeworth expansion. Here we choose

to focus on variance correction instead of distribution correction, which is often
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the real target behind the Edgeworth expansion. In addition to technical reasons,

a principal reason for our choice is that we have already developed more accurate

fixed-G asymptotic approximations.

With the finite sample corrected variance estimator, we can construct the

variance-corrected Wald statistic:

F adj

Ω̂c(θ̂1)
(θ̂c2) = (Rθ̂c2 − r)′

[
Rv̂aradj

Ω̂c(θ̂1)
(θ̂c2)R′

]−1

(Rθ̂c2 − r)/p.

When p = 1 and for one-sided alternative hypotheses, we can construct the

variance-corrected t-statistic:

tadj

Ω̂c(θ̂1)
(θ̂c2) =

(Rθ̂c2 − r)√
Rv̂arcΩ̂c(θ̂1)(θ̂

c
2))R′

.

Given that the variance correction terms are of smaller order, the variance-corrected

statistic will have the same limiting distribution as the original statistic.

Assumption 7 For each g = 1, ..., G and s = 1, ..., d, define Qg
s(θ) as

Qg
s(θ) = lim

L→∞
E

[
1

L

L∑
k=1

∂

∂θ′

(
∂f gk (θ)

∂θs

)]

Then,

sup
θ∈N (θ0)

∥∥∥∥∥ 1

L

L∑
k=1

∂

∂θ′

(
∂f gk (θ)

∂θs

)
−Qg

s(θ)

∥∥∥∥∥ p→ 0.

holds for each g = 1, ..., G and s = 1, ..., d where N (θ0) is an open neighborhood of

θ0 and ‖·‖ is the Euclidean norm. Also, Qg
s(θ0) = Qs(θ0) for g = 1, ...G.

This assumption trivially holds if the moment conditions are linear in pa-

rameters.
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Theorem 12 Let Assumptions 1∼7 hold. Then

F adj

Ω̂c(θ̂1)
(θ̂c2) = FΩ̂c(θ̂1)(θ̂

c
2) + op(1) and

tadj
Ω̂c(θ̂1)

(θ̂c2) = tΩ̂c(θ̂1)(θ̂
c
2) + op(1).

In the proof of Theorem 12, we show that ÊN = (1 + op(1))E2. That is,

the high order correction term has been consistently estimated in a relative sense.

This guarantees that ÊN is a reasonable estimator for E2, which is of order op(1).

As a direct implication of Theorem 12, the fixed-G asymptotic distributions

of F c
Ω̂c(θ̂1)

(θ̂c2) and tc
Ω̂c(θ̂1)

(θ̂c2) are

F adj

Ω̂c(θ̂1)
(θ̂c2)

d→ F2∞ and tadj

Ω̂c(θ̂1)
(θ̂c2)

d→ T2∞.

Note that the corrected variance estimator is not necessarily larger than

the original estimator in finite samples. In the simulation work we consider

later, we observe that the smaller value of corrected variance estimate rather

deteriorates the finite sample performance of variance-corrected statistics. To

avoid this undesirable situation, we make an adjustment to v̂aradj

Ω̂c(θ̂1)
(θ̂c2) so that

v̂aradj

Ω̂c(θ̂1)
(θ̂c2) − v̂arΩ̂c(θ̂1)(θ̂

c
2) is guaranteed to be positive semidefinite. This is an

easy task. Let

MN = v̂aradj

Ω̂c(θ̂1)
(θ̂c2)− v̂arΩ̂c(θ̂1)(θ̂

c
2),

{λi}di=1 be the eigenvalues of MN and VNLNV
′
N be the eigen-decomposition of MN

where PN = diag (λi) ∈ Rd×d. Define

P̃N = diag (max(λi, 0)) and M̃N = VN P̃NV
′
N .

The corresponding regularized version of v̂aradj

Ω̂c(θ̂1)
(θ̂c2) is given by

v̂aradj+

Ω̂c(θ̂1)
(θ̂c2) = v̂aradj

Ω̂c(θ̂1)
(θ̂c2) + M̃N (1.30)
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The corresponding modified Wald statistic is

F adj+

Ω̂c(θ̂1)
(θ̂c2) = (Rθ̂c2 − r)′

[
Rv̂aradj+

Ω̂c(θ̂1)
(θ̂c2)R′

]−1

(Rθ̂c2 − r)/p. (1.31)

Similarly, the modified t-statistic is

tadj+

Ω̂c(θ̂1)
(θ̂2) =

(Rθ̂c2 − r)√
Rv̂aradj+

Ω̂c(θ̂1)
(θ̂c2)R′

.

The limiting distributions of the modified Wald and t statistics are again F2∞ and

T2∞.

1.6.2 CU Estimation

For the CU-GEE estimator, we have the following expansion

√
N(θ̂cu

GEE − θ0)

= −
(

Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

NgN(θ0) + E2

√
N(θ̂CU-GEE − θ0)

(1.32)

+ op (1) . (1.33)

This can be regarded as a special case of (1.25) wherein the first-step estimator θ̂1

is replaced by the CU-GEE estimator. So

√
N(θ̂cu

GEE − θ0)
a∼ − (Id − E2)−1

(
Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

NgN(θ0).

(1.34)

We can obtain the same expression for the CU-GMM estimator
√
N(θ̂CU-GMM−θ0).

In view of the representation in (1.34), the corrected variance estimator for
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the CU type estimators can be constructed as follows:

v̂aradj

Ω̂c(θ̂cuGEE)
(θ̂cu

GEE) =
(
Id − ÊCU-GEE

)−1

v̂ar
(
θ̂cu

GEE

)(
Id − Ê ′CU-GEE

)−1

v̂aradj

Ω̂c(θ̂cuGEE)
(θ̂cuGMM) =

(
Id − ÊCU-GMM

)−1

v̂ar
(
θ̂cuGMM

)(
Id − Ê ′CU-GMM

)−1

where

ÊCU-GEE[., j] =

{
Γ̂′
[
Ω̂c(θ̂cu

GEE)
]−1

Γ̂′
}−1

× Γ̂′

{[
Ω̂c(θ̂CU-GEE)

]−1 ∂Ω̂c(θ̂CU-GEE)

∂θj

[
Ω̂c(θ̂CU-GEE)

]−1
}
gN(θ̂cu

GEE)

and ÊCU-GMM is defined in the same way but with θ̂cu
GEE replaced by θ̂CU-GMM. The

adjusted variance estimators can be defined using the same formula provided in

(1.30).

The adjusted (and regularized) test statistics associated with the CU type

estimators are

F adj+

Ω̂c(θ̂cuGEE)
(θ̂CU-GEE)

=
(
Rθ̂cu

GEE − r
)′ (

Rv̂aradj+

Ω̂c(θ̂cuGEE)
(θ̂CU-GEE)R′

)−1 (
Rθ̂CU-GEE − r

)′
/p,

and

tadj+

2,Ω̂c(θ̂cuGEE)
(θ̂CU-GEE) =

(Rθ̂cu
GEE − r)√

Rv̂aradj+

Ω̂c(θ̂cuGEE)
(θ̂CU-GEE)R′

,

when p = 1. We can easily show that the Wald statistic converge weakly to F2∞

and the t-statistic converge weakly to T2∞.

With the finite sample corrected and adjusted variance estimators in place,

the test statistics based on all three estimators θ̂c2, θ̂CU-GEE and θ̂cuGMM converge in

distribution to the same nonstandard distributions. A multiplicative modification

provided in Section 1.5 can then turn the nonstandard distributions F2∞ and T2∞

into standard F and t distributions.
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1.7 Application to Linear Dynamic Panel Model

This section discusses how to implement our inference procedures in the

context of a linear dynamic panel model:

yit = γyit−1 + x′itβ + ηi + uit, (1.35)

for i = 1, ..., N , t = 1, ..., T, where xit = (x1
it, ..., x

d−1
it )′ ∈ Rd−1. The unknown

parameter vector is θ = (γ, β′)′ ∈ Rd. We assume that the vector of regressors

wit = (yit−1, x
′
it )′ is correlated with ηi and is predetermined with respect to uit,

i.e., E(wituit+s) = 0 for s = 0, ..., T − t.

When T is small, popular panel estimators such as the fixed-effects esti-

mator or first-differenced estimator suffer from the Nickel bias (Nickell, 1981).

Arellano and Bond (1991) consider the first-differenced equation

∆yit = ∆w′itθ + ∆uit, t = 2, ..., T

and propose a consistent IV estimator that employs the lagged wit as the instru-

ment. Building upon Anderson and Hsiao (1981), Arellano and Bond (1991, AB

hereafter) examine the problem in a GMM framework and find dT (T − 1)/2 se-

quential instruments:

Zi
(T−1)×d(T−1)T/2

= diag(z′i2, ..., z
′
iT )

zit = (yi0, ..., yit−2, x
′
i1, ..., x

′
it−1)′, 2 ≤ t ≤ T.

The moment conditions are then given by

E (Z ′i∆ui) = 0,

where ∆ui is the (T −1) vector (∆ui2, ...,∆uiT )′. The original AB method assumes
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away cross-sectional dependence, but clustered dependence can be easily accom-

modated. Here we assume that the moment vector {Z ′i∆ui}Ni=1 can be partitioned

into independent clusters. That is, {Z ′i∆ui}Ni=1 = ∪Gg=1{Z
g′
i ∆ugi }

LN
i=1 with Zg′

i ∆ugi

and Zh′
j ∆uhj being independent for all g 6= h.

The first-step GMM estimator with weighting matrix W−1
N is given by

θ̂1 =
(
∆w′ZW−1

N Z ′∆w
)−1

∆w′ZW−1
N Z ′∆y,

where Z ′ is the dT (T − 1)/2 × N(T − 1) matrix (Z ′1, Z
′
2, ..., Z

′
N), ∆wi is the

(T − 1) × d matrix (∆wi2,...,∆wiT )′, ∆yi is the (∆yi2,...,∆yiT )′, ∆w and ∆y are

(∆w′1, ...,∆w
′
N)′ and (∆y′1, ...,∆y

′
N)′, respectively. The corresponding Wald statis-

tic4 for testing H0 : Rθ0 = r vs H1 : Rθ0 6= r is given by

F (θ̂1) := (Rθ̂1 − r)′
{
Rv̂ar(θ̂1)R′

}−1

(Rθ̂1 − r)/p

where

v̂ar(θ̂1) = N
(
∆w′ZW−1

N Z ′∆w
)−1
(

∆w′ZW−1
N Ω̂(θ̂1)W−1

N Z ′∆w
) (

∆w′ZW−1
N Z ′∆w

)−1
.

Let Z(g) be the LN(T − 1) × dT (T − 1)/2 matrix obtained by stacking all

Zi’s belonging to cluster g. Similarly, let ∆û(g) be the LN(T − 1) stacked vector of

the estimated first-differenced errors ∆ûi = ∆yi−∆w′iθ̂1. Then, in the presence of

clustered dependence, the CCE and centered CCE are constructed as follows:

Ω̂(θ̂1) =
1

G

G∑
g=1

(
Z ′(g)∆û(g)√

LN

)(
Z ′(g)∆û(g)√

LN

)′

Ω̂c(θ̂1) =
1

G

G∑
g=1

(
Z ′(g)∆û(g)√

LN
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
LN

)(
Z ′(g)∆û(g)√

LN
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
LN

)′
.

Using the centered CCE Ω̂c(θ̂1) as the weighting matrix, the two-step GMM

4The formula for the t-statistic, which is omitted here, is straightforward.
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estimator θ̂c2 is

θ̂c2 =

{
∆w′Z

[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

∆w′Z
[
Ω̂c(θ̂1)

]−1

Z ′∆y,

and the Wald statistic for θ̂c2 is

FΩ̂c(θ̂1)(θ̂
c
2) := (Rθ̂c2 − r)′{Rv̂arΩ̂c(θ̂1)(θ̂2)R′}−1(Rθ̂c2 − r)/p,

v̂arΩ̂c(θ̂1)(θ̂
c
2) = N

{
∆w′Z

[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

.

Under the conventional large-G asymptotics, both F (θ̂1) and FΩ̂c(θ̂1)(θ̂
c
2) are asymp-

totically χ2
p/p. Under our fixed-G asymptotics, we have

F (θ̂1)
d→ G

G− p
Fp,G−p and

FΩ̂c(θ̂1)(θ̂
c
2)

d→ G

G− p− q
Fp,G−p−q

(
‖∆‖2) . (1.36)

In addition to utilizing these new approximations, we suggest a variance correction

in order to capture the higher order effect of θ̂1 on Ω̂c(θ̂1). The finite sample

corrected variance is

v̂arcΩ̂c(θ̂1)(θ̂
c
2) = v̂arΩ̂c(θ̂1)(θ̂

c
2) + ÊN v̂arΩ̂c(θ̂1)(θ̂

c
2) + v̂arΩ̂c(θ̂1)(θ̂

c
2)Ê ′N + ÊN v̂ar(θ̂1)Ê ′N

(1.37)

where the j-th column is given by

ÊN [., j] = −
{

∆w′Z
[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

∆w′Z
[
Ω̂c(θ̂1)

]−1

· ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ

[
Ω̂c(θ)

]−1

Z ′∆û2,

∆û2 = ∆y −∆wθ̂c2
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and

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ̂1) = − 1

G

G∑
g=1

(
Z ′(g)∆wj,(g)√

L
− 1

G

G∑
h=1

Z ′(h)∆wj,(h)√
L

)

·

(
Z ′(g)∆û(g)√

L
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
L

)′
∆wi

(T−1)×d
= (∆w1,i, ...,∆wd,i) and ∆w(g)

LN (T−1)×d
= (∆w1,(g), ...,∆wd,(g))

for each j = 1, ..., d. Here, ∆w(g) is a LN(T−1)×d matrix that stacks {∆wi}Ni=1 be-

longing to the group g. The extra adjustment toward a ‘larger’ corrected estimator

v̂aradj+

Ω̂c(θ̂1)
(θ̂c2) directly follows from (1.30).

Based on the finite sample corrected variance estimator in (1.37) and the

usual J-statistic, we construct the modified Wald statistic:

F̃ adj+

Ω̂c(θ̂1)
(θ̂c2) =

G− p− q
G

F adj+

Ω̂c(θ̂1)
(θ̂c2)

1 + q
G
J(θ̂c2)

(1.38)

where

J(θ̂c2) := NgN(θ̂c2)′
(

Ω̂c(θ̂c2)
)−1

(θ)gN(θ̂c2).

From the F limit theory in Section 1.5, we have

F̃ adj+

Ω̂c(θ̂1)
(θ̂c2)

d→ Fp,G−p−q (1.39)

and
G− q
G

J(θ̂c2)
d→ Fq,G−q.

Critical values for from the F distribution are readily available from statistical

tables.
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1.8 Simulation Evidence

1.8.1 Design

We continue focusing on the dynamic panel data model in the previous

section with d = 4,

yit = γyit−1 + x1,itβ1 + x2,itβ2 + x3,itβ3 + ηi + uit.

The unknown parameter vector is θ = (γ, β1, β2, β3) and the corresponding co-

variates are wit = (yit−1, xit)
′ with xit = (x1,it, x2,it, x3,it)

′. The true value of θ is

chosen as θ0 = (0.5, 1, 1, 1). We denote sgit = (sg1,it, ..., s
g
k,it)

′ as any vector valued

observations in cluster g, and stack all observations at same period by cluster to

define s(g),t = (sg1t, ..., s
g
LN t

)′. The j-th predetermined regressor xgj,it are generated

according to the following process:

xgj,it = ρxgj,it−1 + ηgi + ρugit−1 + egj,it

for j = 1, 2, 3, i = 1, ..., LN , and t = 1, ..., T . We characterize the within-cluster

dependence in η(g), e(g),t and u(g),t by spatial locations that are indexed by a one-

dimensional lattice. Define Ση and Σu to be LN × LN matrices whose (i, j)-th

elements are σηij = λ|i−j| and σuij = λ|i−j|, respectively, and Σe to be a 3LN × 3LN

block diagonal matrix with diagonal matrix Σd,e of size LN × LN for d = 1, ..., 3.

The (i, j)-th element of Σd,e is σed,ij = λ|i−j| for d = 1, ..., 3. The parameter λ

governs the degree of spatial dependence in each cluster. When λ = 0, there is no

clustered dependence and our model reduces to that of Windmeijer, (2005) which

considers a static panel data model with only one regressor.
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The individual fixed effects and shocks in group g are generated by:

η(g) ∼ i.i.d.N(0,Ση), vec(e(g),t) ∼ i.i.d.N(0,Σe), (1.40)

u(g),t = τtΣ
1/2
u (δg1ω

g
1t, , .., δ

g
LN
ωgLN t)

′,

δgi ∼ i.i.d.U [0.5, 1.5], and ωgit ∼ i.i.d.χ2
1 − 1

for i = 1, ..., LN and t = 1, ..., T where τt = 0.5+0.1(t−1). The DGP of individual

shock u(g),t in (1.41) features a non-Gaussian process which is heteroskedastic over

both time t and individual i. Also, the clustered dependence structure implies

{η(g), vec(e(g),t), δ(g), ω(g),t}z ⊥ {η(h), vec(e(h),t), δ(h), ω(h),t}

for g 6= h at any t and s.

Before we draw an estimation sample for t = 1, ..., T , 50 initial values are

generated with τt = 0.5 for t = −49, ..., 0, xgd,i,−49 ∼i.i.d.N(ηgi /(1−ρ), (1−ρ)−1Σd,e)

for d = 1, ..., 3, and ygi,−49 = (
∑3

d=1 xd,i,−49βd + ηgi + ugi,−49)/(1 − γ). We fix the

values of λ and ρ at 0.75 and 0.70, respectively; thus each observation is reasonably

persistent with respect to both time and spatial dimensions. We set the number

of time periods to be T = 4. The parameters are estimated by the first differenced

GMM (AB estimator) as described in the previous section. The initial first-step

estimator is the two stage least square (2SLS) with WN = (1/N)
∑N

i=1 Z
′
iHZi

where H is a matrix that consists with 2’s on the main diagonal, with -1’s on

the main diagonal, and zeros elsewhere. With all possible lagged instruments, the

number of moment conditions for the AB estimator is dT (T − 1)/2 = 24 and the

degrees of over-identification is q = 20. It could be better to use only a subset of

full moment conditions because using this full set of instruments may lead to poor

finite sample properties, especially when the number of clusters G is small. Thus,

we also employ a reduced set of instruments; that is, we use the most recent lag

zit = (yit−2, x
′
it−1)′, leading to d(T − 1) = 12 moment conditions.



48

1.8.2 Choice of tests

We focus on the Wald type of tests as the Monte Carlo results for other types

of tests are qualitatively similar. We examine the empirical size of a variety of test-

ing procedures, all of which are based on first-step or two-step GMM estimators.

For the first-step procedures, we consider the unmodified F-statistic F1 := F1(θ̂1)

and the degrees-of-freedom modified F-statistic [(G− P ) /G]F1 where the asso-

ciated critical values are χ1−α
p /p and F1−α

p,G−p, respectively. These two tests have

the same size-adjusted power, because the modification only involves a constant

multiplier factor.

For the two-step GMM estimation and related tests, we examine five dif-

ferent procedures. The first three tests use different test statistics but the same

critical value χ1−α
p /p. The first test uses the “plain” F-statistic F2 := FΩ̂c(θ̂1)(θ̂

c
2) as

defined in (1.10). The second test uses the statistic [(G− p− q) /G] · F2 where

(G− p− q) /G is the degree-of-freedom correction factor. The third test uses

F̃2 := FΩ̂c(θ̂1)(θ̂
c
2) as defined in (1.18). Note that

F̃2 =
(G− p− q)

G
· F2

1 + (q/G)J(θ̂c2)
.

Compared to the second test statistic, F̃2 has the additional J-statistic correction

factor (1 + (q/G)J(θ̂c2))−1. The three tests use increasingly more sophisticated test

statistics. Because [(G− p− q) /G]→ 1 and (1 + (q/G)J(θ̂c2))−1 → 1 as G→∞,

both corrections can be regarded as devices for finite sample improvement under

the large-G asymptotics.
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1.9 Simulation Evidence

1.9.1 Design

We continue focusing on the dynamic panel data model in the previous

section with d = 4,

yit = γyit−1 + x1,itβ1 + x2,itβ2 + x3,itβ3 + ηi + uit.

The unknown parameter vector is θ = (γ, β1, β2, β3) and the corresponding co-

variates are wit = (yit−1, xit)
′ with xit = (x1,it, x2,it, x3,it)

′. The true value of θ is

chosen as θ0 = (0.5, 1, 1, 1). We denote sgit = (sg1,it, ..., s
g
k,it)

′ as any vector valued

observations in cluster g, and stack all observations at same period by cluster to

define s(g),t = (sg1t, ..., s
g
LN t

)′. The j-th predetermined regressor xgj,it are generated

according to the following process:

xgj,it = ρxgj,it−1 + ηgi + ρugit−1 + egj,it

for j = 1, 2, 3, i = 1, ..., LN , and t = 1, ..., T . We characterize the within-cluster

dependence in η(g), e(g),t and u(g),t by spatial locations that are indexed by a one-

dimensional lattice. Define Ση and Σu to be LN × LN matrices whose (i, j)-th

elements are σηij = λ|i−j| and σuij = λ|i−j|, respectively, and Σe to be a 3LN × 3LN

block diagonal matrix with diagonal matrix Σd,e of size LN × LN for d = 1, ..., 3.

The (i, j)-th element of Σd,e is σed,ij = λ|i−j| for d = 1, ..., 3. The parameter λ

governs the degree of spatial dependence in each cluster. When λ = 0, there is no

clustered dependence and our model reduces to that of Windmeijer, (2005) which

considers a static panel data model with only one regressor.
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The individual fixed effects and shocks in group g are generated by:

η(g) ∼ i.i.d.N(0,Ση), vec(e(g),t) ∼ i.i.d.N(0,Σe), (1.41)

u(g),t = τtΣ
1/2
u (δg1ω

g
1t, , .., δ

g
LN
ωgLN t)

′,

δgi ∼ i.i.d.U [0.5, 1.5], and ωgit ∼ i.i.d.χ2
1 − 1

for i = 1, ..., LN and t = 1, ..., T where τt = 0.5+0.1(t−1). The DGP of individual

shock u(g),t in (1.41) features a non-Gaussian process which is heteroskedastic over

both time t and individual i. Also, the clustered dependence structure implies

{η(g), vec(e(g),t), δ(g), ω(g),t}z ⊥ {η(h), vec(e(h),t), δ(h), ω(h),t}

for g 6= h at any t and s.

Before we draw an estimation sample for t = 1, ..., T , 50 initial values are

generated with τt = 0.5 for t = −49, ..., 0, xgd,i,−49 ∼i.i.d.N(ηgi /(1−ρ), (1−ρ)−1Σd,e)

for d = 1, ..., 3, and ygi,−49 = (
∑3

d=1 xd,i,−49βd + ηgi + ugi,−49)/(1 − γ). We fix the

values of λ and ρ at 0.75 and 0.70, respectively; thus each observation is reasonably

persistent with respect to both time and spatial dimensions. We set the number

of time periods to be T = 4. The parameters are estimated by the first differenced

GMM (AB estimator) as described in the previous section. The initial first-step

estimator is the two stage least square (2SLS) with WN = (1/N)
∑N

i=1 Z
′
iHZi

where H is a matrix that consists with 2’s on the main diagonal, with -1’s on

the main diagonal, and zeros elsewhere. With all possible lagged instruments, the

number of moment conditions for the AB estimator is dT (T − 1)/2 = 24 and the

degrees of over-identification is q = 20. It could be better to use only a subset of

full moment conditions because using this full set of instruments may lead to poor

finite sample properties, especially when the number of clusters G is small. Thus,

we also employ a reduced set of instruments; that is, we use the most recent lag

zit = (yit−2, x
′
it−1)′, leading to d(T − 1) = 12 moment conditions.
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1.9.2 Choice of tests

We focus on the Wald type of tests as the Monte Carlo results for other types

of tests are qualitatively similar. We examine the empirical size of a variety of test-

ing procedures, all of which are based on first-step or two-step GMM estimators.

For the first-step procedures, we consider the unmodified F-statistic F1 := F1(θ̂1)

and the degrees-of-freedom modified F-statistic [(G− P ) /G]F1 where the asso-

ciated critical values are χ1−α
p /p and F1−α

p,G−p, respectively. These two tests have

the same size-adjusted power, because the modification only involves a constant

multiplier factor.

For the two-step GMM estimation and related tests, we examine five dif-

ferent procedures. The first three tests use different test statistics but the same

critical value χ1−α
p /p. The first test uses the “plain” F-statistic F2 := FΩ̂c(θ̂1)(θ̂

c
2) as

defined in (1.10). The second test uses the statistic [(G− p− q) /G] · F2 where

(G− p− q) /G is the degree-of-freedom correction factor. The third test uses

F̃2 := FΩ̂c(θ̂1)(θ̂
c
2) as defined in (1.18). Note that

F̃2 =
(G− p− q)

G
· F2

1 + (q/G)J(θ̂c2)
.

Compared to the second test statistic, F̃2 has the additional J-statistic correction

factor (1 + (q/G)J(θ̂c2))−1. The three tests use increasingly more sophisticated test

statistics. Because [(G− p− q) /G]→ 1 and (1 + (q/G)J(θ̂c2))−1 → 1 as G→∞,

both corrections can be regarded as devices for finite sample improvement under

the large-G asymptotics.
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1.9.3 Results

Balanced Cluster Size

We first consider the case when all clusters have an equal number of indi-

viduals and take different values of G ∈ {30, 35, 50, 100} and LN ∈ {50, 100}. The

null hypotheses of interests are

H01 : β10 = 1

H02 : β10 = β20 = 1

H03 : β10 = β20 = β30 = 1

with the corresponding number of joint hypotheses p = 1, 2 and 3, respectively,

and the significance level is 5%. The number of simulation replications is 5000.

Tables 1.2∼1.5 report the empirical size of the first-step and two-step tests

for different values of G ∈ {30, 35, 50, 100} and LN = {50, 100}. The results indi-

cate that both the first-step and two-step tests based on unmodified statistics F1

and F2 suffer from severe size distortions, when the conventional chi-square critical

values are used. For example, with G = 50, LN = 50, and p = 3, the empirical

size of the first-step chi-square test (using the full set of IVs, and m = 24) is

around 43%. This size distortion becomes more severe, as the number of clusters

becomes smaller, say, for example when G is between 30 and 35. The empirical

size of the first-step F test with G = 50 reduces to 36.3% when the F critical value

is employed. This finding is consistent with the findings in Bester et al., (2011)

and which highlights the improved finite sample performance of the fixed-G ap-

proximation in some exactly identified models. Tables 1.2∼1.5 also indicate that

the finite sample size distortion of all tests become less severe as the number of

moment conditions decreases or the cluster size increases.

For the two-step test that employs the plain two-step statistic F2 and chi-

squared critical value, the empirical size is 63.4% for the above mentioned values
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of LN , G, m, and p. In view of the large size distortion, we can conclude that the

two-step chi-square test suffers more size distortion than the first-step chi-square

test. This relatively large size distortion reflects the additional cost in estimating

the weighting matrix, which is not captured by the chi-square approximation. The

degrees-of-freedom adjusted F2 reduces the size distortion by almost one third,

but the empirical size of 40.1% is still far away from the nominal size of 5%. This

motivates us to implement an additional correction via the J-statistic multiplier

coupled with the new critical value F1−α
p,G−p−q. Tables 1.2∼1.5 show that using

the additional modification and the F critical value significantly alleviates the

remaining size distortion. The size distortion in the previous example becomes

13.5% which is much closer to the targeted level 5%. Lastly, we find evidence

that the most refined statistic F̃ adj+
2 , equipped with the finite sample variance

correction, successfully captures the higher order estimation uncertainty and yields

more accurate finite sample size. For instance, while the empirical size of the most

basic two-step chi-square test is 63.4%, the empirical size of the most refined two-

step F test is 5.7%, which is very close to the nominal size of 5%. Figure 1.1

summarizes the outstanding performance of our modified two-step tests with F

critical values.

Next we investigate the finite sample power performances of the first-step

procedure and the two-step procedures F2, F̃2, and F̃ adj+
2 . We use the finite sample

critical values under the null, so the power is size-adjusted and the power compar-

ison is meaningful. The DGPs are the same as before except that the parameters

are generated from the local null alternatives β1 = β10 + c/
√
N for c ∈ [0, 15], and

d = 2 and p = 1. Figures 1.2∼1.5 report the power curves for the first-step and

two-step tests for G ∈ {30, 35, 50, 100}. The degree of over-identification q consid-

ered here is 10 for the full instrument set, and is 4 for the reduced instrument set.

The results first indicate that there is no real difference between power curves of

the modified (F̃2) and unmodified (F2) two-step tests. In fact, some simulation

results not reported here indicate the modified F test can be slightly more power-
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ful as the number of parameters gets larger. Also, the finite sample corrected test

F̃ adj+
2 does not lead to a loss of power compared with the uncorrected one F̃2.

Figures 1.2∼1.5 also indicate that two-step tests are more powerful than

first-step tests. The power gain of the two-step procedures becomes more signifi-

cant as the number of G increases. This is because the two-step estimator becomes

more efficient. However, there is a cost in estimating the CCE weighting matrix,

the power of first-step procedures might dominate the power of the two-step ones in

other scenarios, i.e., when the cost of employing CCE weighting matrix outweighs

the benefit of estimating it. Some simulation results not reported here show that

the power of the first-step test can be higher than that of a two-step test when the

number of parameters d and the number of joint hypotheses p are large.

Lastly, Tables 1.2∼1.5 show that the finite sample size distortion of the

(centered) J test and the transformed (uncentered) J test is substantially reduced

when we employ F critical values instead of conventional chi-squared critical values.

In sum, our simulation evidence clearly demonstrates the size accuracy of

our most refined F test regardless of whether the number of clusters G is small or

moderate.

Unbalanced Cluster Size

Although our fixed-G asymptotics is valid as long as the cluster sizes are

approximately equal, we remain wary of the effect of the cluster size heterogene-

ity on the quality of the fixed-G approximation. In this subsection, we turn to

simulation designs with heterogeneous cluster sizes.

Each simulated data set consists of 5, 000 observations that are divided into

50 clusters. The sequence of alternative cluster-size designs starts by assigning 120

individuals to each of first 10 clusters and 95 individuals to each of next 40 clusters.

In each succeeding cluster-size design, we subtract 10 individuals from the second

group of clusters and add them to the first group of clusters. In this manner,

we construct a series of four cluster-size designs, in which the proportion of the
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samples in the first group of clusters grows monotonically from 24% to 48%. The

design is similar to Carter, Schnepel and Steigerwald (2013) which investigates

the behavior of cluster-robust t-statistic under cluster heterogeneity. Table 1.6

describes the heterogeneous cluster-size designs we consider. All other parameter

values are the same as before.

Tables 1.7∼1.8 report the empirical size of the first-step, two-step, and J

tests for q = 20 and p = 3. The results immediately indicate that the two-step

tests suffer from severe size distortion when the conventional chi-square critical

value is employed. For example, under design II, the empirical size of the “plain”

two-step chi-square test is around 60.4% for G = 50, q = 20, and p = 3. The size

distortion become more severe when the degree of heterogeneity across cluster-size

increases. However, our fixed-G asymptotics still performs very well as they reduce

the empirical sizes to 4.3% ∼ 7.9%, which are much closer to the nominal size of

5%. Figures 1.6∼1.9 summarize the outstanding performance of our modified two-

step F tests, even with unbalanced cluster sizes. The results of J tests are omitted

here as they are qualitatively similar to those of the F tests.

1.10 Empirical Application

In this section we employ the proposed procedures to revisit the study of

Emran and Hou (2013), which investigates the casual effects of access to domestic

and international markets on household consumption in rural China. They use a

survey data of 7998 rural households across 19 provinces in China. The survey

data comes from Chinese Household Income Project (ICPSR 3012) in 1995.5

The regression equation for per capita consumption for household i, Ci, in

5The data set is downloadable from the Review of Economics and Statistics website.
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1995 (yuan) is specified as

Ci = α0 + αp + βdA
d
i + βsA

s
i + βds(A

d
i × Asi ) +X ′iβh (1.42)

+Xv′
i βv +Xc′

i βc + εi,

where Adi and Asi are the log distances of access to domestic (km) and international

markets (km), respectively. Xi is the vector of household characteristics that may

affect consumption choice, and Xv
i , Xc

i are village, county level controls, respec-

tively, which capture the heterogeneity in economic environments across different

regions, and αp is the province level fixed effect.

Among the unknown parameters in vector θ = (α0, αp, β
′
m, β

′
h, β

′
v, β

′
c)
′, our

focus of interest is βm = (βd, βs, βds)
′ which measures the casual effect of access to

domestic and international markets on household consumption in the rural areas.

To identify these parameters, Emran and Hou (2013) employs geographic instru-

mental variables that capture exogeneous variations in access to markets, e.g.,

straight-line distances to the nearest navigable river and coastline, along with the

topographic and agroclimatic features of the counties.6 There are 21 instrument

variables and 31 control variables, including province dummy variables so that the

number of moment conditions m is 52. The number of estimated parameters d is

34, and the degree of over-identification q is 18. Because of the close economic and

cultural ties within the same county in rural Chinese areas, the study clusters the

data by the county level and estimates the model using 2SLS and two-step GMM

with uncentered cluster-robust weighting matrix. The data set consists of 7462

observations divided into 86 clusters where the number of households vary across

from a low of 49 to a high of 270. Statistical inferences in Emran and Hou (2013)

are conducted using the large-G asymptotics only. We apply our more accurate

asymptotics to Emran and Hou’s study. The inference methods we use here are

described in Tables 1.9 and 1.10 which present the test statistics, the reference dis-

6For the detailed description of the control variables and instrument variables, see the ap-
pendix in Emran and Hou (2013).
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tribution, and the standard error formula (finite sample corrected or not) for each

method. Here we view all corrections, including the degree-of-freedom correction,

the J correction, and the finite sample variance corrections as corrections to the

variance estimator.

Table 1.11 shows the point estimation results, standard error estimates,

and associated confidence intervals (CIs) for each of 2SLS and the uncentered

and centered two-step GMM estimators. Similar to Emran and Hou (2013), our

results show that the better access to domestic and international markets has a

substantial positive effect on household consumption, and that the domestic market

effect is significantly higher. For the 2SLS method, there are no much differences

in confidence interval and standard error between the large-G and fixed-G results.

This is well expected because the number of clusters G = 86 is large enough so

that the large-G and fixed-G approximations are close to each other.

The uncentered two-step GMM estimate of the effect of access to domestic

market is βd = −2722.22. The reported standard error 400.5 is about 40% smaller

than that of 2SLS. However, the plain two-step standard error estimate might be

downward biased because the variation of the cluster-robust weighting matrix is

not considered. The centered two-step GMM estimator gives a smaller effect of

market access βd = −2670.0 with the modified standard error of 519.2, which is

25% larger than the plain two-step standard error. However, the modified standard

error is still smaller than that based on the 2SLS method. So the two-step estimator

still enjoys the benefit of using the cluster-robust weighting matrix. The results

for other parameters deliver similar qualitative messages. Table 1.11 also provides

the finite sample corrected standard error estimates of two-step estimators that

capture the extra variation of feasible CCE, leading to slightly larger standard

errors and wider CIs than the uncorrected ones. Overall, our results suggest that

the effect of access to markets may be lower than the previous finding after we take

into account the randomness of the estimated optimal GMM weighting matrix.
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1.11 Conclusion

This paper studies GMM estimation and inference under clustered depen-

dence. To obtain more accurate asymptotic approximations, we utilize an alterna-

tive asymptotics under which the sample size of each cluster is growing, but the

number of cluster size G is fixed. The paper is comprehensive in that it covers the

first-step GMM, the second-step GMM, and continuously-updating GMM estima-

tors. For the two-step GMM estimator, we show that only if centered moment

processes are used in constructing the weighting matrix can we obtain asymptoti-

cally pivotal Wald statistic and t-statistic. We also find that the centered two-step

GMM estimator and CU estimators are all first-order equivalent under the fixed-G

asymptotics. With the help of the standard J-statistic, the Wald statistic and

t-statistic based on these estimators can be modified to have to standard F and t

limiting distributions. A finite sample variance correction is suggested to further

improve the performance of the asymptotic F and t tests. The advantages of our

procedures are clearly reflected in finite samples as demonstrated by our simulation

study and empirical application.

In an overidentified GMM model, the set of moment conditions can be di-

vided into two blocks: the moment conditions that are for identifying unknown

parameters, and the rest of ones for improving the efficiency of the GMM estima-

tor. We expect that the spatial dependence between these two blocks of moment

conditions is the key information to assess the relative power performance of first-

step and two-step tests. Recently, Hwang and Sun (2015a) compares these two

types of tests by employing more accurate asymptotic approximations in a time

series GMM framework. We leave the extension of this analysis to the spatial

setting to future research.
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1.13 Figures and Tables

Figure 1.1: Emprical size of the first-step and two-step tests when G = 50, LN =
50,m = 24, d = 4, and p = 3 with the nominal size 5% (red line).
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Figure 1.2: Size-adjusted power of the first-step (2SLS) and two-step tests with
G = 30 and LN = 50.
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Figure 1.3: Size-adjusted power of the first-step (2SLS) and two-step tests with
G = 35 and LN = 50.
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Figure 1.4: Size-adjusted power of the first-step (2SLS) and two-step tests with
G = 50 and LN = 50.
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Figure 1.5: Size-adjusted power of the first-step (2SLS) and two-step tests with
G = 100 and LN = 50.



63

Figure 1.6: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red
line): Design I with G = 50, q = 20, and p = 3.

Figure 1.7: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red
line): Design II with G = 50, q = 20, and p = 3.
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Figure 1.8: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red
line): Design III with G = 50, q = 20, and p = 3.

