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ABSTRACT OF THE DISSERTATION

Higher Fitting Ideals of Iwasawa Modules

by

Corey Dean Stone

Doctor of Philosophy in Mathematics

University of California San Diego, 2016

Professor Cristian Popescu, Chair

The work of Iwasawa, beginning with a seminal paper in 1958 [7], provided a

fruitful method of studying the structure of ideal class groups and other algebraic objects

by viewing them inside of a p-adic tower of fields and then considering the corresponding

object at the top of the tower as a module over a topological ring now called an Iwasawa

algebra. One way to analyze the structure of these modules over the appropriate ring

is to determine the Fitting ideals of the module; however, in the literature thus far only

the initial Fitting ideal has been the object of close study. In this dissertation, we prove

a conjecture by Kurihara about the higher Fitting ideals of Iwasawa modules of certain

abelian number fields. This result shows that they are in essence generated by the special

values of L-functions arising from a family of extensions of the number field.
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Chapter 1

Introduction

The use of Fitting ideals in Iwasawa theory goes back to Mazur and Wiles’

proof of the main conjecture in 1984, where they show that the initial Fitting ideal of

the classical Iwasawa module associated to an abelian extension of Q is generated by

a p-adic L-function. Most results that involve Fitting ideals of a particular module

(such as an ideal class group, cohomology group, Selmer group, etc.) have had

this main conjecture flavor, involving the initial Fitting ideal Fitt0. For example,

as Fitt0
R(M) lies inside the annihilator AnnR(M), giving generators of this Fitting

ideal refines many conjectures that deal with the annihilation of a module, such as

the Brumer-Stark conjecture or the Coates-Sinnott conjecture. However, studying

the higher Fitting ideals can also be fruitful, as knowing all the Fitting ideals of a

module can more completely determine the structure of the module, or can provide

a method of attack for other central conjectures in number theory, such as the

Iwasawa-Leopolt and Kummer-Vandiver conjectures.

This dissertation is concerned with a conjecture of Masato Kurihara formu-

lated in 2003 in [8]. For a CM abelian field extension F over a totally real number

field k, Kurihara studied the Fitting ideals of the ideal class group of F , ClF , over

the ring Z[Gal(F/k)]. This was done by studying the Fitting ideals of the p-primary
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part, (ClF ⊗ Zp), of the ideal class group ClF , for every prime p. As the prime 2

is problematic, he was primarily concerned with the case where p is an odd prime

(and we will be as well). Moreover, as F is CM, ClF ⊗ Zp has a decomposition as

ClF ⊗Zp = (ClF ⊗Zp)+ ⊕ (ClF ⊗Zp)−, and Kurihara directed his attention to the

minus part of this decomposition.

The strategy is to consider the cyclotomic Zp-extension of F , denoted F∞,

and make use of the Iwasawa main conjecture for F∞. Let R = Zp[[Gal(F∞/k]]−,

and consider the R-module M = X−F∞ , which is the projective limit of the p-primary

components of the ideal class groups, (ClFn ⊗ Zp)−, associated to the n-th level,

Fn of the cyclotomic extension. In [8], Kurihara studies the Fitting ideals of the

above module over the ring R for a special class of extensions F/k, and determines

Fitt0
R(M) to essentially be generated by the special values of equivariant L-functions

for abelian extensions of k contained in F . In addition, for k = Q, he also studies the

higher Fitting ideals of M , and gives a conjecture as to what generates these ideals.

While he only proves his conjecture for Fitt1, he conjectures that the higher Fitting

ideals, modulo a large power of p, are generated by the previous p-adic L-functions

that generate Fitt0
R(M), as well as additional elements that arise from equivariant

p-adic L-functions of special abelian extensions of F .

It is this conjecture that we turn our attention towards. The structure of

the dissertation is the following. In chapter 2, we give the preliminary information

needed for the rest of the paper; we briefly describe Fitting ideals and L-functions,

and give a precise formulation of Kurihara’s conjecture. In chapter 3, we discuss

a Gross-type p-adic refinement of the Rubin-Stark conjecture, which is needed for

chapter 4, and talk about how this conjecture can help us attack Kurihara’s conjec-

ture. Chapter 4 contains the main results of the paper: the second section gives the

proof of Kurihara’s conjecture, and the first section proves a technical theorem that
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is needed for the main theorem, but is of some interest in its own right. (It gener-

alizes Theorem 3.1 in [14], suggesting that it can be used to relate the Gross-type

conjecture to Euler systems, which we will do in a subsequent paper).



Chapter 2

Algebraic Preliminaries

2.1 Fitting Ideals

Let R be a commutative ring and M be a finitely generated R - module, with

generators v1, . . . , vn. We will also assume that M is finitely presented; i.e, there

are finitely many relations among the above generators that generate all relations.

Then we can write the following right exact sequence of R-modules:

Rm φ−→ Rn f−→M −→ 0,

Let A be an n×m matrix associated to φ; the columns of the matrix A are

the generating relations mentioned above.

Definition 2.1. The i-th Fitting ideal of M , denoted FittiR(M), is the ideal gener-

ated by the determinants of all (n− i)× (n− i) minors of A.

The cofactor expansion for determinants shows that the Fitting ideals form

an ascending chain Fitt0
R(M) ⊆ Fitt1

R(M) . . . ⊆ FittnR(M) = R. Also, since the

columns of A are relations for the vi’s, we have that AT~v = 0. For any n× n minor

4
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B of AT , multiplying by its associated adjugate matrix gives det(B)~v = 0; therefore,

Fitt0
R(M) ⊆ AnnR(M).

If M is not finitely presented, we can still define the Fitting ideals of M . In

this case, we don’t have an exact sequence as above. Instead, we directly form a

matrix A, where the columns of A are relations for the generators of M . FittiR(M)

is then defined to be generated by all (n− i)× (n− i) minors of A, for all matrices

A whose columns are relations for the generators of M . However, since the modules

that we consider in this dissertation are finitely presented, the results we state here

will only be done for finitely presented M .

The definition above suggests that the Fitting ideals are dependent not only

on M , but on the chosen presentation and choice of matrix A. The following propo-

sition, in addition to recording a property of Fitting ideals that we will use later,

will show that the Fitting ideals are only dependent on the module M (see [11]).

Proposition 2.2. 1. For all i, FittiR(M) is independent of the choice of presen-

tation and matrix A.

2. If M and N are two finitely generated, finitely presented R-modules such that

M � N , then for all i, FittiR(M) ⊆ FittiR(N).

Proof. 2) It is easier here to use the general method of defining Fitting ideals

outlined above. Denote the surjection of M onto N by ρ. Let v1, . . . , vn be

generators for M ; then w1, . . . , wn generate N , where wi = ρ(vi). Then any

relation of v1, . . . , vn is a relation of w1, . . . , wn. Thus, any matrix A that would

be appear in the definition of the Fitting ideals for M would also appear in

that for N . Thus, FittiR(M) ⊆ FittiR(N).

1) Consider two different sets of generators of M , v1, . . . , vn and w1, . . . , wn with

two different choices of generating relations; we will denote how we view M
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with respect to these two choices by Mv and Mw. Then we have the obvious

isomorphism i from Mv to Mw. Applying (1) to i and i−1 gives the result.

If R is a PID, the structure of all the Fitting ideals of a module over R can

be used to determine the structure of the module itself. The structure theory of

finitely generated modules over a PID yields that

M ∼= Rn ⊕R/(a1)⊕ . . .⊕R/(ak)

with (a1) ⊂ (a2) ⊂ . . . ⊂ (ak).

Calculating the Fitting ideals for M gives FittiR(M) = 0 for 0 ≤ i ≤ n − 1

and FittiR(M) = (ai−n+1 · . . . · ak) for n ≤ i ≤ n+ k, with the empty product being

the whole ring R. Vice versa, if R is a PID and we know the Fitting ideals of an

R-module M to have the form above, then one can easily determine that M has the

structure above.

For more complicated rings R, knowing the Fitting ideals is not enough to

completely determine the module. For the rings that we will consider, knowing the

Fitting ideals determines the module up to quasi-isomorphism (a homomorphism

with finite kernel and cokernel); however, the converse is not true.

For more information on Fitting ideals, see [11].

2.2 Augmentation Ideals

Consider a tower of field extensions k ⊆ F ⊆ L, with L/k a finite abelian

extension. (A note: using projective limits, we can define augmentation ideals for

infinite extensions as well; however, for purposes of this paper we only need the finite

case). Then each field extension is Galois; we will let Gal(L/k) = G, Gal(F/k) = ∆,
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and Gal(L/F) = G. Let R be a commutative ring.

