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ABSTRACT OF THE DISSERTATION

Higher Fitting Ideals of Iwasawa Modules

by

Corey Dean Stone

Doctor of Philosophy in Mathematics

University of California San Diego, 2016

Professor Cristian Popescu, Chair

The work of Iwasawa, beginning with a seminal paper in 1958 [7], provided a
fruitful method of studying the structure of ideal class groups and other algebraic objects
by viewing them inside of a p-adic tower of fields and then considering the corresponding
object at the top of the tower as a module over a topological ring now called an Iwasawa
algebra. One way to analyze the structure of these modules over the appropriate ring
is to determine the Fitting ideals of the module; however, in the literature thus far only
the initial Fitting ideal has been the object of close study. In this dissertation, we prove
a conjecture by Kurihara about the higher Fitting ideals of Iwasawa modules of certain
abelian number fields. This result shows that they are in essence generated by the special

values of L-functions arising from a family of extensions of the number field.
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Chapter 1

Introduction

The use of Fitting ideals in Iwasawa theory goes back to Mazur and Wiles’
proof of the main conjecture in 1984, where they show that the initial Fitting ideal of
the classical Iwasawa module associated to an abelian extension of QQ is generated by
a p-adic L-function. Most results that involve Fitting ideals of a particular module
(such as an ideal class group, cohomology group, Selmer group, etc.) have had
this main conjecture flavor, involving the initial Fitting ideal Fitt’. For example,
as Fitt%(M) lies inside the annihilator Anng(M), giving generators of this Fitting
ideal refines many conjectures that deal with the annihilation of a module, such as
the Brumer-Stark conjecture or the Coates-Sinnott conjecture. However, studying
the higher Fitting ideals can also be fruitful, as knowing all the Fitting ideals of a
module can more completely determine the structure of the module, or can provide
a method of attack for other central conjectures in number theory, such as the
Iwasawa-Leopolt and Kummer-Vandiver conjectures.

This dissertation is concerned with a conjecture of Masato Kurihara formu-
lated in 2003 in [8]. For a C'M abelian field extension F over a totally real number
field k, Kurihara studied the Fitting ideals of the ideal class group of F, Clz, over

the ring Z[Gal(F/k)]. This was done by studying the Fitting ideals of the p-primary



part, (Clr ® Z,), of the ideal class group Clz, for every prime p. As the prime 2
is problematic, he was primarily concerned with the case where p is an odd prime
(and we will be as well). Moreover, as F is CM, Clr ® Z, has a decomposition as
Clr®Z, = (Clr®Z,)" & (Clr ® Z,)~, and Kurihara directed his attention to the
minus part of this decomposition.

The strategy is to consider the cyclotomic Z,-extension of F, denoted F,
and make use of the Iwasawa main conjecture for F. Let R = Z,[[Gal(F/k]],
and consider the R-module M = X}, , which is the projective limit of the p-primary
components of the ideal class groups, (Clz, ® Z,)~, associated to the n-th level,
F,. of the cyclotomic extension. In [8], Kurihara studies the Fitting ideals of the
above module over the ring R for a special class of extensions F/k, and determines
Fitt} (M) to essentially be generated by the special values of equivariant L-functions
for abelian extensions of k£ contained in F. In addition, for & = Q, he also studies the
higher Fitting ideals of M, and gives a conjecture as to what generates these ideals.
While he only proves his conjecture for Fitt', he conjectures that the higher Fitting
ideals, modulo a large power of p, are generated by the previous p-adic L-functions
that generate Fitth (M), as well as additional elements that arise from equivariant
p-adic L-functions of special abelian extensions of F.

It is this conjecture that we turn our attention towards. The structure of
the dissertation is the following. In chapter 2, we give the preliminary information
needed for the rest of the paper; we briefly describe Fitting ideals and L-functions,
and give a precise formulation of Kurihara’s conjecture. In chapter 3, we discuss
a Gross-type p-adic refinement of the Rubin-Stark conjecture, which is needed for
chapter 4, and talk about how this conjecture can help us attack Kurihara’s conjec-
ture. Chapter 4 contains the main results of the paper: the second section gives the

proof of Kurihara’s conjecture, and the first section proves a technical theorem that



is needed for the main theorem, but is of some interest in its own right. (It gener-
alizes Theorem 3.1 in [14], suggesting that it can be used to relate the Gross-type

conjecture to Euler systems, which we will do in a subsequent paper).



Chapter 2

Algebraic Preliminaries

2.1 Fitting Ideals

Let R be a commutative ring and M be a finitely generated R - module, with
generators vy, ...,v,. We will also assume that M is finitely presented; i.e, there
are finitely many relations among the above generators that generate all relations.

Then we can write the following right exact sequence of R-modules:
m ? pn [
R™" > R" > M — 0,
Let A be an n x m matrix associated to ¢; the columns of the matrix A are

the generating relations mentioned above.

Definition 2.1. The i-th Fitting ideal of M, denoted Fittly, (M), is the ideal gener-

ated by the determinants of all (n — 1) X (n — i) minors of A.

The cofactor expansion for determinants shows that the Fitting ideals form
an ascending chain Fitt% (M) C Fitts(M) ... C Fitth(M) = R. Also, since the

columns of A are relations for the v;’s, we have that AT¢' = 0. For any n x n minor



B of AT, multiplying by its associated adjugate matrix gives det(B)7 = 0; therefore,
Fitt%(M) C Anng(M).

If M is not finitely presented, we can still define the Fitting ideals of M. In
this case, we don’t have an exact sequence as above. Instead, we directly form a
matrix A, where the columns of A are relations for the generators of M. Fitth (M)
is then defined to be generated by all (n — i) x (n — ) minors of A, for all matrices
A whose columns are relations for the generators of M. However, since the modules
that we consider in this dissertation are finitely presented, the results we state here
will only be done for finitely presented M.

The definition above suggests that the Fitting ideals are dependent not only
on M, but on the chosen presentation and choice of matrix A. The following propo-
sition, in addition to recording a property of Fitting ideals that we will use later,

will show that the Fitting ideals are only dependent on the module M (see [11]).

Proposition 2.2. 1. For all i, Fitt',(M) is independent of the choice of presen-

tation and matriz A.

2. If M and N are two finitely generated, finitely presented R-modules such that
M —» N, then for all i, Fitth,(M) C Fitth(N).

Proof.  2) It is easier here to use the general method of defining Fitting ideals
outlined above. Denote the surjection of M onto N by p. Let vy,... v, be
generators for M; then wy, ..., w, generate N, where w; = p(v;). Then any
relation of vy, ..., v, is a relation of wy, . .., w,. Thus, any matrix A that would
be appear in the definition of the Fitting ideals for M would also appear in
that for N. Thus, Fitt', (M) C Fitt’(N).

1) Consider two different sets of generators of M, vy,..., v, and wy,...,w, with

two different choices of generating relations; we will denote how we view M



with respect to these two choices by M, and M,,. Then we have the obvious
isomorphism 4 from M, to M,. Applying (1) to i and i~! gives the result.
[

If R is a PID, the structure of all the Fitting ideals of a module over R can
be used to determine the structure of the module itself. The structure theory of

finitely generated modules over a PID yields that
M=ZR'"®R/(a1)®...dR/(ar)

with (a1) C (az) C ... C (ax).

Calculating the Fitting ideals for M gives Fitt},(M) = 0 for 0 <i <n —1
and Fitte(M) = (a;_py1 - ... - ax) for n < i < n+ k, with the empty product being
the whole ring R. Vice versa, if R is a PID and we know the Fitting ideals of an
R-module M to have the form above, then one can easily determine that M has the
structure above.