Figure 1.9: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size with the nominal size 5% (red
line): Design IV with G = 50, q = 20, and p = 3.
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Table 1.1: Summary of the first-step, two-step tests, and J test

First-step GMM tests

statistic d.f. adj. F1−α
p,G−p · ·

F1 − − − −
G−p
G
F1 Y Y − −

Two-step GMM tests

statistic d.f. adj. J-modification F1−α
p,G−p−q variance correction

F2 − − − −
G−p−q
G

F2 Y − − −
F̃2 Y Y − −
F̃2 Y Y Y −

F̃adj+ Y Y Y Y

J-tests

statistic d.f. adj. F1−α
q,G−q · ·

J − − − −
G−q
G
J c Y Y − −

Notes: The first-step tests are based on the first-step GMM estimator θ̂2SLS . They

use the associated F-statistic F1= F 1(θ̂1) with critical value χ1−α
p /p or F 1−α

p,G−p. The

first J test employs the statistic J(θ̂2) and critical value χ1−α
q , and the second J test

employs the statistic G−q
G
J c = G−q

G
J(θ̂c2) and critical value F1−α

q,G−q. All two-step tests

are based on the centered two-step GMM estimator θ̂c2 but use different test statistics

and critical values: the unmodified F-statistic F2 = FΩ̂c(θ̂1)(θ̂
c

2), J-statistic and degrees-

of-freedom corrected statistic F̃2 = F̃Ω̂c(θ̂1)(θ̂
c

2), and J-statistic, degrees-of-freedom, and

finite-sample-variance corrected F-statistic F̃
adj+
2 = F̃

adj+
Ω̂c(θ̂1)

(θ̂
c

2), coupled with critical

value χ1−α
p /p or F1−α

p,G−p−q.
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Table 1.2: Empirical size of first-step and two-step tests based on the centered
CCE when LN = 50, number of clusters G = 30 and 35, number of joint hypothesis
p = 1 ∼ 3 and number of moment conditions m = 12, 24.

Test

G = 30 statistic critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.374 0.475 0.528 0.274 0.302 0.332

G−p
G
F1 F1−α

p,G−p 0.333 0.389 0.417 0.236 0.232 0.220

F2 χ1−α
p /p 0.659 0.857 0.939 0.308 0.415 0.492

G−p−q
G

F2 χ1−α
p /p 0.414 0.562 0.658 0.229 0.276 0.308

two-step F̃2 χ1−α
p /p 0.128 0.159 0.192 0.147 0.164 0.182

F̃2 F1−α
p,G−p−q 0.087 0.082 0.079 0.124 0.128 0.129

F̃ adj+
2 F1−α

p,G−p−q 0.015 0.015 0.012 0.063 0.063 0.058

J-test J χ1−α
q − 0.935 − − 0.329 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.069 − − 0.086 −
G−q
G
J c F1−α

q,G−q − 0.129 − − 0.071 −
Test m = 24 m = 12

G = 35 Statistic Critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.381 0.482 0.538 0.268 0.292 0.316
G−p
G
F1 F1−α

p,G−p 0.348 0.407 0.429 0.236 0.236 0.218

F2 χ1−α
p /p 0.572 0.756 0.864 0.292 0.357 0.416

G−p−q
G

F2 χ1−α
p /p 0.366 0.483 0.561 0.199 0.248 0.275

two-step F̃2 χ1−α
p /p 0.145 0.174 0.195 0.143 0.156 0.159

F̃2 F1−α
p,G−p−q 0.111 0.119 0.115 0.128 0.126 0.117

F̃ adj+
2 F1−α

p,G−p−q 0.038 0.034 0.033 0.066 0.060 0.057

J-test J χ1−α
q − 0.869 − − 0.307 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.080 − − 0.091 −
G−q
Gq
J c F1−α

q,G−q − 0.091 − − 0.073 −

Notes: See footnote to Table 1.1.
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Table 1.3: Empirical size of first-step and two-step tests based on the centered CCE
when LN = 50, number of clusters G = 50 and 100, number of joint hypothesis
p = 1 ∼ 3 and number of moment conditions m = 12, 24.

Test

G = 50 statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.347 0.399 0.429 0.247 0.258 0.273

G−p
G
F1 F1−α

p,G−p 0.325 0.356 0.363 0.227 0.222 0.217

F2 χ1−α
p /p 0.399 0.538 0.634 0.208 0.255 0.299

G−p−q
G

F2 χ1−α
p /p 0.269 0.344 0.401 0.168 0.192 0.206

two-step F̃2 χ1−α
p /p 0.142 0.158 0.175 0.129 0.140 0.139

F̃2 F1−α
p,G−p−q 0.123 0.129 0.135 0.119 0.116 0.115

F̃ adj+
2 F1−α

p,G−p−q 0.067 0.064 0.057 0.064 0.060 0.058

J-test J χ1−α
q − 0.666 − − 0.235 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.093 − − 0.098 −
J c F1−α

q,G−q − 0.072 − − 0.072 −
Test

G = 100 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.266 0.292 0.303 0.195 0.200 0.200

G−p
G
F1 F1−α

p,G−p 0.254 0.274 0.274 0.188 0.183 0.172

F2 χ1−α
p /p 0.213 0.271 0.305 0.120 0.142 0.156

G−p−q
G

F2 χ1−α
p /p 0.163 0.185 0.202 0.102 0.105 0.110

two-step F̃2 χ1−α
p /p 0.115 0.119 0.113 0.086 0.085 0.084

F̃2 F1−α
p,G−p−q 0.109 0.108 0.099 0.082 0.079 0.076

F̃ adj+
2 F1−α

p,G−p−q 0.078 0.069 0.063 0.053 0.049 0.049

J-test J χ1−α
q − 0.342 − − 0.156 −

G−q
q

J
G−J F1−α

q,G−q − 0.106 − − 0.095 −
J c F1−α

q,G−q − 0.069 − − 0.065 −

Notes: See footnote to Table 1.1.
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Table 1.4: Empirical size of first-step and two-step tests based on the centered
CCE when LN = 50, number of clusters G = 30 and 35, number of joint hypothesis
p = 1 ∼ 3 and number of moment conditions m = 12, 24.

Test

G = 30 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.344 0.402 0.440 0.249 0.117 0.289

G−p
G
F1 F1−α

p,G−p 0.300 0.328 0.333 0.217 0.208 0.195

F2 χ1−α
p /p 0.610 0.798 0.883 0.275 0.347 0.436

G−p−q
G

F2 χ1−α
p /p 0.371 0.517 0.612 0.191 0.220 0.246

two-step F̃2 χ1−α
p /p 0.101 0.130 0.164 0.116 0.117 0.124

F̃2 F1−α
p,G−p−q 0.061 0.064 0.059 0.095 0.088 0.124

F̃ adj+
2 F1−α

p,G−p−q 0.017 0.015 0.013 0.045 0.043 0.040

J-test J χ1−α
q − 0.930 − − 0.336 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.073 − − 0.098 −
G−q
Gq
J c F1−α

q,G−q − .114 − − 0.077 −
Test m = 24 m = 12

G = 35 Statistic Ref.dist. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.321 0.373 0.393 0.237 0.257 0.269

G−p
G
F1 F1−α

p,G−p 0.292 0.303 0.300 0.213 0.207 0.187

F2 χ1−α
p 0.522 0.697 0.826 0.224 0.301 0.362

G−p−q
G

F2 χ1−α
p /p 0.306 0.411 0.484 0.162 0.196 0.224

two-step F̃2 χ1−α
p 0.105 0.125 0.136 0.107 0.115 0.118

F̃2 F1−α
p,G−p−q 0.079 0.079 0.076 0.090 0.090 0.087

F̃ adj+
2 F1−α

p,G−p−q 0.038 0.032 0.026 0.049 0.049 0.044

J-test J χ1−α
q − 0.853 − − 0.288 −

G−q
q

J
G−J F1−α

q,G−q − 0.080 − − 0.098 −
G−q
Gq
J c F1−α

q,G−q − 0.078 − − 0.075 −

Notes: See footnote to Table 1.1.
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Table 1.5: Empirical size of first-step and two-step tests based on the centered CCE
when LN = 50, number of clusters G = 50 and 100, number of joint hypothesis
p = 1 ∼ 3 and number of moment conditions m = 12, 24.

Test

G = 50 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.269 0.305 0.324 0.206 0.214 0.222

G−p
G
F1 F1−α

p,G−p 0.250 0.260 0.257 0.189 0.180 0.175

F2 χ1−α
p /p 0.341 0.469 0.575 0.176 0.211 0.250

G−p−q
G

F2 χ1−α
p /p 0.209 0.268 0.324 0.129 0.146 0.164

two-step F̃2 χ1−α
p /p 0.099 0.115 0.125 0.094 0.098 0.105

F̃2 F1−α
p,G−p−q 0.088 0.091 0.093 0.086 0.083 0.084

F̃ adj+
2 F1−α

p,G−p−q 0.059 0.056 0.052 0.057 0.052 0.055

J-test J χ1−α
q − 0.629 − − 0.221 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.087 − − 0.094 −
J c F1−α

q,G−q − 0.064 − − 0.063 −
Test

G = 100 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.185 0.203 0.209 0.149 0.147 0.152

G−p
G
F1 F1−α

p,G−p 0.176 0.185 0.182 0.143 0.136 0.128

F2 χ1−α
p /p 0.168 0.225 0.258 0.100 0.120 0.129

G−p−q
G

F2 χ1−α
p /p 0.125 0.149 0.161 0.082 0.089 0.093

two-step F̃2 χ1−α
p /p 0.085 0.091 0.094 0.069 0.073 0.071

F̃2 F1−α
p,G−p−q 0.081 0.082 0.083 0.065 0.067 0.064

F̃ adj+
2 F1−α

p,G−p−q 0.067 0.065 0.064 0.056 0.055 0.051

J-test J χ1−α
q − 0.293 − − 0.135 −

G−q
q

J
G−J F1−α

q,G−q − 0.081 − − 0.081 −
J c F1−α

q,G−q − 0.055 − − 0.053 −

Notes: See footnote to Table 1.1.
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Table 1.6: Design of heterogeneity in cluster size

G = 50 LN1 = ... = LN10 LN11 = ... = LN50 N

Design I 120 95 5000

Design II 160 85 5000

Design III 200 75 5000

Design IV 240 65 5000
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Table 1.7: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size: Design I∼II

Design I

test statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.265 0.303 0.322 0.205 0.201 0.217

G−p
G
F1 F1−α

p,G−p 0.246 0.264 0.261 0.186 0.168 0.165

F2 χ1−α
p /p 0.335 0.472 0.575 0.153 0.194 0.242

G−p−q
G

F2 χ1−α
p /p 0.209 0.265 0.319 0.118 0.132 0.153

two-step F̃2 χ1−α
p /p 0.095 0.104 0.119 0.086 0.087 0.091

F̃2 F1−α
p,G−p−q 0.082 0.083 0.085 0.074 0.071 0.072

F̃ adj+
2 F1−α

p,G−p−q 0.054 0.048 0.043 0.046 0.046 0.047

J-test J χ1−α
q − 0.632 − − 0.228 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.089 − − 0.100 −
G−q
Gq
J c F1−α

q,G−q − 0.067 − − 0.068 −
Design II

m = 24 m = 12

G = 35 test statistic critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.268 0.304 0.323 0.206 0.213 0.220

G−p
G
F1 F1−α

p,G−p 0.250 0.265 0.261 0.193 0.182 0.171

F2 χ1−α
p /p 0.361 0.501 0.601 0.160 0.209 0.254

G−p−q
G

F2 χ1−α
p /p 0.231 0.291 0.338 0.124 0.141 0.170

two-step F̃2 χ1−α
p /p 0.112 0.120 0.132 0.088 0.092 0.100

F̃2 F1−α
p,G−p−q 0.097 0.098 0.102 0.079 0.076 0.082

F̃ adj+
2 F1−α

p,G−p−q 0.063 0.060 0.057 0.053 0.052 0.056

J-test J χ1−α
q − 0.638 − − 0.214 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.083 − − 0.094 −
G−q
Gq
J c F1−α

q,G−q − 0.081 − − 0.072 −

Notes: See footnote to Table 1.1.
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Table 1.8: Empirical size of first-step and two-step tests based on the centered
CCE when there is a heterogeneity in cluster size: Design III∼IV

Design III

test statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.276 0.315 0.327 0.203 0.215 0.228

G−p
G
F1 F1−α

p,G−p 0.254 0.276 0.268 0.186 0.186 0.178

F2 χ1−α
p /p 0.378 0.532 0.632 0.168 0.222 0.274

G−p−q
G

F2 χ1−α
p /p 0.244 0.323 0.374 0.134 0.164 0.184

two-step F̃2 χ1−α
p /p 0.117 0.132 0.145 0.097 0.109 0.117

F̃2 F1−α
p,G−p−q 0.101 0.107 0.110 0.088 0.091 0.092

F̃ adj+
2 F1−α

p,G−p−q 0.04 0.057 0.061 0.061 0.062 0.060

J-test J χ1−α
q − 0.631 − − 0.213 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.076 − − 0.089 −
G−q
Gq
J c F1−α

q,G−q − 0.102 − − 0.079 −
Design IV

m = 24 m = 12

G = 35 test statistic critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.255 0.306 0.327 0.200 0.214 0.226

G−p
G
F1 F1−α

p,G−p 0.232 0.265 0.266 0.180 0.179 0.171

F2 χ1−α
p /p 0.397 0.555 0.664 0.185 0.243 0.304

G−p−q
G

F2 χ1−α
p /p 0.264 0.363 0.429 0.139 0.174 0.205

two-step F̃2 χ1−α
p /p 0.131 0.155 0.176 0.104 0.120 0.136

F̃2 F1−α
p,G−p−q 0.115 0.125 0.140 0.094 0.102 0.110

F̃ adj+
2 F1−α

p,G−p−q 0.075 0.077 0.079 0.062 0.070 0.077

J-test J χ1−α
q − 0.621 − − 0.206 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.070 − − 0.080 −
G−q
Gq
J c F1−α

q,G−q − 0.151 − − 0.092 −

Notes: See footnote to Table 1.1.
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Table 1.11: Results for Emran and Hou (2013) data

2SLS

Variables Large-G Asymptotics Fixed-G Asymptotics

Domestic market (Adi ) −2713.2 (712.1) −2713.2 (716.8)

[−4109.9,−1316.4] [−4138.0,−1288.0]

International market (Asi ) −1993.5 (514.8) −1993.5 (517.9)

[−3002.5,−984.4] [−3023.10,−963.8]

Interaction (Adi × Asi ) 345.8 (105.0) 345.8 (105.6)

[140.0, 551.7] [135.8, 555.9]

H0 : βd = βs −2.3218 (2.02%) −2.771 (2.26%)

Two-step GMM

Variables Large-G Asymptotics Fixed-G Asymptotics

−2722.8 (400.5) −2670.0 (519.2)

Domestic market (Adi ) (520.7)

[−3507.7,−1937.9] [−3706.2,−1633.8]

[−3709.2,−1630.7]

−2000.2 (344.3) −1981.3 (446.4)

International market (Asi ) (447.7)

[−2675.0,−1325.5] [−2872.3,−1090.3]

[−2874.9,−1087.7]

362.7 (68.7) 364.1 (89.1)

Interaction (Adi×A
s
i ) (89.4)

[228.0, 497.3] [186.2, 541.9]

[187.5, 542.4]

H0 : βd = βs −5.239 (0%) −3.3318 (0%)

−3.3217 (0%)

J-statistic (q = 18) 1.1708 (99.8%) 0.3096 (45.83%)

Notes: Standard errors for 2SLS and the weighting matrix for (centered) two-step GMM
estimators are clustered at the county level. Numbers in parentheses are standard er-
rors and intervals are 95% confidence intervals. For hypothesis testing, the numbers in
parentheses are P-values.
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1.14 Appendix of Proofs

Proof of Proposition 1. Part (a). For each g = 1, ..., G,

1√
L

L∑
i=1

f gi (θ̂1) =
1√
L

L∑
i=1

{
f gi (θ0) +

∂f gi (θ̃∗)

∂θ′

[
θ̂1 − θ0

]}
,

where θ̃∗ is between θ̂1 and θ0. Here, θ̃∗ may be different for different rows of

∂f gk (θ̃∗)/∂θ′. For notational simplicity, we do not make this explicit. By Assump-

tions 2 and 5, we have

1√
L

L∑
i=1

f gi (θ̂1) =
1√
L

L∑
i=1

f gi (θ0)

− 1

L

L∑
i=1

∂f gi (θ̃∗)

∂θ′
(Γ′W−1Γ)−1Γ′W−1 1

G

G∑
h=1

(
1√
L

L∑
j=1

fhj (θ0)

)
+ op (1)

=
1√
L

L∑
i=1

f gi (θ0)− Γg(Γ
′W−1Γ)−1Γ′W−1 1

G

G∑
h=1

(
1√
L

L∑
i=1

fhi (θ0)

)
+ op (1) .

(1.43)

Using Assumptions 4–6, we then have

1√
L

L∑
i=1

f gi (θ̂1)

d→ ΛgBm,g − Γg(Γ
′W−1Γ)−1Γ′W−1ΛB̄m

= ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m

where B̄m := G−1
∑G

g=1Bm,g. It follows that

Γ̂(θ̂1)′W−1
N

1√
L

L∑
i=1

f gi (θ̂1)

d→ Γ′W−1
[
ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m

]
= Γ′W−1ΛBm,g − Γ′W−1ΛB̄m = Γ′W−1Λ

(
Bm,g − B̄m

)
.
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So, the scaled CCE matrix converges in distribution to a random matrix:

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1)

=
1

G

G∑
g=1

{(
Γ̂(θ̂1)′W−1

N

1√
L

L∑
i=1

f gi (θ̂1)

)(
1√
L

L∑
j=1

f gj (θ̂1)W−1
N Γ̂(θ̂1)

)′}

d→ Γ′W−1Λ

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}(
Γ′W−1Λ

)′
.

Therefore,

NRv̂ar(θ̂1)R′

=
[
Γ̂(θ̂1)′W−1

N Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
N Γ̂(θ̂1)

]−1

= R
[
Γ′W−1Γ

]−1
Γ′W−1Λ

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}

· ΛW−1Γ
[
Γ′W−1Γ

]−1
R′

= R̃

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}
R̃′

where R̃ := R [Γ′W−1Γ]
−1

Γ′W−1Λ. Also, it follows by Assumption 4 that

√
N(Rθ̂1 − r) = −R(Γ′W−1Γ)−1Γ′W−1

√
NgN(θ0) + op(1)

= −R(Γ′W−1Γ)−1Γ′W−1 1√
G

G∑
g=1

(
1√
L

L∑
i=1

f gi (θ0)

)
+ op(1)

d→ −R̃ 1√
G

G∑
g=1

Bm,g = −R̃
√
GB̄m.

Combining the results so far yields:

F (θ̂1)
d→
(
R̃
√
GB̄m

)′{
R̃

1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′

}−1

R̃
√
GB̄m/p

= F1∞.
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Define the p×p matrix Λ̃ such that Λ̃Λ̃′ = R̃R̃′. Then we have the following

distributional equivalence

[
R̃
√
GB̄m, R̃ 1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′
]

d
=
[ √

GΛ̃B̄p, Λ̃S̄ppΛ̃′
]
.

Using this, we get

F1∞
d
= GB̄′pS̄−1B̄p/p

as desired for Part (a). Part (b) can be similarly proved.

Proof of Proposition 6. Parts (a), (b) and (c). All three estimators can be

represented in the following form

−(Γ′M−1Γ)−1Γ′M−1Λ
√
GB̄m + op(1)

for some weighing matrix M which may be random. Let

MΛ = Λ−1M (Λ′)
−1

and ΓΛ = Λ−1Γ.

Then

−(Γ′M−1Γ)−1Γ′M−1Λ
√
GB̄m = −(ΓΛM

−1
Λ ΓΛ)−1ΓΛM

−1
Λ

√
GB̄m,

Let UΣV ′ be a singular value decomposition (SVD) of ΓΛ. By construction,

U ′U = UU ′ = Im, V ′V = V ′V = Id, and

Σ =

 Ad×d

Oq×d

 ,
where A is a diagonal matrix. Denoting

M̃ = U ′MΛU =

 M̃11 M̃12

M̃21 M̃22

 ,
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we have

(ΓΛM
−1
Λ ΓΛ)−1ΓΛM

−1
Λ

=
[
V Σ′U ′M−1

Λ UΣV ′
]−1

V Σ′U ′M−1
Λ

=
[
V Σ′ (U ′MΛU)

−1
ΣV ′

]−1

V Σ′ (U ′MΛU)
−1
U ′

= V
(
A′M̃11A

)−1 (
A′d×d, O′q×d

) M̃11 M̃12

M̃21 M̃22

U ′

= V A−1(M̃11)−1
(
Id, Od×q

) M̃11 M̃12

M̃21 M̃22

U ′

= V A−1(M̃11)−1
(
M̃11, M̃12

)
U ′ = V A−1

(
Id, (M̃11)−1M̃12

)
U ′

= V A−1
(
Id, −M̃12M̃

−1
22

)
U ′.

So

−(ΓΛM
−1
Λ ΓΛ)−1ΓΛM

−1
Λ

√
GB̄m = −V A−1

(
Id, −M̃12M̃

−1
22

)
U ′
√
GB̄m.

For θ̂1, the matrix M is W , and so

M̃ = W̃ = (ΛU)−1W
[
(ΛU)−1]′ =

 W̃11 W̃12

W̃21 W̃22

 .

Therefore
√
N(θ̂1 − θ0)

d→ −
√
GV A−1

(
B̄d − βW̃ B̄q

)
,

where we have used U ′B̄m
d
= B̄m = (B̄′d, B̄

′
q)
′ for any orthonormal matrix U.
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For θ̃, the matrix MΛ is S, and so

√
N(θ̃2 − θ0)

d→ −
[
V Σ′U ′M−1

Λ UΣV ′
]−1

V Σ′U ′M−1
Λ

√
GU ′B̄m

= −V (ΣU ′S−1UΣ′)−1ΣU ′S−1U
√
GU ′B̄m

d
= −V (ΣS−1Σ′)−1ΣS−1

√
GB̄m,

using the asymptotic equivalence (S, B̄m)
d
= (U ′SU,U ′B̄m) for any orthonormal

matrix U. Therefore,

√
N(θ̃2 − θ0)

d→ −V A−1
√
G(B̄d − βSB̄q).

For the estimator θ̂2, the matrix MΛ is D∞. We have

√
N(θ̂2 − θ0)

d→ −
[
Γ′ΛD

−1
∞ ΓΛ

]−1
Γ′ΛD

−1
∞

√
GB̄m

= −
[
V Σ′ (U ′D∞U)

−1
ΣV ′

]−1

V Σ (U ′D∞U)
−1
U ′
√
GB̄m

= −V
[
Σ′D−1

∞ Σ
]−1

Σ′D−1
∞ U

′
√
GB̄m

= −V A−1
(
Id, −D12D−1

22

)
U ′
√
GB̄m (1.44)

where

D∞ = U ′D∞U =

 D11
d×d

D12
d×q

D21
q×d

D22
q×q

 .

To investigate each component of D∞ = G−1
∑G

g=1 U
′D̃gD̃

′
gU , we first look

at the term U ′D̃g for each g = 1, ..., G :

U ′D̃g = U ′Bm,g − U ′ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m

= U ′Bm,g − U ′UΣV ′(Γ′ΛW
−1
Λ ΓΛ)−1V Σ′U ′W−1

Λ UU ′B̄m

= BU
m,g − Σ(Σ′U ′W−1

Λ UΣ)−1Σ′U ′W−1
Λ UB̄U

m (1.45)
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where BU
m,g = U ′Bm,g and B̄U

m = U ′B̄m. But

BU
m,g − Σ(Σ′W̃−1Σ)−1Σ′W̃−1B̄U

m

= BU
m,g −

 A

O

 (AW̃ 11A)−1
[
A O′

] W̃ 11 W̃ 12

W̃ 21 W̃ 22

 B̄U
m

= BU
m,g −

 (
W̃ 11

)−1

O′

O O

 W̃ 11 W̃ 12

W̃ 21 W̃ 22

 B̄U
m

= BU
m,g −

 I
(
W̃ 11

)−1

W̃ 12

O O

 B̄U
m

= BU
m,g −

 B̄U
d − βW̃ B̄U

q

O

 = (BU
m,g − B̄U

m) + wB̄U
q

for

w =

 βW̃

Iq

 ∈ Rm×q.

So, the matrix D∞ can be represented by

D∞ =
1

G

G∑
g=1

(
BU
m,g − B̄U

m + wB̄U
q

) (
BU
m,g − B̄U

m + wB̄U
q

)′
=

1

G

G∑
g=1

(BU
m,g − B̄U

m)(BU
m,g − B̄U

m)′ + wB̄U
q (B̄U

q )′w′

:= S̃U∞ + wB̄U
q (B̄U

q )′w′.

From this, the block matrix components of D∞ are

D11 = S̃U∞,11 + βW̃ B̄
U
q (B̄U

q )′β′
W̃
,

D12 = S̃U∞,12 + βW̃ B̄
U
q (B̄U

q )′,

D21 = S̃U∞,21 + B̄U
q (B̄U

q )′β′
W̃
,

D22 = S̃U∞,22 + B̄U
q (B̄U

q )′ = SU∞,22. (1.46)
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Using these representations, we can rewrite (1.44) as

√
N(θ̂2 − θ0)

d→ −V A−1
(
Id, −D12D−1

22

)√
GB̄U

m

= V A−1
√
G
[
B̄U
d − D12D−1

22 B̄
U
q

]
= −V A−1

√
G
[
B̄U
d −

(
S̃U∞,12 + βW̃ B̄

U
q (B̄U

q )′
) (
SU∞,22

)−1
B̄U
q

]
= −V A−1

√
G
{
B̄U
d −

[
SU∞,12 − (B̄U

d − βW̃ B̄
U
q )(B̄U

q )′
] (
SU∞,22

)−1
B̄U
q

}
d
= −V A−1

√
G
(
B̄d − βS∞B̄q

)
− V A−1

√
G
{
B̄d − βW̃ B̄q

}
· (κG/G).

(d) It is easy to check that the weak convergences in (a)∼(c) hold jointly.

By continuous mapping theorem we have

√
N(θ̂2 − θ0)−

√
N(θ̃2 − θ0)−

√
N(θ̂1 − θ0) · (κG/G)

d→ 0,

which implies that

√
N(θ̂2 − θ0)−

√
N(θ̃2 − θ0)−

√
N(θ̂1 − θ0) · (κG/G) = op (1) .

That is

√
N(θ̂2 − θ0) =

√
N(θ̃2 − θ0) +

√
N(θ̂1 − θ0) · (κG/G) + op (1) .

(e) Using the same argument in the proof of Proposition 1, we have

√
NgN(θ̂2) =

1√
G

G∑
g=1

(
1√
LN

LN∑
i=1

f gi (θ̂2)

)
d→ Λ
√
G
(
UU ′B̄m − ΓΛ

[
Γ′ΛD

−1
∞ ΓΛ

]−1
Γ′ΛD

−1
∞ B̄m

)
d
= Λ
√
G
[
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)]
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with D12 and D22 given in (1.46). Therefore,

J(θ̂2) = NgN(θ̂2)′
(

Ω̂(θ̂1)
)−1

gN(θ̂2)

d→ G
{
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}′ × Λ (ΛD∞Λ′)
−1

Λ

×
{
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}
= G

{
B̄U
m − U ′ΓΛV A

−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}′
U ′D−1

∞ U

×
{
B̄U
m − U ′ΓΛV A

−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}
= G

B̄U
m −

 Id×d

Oq×d

(B̄U
d − D12D−1

22 B̄
U
q

)
′

D−1
∞

×

B̄U
m −

 Id×d

Oq×d

(B̄U
d − D12D−1

22 B̄
U
q

)
= G

 D12D−1
22 B̄

U
q

B̄U
q

′D−1
∞

 D12D−1
22 B̄

U
q

B̄U
q


= G(B̄U

q )′D−1
22 B̄

U
q =d GB̄′qS

−1
∞,22B̄q = κG,

where the second last equality follows from straightforward calculations. The joint

convergence can be proved easily.

Proof of Proposition 7. It follows from

√
N(θ̂2 − θ0)

d→ V A−1
√
G
[
B̄U
d − D12D−1

22 B̄
U
q

]
and Ω̂(θ̂1)

d→ ΛD∞Λ′
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jointly that

F2,Ω̂(θ̂1)(θ̂2)

=
[
R(θ̂2 − θ0)

]′ (
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1

R(θ̂2 − θ0)/p

d→ G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′

[
R
(

Γ′ (ΛD∞Λ′)
−1

Γ
)−1

R′
]−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′ ·

{
R
[
Γ′ (Λ′)

−1
U (U ′D∞U)

−1
U ′Λ−1Γ

]−1

R′
}−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
d )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′

{
RV A−1D11·2A

−1′V ′R′
}−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
d )/p.

Let Ũp×pΣ̃Ṽ
′
d×d be a SVD of RV A−1, where Σ̃ =

(
Ãp×p, Op×(d−p)

)
. By

definition, Ṽ is the matrix of eigenvectors of (RV A−1)
′
(RV A−1) . Let

V =

 Ṽd×d O

O Iq×q


and define

D̃=

 D̃11 D̃12

D̃21 D̃22

 =

 Ṽd×d O

O Iq

′ D11 D12

D21 D22

 Ṽd×d O

O Iq

 = V′D∞V.

Then

D̃ =
1

G

G∑
g=1

V′U ′(Bm,g − B̄m)(Bm,g − B̄m)′VU +

 Ṽ ′βW̃

Iq

 B̄U
q (B̄U

q )′

 Ṽ ′βW̃

Iq

′

=d 1

G

G∑
g=1

(Bm,g − B̄m)(Bm,g − B̄m)′ +

 Ṽ ′βW̃

Iq

 B̄qB̄
′
q

 Ṽ ′βW̃

Iq

′ ,
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which implies that

D̃11 :=

 D̃pp D̃p,d−p

D̃d−p,p D̃d−p,d−p

 (1.47)

d
=

1

G

G∑
g=1

(Bd,g − B̄d)(Bd,g − B̄d)
′ (1.48)

+
(
Ṽ ′βW̃

)
B̄qB̄

′
q

(
Ṽ ′βW̃

)′
, (1.49)

and

D̃12 :=

 D̃pq

D̃d−p,q

 d
=

1

G

G∑
g=1

(Bd,g − B̄d)(Bq,g − B̄q)
′ +
(
Ṽ ′βW̃

)
B̄qB̄

′
q. (1.50)

Now

F2,Ω̂(θ̂1)(θ̂2)

d→ G(B̄U
d − D12D−1

22 B̄
U
q )′Ṽ Σ̃′Ũ ′

{
ŨΣ̃Ṽ ′D11·2Ṽ Σ̃′Ũ ′

}−1

ŨΣ̃Ṽ ′(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′Ṽ Σ̃′ ·

{
Σ̃Ṽ ′D11·2Ṽ Σ̃′

}−1

· Σ̃Ṽ ′(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )′ · Σ̃′

{
Σ̃D̃11·2Σ̃′

}−1

Σ̃

× (Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )/p

d
= G

[
B̄p − D̃pqD̃−1

qq B̄q

]′
Ã′
{
Ã
(
D̃pp − D̃pqD̃−1

qq D̃qp

)
Ã′
}−1

Ã
[
B̄p − D̃pqD̃−1

qq B̄q

]
/p

d
= G

[
B̄p − D̃pqD̃−1

qq B̄q

]′ (
D̃pp − D̃pqD̃−1

qq D̃qp

)−1 [
B̄p − D̃pqD̃−1

qq B̄q

]
/p,

where D̃pq, D̃qq, and D̃qp in the last two equalities are understood to equals the

corresponding components on the right hand sides of (1.49) and (1.50). Here we

have abused the notation a little bit. We have D̃pp D̃pq

D̃′pq D̃qq

 =

 S̃pp S̃pq

S̃ ′pq S̃qq

+ w̃B̄qB̄
′
qw̃
′ (1.51)
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for

w̃ =

 β̃p
W̃

Iq

 ∈ R(p+q)×q.

We have therefore shown that the first representation of the limit of F2,Ω̂(θ̂1)(θ̂2)

holds. Direct calculations show that the second representation is numerically iden-

tical to the first representation. This completes the proof of Proposition 7.

Proof of Lemma 8. The centered CCE Ωc(θ̆N) can be represented as:

Ω̂c(θ̆N) =
1

G

G∑
h=1

{
1√
LN

LN∑
i=1

(
fhi (θ̆N)− 1

N

G∑
g=1

LN∑
s=1

f gs (θ̆N)

)

× 1√
LN

LN∑
j=1

(
fhj (θ̆N)− 1

N

G∑
g=1

LN∑
s=1

f gs (θ̆N)

)′ .

To prove Part (a), it suffices to show that

1√
LN

LN∑
i=1

(
fhi (θ̆N)− 1

N

G∑
g=1

LN∑
s=1

f gs (θ̆N)

)
(1.52)

=
1√
LN

LN∑
i=1

(
fhi (θ0)− 1

N

G∑
g=1

LN∑
s=1

f gs (θ0)

)
(1 + op(1))

holds for each h = 1, ..., G. By Assumption 3 and using a Taylor expansion, we

have

1√
LN

LN∑
i=1

fhi (θ̆N) = (1+op(1))

(
1√
LN

LN∑
i=1

fhi (θ0) +
1

LN

LN∑
i=1

∂fhi (θ̆N)

∂θ′

√
LN(θ̆N − θ0)

)

Using
√
N(θ̆N − θ0) = Op(1) and Assumption 5, we have

1√
LN

LN∑
i=1

fhi (θ̆N) = (1 + op(1))

(
1√
LN

LN∑
i=1

fhi (θ0) + Γ
√
LN(θ̆N − θ0)

)
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for each h = 1, ..., G. That is, the effect of the estimation uncertainty in θ̆N does

not change with the cluster. It then follows that

1√
LN

LN∑
i=1

(
fhi (θ̆N)− 1

N

G∑
g=1

LN∑
s=1

f gs (θ̆N)

)

= (1 + op(1))

(
1√
LN

LN∑
i=1

fhi (θ0)− 1

G

G∑
g=1

1√
LN

LN∑
i=1

f gi (θ0)

)
,

which completes the proof of part (a).

To prove Part (b), we apply CLT in Assumption 4 together with 6 to obtain:

1√
LN

LN∑
i=1

fhi (θ0)− 1

G

G∑
g=1

1√
LN

LN∑
i=1

f gi (θ0)
d→ Λ

(
Bm,h − B̄m

)
,

where the convergence holds jointly for h = 1, ..., G. As a result,

Ω̂c(θ̂1)
d→ 1

G
Λ

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
Λ′.

Proof of Proposition 9. The proof of part (a) is essentially the same as the

proof of Proposition 7. The only difference is that the second term in (1.51) will

not be present for the centered two-step GMM estimator θ̂c2. The proof of part (b)

is similar. The proof of part (e) is similar to that of Proposition 6(e).

To prove part (c), recall that the restricted two-step GMM estimator θ̂c,r2

minimizes

gN(θ)′
[
Ω̂c(θ̂1)

]−1

gN(θ)/2 + λ′N(Rθ − r). (1.53)

The first order conditions are

ΓN(θ̂c,r2 )
[
Ω̂c(θ̂1)

]−1

gN(θ̂c,r2 ) +R′λN = 0, (1.54)

Rθ̂c,r2 − r = 0.
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Using a Taylor expansion and Assumption 3, we can combine two FOC’s to get

√
N
(
θ̂c,r2 − θ0

)
= −Φ̃−1Γ′

[
Ω̂c(θ̂1)

]−1√
NgN(θ0) (1.55)

− Φ̃−1R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
[
Ω̂c(θ̂1)

]−1√
NgN(θ0) + op(1),

where Φ̃ := Γ′
[
Ω̂c(θ̂1)

]−1

Γ. Subtracting (1.55) from (1.9), we have

√
N
(
θ̂c2 − θ̂

c,r
2

)
= −Φ̃−1R′

(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
[
Ω̂c(θ0)

]−1√
NgN(θ0) + op(1).

(1.56)

By Taylor expansion and Assumption 3 we have

g′N(θ̂c,r2N) = g′N(θ̂c2) + (θ̂c,r2 − θ̂c2)′Γ′ + op(N
−1/2)

and

Ng′N(θ̂c2)
[
Ω̂c(θ̂1)

]−1

gN(θ̂c2N)−Ng′N(θ̂c,r2 )
[
Ω̂c(θ̂1)

]−1

gN(θ̂c2) (1.57)

= N(θ̂c2 − θ̂
c,r
2 )′Γ′N(θ̂c2)

[
Ω̂c(θ̂1)

]−1

gN(θ̂c2) +Op

(
1√
N

)
= Op

(
1√
N

)
.

Here the last equality follows from the FOC’s for θ̂c2. In a similar way, we can write

the second term in (1.57) as

Ng′(θ̂c,r2 )
[
Ω̂c(θ̂1)

]−1

gN(θ̂c2)

= Ng′N(θ̂c,r2 )
[
Ω̂c(θ̂1)

]
gN(θ̂c,r2 ) +N(θ̂c2 − θ̂

c,r
2 )′Φ̃(θ̂c2 − θ̂

c,r
2 ) + op(1).
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Combining this and (1.56), we get

LRΩ̂c(θ̂1)(θ̂
c
2, θ̂

c,r
2 )

=

{
NgN(θ̂c2)′

[
Ω̂c(θ̂1)

]−1

gN(θ̂c2)−NgN(θ̂c,r2 )′
[
Ω̂c(θ̂1)

]−1

gN(θ̂c,r2 )

}
/p

= N(θ̂c,r2 − θ̂c2)′Φ̃(θ̂c,r2 − θ̂c2)/p+ op(1)

=
√
Ng′N(θ0)

[
Ω̂c(θ0)

]−1

ΓΦ̃−1R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
√
NgN(θ0)/p+ op(1)

=
√
N
(
Rθ̂c2 − r

)′ (
RΦ̃−1R′

)−1√
N
(
Rθ̂c2 − r

)
/p+ op(1)

= F2,Ω̂c(θ̂1)(θ̂
c
2) + op(1).

as desired.

To prove part (d), we rewrite the FOC in (1.54) as

√
N∆Ω̂c(θ̂1)(θ̂

c,r
2 ) = −R′

√
NλN

= −R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
[
Ω̂c(θ̂1)

]−1√
NgN(θ0) + op(1)

= Φ̃
√
N
(
θ̂c2N − θ̂

c,r
2

)
+ op(1).