Definition 2.3. • The augmentation ideal of the group ring R[G], denoted by

I(G), is the kernel of the homomorphism aug : R[G] −→ R which fixes every

element of R and sends every element of G to 1.

• The G-relative augmentation ideal of the group ring R[G], denoted by IG, is

the kernel of the R-algebra homomorphism π : R[G] −→ R[∆] which is induced

by Galois restriction from G to ∆.

It is clear that I(G) is generated as an R[G]-module by elements of the form

σ − 1 for σ ∈ G; it is easy to see that IG is also generated by elements of the form

σ − 1 for σ ∈ G, but as an R[G]-module.

We end this section with the following lemma, which occurs as a part of

Lemma 5.2.3 in [13]:

Lemma 2.4. Let r be a positive integer. Then we have a R[∆]-module isomorphism

t : I(G)r/I(G)r+1 ⊗R R[∆] ∼= IrG/I
r+1
G ,

given by γ̂ ⊗ δ = ̂̄δγ.

2.3 L-functions

We first start by reviewing the definition of Artin L-functions. We follow

the setup by Neukirch in [10]; however, we will restrict ourselves to the special case

where the Galois group is abelian and the representation is one-dimensional. Let

k be an algebraic number field, and F a finite abelian extension of k, with Galois

group Gal(F/k) = G. Let χ : G→ C× be a group homomorphism, then we say that

χ is a character of G. Recall that χ induces an action of G on V via σ · v = χ(σ)v,
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for σ ∈ G and v ∈ V . Fix a prime ideal p of k lying over a rational prime p, and

let P be a prime ideal of F lying over p. For a prime p in k, we have its associated

residue field κ(p); recall that κ(p) is Ok/p, the ring of integers of k modded out by

p. If F is a Galois extension of k with prime ideal P above p, then κ(P) is a Galois

extension of κ(p).

In Gal(κ(P)/κ(p)), the automorphism x → xNp generates the Galois group

(Np is |Ok/p|). This group is then canonically isomorphic to the quotient of the

decomposition group GP by the inertia group IP; the image of the above automor-

phism in GP/IP is called the Frobenius automorphism associated to P, which we

will denote ΦP.

Note that given two different primes that lie above p, their associated Frobe-

nius automorphisms are Galois conjugates. We denote the conjugacy class of Frobe-

nius automorphisms for primes lying above p by Frobp; this conjugacy class is de-

pendent only on p.

We now define the Artin L-function for s ∈ C, denoted L(χ, s), to be

L(χ, s) =
∏
p

(1− (χ(Frobp)N(p)−s)−1,

where the product runs over all primes of k such that χ|Ip is trivial. If χ is not the

trivial character, then L(χ, s) is uniformly and absolutely convergent on compact

subsets of the half-plane Re(s) > 1. This can then be uniquely extended to a

holomorphic function on C. If χ is the trivial character, then L(χ, s) can be uniquely

extended to a function that is holomorphic on C \ {1}, and has a simple pole at

s = 1. We will refer to any particular term of this product as the Euler factor

associated to p.

We now have many L-functions for any particular Galois field extension (one

for each character χ of G), but we would like just one function associated to a
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particular field extension that still carries the same information the L-functions do.

This is the equivariant L-function, and we define it as follows.

Let eχ be the idempotent

eχ =
1

|G|
∑
σ∈G

χ(σ)σ−1,

which is an element of C[G]. Let S be a finite set of primes in k, containing all of the

ramified primes and all of the infinite primes. The S - modified Artin L-function,

denoted LS(χ, s), is simply

LS(χ, s) =
∏
p/∈S

(1− χ(Frobp)N(p)−s)−1.

With this in hand, we now have:

Definition 2.5. The S-imprimitive G-equivariant L-function, which we denote θF/k,S(s),

is a function from C to C[G], holomorphic outside of s = 1 with a simple pole at 1,

given by

θF/k,S(s) :=
∑
χ∈Ĝ

LS(χ, s)e−1
χ .

Our focus in this paper will be the special value at s = 0, which is the value of

the first non-vanishing derivative at 0. Throughout this paper, we will write θF/k,S

for θF/k,S(0). From the definition above, we know that θF/k,S ∈ C[G]; however, a

theorem of Klingen and Siegel (see [15]) tells us that, in fact, θF/k,S ∈ Q[G].

We need one more tool in order to discuss the results in Kurihara’s paper.

Fix an odd rational prime p. Let F∞ be the cyclotomic Zp-extension of F (the

extension of F with Galois group over F isomorphic to Zp, obtained by adjoining

all p-th power roots of unity to F , then taking the appropriate intermediate field.)
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Write Fn for the intermediate field such that [Fn : F ] = pn, and F = F0. For each

of these finite levels, we have the equivariant L-value θFn,S. For any field extension

L of k, we let SL be the set finite primes in k that are ramified in L.

For any pair of non-negative integers m and n, n < m, let

rm,n : Q[Gal(Fm/k)] → Q[Gal(Fn/k)] be the natural map coming from viewing

Gal(Fn/k) as a quotient of Gal(Fm/k) . Then a result of Tate in [16] yields

rm,n(θFm,S) = (
∏

v∈SFm\SFn

(1− (Frob−1
v ))θFn,S.

Since there are only finitely many ramified primes in F∞, there is some positive

integer N for which SFm = SFN for all m > N . So for any m,n > N ,

rm,n(θFm,S) = θFn,S.

These maps form a projective system. Let T be a another finite set of primes

in Q that is disjoint from S and such that there are no roots of unity in F congruent

to 1 modulo every prime in T . Define the (S, T ) - modified G-equivariant L-function,

denoted θF/k,S,T (s) to be

θF/k,S,T (s) = (
∏
v∈T

(1− Frob−1
v · (Nv)1−s))θF/k,S(s).

The special value of this function at s = 0 has the same properties under the rm,n

maps as that of θF/k,S. Deligne and Ribet proved in [3] that there exists an element

of Zp[[Gal(F∞/k)]], which we will denote by θF∞/k,S,T that behaves as the projective

limit. In particular, for every positive integer n, there exists a map

rn : Zp[[Gal(F∞/k)]]→ Zp[Gal(Fn/k)]
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such that rn(θF∞/k,S,T ) = θFn/k,S,T . We will call this the equivariant p-adic L-

function. However, for our purposes of proving Kurihara’s conjecture, we do not

want to consider the set T ; we will discuss how to eliminate the presence of T in

section 3.1.1.

2.4 Kurihara’s paper

As the main result of this dissertation is proving a conjecture of Kurihara’s,

we will use this section to state the conjecture and to set notation which will be

used in Chapters 3 and 4.

Fix an odd prime number p. We will let the base field k = Q, and F is

a cyclic CM extension of Q, with ∆ = Gal(F/Q) of order coprime to p. Since

F is a CM field, ∆ has a complex conjugation element, which we will denote j.

For an odd character χ of ∆ (meaning that χ(j) = −1) that is injective on ∆, let

Λχ
F∞ = Zp[χ][[Γ]], where Γ = Gal(F∞/F). For each finite level Fm, we denote by

AFm the p-primary component of the ideal class group of Fm. XF∞ is then defined

to be the projective limit of the AFm ’s with respect to the norm maps.

Also, for χ’s as above which are different from the Teichmuller character,

we define ω, θχFn/k,S := χ(θFn/k,S(0)). This is an element of Zp[χ][Gal(Fn/F)], and

therefore θχF∞/k,S is in Λχ
F∞ .

The complex conjugation elements j acts on any Zp[∆] module M . This gives

a decomposition of M into two parts, denoted M+ and M−, which are respectively

the eigenspaces for j corresponding to eigenvalues 1 and -1. In particular, each AFm

has such a decomposition, and therefore XF∞ does too.

Kurihara’s conjecture is concerned with determining generators of the Fitting

ideals of Xχ
F∞ , viewed as a Λχ

F∞ - module. We begin by stating the main conjecture of

Iwasawa theory, proven by Mazur and Wiles in [9], that relates the p-adic L-function
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to the initial Fitting ideal.

Theorem 2.6. Fitt0
ΛF∞

(X−F∞) = 〈θF∞〉.

We now prove the following algebraic result, which we will use to show that

some elements of Λχ
F∞ are in the appropriate Fitting ideals.

Proposition 2.7. Let R be a commutative ring, G a finite abelian group, M a

finitely generated, finitely presented R-module of rank n on which G acts trivially,

and Fi = FittiR(M) for all 0 ≤ i ≤ n. Define s : R −→ R[G] via s(r) = r · 1G. Then

Fitt0
R[G](M) ⊆ s(F0) + s(F1)IG + s(F2)I2

G + . . .+ s(Fn−1)In−1
G + InG.

