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ABSTRACT OF THE DISSERTATION 
 
 

On Several Fundamental Problems of Optimization, Estimation, and Scheduling in 
Wireless Communications 

 
by 

 
 

Qian Gao 
 

Doctor of Philosophy, Graduate Program in Electrical Engineering 
University of California, Riverside, March 2014 

Dr. Yingbo Hua, Co-Chairperson 
Dr. Gang Chen, Co-Chairperson 

 
 
 
 

For both the conventional radio frequency and the comparably recent optical wireless 

communication systems, extensive effort from the academia had been made in 

improving the network spectrum efficiency and/or reducing the error rate. To achieve 

these goals, many fundamental challenges such as power efficient constellation design, 

nonlinear distortion mitigation, channel training design, network scheduling and etc. 

need to be properly addressed. In this dissertation, novel schemes are proposed 

accordingly to deal with specific problems falling in category of these challenges. 

Rigorous proofs and analyses are provided for each of our work to make a fair 

comparison with the corresponding peer works to clearly demonstrate the advantages. 

 

The first part of this dissertation considers a multi-carrier optical wireless system 

employing intensity modulation (IM) and direct detection (DD). A block-wise 

constellation design is presented, which treats the DC-bias that conventionally used 

solely for biasing purpose as an information basis. Our scheme, we term it MSM-

JDCM, takes advantage of the compactness of sphere packing in a higher dimensional 



 

viii  

space, and in turn power efficient constellations are obtained by solving an advanced 

convex optimization problem. Besides the significant power gains, the MSM-JDCM 

has many other merits such as being capable of mitigating nonlinear distortion by 

including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-

interference (ISI) caused by frequency-selective fading with a novel precoder 

designed and embedded, and further reducing the bit-error-rate (BER) by combining 

with an optimized labeling scheme. 

 

The second part addresses several optimization problems in a multi-color visible light 

communication system, including power efficient constellation design, joint pre-

equalizer and constellation design, and modeling of different structured channels with 

cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is 

compared with the conventional decoupled system with the same spectrum efficiency 

to demonstrate the power efficiency. Crucial lighting requirements are included as 

optimization constraints. To control non-linear distortion, the optical peak-to-average-

power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-

equalizer designed and employed, our scheme can achieve lower BER than 

counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error 

(LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is 

applied to improve BER performance. 

 

The third part looks into a problem of two-phase channel estimation in a relayed 

wireless network. The channel estimates in every phase are obtained by the linear 

minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to 



 

ix 

destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) 

channel in phase 2, which is made erroneous. We first derive a close-form expression 

for the averaged Bayesian mean-square estimation error (ABMSE) for both phase 

estimates in terms of the length of source and relay training slots, based on which an 

iterative searching algorithm is then proposed that optimally allocates training slots to 

the two phases such that estimation errors are balanced. Analysis shows how the 

ABMSE of the StD channel estimation varies with the lengths of relay training and 

source training slots, the relay amplification gain, and the channel prior information 

respectively. 

 

The last part deals with a transmission scheduling problem in a uplink multiple-input-

multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is 

assumed as a multiple access scheme and pseudo-random codes are employed for 

different users. We consider a heavy traffic scenario, in which each user always has 

packets to transmit in the scheduled time slots. If the relay is scheduled for 

transmission together with users, then it operates in a full-duplex mode, where the 

packets previously collected from users are transmitted to the destination while new 

packets are being collected from users. A novel expression of throughput is first 

derived and then used to develop a scheduling algorithm to maximize the throughput. 

Our full-duplex scheduling is compared with a half-duplex scheduling, random access, 

and time division multiple access (TDMA), and simulation results illustrate its 

superiority. Throughput gains due to employment of both MIMO and CDMA are 

observed. 
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Chapter 1

Introduction

In recent decades, there has been an increasing level of interests in optical wireless

communications, including infrared, visible light, and ultraviolet communications [2, 37,

58, 76]. Optical wireless communications offer a potential of high-speed transmissions in

unregulated bands. Analogous to the multicarrier modulation employed in the RF systems

[6], multiple-subcarrier modulation (MSM) has been proposed for the optical systems [18,

10, 1, 25], where a transmitter modulates multiple electrical subcarriers onto the optical

carrier through intensity modulation (IM), and a receiver captures the intensity modulated

signals by a way of direct detection (DD). This is a non-coherent system and much cheaper

to implement than its counterparts known as the all-optical systems [29]. MSM along with

IM/DD is a widely considered scheme for use in scattering environments [74, 46, 28]. For

flat-fading environment, MSM is known to yield a higher spectral efficiency than traditional

binary modulation techniques such as on-off keying (OOK) and pulse position modulation

(PPM) [57, Chapter 5].
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As a IM/DD system in particular, indoor visible light communication (VLC) by

light-emitting-diodes (LEDs) has attracted extensive academic attention [75, 12] (and ref-

erences therein), driven by advancements in designing and manufacturing of LEDs [40].

Adoption of LEDs as lighting source can significantly reduce energy consumption and at

the same time offering high speed wireless communication, which is the primary focus of

VLC research [21, 72, 74]. Most of the existing schemes employ blue LEDs with a yellow

phosphor coating, while with RGB LEDs higher data rate is possible because of wavelength

division multiplexing.

A point-to-point system as above may suffer from limited coverage, and wire-

less relays can be rapidly deployed to enlarge coverage as well as increasing capacity and

spectrum efficiency. In recent years, the deployment of relay nodes to assist wireless com-

munications has been investigated intensively [42]-[43]. The relay nodes may have limited

signal processing capability, making the non-regenerative relays preferable [24] and [41].

A simply two-hop relaying system contains one source-to-relay (StR) and one relay-to-

destination (RtD) link. To enjoy all benefits the relaying system could provide, accurate

StR and RtD channel state information (CSI) is required at the destination.

With multiple spatially dispersed source nodes in wireless relaying networks, co-

operative relaying has been shown as an effective technique to increase overall capacity

by exploiting diversity in fading channels [52, 53, 54, 33]. The network capacity can be

further improved by deployment of MIMO antennas at source/relay/destination nodes, a

relay with full-duplex mode, or if efficient multiple access schemes such as code division

2



multiple access (CDMA) is exploited.

Figure 1.1: The system block diagram with the MSM-JDCM.

1.1 Multi-subcarrier Modulated Optical Wireless Systems

Constellation design is important for MSM IM/DD systems [77, 66, 67]. A good

constellation design should be power efficient, including electrical, optical and peak-power

efficiencies. A stream-wise scheme termed MSM-Normal is proposed in [77], and a block-

wise one termed MSM-SSPS (subcarrier signal point sequence) is in [66] and [67]. With

the MSM-Normal, bit sequences are independently modulated onto individual subcarriers

using BPSK/QPSK (binary phase shift keying and quadrature phase shift keying). But the

sum of the subcarrier waveforms likely contains a large negative peak which needs to be

compensated by a DC (direct current) power, which compromises the power efficiency.

With the MSM-SSPS, a more general constellation for multiple subcarriers with both I and

Q channels is designed, which requires a less DC power for negative peak compensation.

However, none of these two schemes treats the DC-bias as part of the information basis.

In [38], a sphere packing problem is formulated for constellation design of a single-carrier

3



system, which treats the DC-bias as an information carrying basis.

For this topic, we will consider the constellation design for the MSM IM/DD sys-

tem with either flat fading or frequency-selective fading channels. We propose a joint DC

and multicarrier constellation design scheme, termed MSM-JDCM. The system diagram

is shown by Figure 1.1. This scheme provides an optimized constellation in a connected

region in high dimensional space with the DC-bias as an information basis. Convex opti-

mization problems are formulated in later and solved by CVX [17] to provide optimized

constellations. A good constellation design should not only be power efficient but also ro-

bust to the HPA and/or LD’s nonlinearities. To deal with these nonlinearities, traditional

schemes include selective mapping [13], partial transmit sequence [50], clipping [73], tone

reservation [14], vector precoding [7], companding transform [36], and others [27]. We

show that our constellation design scheme MSM-JDCM, along with short-term PAPR (peak

to average power ratio) or long-term PAPR constraints, provides a robustness against the

nonlinearities. We also consider a labeling problem (i.e., bits-to-symbols mapping) after

a constellation is given to minimize the bit error rate (BER). In the literature, the labeling

schemes include the Gray Code mapping [26], set-partitioning mapping [70], [71], maxi-

mum squared Euclidean weight mapping [65], the binary switching algorithm (BSA) [60].

Among them, the Binary Switching Algorithm (BSA) is able to accommodate labeling in

a high dimensional space, and our simulation results show that the labeling using BSA

noticeably reduces the BER for a fixed SER (symbol error rate).

4



1.2 Multi-color Modulated Optical Wireless Systems

With RGB LEDs, color-shift keying (CSK) was recommended by the IEEE 802.15.7

Visible Light Communication Task Group [32]. A few authors have promoted this idea by

designing constellations using signal processing tools. Drost et al. had a efficient con-

stellation designed for CSK based on billiard algorithm [19]. Monteiro et al. designed

constellation for CSK using an Interior Point Method, operating with peak and color cross-

talk constraints [49]. Bai et al. considered the constellation design for CSK to minimize

the bit error rate (BER) subject to some lighting constraints [3].