So,

LMΩ̂c(θ̂1)(θ̂
c,r
2 ) = N

[
∆Ω̂c(θ̂1)(θ̂

c,r
2 )
]′

Φ̃−1
[
∆Ω̂c(θ̂1)(θ̂

c,r
2 )
]
/p

= N
(
θ̂c2 − θ̂

c,r
2

)′
Φ̃
√
N
(
θ̂c2N − θ̂

c,r
2

)
/p+ op(1)

= LRΩ̂c(θ̂1)(θ̂
c
2N , θ̂

c,r
2 ) + op(1)

= F2,Ω̂c(θ̂1)(θ̂
c
2) + op(1).

Proof of Proposition 10. For the result with CU-GEE estimator θ̂cu
GEE, we
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have

√
N(θ̂cu

GEE − θ0) = −
(

Γ′
(

Ω̂c(θ̂cu
GEE)

)−1

Γ

)−1

Γ′
(

Ω̂c(θ̂cuGEE)
)−1√

NgN(θ0) + op(1).

Since θ̂cu
GEE is

√
N consistent, we can apply Lemma 8 to obtain Ω̂c(θ̂cu

GEE) = Ω̂c(θ0)+

op(1). Invoking the continuous mapping theorem yields

√
N(θ̂cu

GEE − θ0)
d→ −

{
Γ′ (Ωc

∞)−1 Γ
}−1

{
Γ′ (Ωc

∞)−1 Λ
√
GB̄m

}
as desired.

For the CU-GMM estimator, we let ΓjN(θ̂cuGMM) be the j-th column of ΓN(θ̂cuGMM).

Then, the FOC with respect to the j-th element of θ̂cuCUE is

0 = ΓjN(θ̂cuGMM)′
[
Ωc
N(θ̂cuGMM)

]−1

gN(θ̂cuGMM)

− gN(θ̂cuGMM)′
[
Ω̂c(θ̂cuGMM)

]−1

Υj(θ̂CU-GMM)
[
Ω̂c(θ̂cu

GMM)
]−1

gN(θ̂cuGMM), (1.58)

where

Υj(θ) =
1

N

G∑
g=1

(
LN∑
r=1

f gr (θ)

)(
LN∑
s=1

∂fs(θ)

∂θj

)′
− LNgN(θ)

(
∂gN(θ)

∂θj

)′
.

The second term in (1.58) can be written as

gN(θ̂cuGMM)′
[
Ω̂c(θ̂cuGMM)

]−1

Υj(θ̂
cu
GMM)

[
Ω̂c(θ̂cu

GMM)
]−1

gN(θ̂cuGMM)

=
√
LNgN(θ̂cuGMM)′

[
Ωc
N(θ̂cuGMM)

]−1
[

1

G

G∑
g=1

(
1

LN

LN∑
r=1

f gr (θ̂cuGMM)

)

·

{(
1

LN

LN∑
s=1

∂f gs (θ̂cuGMM)

∂θ

)
− 1

G

G∑
g=1

(
1

LN

LN∑
s=1

∂f gs (θ̂cuGMM)

∂θ

)}′
·
(

Ω̂c(θ̂cuGMM)
)−1√

LNgN(θ̂cuGMM).
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Given that θ̂cuGMM = θ0 +Op(L
−1/2
N ), we have

Ω̂c(θ̂cuGMM) = Op(1)√
LNgN(θ̂cuGMM) =

1

G

G∑
g=1

(
1√
LN

LN∑
s=1

f gs (θ0)

)
+ Γ

√
LN(θ̂cuGMM − θ0) + op(1)

= Op(1)

1

LN

LN∑
s=1

f gs (θ̂cuGMM) =
1

LN

LN∑
r=1

f gs (θ0) +
1

LN

LN∑
s=1

∂f gs (θ̃)

∂θ
(θ̂cuGMM − θ0)

= Op

(
1√
LN

)

and for each g = 1, ..., G,

(
1

LN

LN∑
r=1

f gr (θ̂cuGMM)

){(
1

LN

LN∑
s=1

∂f gs (θ̂cuGMM)

∂θ

)

− 1

G

G∑
g=1

(
1

LN

LN∑
s=1

∂f gs (θ̂cuGMM)

∂θ

)′
= Op

(
1√
LN

)
· op(1) = op

(
1√
LN

)
.

Combining these together, the second term in FOC in (1.58) is op(L
−1/2
N ).

As a result,

ΓN(θ̂cuGMM)′
[
Ω̂c(θ̂cuGMM)

]−1

gN(θ̂cuGMM) = op

(
1√
LN

)
,

and so

√
N(θ̂cuGMM − θ0) = −

{
Γ′
[
Ω̂c(θ̂cuGMM)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ̂cuGMM)

]−1√
NgN(θ0)

+ op(1)
d→ −

{
Γ′ (Ωc

∞)−1 Γ
}−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m.
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Proof of Theorem 11. Define B′q = (B′q,1, ..., B
′
q,G)′ and denote

vg =
(
Bq,g − B̄q

)′ [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1

B̄q.

Then, the distribution of
√
GS̃pqS̃

−1
qq B̄q conditional on Bq can be represented as

√
G

(
G∑
g=1

(
Bp,g − B̄p

) (
Bq,g − B̄q

)′)( G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′)−1

B̄q

=
√
G

G∑
g=1

(
Bp,g − B̄p

)
vg =

√
G

G∑
g=1

Bp,gvg −
√
GB̄p

G∑
g=1

vg

d
= N

(
0, G

G∑
g=1

v2
g · Ip

)

where the last line holds because
∑G

g=1 vg = 0. Note that

G
G∑
g=1

v2
g = G

G∑
g=1

(Bq,g − B̄q

)′ [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1

B̄q

· B̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1 (
Bq,g − B̄q

)
= GB̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1 [ G∑
g=1

(
Bq,g − B̄q

)
×
(
Bq,g − B̄q

)′] [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]
B̄q

= B̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′
/G

]−1

B̄q

= B̄′qS̃
−1
qq B̄q.

So conditional on Bq,
√
GS̃pqS̃

−1
qq B̄q is distributed as N(0, B̄′qS̃

−1
qq B̄q · Ip). It then
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follows that the distribution of
√
G
(
B̄p − S̃pqS̃−1

qq B̄q

)
conditional on Bq is

√
G
(
B̄p − S̃pqS̃−1

qq B̄q

)
∼ N

(
0, (1 + B̄′qS̃

−1
qq B̄q) · Ip

)
using the independence of B̄p from S̃pqS̃

−1
qq B̄q conditional on Bq. Therefore the

conditional distribution of ξp is

ξp :=

√
G(B̄p − S̃pqS̃−1

qq B̄q)√
1 + B̄′qS̃

−1
qq B̄q

∼ N(0, Ip).

Given that the conditional distribution of ξp does not depend on Bq, the uncondi-

tional distribution of ξp is also N(0, Ip).

Using ξp ∼ N(0, Ip), S̃pp·q ∼ G−1Wm(G − q − 1, Ip) and ξp is independent

of S̃pp·q, we have

ξ′p

(
GS̃pp·q

G− q − 1

)−1

ξp ∼ Hotelling’s T 2 distribution T 2
p,G−q−1.

It then follows that

G− p− q
p (G− q − 1)

ξ′p

(
GS̃pp·q

G− q − 1

)−1

ξp ∼ Fp,G−p−q.

That is
G− p− q

pG
ξ′p

(
S̃pp·q

)−1

ξp ∼ Fp,G−p−q.

Together with Proposition 9(c)(d), this completes the proof of the F limit theory

in parts (a), (b) and (c). The proof of the t limit theory is similar and is omitted

here.

Proof of Theorem 12.
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We first show that ÊN = EN (1 + op (1)) . For each j = 1, ..., d, we have

ÊN [., j] =

{
Γ̂′N

[
Ω̂c(θ̂1)

]−1

Γ̂N

}−1

Γ̂′N

[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

×
[
Ω̂c(θ̂1)

]−1

gN(θ̂c2)

=

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[Ωc
N(θ0)]−1 gN(θ̂c2)

· (1 + op(1))

where the second equality holds by Assumption 3, 5 and Lemma 8. Using a Taylor

expansion, we have

gN(θ̂c2) = gN(θ0)− Γ

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1

gN(θ0)(1 + op(1)).

So

ÊN [., j] =
{

Γ′ [Ωc
N(θ0)]−1 Γ

}−1
Γ′
[
Ω̂c(θ0)

]−1 ∂Ωc
N(θ)

∂θj

∣∣∣∣
θ=θ̂1

[
Ω̂c(θ0)

]−1

gN(θ̂c2)

· (1 + op(1))

−
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[Ωc
N(θ0)]−1 Γ

×
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′ [Ωc
N(θ0)]−1 gN(θ0)

}
(1 + op(1))

for each j = 1, ..., d. For the term,
∂ΩcN (θ)

∂θj

∣∣∣
θ=θ̂1

, recall that

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1N

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ) =
1

N

G∑
g=1

 LN∑
r=1

(
f gr (θ)− 1

N

N∑
s=1

fs(θ)

)(
LN∑
s=1

(
∂f gs (θ)

∂θj
− 1

N

N∑
s=1

∂fs(θ)

∂θj

))′ .
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It remains to show that Υj(θ̂1) = Υj(θ0)(1 + op(1)). From the proof of Lemma 8,

we have

1√
LN

LN∑
r=1

(
f gr (θ̂1)− 1

N

N∑
s=1

fs(θ̂1)

)

=
1√
LN

LN∑
r=1

(
f gr (θ0)− 1

N

N∑
s=1

fs(θ0)

)
(1 + op(1)) (1.59)

for each g = 1, ..., G. By Assumption 3, 7 and a Taylor expansion, we have:

1√
LN

LN∑
s=1

∂f gs (θ̂1)

∂θj

=

(
1√
LN

LN∑
i=1

∂f gs (θ0)

∂θj
+

1

LN

LN∑
s=1

∂

∂θ′

(
∂f gs (θ0)

∂θj

)√
LN(θ̂1 − θ0)

)
· (1 + op(1))

:=

(
1√
LN

LN∑
i=1

∂f gs (θ0)

∂θj
+Q(θ0)

√
LN(θ̂1 − θ0)

)
(1 + op(1))

for j = 1, ..., d and g = 1, ..., G. This implies that

LN∑
s=1

(
∂f gs (θ̂1)

∂θj
− 1

N

N∑
s=1

∂fs(θ̂1)

∂θj

)

=

LN∑
s=1

(
∂f gs (θ0)

∂θj
− 1

N

N∑
s=1

∂fs(θ0)

∂θj

)
(1 + op(1)) (1.60)

Combining these together, we have Υ(θ̂1) = Υ(θ0)(1+op(1)) from which we obtain

the desired result

ÊN = EN (1 + op (1)) . (1.61)
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Now, define the infeasible corrected variance

v̂arc,inf

Ω̂c(θ̂1)
(θ̂c2)

= v̂arΩ̂c(θ̂1)(θ̂
c
2)

+ EN v̂arΩ̂c(θ̂1)(θ̂
c
2N) + v̂arΩ̂c(θ̂1)(θ̂

c
2)E ′N + E ′N v̂ar(θ̂1)Ê ′N

and the corresponding infeasible Wald statistic

Fc
2,Ω̂c(θ̂1)

(θ̂c2) = (Rθ̂c2 − r)′
[
Rv̂arc,inf

ΩcN (θ̂1)
(θ̂c2)R′

]−1

(Rθ̂c2 − r)/p.

The result in (1.61) implies

F c
2,Ω̂c(θ̂1)

(θ̂c2) = Fc
2,Ω̂c(θ̂1)

(θ̂c2)(1 + op(1)).

Also, EN = op(1) and we have

v̂arc,inf

Ω̂c(θ̂1)
(θ̂c2) = v̂arcΩ̂c(θ̂1)(θ̂

c
2)(1 + op(1)),

and so

F c
2,Ω̂c(θ̂1)

(θ̂c2) = Fc
2,Ω̂c(θ̂1)

(θ̂c2) + op(1)

= F2,Ω̂c(θ̂1)(θ̂
c
2) + op(1).



Chapter 2

Should We Go One Step Further?

An Accurate Comparison of

One-step and Two-step

Procedures in a Generalized

Method of Moments Framework

Abstract. According to the conventional asymptotic theory, the two-step

Generalized Method of Moments (GMM) estimator and test perform at least as

well as the one-step estimator and test in large samples. The conventional asymp-

totic theory, as elegant and convenient as it is, completely ignores the estimation

uncertainty in the weighting matrix, and as a result it may not reflect finite sample

situations well. In this paper, we employ the fixed-smoothing asymptotic theory

that accounts for the estimation uncertainty, and compare the performance of the

one-step and two-step procedures in this more accurate asymptotic framework. We

show the two-step procedure outperforms the one-step procedure only when the

benefit of using the optimal weighting matrix outweighs the cost of estimating it.

This qualitative message applies to both the asymptotic variance comparison and

97
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power comparison of the associated tests. A Monte Carlo study lends support to

our asymptotic results.
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2.1 Introduction

Efficiency is one of the most important problems in statistics and econo-

metrics. In the widely-used GMM framework, it is standard practice to employ

a two-step procedure to improve the efficiency of the GMM estimator and the

power of the associated tests. The two-step procedure requires the estimation of a

weighting matrix. According to the Hansen (1982), the optimal weighting matrix is

the asymptotic variance of the (scaled) sample moment conditions. For time series

data, which is our focus here, the optimal weighting matrix is usually referred to as

the long run variance (LRV) of the moment conditions. To be completely general,

we often estimate the LRV using the nonparametric kernel or series method.

Under the conventional asymptotics, both the one-step and two-step GMM

estimators are asymptotically normal1. In general, the two-step GMM estimator

has a smaller asymptotic variance. Statistical tests based on the two-step estimator

are also asymptotically more powerful than those based on the one-step estimator.

A driving force behind these results is that the two-step estimator and the asso-

ciated tests have the same asymptotic properties as the corresponding ones when

the optimal weighting matrix is known. However, given that the optimal weight-

ing matrix is estimated nonparametrically in the time series setting, there is large

estimation uncertainty. A good approximation to the distributions of the two-step

estimator and the associated tests should reflect this relatively high estimation

uncertainty.

One of the goals of this paper is to compare the asymptotic properties

of the one-step and two-step procedures when the estimation uncertainty in the

weighing matrix is accounted for. There are two ways to capture the estimation

uncertainty. One is to use the high order conventional asymptotic theory under

which the amount of nonparametric smoothing in the LRV estimator increases with

1In this paper, the one-step estimator refers to the first-step estimator in a typical two-step
GMM framework. This is not to be confused with the continuous updating GMM estimator that
involves only one step. We use the terms “one-step” and “first-step” interchangingly. Our use of
“one-step” and “two-step” is the same as what are used in the Stata “gmm” command.
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the sample size but at a slower rate. While the estimation uncertainty vanishes in

the first order asymptotics, we expect it to remain in high order asymptotics. The

second way is to use an alternative asymptotic approximation that can capture

the estimation uncertainty even with just a first-order asymptotics. To this end,

we consider a limiting thought experiment in which the amount of nonparametric

smoothing is held fixed as the sample size increases. This leads to the so-called

fixed-smoothing asymptotics in the recent literature.

In this paper, we employ the fixed-smoothing asymptotics to compare the

one-step and two-step procedures. For the one-step procedure, the LRV estimator

is used in computing the standard errors, leading to the popular heteroskedasticity

and autocorrelation robust (HAR) standard errors. See, for example, Newey and

West (1986) and Andrews (1991). For the two-step procedure, the LRV estimator

not only appears in the standard error estimation but also plays the role of the

optimal weighting matrix in the second-step GMM criterion function. Under the

fixed-smoothing asymptotics, the weighting matrix converges to a random matrix.

As a result, the second-step GMM estimator is not asymptotically normal but

rather asymptotically mixed normal. The asymptotic mixed normality reflects the

estimation uncertainty of the GMM weighting matrix and is expected to be closer

to the finite sample distribution of the second-step GMM estimator. In a recent

paper, Sun (2014b) shows that both the one-step and two-step test statistics are

asymptotically pivotal under this new asymptotic theory. So a nuisance-parameter-

free comparison of the one-step and two-step tests is possible.

Comparing the one-step and two-step procedures under the new asymp-

totics is fundamentally different from that under the conventional asymptotics.

Under the new asymptotics, the two-step procedure outperforms the one-step pro-

cedure only when the benefit of using the optimal weighting matrix outweighs the

cost of estimating it. This qualitative message applies to both the asymptotic

variance comparison and the local asymptotic power comparison of the associated

tests. This is in sharp contrast with the conventional asymptotics where the cost
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of estimating the optimal weighting matrix is completely ignored. Since the new

asymptotic approximation is more accurate than the conventional asymptotic ap-

proximation, comparing the two procedures under this new asymptotics will give

an honest assessment of their relative merits. This is confirmed by a Monte Carlo

study.

There is a large and growing literature on the fixed-smoothing asymptotics.

For kernel LRV estimators, the fixed-smoothing asymptotics is the so-called the

fixed-b asymptotics first studied by Kiefer et al. (2000) and Kiefer and Vogelsang

(2002b, 2005) in the econometrics literature. For other studies, see, for example,

Jansson )2004), Sun, Phillips and Jin (2008), Sun and Phillips (2009), Goncalves

and Vogelsang (2011), and Zhang et al. (2013) in the time series setting; Bester

et al. (2016) in the spatial setting; and Gonçalves (2011), Kim and Sun (2013),

and Vogelsang (2012) in the panel data setting. For orthonormal series LRV es-

timators, the fixed-smoothing asymptotics is the so-called fixed-K asymptotics.

For its theoretical development and related simulation evidence, see, for example,

Phillips (2005), Müller (2007), Sun (2011a, 2013) and Sun and Kim (2015). The

approximation approaches in some other papers can also be regarded as special

cases of the fixed-smoothing asymptotics. This includes, among others, Ibragimov

and Müller (2010), Shao (2010) and Bester, Conley, and Hansen (2011). The fixed-

smoothing asymptotics can be regarded as a convenient device to obtain some high

order terms under the conventional increasing-smoothing asymptotics.

The rest of the paper is organized as follows. The next section presents a

simple overidentified GMM framework. Section 2.3 compares the two procedures

from the perspective of point estimation. Section 2.4 compares them from the

testing perspective. Section 2.5 extends the ideas to a general GMM framework.

Section 2.6 reports simulation evidence and provides some practical guidance. The

last section concludes. Proofs are provided in the Appendix.

A word on notation: for a symmetric matrix A, A1/2 (or A1/2) is a ma-

trix square root of A such that A1/2
(
A1/2

)′
= A. Note that A1/2 does not have



102

to be symmetric. We will specify A1/2 explicitly when it is not symmetric. If

not specified, A1/2 is a symmetric matrix square root of A based on its eigen-

decomposition. For matrices A and B, we use “A ≥ B” to signify that A − B is

positive (semi)definite. We use “0” and “O” interchangeably to denote a matrix of

zeros whose dimension may be different at different occurrences. For two random

variables X and Y, we use X ⊥ Y to indicate that X and Y are independent. For

a matrix A, we use ν (A) , νmin (A) and νmax (A) to denote the set of all singular

values, the smallest singular value, and the largest singular value of A, respec-

tively. For an estimator θ̂, we use avar(θ̂) to denote the asymptotic variance of the

limiting distribution of
√
T (θ̂− plimT→∞ θ̂) where T is the sample size.

2.2 A Simple Overidentified GMM Framework

To illustrate the basic ideas of this paper, we consider a simple overidentified

time series model of the form:

y1t = θ0 + u1t, y1t ∈ Rd,

y2t = u2t, y2t ∈ Rq (2.1)

for t = 1, ..., T where θ0 ∈ Rd is the parameter of interest and the vector process

ut := (u′1t, u
′
2t)
′ is stationary with mean zero. We allow ut to have autocorrelation

of unknown forms so that the long run variance Ω of ut :

Ω = lrvar(ut) =
∞∑

j=−∞

Eutu
′
t−j

takes a general form. However, for simplicity, we assume that var(ut) = σ2Id+q for

the moment2. Our model is just a location model. We initially consider a general

2If

var (ut) =

(
V11 V12

V21 V22

)
6= σ2Id+q
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GMM framework but later find out that our points can be made more clearly in

the simple location model. From the asymptotic point of view, we show later that

a general GMM framework can be reduced to the above simple location model.

Embedding the location model in a GMM framework, the moment condi-

tions are

E(yt)−

 θ0

0q×1

 = 0,

where yt = (y′1t, y
′
2t)
′. Let

gT (θ) =

 1√
T

∑T
t=1 (y1t − θ)

1√
T

∑T
t=1 y2t

 .

Then a GMM estimator of θ0 can be defined as

θ̂GMM = arg min
θ
gT (θ)′W−1

T gT (θ)

for some positive definite weighting matrix WT . Writing

WT =

 W11 W12

W21 W22

 ,

where W11 is a d× d matrix and W22 is a q× q matrix, then it is easy to show that

θ̂GMM =
1

T

T∑
t=1

(y1t − βWy2t) for βW = W12W
−1
22 .

There are at least two different choices of WT . First, we can take WT to be

for any σ2 > 0, we can let

V1/2 =

(
(V1·2)

1/2 V12 (V22)
−1/2

0 (V22)
1/2

)

where V1·2 = V11 − V12V−122 V21. Then V−11/2 (y′1t, y
′
2t)
′

can be written as a location model whose

error variance is the identity matrix Id+q. The estimation uncertainty in estimating V will not
affect our asymptotic results.
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the identity matrix WT = Im for m = d + q. In this case, βW = 0 and the GMM

estimator θ̂1T is simply

θ̂1T =
1

T

T∑
t=1

y1t.

Second, we can take WT to be the ‘optimal’ weighting matrix WT = Ω. With this

choice, we obtain the GMM estimator:

θ̃2T =
1

T

T∑
t=1

(y1t − βy2t) ,

where β = Ω12Ω−1
22 is the long run regression coefficient matrix. While θ̂1T com-

pletely ignores the information in {y2t} , θ̃2T takes advantage of this source of

information.

Under some moment and mixing conditions, we have

√
T
(
θ̂1T − θ0

)
d

=⇒ N(0,Ω11) and
√
T
(
θ̃2T − θ0

)
d

=⇒ N (0,Ω1·2) ,

where

Ω1·2 = Ω11 − Ω12Ω−1
22 Ω21.

So avar(θ̃2T ) < avar(θ̂1T ) unless Ω12 = 0. This is a well known result in the

literature. Since we do not know Ω in practice, θ̃2T is infeasible. However, given

the feasible estimator θ̂1T , we can estimate Ω and construct a feasible version of

θ̃2T . The common two-step estimation strategy is as follows.

i) Estimate the long run covariance matrix by

Ω̂ := Ω̂ (û) =
1

T

T∑
s=1

T∑
t=1

Qh(
s

T
,
t

T
)

(
ût −

1

T

T∑
τ=1

ûτ

)(
ûs −

1

T

T∑
τ=1

ûτ

)′

where ût = (y′1t − θ̂′1T , y′2t)′.

ii) Obtain the feasible two-step estimator θ̂2T = T−1
∑T

t=1(y1t − β̂y2t) where
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β̂ = Ω̂12Ω̂−1
22 .

In the above definition of Ω̂, Qh (r, s) is a symmetric weighting function that

depends on the smoothing parameter h. For conventional kernel LRV estimators,

Qh (r, s) = k ((r − s) /b) and we take h = 1/b. For the orthonormal series (OS)

LRV estimators, Qh (r, s) = K−1
∑K

j=1 φj (r)φj (s) and we take h = K, where

{φj (r)} are orthonormal basis functions on L2[0, 1] satisfying
∫ 1

0
φj (r) dr = 0. We

parametrize h in such a way so that h indicates the level or amount of smoothing

for both types of LRV estimators.

Note that we use the demeaned process {ût−T−1
∑T

τ=1 ûτ} in constructing

Ω̂ (û) . For the location model, Ω̂ (û) is numerically identical to Ω̂ (u) where the un-

known error process {ut} is used. The moment estimation uncertainty is reflected

in the demeaning operation. Had we known the true value of θ0 and hence the

true moment process {ut} , we would not need to demean {ut}.

While θ̃2T is asymptotically more efficient than θ̂1T , is θ̂2T necessarily more

efficient than θ̂1T and in what sense? Is the Wald test based on θ̂2T necessary more

powerful than that based on θ̂1T ? One of the objectives of this paper is to address

these questions.

2.3 A Tale of Two Asymptotics: Point Estima-

tion

We first consider the conventional asymptotics where h→∞ as T →∞ but

at a slower rate, i.e., h/T → 0. Sun (2014a, 2014b) calls this type of asymptotics the

“Increasing-smoothing Asymptotics,” as h increases with the sample size. Under

this type of asymptotics and some regularity conditions, we have Ω̂
p→ Ω. It can

then be shown that θ̂2T is asymptotically equivalent to θ̃2T , i.e.,
√
T (θ̃2T − θ̂2T ) =

op (1). As a direct consequence, we have

√
T
(
θ̂1T − θ0

)
d

=⇒ N(0,Ω11),
√
T
(
θ̂2T − θ0

)
d

=⇒ N
[
0,Ω11 − Ω12Ω−1

22 Ω21

]
.
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So θ̂2T is still asymptotically more efficient than θ̂1T .

The conventional asymptotics, as elegant and convenient as it is, does not

reflect the finite sample situations well. Under this type of asymptotics, we es-

sentially approximate the distribution of Ω̂ by the degenerate distribution concen-

trating on Ω. That is, we completely ignore the estimation uncertainty in Ω̂. The

degenerate approximation is too optimistic, as Ω̂ is a nonparametric estimator,

which by definition can have high variation in finite samples.

To obtain a more accurate distributional approximation of
√
T (θ̂2T − θ0),

we could develop a high order increasing-smoothing asymptotics that reflects the

estimation uncertainty in Ω̂. This is possible but requires strong assumptions

that cannot be easily verified. In addition, it is also technically challenging and

tedious to rigorously justify the high order asymptotic theory. Instead of high

order asymptotic theory under the conventional asymptotics, we adopt the type

of asymptotics that holds h fixed (at a positive value) as T →∞. Given that h is

fixed, we follow Sun (2014a, 2014b) and call this type of asymptotics the “Fixed-

smoothing Asymptotics.” This type of asymptotics takes the sampling variability

of Ω̂ into consideration.

Sun (2013, 2014a) has shown that critical values from the fixed-smoothing

asymptotic distribution are higher order correct under the conventional increasing-

smoothing asymptotics. So the fixed-smoothing asymptotics can be regarded as

a convenient device to obtain some higher order terms under the conventional

increasing-smoothing asymptotics.

To establish the fixed-smoothing asymptotics, we maintain Assumption 8

on the kernel function and basis functions.

Assumption 8 (i) For kernel LRV estimators, the kernel function k (·) satisfies

the following conditions: for any b ∈ (0, 1], kb (x) = k (x/b) is symmetric, continu-

ous, piecewise monotonic, and piecewise continuously differentiable on [−1, 1]. (ii)

For the OS LRV variance estimator, the basis functions φj (·) are piecewise mono-

tonic, continuously differentiable and orthonormal in L2[0, 1] and
∫ 1

0
φj (x) dx = 0.
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Assumption 8 on the kernel function is very mild. It includes many com-

monly used kernel functions such as the Bartlett kernel, Parzen kernel, and Quadratic

Spectral (QS) kernel.

Define

Q∗h(r, s) = Qh(r, s)−
∫ 1

0

Qh(τ, s)dτ −
∫ 1

0

Qh(r, τ)dτ +

∫ 1

0

∫ 1

0

Qh(τ1, τ2)dτ1dτ2,

which is a centered version of Qh(r, s), and

Ω̃ =
1

T

T∑
s=1

T∑
t=1

Q∗h(
s

T
,
t

T
)ûtû

′
s.

Assumption 8 ensures that Ω̃ and Ω̂ are asymptotically equivalent. Furthermore,

under this assumption, Sun (2014a) shows that, for both kernel LRV and OS LRV

estimation, the centered weighting function Q∗h(r, s) satisfies :

Q∗h(r, s) =
∞∑
j=1

λjΦj(r)Φj(s)

where {Φj(r)} is a sequence of continuously differentiable functions satisfying∫ 1

0
Φj(r)dr = 0 and the series on the right hand side converges to Q∗h(r, s) ab-

solutely and uniformly over (r, s) ∈ [0, 1] × [0, 1]. The representation can be re-

garded as a spectral decomposition of the compact Fredholm operator with kernel

Q∗h (r, s) . See Sun (2014a) for more discussion.

Now, letting Φ0(·) := 1 and using the basis functions {Φj(·)}∞j=1 in the series

representation of the weighting function, we make the following assumptions.

Assumption 9 The vector process {ut}Tt=1 satisfies:

(i) T−1/2
∑T

t=1 Φj(t/T )ut converges weakly to a continuous distribution, jointly

over j = 0, 1, ..., J for every fixed J ;
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(ii) For every fixed J and x ∈ Rm,

P

(
1√
T

T∑
t=1

Φj(
t

T
)ut ≤ x for j = 0, 1, .., J

)

= P

(
Ω1/2

1√
T

T∑
t=1

Φj(
t

T
)et ≤ x for j = 0, 1, ..., J

)
+ o(1) as T →∞

where

Ω1/2 =

 Ω
1/2
1·2 Ω12Ω

−1/2
22

0 Ω
1/2
22

 > 0

is a matrix square root of the nonsingular LRV matrix Ω =
∑∞

j=−∞Eutu
′
t−j

and et ∼ iid N(0, Im).

Assumption 10
∑∞

j=−∞ ‖ Eutu′t−j ‖<∞.

Proposition 13 Let Assumptions 8–10 hold. As T → ∞ for a fixed h > 0, we

have:

(a) Ω̂
d

=⇒ Ω∞ where

Ω∞ = Ω1/2Ω̃∞Ω′1/2 :=

 Ω∞,11 Ω∞,12

Ω∞,21 Ω∞,22


Ω̃∞ =

∫ 1

0

∫ 1

0

Q∗h(r, s)dBm(r)dBm(s)′ :=

 Ω̃∞,11 Ω̃∞,12

Ω̃∞,21 Ω̃∞,22


and Bm(·) is a standard Brownian motion of dimension m = d+ q;

(b)
√
T
(
θ̂2T − θ0

)
d

=⇒
(
Id, −β∞

)
Ω1/2Bm(1) where β∞ = β∞(h, d, q) :=

Ω∞,12Ω−1
∞,22 is independent of Bm (1) .

Conditional on β∞, the asymptotic distribution of
√
T (θ̂2T −θ0) is a normal

distribution with variance

V2 =
(
Id, −β∞

) Ω11 Ω12

Ω21 Ω22

 Id

−β′∞

 = Ω11−Ω12β
′
∞−β∞Ω21+β∞Ω22β

′
∞.
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Given that V2 is random,
√
T (θ̂2T−θ0) is asymptotically mixed-normal rather than

normal. Since

avar(θ̂2T )− avar(θ̃2T ) = EV2 −
(
Ω11 − Ω12Ω−1

22 Ω21

)
= E

(
Ω12Ω−1

22 Ω21 − Ω12β
′
∞ − β∞Ω21 + β∞Ω22β

′
∞
)

= E
(
Ω12Ω−1

22 − β∞
)

Ω22

(
Ω12Ω−1

22 − β∞
)′ ≥ 0,

the feasible estimator θ̂2T has a large variation than the infeasible estimator θ̃2T .

This is consistent with our intuition. The difference avar(θ̂2T ) − avar(θ̃2T ) can be

regarded as the cost of implementing the two-step estimator, i.e., the cost of having

to estimate the weighting matrix.

Under the fixed-smoothing asymptotics, we still have
√
T (θ̂1T − θ0)

d
=⇒

N(0,Ω11) as θ̂1T does not depend on the smoothing parameter h. So

avar(θ̂1T )− avar(θ̃2T ) := Ω11 −
(
Ω11 − Ω12Ω−1

22 Ω21

)
= Ω12Ω−1

22 Ω21 ≥ 0,

which can be regarded as the benefit of going to the second step.

To compare the asymptotic variances of
√
T (θ̂1T − θ0) and

√
T (θ̂2T − θ0),

we need to evaluate the relative magnitudes of the cost and the benefit. Define

β̃∞ := β̃∞ (h, d, q) := Ω̃∞,12Ω̃−1
∞,22, (2.2)

which does not depend on any nuisance parameter but depends on h, d, q. For

notational economy, we sometimes suppress this dependence. Direct calculations

show that

β∞ = Ω
1/2
1·2 β̃∞Ω

−1/2
22 + Ω12Ω−1

22 . (2.3)
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Using this, we have:

avar(θ̂2T )− avar(θ̂1T ) = avar(θ̂2T )− avar(θ̃2T )︸ ︷︷ ︸
cost

− [avar(θ̂1T )− avar(θ̃2T )]︸ ︷︷ ︸
benefit

= Ω
1/2
1·2Eβ̃∞β̃

′
∞(Ω

1/2
1·2 )′ − Ω12Ω−1

22 Ω21. (2.4)

If the cost is larger than the benefit, i.e., Ω
1/2
1·2Eβ̃∞β̃

′
∞(Ω

1/2
1·2 )′ > Ω12Ω−1

22 Ω21, then

the asymptotic variance of θ̂2T is larger than that of θ̂1T .

The following lemma gives a characterization of Eβ̃∞ (h, d, q) β̃∞ (h, d, q)′ .

Lemma 14 For any d ≥ 1, we have

Eβ̃∞ (h, d, q) β̃∞ (h, d, q)′ =
(
E||β̃∞ (h, 1, q) ||2

)
× Id.

Using the lemma, we can prove that

avar(θ̂2T )− avar(θ̂1T ) = (1 + E||β̃∞ (h, 1, q) ||2)Ω
1/2
11 [g(h, q)Id − ρρ′] (Ω

1/2
11 )′,

where

g(h, q) :=
E||β̃∞(h, 1, q)||2

1 + E||β̃∞(h, 1, q)||2
∈ (0, 1),

and

ρ = Ω
−1/2
11 Ω12Ω

−1/2
22 ∈ Rd×q,

which is the long run correlation matrix between u1t and u2t. The proposition

below then follows immediately.

Proposition 15 Let Assumptions 8–10 hold. Consider the fixed-smoothing asymp-

totics.

(a) If νmax (ρρ′) < g(h, q), then θ̂2T has a larger asymptotic variance than

θ̂1T .

(b) If νmin (ρρ′) > g(h, q), then θ̂2T has a smaller asymptotic variance than

θ̂1T .
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To compute the eigenvalues of ρρ′, we can use the fact that ν (ρρ′) =

ν
(
Ω12Ω−1

22 Ω21Ω−1
11

)
. The eigenvalues of ρρ′ are the squared long run correlation

coefficients between c′1u1t and c′2u2t for some c1 and c2, i.e., the squared long run

canonical correlation coefficients between u1t and u2t. So the conditions in the

proposition can be presented in terms of the smallest and largest square long run

canonical correlation coefficients.

If ρ = 0, then νmax (ρρ′) < g(h, q) holds trivially. In this case, the asymp-

totic variance of θ̂2T is larger than the asymptotic variance of θ̂1T . Intuitively, when

the long run correlation is zero, there is no information that can be explored to

improve efficiency. If we insist on using the long run correlation matrix in attempt

to improve the efficiency, we may end up with a less efficient estimator, due to the

noise in estimating the zero long run correlation matrix. On the other hand, if

ρρ′ = Id after some possible rotation, which holds when the long run variation of u1t

is perfectly predicted by u2t, then νmin (ρρ′) = 1 and we have νmin (ρρ′) > g(h, q).

In this case, it is worthwhile estimating the long run variance and using it to

improve the efficiency θ̂2T .

The two conditions νmin (ρρ′) > g(h, q) and νmax (ρρ′) < g(h, q) in the

proposition may appear to be strong. However, the conclusions are also very

strong. For example, θ̂2T has a smaller asymptotic variance than θ̂1T means that

avar(Rθ̂2T ) ≤ avar(Rθ̂1T ) for any matrix R ∈ Rp×d and for all 1 ≤ p ≤ d. In fact,

in the proof of the proposition, we show that the conditions are both necessary

and sufficient.

The two conditions νmin (ρρ′) > g(h, q) and νmax (ρρ′) ≤ g(h, q) are not

mutually exclusive unless d = 1. When d > 1, it is possible that neither of two

conditions is satisfied, in which case avar(θ̂2T ) − avar(θ̂1T ) is indefinite. So, as a

whole vector, the relative asymptotic efficiency of θ̂2T to θ̂1T cannot be compared.

However, there exist two matrices R+ ∈ Rd+×d and R− ∈ Rd−×d with d+ + d− = d,

d+ < d, and d− < d such that avar(R+θ̂2T ) ≤ avar(R+θ̂1T ) and avar(R−θ̂2T ) ≥

avar(R−θ̂1T ). An example of the indefinite case is when q < d and νmax (ρρ′) >
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g(h, q). In this case, νmin (ρρ′) = 0 and νmin (ρρ′) > g(h, q) does not hold. A direct

implication is that avar(R−θ̂2T ) > avar(R−θ̂1T ) for some R−. So when the degree

of overidentification is not large enough, there are some directions characterized by

R− along which the two-step estimator is less efficient than the one-step estimator.

When d = 1, ρρ′ is a scalar, and two conditions νmin (ρρ′) > g(h, q) and

νmax (ρρ′) ≤ g(h, q) becomes mutually exclusive. So if ρρ′ > g(h, q), then θ̂2T is

asymptotically more efficient than θ̂1T . Otherwise, it is asymptotically less efficient.

In the case of kernel LRV estimation, it is hard to obtain an analytical

expression for E||β̃∞(h, 1, q)||2 and hence g(h, q), although we can always simulate

g(h, q) numerically. The threshold g(h, q) depends on the smoothing parameter

h = 1/b and the degree of overidentification q. Tables 2.1–2.3 report the simulated

values of g(h, q) for b = 0.00 : 0.01 : 0.20 and q = 1 ∼ 5. These values are

nontrivial in that they are close to neither zero nor one. It is clear that g(h, q)

increases with q and decreases with the smoothing parameter h = 1/b.

When the OS LRV estimation is used, we do not need to simulate g(h, q),

as we can obtain a closed form expression.

Corollary 16 Let Assumptions 8–10 hold. In the case of OS LRV estimation, we

have

g(h, q) =
q

K − 1
.