A remark on the notation of the proposition: to match the notation in Def-

inition 2.3, we should technically be using I(G) instead of IG. However, for the

application we have in mind for the proposition, R will itself be a group ring, and

then IG will actually function as a relative augmentation ideal.

In what follows (as well as in Chapter 4), for a positive integer n we will

denote by [n] the set {1, . . . , n}. For a subset Z ⊆ [n], we will denote its complement

by Zc.

Proof. First, we note that the map s forms a splitting for the exact sequence

1→ IG → R[G]
π−→ R→ 1,

and so R[G] = s(R)⊕ IG.

Consider a free presentation of M as an R-module, given by

0→ C
V−→ Rn α−→M → 0.

From this, we get the following presentation for M as an R[G] - module:
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R[G]n
W−→ R[G]n

β−→M → 0,

where β is the composition of α with the map from R[G]n to Rn that applies π to

each coordinate.

Thus, by definition, Fitt0R[G](M) is generated by the determinant of the ma-

trix corresponding to W , which by abuse of notation we will also refer to by W . We

view W as the map that sends R[G]n to the kernel of β; since the kernel of α is C

and G acts trivially on M , the kernel is s(C) +
n⊕
i=1

IG. We conclude that the matrix

of W has entries of the form s(tij) + γij, for tij ∈ C, γij ∈ IG, and 1 ≤ i, j ≤ n.

So we compute the determinant of W . By definition of the determinant, this

is

det(W ) =
∑
τ∈Sn

n∏
i=1

(−1)(i+τ(i))(s(ti,τ(i)) + γi,τ(i)).

To expand the product, let Z ⊆ [n] be the set of indices j for which we pick

γj,τj. Then we have

det(W ) =
∑
Z⊆[n]

∑
τ∈Sn

∏
i/∈Z

(−1)(i+τ(i))s(ti,τ(i))
∏
j∈Z

(−1)(j+τ(j))γj,τ(j).

We now group the τ ’s by where they send the set Z. Doing so gives:

∑
Z⊆[n]

∑
g:Z↪→[n]

∏
j∈Z

(−1)(j+g(j))γj,g(j)
∑
τ∈Sn
τ |Z=g

∏
i/∈Z

(−1)(i+τ(i))s(ti,τ(i)).

Denote by VZ,g the n− k × n− k minor of V , where k = |Z| and where you

delete the rows corresponding to the elements of Z, and the columns corresponding

to the elements of g(Z). Then we have
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∑
Z⊆[n]

∑
g:Z↪→[n]

∏
j∈Z

(−1)(j+g(j))γj,g(j)
∑
τ∈Sn
τ |Z=g

s(det(VZ,g)).

But then s(det(VZ,g)) is an element of s(Fk), and
∏
j∈Z

(−1)(j+g(j))γj,g(j) is an

element of IkG. So for any given Z, the corresponding summand is an element of

s(Fk)I
k
G, which completes the proof.

We apply this proposition in the special case where R = ΛF∞ and G =
r∏
i=1

Z/pN , and M = (X−L∞)G, where L is an abelian extension of F , linearly disjoint

from F∞, with no nontrivial subextensions that are unramified everywhere, such

that G = Gal(L/F). Then R[G] = ΛL∞ . By Theorem 2.6, θL∞ ∈ Fitt0
R[G](M), and

so the proposition gives us that

θL∞ ∈ s(F0) + s(F1)IG + s(F2)I2
G + . . .+ s(Fn−1)In−1

G + InG.

First, assume r = 1, and so G is cyclic, and let x ∈ R[G]. Then α1 =

x − s(π(x)) ∈ IG, and we have x = x1 + α1, where x1 = s(π(x)) ∈ R. Since G is

cyclic, fix a generator σ of G. Then we have (non-canonical) isomorphisms

φk : G→ IkG/I
k+1
G ,

given by

σj → j(σ − 1)k.

In this manner, we can write αi = xi+1(σ− 1)i +αi+1, where αi+1 ∈ I i+1
G and

xi ∈ R. Since G has order pN ,

pN(σ − 1)i = 0 in IkG/I
k+1
G , ∀ i.
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Therefore, each xi, for i ≥ 2, is well-defined in R/pN .

For general G as above, view G as G1 × . . .×Gr, where each Gi is cyclic of

order pN with generator σi. We then set R′ = R[G1 × . . . × Gr−1]. Applying the

above initial case to R′[Gr] yields

x = x1 + x2(σr − 1) + x3(σr − 1)2 + . . . .

We then repeat this procedure for each xi, with respect to Gr−1. Continuing by

induction gives

x =
∑
~i

x~i(σ1 − 1)i1 · . . . · (σr − 1)ir ,

where ~i = (i1, . . . , ir) ∈ Zr, and the x~i’s are elements of R.

We do the above procedure for θL∞ . The x~i’s that we obtain we will denote

δi1,...,ir(θL∞), where i1 + . . . + ir = i. The above proposition gives us that, modulo

pN ,

δ1,1,...,1(θL∞) ∈ FittiR(MG).

Finally, since L has no unramified subextensions, the norm map yields a surjection

from (X−L∞)G/p
N to X−F∞/p

N ; the surjectivity property of Fitting ideals gives us the

following corollary:

Corollary 2.8. δi1,...,ir(θL∞) ∈ FittiΛχF∞/p
N (X−F∞/p

N), for i1 + . . .+ ir = i.

Now we have all the tools necessary to state Kurihara’s conjecture:

Conjecture 2.9. For any i > 0, FittiΛχF∞/p
N (Xχ

F∞/p
N) is equal to the ideal Ti

generated by θχF∞/Q and the δi1,...,ir(θL∞)’s, where

• L ranges over all abelian extensions of Q such that L ∩ F∞ = F , Gal(L/Q)

= Gal(F/Q) × Gal(L/F), and Gal(L/F) ∼= Z/pn1 × . . . × Z/pnr , with each

ni ≥ N .
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• (i1, . . . , ir) ranges over all non-negative integers with i1 + . . . + ir ≤ i.

Proposition 2.7 gives us that Ti ⊆ FittiΛχF∞/p
N (Xχ

F∞/p
N). The other inclusion

is more difficult. In chapter 8 of [8], Kurihara proves his conjecture for the case i = 1.

The basic method is to descend to a large enough finite level, concoct a useful free

presentation forAχFm , then use the Euler system argument to prove the inclusion. For

the general case that we prove later, we will appeal to a Gross-type conjecture and

a Chebotarev density result to generalize the second step of Kurihara’s proof. We

will still need the presentation AχFm (and, in fact, it is the lack of such a presentation

for other Iwasawa modules that presents an obstacle in adapting our proof to those

modules), so we will record the properties of this presentation as a lemma.

Lemma 2.10. Assume that the µ-invariant of F∞ is 0, and that Leopoldt’s conjec-

ture holds for the base field k, and let χ be an odd character of ∆ such that the order

of χ is coprime to p, and χ|∆p 6= 1∆p, and χ 6= ω. Then we have a presentation

0→ (Λm)n
f−→ (Λm)n → AχFn → 0,

such that the determinant of the matrix for f is θχFm.

A note: Leopoldt’s conjecture does hold for abelian extensions of Q, which is

the situation we are in for this dissertation. The hypothesis µ = 0 holds for abelian

extensions of Q as well. However, for arbitrary base fields, these assumptions are

needed.

Proof. The assumption that the µ-invariant of F∞ is 0 gives us that XF∞ is finitely

generated as a Zp - module and that the pdΛχX
χ
F∞ = 1. Let w1, . . . , wn be generators

of Xχ
F∞ . Then we have an exact sequence

0→ (Λχ)n
f−→ (Λχ)n

g−→ Xχ
F∞ → 0.
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Let A be the matrix of f , and choose bases so that det(A) = θχF∞ , which is

possible due to Theorem 2.6. We fix a finite level m > 0, sufficiently large, and let

Γm = Gal(F∞/Fm). We then take Γm-coinvariants of the above equation. By the

snake lemma, we get

(Xχ
F∞)Γm → (Λm)n

f−→ (Λm)n → (Xχ
F∞)Γm → 0,

where Λm = Zp[χ][Gal(Fm/F)].

However, since χ(p) 6= 1, a well-known result in Iwasawa theory gives us that

(Xχ
F∞)Γm is isomorphic to AχFm . Since this is a finite group, the above exact sequence

implies that (Xχ
F∞)Γm is finite. But XF∞ contains no finite ΛF∞ submodules (see

Proposition 13.28, [17]), and so (Xχ
F∞)Γm = 0. Thus, we get the free presentation

0→ (Λm)n
f−→ (Λm)n

g−→ AχFm → 0

at the finite level.