For more complicated rings R, knowing the Fitting ideals is not enough to
completely determine the module. For the rings that we will consider, knowing the
Fitting ideals determines the module up to quasi-isomorphism (a homomorphism
with finite kernel and cokernel); however, the converse is not true.

For more information on Fitting ideals, see [11].

2.2 Augmentation Ideals

Consider a tower of field extensions k C F C L, with £/k a finite abelian
extension. (A note: using projective limits, we can define augmentation ideals for
infinite extensions as well; however, for purposes of this paper we only need the finite

case). Then each field extension is Galois; we will let Gal(L/k) = G, Gal(F/k) = A,



and Gal(L/F) = G. Let R be a commutative ring.

Definition 2.3. e The augmentation ideal of the group ring R|G|, denoted by
I(G), is the kernel of the homomorphism aug : R[G] — R which fizes every

element of R and sends every element of G to 1.

e The G-relative augmentation ideal of the group ring R[G|, denoted by Ig, is
the kernel of the R-algebra homomorphism m : R[G] — R[A] which is induced

by Galois restriction from G to A.

It is clear that I(G) is generated as an R[G]-module by elements of the form
o — 1 for 0 € G} it is easy to see that I is also generated by elements of the form
o —1for o € G, but as an R[G]-module.

We end this section with the following lemma, which occurs as a part of

Lemma 5.2.3 in [13]:

Lemma 2.4. Let r be a positive integer. Then we have a R[A]-module isomorphism

t: I(GQ)/I(G) ! @g RIA] = 1L/ T5H,

given by 4 ® § = 7.

2.3 L-functions

We first start by reviewing the definition of Artin L-functions. We follow
the setup by Neukirch in [10]; however, we will restrict ourselves to the special case
where the Galois group is abelian and the representation is one-dimensional. Let
k be an algebraic number field, and F' a finite abelian extension of k, with Galois
group Gal(F/k) = G. Let x : G — C* be a group homomorphism, then we say that

X is a character of G. Recall that x induces an action of G on V via o -v = x(o)v,



for 0 € G and v € V. Fix a prime ideal p of k lying over a rational prime p, and
let P be a prime ideal of F' lying over p. For a prime p in k, we have its associated
residue field x(p); recall that x(p) is O /p, the ring of integers of k& modded out by
p. If F'is a Galois extension of k with prime ideal 8 above p, then «(*B) is a Galois
extension of x(p).

In Gal(x(*B)/k(p)), the automorphism = — z™* generates the Galois group
(Np is |Ox/p|). This group is then canonically isomorphic to the quotient of the
decomposition group Gy by the inertia group Ip; the image of the above automor-
phism in G /Iy is called the Frobenius automorphism associated to 3, which we
will denote Pgp.

Note that given two different primes that lie above p, their associated Frobe-
nius automorphisms are Galois conjugates. We denote the conjugacy class of Frobe-
nius automorphisms for primes lying above p by Frob,; this conjugacy class is de-
pendent only on p.

We now define the Artin L-function for s € C, denoted L(x, s), to be

L(x,s) = [ (1 = (x(Froby) N (p) ™),
p

where the product runs over all primes of £ such that x|;, is trivial. If x is not the
trivial character, then L(x,s) is uniformly and absolutely convergent on compact
subsets of the half-plane Re(s) > 1. This can then be uniquely extended to a
holomorphic function on C. If x is the trivial character, then L(y, s) can be uniquely
extended to a function that is holomorphic on C\ {1}, and has a simple pole at
s = 1. We will refer to any particular term of this product as the Euler factor
associated to p.

We now have many L-functions for any particular Galois field extension (one

for each character y of G), but we would like just one function associated to a



particular field extension that still carries the same information the L-functions do.
This is the equivariant L-function, and we define it as follows.

Let e, be the idempotent

1 -1
ex = @ZX(U)U )

oelG

which is an element of C[G]. Let S be a finite set of primes in k, containing all of the
ramified primes and all of the infinite primes. The S - modified Artin L-function,

denoted Lg(x, s), is simply

Ls(x,s) = [ J(1 = x(Froby) N (p)~*)~".
pgs

With this in hand, we now have:

Definition 2.5. The S-imprimitive G-equivariant L-function, which we denote 0p i, 5(s),
is a function from C to C[G], holomorphic outside of s = 1 with a simple pole at 1,

given by

Oryr.s(s) = Z Ls(x, s)ey .

xe@

Our focus in this paper will be the special value at s = 0, which is the value of
the first non-vanishing derivative at 0. Throughout this paper, we will write 0p/; s
for 0p/k,s(0). From the definition above, we know that 6p/, s € C[G]; however, a
theorem of Klingen and Siegel (see [15]) tells us that, in fact, 0p/ g € Q[G].

We need one more tool in order to discuss the results in Kurihara’s paper.
Fix an odd rational prime p. Let F be the cyclotomic Z,-extension of F' (the
extension of F' with Galois group over F' isomorphic to Z,, obtained by adjoining

all p-th power roots of unity to F, then taking the appropriate intermediate field.)
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Write F), for the intermediate field such that [F, : F| = p", and F = F,. For each
of these finite levels, we have the equivariant L-value 0, g. For any field extension
L of k, we let S;, be the set finite primes in k that are ramified in L.

For any pair of non-negative integers m and n, n < m, let
rmn @ Q[Gal(F,/k)] — Q[Gal(F,/k)] be the natural map coming from viewing
Gal(F,,/k) as a quotient of Gal(F},,/k) . Then a result of Tate in [16] yields

Pma(Ors) = J] (1= (Frob,")0p, s.

’UESFm \SFn

Since there are only finitely many ramified primes in Fl,, there is some positive

integer NV for which Sp, = Sp, for all m > N. So for any m,n > N,

rm,n(eFm,S) == an,S'

These maps form a projective system. Let T be a another finite set of primes
in Q that is disjoint from S and such that there are no roots of unity in /' congruent
to 1 modulo every prime in 7. Define the (S, T') - modified G-equivariant L-function,

denoted p /. s7(s) to be

Oksr(s) = (] (1 = Frob, ' - (Nv)' ")) 0k s(s).

veT

The special value of this function at s = 0 has the same properties under the 7, ,
maps as that of 0y, 5. Deligne and Ribet proved in [3] that there exists an element
of Z,[[Gal(Fy/k)]], which we will denote by 0 _ ks that behaves as the projective

limit. In particular, for every positive integer n, there exists a map

Pt Zpl[Gal(Fa /K)]] = Z,[Gal(F, /K)]
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such that r,(0r_/ks7) = Op,/ksr- We will call this the equivariant p-adic L-
function. However, for our purposes of proving Kurihara’s conjecture, we do not
want to consider the set T'; we will discuss how to eliminate the presence of T in

section 3.1.1.

2.4 Kurihara’s paper

As the main result of this dissertation is proving a conjecture of Kurihara’s,
we will use this section to state the conjecture and to set notation which will be
used in Chapters 3 and 4.

Fix an odd prime number p. We will let the base field £ = Q, and F is
a cyclic CM extension of Q, with A = Gal(F/Q) of order coprime to p. Since
F is a CM field, A has a complex conjugation element, which we will denote j.
For an odd character y of A (meaning that x(j) = —1) that is injective on A, let
A% = Zy[x][[I']], where I' = Gal(F/F). For each finite level F,,, we denote by
Az, the p-primary component of the ideal class group of F,,,. Xx_ is then defined
to be the projective limit of the Az ’s with respect to the norm maps.