So if νmax (ρρ′) < q
K−1

(or νmin (ρρ′) > q
K−1

), then θ̂2T has a larger (or smaller)

asymptotic variance than θ̂1T under the fixed-smoothing asymptotics.

Since θ̂2T is not asymptotically normal, asymptotic variance comparison

does not paint the whole picture. To compare the asymptotic distributions of θ̂1T

and θ̂2T , we consider the case of OS LRV estimation with d = q = 1 and K = 4

as an example. We use the sine and cosine basis functions as given in (??) later

in Section 2.6. Figure 2.1 reports the shapes of probability density functions when

(Ω11,Ω
2
12,Ω22) = (1, 0.10, 1). In this case, Ω1·2 = Ω11 − Ω12Ω−1

22 Ω21 = 0.9. The

first graph shows
√
T (θ̂1T − θ0)

a∼ N(0, 1) and
√
T (θ̂2T − θ0)

a∼ N(0, 0.9) under the
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conventional asymptotics. The conventional limiting distributions for
√
T (θ̂1T−θ0)

and
√
T (θ̂2T − θ0) are both normal but the latter has a smaller variance, so the

asymptotic efficiency of θ̂2T is always guaranteed. However, this is not true in

the second graph of Figure 2.1, which represents the limiting distributions under

the fixed-smoothing asymptotics. While we still have
√
T (θ̂1T − θ0)

a∼ N(0, 1),
√
T (θ̂2T − θ0)

a∼ MN [0, 0.9(1 + β̃2
∞)]. The mixed normality can be obtained by

using a conditional version of (2.4). More specifically, the conditional asymptotic

variance of θ̂2T is

avar(θ̂2T |β̃∞) = V2 = Ω
1/2
1·2 β̃∞β̃

′
∞(Ω

1/2
1·2 )′ + Ω1·2 = 0.9(1 + β̃2

∞). (2.5)

Comparing these two different families of distributions, we find that the asymptotic

distribution of θ̂2T has fatter tail than that of θ̂1T . The asymptotic variance of θ̂2T

is

avar(θ̂2T ) = EV2 = Ω1·2{1 +E[||β̃∞(h, 1, q)||2]} = Ω1·2
K − 1

K − q − 1
= 0.9× 3

2
= 1.35,

which is larger than the asymptotic variance of θ̂1T .

2.4 A Tale of Two Asymptotics: Hypothesis Test-

ing

We are interested in testing the null hypothesis H0 : Rθ0 = r against the

local alternative H1 : Rθ0 = r+ δ0/
√
T for some p×d full rank matrix R and p×1

vectors r and δ0. Nonlinear restrictions can be converted into linear ones using the

Delta method. We construct the following two Wald statistics:

W1T := T (Rθ̂1T − r)′
(
RΩ̂11R

′
)−1

(Rθ̂1T − r)

W2T := T (Rθ̂2T − r)′
(
RΩ̂1·2R

′
)−1

(Rθ̂2T − r)
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where Ω̂1·2 = Ω̂11 − Ω̂12Ω̂−1
22 Ω̂21. When p = 1 and the alternative is one sided, we

can construct the following two t statistics:

T1T : =

√
T
(
Rθ̂1T − r

)
√
RΩ̂11R′

(2.6)

T2T : =

√
T
(
Rθ̂2T − r

)
√
RΩ̂1·2R′

. (2.7)

No matter whether the test is based on θ̂1T or θ̂2T , we have to employ the long run

covariance estimator Ω̂. Define the p× p matrices Λ1 and Λ2 according to

Λ1Λ′1 = RΩ11R
′ and Λ2Λ′2 = RΩ1·2R

′.

In other words, Λ1 and Λ2 are matrix square roots of RΩ11R
′ and RΩ1·2R

′ respec-

tively.

Under the conventional increasing-smoothing asymptotics, it is straightfor-

ward to show that under H1 : Rθ0 = r + δ0/
√
T :

W1T
d

=⇒ χ2
p(
∥∥Λ−1

1 δ0

∥∥2
), W2T

d
=⇒ χ2

p(
∥∥Λ−1

2 δ0

∥∥2
),

T1T
d

=⇒ N(Λ−1
1 δ0, 1), T2T

d
=⇒ N(Λ−1

2 δ0, 1),

where χ2
p (λ2) is the noncentral chi-square distribution with noncentrality param-

eter λ2. When δ0 = 0, we obtain the null distributions:

W1T ,W2T
d

=⇒ χ2
p and T1T ,T2T

d
=⇒ N(0, 1).

So under the conventional increasing-smoothing asymptotics, the null limiting dis-

tributions of W1T and W2T are identical. Since
∥∥Λ−1

1 δ0

∥∥2 ≤
∥∥Λ−1

2 δ0

∥∥2
, under the

conventional asymptotics, the local asymptotic power function of the test based

on W2T is higher than that based on W1T .

The key driving force behind the conventional asymptotics is that we ap-
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proximate the distribution of Ω̂ by the degenerate distribution concentrating on Ω.

The degenerate approximation does not reflect the finite sample distribution well.

As in the previous section, we employ the fixed-smoothing asymptotics to derive

more accurate distributional approximations. Let

Cpp =

∫ 1

0

∫ 1

0

Q∗h(r, s)dBp(r)dBp(s)
′, Cpq =

∫ 1

0

∫ 1

0

Q∗h(r, s)dBp(r)dBq(s)
′

Cqq =

∫ 1

0

∫ 1

0

Q∗h(r, s)dBq(r)dBq(s)
′, Cqp = C ′pq

and

Dpp = Cpp − CpqC−1
qq C

′
pq

where Bp(·) ∈ Rp and Bq(·) ∈ Rq are independent standard Brownian motion

processes.

Proposition 17 Let Assumptions 8–10 hold. As T → ∞ for a fixed h, we have,

under H1 : Rθ0 = r + δ0/
√
T :

(a) W1T
d

=⇒W1∞(
∥∥Λ−1

1 δ0

∥∥2
) where

W1∞(‖ξ‖2) = [Bp (1) + ξ]′C−1
pp [Bp (1) + ξ] for ξ ∈ Rp. (2.8)

(b) W2T
d

=⇒W2∞(
∥∥Λ−1

2 δ0

∥∥2
) where

W2∞(‖ξ‖2) =
[
Bp (1)− CpqC−1

qq Bq (1) + ξ
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1) + ξ
]
.

(2.9)

(c) T1T
d

=⇒ T1∞
(
Λ−1

1 δ0

)
:=
[
Bp(1)+Λ−1

1 δ0

]
/
√
Cpp for p = 1.

(d) T2T
d

=⇒ T2∞
(
Λ−1

2 δ0

)
:=
[
Bp (1)− CpqC−1

qq Bq (1) + Λ−1
2 δ0

]
/
√
Dpp for p = 1.

In Proposition 17, we use the notation W1∞(‖ξ‖2), which implies that the

right hand side of (2.8) depends on ξ only through ‖ξ‖2 . This is true, because for
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any orthogonal matrix H :

[Bp (1) + ξ]′C−1
pp [Bp (1) + ξ] = [HBp (1) +Hξ]′HC−1

pp H
′ [HBp (1) +Hξ]

d
= [Bp (1) +Hξ]′C−1

pp [Bp (1) +Hξ] .

If we choose H = (ξ/ ‖ξ‖ , H̃)′ for some H̃ such that H is orthogonal, then

[Bp (1) + ξ]′C−1
pp [Bp (1) + ξ]

d
= [Bp (1) + ‖ξ‖ ep]′C−1

pp [Bp (1) + ‖ξ‖ ep] ,

where ep = (1, 0, ..., 0)′ ∈ Rp. So the distribution of [Bp (1) + ξ]′C−1
pp [Bp (1) + ξ]

depends on ξ only through ‖ξ‖ . Similarly, the distribution of the right hand side

of (2.9) depends only on ‖ξ‖2 .

When δ0 = 0, we obtain the limiting distributions of W1T ,W2T ,T1T and

T2T under the null hypothesis:

W1T
d

=⇒W1∞ := W1∞(0) = Bp (1)′C−1
pp Bp (1) ,

W2T
d

=⇒W2∞ := W2∞(0) =
[
Bp (1)− CpqC−1

qq Bq (1)
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1)
]
,

T1T
d

=⇒ T1∞ := T1∞ (0) = Bp(1)/
√
Cpp,

T2T
d

=⇒ T2∞ := T2∞ (0) =
[
Bp(1)−CpqC−1

qq Bq (1)
]
/
√
Dpp.

These distributions are different from those under the conventional asymptotics.

For W1T and T1T , the difference lies in the random scaling factor Cpp or
√
Cpp.

The random scaling factor captures the estimation uncertainty of the LRV estima-

tor. For W2T and T2T , there is an additional difference embodied by the random

location shift CpqC
−1
qq Bq (1) with a consequent change in the random scaling factor.

The proposition below provides some characterization of the two limiting

distributions W1∞ and W2∞.

Proposition 18 For any x > 0, the following hold:
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(a) W2∞ (0) first-order stochastically dominates W1∞ (0) in that

P [W2∞ (0) ≥ x] > P [W1∞ (0) ≥ x] .

(b) P
[
W1∞(‖ξ‖2) ≥ x

]
strictly increases with ‖ξ‖2 and

lim
‖ξ‖→∞

P
[
W1∞(‖ξ‖2) ≥ x

]
= 1.

(c) P
[
W2∞(‖ξ‖2) ≥ x

]
strictly increases with ‖ξ‖2 and

lim
‖ξ‖→∞

P
[
W2∞(‖ξ‖2) ≥ x

]
= 1.

Proposition 18(a) is intuitive. W2∞ first-order stochastically dominates

W1∞ because W2∞ first-order stochastically dominates Bp (1)′D−1
pp Bp (1), which in

turn first-order stochastically Bp (1)′C−1
pp Bp (1) , which is just W1∞. According to

a property of the first-order stochastic dominance, we have

W2∞
d
= W1∞ + We

for some We > 0. Intuitively, W2∞ shifts some of the probability mass of W1∞ to

the right. A direct implication is that the asymptotic critical values for W2T are

larger than the corresponding ones for W1T . The difference in critical values has

implications on the power properties of the two tests.

For x > 0, we have

P (T1∞ > x) =
1

2
P
(
W1∞ ≥ x2

)
and P (T2∞ > x) =

1

2
P
(
W2∞ ≥ x2

)
.

It then follows from Proposition 18(a) that P (T2∞ > x) ≥ P (T1∞ > x) for x > 0.

So for a one-sided test with the alternative H1 : Rθ0 > r, critical values from T2∞

are larger than those from T1∞. Similarly, we have P (T2∞ < x) ≥ P (T1∞ < x)

for x < 0. This implies that for a one-sided test with the alternative H1 : Rθ0 < r,



118

critical values from T2∞ are smaller than those from T1∞.

Let Wα
1∞ and Wα

2∞ be the (1− α) quantile from the distributions W1∞ and

W2∞, respectively. The local asymptotic power functions of the two tests are

π1

(∥∥Λ−1
1 δ0

∥∥2
)

:= π1

(∥∥Λ−1
1 δ0

∥∥2
;h, p, q, α

)
= P

[
W1∞(

∥∥Λ−1
1 δ0

∥∥2
) >Wα

1∞

]
,

π2

(∥∥Λ−1
2 δ0

∥∥2
)

:= π2

(∥∥Λ−1
1 δ0

∥∥2
;h, p, q, α

)
= P

[
W2∞(

∥∥Λ−1
2 δ0

∥∥2
) >Wα

2∞

]
.

While
∥∥Λ−1

2 δ0

∥∥2 ≥
∥∥Λ−1

1 δ0

∥∥2
, we also have Wα

2∞ >Wα
1∞. The effects of the critical

values and the noncentrality parameter move in opposite directions. It is not

straightforward to compare the two power functions. However, Proposition 18

suggests that if the difference in the noncentrality parameters
∥∥Λ−1

2 δ0

∥∥2−
∥∥Λ−1

1 δ0

∥∥2

is large enough to offset the increase in critical values, then the two-step test based

on W2T will be more powerful.

To evaluate
∥∥Λ−1

2 δ0

∥∥2 −
∥∥Λ−1

1 δ0

∥∥2
, we define

ρR = (RΩ11R
′)
−1/2

(RΩ12) Ω
−1/2
22 , (2.10)

which is the long run correlation matrix ρR between Ru1t and u2t. In terms of

ρR ∈ Rp×q we have

∥∥Λ−1
2 δ0

∥∥2 −
∥∥Λ−1

1 δ0

∥∥2

= δ′0
(
RΩ11R

′ −RΩ12Ω−1
22 Ω21R

′)−1
δ0 − δ′0 (RΩ11R

′)
−1
δ0

= δ′0 (Λ′1)
−1
[
Ip − Λ−1

1 RΩ12Ω−1
22 Ω21R

′ (Λ′1)
−1
]−1 (

Λ−1
1 δ0

)
− δ′0 (Λ′1)

−1 (
Λ−1

1 δ0

)
= δ′0 (Λ′1)

−1
{

[Ip − ρRρ′R]
−1 − Ip

}(
Λ−1

1 δ0

)
.

So the difference in the noncentrality parameters depends on the matrix ρRρ
′
R.

Let ρRρ
′
R =

∑p
i=1 νi,Rai,Ra

′
i,R be the eigen decomposition of ρRρ

′
R, where

{νi,R} are the eigenvalues of ρRρ
′
R and {ai,R} are the corresponding eigenvectors.

Sorted in the descending order, {νi,R} are the (squared) long run canonical corre-
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lation coefficients between Ru1t and u2t. Then

∥∥Λ−1
2 δ0

∥∥2 −
∥∥Λ−1

1 δ0

∥∥2
=

p∑
i=1

νi,R
1− νi,R

[
a′i,RΛ−1

1 δ0

]2
.

Consider a special case that νp,R := minpi=1 {νi,R} approaches 1. If a′p,RΛ−1
1 δ0 6=

0, then ||Λ−1
2 δ0||2−

∥∥Λ−1
1 δ0

∥∥2
and hence ||Λ−1

2 δ0||2 approaches∞ as νp,R approaches

1 from below. This case happens when the second block of moment conditions has

very high long run prediction power for the first block. In this case, we expect the

W2T test to be more powerful, as limνp,R→1 π2(
∥∥Λ−1

2 δ0

∥∥2
) = 1. Consider another

special case that maxpi=1 {νi,R} = 0, i.e., ρR is a matrix of zeros. In this case,

the second block of moment conditions contains no additional information, and

we have
∥∥Λ−1

2 δ0

∥∥2
=
∥∥Λ−1

1 δ0

∥∥2
. In this case, we expect the W2T test to be less

powerful.

It follows from Proposition 18(b) and (c) that for any λ, there exists a

unique τ (λ) := τ (λ;h, p, q, α) such that

π2 (λ) = π1

(
λ

τ

)
.

As a function of λ, τ (λ) is defined implicitly via the above equation. Then

π2(
∥∥Λ−1

2 δ0

∥∥2
) < π1(

∥∥Λ−1
1 δ0

∥∥2
) if and only if

∥∥Λ−1
2 δ0

∥∥2
< τ(

∥∥Λ−1
2 δ0

∥∥2
) ·
∥∥Λ−1

1 δ0

∥∥2
.

Using

∥∥Λ−1
2 δ0

∥∥2 − τ(
∥∥Λ−1

2 δ0

∥∥2
)
∥∥Λ−1

1 δ0

∥∥2

=

p∑
i=1

(
1

1− νi,R
− τ(

∥∥Λ−1
2 δ0

∥∥2
)

)[
a′i,RΛ−1

1 δ0

]2
=

p∑
i=1

1

1− νi,R

(
νi,R −

τ(
∥∥Λ−1

2 δ0

∥∥2
)− 1

τ(
∥∥Λ−1

2 δ0

∥∥2
)

)[
a′i,RΛ−1

1 δ0

]2
τ(
∥∥Λ−1

2 δ0

∥∥2
)

=

p∑
i=1

1

1− νi,R

(
νi,R − f(

∥∥Λ−1
2 δ0

∥∥2
)
) [
a′i,RΛ−1

1 δ0

]2
τ(
∥∥Λ−1

2 δ0

∥∥2
) (2.11)



120

where f (·) is defined according to

f (λ) := f(λ;h, p, q, α) =
τ (λ;h, p, q, α)− 1

τ (λ;h, p, q, α)
,

we can prove the proposition below.

Proposition 19 Let Assumptions 8–10 hold. Define

A (λ0) = {δ : δ′ (RΩ1·2R
′)
−1
δ = λ0}.

Consider the local alternative H1 (λ0) : Rθ0 = r + δ0/
√
T for δ0 ∈ A (λ0) and the

fixed-smoothing asymptotics.

(a) If νmax (ρRρ
′
R) < f(λ0;h, p, q, α), then the two-step test based on W2T

has a lower local asymptotic power than the one-step test based on W1T for any

δ0 ∈ A (λ0) .

(b) If νmin (ρRρ
′
R) > f(λ0;h, p, q, α), then the two-step test based on W2T

has a higher local asymptotic power than the one-step test based on W1T for any

δ0 ∈ A (λ0) .

To compute νmax (ρRρ
′
R) and νmin (ρRρ

′
R), we can use the relationship that

ν (ρRρ
′
R) = ν

{(
RΩ12Ω−1

22 Ω21R
′) (RΩ11R

′)
−1
}
.

There is no need to compute the matrix square roots (RΩ11R
′)−1/2 and Ω

−1/2
22 .

As in the case of variance comparison, the conditions on the canonical cor-

relation coefficients in Proposition 19(a) and (b) are both sufficient and necessary.

See the proof of the proposition for details. The conditions may appear to be

strong but the conclusions are equally strong — the power comparison results

hold regardless of the value of δ0 that characterizes the direction of the local de-

parture. If we have a particular direction in mind so that δ0 is fixed and given,

then we can evaluate
∥∥Λ−1

2 δ0

∥∥2 − τ
(
Λ−1

2 δ0

) ∥∥Λ−1
1 δ0

∥∥2
directly for the given δ0. If
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∥∥Λ−1
2 δ0

∥∥2− τ
(
Λ−1

2 δ0

) ∥∥Λ−1
1 δ0

∥∥2
is positive (negative), then the two-step test has a

higher (lower) local asymptotic power.

When p = 1, which is of ultimate importance in empirical studies, ρRρ
′
R

is equal to the sum of the squared long run canonical correlation coefficients. In

this case, f(λ0;h, p, q, α) is the threshold value of ρRρ
′
R for assessing the relative

efficiency of the two tests. More specifically, when ρRρ
′
R > f(λ0;h, p, q, α), the

two-step test is more powerful than the one-step test. Otherwise, the two-step test

is less powerful.

Proposition 19 is in parallel with Proposition 15. The qualitative messages

of these two propositions are the same — when the long run correlation is high

enough, we should estimate and exploit it to reduce the variation of our point

estimator and improve the power of the associated tests. However, the thresholds

are different quantitatively. The two propositions fully characterize the threshold

for each criterion under consideration.

Proposition 20 Consider the case of OS LRV estimation. For any λ ∈ R+, we

have π1 (λ) > π2 (λ) and hence τ (λ;h, p, q, α) > 1 and f(λ;h, p, q, α) > 0.

Proposition 20 is intuitive. When there is no long run correlation between

Ru1t and u2t, we have
∥∥Λ−1

2 δ0

∥∥2
=
∥∥Λ−1

1 δ0

∥∥2
. In this case, the two-step W2T test

is necessarily less powerful. The proof uses the theory of uniformly most powerful

invariant tests and the theory of complete and sufficient statistics. It is an open

question whether the same strategy can be adopted to prove Proposition 20 in

the case of kernel LRV estimation. Our extensive numerical work supports that

τ (λ;h, p, q, α) > 1 and f(λ;h, p, q, α) > 0 continue to hold in the kernel case.

It is not easy to give an analytical expression for f(λ;h, p, q, α) but we can

compute it numerically without any difficulty. In Table 2.4, we consider the case

of OS LRV estimation and compute the values of f(λ;K, p, q, α) for λ = 1 ∼

25, K = 8, 10, 12, 14, p = 1 ∼ 3 and q = 1 ∼ 3. The values are nontrivial in that

they are not close to the bounary value of zero or one. Similar to the asymptotic
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variance comparison, we find that these threshold values increase as the degree of

overidentification increases and decrease as the smoothing parameter K increases.

For the case of kernel LRV estimation, results not reported here show that

f(λ;h, p, q, α) increases with q and decreases with h. This is entirely analogous to

the case of OS LRV estimation.

2.5 General Overidentified GMM Framework

In this section, we consider the general GMM framework. The parameter

of interest is a d × 1 vector θ ∈ Θ ⊆ Rd. Let vt ∈ Rdv denote the vector of

observations at time t. We assume that θ0 is the true value, an interior point of

the parameter space Θ. The moment conditions

Ef̆(vt, θ) = 0, t = 1, 2, ..., T.

hold if and only if θ = θ0 where f̆ (vt, ·) is an m× 1 vector of continuously differ-

entiable functions. The process f̆ (vt, θ0) may exhibit autocorrelation of unknown

forms. We assume that m ≥ d and that the rank of E[∂f̆ (vt, θ0) /∂θ′] is equal to

d. That is, we consider a model that is possibly overidentified with the degree of

overidentification q = m− d.

2.5.1 One-step and Two-step Estimation and Inference

Define them×m contemporaneous covariance matrix Σ̆ and the LRV matrix

Ω̆ as:

Σ̆ = Ef̆(vt, θ0)f̆(vt, θ0)′ and Ω̆ =
∞∑

j=−∞

Ω̆j where Ω̆j = Ef̆(vt, θ0)f̆(vt−j, θ0)′.

Let

ğt(θ) =
1√
T

t∑
j=1

f̆(vj, θ).
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Given a simple positive-definite weighting matrix W̆0T that does not depend on

any unknown parameter, we can obtain an initial GMM estimator of θ0 as

θ̂0T = arg min
θ∈Θ

ğT (θ)′W̆−1
0T ğT (θ).

For example, we may set W̆0T equal to Im. In the case of IV regression, we may

set W̆0T equal to Z ′TZT/T where ZT is the matrix of the instruments.

Using Σ̆ or Ω̆ as the weighting matrix, we obtain the following two (infea-

sible) GMM estimators:

θ̃1T : = arg min
θ∈Θ

ğT (θ)′Σ̆−1ğT (θ), (2.12)

θ̃2T : = arg min
θ∈Θ

ğT (θ)′Ω̆−1ğT (θ). (2.13)

For the estimator θ̃1T , we use the contemporaneous covariance matrix Σ̆ as the

weighting matrix and ignore all the serial dependency in the moment vector process

{f̆(vt, θ0)}Tt=1. In contrast to this procedure, the second estimator θ̃2T accounts for

the long run dependency. The feasible versions of these two estimators θ̂1T and

θ̂2T can be naturally defined by replacing Σ̆ and Ω̆ with their estimates Σ̆est(θ̂0T )

and Ω̆est(θ̂0T ) where

Σ̆est(θ) : =
1

T

T∑
t=1

f̆(vt, θ)f̆(vt, θ)
′, (2.14)

Ω̆est (θ) : =
1

T

T∑
s=1

T∑
t=1

Q∗h(
s

T
,
t

T
)f̆(vt, θ)f̆(vs, θ)

′. (2.15)

To test the null hypothesis H0 : Rθ0 = r against H1 : Rθ0 = r+ δ0/
√
T , we

construct two different Wald statistics as follows:

W1T : = T (Rθ̂1T − r)′
{
RV̂1TR

′
}−1

(Rθ̂1T − r), (2.16)

W2T : = T (Rθ̂2T − r)′
{
RV̂2TR

′
}−1

(Rθ̂2T − r),
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where

V̂1T =
[
Ğ′1T Σ̆−1

est(θ̂1T )Ğ1T

]−1 [
Ğ′1T Σ̆−1

est(θ̂1T )Ω̆est(θ̂1T )Σ̆−1
est(θ̂1T )Ğ1T

]
(2.17)

×
[
Ğ′1T Σ̆−1

est(θ̂1T )Ğ1T

]−1

(2.18)

V̂2T =
[
Ğ2T Ω̆−1

est(θ̂2T )Ğ2T

]−1

and

Ğ1T =
1

T

T∑
t=1

∂f̆(vt, θ)

∂θ′

∣∣∣∣∣
θ=θ̂1T

, Ğ2T =
1

T

T∑
t=1

∂f̆(vt, θ)

∂θ′

∣∣∣∣∣
θ=θ̂2T

.

These are the standard Wald test statistics in the GMM framework. To compare

the two estimators θ̂1T and θ̂2T and associated tests, we maintain the standard

assumptions below.

Assumption 11 As T → ∞ for a fixed h, θ̂0T = θ0 + op (1) , θ̂1T = θ0 + op (1) ,

θ̂2T = θ0 + op (1) for an interior point θ0 ∈ Θ.

Assumption 12 Define

Ğt(θ) =
1√
T

∂ğt
∂θ′

=
1

T

t∑
j=1

∂f̆(vt, θ)

∂θ′
for t ≥ 1 and Ğ0(θ) = 0.

For any θT = θ0 + op(1), the following hold: (i) plimT→∞Ğ[rT ](θT ) = rĞ uniformly

in r where Ğ = Ğ(θ0) and Ğ(θ) = E∂f̆(vt, θ)/∂θ
′; (ii) Σ̆est (θT )

p→ Σ̆ > 0; (iii) Σ̆,

Ω̆, Ğ′Σ̆−1Ğ, and Ğ′Ω̆−1Ğ are all nonsingular.

With these assumptions and some mild conditions, the standard GMM

theory gives us

√
T (θ̂1T − θ0) =

1√
T

T∑
t=1

[
Ğ′Σ̆−1Ğ

]−1

Ğ′Σ̆−1f̆(vt, θ0) + op(1).
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Under the fixed-smoothing asymptotics, Sun (2014b) establishes the representa-

tion:
√
T (θ̂2T − θ0) =

1√
T

T∑
t=1

[
Ğ′Ω̆−1

∞ Ğ
]−1

Ğ′Ω̆−1
∞ f̆(vt, θ0) + op(1),

where Ω̆∞ is defined in the similar way as Ω∞ in Proposition 13: Ω̆∞ = Ω̆1/2Ω̃∞Ω̆′1/2.

Due to the complicated structure of two transformed moment vector pro-

cesses, it is not straightforward to compare the asymptotic distributions of θ̂1T and

θ̂2T as in Sections 2.3 and 2.4. To confront this challenge, we let

Ğ = U
m×m

· Ξ
m×d
· V ′
d×d

be a singular value decomposition (SVD) of Ğ, where

Ξ′ =

(
A
d×d

, O
d×q

)
,

A is a d× d diagonal matrix and O is a matrix of zeros. Also, we define

f ∗(vt, θ0) = (f ∗′1 (vt, θ0), f ∗′2 (vt, θ0))′ := U ′f̆(vt, θ0) ∈ Rm,

where f ∗1 (vt, θ0) ∈ Rd and f ∗2 (vt, θ0) ∈ Rq are the rotated moment conditions. The

variance and long run variance matrices of {f ∗(vt, θ0)} are

Σ∗ := U ′Σ̆U =

 Σ∗11 Σ∗12

Σ∗21 Σ∗22

 ,

and Ω∗ := U ′Ω̆U , respectively. To convert the variance matrix into an identity

matrix, we define the normalized moment conditions below:

f(vt, θ0) = [f1(vt, θ0)′, f2(vt, θ0)′]
′
:= (Σ∗1/2)−1f ∗(vt, θ0)
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where

Σ∗1/2 =

 (Σ∗1·2)1/2 Σ∗12 (Σ∗22)−1/2

0 (Σ∗22)1/2

 . (2.19)

More specifically,

f1(vt, θ0) : = (Σ∗1·2)−1/2 [f ∗1 (vt, θ0)− Σ∗12 (Σ∗22)−1 f ∗2 (vt, θ0)
]
∈ Rd,

f2(vt, θ0) : = (Σ∗22)−1/2 f ∗2 (vt, θ0) ∈ Rq.

Then the contemporaneous variance of the time series {f(vt, θ0)} is Im and the

long run variance is Ω := (Σ∗1/2)−1Ω∗(Σ∗′1/2)−1.

Lemma 21 Let Assumptions 8–12 hold with ut replaced by f(vt, θ0) in Assump-

tions 9 and 10. Then as T →∞ for a fixed h > 0,

(Σ∗1·2)−1/2AV ′
√
T (θ̂1T − θ0) =

1√
T

T∑
t=1

f1(vt, θ0) + op(1)
d

=⇒ N(0,Ω11) (2.20)

(Σ∗1·2)−1/2AV ′
√
T (θ̂2T − θ0) =

1√
T

T∑
t=1

[f1(vt, θ0)− β∞f2(vt, θ0)] + op(1) (2.21)

d
=⇒MN (0,Ω11 − Ω12β

′
∞ − β∞Ω21 + β∞Ω22β

′
∞)

where β∞ := Ω∞,12Ω−1
∞,22 is the same as in Proposition 13.

Lemma 21 casts the stochastic expansions of two estimators in the same

form. To the best of our knowledge, these representations are new in the econo-

metric literature and may be of independent interest. Lemma 21 enables us to

directly compare the asymptotic properties of one-step and two-step estimators

and the associated tests.

It follows from the proof of the lemma that

(Σ∗1·2)−1/2AV ′
√
T (θ̃2T − θ0) =

1√
T

T∑
t=1

[f1(vt, θ0)− β0f2(vt, θ0)] + op(1),

where β0 = Ω12Ω−1
22 as defined before. So the difference between the feasible
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and infeasible two-step GMM estimators lies in the uncertainty in estimating β0.

While the true value of β appears in the asymptotic distribution of the infeasible

estimator θ̃2T , the fixed-smoothing limit of the implied estimator β̂ := Ω̂12Ω̂−1
22

appears in that of the feasible estimator θ̂2T . It is important to point out that the

estimation uncertainty in the whole weighting matrix Ω̆est matters only through

that in β̂.

If we let (u1t, u2t) = (f1(vt, θ0), f2(vt, θ0)), then the right hand sides of (2.20)

and (2.21) are exactly the same as what we would obtain in the location model.

The location model, as simple as it is, has implications for general settings from

an asymptotic point of view. More specifically, define

y1t = (Σ∗1·2)−1/2AV ′θ0 + u1t,

y2t = u2t,

where u1t = f1(vt, θ0) and u2t = f2(vt, θ0). The estimation and inference problems

in the GMM setting are asymptotically equivalent to those in the above simple

location model with {y1t, y2t} as the observations.

To present our next theorem, we transform R into R̃ using

R̃ = RV A−1 (Σ∗1·2)1/2 , (2.22)

which has the same dimension as R. We let

β̃∞ (h, p, q) =

[∫ 1

0

∫ 1

0

Q∗h(r, s)dBp(r)dBq(s)
′
] [∫ 1

0

∫ 1

0

Q∗h(r, s)dBq(r)dBq(s)
′
]−1

,

which is compatible with the definition in (2.2). We define

ρ = Ω
−1/2
11 Ω12Ω

−1/2
22 ∈ Rd×q and ρR = (R̃Ω11R̃

′)−1/2(R̃Ω12)Ω
−1/2
22 ∈ Rp×q.

While ρ is the long run correlation matrix between f1(vt, θ0) and f2(vt, θ0), ρR is the
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long run correlation matrix between R̃f1(vt, θ0) and f2(vt, θ0). The corresponding

long run canonical correlation coefficients are

ν (ρρ′) = ν
{(

Ω12Ω−1
22 Ω21

)
Ω−1

11

}
and ν (ρRρ

′
R) = ν

{
(R̃Ω12Ω−1

22 Ω21R̃
′)(R̃Ω11R̃

′)−1
}
.

For the location model considered before, Ğ = (Id, Od×q)
′ and so U = Im,

A = Id and V = Id. Given the assumption that Σ̆ = Σ∗ = Im, which implies that

Σ∗1·2 = Id, we have R̃ = R. So the above definition of ρR is identical to that in

(2.10).

Theorem 22 Let the assumptions in Lemma 21 hold. Define

A (λ0) = {δ : δ′[R(Ğ′Ω̆−1Ğ)−1R′]−1δ = λ0}.

Consider the local alternative H1 (λ0) : Rθ0 = r + δ0/
√
T for δ0 ∈ A (λ0) and the

fixed-smoothing asymptotics.

(a) If νmax (ρRρ
′
R) < g(h, q), then Rθ̂2T has a larger asymptotic variance

than Rθ̂1T .

(b) If νmin (ρRρ
′
R) > g(h, q), then Rθ̂2T has a smaller asymptotic variance

than Rθ̂1T .

(c) If νmax (ρRρ
′
R) < f (λ0;h, p, q, α) , then the two-step test is asymptotically

less powerful than the first-step test for any δ0 ∈ A (λ0).

(d) If νmin (ρRρ
′
R) > f (λ0;h, p, q, α) , then the two-step test is asymptotically

more powerful than the first-step test for any δ0 ∈ A (λ0).

If R = Id, then R̃ is a square matrix with a full rank. Since the long

canonical correlation coefficient is invariant to a full-rank linear transformation,

we have ν (ρRρ
′
R) = ν (ρρ′) . It then follows from Theorem 22(a) (b) that

(i) if νmax (ρρ′) < g(h, q), then avar(θ̂2T ) > avar(θ̂1T ).

(ii) if νmin (ρρ′) > g(h, q), then avar(θ̂2T ) < avar(θ̂1T ).
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These results are identical to what we obtain for the location model. The

only difference is that in the general GMM case we need to rotate and standardize

the original moment conditions before computing the long run correlation matrix.

Theorem 22 can also be applied to a general location model with a nonscalar error

variance, in which case R̃ = R (Σ∗1·2)1/2.

2.5.2 GMM Estimation and Inference with a Working Weight-

ing Matrix

In the previous subsection, we employ two specific weighting matrices —

the variance and long run variance estimators. In this subsection, we consider a

general weighting matrix W̆T (θ̂0T ), which may depend on the initial estimator θ̂0T

and the sample size T, leading to yet another GMM estimator:

θ̂aT = arg min
θ∈Θ

ğT (θ)′
[
W̆T (θ̂0T )

]−1

ğT (θ)

where the subscript ‘a’ signifies ‘another’ or ‘alternative’.

An example of W̆T (θ̂0T ) is the implied LRV matrix when we employ a

simple approximating parametric model to capture the dynamics in the moment

process. We could also use the general LRV estimator but we choose a large h

so that the variation in W̆T (θ̂0T ) is small. In the kernel LRV estimation, this

amounts to including only autocovariances of low orders in constructing W̆T (θ̂0T ).

We assume that W̆T (θ̂0T )
p→ W̆ , a positive definite nonrandom matrix under the

fixed-smoothing asymptotics. W̆ may not be equal to the variance or long run

variance of the moment process. We call W̆T (θ̂0T ) a working weighting matrix.

This is in the same spirit of using a working correlation matrix rather than a true

correlation matrix in the generalized estimating equations (GEE) setting. See, for

example, Liang and Zeger (1986).
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In parallel to (2.16), we construct the test statistic

WaT := T (Rθ̂aT − r)′
{
RV̂aTR′

}−1

(Rθ̂aT − r),

where, for ĞaT = 1
T

∑T
t=1 ∂f̆(vt, θ)/∂θ

′
∣∣∣
θ=θ̂aT

, V̂aT is defined according to

V̂aT =
[
Ğ′aT W̆

−1
T (θ̂aT )ĞaT

]−1 [
Ğ′aT W̆

−1
T (θ̂aT )Ω̆est(θ̂aT )W̆−1

T (θ̂aT )ĞaT

]
×
[
Ğ′aT W̆

−1
T (θ̂aT )ĞaT

]−1

,

which is a standard variance estimator for θ̂aT .

Define

W ∗ = U ′W̆U and W = Σ∗−1
1/2 W

∗(Σ∗′1/2)−1 =

 W11 W12

W21 W22


and βa = W12W

−1
22 .

Using the same argument for proving Lemma 21, we can show that

(Σ∗1·2)−1/2AV ′
√
T (θ̂aT − θ0) =

1√
T

T∑
t=1

[f1 (vt, θ0)− βaf2 (vt, θ0)] + op(1). (2.23)

The above representation is the same as that in (2.21) except that β∞ is now

replaced by βa.

Let Va and Va,R be the long run variances of

[f1 (vt, θ0)− βaf2 (vt, θ0)] and R̃ [f1 (vt, θ0)− βaf2 (vt, θ0)] ,

respectively. The long run correlation matrices are

ρa = V−1/2
a (Ω12 − βaΩ22) Ω

−1/2
22 and ρa,R = V−1/2

a,R

[
R̃ (Ω12 − βaΩ22)

]
Ω
−1/2
22 .
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The corresponding long run canonical correlation coefficients are

ν (ρaρ
′
a) = ν

{
(Ω12 − βaΩ22) Ω−1

22 (Ω12 − βaΩ22)′ V−1
a

}
and

ν
(
ρa,Rρ

′
a,R

)
= ν

{
R̃ (Ω12 − βaΩ22) Ω−1

22 (Ω12 − βaΩ22)′ R̃′V−1
a,R

}
.

Theorem 23 Let the assumptions in Lemma 21 hold. Assume further that W̆T (θ̂0T )
p→ W̆ , a positive definite nonrandom matrix. Consider the local alternative H1 (λ0)

and the fixed-smoothing asymptotics.

(a) If νmax(ρa,Rρ
′
a,R) < g(h, q), then Rθ̂2T has a larger asymptotic variance

than Rθ̂aT .

(b) If νmin(ρa,Rρ
′
a,R) > g(h, q), then Rθ̂2T has a smaller asymptotic variance

than Rθ̂aT .

(c) If νmax(ρa,Rρ
′
a,R) < f (λ0;h, p, q, α) , then the two-step test based on W2

is asymptotically less powerful than the test based on Wa for any δ0 ∈ A (λ0).

(d) If νmin(ρa,Rρ
′
a,R) > f (λ0;h, p, q, α) , then the two-step test based on W2

is asymptotically more powerful than the test based on Wa for any δ0 ∈ A (λ0).

Theorem 23 is entirely analogous to Theorem 22. The only difference is that

the second block of moment conditions is removed from the first block using the

implied matrix coefficient βa before computing the long run correlation coefficient.

When R = Id, R̃ becomes a square matrix, and we have ν(ρa,Rρ
′
a,R) =

ν (ρaρ
′
a). Theorem 23(a) and (b) gives the conditions under which θ̂2T is asymp-

totically more efficient than θ̂aT .