By definition of the ideal class group, at each finite level m we have the exact

sequence

(F×m ⊗ Zp)χ
div−→ (DivFm ⊗ Zp)χ → AχFm → 0.

We project the generators w1, . . . , wn down to generators for AχFm , then use

the Chebotarev density theorem to find primes v1, . . . , vn such that their images

in AχFm correspond to the classes of the projected generator, and that are split all

the way down to Q (so that v1, . . . , vn generate a free Λm-module of rank n in

(DivFm ⊗ Zp)χ). Let M be this module. Then M ∼= Λn
m, and the map M → AχFm is

induced by the map g. Our free presentation for AχFm above gives that the kernel of

M → AχFm , which we will denote M ′, is also a free Λm module of rank n.

Thus, we have the free presentation
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0→M ′ f−→M
g−→ AχFm → 0,

where the matrix for f here has determinant θχFm .

Let D = {x ∈ (F×m ⊗ Zp)χ | div(x) ∈ M}. Then div(D) = M ′. We will

denote by f1, . . . , fn the elements of F× that map to the basis elements of M ′. By

definition, these fi are linearly independent in D. They are also linearly independent

in F×m/(F×m)p
N

, a fact which we will need later, and so we will prove it now.

Lemma 2.11. The classes of f1, . . . , fn are Λm/p
m - linearly independent inside

F×m/(F×m)p
N

Proof. Suppose for contradiction that we have a dependence relation. Then there

exist elements α1, . . . , αn ∈ Λm and x ∈ F×m such that fα1
1 . . . fαnn = xp

N
. Applying

div to both sides gives that pNdiv(x) ∈ M ′, and so is in M , since M ′ ⊆ M . Thus,

there exist β1, . . . , βn ∈ Λm such that

pNdiv(x) = β1v1 + . . .+ βnvn.

However, since the vi’s freely generate M , this implies that div(x) ∈M and

pN divides βi for all i. Thus, x ∈ K, and so x = fγ11 . . . fγnn . From the linear

independence of the fi’s in K, we conclude that pN divides αi for all i, and so each

αi is 0 in Λm/p
N .

Another consequence of χ(p) 6= 1 is to guarantee that θχFm is not a zero-

divisor, which will be needed in Chapter 4. This is an easy consequence of the

functional equation for θFm , see [16].



Chapter 3

The Gross-type Conjecture

3.1 Statement of the Conjecture

In Kurihara’s proof of his conjecture when i = 1, he makes use of the Koly-

vagin’s Euler system of Gauss sums (treated by Rubin in [14]).

It turns out that for i > 1, the Euler system argument breaks down. What

is needed can be thought of as following from two conjectures: one of Rubin and

Stark, and one of Gross. We will discuss the relevant conjectures here, following

the treatment by Popescu in [13]. Later, we will discuss how to use the Gross-type

conjecture to obtain the necessary results to prove Kurihara’s conjecture.

Throughout this section, we will let k be a global field, and F a finite abelian

extension of k with Galois group G. Let {`1, . . . , `r} be a set of r primes in k that

split completely in F , and let S0 = {λ1, . . . , λr} be a set of primes in F with λi

lying over `i for all i. We will take S to be a finite set of primes in k of size ≥ r+ 1

that contains S0; contains S∞, the set of infinite primes; and contains Sram(F/k),

the set of all primes that ramify in F . Furthermore, we will take T to be another

finite set of primes in k that is disjoint from S and such that there are no roots of

unity in F congruent to 1 modulo every prime in T . (If char(k) = 0, this is satisfied

19
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if T contains two primes whose residue fields have different characteristics, or one

prime whose residue field has size larger than the number of roots of unity in K. If

char(k) > 0, then this is satisfied as long as T is non-empty). We will also let SF

and TF be the set of primes in F that lie above S and T , respectively.

We denote by US to be the elements of F× that are units at all the primes

outside of S; i.e., u ∈ US means that u ∈ O×Fv for all v /∈ SF . US,T is the subset of

US whose elements are congruent to 1 modulo every prime in TF .

We consider the Q[G]-module
r∧

Q[G]

QUS,T .

Definition 3.1. The Rubin-Stark lattice, ΛS,T , is the set of all ε ∈
r∧

Q[G]

QUS,T such

that:

• eχε = 0 for all characters χ such that ords=0LS,T (χ, s) > r.

• For every r-tuple (φ1, . . . , φr) ∈ (HomZ[G](US,T ,Z[G]))r,

(φ1 ∧ . . . ∧ φr)(ε) ∈ Z[G],

where (φ1 ∧ . . . ∧ φr)(ε) = det(φi(εj), 1 ≤ i, j ≤ r) for ε =
r∧
j=1

εj, then extend

this map Z[G] - linearly.

We also write evε(φ1 ∧ . . . ∧ φr) for (φ1 ∧ . . . ∧ φr)(ε).

The Rubin-Stark conjecture then says the following:

Conjecture 3.2. With the notation as before, there exists a unique element εS,T ∈

ΛS,T such that

RRubin−Stark(εS,T ) =
1

r!
θ

(r)
F/k,S,T (0),

where the definition of the regulator RRubin−Stark is given in [13].
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The Rubin-Stark conjecture is known to follow from the Equivariant Tami-

gawa Number Conjecture (see [1]). In particular, the ETNC is known for k = Q

(proven for p > 2 by Burns and Greither in [2], and for p = 2 by Flach in [4]), and

so the above conjecture is true for k = Q.

We remark that for a commutative ring R and maps

φ1, . . . , φr,∈ HomZ[G](US,T , R[G]),

evε(φ1 ∧ . . . ∧ φr) is well-defined in R[G]; the proof of this is given in [13].

We now turn to the statement of the Gross-type conjecture. Consider L, an

abelian extension of k containing F that satisfies the following properties:

• Sram(L/k) ⊆ S.

• The set L×T of elements of L× that are congruent to 1 modulo T has no Z-

torsion.

We let H be the Galois group of L/F , and G be the Galois group of L/k.

For a given λi. we define

φλi : F× −→ I(H)/I(H)2 ⊗ Z[G]

φλi(x) =
∑
σ∈G

( ̂ρλi(x
σ−1)− 1)⊗ σ,

where ρλi is the local Artin map taking values in the decomposition group for λi

in the extension L/F , which is a subgroup of H. Let ψλi = t ◦ φλi , where t is the

isomorphism from Lemma 2.4.

Conjecture 3.3. With the assumptions at the start of this section and above,

• θL/k,S,T (0) ∈ IrG
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• Assuming that the Rubin - Stark conjecture holds for the data (F/k, S, T ) and

that the Rubin-Stark element is εF ,

θL/k,S,T (0) = evεF (ψλ1 ∧ . . . ∧ ψλr) in IrG/I
r+1
G .

We remark that the ψ’s take values in R[G]; in [13], section 5.3, it is shown

that evεF (ψλ1 ∧ . . . ∧ ψλr) does make sense in IrG/I
r+1
G .

This conjecture is known to be true for the same situations where the Rubin-

Stark conjecture is known to be true, again as a consequence the ETNC. In partic-

ular, it is known when k = Q.

3.1.1 Eliminating the set T

The presence of the set T is needed to ensure that θF/k,S,T (0) ∈ Z[G] (this

is true by a theorem of Deligne and Ribet, see [3]). However, in order to put this

Gross-type conjecture in the context of Kurihara’s conjecture, we will need a way

to bypass the presence of the set T . To do this, we first prove the following lemma:

Lemma 3.4. With the notation at the start of this section, for χ 6= ωp,

χ(
∏
v∈T

(1− σ−1
v Nv)) ∈ (Zp[G]χ)×.

Proof. Let χ be a character ofG different from the Teichmuller character ωp. Also we

will write G = P ×∆, where P is the p-primary part of G. Using this decomposition

and one of the characterizations of θ in the L-functions section, we can write

θχ =
∑

τ∈P,σ∈∆

aτ,σχ(σ)τ ∈ Zp(χ)[P ].

If we show that each term in the product is a unit, then we are done. To
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that end, let v be a prime in T , and consider χ(1 − σ−1
v Nv). We decompose σv as

σP,v · σ∆,v; then

χ(1− σ−1
v Nv) = 1− χ(σ−1

∆,v) ·Nv · σ
−1
P,∆.

Let α = χ(σ−1
∆,v) · Nv. We want to show that α is not 1 mod p in ZP (χ).