Despite the fact that the three-dimensional constellation design problems have

been formulated nicely in [19, 49, 3], a few important questions have not been addressed.

First, how do we fairly compare a system with CSK employed and a conventional system

with the same number of colored LEDs modulated separately, e.g. by OOK or M-PAM?

Second, how will system performance be impacted if the color for illumination is not white?

Third, can peak-to-average power ratio (PAPR) be controlled with constellation designs?

For this topic, we propose a novel constellation design scheme, termed CSK-

Advanced, in arbitrary dimensional space, and attempt to answer the above questions while

comparing with schemes based on ideas from other paper on related context. By arbitrary

dimensional space, it is meant that any non-equal number of red, blue, and green LEDs can

be selected for the design. With fixed average optical intensity and targeted average color,

we formulate an optimization problem seeking to minimize the system symbol error rate

(SER) by maximizing the minimum Euclidean distance (MED) among transmitted symbol

5



pairs. For practical concerns, the color rendering index (CRI) and luminous efficacy rate

(LER) are also taken into account. Further, optical PAPR is included as an additional

constraint.

For systems having channel with cross-talks (CwC), an SVD-based pre-equalizer

is applied and the constellations are redesigned subject to a transformed set of constraints.

Systems employing such optimized constellations could achieve significantly lower BER

than those applying ZF or LMMSE based post-equalizers. Besides constellation design, a

binary switching algorithm (BSA) originally proposed in [78] is applied to further reduce

the BER when symbol error rate is fixed through searching for the best bits-to-symbol

mapping.

1.3 Channel Estimation for a Two-hop Non-Regenerative Wireless Re-

lay System

There are plenty of channel estimation scheme for a two-hop non-regenerative

wireless relay system as shown by Figure 1.2 in the literature, including so-termed one

phase and two phase schemes. To estimation CSI in a one phase scheme, the destination

only requires the source to transmit training sequences which is amplified by the relay.

In particular, the authors of [45] have developed an one-phase expectation-maximization

(EM) based maximum a posteriori (MAP) estimation scheme for a Rician-Rayleigh chan-

nel model originally proposed by [64]. Despite of the advantage of avoiding sending pilots

from the relay, the applicability of the one-phase scheme in [45] relies on the non-zero

6



mean assumption of the Rician StR channel. To avoid such assumption and obtain sepa-

rable estimates of StR and RtD channels, two-phase estimation schemes are alternatives.

In Phase 1 of a two-phase scheme, the relay first transmits pilots to the destination, where

RtD channel is estimated. In Phase 2, the source transmits pilots to destination through the

relay, and the destination can estimate the StR channel based on the estimate of the RtD

channel obtained in Phase 1. In particular, the authors in [44] proposed a least-square (LS)

based channel estimation algorithm, which estimates both StR and RtD channels up to a

scalar ambiguity. In [48], an interim channel estimation method was proposed, which does

not have the scalar ambiguity. In [68]-[35], a prior knowledge of the channel statistics was

exploited for more accurate estimate of CSI.

hSR hRDG+ +

wR wD

Figure 1.2: A two-hop AF relaying system

The RtD channel estimated in Phase 2 is based on the StR channel estimate ob-

tained in Phase 1, which can be inaccurate. Therefore, the noise is not the only factor that

affects the Phase 2 channel estimation. With equal resources for both phases, the estimate

from the second phase tends to be less reliable than that from the first phase due to the error

propagation. To the best of our knowledge, analysis of such estimation error propagates

is not available in the literature. For this new topic, we will first derive a closed-form ex-
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pression of the averaged Baycian mean square estimation error (ABMSE) of the StR and

RtD channel estimates. Then such expression is used to develop an iterative algorithm to

optimally allocate the training slots for both phases. To simplify the problem, we consider

a single-input and single-output (SISO) relay system instead of a MIMO relay system.

However, we believe that the insight shown in this paper will be useful for MIMO relay

systems.

1.4 Transmission Scheduling for Wireless Relay Systems

For this topic, we consider a network as illustrated in Figure 1.3, where there are

multiple MIMO users, a single MIMO relay and a single MIMO destination. Packets sent

from the users can be recovered by the destination as long as the signal to interference

and noise ratio (SINR) exceeds a pre-chosen threshold β. The relay collects the packets

lost from the direct link from the users to the destination and then sends them later to the

destination to improve throughput.

The authors in [53] considered a similar network structure, where they derived

a throughput expression with fast-fading Rayleigh channels. They also considered using

a relay to assist the transmissions by collecting and retransmitting lost packets. An effi-

cient algorithm was proposed to optimize the averaged throughput, which was shown to

outperform the time division multiple access (TDMA). The scheduled access, although in-

creasing the overhead of transmission, can be useful in many practical scenarios. However,

the work [53] is based on a half-duplex relay and SISO nodes each with a single antenna.
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We consider MIMO nodes and a full-duplex relay. Although all currently practical radios

for wireless communications are half-duplex, the feasibility of full-duplex radios is high,

e.g., see [34]-[31].

We compare four different access schemes, which are the proposed full-duplex

cooperative scheduling scheme, the half-duplex cooperative scheduling scheme proposed

in [53], the TDMA scheme which allows users to sequentially access the channel, and the

random access scheme which randomly picks a set of users to access the channel. Through

simulations it is observed that our scheme achieves the highest throughput. An application

of our work is the wireless sensor network composed of K sensors transmitting data to the

collection center.

D

T1

T2

T3

T4

T5

T6

T7

R 

Figure 1.3: A cooperative network with multiple transmitters (Ti), a single relay (R), and a

destination (D).
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1.5 Dissertation Scope and Outline

The rest of this dissertation is organized as follows: in Chapter 2, a constellation

design scheme for a multi-subcarrier modulated optical channel is considered. A convex

optimization problem is establish to iteratively find electrical/optical/peak power efficient

constellations, which could be robust to channel selective-fading and nonlinear distortions.

A binary switching algorithm is applied to find the optimized bits-to-symbols mapping to

further increase the power efficiency. In Chapter 3, another convex optimization problem

is built to search for optimized constellations for indoor visible light communications with

multi-colored LEDs. We also design a SVD-based pre-equalizer, and discusses the ro-

bustness of our scheme against channel cross-talks. Many crucial lighting constraints are

included in our optimizations. In Chapter 4, we consider the problem of channel estima-

tion error propagation in a two-hop wireless relayed network. The close-form expression

of the estimation errors for both phases are derived, based on which an iterative searching

algorithm is provided to optimally allocate training resources to both phases in order that

the estimation errors are balanced. In Chapter 5, a multiple-access scheduling problem

in a full-duplex MIMO fast-fading relaying wireless network is addressed. We derive a

novel expression of the MIMO throughput is first derived, based on which a scheduling

algorithm is developed to maximize the throughput. By simulation, we show that our full-

duplex scheduling outperforms half-duplex scheduling, random access, and TDMA. Some

conclusions are drawn in Chapter 6.

Shown below is a list of my papers related to this dissertation.
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Chapter 2

Constellation Design for a Multi-carrier

Wireless Communication Channel

2.1 MSM IM/DD Optical Channel Model

2.1.1 The Flat-fading Channel Model

Figure 1.1 shows the system block diagram of an IM/DD optical wireless network.

The received signal y(t) can be written as [37]

y(t) = γηs(t) ∗ h(t) + v(t) (2.1)

where t is continuous time index, s(t) denotes the intensity signal sent by the laser diode

(LD), y(t) the received photocurrent by the photodetector (PD), h(t) the channel impulse

response, η the electro-optical conversion factor in watts per ampere (W/A), and γ the
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photodetector responsivity. Signal intensity has to be non-negative, i.e.,

s(t) ≥ 0 (2.2)

which is the fundamental constraint differentiating IM/DD from many coherent modulated

systems and an important basis of the schemes mentioned later in this article.

The proposed methods for constellation design and labeling require the channel

state information which is typically static and easy to obtain for practical indoor optical

wireless communications. We consider flat-fading channel model first. With a constant

channel h = 1 assumed for multiple symbol intervals, the model is simplified to

r(t) = γηs(t) + n(t) (2.3)

where γη = 1 can be further assumed without loss of generality. In our design, s(t) is

chosen from a signal set S = {s1(t), s2(t), . . . , sNc(t)}, where each signal in the set is to

be designed and Nc is the constellation size. The discrete vector channel model can be

written as:

r[p] = s[p] + n[p] p ∈ [1, Nc] (2.4)

where we assume the noise vector n[p] has independent random Gaussian elements with

zero mean and variance N0/2 per dimension. We refer the readers to [38] for details about

the relationship between the discrete and continuous channel models. It should be noted

that [p] is to index the “discrete” signal space and (tn) will be used to index the “discrete”

time samples of the continuous signal waveforms.