To understand the theorem, we can see that the effective moment conditions

behind Rθ̂aT are:

Ef1a (vt, θ0) = 0 for f1a (vt, θ0) = R̃ [f1 (vt, θ0)− βaf2 (vt, θ0)] .

Rθ̂aT uses the information in Ef2 (vt, θ0) = 0 to some extent, but it ignores the

residual information that is still potentially available from Ef2 (vt, θ0) = 0. In
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contrast, Rθ̂2T attempts to explore the residual information. If there is no long run

correlation between f1a (vt, θ0) and f2 (vt, θ0) , i.e., ρa,R = 0, then all the information

in Ef2 (vt, θ0) = 0 has been fully captured by the effective moment conditions

underlying Rθ̂aT . As a result, the test based on Rθ̂aT necessarily outperforms that

based on Rθ̂2T . If the long run correlation ρa,R is large enough in the sense given

in Theorem 23(d), the test based on Rθ̂2T could be more powerful than that based

on Rθ̂aT in large samples.

2.6 Simulation Evidence and Practical Guidance

This section compares the finite sample performances of one-step and two-

step estimators and tests using the fixed-smoothing approximations. We consider

the location model given in (2.1) with the true parameter value θ0 = (0, ..., 0) ∈ Rd

but we allow for a nonscalar error variance. The error {u∗t} follows a VAR(1)

process:

u∗i1t = ψu∗i1t−1 +
γ
√
q

q∑
j=1

u∗j2t−1 + e∗i1t for i = 1, ..., d (2.24)

u∗i2t = ψu∗i2t−1 + e∗i2t for i = 1, ..., q

where e∗i1t ∼ iid N(0, 1) across i and t, e∗i2t ∼ iid N(0, 1) across i and t, and

{e∗1t, t = 1, 2, ..., T} are independent of {e∗2t, t = 1, 2, ..., T} . Let u∗t := ((u∗1t)
′, (u∗2t)

′)′ ∈

Rm ∈ Rm, then u∗t = Γ̃u∗t−1 + e∗t where

Γ
m×m

=

 ψId
γ√
q
Jd,q

0 ψIq

 , e∗t =

 e∗1t

e∗2t

 ∼ iid N (0, Im) ,
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and Jd,q is the d× q matrix of ones. Direct calculations give us the expressions for

the long run and contemporaneous variances of {u∗t} as

Ω∗ =
∞∑

j=−∞

Eu∗t (u
∗
t−j)

′ = (Im − Γ)−1(Im − Γ′)−1

=

 1
(1−ψ)2

Id + γ2

(1−ψ)4
Jd,d

γ

(1−ψ)3
√
q
Jd,q

γ

(1−ψ)3
√
q
Jq,d

1
(1−ψ)2

Iq


and

Σ∗ = var(u∗t ) =

 1
1−ψ2 Id +

γ2(1+ψ2)
(1−ψ2)3

Jd,d
γ√
q

ψ

(1−ψ2)2
Jd,q

γ√
q

ψ

(1−ψ2)2
Jq,d

1
1−ψ2 Iq

 .

Let u1t = (Σ∗1·2)−1/2 [u∗1t−Σ∗12 (Σ∗22)−1 u∗2t] and u2t = (Σ∗22)−1/2 u∗2t and ρ be the long

run correlation matrix between u1t and u2t. With some algebraic manipulations,

we have

ρρ′ =

(
d+

(1− ψ2)2

γ2

)−1

Jd,d. (2.25)

So the maximum eigenvalue of ρρ′ is given by νmax(ρρ′) = [1 + (1− ψ2)2/(dγ2)]
−1

,

which is also the only nonzero eigenvalue.

In addition to the VAR(1) error process, we also consider the following

VARMA(1,1) process for u∗t :

u∗i1t = ψu∗i1t−1 + e∗i1t +
γ
√
q

q∑
j=1

e∗j2,t−1 for i = 1, ..., d (2.26)

u∗i2t = ψu∗i2t−1 + e∗i2t for i = 1, ..., q

where e∗t
i.i.d∼ N (0, Im) . The corresponding long run covariance matrix Ω∗ and

contemporaneous covariance matrix Σ∗ are

Ω∗ =

 1
(1−ψ)2

Id + γ2

(1−ψ)2
· Jd,d γ

(1−ψ)2
√
q
· Jd,q

γ

(1−ψ)2
√
q
· Jq,d 1

(1−ψ)2
· Iq





134

and

Σ∗ =

 1
1−ψ2 Id + γ2

1−ψ2Jd,d
1√
q

ψγ
1−ψ2 · Jd,q

1√
q

ψγ
1−ψ2 · Jq,d 1

1−ψ2 · Iq

 .

With some additional algebras, we have

ρρ′ =

(
d+

1

(1− ψ)2 γ2

)−1

Jd,d, (2.27)

and νmax (ρρ′) = (1 + 1/[d (1− ψ)2 γ2])−1.

Under the VARMA(1,1) design, a working weighting matrix W̆ (θ̂aT ) using

VAR(1) is misspecified and it is not hard to obtain the probability limit of W̆ (θ̂aT )

as

W̆ =
(
Im − Γ̃− Λ̃ (Σ∗)−1

)−1 (
I − Λ̃ (Σ∗)−1 Λ̃′ + Λ̃Λ̃′

)(
Im − Γ̃′ − (Σ∗)−1 Λ̃′

)−1

,

which is different from the true long run variance matrix Ω∗. Based on W̆ , Ω∗, and

Σ∗, we can compute ρaρ
′
a and ρa,Rρ

′
a,R.

For the basis functions in OS LRV estimation, we choose the following

orthonormal basis functions {Φj}∞j=1 in the L2[0, 1] space:

Φ2j−1(x) =
√

2 cos(2jπx) and Φ2j(x) =
√

2 sin(2jπx) for j = 1, ..., K/2,

where K is an even integer. We also consider kernel based LRV estimators with

the three commonly-used kernels: Bartlett, Parzen, QS kernels. For the choice

of K in OS LRV estimation, we employ the following AMSE-optimal formula in

Phillips (2005):

KMSE = 2×

⌈
0.5

(
tr [(Im2 + Kmm)(Ω∗ ⊗ Ω∗)]

4vec(B∗)′vec(B∗)

)1/5

T 4/5

⌉
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where d·e is the ceiling function, Kmm is m2 ×m2 commutation matrix and

B∗ = −π
2

6

∞∑
j=−∞

j2Eu∗tu
∗′
t−j.

Similarly, in the case of kernel LRV estimation, we select the smoothing parame-

ter b according to the AMSE-optimal formula in Andrews (1991). The unknown

parameters in the AMSE are either calibrated or data-driven using the VAR(1)

plug-in approach. The qualitative messages remain the same regardless of how the

unknown parameters are obtained.

In all our simulations, the sample size T is 200, and the number of simulation

replications is s 10, 000.

2.6.1 Point Estimation

We focus on the case with d = 1, under which ρρ′ is a scalar and νmax(ρρ′) =

ρρ′. For both simulation designs, νmax(ρρ′) is increasing in γ2 for a given ψ. We

fix the value of ψ at 0.75 so that each time series is reasonably persistent. For this

value of ψ, we consider νmax(ρρ′) = 0, 0.09, 0.18, ..., 0.90, 0.99, which are obtained

by setting γ to appropriate values using (2.25) or (2.27).

According to Proposition 15, if ρρ′ is greater than a threshold value, then

V ar(θ̂2T ) is expected to be smaller than V ar(θ̂1T ). Otherwise, V ar(θ̂2T ) is expected

to be larger. We simulate V ar(θ̂1T ), V ar(θ̂2T ) and V ar(θ̂aT ). Here, θ̂aT is based

on a working weighting matrix W̆ (θ̂0T ) using VAR(1) as the approximating model

for the estimated error process {û∗t (θ̂0T )}.

Tables 2.5∼2.6 report the simulated variances under the VAR(1) design

with q = 3 and 4 for some given values of K and b. These values are calibrated

by using the AMSE optimal formulae under the VAR(1) design with ψ = 0.75 and

γ2 = (ρρ′(1− ψ2)2) / (d(1− ρρ′) for d = 1 and ρρ′ = 0.40. We first discuss the case

when the OS LRV estimator is used. It is clear that V ar(θ̂2T ) becomes smaller than

V ar(θ̂1T ) only when ρρ′ is large enough. For example, when q = 4 and there is no
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long run correlation, i.e., ρρ′ = 0, we have V ar(θ̂1T ) = 0.081 < V ar(θ̂2T ) = 0.112,

and so θ̂1T is more efficient than θ̂2T with 28% efficiency gain. These numerical

observations are consistent with our theoretical result in Proposition 13: θ̂2T be-

comes more efficient relative to θ̂1T only when the benefit of using the LRV matrix

outweighs the cost of estimating it. With the choice of K = 14 and q = 4, Table 2.5

indicates that V ar(θ̂2T ) starts to become smaller than V ar(θ̂1T ) when ρρ′ crosses

a value in the interval [0.270, 0.360] from below. This agrees with the theoretical

threshold value ρρ′ = q/(K − 1) ≈ 0.307 given in Corollary 16.

In the case of kernel LRV estimation, we get exactly the same qualitative

messages. For example, consider the case with the Bartlett kernel, b = 0.08, and

q = 3. We observe that V ar(θ̂2T ) starts to become smaller than V ar(θ̂1T ) when

ρρ′ crosses a value in the interval [0.09, 0.18] from below. This is compatible with

the threshold value 0.152 given in Table 2.1.

Finally, we note that V ar(θ̂aT ) is smaller than V ar(θ̂2T ) for all values of ρρ′

considered. This is well expected. In constructing θ̂aT , we employ a correctly spec-

ified parametric model to estimate the weighting matrix and so W̆ (θ̂0T ) converges

in probability to the true long run variance matrix Ω∗. However, when the true

DGP is VARMA(1,1), the results in Tables 2.7∼2.8 indicate that the efficiency of

θ̂aT is reduced due to the misspecification bias in the working weighting matrix

W̆ (θ̂aT ). The tables also report the values of ρaρ
′
a. We find that θ̂aT is more ef-

ficient than θ̂2T only when ρaρ
′
a is below a certain threshold value. This confirms

the qualitative messages in Theorem 23(a) and (b).

2.6.2 Hypothesis Testing

We implement three testing procedures on the basis of W1T , W2T and WaT .

Here, WaT is based on the same working weighting matrix W̆ (θ̂0T ) as in the point

estimation case. The nominal significance level is α = 0.05. As before, ψ = 0.75.

We use (2.25) and (2.27) to set γ and obtain νmax(ρρ′) ∈ {0.00, 0.35, 0.50, 0.60, 0.80,

0.90}. We focus on the case with d = 3 and q = 3. The null hypotheses of interest
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are:

H01 : θ1 = 0,

H02 : θ1 = θ2 = 0

where p = 1, 2 respectively. For the smoothing parameters, we employ the data

driven AMSE optimal bandwidth through VAR(1) plug-in implementation devel-

oped by Andrews (1991) and Phillips (2005).

Tables 2.9∼2.16 report the empirical size of three nominal 5% testing pro-

cedures based on the two types of asymptotic approximations. It is clear that all of

the three tests based on W1T ,WaT and W2T suffer from severe size distortion if the

conventional normal (or chi-square) critical values are used. For example, when

the DGP is VAR(1) and OS LRV estimation is implemented, the empirical sizes of

the three tests using the OS LRV estimator are reported to be around 14% ∼ 29%

when p = 2. The relatively large size distortion of the W2T test comes from the

additional cost in estimating the weighting matrix. However, if the nonstandard

critical values Wα
1∞ and Wα

2∞ are used, we observe that the size distortion of all

three procedures is substantially reduced. The result agrees with the previous lit-

erature such as Sun (2013, 2014a,b, and c) and Kiefer and Vogelsang (2005) which

highlight the higher accuracy of the fixed-smoothing approximations. Also, we

observe that when the fixed-smoothing approximations are used, the W1T test is

more size-distorted than the W2T test in most cases. Similar results for the kernel

cases are reported in Tables 2.11∼2.16.

Next, we investigate the finite sample power performances of the three

procedures. We use the finite sample critical values under the null, so the power is

size-adjusted and the power comparison is meaningful. The DGPs are the same as

before except the parameters are from the local null alternatives Rθ0 = r+δ0/
√
T .

The degree of overidentification considered here is q = 3. Also, the domain of each

power curve is rescaled to be λ := δ′0(R̃Ω1·2R̃
′)−1δ0 with R̃ = R(Σ∗1·2)1/2 as in
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Section 2.4 and 2.5.

Figures 2.2∼2.3 show the size-adjusted finite sample power of the three

procedures in the case of OS LRV estimation. We can see that in all figures,

the power curve of the two-step test shifts upward as the degree of the long run

correlation νmax(ρRρ
′
R) increases and it starts to dominate that of the one-step

test from certain point νmax(ρRρ
′
R) ∈ (0, 1). This is consistent with Proposition

19. For example, with K = 14 and p = 1, the power curves in Figure 2.2 show

that the power curve of the two-step test W2T starts to dominate that of the

one-step test W1T when νmax(ρRρ
′
R) reaches 0.25. This matches our theoretical

results in Proposition 19 and Table 2.4 which indicate that the threshold value

maxλ∈[1,25] f(λ;K, p, q, α) is about 0.275 when K = 14, p = 1 and q = 3. Also, if

νmax(ρRρ
′
R) is as high as 0.75, we can see that the two-step test is more powerful

than the one-step test in most of cases.

Lastly, in the presence of VAR(1) error, the performance of WaT dominates

that of W1T and W2T for all νmax(ρRρ
′
R) ∈ (0, 1). This is analogous to the point

estimation results. The working weighting matrix W̆ (θ̂0T ) based on VAR(1) plug-

in model is close to the true long run variance matrix Ω∗. This leads to power

improvement whenever there is some long run correlation between u∗1t and u∗2t.

However, under the VARMA(1,1) error, Figures ??∼2.3 show that the advantages

of WaT are reduced and WaT is more powerful than the two-step test W2T only

when νmax(ρa,Rρ
′
a,R) is below the threshold value f(λ0;K, p, q, α). This is due to

the misspecification bias in W̆ (θ̂0T ) which is attributed to the use of a wrong

plug-in model. Nevertheless, we still observe comparable performances of WaT for

most of non-zero νmax(ρa,Rρ
′
a,R) values. Figures 2.4∼2.7 for the cases of kernel LRV

estimators deliver the same qualitative messages.

2.6.3 Practical Recommendation

Both our theoretical result and simulation evidence suggest that we should

go one more step and employ the two-step estimator and test when the long run
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canonical correlation coefficients are large enough. In empirical applications, we

often care about only a linear combination of model parameters or a single model

parameter. In this case, there is only one long run canonical correlation coefficient

and it provides the necessary and sufficient condition for going the extra step.

However, it is hard to estimate the long run canonical correlation coefficient with

good precision. This is exactly the source of the problem why the two-step esti-

mator and test may not outperform. In the absence of any prior knowledge of the

long run canonical correlation, we propose to use the two-step estimator and test

only when the estimated long run canonical correlation coefficient is larger than

our theoretical threshold by a margin, say 10%. On the other hand, when the

estimated long run canonical correlation coefficient is smaller than our theoretical

threshold by 10%, we stick with the first-step estimator and test. When the es-

timated long run canonical correlation coefficient is within 10% of the theoretical

threshold, we propose to use the GMM estimator and test based on a working

weighting matrix using VAR(1) as the approximating parametric model. Our rec-

ommendation in the not so clear-cut case is based on the simulation evidence that

the working weighting matrix can deliver a robust performance in finite samples.

We now formalize our recommendation using hypothesis testing as an ex-

ample. Given the set of moment conditions Ef̆(vt, θ0) = 0 and the data {vt} ,

suppose that we want to test H0 : Rθ0 = r against Rθ0 6= r for some R ∈ Rp×d.

We follow the steps below to decide on which test to use.

1. Compute the initial estimator θ̂0T = arg minθ∈Θ

∥∥∥∑T
t=1 f̆(vt, θ)

∥∥∥2

.

2. On the basis of θ̂0T , use a data-driven method such as Andrews (1991) or

Phillips (2005) to select the smoothing parameter. Denote the data-driven

value by ĥ.

3. Based on the smoothing parameter ĥ, compute Σ̆est(θ̂0T ) and Ω̆est(θ̂0T ) using

the formulae in (2.15).
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4. Compute ĞT (θ̂0T ) = 1
T

∑T
t=1

∂f̆(vt,θ)
∂θ′
|θ=θ̂0T and its singular value decomposi-

tion Û Ξ̂V̂ ′ where Ξ̂′ = (Âd×d, Od×q) and Âd×d is diagonal.

5. Estimate the variance and the long run variance of the rotated moment

processes by

Σ̂∗ := Û ′Σ̆est(θ̂0T )Û and Ω̂∗ := Û ′Ω̆est(θ̂0T )Û .

6. Compute the normalized LRV estimator:

Ω̂ = (Σ̂∗1/2)−1Ω̂∗(Σ̂∗′1/2)−1 :=

 Ω̂11 Ω̂12

Ω̂21 Ω̂22


where

Σ̂∗1/2 =


(

Σ̂∗1·2

)1/2

Σ̂∗12

(
Σ̂∗22

)−1/2

0
(

Σ̂∗22

)1/2

 . (2.28)

7. Let R̃est = RV̂ Â−1(Σ̂∗1·2)1/2. Compute the eigenvalues:

ν (ρ̂Rρ̂
′
R) = ν

[
(R̃estΩ̂12Ω̂−1

22 Ω̂12R̃
′
est)(R̃estΩ̂11R̃

′
est)
−1
]
.

Let νmax (ρ̂Rρ̂
′
R) and νmin (ρ̂Rρ̂

′
R) be the largest and smallest eigenvalues,

respectively.

8. Choose the value of λo such that P
(
χ2
p (λo) > χ1−α

p

)
= 75%. This choice of

λo is consistent with the optimal testing literature. We may also choose a

value of λo to reflect scientific interest or economic significance.

9. (a) If νmin (ρ̂Rρ̂
′
R) > 1.1f(λo; ĥ, p, q, α), then we use the second-step test

based on W2T .

(b) If νmax (ρ̂Rρ̂
′
R) < 0.9f(λo; ĥ, p, q, α), then we use the first-step test based

on W1T .
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(c) If neither condition (a) nor condition (b) is satisfied, then we use the

testing procedure based on WaT using the VAR(1) as the approximating

parametric model to estimate the weighting matrix.

2.7 Conclusion

In this paper we have provided more accurate and honest comparisons be-

tween the popular one-step and two-step GMM estimators and the associated in-

ference procedures. We have given some clear guidance on when we should go one

step further and use a two-step procedure. Qualitatively, we want to go one step

further only if the benefit of doing so clearly outweighs the cost. When the benefit

and cost comparison is not clear-cut, we recommend using the GMM procedure

with a working weighting matrix.

The qualitative message of the paper is applicable more broadly. As long as

there is additional nonparametric estimation uncertainty in a two-step procedure

relative to the one-step procedure, we have to be very cautious about using the

two-step procedure. While some asymptotic theory may indicate that the two-step

procedure is always more efficient, the efficiency gain may not materialize in finite

samples. In fact, it may do more harm than good sometimes if we blindly use the

two-step procedure.

There are many extensions of the paper. We give some examples here. First,

we can use the more accurate approximations to compare the continuous updating

GMM and other generalized empirical likelihood estimators with the one-step and

two-step GMM estimators. While the fixed-smoothing asymptotics captures the

nonparametric estimation uncertainty of the weighting matrix estimator, it does

not fully capture the estimation uncertainty embodied in the first-step estimator.

The source of the problem is that we do not observe the moment process and

have to use the estimated moment process based on the first-step estimator to

construct the nonparametric variance estimator. It is interesting to develop a
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further refinement to the fixed-smoothing approximation to capture the first-step

estimation uncertainty more adequately. Finally, it will be also very interesting to

give an honest assessment of the relative merits of the OLS and GLS estimators

which are popular in empirical applications.
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2.9 Figures and Tables
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Figure 2.1: Limiting distributions of θ̂1T and θ̂2T based on the OS LRV estimator
with K = 4.
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Figure 2.2: Size-adjusted power of the three tests based on the OS LRV estimator
under VAR(1) error with p = 1, q = 3, ψ = 0.75, T = 200, and K = 14.
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Figure 2.3: Size-adjusted power of the three tests based on the OS LRV estimator
under VARMA(1,1) error with p = 2, q = 3, ψ = 0.75, T = 200, and K = 14.
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Figure 2.4: Size-adjusted power of the three tests based on the Bartlett LRV
estimator under VAR(1) error with p = 2, q = 3, ψ = 0.75, T = 200, and
b = 0.078.
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Figure 2.5: Size-adjusted power of the three tests based on the OS LRV estimator
under VAR(1) error with p = 2, q = 3, ψ = 0.75, T = 200, and K = 14.
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Figure 2.6: Size-adjusted power of the three tests based on the Parzen LRV esti-
mator under VAR(1) error with p = 2, q = 3, ψ = 0.75, T = 200, and b = 0.16.
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Figure 2.7: Size-adjusted power of the three tests based on the QS LRV estimator
under VAR(1) error with p = 2, q = 3, ψ = 0.75, T = 200, and b = 0.079.
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Table 2.1: Threshold values g(h, q) for asymptotic variance comparison with
Bartlett kernel

b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.007 0.014 0.020 0.027 0.033

0.020 0.014 0.027 0.040 0.053 0.065

0.030 0.020 0.040 0.059 0.078 0.097

0.040 0.027 0.053 0.079 0.104 0.128

0.050 0.034 0.066 0.098 0.128 0.157

0.060 0.040 0.079 0.116 0.152 0.185

0.070 0.047 0.092 0.135 0.175 0.211

0.080 0.054 0.104 0.152 0.197 0.237

0.090 0.061 0.117 0.170 0.218 0.260

0.100 0.068 0.129 0.186 0.238 0.282

0.110 0.074 0.141 0.203 0.257 0.303

0.120 0.081 0.153 0.218 0.274 0.322

0.130 0.088 0.164 0.233 0.291 0.340

0.140 0.094 0.175 0.247 0.306 0.356

0.150 0.101 0.186 0.260 0.321 0.371

0.160 0.107 0.196 0.273 0.334 0.384

0.170 0.113 0.206 0.284 0.347 0.397

0.180 0.119 0.216 0.295 0.358 0.407

0.190 0.124 0.226 0.306 0.369 0.417

0.200 0.130 0.235 0.316 0.380 0.425

Note: h = 1/b indicates the level of smoothing and q is the degrees of overidentification.
If the largest squared long run canonical correlation between the two blocks of (rotated
and transformed) moment conditions is less than g (h, q) , then the two-step estimator θ̂2T

is asymptotically less efficient than the one-step estimator θ̂1T . If the smallest squared
long run canonical correlation is greater than g (h, q) , then the two-step estimator θ̂2T

is asymptotically more efficient than the one-step estimator θ̂1T .
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Table 2.2: Threshold values g(h, q) for asymptotic variance comparison with Parzen
kernel

b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.006 0.011 0.016 0.022 0.027

0.020 0.011 0.022 0.033 0.043 0.054

0.030 0.017 0.033 0.049 0.065 0.081

0.040 0.022 0.044 0.065 0.087 0.107

0.050 0.028 0.055 0.082 0.108 0.134

0.060 0.033 0.066 0.099 0.130 0.161

0.070 0.039 0.077 0.115 0.152 0.187

0.080 0.045 0.088 0.132 0.173 0.213

0.090 0.051 0.100 0.148 0.194 0.238

0.100 0.057 0.111 0.164 0.215 0.263

0.110 0.063 0.122 0.181 0.236 0.288

0.120 0.069 0.133 0.197 0.257 0.312

0.130 0.075 0.145 0.213 0.277 0.336

0.140 0.081 0.156 0.229 0.297 0.359

0.150 0.087 0.168 0.245 0.317 0.382

0.160 0.093 0.179 0.261 0.337 0.404

0.170 0.100 0.191 0.277 0.356 0.426

0.180 0.106 0.202 0.293 0.375 0.448

0.190 0.112 0.214 0.308 0.393 0.469

0.200 0.118 0.225 0.323 0.411 0.489

Note: See notes to Table 2.1



152

Table 2.3: Threshold values g(h, q) for asymptotic variance comparison with QS
kernel

b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.010 0.020 0.030 0.040 0.050

0.020 0.021 0.041 0.061 0.082 0.102

0.030 0.031 0.062 0.093 0.124 0.154

0.040 0.042 0.084 0.126 0.166 0.206

0.050 0.053 0.106 0.158 0.209 0.258

0.060 0.065 0.128 0.191 0.252 0.311

0.070 0.077 0.151 0.225 0.296 0.362

0.080 0.089 0.175 0.259 0.340 0.414

0.090 0.102 0.198 0.293 0.382 0.464

0.100 0.115 0.222 0.326 0.423 0.516

0.110 0.127 0.247 0.359 0.463 0.565

0.120 0.140 0.271 0.392 0.502 0.612

0.130 0.153 0.296 0.426 0.542 0.655

0.140 0.166 0.321 0.458 0.581 0.697

0.150 0.179 0.346 0.489 0.619 0.736

0.160 0.193 0.371 0.520 0.655 0.773

0.170 0.206 0.395 0.549 0.690 0.806

0.180 0.220 0.418 0.578 0.722 0.834

0.190 0.233 0.441 0.605 0.752 0.859

0.200 0.246 0.463 0.630 0.779 0.879

Note: See notes to Table 2.1.
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Table 2.4: Threshold Values f(λ;K, p, q, α) for power comparison with OS LRV
estimation when α = 0.05 and K = 8,10,12,14.

p = 1 p = 2 p = 3
K λ q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

1.000 0.162 0.378 0.514 0.223 0.367 0.581 0.242 0.433 0.576
5.000 0.151 0.364 0.503 0.214 0.370 0.582 0.225 0.469 0.623
9.000 0.154 0.352 0.493 0.213 0.377 0.597 0.226 0.488 0.639

8 13.000 0.153 0.345 0.496 0.213 0.397 0.600 0.226 0.495 0.645
17.000 0.160 0.352 0.489 0.217 0.399 0.608 0.230 0.498 0.652
21.000 0.165 0.356 0.493 0.211 0.405 0.604 0.234 0.503 0.657
25.000 0.171 0.355 0.492 0.208 0.399 0.611 0.231 0.510 0.665
1.000 0.082 0.283 0.474 0.162 0.277 0.461 0.171 0.369 0.507
5.000 0.130 0.281 0.426 0.133 0.310 0.439 0.192 0.348 0.507
9.000 0.138 0.269 0.423 0.136 0.305 0.431 0.196 0.328 0.506

10 13.000 0.135 0.261 0.416 0.132 0.308 0.432 0.200 0.339 0.507
17.000 0.128 0.267 0.406 0.137 0.308 0.431 0.209 0.341 0.509
21.000 0.136 0.276 0.406 0.137 0.308 0.436 0.210 0.346 0.508
25.000 0.134 0.270 0.418 0.135 0.308 0.439 0.203 0.344 0.509
1.000 0.085 0.198 0.322 0.128 0.203 0.345 0.151 0.325 0.314
5.000 0.106 0.218 0.298 0.127 0.244 0.336 0.129 0.301 0.345
9.000 0.103 0.210 0.301 0.122 0.233 0.353 0.119 0.284 0.352

12 13.000 0.098 0.205 0.308 0.125 0.232 0.353 0.124 0.274 0.359
17.000 0.105 0.193 0.318 0.128 0.230 0.359 0.124 0.277 0.366
21.000 0.100 0.197 0.325 0.119 0.243 0.363 0.123 0.274 0.369
25.000 0.118 0.197 0.325 0.110 0.236 0.360 0.121 0.284 0.378
1.000 0.062 0.316 0.260 0.089 0.184 0.367 0.155 0.287 0.394
5.000 0.091 0.232 0.275 0.133 0.181 0.287 0.112 0.220 0.341
9.000 0.093 0.214 0.274 0.117 0.188 0.273 0.124 0.209 0.341

14 13.000 0.087 0.211 0.265 0.109 0.192 0.281 0.126 0.213 0.338
17.000 0.097 0.200 0.263 0.109 0.201 0.285 0.125 0.214 0.338
21.000 0.093 0.213 0.257 0.105 0.197 0.285 0.130 0.208 0.332
25.000 0.110 0.226 0.268 0.101 0.191 0.289 0.122 0.209 0.334

Note: If the largest squared long run canonical correlation between the two blocks of
(rotated and transformed) moment conditions is smaller than f (λ;K, p, q, α), then the
two-step test is asymptotically less powerful; If the smallest squared long run canonical
correlation is greater than f (λ;K, p, q, α), then the two-step test is asymptotically more
powerful.
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Table 2.5: Finite sample variance comparison for the three estimators θ̂1T , θ̂2T and
θ̂aT under VAR(1) error with T = 200, and q = 3.

νmax(ρρ′) Var(θ̂1T ) Var(θ̂2T ) Var(θ̂aT )

· · OS Bartlett Parzen QS ·
· · K=14 b=0.08 b=0.15 b=0.08 ·

0.000 0.081 0.103 0.100 0.108 0.109 0.089

0.090 0.093 0.105 0.103 0.110 0.111 0.093

0.180 0.107 0.108 0.105 0.112 0.113 0.096

0.270 0.124 0.111 0.108 0.114 0.115 0.099

0.360 0.146 0.115 0.111 0.117 0.118 0.102

0.450 0.174 0.120 0.116 0.120 0.122 0.106

0.540 0.214 0.127 0.122 0.125 0.127 0.110

0.630 0.272 0.137 0.131 0.132 0.134 0.116

0.720 0.368 0.154 0.145 0.144 0.146 0.123

0.810 0.554 0.185 0.174 0.166 0.170 0.135

0.900 1.073 0.274 0.253 0.227 0.235 0.166

0.990 10.892 1.937 1.731 1.372 1.451 0.714
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Table 2.6: Finite sample variance comparison for the three estimators θ̂1T , θ̂2T and
θ̂aT under VAR(1) error with T = 200, and q = 4.

νmax(ρρ′) Var(θ̂1T ) Var(θ̂2T ) Var(θ̂aT )

· · OS Bartlett Parzen QS ·

· · K=14 b=0.07 b=0.150 b=0.07 ·

0.000 0.081 0.112 0.104 0.120 0.114 0.089

0.090 0.092 0.114 0.106 0.121 0.115 0.093

0.180 0.106 0.117 0.108 0.123 0.118 0.096

0.270 0.122 0.124 0.111 0.126 0.120 0.100

0.360 0.146 0.125 0.115 0.129 0.124 0.105

0.450 0.175 0.130 0.121 0.133 0.129 0.110

0.540 0.217 0.139 0.129 0.139 0.135 0.116

0.630 0.278 0.151 0.141 0.148 0.146 0.123

0.720 0.379 0.172 0.160 0.163 0.162 0.134

0.810 0.576 0.213 0.198 0.193 0.196 0.152

0.900 1.128 0.328 0.305 0.276 0.289 0.197

0.990 11.627 2.538 2.364 1.884 2.089 1.013



156

Table 2.7: Finite sample variance comparison for the three estimators θ̂1T , θ̂2T and
θ̂aT under VARMA(1,1) error with T = 200, and q = 3

νmax(ρρ′) Var(θ̂1T ) Var(θ̂2T ) νmax(ρaρ
′
a) Var(θ̂aT )

· · OS Bartlett Parzen QS · ·

· · K = 14 b = 0.08 b = 0.15 b = 0.08 · ·

0.000 0.081 0.103 0.100 0.108 0.109 0.000 0.089

0.090 0.104 0.105 0.102 0.110 0.110 0.152 0.087

0.180 0.129 0.107 0.103 0.111 0.112 0.199 0.090

0.270 0.161 0.109 0.105 0.113 0.114 0.250 0.096

0.360 0.202 0.112 0.108 0.116 0.117 0.306 0.104

0.450 0.255 0.116 0.111 0.119 0.121 0.368 0.115

0.540 0.329 0.121 0.116 0.124 0.126 0.439 0.130

0.630 0.439 0.129 0.123 0.131 0.133 0.519 0.153

0.720 0.620 0.143 0.134 0.143 0.145 0.611 0.191

0.810 0.970 0.168 0.155 0.165 0.168 0.716 0.265

0.900 1.950 0.240 0.215 0.228 0.233 0.838 0.471

0.990 20.496 1.589 1.357 1.411 1.462 0.982 4.356
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Table 2.8: Finite sample variance comparison for the three estimators θ̂1T , θ̂2T and
θ̂aT under VARMA(1,1) error with T = 200, and q = 4.

νmax(ρρ′) Var(θ̂1T ) Var(θ̂2T ) νmax(ρaρ
′
a) Var(θ̂aT )

· · OS Bartlett Parzen QS · ·

· · K = 14 b = 0.07 b = 0.15 b = 0.07 · ·

0.000 0.081 0.112 0.104 0.120 0.114 0.000 0.089

0.090 0.103 0.113 0.105 0.121 0.115 0.152 0.086

0.180 0.132 0.115 0.106 0.123 0.117 0.199 0.091

0.270 0.167 0.118 0.108 0.125 0.119 0.250 0.098

0.360 0.212 0.121 0.111 0.128 0.122 0.306 0.109

0.450 0.272 0.126 0.114 0.132 0.126 0.368 0.123

0.540 0.356 0.132 0.119 0.137 0.131 0.439 0.144

0.630 0.481 0.142 0.127 0.145 0.139 0.519 0.174

0.720 0.686 0.158 0.140 0.159 0.153 0.611 0.225

0.810 1.086 0.190 0.164 0.186 0.180 0.716 0.325

0.900 2.206 0.279 0.235 0.262 0.257 0.838 0.605

0.990 23.519 2.013 1.598 1.735 1.742 0.982 5.954
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Table 2.9: Empirical size of one-step and two-step tests based on the series LRV
estimator under VAR(1) error when ψ = 0.75, p = 1 ∼ 2, and T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.128 0.098 0.151 0.119 0.187 0.076

0.15 0.126 0.096 0.135 0.103 0.177 0.061

0.25 0.135 0.102 0.138 0.105 0.187 0.063

0.33 0.135 0.105 0.127 0.094 0.174 0.059

0.57 0.139 0.107 0.086 0.061 0.154 0.044

0.75 0.143 0.116 0.046 0.031 0.118 0.032

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.181 0.111 0.222 0.138 0.290 0.077

0.26 0.191 0.118 0.219 0.136 0.296 0.069

0.40 0.192 0.115 0.201 0.120 0.290 0.065

0.50 0.195 0.119 0.194 0.112 0.290 0.057

0.73 0.206 0.120 0.168 0.095 0.272 0.057

0.86 0.206 0.124 0.143 0.082 0.245 0.051

Note: “One Step(Σ̂∗) test” is based on the first-step GMM estimator using the contem-
poraneous variance estimator as the weighing matrix; “One Step(W̆ ) test” is based on
the GMM estimator using the VAR(1) parametric plug-in LRV estimator as the weighing
matrix; “Two Step test” is based on the two-step GMM estimator using the data driven
nonparametric LRV estimator as the weighing matrix.
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Table 2.10: Empirical size of one-step and two-step tests based on the series LRV
estimator under VARMA(1,1) error when ψ = 0.75, p = 1 ∼ 2, and T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.117 0.091 0.138 0.108 0.181 0.068

0.15 0.140 0.113 0.142 0.113 0.173 0.071

0.25 0.144 0.117 0.140 0.113 0.165 0.065

0.33 0.155 0.127 0.141 0.111 0.160 0.060

0.57 0.167 0.138 0.128 0.106 0.121 0.043

0.75 0.168 0.141 0.118 0.096 0.087 0.025

p = 2 and q = 3

One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.188 0.119 0.227 0.146 0.290 0.080

0.26 0.202 0.129 0.209 0.136 0.270 0.073

0.40 0.206 0.135 0.204 0.134 0.254 0.069

0.50 0.223 0.148 0.215 0.144 0.251 0.065

0.73 0.221 0.148 0.205 0.138 0.214 0.053

0.86 0.222 0.156 0.194 0.132 0.178 0.044

Note: See notes to Table 2.9.
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Table 2.11: Empirical size of one-step and two-step tests based on the Bartlett
kernel variance estimator under VAR(1) error when ψ = 0.75, p = 1 ∼ 2 and
T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.156 0.138 0.192 0.172 0.201 0.133

0.15 0.163 0.138 0.175 0.154 0.201 0.120

0.25 0.161 0.138 0.164 0.141 0.196 0.112

0.33 0.154 0.127 0.140 0.115 0.181 0.100

0.57 0.147 0.119 0.085 0.066 0.144 0.069

0.75 0.152 0.128 0.035 0.023 0.115 0.053

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.239 0.183 0.287 0.228 0.305 0.177

0.26 0.230 0.166 0.263 0.196 0.298 0.150

0.40 0.231 0.169 0.243 0.170 0.296 0.138

0.50 0.228 0.161 0.234 0.159 0.286 0.130

0.73 0.228 0.157 0.179 0.118 0.263 0.108

0.86 0.230 0.159 0.161 0.108 0.240 0.098

Note: See notes to Table 2.9.
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Table 2.12: Empirical size of one-step and two-step tests based on the Bartlett
kernel variance estimator under VARMA(1,1) error when ψ = 0.75, p = 1 ∼ 2 and
T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.161 0.142 0.196 0.177 0.203 0.134

0.15 0.147 0.127 0.165 0.144 0.188 0.116

0.25 0.140 0.117 0.149 0.129 0.174 0.105

0.33 0.131 0.115 0.134 0.113 0.158 0.090

0.57 0.117 0.099 0.083 0.068 0.109 0.051

0.75 0.109 0.092 0.035 0.026 0.058 0.024

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.235 0.180 0.292 0.230 0.307 0.174

0.26 0.213 0.157 0.239 0.181 0.278 0.146

0.40 0.203 0.147 0.224 0.165 0.262 0.124

0.50 0.205 0.146 0.209 0.151 0.246 0.115

0.73 0.191 0.136 0.167 0.114 0.195 0.085

0.86 0.190 0.133 0.147 0.105 0.174 0.078

Note: See notes to Table 2.9.
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Table 2.13: Empirical size of one-step and two-step tests based on the Parzen
kernel variance estimator under VAR(1) error when ψ = 0.75, p = 1 ∼ 2 and
T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.145 0.108 0.182 0.139 0.214 0.090

0.15 0.148 0.105 0.173 0.125 0.223 0.076

0.25 0.142 0.102 0.161 0.115 0.220 0.070

0.33 0.142 0.101 0.142 0.099 0.211 0.063

0.57 0.150 0.105 0.107 0.068 0.186 0.050

0.75 0.141 0.101 0.054 0.030 0.147 0.034

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.216 0.123 0.278 0.169 0.340 0.102

0.26 0.225 0.117 0.267 0.149 0.348 0.085

0.40 0.221 0.117 0.260 0.140 0.346 0.081

0.50 0.219 0.112 0.241 0.123 0.331 0.072

0.73 0.217 0.102 0.199 0.097 0.310 0.059

0.86 0.226 0.116 0.175 0.080 0.292 0.054

Note: See notes to Table 2.9.
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Table 2.14: Empirical size of one-step and two-step tests based on the Parzen
kernel variance estimator under VAR(1) error when ψ = 0.75, p = 1 ∼ 2 and
T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.142 0.104 0.186 0.141 0.218 0.088

0.15 0.134 0.099 0.164 0.125 0.210 0.082

0.25 0.136 0.099 0.155 0.117 0.200 0.076

0.33 0.127 0.096 0.150 0.113 0.191 0.074

0.57 0.122 0.087 0.110 0.079 0.156 0.052

0.75 0.111 0.082 0.070 0.046 0.114 0.033

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.220 0.124 0.279 0.171 0.338 0.100

0.26 0.204 0.112 0.248 0.142 0.320 0.094

0.40 0.198 0.108 0.226 0.135 0.303 0.083

0.50 0.196 0.112 0.225 0.131 0.291 0.085

0.73 0.186 0.106 0.188 0.102 0.255 0.063

0.86 0.182 0.105 0.156 0.083 0.219 0.055

Note: See notes to Table 2.9.
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Table 2.15: Empirical size of one-step and two-step tests based on the QS kernel
variance estimator under VAR(1) error when ψ = 0.75, p = 1 ∼ 2 and T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.138 0.107 0.174 0.144 0.204 0.089

0.15 0.138 0.103 0.164 0.126 0.209 0.077

0.25 0.141 0.106 0.151 0.115 0.214 0.076

0.33 0.135 0.099 0.145 0.106 0.208 0.069

0.57 0.149 0.110 0.101 0.068 0.187 0.056

0.75 0.132 0.099 0.049 0.029 0.136 0.036

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.210 0.124 0.265 0.168 0.312 0.101

0.26 0.217 0.122 0.261 0.151 0.335 0.089

0.40 0.216 0.119 0.244 0.141 0.327 0.084

0.50 0.214 0.114 0.234 0.130 0.332 0.077

0.73 0.204 0.113 0.188 0.099 0.295 0.063

0.86 0.214 0.121 0.158 0.082 0.277 0.063

Note: See notes to Table 2.9.
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Table 2.16: Empirical size of one-step and two-step tests based on the QS kernel
variance estimator under VARMA(1,1) error when ψ = 0.75, p = 1 ∼ 2 and
T = 200

p = 1 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.141 0.112 0.175 0.141 0.204 0.090

0.15 0.137 0.110 0.164 0.132 0.201 0.089

0.25 0.130 0.104 0.149 0.117 0.188 0.076

0.33 0.123 0.096 0.140 0.111 0.178 0.074

0.57 0.117 0.094 0.113 0.088 0.152 0.058

0.75 0.110 0.085 0.060 0.042 0.110 0.034

p = 2 and q = 3

· One Step(Σ̂∗) One Step(W̆ ) Two Step

νmax(ρRρ
′
R) χ2 W1∞ χ2 W1∞ χ2 W2∞

0.00 0.213 0.128 0.271 0.176 0.323 0.106

0.26 0.199 0.123 0.249 0.160 0.310 0.104

0.40 0.194 0.122 0.231 0.147 0.297 0.096

0.50 0.183 0.108 0.212 0.130 0.278 0.083

0.73 0.188 0.114 0.187 0.113 0.250 0.072

0.86 0.182 0.113 0.156 0.091 0.217 0.061

Note: See notes to Table 2.9.
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2.10 Appendix of Proofs

Proof of Proposition 13. Part (a) follows from Lemma 1 of Sun (2014b). For

part (b), we note that β̂
d

=⇒ β∞ and so

√
T
(
θ̂2T − θ0

)
=

1√
T

T∑
t=1

[
(y1t − Ey1t)− β̂y2t

]

=
(
Id, −β̂

) 1√
T

∑T
t=1 (y1t − Ey1t)

1√
T

∑T
t=1 y2t


d

=⇒
(
Id, −β∞

)
Ω1/2Bm(1).