Suppose otherwise. Note that the definition of ωp is that for every ζ ∈ µp∞(F ),

ζσv = ζωp(σv). But modulo v, ζσv ≡ ζNv. Thus, ωp(σv) ≡ Nv mod p. Therefore,

under our assumption, ωp(σ∆,v)
−1 ≡ χ(σ−1

∆,v). However, since χ 6= ωp, there do exist

primes where ωp(σ∆,v)
−1 is not congruent to χ(σ−1

∆,v) mod p.

Now, let n = ord(σP,v), which is a power of p. Then we have

1− αn = (1− ασP,v)(1 + ασP,v + . . .+ (ασP,v)
n−1).

However, since α is not congruent to 1 modulo p, neither is αn, since n is

a p-th power. Therefore, 1 − αn is not divisible by p, and is therefore a unit in

Zp(χ)[∆]. Thus, χ((1− σ−1
v Nv)) ∈ Zp[G]×.

Now, in the full lattice, we define εS by

εS,T =
∏
v∈T

(1− σ−1
v Nv)εS;

note that
∏
v∈T

(1 − σ−1
v Nv) is a unit in Q[G]. By the lemma, when we take χ-

components, we get that εχS ∈ (ΛS,T ⊗Zp)χ. We make this definition because of the

relation ∏
v∈T

(1− σ−1
v Nv)θχF/k,S(0) = θχF/k,S,T (0).

Let χ be a character of G different from ω. Hitting both sides with the
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idempotent eχ and then applying RRubin−Stark to both sides yields

RRubin−Stark(εχS) =
r∏
i=1

log(Nvi) · (θχS(0)).

Also, we not only want to know that εS,T exists, but we also want an explicit

description of it. From the preceding discussion, we only need to describe εS. We

start by recalling an theorem of Stickleberger.

Theorem 3.5. For an abelian number field F , θF/Q,S,T annihilates the ideal class

group of F .

This theorem was proven in 1890 by Stickleberger. We can also deduce this

fact using the main conjecture in Theorem 2.6 and the aforementioned result that

the initial Fitting ideal of a module over a ring is contained in the annihilator of the

module over the ring.

Now, for every i we define g(λi) to be the element of F such that

div(g(λi)) = θχF ,S(0) · λi,

this is possible due to Theorem 3.5. Denote ε̃ = g(λ1) ∧ . . . ∧ g(λr). Then

RRubin−Stark(ε̃χ) =
r∏
i=1

log(N`i) · (θ
χ
Sram

(0))r.

Since

1

r!
(θχF/k,S)(r)(0) =

r∏
i=1

log(N`i) · (θ
χ
Sram

(0)),

this shows that (θχSram
(0))rεχS = (θχSram

(0))ε̃χ.
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3.2 Relating the two conjectures

The main goal of this section is to relate Gross’s conjecture to the δ(θχL)’s

that appear in Kurihara’s conjecture. Our set-up is as follows: let our base field be

k = Q. Let p be an odd prime, F an abelian extension of Q with Galois group ∆,

where ∆ has order co-prime to p. Given a prime ` ≡ 1 mod pN that is unramified in

F/Q, we let K` be the unique subfield of Q(µ`) of degree pN over Q, and L` = FK`,

with Galois group G`. We consider a set of primes {`1, . . . , `r} as in the start of this

section, unramified in F/Q, with the associated set S0 = {λ1, . . . , λr} of primes in

F , also as before. Then each G`i is cyclic, and we will choose generators σ1, . . . , σr

such that < σi >= G`i .

Letting ni = `1 . . . `i for i between 1 and r, we denote Lnr = L`1L`2 . . .L`i .

We denote the Galois group of Li/F by Gni . Finally, we let S = S0

⋃
Sram(F/Q).

Recall that IG`i , the G`i-augmentation ideal of Z[Gal(Lnr/Q)], is the ideal

in Z[Gal(Lnr/Q)] generated by elements of the form (σ − 1), for σ ∈ G`i . In fact,

since G`i is cyclic and generated by σi, IG`i is generated by σi − 1. We will denote

by ĪG`i the G`i-augmentation ideal of Z[Gal(Li/Q)]. By lemma, we know that

ĪG`i/Ī
2
G`i
∼= I(G`i)/I(G`i)

2
⊗ Z[∆] ∼= (Z/pNZ)[∆],

since I(G`i)/I(G`i)
2

is isomorphic to G`i , which is cyclic of order pN . For each i, we

denote this isomorphism by

πi : ĪG`i/Ī
2
G`i

∼−→ (Z/pNZ)[∆].

On the other hand, consider IrGnr/I
r+1
Gnr

, which is the object that appears

in the Gross-type conjecture. Let α be an element of Ir+1
Gnr

. Ir+1
Gnr

is generated by

elements of the form τ−1, for τ ∈ Gnr ; however, by the decomposition of Gnr in the
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opening paragraph, we know that Ir+1
Gnr

is generated by elements of the form σi − 1,

for 1 ≤ i ≤ r. Thus, we have that α can be written as a Z[∆]-linear combination of

elements of the form
r+1∏
j=1

(βj − 1),

where, for each j, βj = σi for some 1 ≤ i ≤ r. By the pigeonhole principle, we must

then have that there exists some i such that for at least two distinct j’s, βj = σi.

We conclude that each of the above elements is in I2
G`i

for some i, and so

α ∈ (I2
G`1

+ . . .+ I2
G`r

).

Thus, Ir+1
Gnr
⊆ (I2

G`1
+ . . .+ I2

G`r
), and so we have a surjection

IrGnr/I
r+1
Gnr
−→ IrGnr/((I

2
G`1

+ . . .+ I2
G`r

) ∩ IrGnr ).

As before, we obtain the isomorphism

IrGnr/((I
2
G`1

+. . .+I2
G`r

)∩IrGnr )
∼= I(Gnr)

r/((I(G`1)
2+. . .+I(G`r)

2)∩I(Gnr)
r)⊗Z[∆].

However, the left entry of this tensor product is cyclic, generated by the class

of ((σ1 − 1) · . . . · (σr − 1)). Moreover, since each σi has order pN in G`i , we have

that in IGnr ,

0 = σp
N

i −1 = (σi−1)(σp
N−1
i +. . .+σi+1) = (σi−1)((σp

N−1
i −1)+. . .+(σi−1)+pN),

which means that pN(σi − 1) ∈ (I2
G`1

+ . . .+ I2
G`r

). Thus, ((σ1 − 1) . . . (σr − 1)) has

order divisible bypN , and it is easy to show that the image of the surjection is also
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isomorphic to (Z/pNZ)[∆]. We will denote this map by

π : IrGnr/I
r+1
Gnr

∼−→ (Z/pNZ)[∆].

Let θ = θ(Lnr/k,S)(0). Conjecture 3.3 states that θ ∈ IrGnr and that its class

mod Ir+1
Gnr

is equal to RGross(εF), where εF is the Rubin-Stark element associated to

the data (F/k, S, T ) and the set of split primes {`1, . . . , `r} ⊆ S. In particular, we

have maps

φλi : F× −→ I(Gnr)/I(Gnr)
2 ⊗ Z[∆]

given by

φλi(x) =
∑
σ∈∆

( ̂ρλi(x
σ−1)− 1)⊗ σ,

where ρλi is the local Artin map taking values in Gnr , and

RGross(εF) = evεF (φλ1 ∧ . . . ∧ φλr).

Similarly, we define

φ̄λi : F× −→ Ī(G`i)/Ī(G`i)
2 ⊗ Z[∆]

by

φ̄λi(x) =
∑
σ∈∆

( ̂ρ̄λi(x
σ−1)− 1) ⊗ σ,

where ρ̄λi is the local Artin map taking values in G`i . We wish to prove the following:

Proposition 3.6. Under all the hypotheses at the start of this subsection, we have

π(RGross(εF)) = evεF ((π1 ◦ φ̄λ1) ∧ . . . ∧ (πr ◦ φ̄λr)),
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where the maps πi are defined at the beginning of this subsection.

Proof. We write εF = x1 ∧ . . . ∧ xr, where the xi’s are in F×. (We know εF can be

written in this manner, but we will not need the specific values of the xi’s for this

proof). By definition,

evεF (φλ1 ∧ . . . ∧ φλr) = (φλ1 ∧ . . . ∧ φλr)(x1 ∧ . . . ∧ xr)

=
∑
τ∈Sr

sgn(τ)
r∏
i=1

φλi(xτ(i))

We analyze the above summation term by term. Without loss of generality,

we take τ = id. Consider the term
r∏
i=1

φλi(xi). For elements τ1, . . . , τk ∈ G, we have

the general factorization

((
k∏
i=1

τi)− 1) =
∑
Z⊆[k]

∏
i∈Z

(τi − 1).