Power metrics are thus defined: 1. the average electrical power Ψe(t) =
1
Ts
Ei[s2i (t)]
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(the average is taken over i); 2. the average optical power Ψo(t) =
η√
Ts
Ei[si(t)], 3. the peak

optical power Ψpo(t) = ηmaxi,t si(t). The index i is uniformly taking value from set

I = {1, 2, . . . , Nc} and Ts is the symbol interval.

2.1.2 The Information Basis

Denote φ(t) = [φ1(t), φ2(t), . . . , φM(t)]T as a sequence of orthonormal informa-

tion basis modulated by ci, the i-th symbol vector. φ1(t) is associated with the DC-bias,

which is as well used by MSM-Normal and MSM-SSPS, but only for biasing purpose (not

an information basis and is dropped by the receiver). The transmitted signal si(t) by the

LD is given by si(t) = ηφT (t)ci.

If both I and Q channels are used by each subcarrier for MSM-JDCM, we term

it MSM-JDCM-IQ, thus M = 2K + 1. If only the I channels are used, we term it MSM-

JDCM-I, thus M = K + 1. The information basis is typically chosen as follows.

φ1(t) =

√
1

Ts

Π(
t

Ts

) (2.5)

φ2k(t) =

√
2

Ts

cos(2πfkt)Π(
t

Ts

) k = 1, 2, . . . , K (2.6)

φ2k+1(t) =

√
2

Ts

sin(2πfkt)Π(
t

Ts

) k = 1, 2, . . . , K (2.7)

where

Π(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, if 0 ≤ t < 1

0, otherwise.

(2.8)

where fk = k
Ts

is the frequency of k-th subcarrier. The rectangular window defined in

(2.8) is not a practical signal to use in a real-world IM/DD channel due to its infinite band-
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width requirement, thus in this paper we propose to employ a “time-domain raised cosine

(TDRC)” window defined as follows

Π̃(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5
(
1 + cos[π

β
(t− β)]

)
if 0 < t < β,

1 if β ≤ t ≤ 1− β,

0.5
(
1 + cos[π

β
(t− 1 + β)]

)
if 1− β < t ≤ 1.

(2.9)

We will choose a small β in this dissertation.

2.1.3 The Waveform Distances

The basis waveforms are typically normalized, i.e., the following holds

< φn(t), φm(t) >=

⎧⎪⎪⎨
⎪⎪⎩

1 m = n,

0 otherwise.

(2.10)

Straightforwardly, the inner product and Euclidean distance relationships between two

waveforms hold as follows

< ci(t), cj(t) >=< ci, cj > (2.11)

||ci(t)− cj(t))|| = ||ci − cj|| (2.12)

The detection performance at the receiver, especially at high signal-to-noise ratio (SNR),

is governed by the minimum distance among all waveform pairs.

2.1.4 MSM-JDCM vs MSM-SSPS

The advantage of the MSM-JDCM over the MSM-SSPS is threefold: 1. the di-

mension of information basis of the MSM-JDCM is always higher than the MSM-SSPS by
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one, which is due to the use of DC-bias as information basis; 2. the MSM-JDCM searches

constellation points in a continuous space, while MSM-SSPS restricts the searching space

to a “discrete lattice” of size 9K . Each subcarrier picks symbols from a (8+1)-APSK con-

stellation [67]; 3. MSM-SPSS has to use both I and Q channels for each subcarrier.

2.2 ISI-Robust Constellation Design

While multiple non-line-of-sight optical links exist, we choose the geometric se-

ries model for analysis in the paper, i.e.,

h′(t) = γ
∑
i

βiδ(t− τi) (2.13)

where δ(·) is a dirac-delta function, 0 < βi < 1 and τi � Ts are real numbers denoting

the gain and delay of the i-th channel tap respectively. γ is a very small value denoting

the common path-loss which can be lumped into noise variance, and therefore we only

consider the simplified channel

h(t) =
∑
i

βiδ(t− τi) (2.14)

There are other choices for modeling the selective-fading channel, e.g., the exponential de-

cay model, ceiling bounce model, and etc.. Comparisons among different channel models

can be found in [11]. With the chosen h(t), we propose to design a set of pre-equalizers

before ci comes into the JDCM modulator.

Proposition 1 () The pre-equalizers that mitigate the effect of frequency-selective channel
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(2.14) are linear, and have the following form:

Pk =
1

|zk|2

⎡
⎢⎢⎣Re(zk) −Im(zk)

Im(zk) Re(zk)

⎤
⎥⎥⎦ , for k-th subcarrier

po =
1∑
i βi

, for DC-bias

where zk =
∑

i βie
−k2πfkτi . Thus the modulating vector c̃i = Pci, where the symbol vector

ci is pre-equalized by the block-diagonal matrix P = bdiag{p0,P1, . . . ,PK}.

2.3 The Optimization Problem

2.3.1 The Objective Functions

The MSM-JDCM is targeted at optimizing the joint symbol vector cT = [cT1 , c
T
2 , . . . , c

T
Nc
]T

∈ R(2K+1)Nc (for the IQ channels case). When the optimization goal is to minimize the

average electrical power, the objective function is given by

Ψe(cT) =
1

NcTs

Nc∑
i=1

||ci||2 = 1

NcTs

cT
T cT (2.15)

where i is uniformly distributed over I. While for minimizing the optical average power,

the objective function is written as

Ψo(cT) =
η

Nc

√
Ts

Nc∑
i=1

ci,1 =
η

Nc

√
Ts

Nc∑
i=1

jT(i−1)M+1cT (2.16)

where j(i−1)M+1 = [0, . . . , 1, . . . , 0]T is a (2K + 1)Nc × 1 column vector with all zeros at

except the (i − 1)M + 1’s element, and therefore only the DC-bias part of each candidate

waveform is averaged. The exact form of optical peak power constraint is hard to get and
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we aim at the upper bound of it as in the following. For a an arbitrary packet, the optical

peak power is

Ψpo(cT) = ηmax
t,i

ci(t− jTs) = ηmax
t,i

ci(t)

≤ η√
Ts

max
i

{
K∑
k=1

√
2(c2i,2k + c2i,2k+1) + ci,1}

=
η√
Ts

max
i

{
K∑
k=1

||Akci||+ aT
0 ci}

=
η√
Ts

max
i

{
K∑
k=1

||AkJicT||+ aT
0 JicT}

=
η√
Ts

max
i

{
K∑
k=1

||Wi,kcT||+wT
i,0cT} (2.17)

Ψpe(cT) =
Ψ2

po(cT)

η2
(2.18)

(5.28) can be straightforwardly derived to upper bound the peak power, and we later

show in 2.3.4 that this bound can be replaced by a set of point-wise constraints. By in-

troducing the following notations: Ak =
√
2 diag(0, . . . , 0, 1, 1, 0, . . . , 0) with the 2k-th

and 2k + 1-th elements as 1’s, a0 = [1, 0, . . . , 0]T of dimension (2K + 1) × 1, Ji =

[O2K+1, . . . , I2K+1,O2K+1, . . . ,O2K+1] of dimension 2K+1×Nc(2K+1), Wi,k � AkJi,

and wT
i,0 � −aT

0 Ji. The optical peak power Ψpo(c) and electrical peak Ψpe(c) power has a

relationship of (5.29) such that optimizing one automatically guarantees the optimality of

the other.

Besides the performance metrics mentioned above, one can choose to use linear

combination of a number of objectives, or by running the optimization solver multiple times

with more and more severe constraints. In other words, because there are competing per-
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formance metrics, there could be a range of different answers depending on which metrics

are more important. This is important in practice and one can formulate different problems

with combining or modifying the problems we address in this paper.

2.3.2 The Constraints

With IQ channels, The symbol vector ci ∈ R2K+1 can take values from a con-

nected region as long as the nonnegative constraint is satisfied as follows.

min
t

ci(t) = min
i,t

φ(t)Tci = min
t

2K+1∑
m=1

ci,mφm(t) ≥ 0 (2.19)

With derivations in the equation at the bottom of the page, a sufficient but not

necessary set of constraints can be used to guarantee the nonnegativeness of the transmitted

signals as follows

Gi(cT) � ci,1 −
K∑
k=1

√
2(c2i,2k + c2i,2k+1)

= wT
i,0cT +

K∑
k=1

||Wi,kcT|| ≥ 0 ∀i (2.20)

These are convex constraints in cT. Later we show in 2.3.4 that a set of point-wise con-

straints serves as a replacement of this bound, with very little computational redundancy.

Besides the non-negativeness of signal, constraint has to be put also on the mini-

mum distance among all constellation point pairs.

hl(cT) � cT
TFlcT ≥ dmin, l = 1, 2, . . .

(Nc − 1)Nc

2
(2.21)

where Fl(p,q) = Epq, Ep = eTp ⊗ INc , ep has a dimension of (2K + 1) × 1, and Epq =
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ET
pEp − ET

pEq − ET
q Ep + ET

q Eq. The following relation holds.

l(p, q) = (p− 1)Nc − p(p+ 1)

2
+ q, p, q ∈ 1, 2, . . . , Nc, p < q (2.22)

For short, replace l(p, q) with l. dmin = 1 is assumed throughout this paper without loss of

generality.