Also, for x’s as above which are different from the Teichmuller character,
we define w, 0%, ¢ = X(0,/x,5(0)). This is an element of Z,[x][Gal(F,/F)], and
therefore 6% Jkg 15 In A% .

The complex conjugation elements j acts on any Z,[A] module M. This gives
a decomposition of M into two parts, denoted M+ and M~, which are respectively
the eigenspaces for j corresponding to eigenvalues 1 and -1. In particular, each Ax
has such a decomposition, and therefore X _ does too.

Kurihara’s conjecture is concerned with determining generators of the Fitting
ideals of X¥_, viewed as a A% _ - module. We begin by stating the main conjecture of

Iwasawa theory, proven by Mazur and Wiles in [9], that relates the p-adic L-function
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to the initial Fitting ideal.
Theorem 2.6. Fittgfm (Xz.) = (0r.)-

We now prove the following algebraic result, which we will use to show that

some elements of A% are in the appropriate Fitting ideals.

Proposition 2.7. Let R be a commutative ring, G a finite abelian group, M a
finitely generated, finitely presented R-module of rank n on which G acts trivially,
and F; = Fitth,(M) for all 0 <i < n. Define s : R — R[G] via s(r) =r-1¢. Then

Fitthe (M) C s(Fo) + s(F)la + s(Fo)IG + ... 4 s(Fooa) 15 + 15

A remark on the notation of the proposition: to match the notation in Def-
inition 2.3, we should technically be using I(G) instead of I5. However, for the
application we have in mind for the proposition, R will itself be a group ring, and
then I5 will actually function as a relative augmentation ideal.

In what follows (as well as in Chapter 4), for a positive integer n we will
denote by [n] the set {1,...,n}. For asubset Z C [n], we will denote its complement

by Z°.

Proof. First, we note that the map s forms a splitting for the exact sequence

1—1Ig— RG] S R—1,

and so R[G] = s(R) & I¢.

Consider a free presentation of M as an R-module, given by

[0}

0—>01>R"—>M—>0.

From this, we get the following presentation for M as an R[G] - module:
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RIGI" % RIGI" 5 M — 0,

where [ is the composition of « with the map from R[G]" to R" that applies 7 to
each coordinate.

Thus, by definition, F itt%[G](M ) is generated by the determinant of the ma-
trix corresponding to W, which by abuse of notation we will also refer to by W. We
view W as the map that sends R[G]|" to the kernel of 3; since the kernel of a is C'
and G acts trivially on M, the kernel is s(C') 4 é I;. We conclude that the matrix
of W has entries of the form s(t;;) + ~;j, for t;; EIC, Vij € I, and 1 < 14,5 < n.

So we compute the determinant of WW. By definition of the determinant, this

is

det(W) = > H DT (s (t 26)) + Yirr(i))-

TES, =1
To expand the product, let Z C [n] be the set of indices j for which we pick

V- Then we have

det(W) = > > T Ds(tire) [ [ (=D 750).-

ZC[n] TESh i¢Z JjE€Z

We now group the 7’s by where they send the set Z. Doing so gives:

Z Z H J+9(J i) Z H (z+r $(tirie)-

ZCn] g:Z—[n] jJEZ TESH i¢Z
Tlz=g

Denote by Vz, the n —k x n — k minor of V, where k = |Z| and where you
delete the rows corresponding to the elements of Z, and the columns corresponding

to the elements of g(Z). Then we have
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SN TTEDTH D00 D7 s(det(Vzy)).

ZC[n] g:Z—[n]) jEZ TESK
T|z=g

But then s(det(Vz,)) is an element of s(Fy), and [] (—1)UF90)~, o is an
jeZ
element of I%. So for any given Z, the corresponding summand is an element of

s(Fy)I%, which completes the proof. O

We apply this proposition in the special case where R = Ar_ and G =
[1Z/pY, and M = (X, _)a, where L is an abelian extension of 7, linearly disjoint
=1
from F,,, with no nontrivial subextensions that are unramified everywhere, such
that G = Gal(L/F). Then R[G] = A.,. By Theorem 2.6, 0, € Fitt%[G}(M), and

so the proposition gives us that
O, € s(Fo) +s(F) g+ s(Fo)Ig + ...+ s(F, ) IE + 17

First, assume r = 1, and so G is cyclic, and let € R[G]. Then a; =
x —s(n(z)) € Ig, and we have x = x1 + aq, where z; = s(n(z)) € R. Since G is

cyclic, fix a generator o of G. Then we have (non-canonical) isomorphisms
or: G — I5/15,

given by

ol = j(o— 1k

In this manner, we can write oy = x;11(0 — 1)’ + a1, where a4y € I5 and

x; € R. Since G has order p¥,

PN (o — 1) =0in IL/IE, V.
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Therefore, each z;, for i > 2, is well-defined in R/p".
For general G as above, view G as Gy X ... X G, where each G is cyclic of
order pV with generator o;. We then set R = R[G| x ... X G,_;]. Applying the

above initial case to R'[G,] yields
=1, +39(0, — 1) +a3(0, —1)* +....

We then repeat this procedure for each x;, with respect to G,_;. Continuing by

induction gives

r = Z$7(01 (o= 1),

where i = (i1, ...,i,) € Z", and the xy's are elements of R.
We do the above procedure for . _. The x;’s that we obtain we will denote
Oir,.ir(0r..), where 4; + ... + i, = i. The above proposition gives us that, modulo

Y,

611...1(02..) € Fitty(Mg).

Finally, since £ has no unramified subextensions, the norm map yields a surjection
from (X7 )a/p" to Xz_/p"; the surjectivity property of Fitting ideals gives us the

following corollary:
Corollary 2.8. 6;, ;.(0-.) € Fittfxé JpN (X5_/pN), foriy + ... +ip = i.
Now we have all the tools necessary to state Kurihara’s conjecture:

Conjecture 2.9. For any i > 0, Fitti\} /pN(X]’gw/pN) 1s equal to the ideal T;

generated by 93‘500/(@ and the ;.. ;. (0r..)’s, where
e L ranges over all abelian extensions of Q such that L N Foo = F, Gal(L/Q)

= Gal(F/Q) x Gal(L/F), and Gal(L/F) = Z/p™ X ... x Z/p"™, with each
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o (i1,...,1,) ranges over all non-negative integers with iy + ... + i, < 1.

Proposition 2.7 gives us that T; C Fittj\)}m v (XE L/ pY). The other inclusion
is more difficult. In chapter 8 of [8], Kurihara proves his conjecture for the case i = 1.
The basic method is to descend to a large enough finite level, concoct a useful free
presentation for Aif—_m, then use the Euler system argument to prove the inclusion. For
the general case that we prove later, we will appeal to a Gross-type conjecture and
a Chebotarev density result to generalize the second step of Kurihara’s proof. We
will still need the presentation Aif—_m (and, in fact, it is the lack of such a presentation
for other Iwasawa modules that presents an obstacle in adapting our proof to those

modules), so we will record the properties of this presentation as a lemma.

Lemma 2.10. Assume that the p-invariant of Fu is 0, and that Leopoldt’s conjec-
ture holds for the base field k, and let x be an odd character of A such that the order

of x is coprime to p, and x|a, # 1a,, and x # w. Then we have a presentation
0— (An)" L (M) =AY =0,

such that the determinant of the matriz for f is Gjém.

A note: Leopoldt’s conjecture does hold for abelian extensions of Q, which is
the situation we are in for this dissertation. The hypothesis p = 0 holds for abelian
extensions of Q as well. However, for arbitrary base fields, these assumptions are

needed.