Since G =
r∏
i=1

G`i , we combine the above general factorization with the definition of

the φλi to get that in I(G)r/I(G)r+1 ⊗ Z[∆],

φλi(xi) =
∑
Z⊆[r]
Z 6=∅

∏
j∈Z

(φλi(xi))j,

where (φλi(xi))j is the component of φλi(xi) in I(G`j). The above formula comes

from applying the factorization formula above to ρλi(x
σ
i ) for each σ ∈ ∆, then

collecting terms based on the subsets of [r].

When we take the product of all the φλi ’s, we obtain

r∏
i=1

φλi(xi) =
r∏
i=1

∑
Z⊆[r]
Z 6=∅

∏
j∈Z

(φλi(xi))j.
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However, when you expand the above equation, any term that has a Z that

contains more than a single element will lie in I(G)r+1, and so will be zero in

I(G)r/I(G)r+1 ⊗ Z[∆]. Thus, only terms where the subsets Z are single element

sets appear, and so we can write

r∏
i=1

φλi(xi) =
∑
f

r∏
i=1

(φλi(xi))f(i),

where f ranges over all functions f : [r]→ [r].

Since λi+1 splits completely in Lni , we have that ρλi+1
takes values in

G`i+1
× . . .×G`r . This means that if the f above is not the identity function, then

the corresponding term of the above sum is 0 when we project onto

IrGnr/((I
2
G`1

+ . . .+ I2
G`r

) ∩ IrGnr ).

To see this, observe that splitting condition lets us conclude that ρλr takes values

in G`r . ρλr−1 then takes values in G`r−1 × G`r ; however, the portion in G`r will be

killed when we project, since it will give something in I2
G`r

. Continuing inductively

gives us our claim. This lets us conclude that

π(
r∏
i=1

φλi) =
r∏
i=1

(πi ◦ res)(φλi),

where res is the extension of the Galois restriction map from G to G`i .

From functorial properties of the local Artin map (see Proposition 5.8 in [10]),

we have that res ◦ φλi = φ̄λi . Thus, we get that

π(
r∏
i=1

φλi(xi)) =
r∏
i=1

πi(res ◦ φλi(xi)) =
r∏
i=1

πi(φ̄λi(xi)).

Since this holds for every τ ∈ Sr, this gives the result.
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We think of π(RGross(εF)) as the image of θ in (Z/pNZ)[∆] obtained by using

Conjecture 3.3, albeit with a loss of information that comes from the projection onto

IrGni/((I
2
G`1

+ . . . + I2
G`r

) ∩ IrGni ). We will denote this image by δ~1(θLnr ). What the

above lemma says is that δ~1(θLnr ) can be computed from the extensions Li for all i.

δ~1(θLnr ) is tied to the δ’s as defined in Conjecture 2.8 in the following manner. Via

the procedure outlined after Proposition 2.7, we have the decomposition

θL∞ =
∑

δi1,...,ir(θL∞) ̂(σ1 − 1)i1 · . . . · (σr − 1)ir ,

where δ1,1,...,1(θL∞) is an element of ΛF∞ . Hitting this with the map rN in section

2.3 gives

θLN =
∑

rN [(δi1,...,ir)]
̂(θL∞)(σ1 − 1)i1 · . . . · (σr − 1)ir ,

with the map rN as defined at the end of section 1.5. Moreover, the terms for which

i1 + . . . + ir < r do not appear, by the first half of the Conjecture 3.3.

In fact, this gives the image of θLN in IrG. Applying π to this should then

give δ~1(θLnr ), so we conclude that δ~1(θLnr ) = (π ◦ rN)(δ1,...,1(θL∞)). Compare with

Theorem 2.4 in [14].



Chapter 4

Proving Kurihara’s Conjecture

4.1 A Chebotarev-Type Argument

In this section, we will prove a technical result that we need for the proof

of Kurihara’s conjecture. Our base field is still Q. We fix an odd prime p and a

sufficiently large positive integer N . Let Q be a CM abelian extension of Q with

Galois group G ∼= P ×∆, where P is a p-group and ∆ has order co-prime to p, and

contains a complex conjugation automorphism j. (The application will be when Q

is some finite level of the cyclotomic Zp-extension of a CM field F whose Galois

group over Q has order coprime to p). Given a prime ` ≡ 1 mod pN , we let K` be

the unique subfield of Q(µ`) of degree pN over Q, and L` = QK`. For a set of primes

{`1, . . . , `r} that are distinct, unramified in the extension Q/Q, and congruent to 1

modulo pN , we set nr = `1 . . . `r and define Lnr to be the compositum L`1L`2 . . .L`r .

We begin with two lemmas needed for the argument.

Lemma 4.1. For a character χ of ∆, χ 6= ω and an extension L = Lnr as above,

the natural map

(Q×/(Q×)p
N

)χ −→ (L(µpN )×/((L(µpN )×)p
N

)χ
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is injective.

Proof. Assume it is not injective. Then there exists a nontrivial element x ∈

(Q×/(Q×)p
N

)χ such that x = ξp
N

, for some ξ ∈ L(µpN )×. So, let σ ∈Gal(L(µpN )/Q).

Applying σ − 1 to the above equality gives 1 = (ξσ−1)p
N

, which implies that

ξσ−1 ∈ µpN . However, since χ 6= ω, L(µpN )χ has no non-trivial roots of unity,

and so ξσ−1 = 1. Since this is true for all σ in the Galois group, we have ξ = 1, and

so x = 1, a contradiction.

Lemma 4.2. The units of (Z/pNZ)(χ)[P ] are precisely the elements
∑
σ∈P

aσσ for

which p does not divide
∑
σ∈P

aσ.

Proof. (Z/pNZ)(χ)[P ] is a local ring (see [12], section 2) with maximal ideal m =

(p, I(P )). Since everything not in the maximal ideal is a unit, it is enough to show

that the elements of m are precisely the set of elements of the form
∑
σ∈P

aσσ for which

p divides
∑
σ∈P

aσ. Let U be this set; in fact, it is an ideal in ((Z/pNZ)(χ)[P ]). By the

definition of the augmentation ideal I(P ), the sum of the coefficients of any element

of I(P ) is 0, and so it is clear that m ⊆ U .

On the other hand, let u =
∑
σ∈P

aσσ ∈ U , and c =
∑
σ∈P

aσ. Define v =∑
σ∈P

(c− aσ)(σ− 1). By definition, v ∈ m. Also, u+ v = (c
∑
σ∈P

σ) + (|P | − 1)c, which

is divisible by c, and therefore p. Thus, u ∈ m, and so m = U , which completes the

proof.

We are now ready to prove the technical theorem that we need. We refer the

reader to the paragraph preceding Lemma 2.11 for the definitions of the elements fi

that appear in the following theorem, and to the paragraph preceding Proposition

3.6 for the definition of the maps φλj . Compare the theorem with the conditions

specified in [8], page 72, or in [14], Theorem 3.1.
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Theorem 4.3. Let r ∈ N. Given an odd character χ of ∆, χ 6= ω, and classes

v̂χ1 , . . . , v̂
χ
r in (ClQ ⊗ Zp)χ, we can find rational primes `1, `2, . . . , `r satisfying the

following conditions:

• `j ≡ 1 mod pN and `j is completely split in the composite extension Lnj−1
, for

every 1 ≤ j ≤ r, where nj−1 = `1 . . . `j−1.

• For each 1 ≤ j ≤ r, there exists a prime λj in Q lying over `j such that

λj ∼ v̂χj

• For every 1 ≤ i, j ≤ r, φλj(fi) ∈ ((Z/pNZ)(χ)[P ])× if i = j, and is 0 other-

wise.

Proof. We do this by induction on r. As the argument for the base case is essentially

the same as the inductive step, we will prove the inductive step first. Assume that

the theorem holds up to r − 1; we will show it holds for r. The first condition is

satisfied if `r splits in Er−1/Q, where Er−1 = Lnr−1(µpN ) .

For the second condition, let Hχ be the subextension of the Hilbert class field

of Q whose Galois group over Q is isomorphic to (ClQ⊗Zp)−. We know that j acts

via lift and conjugation on both Gal(Hχ/Q) and Gal(Er−1/Q). Since Er−1/Q is an

abelian extension, Gal(Er−1/Q) is abelian and therefore j acts trivially on it. On

the other hand, j acts as (-1) on Gal(Hχ/Q). Combining this with the previous fact

gives us that Hχ/Q and Er−1/Q are linearly disjoint.

The third condition requires the most work. Define X to be the subgroup

〈f1, . . . , fr〉 ⊆ (Q×/(Q×)p
N

)χ. Recall that as a ((Z/pNZ)(χ)[P ])× - module, this is

free of rank n. Thus, the elements of the set

F := {fσi |1 ≤ i ≤ r, σ ∈ P}
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are Z/pNZ-linearly independent. From Lemma 4.1, we conclude that the elements

of F are Z/pNZ-linearly independent in (E×r−1/(E×r−1)p
N

)χ.