The distance constraints are nonconvex in cT and we firstly approximate the ex-

teriors of the ellipses (high order cylinders) hl(c) < 1 with the first order Taylor series at

cT
(0), i.e.

hl(cT) ∼= H
(0)
l (cT)

= hl(cT
(0)) +∇hT (cT

(0))(cT − cT
(0))

= cT
(0)TFlcT

(0) + 2cT
(0)TFl(cT − cT

(0))

= 2cT
(0)TFlcT − cT

(0)TFlcT
(0) ≥ 1, ∀l (2.23)

This approximation restricts the feasible region into a half space defined by H
(0)
l (cT) ≥ 1.

By running the algorithm with the above approximation once a new point cT
(1) is found,

which is guaranteed to maintain 1 ≤ cT
(1)TFlcT

(1) ≤ cT
(0)TFlcT

(0) [4]. Then using

Taylor series again at cT
(1), the feasible region is now approximated by a new halfspace

H
(1)
l (cT) ≥ 1, which has H

(0)
l (cT) ≥ 1 as a subspace. We call this process as the “it-

erative Taylor series approximation”, which iteratively finds the supporting hyperplane of

hl(cT) < 1 as the feasible region containing a local optimum. With multiple runs at a set

of wide spread initial points, we expect to find the global optimum.

For simplicity, we drop the iteration index and write the minimum distance con-
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straint as:

1−Hl(cT) ≤ 0, ∀l (2.24)

2.3.3 The Optimization Problems

We explicitly write out the formulation with peak power minimization objective:

min
cT,v

v

s.t. wT
i,0cT + ||Wi,kcT|| ≥ 0, ∀i

−wT
i,0cT + ||Wi,kcT|| ≤ v, ∀i

1− 2cT
(0)TFlcT + cT

(0)TFlcT
(0) ≤ 0, ∀l

(2.25)

The optimization is done iteratively, and the initial point cT
(0) has to be a feasible point,

i.e., satisfying the constraints cT
(0)TFlcT

(0) ≥ dmin and wT
i,0cT

(0) + ||Wi,kcT
(0)|| ≤ 0

for all i. It is straight forward to show after each iteration, the new solution cT
(1) will

also be a feasible point and p1 ≤ p0 accordingly [4]. The stopping criterion is chosen as

||pk − pk+1|| < ε, where ε is a small real value such as 10−4 (we choose different ε values

for different goals in our simulation). Similar remarks can be made for those with criterion

Ψe(cT) and Ψo(cT).

When the number of subcarriers is large, the computation of the MSM-JDCM and

the MSM-SSPS grow so that regular PCs typically cannot handle the designs. We could

turn to super computers with larger memory and higher processing capability, since this is

just a “once-off” process.
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2.3.4 The point-wise constraints

As mentioned, the upper bound of peak power and lower bound of non-negative

constraint can be replaced by a set of point-wise constraints respectively. The reason for

such replacement is that these bounds are not tight enough and a tighter bound is hard to

find. By point-wise constraint, it is meant that all possible waveforms ci(t) defined in [0, Ts]

are sampled at a set of discrete points tn and instead of ci(t), ci(tn) ∀n are constrained,

where

tn =
nTs

N
=

nTs

2KNO

, n = 0, 1, . . . , N (2.26)

where NO denotes the oversampling rate for the subcarrier with highest frequency. It is

observed in our simulations that with NO ≥ 4, the MSM-JDCM with point-wise constraints

is able to outperform its counterpart with bounds. With flat-fading channel, the peak power

minimization with point-wise constraints can be written as:

min
cT,v

v

s.t. uT
nJicT ≥ 0, ∀(i, n)

uT
nJicT ≤ v, ∀(i, n)

1− 2cT
(0)TFlcT + cT

(0)TFlcT
(0) ≤ 0, ∀l

(2.27)

where un = [un,0, u
c
n,1, u

s
n,1, . . . , u

c
n,K , u

s
n,K ]

T , un,0 =
√
1/Ts, u

c
n,k =

√
2/Ts cos(2πfktn),

and us
n,k =

√
2/Ts sin(2πfktn). We use MSM-JDCMP as an abbreviation for MSM-JDCM

with point-wise constraints to distinguish from MSM-JDCMB, which denotes the MSM-

JDCM with upper or lower bounds as constraints. With selective-fading channel, cT is

replaced with PcT in the first two constraints.
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With point-wise non-negative constraints, the waveforms are guaranteed to take

non-negative values at the sample points, while they might take slightly negative values at

the points in the middle. We thus propose to add an additional small DC bias term after

obtaining waveforms designed with the MSM-JDCMP. Simulation results later on show

that with NO ≥ 8, the negative peak of the designed waveforms is much smaller than the

primary DC. Therefore, adding a additional DC does not noticeably cause severe perfor-

mance loss. With more time samples, the complexity increases while a smaller additional

DC is necessary for nonnegative waveforms. There is a tradeoff between the amount of the

additional DC and the complexity.

2.4 HPA Nonlinear Distortion Mitigation by MSM-JDCMP

Figure 2.1: System impaired by the HPA and LD.

In practice, the system encompasses a HPA as in Figure 2.1, which may cause

nonlinear distortion. Next to HPA, nonlinear distortion is caused by saturation of the output

power of the LD. In this paper for illustrative purpose, we only consider the combined effect

of these two blocked by studying the associated transfer function Γ(·) of the HPA and LD,

which can be approximately seen as a linear function for input amplitude smaller than a
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Figure 2.2: System impaired by the HPA and LD.

certain threshold ζ . After the input reaches ζ , Γ(·) becomes a nonlinear function as shown

by Figure 2.2. All sequences si(t) contributes to the nonlinear distortion if it falls out of

the region [0, ζ].

We propose to mitigate the nonlinear distortion by our MSM-JDCMP with mini-

mizing the dynamic range, instantaneous PAPR, and long-term PAPR of all possible wave-

forms as the objective function. With the nonnegative constraint, it is straightforward to

observe that the dynamic range is optimized though peak power limitation, i.e, is formu-

lated by (2.25) or (2.27). No single objective is always the best. Depending on particular

interests and specific HPA transfer functions, one can choose the most appropriate metric

among all, which is beyond the scope of this paper. We only formulate the optimization

problems with the constraints and give simulation results later.
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2.4.1 The Short-term PAPR Minimization

• Short-term PAPR: is the ratio of the peak of an individual waveform over its average

power. Each individually waveform is constrained under certain PAPR αi.

The short-term PAPR while symbol ci is transmitted is:

Ψ̌e,i(cT) =
(
∑K

k=1 ||Wi,kcT||+wT
i,0cT)

2

cTi ci

=
(
∑K

k=1 ||Wi,kcT||+wT
i,0cT)

2

cTTJT
i JicT

(2.28)

Ψ̌e,i(cT) is a convex function of cT. We seek to minimize the total electrical power under

with the short-term PAPR constraint Ψ̌e,i(cT) ≤ αi ( 10 log10 αi in dB ), we formulate the

optimization problem as:

min
cT

cT
TcT

s.t. uT
nJicT ≥ 0, ∀(i, n)

−wT
i,0cT + ||Wi,kcT|| −

√
αicTTJT

i JicT ≤ 0, ∀i

1− 2cT
(0)TFlcT + cT

(0)TFlcT
(0) ≤ 0, ∀l

(2.29)

Linearization is initially done at the point cT
(0) to yield a convex approximation of the

nonconvex PAPR constraint. cT
(0) is also the starting point of the iterations, which satisfies

the nonnegative and minimum distance constraints such that the linearization updates with

the iterations.
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min
cT

cT
TcT

s.t. uT
nJicT ≥ 0, ∀(i, n)

−wT
i,0cT + ||Wi,kcT|| − √

αi[(cT
(0)TJT

i JicT
(0))

1
2−

(cT
(0)TJT

i JicT
(0))−

1
2cT

(0)TJT
i (JicT − JicT

(0))] ≤ 0, ∀i

1− 2cT
(0)TFlcT + cT

(0)TFlcT
(0) ≤ 0, ∀l

(2.30)

2.4.2 The Long-term PAPR Minimization

• Long-term PAPR: is the ratio of the peak of all waveforms over their averaged power,

which is assumed to be less than α.