Proof. The assumption that the p-invariant of F, is 0 gives us that Xx_ is finitely
generated as a Zj, - module and that the pdAXXﬁéoo = 1. Let wy,...,w, be generators

of X ;f-oo. Then we have an exact sequence

0— (A" L (A )" L X5 =0,
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Let A be the matrix of f, and choose bases so that det(A) = 6%, which is
possible due to Theorem 2.6. We fix a finite level m > 0, sufficiently large, and let
Iy, = Gal(Foo/Fm). We then take I'y,-coinvariants of the above equation. By the
snake lemma, we get

f

(XE )T = (A)" = (A)™ = (XF)r,, = 0,

m

where A,,, = Z,[x][Gal(F,./F)].

However, since x(p) # 1, a well-known result in Iwasawa theory gives us that
(X;_(—OO)Fm is isomorphic to Ai,‘?m. Since this is a finite group, the above exact sequence
implies that (X} )" is finite. But Xz contains no finite Ar_ submodules (see

Proposition 13.28, [17]), and so (X% )" = 0. Thus, we get the free presentation

0— (An)" L (A" S AL 50

at the finite level.
By definition of the ideal class group, at each finite level m we have the exact

sequence

(FXRZ)* &% (Divy, ©Z,)X — A% — 0.

We project the generators wy, ..., w, down to generators for Ai,‘?m, then use
the Chebotarev density theorem to find primes vy,...,v, such that their images
in Ai%m correspond to the classes of the projected generator, and that are split all
the way down to Q (so that vy,...,v, generate a free A,,-module of rank n in
(Divy,, ® Z,)X). Let M be this module. Then M = A7, and the map M — A% is
induced by the map g. Our free presentation for A% above gives that the kernel of
M — Aﬁm, which we will denote M’, is also a free A,,, module of rank n.

Thus, we have the free presentation
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0— ML mEax o
where the matrix for f here has determinant 6% . O

Let D = {z € (F)} ® Z,)X | div(z) € M}. Then div(D) = M'. We will
denote by f1,..., f, the elements of F* that map to the basis elements of M’. By
definition, these f; are linearly independent in D. They are also linearly independent

in FX/(FX)P", a fact which we will need later, and so we will prove it now.

Lemma 2.11. The classes of fi,..., fn are A, /p™ - linearly independent inside

FrI(FRP"

Proof. Suppose for contradiction that we have a dependence relation. Then there
exist elements ay,...,a, € A, and x € F such that f{" ... fo = 27" . Applying
div to both sides gives that p™¥div(x) € M’, and so is in M, since M’ C M. Thus,

there exist f1,..., 5, € A,, such that

pNdiv(z) = Bivr + ... + Butn.

However, since the v;’s freely generate M, this implies that div(xz) € M and
pY divides §; for all .. Thus, z € K, and so z = f{*... fI». From the linear
independence of the f;’s in K, we conclude that p" divides a; for all 4, and so each

a; is 0 in A, /p". O

Another consequence of x(p) # 1 is to guarantee that 6% is not a zero-
divisor, which will be needed in Chapter 4. This is an easy consequence of the

functional equation for 0z, , see [16].



Chapter 3

The Gross-type Conjecture

3.1 Statement of the Conjecture

In Kurihara’s proof of his conjecture when ¢ = 1, he makes use of the Koly-
vagin’s Euler system of Gauss sums (treated by Rubin in [14]).

It turns out that for ¢ > 1, the Euler system argument breaks down. What
is needed can be thought of as following from two conjectures: one of Rubin and
Stark, and one of Gross. We will discuss the relevant conjectures here, following
the treatment by Popescu in [13]. Later, we will discuss how to use the Gross-type
conjecture to obtain the necessary results to prove Kurihara’s conjecture.

Throughout this section, we will let k£ be a global field, and F' a finite abelian
extension of k with Galois group G. Let {{,..., (.} be a set of r primes in k that
split completely in F', and let Sy = {A1,..., A} be a set of primes in F' with ),
lying over ¢; for all 2. We will take S to be a finite set of primes in £ of size > r + 1
that contains Sp; contains S., the set of infinite primes; and contains Spam(F/k),
the set of all primes that ramify in F'. Furthermore, we will take T to be another
finite set of primes in k that is disjoint from S and such that there are no roots of

unity in F' congruent to 1 modulo every prime in 7. (If char(k) = 0, this is satisfied

19
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if T" contains two primes whose residue fields have different characteristics, or one
prime whose residue field has size larger than the number of roots of unity in K. If
char(k) > 0, then this is satisfied as long as T is non-empty). We will also let Sg
and T be the set of primes in F' that lie above S and T, respectively.

We denote by Ug to be the elements of F'* that are units at all the primes
outside of S; i.e., u € Ug means that u € O;U for all v ¢ Sp. Ugy is the subset of
Us whose elements are congruent to 1 modulo every prime in 7.

We consider the Q[G]-module A\ QUgr.
Q[G]

Definition 3.1. The Rubin-Stark lattice, Agr, is the set of alle € N\ QUgr such

QG
that:

o e, = 0 for all characters x such that ords—oLsr(x,s) > 7.

o For every r-tuple (¢1,...,¢,) € (Homgg(Usr, Z[G))",

(P1 A ... Nd)(e) € Z[G],

where (g1 A ...\ ¢p)(e) = det(pi(ej), 1 <i,5 <r) fore= N\ ¢j, then extend
j=1

this map Z[G] - linearly.

We also write ev.(¢1 A ... A\ éy) for (p1 A ...\ o) (g).
The Rubin-Stark conjecture then says the following:

Conjecture 3.2. With the notation as before, there exists a unique element egp €

Agr such that
1

rl

9(7“)

RRubinfstark(E:S,T) = F/k,S,T(O)7

where the definition of the requlator Rrupin—stark S given in [13].
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The Rubin-Stark conjecture is known to follow from the Equivariant Tami-
gawa Number Conjecture (see [1]). In particular, the ETNC is known for k = Q
(proven for p > 2 by Burns and Greither in [2], and for p = 2 by Flach in [4]), and
so the above conjecture is true for £ = Q.

We remark that for a commutative ring R and maps

¢1, R 7¢7‘7 € HomZ[G](US’,Ta R[G])a

eve(p1 A ... A @) is well-defined in R[G]; the proof of this is given in [13].
We now turn to the statement of the Gross-type conjecture. Consider L, an

abelian extension of k containing F' that satisfies the following properties:
e Sam(L/k) C S.

e The set L7 of elements of L* that are congruent to 1 modulo 7" has no Z-

torsion.

We let H be the Galois group of L/F, and G be the Galois group of L/k.

For a given \;. we define
o, 1 F* — I(H)/1(H)? ® Z[G]

on(@) =Y (" ) - @o,

oelG

where p,, is the local Artin map taking values in the decomposition group for \;
in the extension L/F, which is a subgroup of H. Let v¢,, = t o ¢,,, where ¢ is the

isomorphism from Lemma 2.4.
Conjecture 3.3. With the assumptions at the start of this section and above,

° QL/k,S,T(O) € ]5
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o Assuming that the Rubin - Stark conjecture holds for the data (F/k,S,T) and

that the Rubin-Stark element is ep,
QL/k,S,T(O) = eVEF(¢A1 VANPIAN w)\r) il’l I&/I&Jrl

We remark that the ¢’s take values in R[G]; in [13], section 5.3, it is shown
that ev., (s, A ... Ay, ) does make sense in 17 /15

This conjecture is known to be true for the same situations where the Rubin-
Stark conjecture is known to be true, again as a consequence the ETNC. In partic-

ular, it is known when k& = Q.