Let us consider the family of extensions Er−1(x1/pN ), for x ∈ F. From the

preceding paragraph, we know that each of these extensions are linearly disjoint

from the compositum of the rest. From Kummer theory, we have an isomorphism

X ∼= HomZ/pN (Gal(Er−1(x1/pN )/Er−1), µpN ).

The right hand side of this equation is acted upon by δ ∈ ∆ as

δ ∗ φ(y) = δ(φ(δ−1y),

and the isomorphism respects the action of ∆ on both sides. However, ∆ acts on

µpN via ω and on X via χ. Thus, ∆ must act on Gal(Er−1(x1/pN )/Er−1) via χω−1.

Therefore, j acts as 1 on Gal(Er−1(x1/pN )/Er−1). From this, we conclude that each

of these extensions is linearly disjoint from Er−1Hχ.

Recall that

φλr(fj) =
∑
σ∈P

( ̂ρ̄λr(f
σ−1

j )− 1)⊗ σ.

From our characterization on the units of (Z/pNZ)(χ)[P ], we can ensure that the

third condition holds for r = j if

̂ρ̄λr(fr)− 1 ∈ (Z/pNZ)× and ̂ρ̄λr(f
σ−1

r )− 1 ∈ (pZ/pNZ) ∀ σ 6= id.

From our identification of I(G`r)/I(G`r)
2 with Z/pNZ, this is equivalent to saying

that

̂ρ̄λr(fr)− 1 ∈ G×`r and ̂ρ̄λr(f
σ−1

r )− 1 ∈ Gp
`r
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To obtain conditions that we can use the Chebotarev theorem on, let us

consider what happens if we were to localize at `r. The localization of both Q and

Q at `r is Q`r , since `r ≡ 1 mod pN . The localization of Lr at `r is the subextension of

Q`r(µ`r) that has degree pN over Q`r , we will denote this subextension by Q`r(µ`r)
∗.

From local class field theory,

Gal(Q`r(µ`r)/Q`r) = Z×`r/(1 + `rZ`r),

and so, since `r 6= p, we have

Gal(Q`r(µ`r)
∗/Q`r)

∼= Z×`r/(1 + `rZ`r)(Z×`r)
pN ∼= G`r .

Thus, we have that:

• ρ̄λr(fr) needs to generate G`r , which occurs if and only if ρλr(fr) /∈ (Z×`r)
p.

• ρ̄λr(fσ
−1

r ) ∈ Gp
`r

for σ 6= id, which occurs if and only if ρλr(fr)
σ−1 ∈ (Z×`r)

p.

• When r 6= j, we obtain that φλr(fj) = 0 when ρ̄λr(fj) = 1 for all σ, which

occurs if and only if ρλr(fj)
σ−1 ∈ (Z×`r)

pN .

To finish the argument, consider the field extension C of Er−1 which is the

composite of Er−1Hχ and all of the extensions Er−1(x1/pN ), for x ∈ {fσi |1 ≤ i ≤

n, σ ∈ P}. Since we proved that these extensions are linearly disjoint from one

another, the Galois group of C/Er−1 is the product of the Galois groups of each of

the component extensions over Er−1. Consider the element Ω in the Galois group of

C which satisfies the following conditions:

• The coordinate for Gal(Er−1Hχ/Er−1) is v̂χr via the global Artin map.

• The coordinate for Gal(Er−1(f
1/pN

r )/Er−1) has order pN .
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• For every σ ∈ ∆, σ 6= id, the coordinate for Gal(Er−1((fσr )1/pN )/Er−1 is 1.

• For every j < r and σ ∈ ∆, the coordinate for Gal(Er−1((fσj )1/pN )/Er−1) is a

p-th power.

We note that C/Q, C/Er−1, and Er−1/Q are all Galois extensions. Let H be

the group Gal(C/Q), and K be the group Gal(C/Er−1). Then we can view K as

a subgroup of H. We use the Chebotarev density theorem on the extension C/Q.

This gives us infinitely many primes whose associated Frobenius automorphism lies

in the conjugacy class of Ω; let λC be one of them. Let λr be a prime in Q that lies

below λC, and `r be a rational prime that lies below it. By the above construction

of Ω, λr satisfies the second and third conditions of the theorem. However, since Ω

fixes Er−1, FrobλEr−1
= 1, for λEr−1 a prime in Er−1 lying above λr and below λC.

Thus, `r splits completely in Er−1/Q, and so the first condition of the theorem is

satisfied.

For the base case of r = 1, only the first condition changes; as such, the

argument for the base case is almost identical to the general argument above. The

first condition is satisfied as long as `1 splits in E0/Q, where E0 := Q(µpN ). The

argument for the case of r = 1 is then identical to that of the inductive step, except

for replacing Er−1 with E0. By induction, the proof is now complete.

4.2 The proof

4.2.1 A preliminary lemma and setup

We start with a pair of linear algebra lemmas.

Lemma 4.4. Let M be an n × n block matrix over the commutative ring R of the
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form

A B

C D

, where A is a k × k matrix and D is a (n - k) × (n - k) matrix, and

write the adjugate matrix of M , which we will denote as M †, as

X W

Y Z

, with the

block sizes the same as that of M . Then

det(X) = det(M)k−1 · det(D).

Proof. Let R be the polynomial ring Z[xij : 1 ≤ i, j ≤ n], and let M be the matrix

[xij], with block decomposition

A B

C D

, where A and D have the same sizes as A

and D respectively. We also write M† as

X W

Y Z

; note that this matrix still has

entries in R. Then

M† · M = det(M)In.

In particular, we have equations

AX + BY = det(M)Ik

and

CX +DY = 0.

Attempting to solve for X yields

XMD = det(D)det(M)Ik,

where

MD = det(D)A− BD†C.
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Taking determinants yields

det(X )det(MD) = (det(D)det(M))k.

On the other hand, using the matrix identity

Ik BD†
0 In−k


MD 0

0 In−k


Ik 0

C D

 =

det(D)A det(D)B

C D


and then taking determinants, we get

det(D)det(MD) = det(D)kdet(M).

From the previous two equations, we get

det(D)kdet(M)(det(X )− det(D)det(M)k−1) = 0.

In the integral domain R, det(D) and det(M) are non-zero divisors, so we

conclude that

(det(X )− det(D)det(M)k−1) = 0.

Applying the ring homomorphism φ : R −→ R, which sends the variable xij to the

ij-th entry of M then gives the result.

Lemma 4.5. Let R be a commutative ring and M an n × n matrix with entries

in R whose determinant is not a zero divisor. Suppose N is another n × n matrix

with entries in R such that

MN = det(M)In. (*)

Then N = M †, where M † is the adjugate matrix of M .
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Proof. Left-multiplying both sides of (*) by M † gives

det(M)N = det(M)M †.

Since det(M) is a not a zero divisor, we can cancel it from both sides, giving the

result.

We now set some notation. Let F and Xχ
F∞ be as before. Recall from Lemma

2.10 that we have a presentation

0→ (Λχ)n
f−→ (Λχ)n → Xχ

F∞ → 0.

This descends to a presentation

0→ (Λχ
Fm)n → (Λχ

Fm)n → AχFm → 0.

We picked generators of Xχ
F∞ , which descend to generators of AχFm , and we

select primes v1, . . . , vm which split all the way down to Q and which are repre-

sentatives for the classes that form the chosen set of generators. Then we have a

presentation:

0→ M̃
f̃−→M → AχFm → 0,

where M ∼=
n⊕
i=1

Zp(χ)[P ]vi and the matrix A corresponding to the map f̃ has

det(A) = θχ,

where θχ = θχFm/Q(0). We define D as we did at the end of Lemma 2.10, and choose

a basis f1, . . . , fn of D in the same manner. We note that by Theorem 3.5, for every
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1 ≤ i ≤ n, we can write

θχ · vi = div(gi)

for some gi ∈ D. Then we have the decomposition

gi =
n∏
s=1

fas,js

where as,j ∈ Zp(χ)[P ] for all 1 ≤ s, j ≤ n.

4.2.2 The main result

We now prove the following:

Theorem 4.6. Fix a sufficiently large power of p, denoted pm. Define sets

Sj = {t ∈ N | t is the product of j distinct primes all congruent to 1 mod pm},

and

Ej = {Lnj | nj ∈ Sj}.