Proof of Lemma 14. For any a ∈ Rd, we have

Ea′β̃∞ (h, d, q) β̃∞ (h, d, q)′ a

= E

[
tra′

(∫ 1

0

∫ 1

0

Q∗h (r, s) dBd (r) dB′q (s)

)
×
(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′q (s)

)−2(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′d (s)

)
a

]

= E

[
tr

(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′q (s)

)−2

×
(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′d (s)

)
aa′
(∫ 1

0

∫ 1

0

Q∗h (r, s) dBd (r) dB′q (s)

)]
= E

[
tr

(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′q (s)

)−2

×
(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) [a′dBd (s)]

)(∫ 1

0

∫ 1

0

Q∗h (r, s) [dB′d (r) a] dB′q (s)

)]
: = κ(h, q)a′a,
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where

κ(h, q) =Etr

(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′q (s)

)−2

·
[∫ 1

0

∫ 1

0

(∫ 1

0

Q∗h (r, τ)Q∗h (τ, s) dτ

)
dBq (r) dB′q (s)

]
.

So

Eβ̃∞ (h, d, q) β̃∞ (h, d, q)′ = κ(h, q) · Id.

Since this holds for any d, we have Eβ̃∞ (h, 1, q) β̃∞ (h, 1, q)′ = κ(h, q). It then

follows that

Eβ̃∞ (h, d, q) β̃∞ (h, d, q)′ =

(
E
∥∥∥β̃∞ (h, 1, q)

∥∥∥2
)
· Id.

Proof of Proposition 15. Using (2.4) and Lemma 14, we have

avar(θ̂2T )− avar(θ̂1T )

= (E||β̃∞ (h, 1, q) ||2)Ω1·2 − Ω12Ω−1
22 Ω21

= (E||β̃∞ (h, 1, q) ||2)Ω11 − (1 + E||β̃∞ (h, 1, q) ||2)Ω12Ω−1
22 Ω21

= (1 + E||β̃∞ (h, 1, q) ||2)
[
g(h, q)Ω11 − Ω12Ω−1

22 Ω21

]
= (1 + E||β̃∞ (h, 1, q) ||2)Ω

1/2
11

[
g(h, q)Id − Ω

−1/2
11 Ω12Ω−1

22 Ω21(Ω
−1/2
11 )′

]
(Ω

1/2
11 )′

= (1 + E||β̃∞ (h, 1, q) ||2)Ω
1/2
11 [g(h, q)Id − ρρ′] (Ω

1/2
11 )′.

So avar(θ̂2T ) > avar(θ̂1T ) if and only if g(h, q)Id > ρρ′. Let ρρ′ = QρΛρQ
′
ρ be

the eigen-decomposition of ρρ′ where Λρ is a diagonal matrix with the eigenvalues

of ρρ′ as the diagonal elements and Qρ is an orthogonal matrix that consists of

the corresponding eigenvectors. Then g(h, q)Id > ρρ′ if and only if Q′ρg(h, q)Qρ >
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Λρ, which is equivalent to g(h, q)Id − Λρ > 0. The latter holds if and only if

νmax (ρρ′) < g(h, q). We have therefore proved that avar(θ̂2T ) > avar(θ̂1T ) if and

only if νmax (ρρ′) < g(h, q). Similarly, we can prove that avar(θ̂2T ) < avar(θ̂1T ) if

and only if νmin (ρρ′) > g(h, q).

Proof of Corollary 16. For the OS LRV estimator, we have

Q∗h (r, s) =
1

K

K∑
i=1

Φi (r) Φi (s) ,

and so

∫ 1

0

Q∗h (r, τ)Q∗h (τ, s) dτ =

∫ 1

0

1

K

K∑
i=1

Φi (r) Φi (τ)
1

K

K∑
j=1

Φj (τ) Φj (s) dτ

=
1

K2

K∑
i=1

Φi (r) Φi (s) =
1

K
Q∗h (r, s) .

As a result, for κ(h, q) defined in (??), we have:

κ(h, q) =
1

K
Etr

(∫ 1

0

∫ 1

0

Q∗h (r, s) dBq (r) dB′q (s)

)−1

.

Let

ξj =

∫ 1

0

Φj (r) dBq(r) ∼ iidN(0, Iq),

then

κ(h, q) = trE

( K∑
j=1

ξjξ
′
j

)−1
 =

q

K − q − 1
,

where the last equality follows from the mean of an inverse Wishart distribution.

Using this, we have

g(h, q) =
κ(h, q)

1 + κ(h, q)
=

q/(K − q − 1)

1 + q/(K − q − 1)
=

q

K − 1
.
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The corollary then follows from Proposition 15.

Proof of Proposition 17. It suffices to prove parts (a) and (b) as parts (c) and

(d) follow from similar arguments. Part (b) is a special case of Theorem 6(a) of Sun

(2014b) with G = [Id, Od×q]
′. It remains to prove part (a). Under Rθ0 = r+δ0/

√
T ,

we have:

√
T (Rθ̂1T − r) =

√
TR(θ̂1T − θ0) + δ0

d
=⇒ RΩ

1/2
11 Bd(1) + δ0.

Using Proposition 13(a), we have

(RΩ̂11R
′)

d
=⇒ RΩ

1/2
11 Cdd(RΩ

1/2
11 )′

where Cdd =
∫ 1

0

∫ 1

0
Q∗h(r, s)dBd(r)dBd(s)

′ and Cdd ⊥ Bd(1). The continuous map-

ping theorem yields

W1T : =
√
T (Rθ̂1T − r)′(RΩ̂11R

′)−1
√
T (Rθ̂1T − r)

d
=⇒

[
RΩ

1/2
11 Bd(1) + δ0

]′ [
RΩ

1/2
11 Cdd(RΩ

1/2
11 )′

]−1 [
RΩ

1/2
11 Bd(1) + δ0

]
.

Now,
[
RΩ

1/2
11 Bd(1), RΩ

1/2
11 Cdd(RΩ

1/2
11 )′

]
is distributionally equivalent to

[Λ1Bp (1) ,Λ1CppΛ
′
1] , and so

W1T
d

=⇒ [Λ1Bp (1) + δ0]′ [Λ1CppΛ
′
1]
−1

[Λ1Bp (1) + δ0]

d
=
[
Bp (1) + Λ−1

1 δ0

]′
C−1
pp

[
Bp (1) + Λ−1

1 δ0

] d
= W1∞(

∥∥Λ−1
1 δ0

∥∥2
),

as desired.
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Proof of Proposition 18.

Part (a) Let χ2
p (δ2) be a random variable following the noncentral chi-

squared distribution with degrees of freedom p and noncentrality parameter δ2.

We first prove that P
(
χ2
p (δ2) > x

)
increases with δ2 for any integer p and x > 0.

Note that

P
(
χ2
p

(
δ2
)
> x

)
=
∞∑
j=0

e−δ
2/2(δ2/2)j

j!
P
(
χ2
p+2j > x

)
,

where χ2
p+2j is a (central) chi-squared variate with degrees of freedom p + 2j, we

have

∂P
(
χ2
p (δ2) > x

)
∂δ2

= −1

2

∞∑
j=0

(δ2/2)j

j!
e−δ

2/2P
(
χ2
p+2j > x

)
+

1

2

∞∑
j=1

(δ2/2)j−1

(j − 1)!
e−δ

2/2P
(
χ2
p+2j > x

)
= −1

2

∞∑
j=0

(δ2/2)j

j!
e−δ

2/2P
(
χ2
p+2j > x

)
+

1

2

∞∑
j=0

(δ2/2)j

j!
e−δ

2/2P
(
χ2
p+2+2j > x

)
=

1

2

∞∑
j=0

(δ2/2)j

j!
e−δ

2/2
[
P
(
χ2
p+2+2j > x

)
− P

(
χ2
p+2j > x

)]
> 0,

as needed.

Let φ ∼ N(0, 1) and ψ be a zero mean random variable that satisfies ψ2 > 0

a.e. and ψ ⊥ φ. Using the monotonicity of P
(
χ2
p (δ2) > x

)
in δ2, we have

P (‖φ+ ψ‖2 > x) = E
[
P (χ2

1

(
ψ2
)
> x)|ψ2

]
> P (χ2

1 > x) = P (‖φ‖2 > x) for any x.

Now we proceed to prove the theorem. Note that Bp (1) and Bq (1) are

independent of Cpq, Cpp, and Cqq. Let D−1
pp =

∑p
i=1 λDidid

′
i be the spectral decom-

position of D−1
pp where λDi ≥ 0 almost surely and {di} are orthonormal in Rp.
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Then

[
Bp (1)− CpqC−1

qq Bq (1)
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1)
]

=

p∑
i=1

λDi
[
d′iBp (1)− d′iCpqC−1

qq Bq (1)
]2

=

p∑
i=1

λDi (φi + ψi)
2

where φi = d′iBp (1), ψi = −d′iCpqC−1
qq Bq (1) , {φi} is independent of {ψi} condi-

tional on Cpq, Cpp, and Cqq. In addition, φi ∼ iidN(0, 1) conditionally on Cpq, Cpp,

and Cqq and unconditionally. So for any x > 0,

P (W2∞ (0) > x) = EP (W2∞ (0) > x|Cpq, Cpp, Cqq)

= EP

(
p∑
i=1

λDi (φi + ψi)
2 > x|Cpq, Cpp, Cqq

)

= EP

(
λD1 (φ1 + ψ1)2 > x−

p∑
i=2

λDi (φi + ψi)
2 |Cpq, Cpp, Cqq, {φi}pi=2, {ψi}

p
i=1

)

≥ EP

(
λD1φ

2
1 > x−

p∑
i=2

λDi (φi + ψi)
2 |Cpq, Cpp, Cqq, {φi, ψi}pi=2

)

= EP

(
λD1φ

2
1 > x−

p∑
i=2

λDi (φi + ψi)
2 |Cpq, Cpp, Cqq, {ψi}pi=2

)
.

Using the above argument repeatedly, we have

P (W2∞ (0) > x) ≥ EP

(
p∑
i=1

λDiφ
2
i > x|Cpq, Cpp, Cqq

)

= P

(
p∑
i=1

λDiφ
2
i > x

)
= P

[
Bp (1)′D−1

pp Bp (1) > x
]

> P
[
Bp (1)′C−1

pp Bp (1) > x
]

= P (W1∞ (0) > x) ,

where the last inequality follows from the fact that D−1
pp > C−1

pp almost surely.

Part (b). Let C−1
pp =

∑p
i=1 λCicic

′
i be the spectral decomposition of C−1

pp .
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Since Cpp > 0 with probability one, λci > 0 with probability one. We have

W1∞
(
‖ξ‖2) d

= [Bp (1) + ‖ξ‖ ep]′C−1
pp [Bp (1) + ‖ξ‖ ep]

=

p∑
i=1

λCi [c
′
iBp (1) + ‖ξ‖ c′iep]

2

where [c′iBp (1) + ‖ξ‖ c′iep]
2 follows independent noncentral chi-square distributions

with noncentrality parameter ‖ξ‖2 (c′iep)
2 , conditional on {λCi}pi=1 and {ci}pi=1 .

Now consider two vectors ξ1 and ξ2 such that ‖ξ1‖ < ‖ξ2‖ . We have

P
[
W1∞

(
‖ξ1‖2) > x

]
= P

{
p∑
i=1

λCi [c
′
iBp (1) + ‖ξ1‖ c′iep]

2
> x

}

= EP

{
λC1 [c′1Bp (1) + ‖ξ1‖ c′1ep]

2
> x−

p∑
i=2

λCi [c
′
iBp (1) + ‖ξ1‖ c′iep]

2

|{λCi}pi=1 , {ci}
p
i=1}

< EP

{
λC1 [c′1Bp (1) + ‖ξ2‖ c′1ep]

2
> x−

p∑
i=2

λCi [c
′
iBp (1) + ‖ξ1‖ c′iep]

2

|{λCi}pi=1 , {ci}
p
i=1}

= P

{
λC1 [c′1Bp (1) + ‖ξ2‖ c′1ep]

2
+

p∑
i=2

λCi [c
′
iBp (1) + ‖ξ1‖ c′iep]

2
> x

}

where we have used the strict monotonicity of P (χ2
1 (δ2) > x) in δ2. Repeating the
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above argument, we have

P
[
W1∞

(
‖ξ1‖2) > x

]
< P

{
λC1 [c′1Bp (1) + ‖ξ2‖ c′1ep]

2
+ λC2 [c′2Bp (1) + ‖ξ2‖ c′2ep]

2

+

p∑
i=3

λCi [c
′
iBp (1) + ‖ξ1‖ c′iep]

2
> x

}

< P

{
p∑
i=1

λCi [c
′
iBp (1) + ‖ξ2‖ c′iep]

2
> x

}
= P

{
[Bp (1) + ξ2]′C−1

pp [Bp (1) + ξ2] > x
}

= P
[
W1∞

(
‖ξ2‖2) > x

]
as desired.

Part (c). We note that

W2∞
(
‖ξ‖2)

=
[
Bp (1)− CpqC−1

qq Bq (1) + ‖ξ‖ ep
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1) + ‖ξ‖ ep
]

=
{[
Ip + CpqC

−1
qq C

−1
qq Cqp

]−1/2 [
Bp (1)− CpqC−1

qq Bq (1)
]

+ ‖ξ‖ ẽp
}′

×
[
Ip + CpqC

−1
qq C

−1
qq Cqp

]1/2
D−1
pp

[
Ip + CpqC

−1
qq C

−1
qq Cqp

]1/2
×
{[
Ip + CpqC

−1
qq C

−1
qq Cqp

]−1/2 [
Bp (1)− CpqC−1

qq Bq (1)
]

+ ‖ξ‖ ẽp
}

where

ẽp =
[
Ip + CpqC

−1
qq C

−1
qq Cqp

]−1/2
ep.

Let
∑p

i=1 λ̃Di d̃id̃
′
i be the spectral decomposition of

[
Ip + CpqC

−1
qq C

−1
qq Cqp

]1/2
D−1
pp[

Ip + CpqC
−1
qq C

−1
qq Cqp

]1/2
. Define

φ̃di = d̃′i
[
Ip + CpqC

−1
qq C

−1
qq Cqp

]−1/2 [
Bp (1)− CpqC−1

qq Bq (1)
]
.

Then conditional on Cpq, Cpp and Cqq, φ̃di ∼ iidN(0, 1). Since the conditional

distribution does not depend on Cpq, Cpp and Cqq, φ̃di ∼ iidN(0, 1) unconditionally.
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Now

W2∞(‖ξ1‖2)

=

p∑
i=1

λ̃Di

{
d̃′i
[
Ip + CpqC

−1
qq C

−1
qq Cqp

]−1/2 [
Bp (1)− CpqC−1

qq Bq (1)
]

+ ‖ξ1‖ d′iẽp
}2

=

p∑
i=1

λ̃Di

(
φ̃di + ‖ξ1‖ d̃′iẽp

)2

,

and so for two vectors ξ1 and ξ2 such that ‖ξ1‖ < ‖ξ2‖ we have

P
{
W2∞(‖ξ1‖2) > x

}
= EP

{
p∑
i=1

λ̃Di

(
φ̃di + ‖ξ1‖ d̃′iẽp

)2

> x

∣∣∣∣∣Cpq, Cpp, Cqq
}

< EP

{
p∑
i=1

λ̃Di

(
φ̃di + ‖ξ2‖ d̃′iẽp

)2

> x

∣∣∣∣∣Cpq, Cpp, Cqq
}

= P

{
p∑
i=1

λ̃Di

(
φ̃di + ‖ξ2‖ d̃′iẽp

)2

> x

}
= P

{
W2∞(‖ξ2‖2) > x

}
.

Proof of Proposition 19. We prove part (b) only as part (a) can be proved

using the same argument. Using (2.11), we have, for λ0 =
∥∥Λ−1

2 δ0

∥∥2
:

∥∥Λ−1
2 δ0

∥∥2 − τ(λ0)
∥∥Λ−1

1 δ0

∥∥2

= τ(λ0)

p∑
i=1

1

1− νi,R
[νi,R − f(λ0)]

(
a′i,RΛ−1

1 δ0

)2

= τ(λ0)
∥∥Λ−1

1 δ0

∥∥2
p∑
i=1

1

1− νi,R
[νi,R − f(λ0)]

〈
ai,R,

Λ−1
1 δ0∥∥Λ−1
1 δ0

∥∥
〉2

, (2.29)

where νi,R ∈ [0, 1) and 〈·, ·〉 is the usual inner product.
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We proceed to show that
∥∥Λ−1

2 δ0

∥∥2− τ(λ0)
∥∥Λ−1

1 δ0

∥∥2
> 0 for all δ0 ∈ A (λ0)

if and only if νi,R − f(λ0) > 0 for all i = 1, ..., p. The “if” part is obvious. To

show the “only if” part, we prove by contradiction. Suppose that
∥∥Λ−1

2 δ0

∥∥2 −

f(λ0)
∥∥Λ−1

1 δ0

∥∥2
> 0 for all δ0 ∈ A (λ0) but there exists an i∗ such that νi∗,R −

f(λ0) ≤ 0. Choosing δ0 ∈ A (λ0) such that
(
Λ−1

1 δ0

)
/
∥∥Λ−1

1 δ0

∥∥ = ai∗,R, we have

∥∥Λ−1
2 δ0

∥∥2 − τ(λ0)
∥∥Λ−1

1 δ0

∥∥2
=

∥∥Λ−1
1 δ0

∥∥2

1− νi∗,R
[νi∗,R − f(λ0)] τ(λ0) ≤ 0, (2.30)

leading to a contradiction.

Note that the condition νi,R − f (λ0) > 0 for all i = 1, ..., p is equivalent

to min {νi,R} > f (λ0) , which is the same as νmin (ρRρ
′
R) > f(λ0;h, p, q, α). This

completes the proof of part (b).

Proof of Proposition 20. Instead of directly proving π1 (λ) > π2 (λ) for any

λ > 0, we consider the following testing problem: we observe (Y, S) ∈ Rp+q×

R(p+q)×(p+q) with Y ⊥ S from the following distributions:

Y
(p+q)×1

=

( Y1
(p×1)

Y2
(q×1)

)
∼ Np+q(µ,Ω) with µ =

( δ0
(p×1)

0
(q×1)

)
,Ω =

 Ω11
(p×p)

0
(p×q)

0
(q×p)

Ω22
(q×q)



S
(p+q)×(p+q)

=

 S11
(p×p)

S12
(p×q)

S21
(q×p)

S22
(q×q)

 ∼
Wp+q(K,Ω)

K

where Ω11 and Ω22 are non-singular matrices andWp+q(K,Ω) is the Wishart distri-

bution with K degrees of freedom. We want to test H0 : δ0 = 0 against H1 : δ0 6= 0.

The testing problem is partially motivated by Das Gupta and Perlman (1974)

andMarden and Perlman (1980).
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The joint pdf of (Y, S) can be written as

f(Y, S|δ0,Ω11,Ω22)

= α(δ0,Ω11,Ω22)h(S)

· exp

{
−1

2
tr
[
Ω−1

11 (Y1Y
′

1 +KS11) + Ω−1
22 (Y2Y

′
2 +KS22)

]
+ Y ′1Ω−1

11 δ0

}

for some functions α(·) and h(·). It follows from the exponential structure that

Π := (Y1, S11, Y2Y
′

2 +KS22)

is a complete sufficient statistic for

Γ := (δ0,Ω11,Ω22).

We note that Y1 ∼ N(δ0,Ω11), KS11 ∼ Wp(K,Ω11) and Y2Y
′

2 + KS22 ∼ Wq(K +

1,Ω22) and these three random variables are mutually independent.

Now, we define the following two test functions for testing H0 : δ0 = 0

against H1 : δ0 6= 0:

φ1(Π) : = 1(V1(Π) >Wα
1∞)

φ2(Π) : = E[1(W2(Y, S) >Wα
2∞)|Π]

where

V1(Π) := Y ′1S
−1
11 Y1 and W2(Y, S) := (Y1−S12S

−1
22 Y2)′(S11−S12S

−1
22 S21)−1(Y1−S12S

−1
22 Y2).

We can show that the distributions of V1(Π) and W2(Y, S) depend on the param-

eter Γ only via δ′0Ω−1
11 δ0. First, it is easy to show that

W2(Y, S) =

 Y1

Y2

′ S11 S12

S21 S22

−1 Y1

Y2

− Y ′2S−1
22 Y2.
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Let

Ỹ : =

 Ỹ1

Ỹ2

 = Ω−1/2

 Y1

Y2

 ∼ N(δ̃, Ip+q), δ̃ =

 Ω
−1/2
11 δ0

0

 and

S̃ : =

 S̃11 S̃12

S̃21 S̃22

 = Ω−1/2

 S11 S12

S21 S22

 (Ω−1/2)′ ∼
Wp+q(K, Ip+q)

K
.

Then Ỹ ⊥ S̃ and

W2(Y, S) =
(
Ỹ + δ̃

)′
S̃−1

(
Ỹ + δ̃

)
− Ỹ ′2 S̃−1

22 Ỹ2.

It is now obvious that the distribution of W2(Y, S) depends on Γ only via ||δ̃||2,

which is equal to δ′0Ω−1
11 δ0. Second, we have

V1(Π) =
(
Ỹ1 + Ω

−1/2
11 δ0

)′
S̃−1

11

(
Ỹ1 + Ω

−1/2
11 δ0

)
and so the distribution of V1(Π) depends on Γ only via

∥∥∥Ω
−1/2
11 δ0

∥∥∥2

which is also

equal to δ′0Ω−1
11 δ0.

It is easy to show that the null distributions of V1(Π) and W2(Y, S) are the

same as W1∞ and W2∞, respectively. In view of the critical values used, both the

tests φ1(Π) and φ2(Π) have the correct level α. Since

Eφ1(Π) = P (V1(Π) >Wα
1∞) and Eφ2(Π) = E {E[1(W2(Y, S) >Wα

2∞)|Π]}

= P (W2(Y, S) >Wα
1∞),

the power functions of the two tests φ1(Π) and φ2(Π) are π1(δ′0Ω−1
11 δ0) and π2(δ′0Ω−1

11 δ0),

respectively.

We consider a group of transformations G, which consists of the elements in

Ap×p := {A ∈ Rp×Rp : A is a (p×p) non-singular matrix} and acts on the sample
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space Π := Rp × Rp×p × Rq×q for the sufficient statistic Π through the mapping

G : (Y1, S11, Y2Y
′

2 +KS22)⇒ (AY1, AS11A
′, Y2Y

′
2 +KS22).

The induced group of transformations Ḡ acting on the parameter space Γ :=

Rp × Sp×p × Sq×q is given by

Ḡ : Γ = (δ0,Ω11,Ω22)⇒ (Aδ0, AΩ11A
′,Ω22).

Our testing problem is obviously invariant to this group of transformations.

Define

V(Π) := (Y ′1S
−1
11 Y1, Y2Y

′
2 +KS22) := (V1(Π),V2(Π)) .

It is clear that V(Π) is invariant under G. We can also show that V(Π) is maximal

invariant under G. To do so, we consider two different samples Π := (Y1, S11, Y2Y
′

2 +

KS22) and Π̆ := (Y̆1, S̆11, Y̆2Y̆
′

2 +KS̆22) such that V(Π) = V(Π̆). We want to show

that there exists a p × p non-singular matrix A such that Y1 = AY̆1 and S11 =

AS̆11A
′ whenever Y ′1S

−1
11 Y1 = Y̆ ′1 S̆

−1
11 Y̆1. By Theorem A9.5 (Vinograd’s Theorem) in

Muirhead (2009), there exists an orthogonal p× p matrix H such that S
−1/2
11 Y1 =

HS̆
−1/2
11 Y̆1 and this gives us the non-singular matrix A := S

1/2
11 HS̆

−1/2
11 satisfying

Y1 = AY̆1 and S11 = AS̆11A
′. Similarly, we can show that

v(Γ) := (δ′0Ω−1
11 δ0,Ω22)

is maximal invariant under the induced group Ḡ. Therefore, restricting attention

to G-invariant tests, testing H0 : δ0 = 0 against H1 : δ0 6= 0 reduces to testing

H ′0 : δ′0Ω−1
11 δ0 = 0 against H ′1 : δ′0Ω−1

11 δ0 > 0

based on the maximal invariant statistic V(Π).
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Let f(V1; δ′0Ω−1
11 δ0) and f(V2; Ω22) be the marginal pdf’s of V1 := V1(Π) and

V2 := V2(Π). By construction, V1(Π)K/(K−p+1) follows the noncentral F distri-

bution Fp,K−p+1(δ′0Ω−1
11 δ0). So f(V1; δ′0Ω−1

11 δ0) is the (scaled) pdf of the noncentral F

distribution. It is well known that the noncentral F distribution has the Monotone

Likelihood Ratio (MLR) property in V1 with respect to the parameter δ′0Ω−1
11 δ0 (e.g.

Chapter 7.9 in Lehmann et al. (1986)). Also, in view of the independence between

V1 and V2, the joint distribution of V(Π) also has the MLR property in V1. By

the virtue of the Neyman-Pearson lemma, the test φ1(Π) := 1(V1(Π) > Wα
1∞) is

the unique Uniformly Most Powerful Invariant (UMPI) test among all G-invariant

tests based on the complete sufficient statistic Π. So if φ2(Π) is equivalent to a G-

invariant test, then π1(δ′0Ω−1
11 δ0) > π2(δ′0Ω−1

11 δ0) for any δ′0Ω−1
11 δ0 > 0. To show that

φ2(Π) has this property, we let g ∈ G be any element of G with the corresponding

matrix Ag and induced transformation ḡ ∈ Ḡ. Then,

EΓ[φ2(gΠ)] = EḡΓ[φ2(Π)] = π2

(
(Agδ0)′(AgΩ11A

′
g)
−1(Agδ0)

)
= π2(δ′0Ω−1

11 δ0) = EΓ[φ2(Π)]

for all Γ. It follows from the completeness of Π that φ2(gΠ) = φ2(Π) almost surely

and this drives the desired result.

Proof of Lemma 21. We prove a more general result by establishing a repre-

sentation for
1√
T

T∑
t=1

[
Ğ′M̆−1Ğ

]−1

Ğ′M̆−1f̆(vt, θ0)

in terms of the rotated and normalized moment conditions for any m×m (almost

surely) positive definite matrix M̆ which can be random. Let

M∗ = U ′M̆U,M = Σ∗−1
1/2 M

∗(Σ∗−1
1/2 )′ =

 M11 M12

M21 M22





180

and M1·2 = M11 −M12M
−1
22 M21 where M11 ∈ Rd×d and M22 ∈ Rq×q. Using the

SVD UΞV ′ of Ğ, we have

Ğ′M̆−1Ğ = V Ξ′(U ′M̆U)−1ΞV ′

= V A
(
Id, O

)
(M∗)−1

(
Id, O

)′
AV ′

= V A
(
Id, O

)
(Σ∗−1

1/2 )′
[
Σ∗−1

1/2 M
∗(Σ∗−1

1/2 )′
]−1

Σ∗−1
1/2

(
Id, O

)′
AV ′

= V A
(
Id, O

)
(Σ∗−1

1/2 )′M−1Σ∗−1
1/2

(
Id, O

)′
AV ′

= V A (Σ∗1·2)−1/2
(
Id, O

)
M−1

[
V A (Σ∗1·2)−1/2

(
Id, O

)]′
= V A (Σ∗1·2)−1/2M−1

1·2 (Σ∗1·2)−1/2AV ′, (2.31)

where we have used

(
Id, O

)
(Σ∗−1

1/2 )′ =
(
Id, O

) (Σ∗1·2)−1/2 O

−
[
(Σ∗1·2)−1/2 Σ∗12 (Σ∗22)−1

]′
(Σ∗22)−1/2


=

(
(Σ∗1·2)−1/2 , O

)
= (Σ∗1·2)−1/2

(
Id, O

)
.

In addition,

Ğ′M̆−1f̆(vt, θ0)

= V Ξ′(U ′M̆U)−1U ′f̆(vt, θ0) = V A
(
Id, O

)
(M∗)−1 f ∗ (vt, θ0)

= V A
(
Id, O

)
(Σ∗−1

1/2 )′
[
Σ∗−1

1/2 M
∗(Σ∗−1

1/2 )′
]−1

Σ∗−1
1/2 f

∗ (vt, θ0)

= V A
(
Id, O

)
(Σ∗−1

1/2 )′M−1f (vt, θ0) = V A (Σ∗1·2)−1/2
(
Id, O

)
M−1f (vt, θ0)

= V A (Σ∗1·2)−1/2
(
Id, O

) M−1
1·2 −M−1

1·2M12M
−1
22

−
(
M−1

1·2M12M
−1
22

)′
M−1

2·1

 f (vt, θ0)

= V A (Σ∗1·2)−1/2
(
M−1

1·2 , −M−1
1·2M12M

−1
22

)
f (vt, θ0)

= V A (Σ∗1·2)−1/2M−1
1·2
[
f1 (vt, θ0)−M12M

−1
22 f2 (vt, θ0)

]
.
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Hence

1√
T

T∑
t=1

[
Ğ′M̆−1Ğ

]−1

Ğ′M̆−1f̆(vt, θ0)

=
1√
T

T∑
t=1

[
V A (Σ∗1·2)−1/2M−1

1·2 (Σ∗1·2)−1/2AV ′
]−1 [

V A (Σ∗1·2)−1/2M−1
1·2

]
×
[
f1 (vt, θ0)−M12M

−1
22 f2 (vt, θ0)

]
=

1√
T

T∑
t=1

V A−1 (Σ∗1·2)1/2 [f1 (vt, θ0)−M12M
−1
22 f2 (vt, θ0)

]
. (2.32)

Let M̆ = Σ̆, we have M∗ = U ′Σ̆U = Σ∗ and M = Σ∗−1
1/2 M

∗(Σ∗−1
1/2 )′ = Im. So

M12M
−1
22 = 0. As a result

1√
T

T∑
t=1

[
Ğ′M̆−1Ğ

]−1

Ğ′M̆−1f̆(vt, θ0) =
1√
T

T∑
t=1

V A−1 (Σ∗1·2)1/2 f1 (vt, θ0) .

Using this and the stochastic expansion of
√
T (θ̂1T − θ0), we have

√
T (θ̂1T − θ0) =

1√
T

T∑
t=1

V A−1 (Σ∗1·2)1/2 f1 (vt, θ0) + op(1).

It then follows that

(Σ∗1·2)−1/2AV ′
√
T (θ̂1T − θ0) =

1√
T

T∑
t=1

f1(vt, θ0) + op(1)
d

=⇒ N(0,Ω11).

Let M̆ = Ω̆∞, we have M = Σ∗−1
1/2 U

′Ω̆∞UΣ∗−1′
1/2 = Ω∞, and so M12M

−1
22 =

Ω∞,12Ω−1
∞,22 = β∞. As a result,

1√
T

T∑
t=1

[
Ğ′Ω̆−1

∞ Ğ
]−1

Ğ′Ω̆−1
∞ f̆(vt, θ0)

=
1√
T

T∑
t=1

V A−1 (Σ∗1·2)1/2 [f1 (vt, θ0)− β∞f2 (vt, θ0)] .
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Using this, we have

√
T (θ̂2T − θ0) =

1√
T

T∑
t=1

[
Ğ′Ω̆−1

∞ Ğ
]−1

Ğ′Ω̆−1
∞ f̆(vt, θ0) + op (1)

=
1√
T
V A−1 (Σ∗1·2)1/2

T∑
t=1

(f1(vt, θ0)− β∞f2(vt, θ0)) + op(1).

It then follows that

(Σ∗1·2)−1/2AV ′
√
T (θ̂2T − θ0) =

1√
T

T∑
t=1

[f1(vt, θ0)− β∞f2(vt, θ0)] + op(1) (2.33)

d
=⇒MN (0,Ω11 − Ω12β

′
∞ − β∞Ω21 + β∞Ω22β

′
∞) .

Proof of Theorem 22. Parts (a) and (b). Instead of comparing the asymp-

totic variances of R
√
T (θ̂1T −θ0) and R

√
T (θ̂2T −θ0) directly, we equivalently com-

pare the asymptotic variances of (R̃R̃′)−1/2R
√
T (θ̂1T−θ0) and (R̃R̃′)−1/2R

√
T (θ̂2T−

θ0). We can do so because (R̃R̃′)−1/2 is nonsingular. Note that the latter two

asymptotic variances are the same as those of the respective one-step estimator

θ̂R1T and two-step estimator θ̂R2T of θR0 in the following simple location model: yR1t = θR0 + uR1t ∈ Rp

y2t = u2t ∈ Rq
(2.34)

where

θR0 = (R̃R̃′)−1/2Rθ0, u
R
1t = (R̃R̃′)−1/2R̃u1t,

and the (contemporaneous) variance and long run variance of ut = (u′1t, u
′
2t)
′ are

Im and Ω respectively.

It suffices to compare the asymptotic variances of θ̂R1T and θ̂R2T in the above
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location model. By construction, the variance of uRt :=
((
uR1t
)′
, (u2t)

′
)′

is

var(uRt ) =

 Ip O

O Iq

 = Ip+q.

So the above location model has exactly the same form as the model in Section

2.3. We can invoke Proposition 15 to complete the proof.

The long run canonical correlation coefficients between uR1t and u2t are the

same as those between R̃u1t and u2t. This follows because uR1t is equal to R̃u1t

pre-multiplied by a full rank square matrix. But the long run correlation matrix

between R̃u1t and u2t is

(R̃Ω11R̃
′)−1/2{R̃Ω12} × Ω

−1/2
22 = ρR.