3.1.1 Eliminating the set T

The presence of the set 7" is needed to ensure that 0z, s7(0) € Z[G] (this
is true by a theorem of Deligne and Ribet, see [3]). However, in order to put this
Gross-type conjecture in the context of Kurihara’s conjecture, we will need a way

to bypass the presence of the set T'. To do this, we first prove the following lemma:
Lemma 3.4. With the notation at the start of this section, for x # w,,
X(J[(1 =o' Nw)) € (Z,[G]) "
veT

Proof. Let x be a character of G different from the Teichmuller character w,. Also we
will write G = P x A, where P is the p-primary part of G. Using this decomposition

and one of the characterizations of # in the L-functions section, we can write

X = > ar.x(o)T € Z,(Y)[P).

TEP,0cEA

If we show that each term in the product is a unit, then we are done. To
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that end, let v be a prime in T, and consider x(1 — o, ' Nv). We decompose o, as
Opy - OAp; then

X(1 =0, 'Nv) =1—=x(04,) - Nv-opa.

Let a = x(0a,) - Nv. We want to show that a is not 1 mod p in Zp(x).
Suppose otherwise. Note that the definition of w, is that for every ¢ € ppy(F),
¢7v = ¢“»). But modulo v, (?* = (™. Thus, w,(c,) = Nv mod p. Therefore,
under our assumption, w,(oa,) ! = X(a&lv). However, since x # w,, there do exist
primes where w,(oa,)"" is not congruent to X(UZ}U) mod p.

Now, let n = ord(op,), which is a power of p. Then we have
1—a"=(1-aop,)(l+aop,+ ...+ (aop,)" ).

However, since « is not congruent to 1 modulo p, neither is o™, since n is
a p-th power. Therefore, 1 — o™ is not divisible by p, and is therefore a unit in

Z,(x)[A]. Thus, x((1 — o, 'Nv)) € Z,|G]*. O

Now, in the full lattice, we define g by

EST = H(l — o, 'Nv)eg;

veT

note that [](1 — o,'Nv) is a unit in Q[G]. By the lemma, when we take x-
veT

components, we get that €§ € (Agr ® Z,)X. We make this definition because of the

relation

[T =0, ' Nv)by . 5(0) = 651 5.7(0).

veT

Let x be a character of G different from w. Hitting both sides with the
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idempotent e, and then applying Rrubin—stark to both sides yields

RRubln Stark 55 H log sz (O))

Also, we not only want to know that egp exists, but we also want an explicit
description of it. From the preceding discussion, we only need to describe 5. We

start by recalling an theorem of Stickleberger.

Theorem 3.5. For an abelian number field F', 0p/qs1 annihilates the ideal class

group of F.

This theorem was proven in 1890 by Stickleberger. We can also deduce this
fact using the main conjecture in Theorem 2.6 and the aforementioned result that
the initial Fitting ideal of a module over a ring is contained in the annihilator of the
module over the ring.

Now, for every i we define g()\;) to be the element of F such that
div(g(\) = 03.5(0) A
this is possible due to Theorem 3.5. Denote € = g(A;) A ... A g(\.). Then

RRubm Stark H log NZ Smm (O> )T :

Since

(%/ks " Hlog (Ng,) - (05,,,.(0)),

this shows that (05 (0))"ey = (05 (0))eX.
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3.2 Relating the two conjectures

The main goal of this section is to relate Gross’s conjecture to the 6(67)’s
that appear in Kurihara’s conjecture. Our set-up is as follows: let our base field be
k = Q. Let p be an odd prime, F an abelian extension of Q with Galois group A,
where A has order co-prime to p. Given a prime ¢ = 1 mod p® that is unramified in
F/Q, we let K; be the unique subfield of Q(u) of degree p™ over Q, and £, = FK,,
with Galois group G,. We consider a set of primes {1, ..., /.} as in the start of this
section, unramified in F/Q, with the associated set Sy = {A1,..., A} of primes in
F, also as before. Then each Gy, is cyclic, and we will choose generators oy, ..., 0,
such that < o; >= G,.

Letting n; = {1 ...¢; for © between 1 and r, we denote L,,, = Ly, Ly, ... Ly,.
We denote the Galois group of £;/F by G,,. Finally, we let S = Sy Sram(F/Q).

Recall that Ig, , the Gy-augmentation ideal of Z[Gal(L,,/Q)], is the ideal
in Z|Gal(L,,/Q)] generated by elements of the form (o — 1), for ¢ € Gy,. In fact,
since Gy, s cyclic and generated by oy, I, is generated by o; — 1. We will denote

by fgei the Gy,-augmentation ideal of Z[Gal(L;/Q)]. By lemma, we know that

2

Ie, /16, = 1(Gy,)/1(Gy) ® ZIA] = (Z/p" Z)[A],

7 7

since I(Gy,)/1 (Gzi)2 is isomorphic to Gy,, which is cyclic of order pV. For each i, we

denote this isomorphism by
T2 N
W [Gei/[Gei — (Z/p"Z)[A].

On the other hand, consider I¢,.. / Igj:l, which is the object that appears
in the Gross-type conjecture. Let a be an element of Igtl. ]5:1 is generated by

elements of the form 7 —1, for 7 € G, ; however, by the decomposition of G,,, in the
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opening paragraph, we know that ]étl is generated by elements of the form o; — 1,
for 1 < i < r. Thus, we have that o can be written as a Z[A]-linear combination of

elements of the form
r+1

[ -,

j=1
where, for each j, 5; = 0; for some 1 < ¢ < r. By the pigeonhole principle, we must
then have that there exists some i such that for at least two distinct j’s, 8; = o;.

We conclude that each of the above elements is in Ig, for some i, and so

7

a € ([ée1 +...+ Iéu)'
Thus, It C (I3, +...+ 1, ), and so we have a surjection
I, JIG — I, /((Iéél +o G, )N, ).
As before, we obtain the isomorphism
Igw/((fgh o A1, NG, ) = (G, (LG . A 1(Gr,)*)N(G,)" ) QZ[A].

However, the left entry of this tensor product is cyclic, generated by the class
of ((oy = 1) ...+ (0, — 1)). Moreover, since each o; has order p" in Gy, we have

that in Ig, ,

N

0=0 —1= (ai—l)(afN_1+...+ai+1) = (o;—1)((oF _1—1)+...+(ai—1)+pN),

which means that p"(o; — 1) € (Iée1 +...+13, ). Thus, (o1 —1)... (0, — 1)) has

order divisible byp?, and it is easy to show that the image of the surjection is also
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isomorphic to (Z/pNZ)[A]. We will denote this map by
mo g, 15 = (Z/pVT)[A].

Let 6 = 0, /k,5)(0). Conjecture 3.3 states that 0 € I, —and that its class
mod I, g;l is equal to Raross(€7), where e is the Rubin-Stark element associated to
the data (F/k,S,T) and the set of split primes {¢;,...,¢,} C S. In particular, we

have maps

Or + F = 1(Ga,) [ 1(Gy,)* @ Z[A]
given by

on(@) =3 (pn@ ) - 1) @0,

oEA

where p), is the local Artin map taking values in G,,,., and

RGross<€]:) = eVE]:(¢)\1 ASA ¢)\T)'

Similarly, we define

Or 1 F— I1(Ge)[1(Gy)* ® Z[A]

on(@) = ) -1) @ o,

geA

where py, is the local Artin map taking values in G,,. We wish to prove the following:

Proposition 3.6. Under all the hypotheses at the start of this subsection, we have

T(Raross(€7)) = eVaf((Wl © CBM) A...N(m o0 &Ar))7
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where the maps 7; are defined at the beginning of this subsection.