Assume that θ is not a zero-divisor. Then

FittiΛχFm/p
N (AχFm/p

N) = Ti,

where Ti is the ideal generated by θχ and δ−→
1

(θχLnr ), for Lnr ∈ Er and 1 ≤ r ≤ i.

Proof. We already proved that FittiΛχFm/p
N (AχFm/p

N) ⊇ Ti in Proposition 2.7, so all

that is left is the other inclusion.

To prove the other inclusion, we proceed by induction. The base case of i = 0

is the main conjecture.
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So suppose the inclusion is true for all the Fitting ideals up to i − 1. Let

B be an (n − i) × (n − i) minor of A. We perform a series of row and column

switches to obtain a matrix Ã for which B appears in the bottom right corner of Ã.

Reordering the rows corresponds to reordering the basis f1, . . . , fn, while reordering

the columns corresponds to reordering the basis v1, . . . , vn; by abuse of notation, we

will continue to refer to these bases as before.

Using the Chebotarev argument in chapter 3, we find rational primes `1, . . . , `n

and associated primes λ1, . . . , λn in Fm satisfying the three conditions in the theo-

rem. In particular, note that due to the first condition in the theorem, the choices

of both sets of primes is dependent on the reordering we did. Let

S = Sram(Fm/Q)
⋃
{`1, . . . , `n}.

By Theorem 3.5, for 1 ≤ s ≤ n, we denote by g(λs) the element of Fm such that

div(g(λs)) = θχFm · λs.

We also let ε be the Rubin-Stark element associated to the data (Fm/Q, S)

and the set of split primes {`1, . . . , `i}. Recall that

RRubin-Stark(εχ) = (θχFm/Q)(i)(0).

From the definition of the g(λs)’s and the uniqueness of ε, we have that

(θχ)nε = θχ(g(λ1) ∧ . . . ∧ g(λi)).

Let X be the n × i matrix whose (s, j)-th entry is αs,j. Then, from the
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properties of the gs’s, we have that

ÃX = θχ · Ii.

Since θχ is not a zero-divisor, by Lemmas 4.5 and 4.4, this means that

(θχ)i−1 · det(B) = det(X̃),

where X̃ is the upper left i× i minor of X.

Since div(g(λs)) = θχ · λs and λs ∼ vs, we have that in F×m,

g(λs) = gsξ
θχ

s for some ξs ∈ F×m.

This means that in
i∧

Z[P ]

F×m, we have

i∧
s=1

g(λs) =
∑

~y∈{0,1}i

i∧
s=1

(θχ)‖~y‖1(g1−ys
s ξyss ), where ‖~y‖1 = y1 + . . .+ yi. (4.1)

We can write the gs’s in terms of our basis f1, . . . , fn, and so we can use this

and properties of wedge products to write the above equation in terms of the fs’s.

Let ~y ∈ {0, 1}i with ‖~y‖1 = k. Define

Zk := {Z : Z ⊆ [n], |Z| = k, k ≤ i}.

For Z ∈ Zk and ~y ∈ {0, 1}i with ‖~y‖1 = k, define XZ,~y to be the (i − k) × (i − k)

minor of X obtained by deleting the rows in Z and deleting the columns for which

corresponding entry of ~y is 1. Also, for the elements z1 < z2 < . . . < zk of Z, we
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write

~fZ = fz1 ∧ . . . ∧ fzk .

Then
i∧

s=1

(θχ)‖~y‖1(g1−ys
s ξyss ) = (θχ)‖~y‖1

∑
Z⊆Z

det(XZ,~y)(~fZ ∧ ~ξ~y),

where ~ξ~y is just the wedge product of the present ξs terms in order of increasing

index.

Let ÃZ,~y denote the (n− i+ k)× (n− i+ k) minor of Ã obtained by deleting

the rows corresponding to Zc and the columns corresponding to the zero entries of

~y. We combine the above paragraph with equation (4.1), and then apply Lemma

4.4 to obtain

i∧
s=1

g(λs) = (θχ)i−1det(B)(f1 ∧ . . . ∧ fi) +
i∑

k=0

∑
~y∈{0,1}i
‖~y‖1=k

(θχ)k
∑
Z⊂Zk
Z 6=[i]

det(XZ,~y)(~fZ ∧ ~ξ~y)

= (θχ)i−1det(B)(f1 ∧ . . . ∧ fi) + (θχ)i−1

i∑
k=1

∑
~y∈{0,1}i
‖~y‖1=k

∑
Z⊂Zk
Z 6=[i]

det(ÃZ,~y)(~fZ ∧ ~ξ~y)) + θi(~ξ~1)

(Here, ~1 is the all 1’s element of {0, 1}.) Now, since

(θχ)iε = θχ(g(λ1) ∧ . . . ∧ g(λi)),

we view the above equalities in (Q
i∧

Z[P ]

F×m)χ and apply θχ to both sides of the first

equation. As θχ is by assumption not a zero divisor, we may cancel (θχ)i and obtain:
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εχ = det(B)(f1 ∧ . . . ∧ fi) + (
i∑

k=1

∑
~y∈{0,1}i
‖~y‖1=k

∑
Z⊂Zk
Z 6=[i]

det(ÃZ,~y)(~fZ ∧ ~ξ~y)) + θχ~ξ~1 (4.2)

We now apply Gross’s regulator to the tower of extensions Lni/Fm/Q to

(4.3); note that the Gross regulator in this setting is φ1 ∧ . . . ∧ φi. We then project

onto I iGni/(I
2
G`1

+ . . .+ I2
G`i

) ∩ I iGni ). We observe the following:

• From the results in the section on Gross’s conjecture, RGross(ε
χ) = δ~1(θχLni

),

which is in Ti.

• By the third condition in the Chebotarev argument, (φ1∧ . . .∧φi)(f1∧ . . .∧fi)

is the determinant of the matrix whose j-th diagonal entry is φj(fj) (which is

are units in Λχ
Fm), and has 0’s outside of the diagonal. Thus, the determinant

is also a unit in Λχ
Fm .

• By the Chebotarev construction, φλs(fj) = 0 when s 6= j. So if Z 6= [i] but is

in Zi (and so has size i), then there is some fj that appears in ~fZ with index

j > i. From this, we see that when we calculate (φ1∧ . . .∧φi)(~fZ), the column

corresponding to fj has entries of the form φλs(fj) for 1 ≤ s ≤ i < j; therefore

this column is 0, and so the determinant is 0. Thus, all of the other terms

corresponding subsets Z ⊆ Zk with k = i and Z 6= [i] are 0.

• For 1 ≤ k < i, det(ÃZ,~y) is some (n − i + k) × (n − i + k) minor of Ã (and

therefore of A). This is an element of Fitti−k
ΛχFm/p

N (AχFm/p
N). By induction,

this means they are contained in Ti−k, which is contained in Ti.

We conclude that det(B) times a unit in Λχ
Fm is a sum of elements in Ti.

Since B was an arbitrary i× i minor of A, this completes the proof.
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Since this is true for each finite level, taking projective limits with respect to

the maps rk+1,k for k ≥ m gives the following:

Corollary 4.7. For any i > 0, FittiΛχF∞/p
N (Xχ

F∞/p
N) is equal to the ideal T generated

by θχF∞/Q and the δi1,...,ir(θ
χ
L∞)’s, where

• L ranges over all abelian extensions of Q such that L ∩ F∞ = F , Gal(L/Q)

= Gal(F/Q) × Gal(L/F), and Gal(L/F) ∼= Z/pN × . . .× Z/pN .

• i1 + . . .+ ir ≤ i.

This settles Conjecture 2.9 for all i ≥ 0.



Chapter 5

Future Work

The techniques developed in this dissertation can be extended in several

directions. One direction is to try and extend the result to cases where the base

field is not Q, but a general totally real field k. The main difficulty here is in proving

the result in Theorem 4.3, as base fields other than Q may not provide enough of the

Lni ’s to make sure that φλj(fi) ∈ ((Z/pNZ)(χ)[P ])× (and 0 otherwise). However,

under some restrictive conditions on k, one can construct enough extensions to

ensure the above.

Part of this project was to get a Kurihara-like result for other Iwasawa mod-

ules, in particular the Tate module of 1-motives constructed by Popescu and Gre-

ither in [6]. Most of the techniques developed in this dissertation here still apply

to those modules; in particular, the Chebotarev argument will still work for base

field Q. The main difficulty here is in getting a suitable free presentation for these

modules. However, once that is obtained we will have a Theorem 4.6-like result for

these modules.

Another direction would be to attempt to prove a sort of Kurihara’s conjec-

ture for global fields of positive characteristic and for various Iwasawa modules. In

particular, the Tate module of 1-motives was also defined by Greither and Popescu
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(see [5]) in that setting.
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