So the long run canonical correlation coefficients between uR1t and u2t are the eigen-

values of ρRρ
′
R, i.e., ν (ρRρ

′
R) . Parts (a) and (b) then follow from Proposition 15.

Parts (c) and (d). The local asymptotic power of the one-step test and

two-step test are the same as the local asymptotic power of respective one-step

and two-step tests in the location model given in (2.34). We use Proposition 19 to

complete the proof. For the above location model, the asymptotic variance of the

infeasible two-step GMM estimator is

ΩR
1·2 =

[
(R̃R̃′)−1/2R̃

]
Ω1·2

[
(R̃R̃′)−1/2R̃

]′
.

In addition, the local alternative parameter corresponding to H1 : Rθ0 = r +

δ0/
√
T for the location model is (R̃R̃′)−1/2δ0/

√
T . So the set of δ0’s considered in

Proposition 19 is given by

Aloc (λ0) =

{
δ :
[
(R̃R̃′)−1/2δ

]′ (
ΩR

1·2
)−1
[
(R̃R̃′)−1/2δ

]
= λ0

}
=

{
δ : δ′(R̃Ω1·2R̃

′)−1δ = λ0

}
. (2.35)
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It remains to show that the above set is the same as what is given in the theorem.

Using (2.31) with M̆−1 = Ω̆−1, we have M = Ω and so

Ğ′Ω̆−1Ğ = V A (Σ∗1·2)−1/2 Ω−1
1·2 (Σ∗1·2)−1/2AV ′.

Plugging this into δ′
[
R(Ğ′Ω̆−1Ğ)−1R′

]−1

δ yields

δ′
[
R(Ğ′Ω̆−1Ğ)−1R′

]−1

δ

= δ′
{
R
[
V A (Σ∗1·2)−1/2 Ω−1

1·2 (Σ∗1·2)−1/2AV ′
]−1

R′
}−1

δ

= δ′
{
RV A−1 (Σ∗1·2)1/2 Ω1·2 (Σ∗1·2)1/2A−1V ′R′

}−1

δ

= δ′
(
R̃Ω1·2R̃

′
)−1

δ.

So the set of δ0’s considered in the theorem is exactly the same as that given in

(2.35).

Proof of Theorem 23. The theorem is similar to Theorem 22. We only give the

proof for part (d) in some details. It is easy to show that under the local alterative

H1 : Rθ0 = r + δ0/
√
T , we have WaT

d
=⇒W1∞(||V−1/2

a,R δ0||2) where

Va,R = R(Ğ′W̆−1Ğ)−1Ğ′W̆−1Ω̆W̆−1Ğ(Ğ′W̆−1Ğ)−1R′

= RV A−1 (Σ∗1·2)1/2 (Id,−βa) Ω

 Id

−β′a

[RV A−1 (Σ∗1·2)1/2
]′
. (2.36)

Similarly, we have

W2T
d

=⇒W2∞(||V−1/2
2,R δ0||2),
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where

V2,R = R(Ğ′Ω̆−1Ğ)−1R′

= RV A−1 (Σ∗1·2)1/2 (Id,−β0) Ω

 Id

−β′0

[RV A−1 (Σ∗1·2)1/2
]′
,

which is the asymptotic variance of R
√
T
(
θ̃2T − θ0

)
with θ̃2T being the infeasible

optimal two-step GMM estimator.

The difference in the two matrices Va,R and V2,R is

Va,R − V2,R = RV A−1 (Σ∗1·2)1/2 (βa − β0) Ω22 (βa − β0)′
[
RV A−1 (Σ∗1·2)1/2

]′
.

Now for any τ > 0,

||V−1/2
2,R δ0||2 − τ ||V−1/2

a,R δ0||2 = δ′0[V−1
2,R − τV

−1
a,R]δ0

= δ′0

[
V−1/2
a,R

]′ {
[V1/2
a,R]′V−1

2,RV
1/2
a,R − τIp

}
V−1/2
a,R δ0

= δ′0

[
V−1/2
a,R

]′{[
V−1/2
a,R V2,R(V−1/2

a,R )′
]−1

− τIp
}
V−1/2
a,R δ0.

But

V−1/2
a,R V2,R[V−1/2

a,R ]′ = Ip − V−1/2
a,R (Va,R − V2,R) [V−1/2

a,R ]′,

and

V−1/2
a,R (Va,R − V2,R) [V−1/2

a,R ]′

= V−1/2
a,R RV A−1 (Σ∗1·2)1/2 (βa − Ω12Ω−1

22

)
Ω22

(
βa − Ω12Ω−1

22

)′
·
[
RV A−1 (Σ∗1·2)1/2

]′
[V−1/2
a,R ]′

= ρa,Rρ
′
a,R.
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So

||V−1/2
2,R δ0||2 − τ ||V−1/2

a,R δ0||2 = δ′0

[
V−1/2
a,R

]′ [(
Ip − ρa,Rρ′a,R

)−1 − τIp
]
V−1/2
a,R δ0 · τ

for any τ.

Let ρa,Rρ
′
a,R =

∑p
i=1 νi,a,Rbi,a,Rb

′
i,a,R be the eigen decomposition of ρa,Rρ

′
a,R,

then

||V−1/2
2,R δ0||2 − τ (λ0) ||V−1/2

a,R δ0||2

=

p∑
i=1

[
1

1− νi,a,R
− τ (λ0)

](
b′i,a,RV

−1/2
a,R δ0

)2

= τ (λ0)
∥∥∥V−1/2

a,R δ0

∥∥∥2
p∑
i=1

νi,a,R − f (λ0)

1− νi,a,R

〈
bi,a,R,

V−1/2
a,R δ0∥∥∥V−1/2
a,R δ0

∥∥∥
〉2

,

which has the same form as the representation given in (2.29) . The rest of the

proof is then identical to the proof of Proposition 19 and is omitted here.



Chapter 3

Asymptotic F and t Tests in an

Efficient GMM Setting

Abstract. This paper considers two-step efficient GMM estimation and in-

ference where the weighting matrix and asymptotic variance matrix are based on

the series long run variance estimator. We propose a simple and easy-to-implement

modification to the trinity of test statistics in the two-step efficient GMM setting

and show that the modified test statistics are all asymptotically F distributed un-

der the so-called fixed-smoothing asymptotics. The modification is multiplicative

and involves the J statistic for testing over-identifying restrictions. This leads

to convenient asymptotic F tests that use standard F critical values. Simulation

shows that, in terms of both size and power, the asymptotic F tests perform as

well as the nonstandard tests proposed recently by Sun (2014b) in finite samples.

But the F tests are more appealing as the critical values are readily available from

standard statistical tables. Compared to the conventional chi-square tests, the F

tests are as powerful, but are much more accurate in size.

187
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3.1 Introduction

This paper considers the optimal two-step GMM estimator and the asso-

ciated tests in a time series setting. In the presence of nonparametric temporal

dependence, the optimal weighting matrix is the inverted long run variance (LRV)

of the moment process. To implement the two-step GMM method, we often esti-

mate the LRV using the nonparametric kernel or series method. Given the non-

parametric nature of the LRV estimator, there is a high variation in the weighting

matrix with consequent effects on the two-step point estimator and the associ-

ated tests. Recently Sun (2014b) employs the fixed-smoothing asymptotics and

establishes a new asymptotic approximation that captures the estimation uncer-

tainty in the LRV estimator. Under the fixed-smoothing asymptotics, the point

estimator is asymptotically mixed normal and the test statistics converge to a non-

standard distribution. In the case of series LRV estimation, Sun (2014b) shows

that the nonstandard limiting distribution can be approximated by a noncentral

F distribution.

In this paper, we follow Sun (2014b) but focus on the series LRV estimator.

We modify the usual test statistics, including the Wald statistic, the quasi LR

statistic, and the LM statistic and show that the modified test statistics are all

asymptotically standard F distributed. The standard F distribution is the exact

limiting distribution. No additional approximation is needed. This is in contrast

to Sun (2014b) where the noncentral F distribution is an approximation to the

fixed-smoothing limiting distribution. The standard F distribution is more acces-

sible than the noncentral F distribution, as standard F critical values are readily

available from standard statistical tables.

The modification involves the usual J statistic for testing overidentifying

restrictions. The modified test statistics are scaled versions of the original test

statistics with the scaling factor depending on the J statistic. So the modification

is very easy to implement. To understand the modification, we cast the two-step
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GMM estimation and inference into OLS estimation and inference in a classical

normal linear regression (CNLR). We show that the modified Wald statistic in the

GMM framework is exactly the usual Wald statistic constructed in the standard

way in the CNLR framework. Our proposed asymptotic F tests, which are based

on the modified test statistics and use the standard F approximation, can be

regarded as conditional tests conditioning on the J statistic. The conditioning

argument is entirely analogous to that used in the linear regression model with

stochastic regressors that are independent of the regression error.

Monte Carlo simulations show that our proposed asymptotic F tests are

as accurate in size as the corresponding nonstandard tests of Sun (2014b). They

are also as powerful as the latter tests. So there is no power loss in using the

asymptotic F tests. Like the nonstandard tests of Sun (2014b), the asymptotic

F tests are much more accurate in size than the usual chi-square tests without

any power sacrifice. Given the convenience of the standard F approximation, we

recommend the asymptotic F tests for practical use.

The paper contributes to a growing body of literature on the fixed-smoothing

asymptotics. For kernel LRV estimators such as the Newey-West estimator (Newey

and West (1987)), the fixed-smoothing asymptotics is the so-called the fixed-b

asymptotics first studied by Vogelsang (2002a, 2002b, 2005) in the econometrics

literature. Subsequent research includes Jansson (2004), Sun, Phillips, Jin (2008),

Sun and Phillips (2009), Gonçlaves and Vogelsang (2011) and among others. Pa-

pers that are most closely related to this paper are those that use the series LRV

estimators. In this case, the fixed-smoothing asymptotics is the so-called fixed-K

asymptotics. Some examples of these papers are Phillips (2005), Müller (2007),

Sun (2011, 2013, 2014a&b), and Sun and Kim (2012).

In the case of series LRV estimation, the F limit theory has been established

in Sun (2011) for trend regression, Sun (2013) for stationary moment processes,

and Sun (2014c) for highly persistent moment processes. See also Sun and Kim

(2012, 2015) for the J test and the Wald test in the spatial setting. All these
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papers focus on the first-step GMM estimator or OLS estimator. This paper is the

first to establish the F limit theory for the trinity of test statistics in a two-step

efficient GMM framework. This is not trivial, as the asymptotic pivotality of these

statistics under the fixed-smoothing asymptotics was not established until very

recently in Sun (2014b).

The rest of the paper is organized as follows. Section 3.2 presents the basic

setting and introduces the modified test statistics. Section 3.3 establishes the fixed-

smoothing asymptotics of the modified test statistics and develops the asymptotic

F and t tests. Section 3.4 casts the GMM estimator as an OLS estimator in a

regression setting and shows that the modified Wald statistic is the usual Wald

statistic in a CNLR model. The next section reports simulation evidence. The last

section concludes. Proofs are given in the appendix.

3.2 Two-step GMM Estimation and Testing

We consider the standard GMM setting with moment conditions

Ef (vt, θ0) = 0, t = 1, 2, . . . , T, (3.1)

where vt is the vector of observations at time t, θ0 ∈ Θ ⊆ Rd is the parameter

of interest, and f (vt, θ) is the m × 1 vector of moment conditions that are twice

continuously differentiable. We assume that Ef (vt, θ) = 0 if and only if θ = θ0

so that θ0 is point identified. The model may be overidentified with the degree of

overidentification q = m − d ≥ 0. We allow {f (vt, θ0)} to have autocorrelation of

unknown forms.

Define

gt (θ) =
1

T

t∑
j=1

f(vj, θ),
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then the GMM estimator of θ0 is given by

θ̂GMM = arg min
θ∈Θ

gT (θ)′W−1
T gT (θ) ,

where WT is a positive definite weighting matrix. The initial first-step GMM

estimator can be obtained by choosing WT to be a matrix Wo,T that does not

depend on any unknown parameter. This gives rise to

θ̃T = arg min
θ∈Θ

gT (θ)′W−1
o,TgT (θ) .

Here Wo,T may depend on the sample size T but we assume that Wo,T
p→ Wo,∞, a

matrix that is positive definite almost surely.

With the first step estimator θ̃T , we can construct the optimal weighting

matrix WT , which is the asymptotic variance matrix of
√
TgT (θ0) . See Hansen

(1982). Most, if not all, estimators of the asymptotic variance take the following

form

WT

(
θ̃T

)
=

1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)(
f(vt, θ̃T )− 1

T

T∑
τ=1

f(vτ , θ̃T )

)

·

(
f(vs, θ̃T )− 1

T

T∑
τ=1

f(vτ , θ̃T )

)′
,

where Qh (r, s) is a symmetric weighting function that depends on the smoothing

parameter h. In this paper, we focus on the series LRV estimator with

QK (r, s) =
1

K

K∑
j=1

Φj (r) Φj (s) ,

where {Φj (r)} are orthonormal basis functions on L2[0, 1] satisfying
∫ 1

0
Φj (r) dr =

0. In the econometric literature, the series LRV estimator has been recently used,

for example, in Phillips (2005), Müller (2007), and Sun (2011, 2013, 2014a&b).
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Define the projection coefficient

Λj (θ0) =
1√
T

T∑
t=1

Φj(
t

T
)

[
f(vt, θ0)− 1

T

T∑
τ=1

f(vτ , θ0)

]
for j = 1, 2, . . . , K.

Then

WT (θ0) =
1

K

K∑
j=1

Λj(θ0)Λ′j(θ0). (3.2)

In essence, each outer product Λj(θ0)Λ′j(θ0) is an approximately unbiased estimator

of the LRV, and the series LRV estimator is a simple average of these estimators.

Here K is the smoothing parameter underlying the series LRV estimator WT . If

Φj (r) =
√

2 sin (2πjr) or
√

2 cos (2πjr) , then the series LRV estimator is propor-

tional to the spectral density estimator at the origin that takes a simple average of

the first K periodograms. The averaged periodogram estimator is a common spec-

tral density estimator. In the traditional asymptotic framework, it can be shown

that the averaged periodogram estimator is asymptotically equivalent to the kernel

LRV estimator based on the Daniell kernel; See for example Phillips (2005). Sun

(2013) provides more discussion on the relationship between the kernel LRV and

series LRV estimators. To ensure that WT is positive semidefinite, we assume that

K ≥ m throughout the rest of the paper.

With the optimal weighting matrix estimator WT (θ̃T ), the two-step GMM

estimator is:

θ̂T = arg min
θ∈Θ

gT (θ)′W−1
T (θ̃T )gT (θ) .

Suppose that we want to perform hypothesis testing based on θ̂T . Without loss

of generality, we consider the linear null hypothesis H0 : Rθ0 = r against the

alternative H1 : Rθ0 6= r where R is a p× d matrix with full row rank. As in Sun

(2014b), we consider the “trinity” of test statistics in the GMM setting. The first
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test statistic is the (normalized) Wald statistic given by

WT := WT (θ̂T ) = T (Rθ̂T −r)′
{
R
[
GT (θ̂T )′W−1

T (θ̂T )GT (θ̂T )
]−1

R′
}−1

(Rθ̂T −r)/p,

(3.3)

where GT (θ) = ∂gT (θ)
∂θ′

. When p = 1 and for one-sided alternative hypotheses, we

can construct the t statistic:

tT (θ̂T ) =

√
T (Rθ̂T − r){

R
[
GT (θ̂T )′W−1

T (θ̂T )GT (θ̂T )
]−1

R′
}1/2

.

The second test statistic is the GMM criterion function statistic, which can

be regarded as the LR analogue in the GMM setting. Let θ̂T,R be the restricted

second-step GMM estimator:

θ̂T,R = arg min
θ∈Θ

gT (θ)′W−1
T (θ̃T )gT (θ) s.t. Rθ = r.

The GMM criterion function statistic is given by

DT :=
[
TgT (θ̂T,R)′W−1

T (θ̃T )gT (θ̂T,R)− TgT (θ̂T )′W−1
T (θ̃T )gT (θ̂T )

]
/p,

which is often referred to as the quasi LR statistic.

The third test statistic is the GMM counterpart of the score or LM statistic.

Let ∆T (θ) = G′T (θ)W−1
T (θ̃T )gT (θ) be the gradient of the GMM criterion function.

The score type test statistic is given by

ST = T
[
∆T (θ̂T,R)

]′ [
G′T (θ̂T,R)W−1

T (θ̃T )GT (θ̂T,R)
]−1

∆T (θ̂T,R)/p.

In the definitions of DT and ST , θ̃T can be replaced by θ̂T or any other
√
T consistent

estimator without affecting our asymptotic results.

To introduce the modified or corrected versions of the above three test

statistics, we construct the standard J statistic for testing the over-identifying
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restrictions:

JT := JT (θ̂T ) = TgT (θ̂T )′W−1
T (θ̂T )gT (θ̂T ).

The modified or corrected versions of WT ,DT and ST are

Wc
T := Wc

T (θ̂T ) =
K − p− q + 1

K

WT (θ̂T )

1 + 1
K
JT (θ̂T )

,

Dc
T := Dc

T (θ̂T ) =
K − p− q + 1

K

DT (θ̂T )

1 + 1
K
JT (θ̂T )

,

ScT := ScT (θ̂T ) =
K − p− q + 1

K

ST (θ̂T )

1 + 1
K
JT (θ̂T )

.

The multiplicative corrections are the same for all three statistics. The correspond-

ing version of the t statistic is

tcT (θ̂T ) =

√
K − q
K

tT (θ̂T )√
1 + 1

K
JT (θ̂T )

.

Under the conventional asymptotic theory where K diverges to ∞ with

the sample size T but K/T → 0, both correction factors K − p − q + 1/K and

(1 + JT (θ̂T )/K)−1 approach unity in probability. So they do not matter in large

samples and can thus be regarded as finite sample corrections. Under this type of

asymptotics, WT ,DT and ST and hence Wc
T ,Dc

T and ScT are all asymptotically χ2
p/p

distributed. It is now well known that the chi-square approximation is not accurate

in finite samples. This motivates the more accurate fixed-smoothing asymptotics

under which K is held fixed as T →∞. We point out in passing that the fixed-K

specification is an asymptotic device to help establish a more accurate approxima-

tion. We do not have to use a fixed K value in finite samples.
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3.3 The Asymptotic F and t Tests

Define

Gt(θ) =
∂gt (θ)

∂θ′
=

1

T

t∑
j=1

∂f(vj, θ)

∂θ′
for t ≥ 1.

Let ut = f(vt, θ0) and Φ0 (t) ≡ 1, et ∼ iidN(0, Im). We make the following assump-

tions on the basis functions, the GMM estimators, and the data generating process.

These assumptions are the same as those in Sun (2014b) and are commonly used

in the literature on the fixed-smoothing asymptotics.

Assumption 13 The basis functions Φj (·) are piecewise monotonic, continuously

differentiable and orthonormal in L2[0, 1] and
∫ 1

0
Φj (x) dx = 0.

Assumption 14 As T → ∞, θ̂T = θ0 + op (1) , θ̃T = θ0 + op (1) for an interior

point θ0 ∈ Θ, a compact parameter space.

Assumption 15
∑∞

j=−∞ ‖Γj‖ <∞ where Γj = Eutu
′
t−j.

Assumption 16 (a) f(vt, θ) is twice continuously differentiable in θ for almost

all vt. (b) For any θT = θ0 + op (1) , plimT→∞G[rT ] (θT ) = rG uniformly in r where

G = G(θ0) has rank d and G(θ) = E∂f(vt, θ)/∂θ
′.

Assumption 17 (a) T−1/2
∑T

t=1 Φj (t/T )ut converges weakly to a continuous dis-

tribution, jointly over j = 0, 1, . . . , J for every finite J.

(b) The following holds:

P

(
1√
T

T∑
t=1

Φj

(
t

T

)
ut ≤ x for j = 0, 1, . . . , J

)

= P

(
1√
T

T∑
t=1

Φj

(
t

T

)
Λet ≤ x for j = 0, 1, . . . , J

)
+ o (1) as T →∞

for every finite J where x ∈ Rm and Λ is the matrix square root of Ω, i.e., ΛΛ′ =

Ω :=
∑∞

j=−∞ Γj. (c) Ω is of full rank.
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Let

Bp+q(r) :=
(
B′p(r), B

′
q(r)

)′
,

where Bp(r) and Bq(r) are independent standard Brownian motion processes of

dimensions p and q, respectively. Denote

Cpp =

∫ 1

0

∫ 1

0

QK(r, s)dBp(r)dBp(s)
′, Cpq =

∫ 1

0

∫ 1

0

QK(r, s)dBp(r)dBq(s)
′ (3.4)

Cqq =

∫ 1

0

∫ 1

0

QK(r, s)dBq(r)dBq(s)
′, Dpp = Cpp − CpqC−1

qq C
′
pq.

Theorem 24 Let Assumptions 13-17 hold. Then, for a fixed K, the following

weak convergence results hold jointly as T →∞ :

(a) WT (θ̂T )
d→
[
Bp (1)− CpqC−1

qq Bq (1)
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1)
]
/p :

d
= F∞,

(b) tT (θ̂T )
d→
[
Bp (1)− CpqC−1

qq Bq (1)
]
/
√
Dpp :

d
= t∞,

(c) JT (θ̂T )
d→ B′q(1)C−1

qq [Bq(1)] :
d
= J∞,

where
(
B′p (1) , B′q (1)

)′
is independent of (Cpq, Cqq, Dpp) and Dpp is indepen-

dent of (Cpq, Cqq) .

The weak convergence of the marginal distributions in Theorem 24(a,b) and

24(c) has been established in Sun (2014b) and Sun and Kim (2012), respectively.

It suffices to show that the weak convergence holds jointly. A proof is given in the

appendix.

Remark 25 If QK (·, ·) is replaced by a kernel function, then under some condition

on the kernel function, Theorem 24 also holds. A key advantage of using the series

LRV estimator is that

CK := K

 Cpp Cpq

C ′pq Cqq

 =
K∑
j=1

[∫ 1

0

Φj (r) dBp+q (r)

] [∫ 1

0

Φj (r) dBp+q (r)

]′

follows a standard Wishart distribution Wp+q (K, Ip+q) . A well-known property of

a Wishart random matrix is that Dpp = Cpp − CpqC
−1
qq C

′
pq ∼ Wp (K − q, Ip) /K.
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The fact that Dpp follows a Wishart distribution and its independence of (Cpq, Cqq)

are the two key properties of Dpp that drive our F limit theory. For kernel LRV

estimation, Dpp will not be Wishart and will not be independent of (Cpq, Cqq) . So

an exact F limit theory is not possible.

Remark 26 Note that ∆ = CpqC
−1
qq Bq (1) is independent of Bp (1) and Dpp, the

limiting distribution F∞ in Theorem 24(a) conditional on ∆ satisfies

K − p− q + 1

K
F∞

d
=
K − p− q + 1

K

[Bp (1)−∆]′D−1
pp [Bp (1)−∆]

p
d
= Fp,K−p−q+1

(
‖∆‖2) ,

which is a noncentral F distribution with noncentrality parameter ‖∆‖2 . Uncondi-

tionally, K−p−q+1
K

F∞ follows a mixed noncentral F distribution, i.e., a noncentral

F distribution with a random noncentrality parameter. The noncentral F test pro-

posed in Sun (2014b) is based on the noncentral F approximation to the mixed F

distribution.

Remark 27 It follows from Theorem 24(c) that

K − q + 1

Kq
JT (θ̂T )

d→ Fq,K−q+1, (3.5)

where Fq,K−q+1 is the standard F distribution with degrees of freedom q and K −

q + 1. This is a result first established in Sun and Kim (2012).

Using Theorem 24, we have

Wc
T (θ̂T ) =

K − p− q + 1

K

WT (θ̂T )

1 + 1
K
JT (θ̂T )

d→ K − p− q + 1

K

F∞
1 + 1

K
J∞

=
K − p− q + 1

K
ξ′pD

−1
pp ξp

where

ξp :=
Bp (1)− CpqC−1

qq Bq (1)√
1 + 1

K
J∞

=
Bp (1)− CpqC−1

qq Bq (1)√
1 + 1

K
B′q(1)C−1

qq Bq(1)
.
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Another key result that drives the F limit theory is that ξp ∼ N(0, Ip). This

holds for the case of series LRV estimation but not for the kernel LRV estimation.

The result is proved in the proof of Theorem 28 using the conditioning argument

with J∞ as the conditioning variable. This is in contrast with Sun (2014b) which

uses ∆ or ‖∆‖2 as the conditioning variable. Given that ξp ∼ N(0, Ip) and that

ξp is independent of Dpp, F∞ (1 +K−1J∞)
−1

= ξ′pD
−1
pp ξp follows Hotelling’s T 2

distribution. Using the relationship between the T 2 distribution and the standard

F distribution, we obtain Part (a) of Theorem 28. Other parts can be similarly

obtained. In particular, Parts (b) and (c) follow because, as shown by Sun (2014b),

the asymptotic equivalence of WT , DT , and ST continues to hold under the fixed-

smoothing asymptotics.

Theorem 28 Let Assumptions 13-17 hold. Then, for a fixed K as T → ∞, we

have:

(a) Wc
T (θ̂T )

d→ Fp,K−p−q+1;

(b) Dc
T (θ̂T )

d→ Fp,K−p−q+1;

(c) ScT (θ̂T )
d→ Fp,K−p−q+1;

(d) tcT (θ̂T )
d→ tK−q.

Remark 29 When q = 0, we have JT (θ̂T ) = 0 and the multiplicative correction

degenerates. In this case, we have

K − p+ 1

K
WT (θ̂T )

d→ Fp,K−p+1.

This is identical to a result obtained in Sun (2013) for the Wald test based on the

first-step estimator. This is expected, as when q = 0, the optimal weighting ma-

trix becomes irrelevant and the first-step estimator and two-step estimator become

numerically identical.

Remark 30 It follows from (3.5) that

1

K
JT (θ̂T )

d→ q

K − q + 1
Fq,K−q+1

d
=

χ2
q

χ2
K−q+1
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for two independent chi-square random variables χ2
q and χ2

K−q+1. So, as K increases

for a fixed q, JT (θ̂T )/K approaches zero and the modified Wald statistic becomes

close to the original Wald statistic. The multiplicative correction 1 + JT (θ̂T )/K

can be regarded as a finite sample correction under the conventional increasing-

smoothing asymptotics. For the same reason, the other multiplicative correction

(K − p− q + 1) /K can be regarded as a finite sample correction under the conven-

tional increasing-smoothing asymptotics, as (K − p− q + 1) /K → 1 as K → ∞.

This correction factor can be motivated from the Bartlett correction. See Sun

(2013) for more discussion.

Remark 31 Let Fα
p,K−p−q+1 be the (1− α) quantile of the F distribution Fp,K−p−q+1.

According to Theorem 28, the critical value for the original test statistic WT (θ̂T )

can be taken to be

[
1 +

1

K
JT (θ̂T )

] [
K

K − p− q + 1

]
Fα
p,K−p−q+1. (3.6)

Compare with the chi-square critical value χαp/p where χαp is the (1− α) quantile of

the chi-squared distribution χ2
p, the above critical value is larger for three reasons.

First, Fα
p,K−p−q+1 > χαp/p due to the random denominator in the F distribution.

Second, K/(K − p − q + 1) > 1 for q > 1 or p > 1. Third, 1 + JT (θ̂T )/K > 1

almost surely. A direct implication is that the chi-square critical values are too

small, especially when q is large and K is relatively small. The small value of K

can be empirically very relevant, as the moment process in economic applications

often has high autocorrelation (e.g., Müller, 2014), which calls for a small value of

K. Using the chi-square critical value can therefore lead to the finding of statistical

significance that does not actually exist.

Remark 32 If we use the kernel LRV estimator, then we can choose an equivalent

K value and use the critical value in (3.6). According to Sun and Kim (2012), the
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equivalent K value is given by the integer that is closest to

[∫ 1

0
kb (r, r) dr

]2

∫ 1

0

∫ 1

0
[kb(r, s)]

2 drds
, (3.7)

where

kb(t, τ) = k(
t− τ
b

)−
∫ 1

0

k(
s− τ
b

)ds−
∫ 1

0

k(
t− s
b

)ds+

∫ 1

0

∫ 1

0

k(
r − s
b

)drds,

b = M/T for the truncation lag parameter M , and k (·) is the kernel function

used in the LRV estimation. This procedure can be justified under the conventional

asymptotics under which b→ 0, bT →∞ as T →∞, as in this case, the equivalent

K value approaches ∞ and the critical value in (3.6) approaches the chi-squared

critical value χαp/p. In fact, as b→ 0, we can take

K =
1

b
[∫∞
−∞ k

2(x)dx
] ,

which provides a good approximation to (3.7). Here
∫∞
−∞ k

2(x)dx = 2/3, 0.54, and 1

for the Bartlett, Parzen, and the quadratic spectral kernels, respectively. However,

under the fixed-b asymptotics, the standard F distribution is not the exact limiting

distribution. So, strictly speaking, we cannot justify this procedure under the fixed-

b asymptotics. For this reason, one may argue that we should just simulate the

nonstandard distribution and use the exact nonstandard critical value. However,

the approximate critical value in (3.6) with an equivalent K is convenient to use

and may be more appealing in applied research.

Remark 33 In the proof of the theorem, we show that conditional on Bq (·), ξp ∼

N(0, Ip). Since the conditional distribution does not depend on Bq (·) , we can

conclude that ξp is independent of Bq (·) . As a result, ξp is independent of Bq (1)

and Cqq. Note that Dpp is also independent of Bq (1) and Cqq. So ξ′pD
−1
pp ξp is
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independent of Bq (1)′C−1
qq Bq (1) . Now

K − p− q + 1

K
F∞

d
=
K − p− q + 1

Kp

(
ξ′pD

−1
pp ξp

) [
1 +

1

K
B′q(1)C−1

qq Bq(1)

]
d
= Fp,K−p−q+1 ·

(
1 +

1

K
J∞
)

d
= Fp,K−p−q+1 ·

(
1 +

q

K − q + 1
Fp,K−q+1

)

where Fp,K−p−q+1 ∼ Fp,K−p−q+1, J∞ ∼ J∞, Fp,K−q+1 ∼ Fp,K−q+1 and Fp,K−p−q+1

is independent of J∞ and Fp,K−q+1. This gives another characterization of the

nonstandard limiting distribution developed by Sun (2014b). It can be used to

simplify the simulation of the nonstandard distribution F∞.

Remark 34 Let cvα be the nonstandard critical value for [(K − p− q + 1) /K]

·WT (θ̂T ) as proposed in Sun (2014b). Using the characterization in the previous

remark, we have

lim
T→∞

P

(
K − p− q + 1

K
WT (θ̂T ) > cvα

)
= P

[
Fp,K−p−q+1 ·

(
1 +

1

K
J∞
)
> cvα

]
= 1− EG

(
cvα

1 + J∞/K

∣∣∣∣ p,K − p− q + 1

)
= α.

where G(x| d1, d2) denotes a CDF of F-distribution with parameters d1 and d2.

That is, the asymptotic level of the nonstandard test is α when averaging over all

realizations of J∞. Conditional on J∞, the asymptotic level is

1−G
(

cvα

1 + J∞/K

∣∣∣∣ p,K − p− q + 1

)

which is strictly increasing in J∞. So when the J statistic is large, which implies a

large J∞ in large samples, the nonstandard Wald test is expected to reject the null

more often. In contrast, the critical value in (3.6) is based on the conditional distri-

bution of [(K − p− q + 1) /K]WT (θ̂T ) conditional on JT (θ̂T ). With the conditional
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critical value, the asymptotic conditional level of the test is fixed at α regardless of

the value of JT (θ̂T ).

3.4 Understanding the Asymptotic F and t Tests

The asymptotic F and t tests may appear mysterious at first sight. To shed

some light on the two tests, we consider the location model, which is perhaps the

simplest model in an overidentified GMM setting:

y1t = θ0 + u1t, y1t ∈ Rp,

y2t = u2t, y2t ∈ Rq, (3.8)

where θ0 is the parameter of interest, and ut = (u′1t, u
′
2t)
′ ∈ Rp+q is a mean zero

stationary process that can exhibit autocorrelation of unknown forms. The long

run variance of ut is

Ω =

 Ω11 Ω12

Ω21 Ω22

 ,

which has been partitioned conformably with the two blocks of equations. As

simple as it is, the location model captures all the essentials in a GMM setting.

In fact, a general GMM model can be reduced to the above location model in an

asymptotic sense. The location model is an ideal framework to present the basic

ideas and intuition, as it abstracts away the unnecessary details and complications.

For more discussions, see Hwang and Sun (2015).

At the mechanical level, the parameter θ0 can be estimated using the GMM.

The moment conditions are

E

 y1t − θ0

y2t

 = 0,
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and the GMM estimator of θ is θ̂GMM = arg minθ∈Θ g
′
T (θ)W−1

T gT (θ) with

gT (θ) =

 1
T

∑T
t=1 y1t − θ

1
T

∑T
t=1 y2t

 .

If we take Wo,T = Ip+q, we obtain the initial GMM estimator θ̃T = ȳ1 :=

1
T

∑T
t=1 y1t, which is the OLS estimator based on the first block of equations. If we

take WT to be the long run variance estimator:

Ω̂ =

 Ω̂11 Ω̂12

Ω̂21 Ω̂22

 =
1

T

T∑
t=1

T∑
s=1

QK

(
t

T
,
s

T

)
(yt − ȳ) (ys − ȳ) , (3.9)

where yt = (y′1t, y
′
2t)
′ , we obtain the efficient two-step GMM estimator: θ̂T =

ȳ1 − β̂ȳ2 with

β̂ = Ω̂12Ω̂−1
22 ,

which is an estimator of the long run regression coefficient β0 = Ω12Ω−1
22 . Compared

with the initial estimator θ̃T , which ignores the second block of equations, the two-

step estimator θ̂T aims to explore the additional information embodied in the

second block. As a special case of the GMM setting, the location model permits

the asymptotic F tests and t test as described in the previous section.

To demystify the asymptotic F and t tests, we cast the GMM estimator as

an OLS estimator in a linear regression model. Let

ωi (y1) =
1√
T

T∑
t=1

Φi

(
t

T

)
y1t, ωi (y2) =

1√
T

T∑
t=1

Φi

(
t

T

)
y2t

ωi (u1) =
1√
T

T∑
t=1

Φi

(
t

T

)
u1t, ωi (u2) = ωi (y2) ,

xi =
1√
T

T∑
t=1

Φi

(
t

T

)
for i = 0, 1, . . . , K.

These transforms are analogous to the Fourier transforms and are designed to
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capture the long run behavior of the underlying processes. Then

ωi (y1) = θ0xi + ωi (u1)

ωi (y2) = ωi (u2)

for i = 0, 1, . . . , K. This can be regarded as a system of cross-sectional regressions

with dependent variables ωi (y1) and ωi (y2) and sample size K + 1.

To obtain an efficient estimator of θ0, we use ωi (u2) to predict and hence

reduce the error term in the first block of equations. This is equivalent to adding

ωi (y2) to the first block of equations, leading to the regression model of the form:

ωi (y1) = θ0xi + β0ωi (y2) + ωi (ε) ,

where as before β0 = Ω12Ω−1
22 ∈ Rp×q, ε = u1−β0u2, and ωi (ε) = ωi (u1)−β0ωi (u2)

is the new error term. Under Assumptions 13–17 for the location model, of which

Assumptions 14 and 16 hold trivially, we have ωi (u1)

ωi (u2)

 d→ iidN(0,Ω).

Hence the error term ωi (ε) is asymptotically normal. More specifically, ωi (ε) is

asymptotically iid N(0,Ω11·2) where

Ω11·2 = Ω11 − Ω12Ω−1
22 Ω21.

In addition, ωi (ε) is asymptotically independent of ωi (y2) .

The above model is close to a CNLR model with fixed regressors. How-

ever, there are three differences. First, the normality of the error term and its

independence from the regressors hold only asymptotically. To remove this differ-

ence and for simplicity, we assume that normality holds exactly from now on, i.e.,

ωi (ε) ∼ iid N(0,Ω11·2) and that ωi (ε) is independent of ωi (y2) . The finite sample
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results obtained under these assumptions then hold asymptotically without these

assumptions. Second, when p > 1, we have a system of regressions while there is

typically only one regression in a CNLR model. Of course, we can focus on the

case of p = 1 to gain some insights but we will consider a general p. Third, ωi (y2)

is random rather than fixed. This is innocuous, as we can follow the standard

practice and use the conditioning argument.

Let

ω1 =


ω′0 (y1)

ω′1 (y1)

. . .

ω′K (y1)


(K+1)×p

, ω2 =


ω′0 (y2)

ω′1 (y2)

. . .

ω′K (y2)


(K+1)×q

,

ωε =


ω′0 (ε)

ω′1 (ε)

. . .

ω′K (ε)


(K+1)×p

, and X =


x0

x1

. . .

xK


(K+1)×1

.

Then

ω1 = Xθ′0 + ω2β
′
0 + ωε.

Based on this, we obtain the OLS estimator of θ′0 below:

θ̂′T,OLS = (X ′M2X)
−1

(X ′M2ω1) ,

where M2 = IK+1 − ω2 (ω′2ω2)−1 ω′2. Conditional on ω2, we have

(θ̂′T,OLS − θ′0) ∼ N
[
0,Ω11·2 (X ′M2X)

−1
]
.

Hence it is mixed normal unconditionally. This result is analogous to the asymp-

totic mixed normality of the two-step GMM estimator. In fact we can show that

θ̂T,OLS and the two-step GMM estimator θ̂T,GMM ≡ θ̂T are numerically identi-
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cal under a slightly stronger condition on the basis functions. Here we add the

subscript ‘GMM’ to θ̂T to signify its origin.

Proposition 35 Let Assumption 13 hold with
∫ 1

0
Φk (r) dr = 0 replaced by

T−1
∑T

t=1 Φk (t/T ) = 0 for k = 1, 2, . . . , K, then θ̂T,OLS = θ̂T,GMM . If
∫ 1

0
Φk (r) dr =

0 but not T−1
∑T

t=1 Φk (t/T ) = 0 for k = 1, 2, . . . , K, then under Assumptions 13–

17, we have
√
T (θ̂T,OLS − θ̂T,GMM) = op (1) for a fixed K as T →∞.