Proof. We write ez = x1 A ... A x,, where the z;’s are in F*. (We know £x can be
written in this manner, but we will not need the specific values of the x;’s for this

proof). By definition,

eVer (o Ao ADN) = (O Ao Ay ) (@ AL A Ty)

We analyze the above summation term by term. Without loss of generality,
T
we take 7 = id. Consider the term [] ¢, (z;). For elements 7,..., 7, € G, we have

=1
the general factorization

(IR | (CE

T
Since G = [[ Gy,, we combine the above general factorization with the definition of
i=1

the ¢, to get that in I(G)"/I(G) ' @ Z[A],

ox () = > [[(on (@),

ZCrljez
74

where (¢y,(z;)); is the component of ¢y, (z;) in I(Gy;). The above formula comes
from applying the factorization formula above to p,,(z7) for each ¢ € A, then
collecting terms based on the subsets of [r].

When we take the product of all the ¢,,’s, we obtain

H@i(%) = 1] D_ [](en());

=1 ZC[r] jeZ
7+
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However, when you expand the above equation, any term that has a Z that
contains more than a single element will lie in I(G)"™!, and so will be zero in
I(G)"/I(G)' @ Z[A]. Thus, only terms where the subsets Z are single element

sets appear, and so we can write

r

H%i(%) = ZH O (i) 1)
i=1

foi=1
where f ranges over all functions f : [r] — [r].
Since ;41 splits completely in £,,,, we have that p,, , takes values in

i+1

Gy .. X Gy,. This means that if the f above is not the identity function, then

i+1

the corresponding term of the above sum is 0 when we project onto
Ig, /(g +.. . +1&,)NIg, ).

To see this, observe that splitting condition lets us conclude that p,. takes values
in Gy,. pa,_, then takes values in Gy, , X Gy,; however, the portion in Gy, will be
killed when we project, since it will give something in Iéz . Continuing inductively

gives us our claim. This lets us conclude that

H 2% H  ores)(9r,),

=1

where res is the extension of the Galois restriction map from G to Gy,.
From functorial properties of the local Artin map (see Proposition 5.8 in [10]),

we have that res o ¢), = ¢,,. Thus, we get that

W(H O, (7)) Hm res o ¢, (z Hm
i=1

Since this holds for every 7 € S,., this gives the result. m
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We think of 7(Raress (7)) as the image of 6 in (Z/p"7Z)[A] obtained by using
Conjecture 3.3, albeit with a loss of information that comes from the projection onto
Igni/((léél +...+ 12, )N, ). We will denote this image by d7(0c,, ). What the
above lemma says is that d;(fz, ) can be computed from the extensions £; for all 7.
07(0c,, ) is tied to the ¢’s as defined in Conjecture 2.8 in the following manner. Via

the procedure outlined after Proposition 2.7, we have the decomposition

where 011.1(0z.,) is an element of Ar_. Hitting this with the map ry in section

2.3 gives

Ocy = > vl )](0c) (00 — 1 (op — 1),
with the map ry as defined at the end of section 1.5. Moreover, the terms for which
i1 + ... 4+ i, < r do not appear, by the first half of the Conjecture 3.3.
In fact, this gives the image of 0., in I/. Applying 7 to this should then
give 01(6,, ), so we conclude that 63(0z, ) = (morn)(d1,..1(0z.)). Compare with
Theorem 2.4 in [14].



Chapter 4

Proving Kurihara’s Conjecture

4.1 A Chebotarev-Type Argument

In this section, we will prove a technical result that we need for the proof
of Kurihara’s conjecture. Our base field is still Q. We fix an odd prime p and a
sufficiently large positive integer N. Let Q be a CM abelian extension of Q with
Galois group G = P x A, where P is a p-group and A has order co-prime to p, and
contains a complex conjugation automorphism j. (The application will be when Q
is some finite level of the cyclotomic Zj-extension of a CM field F whose Galois
group over Q has order coprime to p). Given a prime ¢ = 1 mod p", we let K, be
the unique subfield of Q(u) of degree p over Q, and £, = QK,. For a set of primes
{l1,..., L.} that are distinct, unramified in the extension Q/Q, and congruent to 1
modulo pV, we set n, = ¢ .../, and define £,,, to be the compositum Ly, Ly, ... Ly, .

We begin with two lemmas needed for the argument.

Lemma 4.1. For a character x of A, x # w and an extension L = L, as above,

the natural map

(Q7/(Q7)" )X —= (Llppn )™ /(L))" )X

31
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18 1njective.

Proof. Assume it is not injective. Then there exists a nontrivial element x €
(Q*/(Q*)P" )X such that z = 7" for some € € L(u,v)*. So, let o € Gal(L(pn)/ Q).
Applying o — 1 to the above equality gives 1 = (£7-2)?", which implies that
gl g ppy. However, since x # w, L(p,~)X has no non-trivial roots of unity,
and so €271 = 1. Since this is true for all ¢ in the Galois group, we have ¢ = 1, and

so x = 1, a contradiction. O

Lemma 4.2. The units of (Z/p™7Z)(x)[P] are precisely the elements . a,o for
oceP

which p does not divide " a,.

o€P
Proof. (Z/pNZ)(x)[P] is a local ring (see [12], section 2) with maximal ideal m =
(p, I(P)). Since everything not in the maximal ideal is a unit, it is enough to show
that the elements of m are precisely the set of elements of the form ) a,o for which

p divides > a,. Let U be this set; in fact, it is an ideal in ((Z/pNif(I;()[P]) By the
deﬁnitionajfp the augmentation ideal I(P), the sum of the coefficients of any element
of I(P) is 0, and so it is clear that m C .

On the other hand, let v = ) a,0 € U, and ¢ = ) a,. Define v =
> (c—ay)(oc —1). By definition, v Eclr:fAlso, utv=1(c), a;i(\P\ —1)e, which
(ijselcglivisible by ¢, and therefore p. Thus, u € m, and so m ieZ]/D{ , which completes the

proof. O]

We are now ready to prove the technical theorem that we need. We refer the
reader to the paragraph preceding Lemma 2.11 for the definitions of the elements f;
that appear in the following theorem, and to the paragraph preceding Proposition
3.6 for the definition of the maps qb_,\] Compare the theorem with the conditions

specified in [8], page 72, or in [14], Theorem 3.1.
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Theorem 4.3. Let r € N. Given an odd character x of A, x # w, and classes
0y, ..., 0% in (Clg ® Z,)X, we can find rational primes {1, 0, ..., 0, satisfying the

following conditions:

e (; =1 modp" and {; is completely split in the composite extension Ly, for

every 1 < j <r, where nj_1 = {y...4;_;.

e For each 1 < j < r, there exists a prime \; in Q lying over {; such that

. AX
Aj ~ 0;

e Foreveryl <i,j<r, (b_,\](fl) € (Z/pNZ)(x)[P)* if i = j, and is O other-

wise.

Proof. We do this by induction on r. As the argument for the base case is essentially
the same as the inductive step, we will prove the inductive step first. Assume that
the theorem holds up to r — 1; we will show it holds for r. The first condition is
satisfied if ¢, splits in &,_1/Q, where &1 = Ly, (11,v) -

For the second condition, let H, be the subextension of the Hilbert class field
of @ whose Galois group over Q is isomorphic to (Clg ® Z,)~. We know that j acts
via lift and conjugation on both Gal(H,/Q) and Gal(&,_1/Q). Since &£,_1/Q is an
abelian extension, Gal(€,_1/Q) is abelian and therefore j acts trivially on it. On
the other hand, j acts as (-1) on Gal(H,,/Q). Combining this with the previous fact
gives us that H,/Q and &,_1/Q are linearly disjoint.