For our scheme, the long-term PAPR is given by:

Ψ̃e(cT) =
{maxi(

∑K
k=1 ||Wi,kcT||+wT

i,0cT)}2
cTTcT/Nc

=
Nc{maxi(

∑K
k=1 ||Wi,kcT||+wT

i,0cT)}2
cTTcT

(2.31)

With the long-term PAPR constraint Ψ̃e(cT) ≤ α linearized similarly with the short-term

PAPR, the optimization problem can be formulated as:

min
cT

cT
TcT

s.t. uT
nJicT ≥ 0, ∀(i, n)

−wT
i,0cT + ||Wi,kcT|| −

√
α

Nc

[(cT
(0)TcT

(0))
1
2

− (cT
(0)TcT

(0))−
1
2cT

(0)T (cT − cT
(0))] ≤ 0, ∀i

1− 2cT
(0)TFlcT + cT

(0)TFlcT
(0) ≤ 0, ∀l

(2.32)
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2.5 Constellation Labeling

2.5.1 The Bit-to-symbol Mapping

For the MSM-JDCM and MSM-SPSS, the bit sequence bi is mapped onto a sym-

bol vector ci jointly, i.e.,

ci = f(bi) (2.33)

where bi ∈ {b1,b2, . . . ,bNc} ∈ RNb , ci ∈ {c1, c2, . . . , cNc} ∈ RM , and Nc = 2Nb . f(·)

is called the “block-wise (BLW)” mapping function.

For the MSM-Normal, “subcarrier-wise (SCW)” mapping is employed, which

maps bits onto subcarriers individually, i.e.

(cI,k, cQ,k) = f̃(bI,k, bQ,k) k = 1, . . . , K (2.34)

where I and Q stand for real and imaginary part respectively. (cI,k, cQ,k) can take values

from only (±a,±a). The summation of all subcarriers pulses is then biased. The designing

of the mapping functions is referred to as “constellation labeling” problem.

2.5.2 The Binary Switching Algorithm

After the optimization problem is solved, we obtain Nc = 2Nb constellation points

in a 2K + 1 dimensional space with the minimum Euclidean distance dmin. The SER is

thus governed by dmin. Good constellation labeling scheme, i.e., bit-to-symbol mapping

ci = f(bi), serves to reduce the number of bits in error while the SER is fixed. For smaller

constellation sizes, brute force method can be applied to find a global optimal, while for
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larger constellations the complexity of exhaustive search soon becomes prohibitive. For

constellations in high dimensional space as we design, there is no well recognized way of

labeling. One heuristic algorithm, termed binary switching algorithm (BSA) by [78] was

applied by [60] to output Gray or quasi-Gray mappings for two-dimensional constellations.

The BSA can also be applied for labeling constellations in high dimensional space and we

show that it significantly outperforms the random mapping.

Denote ξnd as the subset of symbols ci ∈ ξ, whose label bi has value d ∈ {0, 1} in

position n, i.e., ξnd = {ci = f(bi), ∀bi ∈ {0, 1}Nb |bi,n = d}, ξ = {ξnd , ∀d ∈ {0, 1}, n ∈

{1, · · · , Nb} ∈ Z} (we refer readers to [60, section 2] for details on the definitions), and

the cost function to minimize for AWGN channel without prior knowledge can be written

as [60, Eq.6]:

Da =
1

Nb2Nb

Nb∑
n=1

1∑
d=0

∑
ci∈ξnd

∑
ĉi∈ξnd̄

exp

(
− |ci − ĉi|2

4N0

)
(2.35)

where d̄ is the complement of d, i.e., if d = 0 then d̄ = 1. The BSA iteratively finds a local

optimum for a random initial mapping, and several runs are executed to reach the global

optimum (details can be found in [60] and references therein).

2.6 Performance Evaluation

In this section, we assess the power efficiencies and error performances of the

MSM-JDCM, MSM-SSPS, and MSM-Normal. Flat-fading channel and rectangular pulse

shaping function are assumed through Section VI-A to VI-D and VI-F for illustrative pur-

pose. A practical design example assuming selective-fading channel and TDRC pulse shap-
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ing function is also included. Comparison between MSM and single carrier schemes such

as on-off keying (OOK) can be found in [77] and is not included in this paper.

2.6.1 SER and BER

For the MSM-JDCM and MSM-SPSS, we assume that each symbol is transmitted

with equal probability. The union bound of SER is derived as [38, Eq.25]

Es,1 ≈ 2Nn

Nc

Q

(√
d2min,1

2N0

)
� p1Q

(√
d2min,1

2N0

)
(2.36)

where Q(x) = 1√
2π

∫∞
x

exp(−t2/2)dt is the Gaussian Q-function, dmin,1 is the minimum

Euclidean distance, and Nn is the number of neighbor pairs (which is defined in later sec-

tions). The corresponding BER is

Eb,1 =
λ1

Nb

Es,1 =
λ1

Nb

p1Q

(√
d2min,1

2N0

)
(2.37)

where λ1 denotes the average number of bits in error when one symbol is in error.

For the MSM-Normal, we regard that one symbol is in error if any subcarrier is

not correctly detected. The SER can then be derived as

Es,2 = p̃2

[
1−

(
1−Q

(√
d2min,2

2N0

))K]

≈ p̃2KQ

(√
d2min,2

2N0

)
� p2Q

(√
d2min,2

2N0

)
(2.38)

where 0 < p̃2 < 1 and p2 < p1 typically. The approximate equation is valid for medium-

to-high SNR case, where the Q-function dominate the SER. The corresponding BER is

Eb,2 = λ2p2Q

(√
d2min,2

2N0

)
, for small N0 (2.39)

where λ2 is the average number of bits in error when one symbol is in error.
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2.6.2 The Symbol Waveforms and Power Gains

For the MSM-JDCMP, define the constellations optimized for electrical power,

optical power, and peak power with size Nc and K subcarriers as Θ0,K
E,Nc

, Θ0,K
O,Nc

, and Θ0,K
P,Nc

.

For the MSM-JDCMB, define the corresponding constellations as Θ1,K
E,Nc

, Θ1,K
O,Nc

, and Θ1,K
P,Nc

.

The coordinates of selected optimized constellations are given in Appendix A. Though the

MSM-SSPS in [67] is design specifically for reducing the dc-bias, we generalize it to ac-

commodate the electrical power, optical power, and peak power reduction and the corre-

sponding optimized constellations with size Nc are denoted as Θ2,K
E,Nc

, Θ2,K
O,Nc

, and Θ2,K
P,Nc

.

For the MSM-Normal, no optimization is associated. Θ3,K
Nc

stands for the corresponding

constellation with adaptive bias and Θ4,K
Nc

for enough-biased1. We assume Ts = 1 without

loss of generality. The oversampling rate NO = 8 without severely adding to computational

cost. 300 random initializations are chosen in order to obtain the best constellation. Due

to space limit, only the corresponding waveforms with Nb = 4 for the three schemes are

shown for illustrative purpose.

We compare the power efficiencies of the three schemes when the same target

SER and the same spectrum efficiency (bit/s/Hz) are achieved. The power gains are defined

as

g
xy,kxky
Z,Nc

= 10 log10
P

y,ky
Z,Nc

P x,kx
Z,Nc

[dB] (2.40)

where Nc is the constellation size, Z ∈ {E,O, P}, x, y ∈ {0, 1, 2, 3, 4}, kx and ky are the

number of subcarriers scheme x and y use respectively. Since the Q-function part dominate

1Enough-biased means the DC bias added to each unbiased waveform equals the absolute value of the largest negative

peak of all signal waveforms.
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the SERs with medium-to-high SNR, we can neglect the multiplicative factor p1 and p2

in this case with only negligible over-estimation of the power gains2, as in Table I at the

bottom of this page.

Figure 2.3−Figure 2.9 include the designed symbol waveforms for the MSM-

Normal, MSM-SPSS, and MSM-JDCMP with Nb = 4 and K = 2, and Figure 2.10−Figure

2.15 has accordingly waveforms while Nb = 6 and K = 3. Different waveforms are

associated with different colors. We observe that the waveforms associated with the MSM-

Normal and MSM-SPSS are less “irregular” while the one with MSM-JDCMP seems more

random. Intuitively, the MSM-JDCMP is expected to take better usage of the design space.

The Monte-Carlo simulation comparing the symbol error rate performance of the three

schemes is shown by Figure 2.16, where the testing symbol sequence is of length 2× 106.

2In other words, with medium-to-high SNR, we only need to slightly increase dmin,1 to obtain a large decrease of

SER without significantly increase the overall power.
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Figure 2.3: MSM-Normal symbol waveforms with adaptive bias (Nb = 4).
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Figure 2.4: MSM-Normal symbol waveforms with enough bias (Nb = 4).
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Figure 2.5: MSM-SSPS symbol waveforms minimizing the electrical power (Nb = 4).
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Figure 2.6: MSM-SPSS symbol waveforms minimizing the optical power (Nb = 4).
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Figure 2.7: MSM-JDCMP symbol waveforms minimizing the electrical power (Nb = 4).
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Figure 2.8: MSM-JDCMP symbol waveforms minimizing the optical power (Nb = 4).
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Figure 2.9: MSM-JDCMP symbol waveforms minimizing the peak power (K = 2, Nb = 4).
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Figure 2.10: MSM-Normal symbol waveforms with adaptive bias (Nb = 6).
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Figure 2.11: MSM-Normal symbol waveforms with enough bias (Nb = 6).
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Figure 2.12: MSM-SSPS symbol waveforms minimizing the electrical power (Nb = 6).
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Figure 2.13: MSM-SPSS symbol waveforms minimizing the optical power (Nb = 6).
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Figure 2.14: MSM-JDCMP symbol waveforms minimizing the electrical power (Nb = 6).
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Figure 2.15: MSM-JDCMP symbol waveforms minimizing the optical power (Nb = 6).
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Figure 2.16: SER performance of the three schemes when K = 2, Nb = 4, with the same Ea.
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2.6.3 Spectral Efficiency and Power Efficiency Tradeoff

Increasing K for a fixed Nb, i.e., sacrificing a portion of the spectrum efficiency,

could serve to increase the power efficiency. Θ0,4
E,16 offers 2.31dB electrical power gain

over Θ0,2
E,16. Corresponding waveforms are shown in Figure 2.17. It should be noted that no

further gain is guaranteed to be achieved with further increasing K, e.g. Θ0,6
E,16 is no better

than Θ0,4
E,16.
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Figure 2.17: MSM-JDCMP symbol waveforms minimizing the electrical power (K = 4, Nb = 4).