While the asymptotic equivalence between θ̂T,OLS and θ̂T,GMM is well ex-

pected, it is nontrivial to show that they are numerically identical under the

assumption that T−1
∑T

t=1 Φk (t/T ) = 0. This assumption holds for Φk (t/T ) =
√

2 sin (2πkt/T ) ,
√

2 cos (2πkt/T ) , which are the basis functions in common use

for the series LRV estimation.

The conditional distribution of (θ̂′T,OLS − θ′0) conditional on ω2 depends

on ω2 only through (X ′M2X)−1 . It then follows that the conditional distribution

of (θ̂′T,OLS − θ′0) conditional on (X ′M2X)−1 is also N [0,Ω11·2 (X ′M2X)−1]. In the

proof of the proposition, it is shown that (X ′M2X)−1 = (1 + T ȳ′2Ω̂−1
22 ȳ2/K)/T.

Therefore, we can take T ȳ′2Ω̂−1
22 ȳ2 as the conditioning variable. But T ȳ′2Ω̂−1

22 ȳ2

is exactly the J statistic in the overidentified location model. So the minimal

conditioning variable in the CNLR coincides with the conditioning variable we use

in the GMM framework.

Now suppose that we follow the mechanics in the CNLR framework to con-

duct inference. Conditional on (X ′M2X)−1 , the variance of θ̂T,OLS is Ω11·2 (X ′M2X)−1 .

Following a routine in the CNLR framework, we can estimate the conditional vari-

ance by Ω̃11·2 (X ′M2X)−1 where

Ω̃11·2 =
1

K − q

(
ω1 −Xθ̂′T,OLS − ω2β̂

′
T,OLS

)′ (
ω1 −Xθ̂′T,OLS − ω2β̂

′
T,OLS

)
and β̂′T,OLS is the OLS estimator of β0. Here we have used 1/(K − q) = 1/(K +

1− q− 1) instead of 1/(K+ 1) as the scaling function. This is the usual degree-of-

freedom correction in a standard linear regression model. Constructing the Wald
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statistic for testing H0 : θ0 = r in the same way as what we would do in a CNLR

framework, we obtain the (normalized) Wald statistic

WCNLR =
√
T
(
θ̂T,OLS − r

)′ [
Ω̃11·2

(
X ′M2X

T

)−1
]−1√

T
(
θ̂T,OLS − r

)
/p.

We can also construct other type statistics such as the LR, LM and t statistics but

we focus on the Wald statistic here.

To formally compare WCNLR with the unmodified GMM Wald statistic as

given in (3.3), we note that for the location model GT (θ̂T ) = (Ip, Op×q)
′. Using this

and plugging WT (θ̂T,GMM) = Ω̂ and R = Ip into (3.3), we obtain

WT =
√
T (θ̂T,GMM − r)′

[
Ω̂11·2

]−1√
T (θ̂T,GMM − r)/p, (3.10)

where Ω̂11·2 = Ω̂11 − Ω̂12Ω̂−1
22 Ω̂21 and Ω̂ij are given in (3.9). A formal comparison

of WCNLR with WT reveals that WCNLR has the additional factor (X ′M2X/T )−1

in the variance estimator that the GMM Wald statistic WT ignores. The reason

that WT ignores this factor is that the underlying variance estimator is based

on the conventional “sandwich” formula, which is derived under the conventional

increasing-smoothing asymptotics where K → ∞ as T → ∞. Under this type of

asymptotics, (X ′M2X/T )−1 →p 1 and so the factor is negligible in large samples.

Under the fixed-smoothing asymptotics, it follows from Hwang and Sun (2015b)

that

√
T
(
θ̂T,GMM − θ0

)
=
(
Ip, −β̂

) 1√
T

∑T
t=1 (y1t − Ey1t)

1√
T

∑T
t=1 y2t


→d

(
Ip, −β∞

)
ΛBp+q(1),

where

β∞ = Ω
1/2
11·2β̃∞Ω

−1/2
22 + Ω12Ω−1

22 and β̃∞ = CpqC
−1
qq . (3.11)
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Some simple calculations show that the asymptotic variance of θ̂T,GMM conditional

on β̃∞ satisfies:

avar(θ̂T,GMM) = Ω
1/2
11·2

(
Ip + β̃∞β̃

′
∞

)
(Ω

1/2
11·2)′ = Ω11·2 + Ω

1/2
11·2β̃∞β̃

′
∞(Ω

1/2
11·2)′.

When we use the conventional “sandwich” formula for variance estimation, which

attempts to estimate Ω11·2 only, we effectively ignore the term that involves β̃∞β̃
′
∞.

This will not cause any problem for asymptotic pivotal inference but will prevent us

from developing an F limit theory. The modification we propose can be regarded as

the multiplicative variance correction that takes into account the extra asymptotic

variance term under the fixed-smoothing asymptotics. More specifically, instead

of using Ω̂11·2, we use Ω̂11·2(1 + ĴT/K) as the asymptotic variance estimator.

The following proposition establishes the connection between WCNLR and

Wc
T rigorously.

Proposition 36 Let Assumption 13 hold with
∫ 1

0
Φk (r) dr = 0 replaced by

T−1
∑T

t=1 Φk (t/T ) = 0 for i = 1, 2, . . . , K. Then

WCNLR =
K − q

K − p− q + 1
Wc

T .

In particular, WCNLR = Wc
T when p = 1. If

∫ 1

0
Φk (r) dr = 0 but not

T−1
∑T

t=1 Φk (t/T ) = 0, then under Assumptions 13–17, we have WCNLR =

K−q
K−p−q+1

Wc
T + op (1) for a fixed K as T →∞.

Remark 37 When p = 1, the proposition shows that the Wald statistic constructed

in the standard way is numerically identical to the modified Wald statistic we pro-

pose in the GMM setting. While the modification can be motivated on the ground

of obtaining a convenient standard F limiting distribution, it is a built-in feature of

the standard Wald statistic in a linear regression. The modification may appear to

be mysterious at first sight but it becomes natural from the regression perspective.
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Remark 38 When p > 1, WCNLR does not follow an F distribution but a rescaled

version does:
K − p− q + 1

K − q
WCNLR ∼ Fp,K−p−q+1.

This follows from Theorem 28 and Proposition 36. Of course this can be proved

directly in the CNLR setting but there is no need to do so, as the limit theory

established in the GMM setting is directly applicable to the CNLR model.

Remark 39 Looking at the GMM problem from the regression perspective moti-

vates us to use the modified Wald statistic even if there is no serial dependence.

In this case, we can take K = T and the modified Wald statistic becomes

Wc
T :=

T − p− q + 1

T

WT

1 + 1
T
JT
,

where WT and JT are the standard Wald and J statistics in the GMM frame-

work with iid data. In addition, we use Fp,T−p−q+1 instead of χ2
p/p as the ref-

erence distribution. From an asymptotic point of view, Wc
T = WT + op (1) and

Fα
p,T−p−q+1 = χαp/p + o (1) as T → ∞. So the modified Wald test based on the F

approximation can be justified in the same manner as the conventional chi-square

test. However, in finite samples, the new test can be more accurate in size.

3.5 Simulation Evidence

3.5.1 Asymptotic Size and Power

We follow Sun (2014b) and consider a linear model of the form:

yt = x′tθ + εy,t

where xt := (1, x1,t, x2,t, x3,t)
′ is a vector of endogeneous regressors. The un-

known parameter vector is θ = (γ0, γ1, ..., γd)
′ ∈ Rd. We have m instruments
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z0,t, z1,t, . . . , zm−1,t with z0,t ≡ 1. The reduced-form equations for x1,t, x2,t and

x3,t are given by

xj,t = zj,t +
m−1∑
i=d

zi,t + εxj ,t for j = 1, ..., d− 1.

We consider two different experiment designs: the autoregressive (AR) de-

sign and the centered moving average (CMA) design. In the AR design, each zi,t

follows an AR(1) process of the form zi,t = ρzi,t−1 +
√

1− ρ2ezi,t where ezi,t =

(eizt + e0
zt) /
√

2 and et = [e0
zt, e

1
zt, . . . , e

m−1
zt ]′ ∼ iidN(0, Im). By construction, zit has

unit variance for all for i ≥ 1, and the correlation coefficient between the non-

constant zi,t and zj,t for i 6= j is 0.5. The DGP for εt = (εyt, εx1t, εx2t, εx3t)
′ is the

same as that for (z1,t, . . . , zm−1,t) except that there is a difference in the dimension.

The two vector processes εt and (z1,t, . . . , zm−1,t) are independent from each other.

We take ρ = −0.5, 0.0, 0.5, 0.8 and 0.9.

In the CMA design, εy,t is a scaled and centered moving average of an iid

sequence εy,t =
∑L

j=−L et+j/
√

2L+ 1 where et ∼ iidN(0, 1) and L is the number

of leads and lags in the average. The instruments are generated according to

zit = [et−L+i−1 − (2L+ 1)−1∑L
j=−L et+j]

√
(2L+ 1)/2L for i = 1, . . . ,m − 1. The

error term in the reduced-form equation is given by εxj ,t =
(
εy,t + exj ,t

)
/
√

2 where

exj ,t ∼ iidN(0, 1) and is independent of the sequence {et} . We take L = 3, 6, and

9.

We consider q = 0, 1, 2 and d = 4 with corresponding numbers of moment

conditions m = 4, 5, 6. The null hypotheses of interest are

H01 : γ1 = 0,

H02 : γ1 = γ2 = 0,

H03 : γ1 = γ2 = γ3 = 0.

The numbers of joint hypotheses are p = 1, 2 and 3, respectively. We consider
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three different sample sizes T = 100, 200, 500 and two significance levels α = 5%

and α = 10%. We focus on the Wald type of test but the simulation results are

qualitatively similar for other type of tests.

We examine the empirical size of four different two-step tests. The first three

tests are based on the same unmodified Wald test statistic, so they have the same

size-adjusted power. The difference lies in the critical values used. We employ the

following critical values: χ1−α
p /p, K

K−p−q+1
F1−α
p,K−p−q+1 (δ2) with δ2 = pq/(K−q−1),

and F1−α
∞ , leading to the χ2 test, the NCF (noncentral F) test and the nonstandard

F∞ test. The χ2 test uses the conventional chi-square approximation. The NCF

test uses the noncentral F approximation. The F∞ test uses the nonstandard F∞

approximation with simulated critical values. The NCF test and the F∞ test are

developed in Sun (2014b). The fourth test is the test proposed in this paper,

which is based on the modified Wald statistic Wc
T and uses the standard F critical

value F1−α
p,K−p−q+1. Equivalently, our proposed test is based the unmodified Wald

test statistic as the first three tests but uses the critical values given in (3.6). For

easy reference, we now refer to our test as the standard F test, which should not

be confused with the standard F test in a CNLR model. For each test, the initial

first-step estimator is the IV estimator with weight matrix Wo = Z ′Z/T where Z

is the matrix of instruments.

We use the following basis functions Φ2j−1(x) =
√

2 cos 2jπx, Φ2j(x) =
√

2 sin 2jπx, j = 1, . . . , K/2 and assume that K is even. In this case, the series

LRV estimator can be computed using discrete Fourier transforms. We select K

based on the AMSE criterion implemented using the VAR(1) plug-in procedure in

Phillips (2005), which is similar to the plug-in procedure of Andrews (1991). We

compute the data-driven K on the basis of the initial first step estimator θ̃T and

use it in computing both WT (θ̃T ) and WT (θ̂T ).

We also compare the size-adjusted power of the proposed standard F test

with that of the nonstandard F∞ test. The data is generated under the local

alternative H1 : Rθ = c0`p/
√
T where c0 is a scalar and `p is the p-vector of
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ones. The two tests use the same data driven smoothing parameter K. To make

the power comparison meaningful, we compute the power using the empirical finite

sample critical values obtained from the null distribution. That is, we compare the

size-adjusted power. It should be pointed out that size-adjustment is not feasible

in practice.

Tables 3.1 and 3.2 report the finite sample size of the four tests for T = 100

and α = 5%. The number of simulation replications is 10000. It is clear that the

standard F test has as accurate size as the nonstandard F∞ test and noncentral F

test. Like the latter two tests, the standard F test is much more accurate in size

than the conventional chi-square test, which can be highly size-distorted. These

qualitative observations remain valid for other sample sizes and significance levels.

Figures 3.1 and ?? report the size-adjusted power of the nonstandard F∞

test and the standard F test for α = 5% and T = 100. There is no real difference

between the two power curves. In fact, the standard F test can be slightly more

powerful in some scenarios. Note that the size-adjusted power of the nonstandard

F∞ test is the same as that of the conventional chi-square test, the standard F test

is therefore as powerful as the conventional chi-square test.

Our simulation evidence lends a strong support to the standard F test: it

enjoys the same good size and power properties as the nonstandard F∞ test but

it is easier to use, as the critical values are readily available from statistical tables

and no simulation or approximation is needed.

3.6 Conclusion

This paper has proposed a modification to the trinity of test statistics in

an efficient two-step GMM framework. Each modified test statistic is a function of

the original test statistic and the usual J statistic for testing overidentification. We

show that the modified test statistics are all asymptotically F distributed. This

leads to standard F tests that are based on the modified test statistics and use
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the standard F critical values. Simulation shows that the standard F tests have

the same finite sample performance as the nonstandard tests recently proposed by

Sun (2014b) but the standard F tests are much easier to use.

The paper complements Sun (2011a, 2013, 2014a) and Sun and Kim (2012)

which establish the F limit theory for the tests based on the first-step GMM

estimation and the J test. When the series LRV estimator is used, the F limit

theory appears to be applicable to all common tests in the first-step and two-step

GMM settings. The results of the paper can be easily extended to the continuous

updating GMM (CU-GMM) framework. Recently, Zhang (2015) has shown that

the Wald statistic based on the CU-GMM estimator has the same fixed-smoothing

limit as what Sun (2014b) obtains in the two-step GMM framework. Given this,

it is easy to see that our result holds without change if the CU-GMM estimator is

used instead. Following the work of Bester et al. (2016) and Sun and Kim (2015),

we also do not imagine much difficulty in extending our results to the spatial

setting.
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3.8 Figures and Tables

Figure 3.1: Size-adjusted power of two-step 5% F∞ and F tests based on the series
LRV estimator under the AR design with ρ = 0.5 and T = 100
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3.9 Appendix of Proofs

Proof of Theorem 24. The marginal weak convergence results in (a) and (b)

have been proved in Sun (2014b, Theorem 1), and the result in (c) has been proved

in Sun and Kim (2012, Theorem 1 and equation (7)). It remains to show that the

convergence results hold jointly. As a representative example, we prove that (a)

and (c) hold jointly.

Let

W̃∞ =

∫ 1

0

∫ 1

0

QK (r, s) dBm (r) dBm (s)

and GΛ = Λ−1G, which is an m× d matrix, then it follows from Sun (2014b) and

Sun and Kim (2012) that

WT (θ̂T )
d→
{
R
[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1)

}′{
R
[
G′ΛW̃

−1
∞ GΛ

]−1

R′
}−1

×
{
R
[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1)

}
/p := F∞,

JT (θ̂T )
d→
{
Bm(1)−GΛ

[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1)

}′
W̃−1
∞ (3.12)

×
{
Bm(1)−GΛ

[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1)

}
:= J∞.

In addition, a careful inspection shows that the above convergence results hold

jointly. It remain to show that (F∞, J∞) is equivalent in distribution to

([
Bp (1)− CpqC−1

qq Bq (1)
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1)
]
/p, B′q(1)C−1

qq Bq(1)
)
.

Let Um×mΣm×dV
′
d×d be a singular value decomposition (SVD) of GΛ. By

definition, U ′U = UU ′ = Im, V V ′ = V ′V = Id and

Σ =

 Ad×d

Oq×d

 ,
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where A is a diagonal matrix with singular values on the main diagonal and O is

a matrix of zeros. Then we have:

[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1) =

[
V Σ′U ′W̃−1

∞ UΣV ′
]−1

V Σ′U ′W̃−1
∞ Bm(1)

= V
[
Σ′U ′W̃−1

∞ UΣ
]−1

Σ′U ′W̃−1
∞ Bm(1)

= V
[
Σ′U ′W̃−1

∞ UΣ
]−1

Σ′
[
U ′W̃−1

∞ U
]

[U ′Bm(1)]

and

Bm(1)−GΛ

[
G′ΛW̃

−1
∞ GΛ

]−1

G′ΛW̃
−1
∞ Bm(1)

= Bm(1)− UΣV ′
[
V Σ′U ′W̃−1

∞ UΣV ′
]−1

V Σ′U ′W̃−1
∞ Bm(1)

= U

{
U ′Bm(1)− Σ

[
Σ′U ′W̃−1

∞ UΣ
]−1

Σ′
(
U ′W̃−1

∞ U
)
U ′Bm(1)

}
.

Since [U ′W̃−1
∞ U , U ′Bm(1)] has the same joint distribution as [W̃−1

∞ , Bm(1)], we can

write  F∞

J∞

 d
=

 F̃∞

J̃∞


where

F̃∞ = Bm(1)′
[
RV

[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

]′{
RV

[
Σ′W̃−1

∞ Σ
]−1

V ′R′
}−1

×
[
RV

[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

]
Bm(1),

and

J̃∞ = B′m(1)

{
Im − Σ

[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

}′
W̃−1
∞

×
{
Im − Σ

[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

}
Bm(1).
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We proceed to simplify F̃∞ and J̃∞ starting with F̃∞. We let

W̃∞ =

 C11 C12

C21 C22

 and W̃−1
∞ =

 C11 C12

C21 C22


where C11 and C11 are d×d matrices, C22 and C22 are q×q matrices, and C12 = C ′21,

C12 = (C21)′. By definition,

C11 =

∫ 1

0

∫ 1

0

QK(r, s)dBd(r)dBd(s)
′ =

 Cpp Cp,d−p

C ′p,d−p Cd−p,d−p

 (3.13)

C12 =

∫ 1

0

∫ 1

0

QK(r, s)dBd(r)dBq(s)
′ =

 Cpq

Cd−p,q

 (3.14)

C22 =

∫ 1

0

∫ 1

0

QK(r, s)dBq(r)dBq(s)
′ = Cqq (3.15)

where Cpp, Cpq, and Cqq are defined in (3.4), and Cd−p,d−p, Cp,d−p and Cd−p,q are

similarly defined. It follows from the partitioned inverse formula that

C11 =
[
C11 − C12C

−1
22 C21

]−1
, C12 = −C11C12C

−1
22 .

With the above partition of W̃−1
∞ , we have

[
Σ′W̃−1

∞ Σ
]−1

=

( A′ O′
) C11 C12

C21 C22

 A

O


−1

=
[
A′C11A

]−1
= A−1

(
C11
)−1

(A′)
−1
,
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and so

RV
[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

= RV A−1
(
C11
)−1

(A′)
−1
(
A′ O′

) C11 C12

C21 C22


= RV A−1

(
C11
)−1

(A′)
−1
A′
(
C11 C12

)
= RV A−1

(
Id, (C11)

−1
C12

)
, (3.16)

and

RV
[
Σ′W̃−1

∞ Σ
]−1

V ′R′ = RV A−1
(
C11
)−1

(A′)
−1
V ′R′.

As a result,

F̃∞ = Bm(1)′
[
RV A−1

(
Id, (C11)

−1
C12

)]′ [
RV A−1

(
C11
)−1

(A′)
−1
V ′R′

]−1

×
[
RV A−1

(
Id, (C11)

−1
C12

)]
Bm(1)/p

= Bm(1)′
[
RV A−1

(
Id, −C12C

−1
22

)]′ [
RV A−1

(
C11
)−1

(A′)
−1
V ′R′

]−1

×
[
RV A−1

(
Id, −C12C

−1
22

)]
Bm(1)/p.

Let Bm(1) = [B′d (1) , B′q (1)]′ and Ũp×pΣ̃p×dṼ
′
d×d be a SVD of RV A−1, where

Σ̃p×d =
(
Ãp×p, Õp×(d−p)

)
.
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Then

F̃∞ =
{
ŨΣ̃Ṽ ′

[
Bd (1)− C12C

−1
22 Bq (1)

]}′ [
ŨΣ̃Ṽ ′

(
C11
)−1

Ṽ Σ̃′Ũ ′
]−1

× ŨΣ̃Ṽ ′
[
Bd (1)− C12C

−1
22 Bq (1)

]
/p

=
{

Σ̃Ṽ ′
[
Bd (1)− C12C

−1
22 Bq (1)

]}′ [
Σ̃Ṽ ′

(
C11
)−1

Ṽ Σ̃′
]−1

× Σ̃Ṽ ′
[
Bd (1)− C12C

−1
22 Bq (1)

]
/p

=
{

Σ̃
[
Ṽ ′Bd (1)− Ṽ ′C12C

−1
22 Bq (1)

]}′ [
Σ̃Ṽ ′

(
C11
)−1

Ṽ Σ̃′
]−1

× Σ̃
[
Ṽ ′Bd (1)− Ṽ ′C12C

−1
22 Bq (1)

]
.

Using the same steps, we have

Im − Σ
[
Σ′W̃−1

∞ Σ
]−1

Σ′W̃−1
∞

= Im −

 A

O

[A′C11A
]−1
(
A′ O′

) C11 C12

C21 C22


= Im −

 (C11)
−1

O12

O21 O22

 C11 C12

C21 C22


= Im −

 Id (C11)
−1
C12

O21 O22

 =

 O11 − (C11)
−1
C12

O21 Iq


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where Oij are matrices of zeros with the dimensions as Cij. So

J̃∞ =

 O11 − (C11)
−1
C12

O21 Iq

Bm(1)

′ W̃−1
∞

×

 O11 − (C11)
−1
C12

O21 Iq

Bm(1)


=

 − (C11)
−1
C12Bq(1)

Bq(1)

′ C11 C12

C21 C22

 − (C11)
−1
C12Bq(1)

Bq(1)


=

 − (C11)
−1
C12Bq(1)

Bq(1)

′ O[
C22 − C21 (C11)

−1
C21
]
Bq(1)


= Bq(1)′

[
C22 − C21

(
C11
)−1

C21
]
Bq(1)

= Bq(1)′C−1
qq Bq(1).

In the last equality, we have used
[
C22 − C21 (C11)

−1
C21
]−1

= C22 = Cqq, which

follows from the partitioned inverse formula.

Noting that the joint distribution of
[
Ṽ ′Bd (1) , Ṽ ′C12, C22, Ṽ

′ (C11)
−1
Ṽ
]

is invariant to the orthonormal matrix Ṽ , we have F̃∞

J̃∞

 d
=

 F̃ ∗∞

J̃∗∞


where

F̃ ∗∞ =
{

Σ̃
[
Bd (1)− C12C

−1
22 Bq (1)

]}′ [
Σ̃
(
C11
)−1

Σ̃′
]−1

× Σ̃
[
Bd (1)− C12C

−1
22 Bq (1)

]
/p

=
{(

Ã, Õ
) [
Bd (1)− C12C

−1
22 Bq (1)

]}′
×
[(

Ã, Õ
) (
C11
)−1
(
Ã, Õ

)′]−1

×
{(

Ã, Õ
) [
Bd (1)− C12C

−1
22 Bq (1)

]}
/p,
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and

J̃∗∞ = Bq(1)′C−1
qq Bq(1).

Writing

(
C11
)−1

= C11 − C12C
−1
22 C21 =

 Dpp D12

D21 D22


where Dpp = Cpp − CpqC

−1
qq C

′
pq and D22 is a (d− p) × (d− p) matrix and using

equations (3.13)–(3.15), we have

F̃ ∗∞ =
[
Bp (1)− CpqC−1

qq Bq (1)
]′
D−1
pp

[
Bp (1)− CpqC−1

qq Bq (1)
]
/p.

So  WT (θ̂T )

JT (θ̂T )

 d→

 F∞

J∞

 d
=

 F̃ ∗∞

J̃∗∞

 .

The theorem then follows if we let (F∞, J∞)′ = (F ∗∞, J
∗
∞)′, which is innocuous for

the weak convergence result.

Proof of Theorem 28. Part (a). Conditional on Bq (·) := {Bq (r) : r ∈ [0, 1]} ,

both Bp (1) and Cpq are normal. Hence conditional on Bq (·) , we have

Bp (1)− CpqC−1
qq Bq (1) ∼ N

(
0, Ip + E

[
CpqC

−1
qq Bq (1)Bq (1)′C−1

qq Cqp|Bq (·)
])
.

(3.17)

Let B
(i)
p (r) be the i-th element of Bp (r). Define

Cp(i),q =

∫
QK (r, s) dB(i)

p (r) dB′q (r) ∈ R1×q

Cq,p(j) =

∫
QK (r, s) dBq (r) dB(j)

p (r) ∈ Rq×1

which are the i-th row of Cpq and j-th column of Cqp, respectively. Then the
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(i, j)-th element of the conditional variance in (3.17) can be written as

E
{
Cp(i),qC

−1
qq Bq (1)Bq (1)′C−1

qq Cq,p(j)|Bq (·)
}

= E

{
1

K

K∑
`1=1

(∫ 1

0

Φ`1 (r) dB(i)
p (r)

)

×
(∫ 1

0

Φ`1 (s) dB′q (s)

)
C−1
qq Bq (1)Bq (1)′C−1

qq

1

K

K∑
`2=1

(∫ 1

0

Φ`2 (r̃) dBq (r̃)

)
(∫ 1

0

Φ`2 (s̃) dB(j)
p (s̃)

)∣∣∣∣Bq (·)
}

= E

{
1

K2

∑
`1,`2

(∫ 1

0

Φ`1 (r) dB(i)
p (r)

)

×
(∫ 1

0

Φ`1 (s) dB′q (s)

)
C−1
qq Bq (1)Bq (1)′C−1

qq

(∫ 1

0

Φ`2 (r̃) dBq (r̃)

)
︸ ︷︷ ︸

a scalar

×
(∫ 1

0

Φ`2 (s̃) dB(j)
p (s̃)

)∣∣∣∣Bq (·)
}

= δij
1

K2

∑
`1,`2

(∫ 1

0

Φ`1 (r) Φ`2 (r) dr

)(∫ 1

0

Φ`1 (s) dB′q (s)

)

× C−1
qq Bq (1)Bq (1)′C−1

qq

(∫ 1

0

Φ`2 (r̃) dBq (r̃)

)
= δij

1

K2

K∑
`1=1

(∫ 1

0

Φ`1 (s) dB′q (s)

)
C−1
qq Bq (1)Bq (1)′C−1

qq

(∫ 1

0

Φ`1 (r̃) dBq (r̃)

)

= δij
1

K2

K∑
`1=1

Bq (1)′C−1
qq

(∫ 1

0

Φ`1 (s) dBq (s)

)(∫ 1

0

Φ`1 (r̃) dB′q (r̃)

)
C−1
qq Bq (1)

=
δij
K
Bq (1)′C−1

qq Bq (1) ,

where δij = 1 {i = j} . So, conditional on Bq (·) ,

Bp (1)− CpqC−1
qq Bq (1) ∼ N

[
0, Ip

(
1 +

1

K
Bq (1)′C−1

qq Bq (1)

)]
.
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That is, conditional on Bq (·) ,

Bp (1)− CpqC−1
qq Bq (1)√

1 + 1
K
Bq (1)′C−1

qq Bq (1)
∼ N(0, Ip).

But N(0, Ip) does not depend on Bq (·) , so

ξp =
Bp (1)− CpqC−1

qq Bq (1)√
1 + 1

K
Bq (1)′C−1

qq Bq (1)
∼ N(0, Ip)

unconditionally. In addition, ξp is independent of Dpp. Using these results, we have

F∞
1 + 1

K
B′q (1)C−1

qq Bq (1)

d
=
ξ′pD

−1
pp ξp

p
d
=

χ2
p/p

χ2
K−p−q+1/K

d
=

K

(K − p− q + 1)

χ2
p/p

χ2
K−p−q+1/ (K − p− q + 1)

d
=

K

(K − p− q + 1)
Fp,K−p−q+1.

In view of Theorem 24, we have

K − p− q + 1

K

WT (θ̂T )

1 + q
K
JT (θ̂T )

d→ Fp,K−p−q+1,

completing the proof of Part (a).

Using the same argument, we can prove Part (d). Parts (b) and (c) hold

because the asymptotic equivalence of WT (θ̂T ), DT (θ̂T ) and ST (θ̂T ) still holds under

the fixed-smoothing asymptotics. For more details, see Sun (2014b).

Proof of Proposition 35. If T−1
∑T

t=1 Φk (t/T ) = 0 for k = 1, 2, . . . , K, then



226

X =
√
TeK+1 where eK+1 = (1, 0, ..., 0)′ is the first unit vector in RK+1. So

√
T
(
θ̂′T,OLS − θ′0

)
=

[
X ′√
T
M2

X√
T

]−1
X ′√
T
M2ωε =

[
e′K+1M2eK+1

]−1
e′K+1M2ωε

=
[
1− e′K+1ω2 (ω′2ω2)

−1
ω′2eK+1

]−1 [
e′K+1ωu1 − e′K+1ω2 (ω′2ω2)

−1
ω′2ωu1

]
where ωu1 is defined in the same way as ωε is defined. Let

S22 =
K∑
i=1

ωi (y2)ωi (y2)′ and S21 =
K∑
i=1

ωi (y2)ωi (u1)′ .

Using the Sherman-Morrison formula, we have

e′K+1ω2 (ω′2ω2)
−1
ω′2eK+1

= ω0 (y2)′
(
ω0 (y2)ω′0 (y2) +

K∑
i=1

ωi (y2)ωi (y2)′
)−1

ω0 (y2)

= T ȳ′2 (T ȳ2ȳ
′
2 + S22)

−1
ȳ2 = T ȳ′2

[
S−1

22 −
S−1

22 (T ȳ2ȳ
′
2)S−1

22

1 + T ȳ′2S
−1
22 ȳ2

]
ȳ2

= T ȳ′2S
−1
22 ȳ2 −

(
T ȳ′2S

−1
22 ȳ2

)2

1 + T ȳ′2S
−1
22 ȳ2

=
T ȳ′2S

−1
22 ȳ2

1 + T ȳ′2S
−1
22 ȳ2

,
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and

e′K+1ω2 (ω′2ω2)
−1
ω′2ωu1

= ω0 (y2)′
[
ω0 (y2)ω′0 (y2) +

K∑
i=1

ωi (y2)ωi (y2)′
]−1

[
ω0 (y2)ω′0 (u1) +

K∑
i=1

ωi (y2)ω′i (u1)

]
=
√
T ȳ′2 (T ȳ2ȳ

′
2 + S22)

−1
[T ȳ2ū

′
1 + S21]

=
√
T ȳ′2

[
S−1

22 −
S−1

22 (T ȳ2ȳ
′
2)S−1

22

1 + T ȳ′2S
−1
22 ȳ2

]
[T ȳ2ū

′
1 + S21]

=
(
T ȳ′2S

−1
22 ȳ2

)√
T ū′1 +

√
T ȳ′2S

−1
22 S21

−
(
T ȳ′2S

−1
22 ȳ2

)
×
(
T ȳ′2S

−1
22 ȳ2

)√
T ū′1

1 + T ȳ′2S
−1
22 ȳ2

−

(
T ȳ′2S

−1
22 ȳ2

)
×
(√

T ȳ′2S
−1
22

)
1 + T ȳ′2S

−1
22 ȳ2

S21

=

(
T ȳ′2S

−1
22 ȳ2

)√
T ū′1 +

√
T ȳ′2S

−1
22 S21

1 + T ȳ′2S
−1
22 ȳ2

.

Hence

e′K+1M2eK+1 = 1− e′K+1ω2 (ω′2ω2)
−1
ω′2eK+1 = 1− T ȳ′2S

−1
22 ȳ2

1 + T ȳ′2S
−1
22 ȳ2

=
1

1 + T ȳ′2S
−1
22 ȳ2

,

e′K+1M2ωε = e′K+1ωu1 − e′K+1ω2 (ω′2ω2)
−1
ω′2ωu1

=
√
T ū′1 −

(
T ȳ′2S

−1
22 ȳ2

)√
T ū′1 +

√
T ȳ′2S

−1
22 S21

1 + T ȳ′2S
−1
22 ȳ2

=

√
T ū′1 −

√
T ȳ′2S

−1
22 S21

1 + T ȳ′2S
−1
22 ȳ2

.

It then follows that

√
T
(
θ̂′T,OLS − θ′0

)
=
√
T
(
ū′1 − ȳ′2S−1

22 S21

)
=
√
T
(
ū′1 − ū′2S−1

22 S21

)
.

It is easy to see that S−1
22 S21 = Ω̂−1

22 Ω̂21. So

θ̂T,OLS − θ0 = ū1 − β̂ū2 = θ̂T,GMM − θ0.
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This implies that θ̂T,OLS = θ̂T,GMM , as desired.

If
∫ 1

0
Φk (r) dr = 0 but not T−1

∑T
t=1 Φk (t/T ) = 0, then we have X =

√
TeK+1 +O

(
1/
√
T
)

. Using this and the assumptions in the proposition, we have

√
T
(
θ̂′T,OLS − θ′0

)
=
[
e′K+1M2eK+1

]−1
e′K+1M2ωε + op (1) .

Following the same argument as above, we have
√
T (θ̂T,OLS − θ0) =

√
T (θ̂T,GMM −

θ0) + op (1) , which implies that
√
T (θ̂T,OLS − θ̂T,GMM) = op (1) .

Proof of Proposition 36. We first give a representation of WCNLR. We focus on

the case that T−1
∑T

t=1 Φk (t/T ) = 0 for k = 1, 2, . . . , K, as the other case follows

from the similar arguments. Using (θ̂T,OLS − r)′ = [X ′M2X]−1X ′M2ωε, we have

WCNLR =
(
θ̂T,OLS − r

)′ {
Ω̃11·2 (X ′M2X)

−1
}−1 (

θ̂T,OLS − r
)
/p

= [X ′M2X]
−1
X ′M2ωε

{
Ω̃11·2 (X ′M2X)

−1
}−1

ω′εM2X [X ′M2X]
−1

=
X ′M2ωε × Ω̃−1

11·2 × ω′εM2X

X ′M2X

1

p

using the fact that X ′M2X is a scalar.

In the proof of Proposition 35, we have shown that

X ′M2ωε =
√
Te′K+1M2ωε =

T
(
ū′1 − ȳ′2S−1

22 S21

)
1 + T ȳ′2S

−1
22 ȳ2

and

X ′M2X = Te′K+1M2eK+1 =
T

1 + T ȳ′2S
−1
22 ȳ2

.

Hence

WCNLR =

√
T
(
ū′1 − ȳ′2S−1

22 S21

)√
1 + T ȳ′2S

−1
22 ȳ2

× Ω̃−1
11·2 ×

√
T
(
ū1 − S12S

−1
22 ȳ2

)√
1 + T ȳ′2S

−1
22 ȳ2

1

p
.

To simplify Ω̃−1
11·2, we note that

β̂′T,OLS = [ω′2MXω2]
−1
ω′2MXω1
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where

MX = IK+1 −X(X ′X)−1X ′ = IK+1 − eK+1e
′
K+1 =

 0 0

0 IK

 .

So β̂′OLS = S−1
22 S21. Plugging this and θ̂OLS into the estimated residuals yields

ω1 −Xθ̂′T,OLS − ω2β̂
′
T,OLS

= ωε −X
(
θ̂′T,OLS − θ′0

)
− ω2

(
β̂′T,OLS − β′0

)
= ωε −X

(
ū′1 − ū′2S−1

22 S21

)
− ω2S

−1
22 S21 + ω2β

′
0

=



√
T
(
ε̄′ − ū′1 + ū′2S

−1
22 S21 − ū′2S−1

22 S21 + ū2β
′
0

)
ω′1 (ε)− ω′2 (u2)S−1

22 S21 + ω′2 (u2) β′0

. . .

ω′K (ε)− ω′K (u2)S−1
22 S21 + ω′K (u2) β′0



=


0

ω′1 (u1)− ω′2 (u2)S−1
22 S21

. . .

ω′K (u1)− ω′2 (u2)S−1
22 S21

 .

Therefore

Ω̃11·2 =
1

K − q

K∑
i=1

[
ωi (u1)− S12S

−1
22 ωi (u2)

] [
ωi (u1)− S12S

−1
22 ωi (u2)

]′
=

1

K − q
(
S11 − S12S

−1
22 S21

)
.

Using this and noting that Sij = KΩ̂ij, we have

Ω̃11·2 =
K

K − q

(
Ω̂11 − Ω̂12Ω̂−1

22 Ω̂21

)
,
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and so

WCNLR =
K − q
K

√
T
(
ū1 − S12S

−1
22 ȳ2

)′√
1 + T ȳ′2S

−1
22 ȳ2

×
(

Ω̂11 − Ω̂12Ω̂−1
22 Ω̂21

)−1

×
√
T
(
ū1 − S12S

−1
22 ȳ2

)√
1 + T ȳ′2S

−1
22 ȳ22

1

p

=
K − q
K

√
T
(
ū1 − β̂ū2

)′ (
Ω̂11 − Ω̂12Ω̂−1

22 Ω̂21

)−1√
T
(
ū1 − β̂ū2

)
1 + 1

K
(
√
T ū2)′Ω̂−1

22 (
√
T ū2)

1

p
,

where we have used S12S
−1
22 = β̂T,OLS = Ω̂12Ω̂−1

22 = β̂.

Next, we give a representation of Wc
T (θ̂T,GMM) when R = Ip. For the

location model, GT (θ̂T,GMM)′ = (Ip, Op×q) . We have

WT :=
√
T (θ̂T,GMM − r)′

(
Ω̂11 − Ω̂12Ω̂−1

22 Ω̂21

)−1√
T (θ̂T,GMM − r)/p.

Combining this with

JT = (
√
T ū2)′Ω̂−1

22 (
√
T ū2),

we have

Wc
T (θ̂T,GMM) =

K − p− q + 1

K

×

√
T
(
ū1 − β̂ū2

)′ (
Ω̂11 − Ω̂12Ω̂−1

22 Ω̂21

)−1√
T
(
ū1 − β̂ū2

)
1 + 1

K
(
√
T ū2)′Ω̂−1

22 (
√
T ū2)

1

p
.

So

WCNLR =
K − q

K − p− q + 1
Wc

T (θ̂T,GMM).

In particular, WCNLR = Wc
T (θ̂T,GMM) when p = 1.
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