The third condition requires the most work. Define X to be the subgroup
(f1,- . f) C(Q7/(QX)PM)X. Recall that as a ((Z/pNZ)(x)[P])* - module, this is

free of rank n. Thus, the elements of the set

F={f1<i<roeP}
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are Z/p" Z-linearly independent. From Lemma 4.1, we conclude that the elements
of § are Z/p"NZ-linearly independent in (X /(€ )" )X.

Let us consider the family of extensions &_;(z"/ pN), for x € §. From the
preceding paragraph, we know that each of these extensions are linearly disjoint

from the compositum of the rest. From Kummer theory, we have an isomorphism
X = HomZ/pN(Gal(&,l(xl/pN)/Er,l),upN).
The right hand side of this equation is acted upon by § € A as

5% ¢(y) = 0(o(671y),

and the isomorphism respects the action of A on both sides. However, A acts on
ppy via w and on X via x. Thus, A must act on Gal(&_1(z'/P") /E,_1) via yw .
Therefore, j acts as 1 on Gal(&,_y(z'/?")/E._1). From this, we conclude that each
of these extensions is linearly disjoint from &, H,.

Recall that

on () = (U7 - @o
oeP
From our characterization on the units of (Z/p¥Z)(x)[P], we can ensure that the

third condition holds for r = j if

o — —

pa(fr) =1 € (Z/p"Z) and o, (f7 ") =1 € WZ/P"Z)V o # id.

From our identification of I(Gy,)/I(Gy,)? with Z/p™Z, this is equivalent to saying

that

o — —_—

pr(fr) —1€Gfandpy (fe ') —1e Gy



35

To obtain conditions that we can use the Chebotarev theorem on, let us
consider what happens if we were to localize at ¢,.. The localization of both Q and
Q at £, is Qy, , since £, = 1 mod p". The localization of £, at £, is the subextension of
Q, (1e,) that has degree pV over Q,,, we will denote this subextension by Q, (j, )*.

From local class field theory,

Gal(Qe, (pe,)/Qr,) = Z5 /(1 + 0. Zy,),

and so, since ¢, # p, we have

Gal(Q, (1e,)*/Qe,) = Z;5 /(1 + 6,2, ) (Z5 )P = G,

Thus, we have that:
e Dy, (fr) needs to generate Gy, , which occurs if and only if py, (f) & (Z;)P.
o i (f7 e G for o # id, which occurs if and only if oa ()7 € (Zy )P,

e When r # j, we obtain that ¢, (f;) = 0 when py (f;) = 1 for all o, which

occurs if and only if p,\r(fj)f1 € (ZZ)pN-

To finish the argument, consider the field extension C of &._; which is the
composite of &_1H, and all of the extensions Er_l(xl/pN), for x € {ff|1 <i <
n,o € P}. Since we proved that these extensions are linearly disjoint from one
another, the Galois group of C/&,_ is the product of the Galois groups of each of
the component extensions over &£,._;. Consider the element €2 in the Galois group of

C which satisfies the following conditions:

e The coordinate for Gal(&,_1H, /& _1) is 0¥ via the global Artin map.

e The coordinate for Gal(&,_1( Tl/pN)/E,n_l) has order p".
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e For every 0 € A, o # id, the coordinate for Gal(E,_1((f7)/?")/&,_1 is 1.

e For every j < r and 0 € A, the coordinate for Gal(&_l((f]‘-’)l/p]v)/&_l) is a

p-th power.

We note that C/Q, C/&,_1, and &,_1/Q are all Galois extensions. Let H be
the group Gal(C/Q), and K be the group Gal(C/&,—1). Then we can view K as
a subgroup of H. We use the Chebotarev density theorem on the extension C/Q.
This gives us infinitely many primes whose associated Frobenius automorphism lies
in the conjugacy class of ; let A\¢ be one of them. Let A\, be a prime in Q that lies
below A¢, and ¢, be a rational prime that lies below it. By the above construction
of €, \, satisfies the second and third conditions of the theorem. However, since (2
fixes &,_1, Frob,\gri1 = 1, for A¢,_, a prime in &,_; lying above A, and below .
Thus, ¢, splits completely in &,_1/Q, and so the first condition of the theorem is
satisfied.

For the base case of » = 1, only the first condition changes; as such, the
argument for the base case is almost identical to the general argument above. The
first condition is satisfied as long as ¢; splits in &/Q, where & = Q(u,~). The
argument for the case of r = 1 is then identical to that of the inductive step, except

for replacing &,_; with &. By induction, the proof is now complete. O

4.2 The proof

4.2.1 A preliminary lemma and setup

We start with a pair of linear algebra lemmas.

Lemma 4.4. Let M be an n x n block matrix over the commutative ring R of the
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B
form , where A is a k x k matriz and D is a (n - k) X (n - k) matriz, and

write the adjugate matriz of M, which we will denote as M7, as , with the
Y Z

block sizes the same as that of M. Then
det(X) = det(M)*~* - det(D).

Proof. Let R be the polynomial ring Z[z;; : 1 <4,j < n|, and let M be the matrix
A

2], with block decomposition , where A and D have the same sizes as A
C D

X W
and D respectively. We also write M as ; note that this matrix still has
y Z

entries in R. Then

MM = det(M)I,.

In particular, we have equations
AX + BY = det(M) I}

and

CX +DY =0.

Attempting to solve for X yields
XMD = det(D)det(./\/l)Ik,

where

Mp = det(D)A — BD'C.
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Taking determinants yields

det(X)det(Mp) = (det(D)det(M))*.

On the other hand, using the matrix identity

I, BD'| |Mp O I, 0 det(D)A det(D)B

0 Jn 0 I,x| |C D C D

and then taking determinants, we get

det(D)det(Mp) = det(D)*det(M).

From the previous two equations, we get

det(D)"det(M)(det(X) — det(D)det(M)*) = 0.

In the integral domain R, det(D) and det(M) are non-zero divisors, so we
conclude that

(det(X) — det(D)det(M)*1) = 0.

Applying the ring homomorphism ¢ : R — R, which sends the variable z;; to the

17-th entry of M then gives the result. O

Lemma 4.5. Let R be a commutative ring and M an n X n matrix with entries
i R whose determinant is not a zero diwvisor. Suppose N is another n X n matric
with entries in R such that

MN = det(M)]I,. (*)

Then N = MT, where M7 is the adjugate matriz of M.
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Proof. Left-multiplying both sides of (*) by MT gives
det(M)N = det(M)MT.

Since det(M) is a not a zero divisor, we can cancel it from both sides, giving the

result. O

We now set some notation. Let F and XJ’,‘TOO be as before. Recall from Lemma

2.10 that we have a presentation
0— (A" L (A" = x5 —o.
This descends to a presentation
0— (A} )" = (A} )" = A% —0.

We picked generators of X% , which descend to generators of A% , and we
select primes vy, ..., v, which split all the way down to Q and which are repre-
sentatives for the classes that form the chosen set of generators. Then we have a

presentation:

0— ML Mm—a o,

where M = @ Z,(x)[PJv; and the matrix A corresponding to the map f has
i=1
det(A) = 6%,

where X = 0%

7. /Q(O). We define D as we did at the end of Lemma 2.10, and choose

a basis fi,..., f, of D in the same manner. We note that by Theorem 3.5, for every
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1 <1 < n, we can write

ox . V; = le(gz>

for some g; € D. Then we have the decomposition

n

gi =] £

s=1

where as; € Z,(x)[P] for all 1 <s,5 <n.