2.6.4 Nonlinear Distortion Mitigation with MSM-JDCMP

Figure 2.18 - Figure 2.21 show the waveforms designed to constraint the short-

term PAPR to be 3dB with K = 2 and Nb = 4 by choosing αi = α ∀i. Figure 2.22- Figure

2.25 show the waveforms designed to constraint the long-term PAPR to be 3dB. Whether
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one criterion is better than the others depends on the exact form of the transfer function of

HPA and the probabilities of symbol occurrence. If a certain sequence has a nontrivially

higher chance of transmission, it is better to force its amplitude into the linear region and

in the mean time control the dynamic range of all sequences.
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Figure 2.18: MSM-JDCMP symbol waveforms with short-term PAPR ≤ 1dB.

40



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

Am
pl

itu
de

Figure 2.19: MSM-JDCMP symbol waveforms with short-term PAPR ≤ 2dB.
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Figure 2.20: MSM-JDCMP symbol waveforms with short-term PAPR ≤ 3dB.
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Figure 2.21: MSM-JDCMP symbol waveforms with short-term PAPR ≤ 5dB.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t

Am
pl

itu
de

Figure 2.22: MSM-JDCMP symbol waveforms with long-term PAPR ≤ 1dB.
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Figure 2.23: MSM-JDCMP symbol waveforms with long-term PAPR ≤ 2dB.
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Figure 2.24: MSM-JDCMP symbol waveforms with long-term PAPR ≤ 3dB.
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Figure 2.25: MSM-JDCMP symbol waveforms with long-term PAPR ≤ 3dB.

2.6.5 Selective-fading Channel with TDRC Pulse Shaper: A Design Example

We consider a chosen selective-fading channel

h(t) =
1

2
δ(t) +

1

4
δ(t− 1

18
) +

1

10
δ(t− 1

9
) +

1

20
δ(t− 1

6
) (2.41)

And we use the window function as defined in (2.9) as pulse shaper, with the roll-off factor

β = 0.1. When K = 2 and Nb = 4, we can obtain the pre-equalizer by using Proposition
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1 calculated as follows

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1111 0 0 0 0

0 1.1350 0.2620 0 0

0 −0.2620 1.1350 0 0

0 0 0 1.2230 0.5409

0 0 0 −0.5409 1.2230

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.42)

With MSM-JDCMP, the designed waveforms are shown by Figure 2.26.
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Figure 2.26: MSM-JDCMP symbol waveforms minimizing the electrical power with

selective-fading channel (K = 2, Nb = 4).

2.6.6 The improved labelings

Recall the BER in (2.37)

Pb =
2λ1Nn

NbNc

Q

(√
1

2N0

)
(2.43)
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where the erroneous number of bits λ needs to be minimized. In the previous sections we

only calculated the Q function part, while this assumption is only accurate with medium to

high SNRs. The constant multiplicative part should also be taken into account with lower

SNR.
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Figure 2.27: SER and BER performance with/without improved labeling using MSM-JDCMP to

minimize electrical power.

Two points are treated as neighbors if the following holds

1 ≤ ||ci − cj|| ≤ 1 + δ (2.44)

where δ is chosen such that

Q(
√

Ea/2N0)

Q(
√

(1 + δ)2Ea/2N0)
≥ μ (2.45)

SNR = 10 log10
Ea

N0

[dB] (2.46)
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where SNR stands for the signal-to-noise ratio, Ea is the average electrical energy over

all waveforms, μ is a large number so that only pairs with distances smaller than 1 +

δ are treated as neighbors, i.e., The pairwise error associated with non-neighbor pairs is

neglected. μ = 100 is chosen in this section. It can be observed by simulations that

further increasing μ does not change the results much. For Θ0,2
E,16, the best corresponding

constellation labeling is found for each SNR value by BSA. The exhaustive search method,

if applied, needs to compare 64! different labeling such that it is too costly to be useful. It

can be observed from Figure 2.27 that improved labeling offers a marginal BER gain (0.1dB

at 10−6 BER) over the random average (over 100 arbitrary trials) labeling (K = 2, Nb = 4).

2.7 Chapter Conclusion

In this chapter, we have proposed a novel and efficient constellation design scheme,

termed MSM-JDCM for the optical IM/DD systems. It offers significant power gains over

the traditional methods. With the MSM-JDCMP, highly compact sphere packings in higher

dimensional space that minimize the electrical/optical/peak powers are found in both flat-

fading and selective-fading scenarios. Besides, the MSM-JDCM with PAPR constraints

mitigates the system nonlinear distortion. It could potentially be a supplement to many

other existing anti-distortion algorithms. In addition, we applied the binary switching al-

gorithm to search for the best labeling. The obtained labeling greatly reduces the BER of

the system.
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Chapter 3

Constellation Design for Multi-color

Visible Light Communications

3.1 Constellation Design with Ideal Channel

Figure 3.1: System diagram of the proposed CSK-Advanced System.
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The system diagram is shown by Fig. 1, where Nr red LEDs, Ng green LEDs,

and Nb blue LEDs are applied. In one symbol interval of length Ts, a random bit sequence

b of size Nb×1 is first mapped by a BSA mapper f(·) to a symbol vector c of size NT ×1,

where NT = Nr +Ng +Nb. The symbol c is chosen from a constellation

C = (c1, c2, . . . , cNc). (3.1)

where Nc = 2Nb denotes the constellation size. Intensity modulation (IM) is applied by

each LED light such that c ≥ 0. The symbol c is then passed through the optical channel

H of size NT ×NT . The output of the color filters can be written as

y = γηHc+ n. (3.2)

where η is the electro-optical conversion factor, γ is the photodetector responsivity, and

γη = 1 is assumed without loss of generality (w.l.o.g.). Each dimension of n is assumed

as a zero mean Gaussian random variable with variance N0/2 [79]. Such noise assumption

is valid for both ideal channel and channel with cross-talks case [49, 19]. The received

intensity vector y is passed through an imaging detector to obtain estimate of the transmitter

symbol, which is then de-mapped by f−1(·) to recover the bit sequence.

We first formulate the optimization problem with ideal channel, i.e. H = INT
.

Define a joint constellation vector cT = [cT1 cT2 . . . cTNc
]T , and the i-th symbol is written as

ci = [cr1i . . . c
rNr
i cg1i . . . c

gNg

i cb1i . . . c
bNb
i ] = JicT. (3.3)

where Ji = [ONT
. . . INT

. . .ONT
] is a selection matrix with all zeros except for an identity

matrix at the i-th block.
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3.1.1 The objective function

The SER performance of the system is governed by the MED among all pairs of

constellation points when the signal-to-noise-ratio (SNR) is sufficient, which is typically

true for VLC. Therefore, we seek to minimize the SER by maximizing the MED. In order

that the MED is larger than t, the following conditions must hold [4]

cTTFlcT ≥ t. (3.4)

where Fl(p,q) = Epq, Ep = eTp ⊗ INc (Kronecker product), ep of size NT × 1 has all zeros

except the p-th element being one, Epq = ET
pEp − ET

pEq − ET
q Ep + ET

q Eq, and

l ∼= (p− 1)Nc − p(p+ 1)

2
+ q, p, q ∈ 1, 2, . . . , Nc, p < q. (3.5)

The distance constraints (5.16) are nonconvex in cT. We approximate (5.16) by a first order

Taylor series approximation around cT
(0), i.e.

cTTFlcT ∼= 2cT
(0)TFlcT − cT

(0)TFlcT
(0) � h

(0)
l (cT) ≥ t. (3.6)

where cT
(0) is either a random initialization point or a previously attained estimate.

3.1.2 The average color and average power constraint

The average of all LEDs’ intensities can be written as a NT × 1 vector

c̄ =
( 1

Nc

Nc∑
i=1

Ji

)
cT = J̄cT = [c̄r1 . . . c̄rNr c̄g1 . . . c̄gNg c̄b1 . . . c̄bNb ]T . (3.7)

If only the average of r/g/b intensities are specified instead of average of all streams, the

following 3× 1 vector is used

c3 = Po · [c̄r c̄g c̄b]T = Kc̄ = KJ̄cT. (3.8)
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which is the average color and power constraint, where K is a selection matrix summing

up r/g/b intensities accordingly, Po is the average optical power, and

c̄r + c̄g + c̄b = 1. (3.9)

Poc̄
x = c̄x1 + . . .+ c̄xNx . (3.10)

where x ∈ {r, g, b}. By properly selecting c3, the CRI and LER constraints can be met [9].