4.2.2 The main result

We now prove the following:

Theorem 4.6. Fix a sufficiently large power of p, denoted p™. Define sets
S; = {t € N|t is the product of j distinct primes all congruent to 1 modp™},

and

¢ ={L., [n; € 6;}.

Assume that 6 is not a zero-divisor. Then

where T; is the ideal generated by 0% and d+(0F ), for L, € & and 1 <r <.

nr

Proof. We already proved that Fittﬁ\é /pN( A>]<__m /pN) 2 F; in Proposition 2.7, so all
that is left is the other inclusion.
To prove the other inclusion, we proceed by induction. The base case of i = 0

is the main conjecture.
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So suppose the inclusion is true for all the Fitting ideals up to ¢« — 1. Let
B be an (n — i) x (n — i) minor of A. We perform a series of row and column
switches to obtain a matrix A for which B appears in the bottom right corner of A.
Reordering the rows corresponds to reordering the basis f1, ..., f,, while reordering
the columns corresponds to reordering the basis vy, ..., v,; by abuse of notation, we
will continue to refer to these bases as before.

Using the Chebotarev argument in chapter 3, we find rational primes ¢4, ..., /,
and associated primes Ay, ..., \, in F,, satisfying the three conditions in the theo-
rem. In particular, note that due to the first condition in the theorem, the choices

of both sets of primes is dependent on the reordering we did. Let
S = Stam (Fu/Q {0, L}
By Theorem 3.5, for 1 < s < n, we denote by g(\;) the element of F,, such that
div(g(As)) = 0%, - As.

We also let € be the Rubin-Stark element associated to the data (F,,/Q,S)

and the set of split primes {/,...,¢;}. Recall that
RRubin-stark (%) = (erm/Q)(i)(O)-

From the definition of the g(\s)’s and the uniqueness of €, we have that
(0¥)" = 0X(g(M) Ao A g(Ni)).

Let X be the n x i matrix whose (s, j)-th entry is «,;. Then, from the
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properties of the g4’s, we have that
AX = 0% I,
Since 6X is not a zero-divisor, by Lemmas 4.5 and 4.4, this means that
(0X)'~1 - det(B) = det(X),

where X is the upper left ¢ x i minor of X.

Since div(g(As)) = 6% - A\s and Ag ~ v, we have that in F,
g(\s) = gs£7" for some &, € FX.

This means that in A F%, we have
z[P]

ANg) = D AE)(giv¢r), where |Gl =y1 + ... + i (4.1)
s=1 y*g{(),l}i s=1

We can write the g,’s in terms of our basis fi,..., f,, and so we can use this
and properties of wedge products to write the above equation in terms of the f,’s.

Let ¢ € {0,1}" with ||7]]; = k. Define
Zy=4{Z: Z Cn],|Z]| =k, k <i}.

For Z € Z;, and § € {0,1}" with ||7]|; = k, define Xz to be the (i — k) x (i — k)
minor of X obtained by deleting the rows in Z and deleting the columns for which

corresponding entry of ¢ is 1. Also, for the elements z; < 2o < ... < 2, of Z, we
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write

fz="Ffa N NS

Then

i

N @)I7 (ghvegbe) = ()71 N det (X 57)(f7 A &7).

s=1 ZCZ
where {:7 is just the wedge product of the present & terms in order of increasing
index.

Let Az denote the (n —i+ k) x (n— i+ k) minor of A obtained by deleting
the rows corresponding to Z¢ and the columns corresponding to the zero entries of
y. We combine the above paragraph with equation (4.1), and then apply Lemma

4.4 to obtain

g(A) = () det(B)(fL A ... A ) +Z SO Y det(Xz9)(f2z A &)
s=1 k=0 ge{0,1}* ZCZy,
11 =k Z#1i]

— (0% det(B)(fy A ... A i)+ (60%) 12 7Y det(Azg)(fz A &) + 0 (&)

k=1 T ZCZ,
ye{0,1}* ZCZy,
I7)1=k 270

(Here, 1 is the all 1’s element of {0,1}.) Now, since

(0%)'e =0 (g(M) A ... Ag(\)),

we view the above equalities in (Q A F,})X and apply 6X to both sides of the first
Z[P] ,
equation. As 60X is by assumption not a zero divisor, we may cancel (6X)" and obtain:
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eX=det(B)(fiA... A fi)+ Z > det(Azy)(f2 A E)) + 0% (4.2)

=1 ge{0,1}* ZCZ
yH ﬁl ! Z#[ZT

We now apply Gross’s regulator to the tower of extensions L,,/F,,/Q to
(4.3); note that the Gross regulator in this setting is ¢; A ... A ¢;. We then project

onto Iéw/(]g;zl +...+13,) NI, ). We observe the following:

e From the results in the section on Gross’s conjecture, Reross(€X) = 07(0F ),

which is in T,.

e By the third condition in the Chebotarev argument, (o1 A...Ady)(fiA...Afi)
is the determinant of the matrix whose j-th diagonal entry is ¢;(f;) (which is
are units in A}{-m), and has 0’s outside of the diagonal. Thus, the determinant

is also a unit in A% .
m

e By the Chebotarev construction, ¢,\ (f;) = 0 when s # j. So if Z # [i] but is
in Z; (and so has size i), then there is some f; that appears in fZ with index
§ > 4. From this, we see that when we calculate (¢1 A ... A¢;)( fZ), the column
corresponding to f; has entries of the form 5/\( f;) for 1 < s < i < j; therefore
this column is 0, and so the determinant is 0. Thus, all of the other terms

corresponding subsets Z C 2, with k = ¢ and Z # [i] are 0.

e For 1 <k < i, det(Azy) is some (n — i+ k) x (n — i + k) minor of A (and
therefore of A). This is an element of Flttj\xk I ~ (A% /pN). By induction,

this means they are contained in ¥;_;, which is contained in T;.

We conclude that det(B) times a unit in A% is a sum of elements in T;.

Since B was an arbitrary ¢ x ¢ minor of A, this completes the proof. O
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Since this is true for each finite level, taking projective limits with respect to

the maps 7441 for & > m gives the following:

Corollary 4.7. For anyi > 0, Fittf\é JpN (XF. /p"N) is equal to the ideal T generated

by 0% _ g and the 6., (0F ) ’s, where

.....

e L ranges over all abelian extensions of Q such that L N Foo = F, Gal(L/Q)
= Gal(F/Q) x Gal(L/F), and Gal(L/F) = Z/p~ x ... x Z/p".

This settles Conjecture 2.9 for all ¢ > 0.



Chapter 5

Future Work

The techniques developed in this dissertation can be extended in several
directions. One direction is to try and extend the result to cases where the base
field is not Q, but a general totally real field k. The main difficulty here is in proving
the result in Theorem 4.3, as base fields other than Q may not provide enough of the
L,,’s to make sure that ¢y, (f;) € ((Z/pVZ)(x)[P])* (and 0 otherwise). However,
under some restrictive conditions on k, one can construct enough extensions to
ensure the above.

Part of this project was to get a Kurihara-like result for other Iwasawa mod-
ules, in particular the Tate module of 1-motives constructed by Popescu and Gre-
ither in [6]. Most of the techniques developed in this dissertation here still apply
to those modules; in particular, the Chebotarev argument will still work for base
field Q. The main difficulty here is in getting a suitable free presentation for these
modules. However, once that is obtained we will have a Theorem 4.6-like result for
these modules.

Another direction would be to attempt to prove a sort of Kurihara’s conjec-
ture for global fields of positive characteristic and for various Iwasawa modules. In

particular, the Tate module of 1-motives was also defined by Greither and Popescu

46



(see [5]) in that setting.
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