3.1.3 The optical PAPR constraint

For each LED, the optical PAPR is defined as the ratio of the highest power over

the average power. Mathematically, the PAPR of the j-th LED can be written as

Φj =
max(KjcT)

1/Nc · sum(KjcT)
, ∀j ∈ [1, NT ] (3.11)

where by sum(a) the elements in vector a are added up, Kj is a selection matrix of size

Nc × NcNT and by max(KjcT) the largest intensity from the Nc values for the j-th LED

is selected.

The PAPR of an individual LED can be constrained as

Φj ≤ αj, ∀j ∈ [1, NT ] (3.12)

3.1.4 CRI and LER constraints

The color rendering index (CRI), sometimes called color rendition index, is a

quantitative measure of the ability of a light source to reproduce the colors of various ob-

jects faithfully in comparison with an ideal or natural light source. Light sources with a
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high CRI are desirable in color-critical applications such as photography and cinematog-

raphy [15]. Luminous efficacy is a measure of how well a light source produces visible

light. It is the ratio of luminous flux to power. Depending on context, the power can be

either the radiant flux of the source’s output, or it can be the total power (electric power,

chemical energy, or others) consumed by the source [63]. The CRI and LER are important

practical lighting constraints. By properly selecting c3, specific CRI and LER constraints

can be met.

3.1.5 The optimization problem

When H = INT
the problem can be formulated as

Maximize
cT,t

t

subject to KJ̄cT = c3,

cT ≥ 0,

h
(0)
l (cT) ≥ t ∀l,

Nc max(KjcT)− αjsum(KjcT) ≤ 0 ∀j.

(3.13)

which can be straightforwardly proven as a convex optimization problem. With the first

three constraints, it is termed a regular optimization problem and with all constraints a

PAPR-constrained problem. By iteratively solving (3.13), a local optimal constellation cT
1

can be obtained 1. With multiple runs starting from different initial point cT
(0), the best of

solutions, cT
∗ is selected.

1One can refer to a similar problem in [4] for convergence, complexity and performance analysis.
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3.2 Constellation Design with CwC

The channel cross-talks are caused by the mismatch between the emission spectra

of the transmitter LEDs and the transmission spectra of the receiver filters. The CwC

has the following structure assuming single RGB LED is employed based on [19, 49] and

experiments.

Hc =

⎡
⎢⎢⎢⎢⎢⎣
1− ε ε 0

ε 1− 2ε ε

0 ε 1− ε

⎤
⎥⎥⎥⎥⎥⎦

where the parameter ε ∈ [0, 0.5) characterizes both attenuation and interference effects.

By SVD (singular value decomposition), Hc = USVH , where U and V are

unitary matrices of size NT × r, S is a diagonal matrix of size r × r, and r is the rank of

Hc. In this case, r is the dimension of space for constellation design instead of NT , and

the more severe are the images overlap the small value r takes. We apply a pre-equalizer

P = VS−1 at the transmitter-side and a post-equalizer UH at the receiver-side to equalize
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the channel2. Define PT = INc ⊗P, and the optimization in (3.13) can be transformed as

Maximize
cT,t

t

subject to KJ̄PTcT = c3,

PTcT ≥ 0,

h
(0)
l (cT) ≥ t ∀l,

Nc max(KjPTcT)− αjsum(KjPTcT) ≤ 0 ∀j.

(3.14)

It should be noted that cT now is of dimension Ncr × 1, i.e., the constellation is designed

in a r-dimensional space. With a decreased r, performance loss is expected.

As has been discussed, with cT
∗ the lowest system SER is achieved with a fixed

optical power (thus we call it a power-efficient constellation). To further minimize the

system BER with a fixed SER, a good bit-to-symbol mapping function f(·) as shown in

Fig. 1 need to be found. In this paper, we apply the binary switching (BSA) algorithm to

find an optimized mapping. Since it is not the main focus of this paper, the details of BSA

are omitted (we refer the readers interested to [60]).

3.3 Performance Evaluation

In this section, we provide numerical illustration of advantages of the CSK-Advanced

with one RGB LED, i.e. Nr = Ng = Nb = 1. Both the CSK-Advanced and the conven-

tional decoupled scheme can work with arbitrary color illumination. With one RGB LED,

ci (i ∈ [1, 3]) for the decoupled scheme takes value from OOK (2-PAM) constellations. To

2n and UHn have the same distribution, since UH is unitary.
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make a fair comparison, an 8-CSK-Advanced constellation should be designed. It needs

to be noted that the spectrum efficiency (bits/sec/Hz) of both systems are chosen to be the

same, the average optical powers are equal, and the average colors are identical.

3.3.1 Constellation design with ideal channel

Balanced lighting system

If the average intensity of each color is similar, we call the corresponding sys-

tem “Balanced lighting system”. For example, we choose average color as cB3 = 10 ·

[1/3, 1/3, 1/3]T and the average power Po = 10. For the conventional scheme, each LED

can simply take value independently from binary constellations

CB,r = CB,g = CB,b = [0, 6.67].

The MED for each branch is dmin � 6.67. For our scheme, the optimized constellation is

C8
B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 4.8485 0 0 14.5455 7.2727

14.5455 0 7.2727 4.8485 0 0 0 0

0 14.5455 0 4.8485 0 7.2727 0 0

⎤
⎥⎥⎥⎥⎥⎦

The MED equals 7.27, such that we could expect a lower SER with sufficient

SNR. The asymptotic power gain is approximately 0.86dB (=10× log(7.27/6.67)).
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Unbalanced lighting system

We choose the average color as cU3 = 10 · [0.44, 0.33, 0.22]T . With the conven-

tional scheme, the LEDs take value from constellations

CU,r = [0, 8.88] CU,g = [0, 6.66] CU,b = [0, 4.44].

With our scheme, the optimized constellation

C8
u =

⎡
⎢⎢⎢⎢⎢⎣

0 7.2590 14.5550 0 6.4454 0 7.2960 0

6.4859 0 0 12.9718 7.2090 0 0 0

3.2598 7.2589 0 0 0 7.2590 0 0

⎤
⎥⎥⎥⎥⎥⎦

The MED is approximately 7.26, which is smaller than MED of one branch but

larger than MEDs of two branches of the conventional scheme.

Extremely Unbalanced lighting system

We choose the average color as cE3 = 10·[0.7, 0.15, 0.15]T . With the conventional

scheme, the LEDs take value from constellations

CE,r = [0, 14] CE,g = [0, 3] CE,b = [0, 3].

With our scheme, the optimized constellation is

CE
8 =

⎡
⎢⎢⎢⎢⎢⎣
12.6277 0 0 6.3139 9.0584 0 9.0584 18.9416

0 0 6.3139 0 0 0 5.6861 0

0 0 0 0 5.6861 6.3139 0 0

⎤
⎥⎥⎥⎥⎥⎦

The MED is approximately 6.31, which is smaller than MED of one branch but larger than

MEDs of two branches of the conventional scheme.
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PAPR-constrained system

If identical individual PAPR constraints are added, i.e. αj = α into the optimiza-

tion. The corresponding MEDs with varying PAPR are summarized in Table 1. It can be

observed from that there is a tradeoff between power efficiency and PAPR for the three

cases. With extremely low PAPR, e.g. α = 1.5, the system suffers from severe power loss.

With a PAPR increase of 3dB, e.g. from α = 2 to α = 4 which is typically tolerable, the

power gain of unbalance systems are larger than balanced system.

We then simulate using bit sequence of length N = 9 ∗ 106 for selected cases

above to compare the BER performance among different systems versus different optical

SNR, defined as [38, Eq.27]

γo = 10 log10
Po√
NbN0

(3.15)

where w.l.o.g. Ts = 1 is assumed.

Selected BER curves versus optical SNR are included in Fig. 2 and Fig. 3. In Fig.

2, CSK-Advanced system applies constellation C8(cB3 ) and in Fig. 3 constellation C8(cE3 )

is used. It can be observed that the with CSK-Advanced scheme non-trivial power gain is

obtained over the conventional system, especially when the average color is not balanced.

Table 3.1: MED with varying PAPR and average color.

dmin C8
B C8

U C8
E

α = 1.5 3.54 3.40 2.84

α = 2 6.67 5.58 4.38

α = 4 7.07 7.26 6.31

α = 6 7.27 7.26 6.31
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The optimized mapping by BSA offers additional power gain for all OSNR range.
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Figure 3.2: Balanced conventional system vs CSK-Advanced systems.
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Figure 3.3: Extremely Unbalanced conventional system vs CSK-Advanced systems.

Histogram of MEDs of 1000 local optimal constellations for the balanced system

is shown by Fig. 4. It can be seen that approximately 1/4 of the runs will converge to

satisfactory MEDs. Therefore, we would suggest only 20−30 runs in practice to reduce

complexity.
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Figure 3.4: Histogram of MEDs of 1000 local optimal constellations.

Constellation labeling

The optimized bit-to-symbol mapping obtained by the binary switching algorithm

when γo = 5dB is included in Table 2. With optimized mapping, only 1.33 out of 3 bits

on average are in error when a symbol error occurs. Without BSA based mapping how

average, 1.73 out of 3 bits on average (over results observed from 100 random labelings)

are mis-interpreted instead. The optimized mapping tables can be computed offline.

Table 3.2: Optimized Bit-to-symbol mapping with OSNR=5dB.

Constellation Point Optimized Labeling

(0, 0, 7.27) 000

(0, 0, 0) 001

(0, 14.55, 0) 010

(0, 7.27, 0) 011

(0, 0, 14.55) 100

(7.27, 0, 0) 101

(14.55, 0, 0) 110

(4.85, 4.85, 4.85) 111
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3.3.2 Constellation design with CwC

SVD-based pre-equalizer

Consider the following 3× 3 channel with moderate cross-talks, e.g. ε1 = 0.1,

Hε1 =

⎡
⎢⎢⎢⎢⎢⎣
0.9 0.1 0

0.1 0.8 0.1

0 0.1 0.9

⎤
⎥⎥⎥⎥⎥⎦

By SVD we have Hε1 = Uε1Sε1V
H
ε1

. The pre-equalizer Pε1,pr = Vε1S
−1
ε1

and

post-equalizer Pε1,po = UH
ε1

. The corresponding optimized constellation for balanced sys-

tem is

C8
ε1
=

⎡
⎢⎢⎢⎢⎢⎣
−7.8376 −5.7208 −4.6893 −0.0000 −8.4386 −3.9188 −7.8123 −7.7708

8.6391 −0.9559 −5.1688 −0.0000 4.5539 4.3196 0.0000 −0.0742

3.8794 −2.0338 2.3211 0.0000 −2.2190 1.9397 −7.7338 3.8463

⎤
⎥⎥⎥⎥⎥⎦

The MED with varying area of overlap for balance, unbalanced, and extremely unbalanced

systems are summarized in Table 3. In practice, the mismatch between the emission spectra

of the transmitter LEDs and the transmission spectra of the receiver filters is restricted, and

cases with ε ≥ 0.2 are too rare to be included.

Comparison with post-equalized systems

Instead of redesign the constellations subject to a transformed set of constraints

due to employment of a pre-equalizer P, zero-forcing (ZF) GZ or linear minimum-mean-

squared-error (LMMSE) based post-equalizer GL can be employed at the receiver [?] to
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Table 3.3: MED with varying area of overlap.

dmin C8
B,D C8

U,D C8
E,D

ε = 0 7.2727 7.2590 6.3139

ε = 0.05 6.7621 6.6748 5.9275

ε = 0.1 6.3275 6.1464 5.5657

ε = 0.15 5.9462 5.7769 5.1635

ε = 0.2 5.5670 5.3692 4.7727

mitigate the cross-talks.

Fig. 5 shows the corresponding BERs against increased crosstalks for a balanced

system employing different schemes when OSNR is fixed to 5dB. It is seen that our SVD-

based scheme significantly outperforms systems employing either ZF or LMMSE post-

equalizers. Fig. 6 shows the BERs against OSNR for a balanced system when ε is fixed

to 0.1. With this particular parameters chosen, there is no significant difference between

ZF and LMMSE based system performance and therefore we only included the LMMSE

based results.
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Figure 3.5: BER against ε with OSNR=5dB for a balanced system.
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Figure 3.6: BER against OSNR with ε = 0.1 for a balanced system.

3.4 Conclusion

A novel constellation design scheme, CSK-Advanced, for visible light communi-

cations with arbitrary number of RGB LEDs is proposed in this paper. With both optimized

constellation and bits-to-symbols mapping, non-trivial power gains are observed comparing

with conventional decoupled systems. The more unbalanced color illumination the system

works with, the larger power gains are expected. To avoid excessive nonlinear distortion,

individuals optical PAPR constraints can be included with the optimization. Further, to

deal with CwC, an SVD-based pre-equalizer is introduced, and the constellations are re-

designed subject to a transformed set of constraints. It is shown by simulations that such

SVD-based approach greatly outperforms counterparts employing ZF or LMMSE-based

post-equalizers.
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Chapter 4

Training Resource Allocation for

Mitigating Estimation Error

Propagation in a Wireless Relaying

System

4.1 Channel Model

As in Figure 1.2, we consider a three-node AF relaying system without direct

link from source to destination. Each node is equipped with a singular antenna (a single

transceiver on the relay works well in half-duplex mode). The channel hXY from X to Y

adopts Rayleigh fading, i.e., is a circular symmetric complex Gaussian (CSCG) random
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variable (RV) with prior statistics hXY ∼ CN(0, σ2
XY ). The source-to-relay channel hSR

and relay-to-destination channel hRD are independent but not identical (i.n.i.d.). To avoid

analytical redundancy, all noise elements in both phases are assumed to be CSCG RVs with

zero mean and identical variance σ2
w.

4.2 Channel Estimation for Phase-1

In phase 1, the relay transmits to the destination a training sequence sR ∈ CNR×1,

across NR time slots (during which hRD is assumed to be constant). Each of the NR

symbols is assumed to have equal power PR such that sRs
H
R = NRPR (any non-identical

column drawn from a NR ×NR DFT matrix scale by
√
NRPR can be a good candidate).

The received signal at the destination node is:

y
(1)
D = hRDsR +w

(1)
D (4.1)

This is a well-known linear Gaussian model. The LMMSE estimator of hRD is

just the MMSE estimator [39], which can be found by:

ĥRD = R
hRD,y

(1)H
D

R−1

y
(1)
RD,y

(1)H
RD

y
(1)
D

= σ2
RDs

H
R (σ

2
RDsRs

H
R + σ2

wINR
)−1y

(1)
D (4.2)

Applying the matrix inversion lemma (A + UCV )−1 = A−1 − A−1U(C−1 +

V A−1U)−1V A−1 to the covariance matrix R−1

y
(1)
RD,y

(1)H
RD

, the mean squared error MSERD,
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which is the covariance of the estimation error δhRD = hRD − ĥRD can be calculated as:

MSERD = σ2
δhRD

= tr(E((hRD − ĥRD)(hRD − ĥRD)
∗))

= RhRD,h∗
RD

−R
hRD,y

(1)H
D

R−1

y
(1)
RD,y

(1)H
RD

RH

hRD,y
(1)H
D

=
σ2
RD

NRPR
σ2
RD

σ2
w

+ 1
(4.3)

The estimator ĥRD is unbiased with variance:

σ2
ĥRD

= E(ĥRDĥ
∗
RD) =

NRPRσ
2
RD

NRPR + σ2
w

σ2
RD

(4.4)

Both δh and ĥ are CSCG RVs (independent of each other and σ2
ĥRD

= σ2
RD −

σ2
δhRD

). Hence, δhRD ∼ CN(0, σ2
δhRD

) and ĥRD ∼ CN(0, σ2
ĥRD

).

4.3 Channel Estimation for Phase-2

In phase 2, the source transmits to the relay a training sequence sS ∈ CNs×1,

across NS time slots. sS is, similar with sR, chosen from a scaled DFT matrix to guarantee

identical per symbol power and sHs = NSPS . The relay receives

y
(2)
R = hSRsS +w

(2)
R (4.5)

and multiplies y
(2)
R with an amplification gain g as in (5.13), which is assumed to be non-

adaptive with different symbols for the slot allocation problem, and in turn the long term

average transmitting powers from the relay are equal for both phases. While g can be any

positive real number in practice varying with different symbols.

g =

√
PR

PSσ2
SR + σ2

w

(4.6)
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The relay forwards:

x
(2)
R = ghSRsS + gw

(2)
R (4.7)

The destination receives:

y
(2)
D = hRDx

(2)
R +w

(2)
D

= hRDghSRsS + hRDgw
(2)
R +w

(2)
D (4.8)

which can be treated as a Gaussian linear model for estimating hSR based on a known

source-to-relay channel. The LMMSE estimator of hSR, which coincides with the MMSE

estimator, can be derived as in (5.16):

ĥSR = R
hSR,y

(2)H
D

R−1

y
(2)H
D y

(2)H
D

y
(2)
D

=
σ2
SRh

∗
RDg

∗s∗S
σ2
wg

2|hRD|2 + σ2
w

(INS
+

σ2
SRg

2|hRD|2
σ2
wg

2|hRD|2 + σ2
w

sSs
H
S )

−1y
(2)
D (4.9)

After the first phase training only estimated hRD is obtain, so that hRD in (5.16) need to be

replaced with ĥRD, and we could obtain the Bayesian MSE:

MSESR = tr(E((hSR − ĥSR)(hSR − ĥSR)
∗))

= RhSRh∗
SR

−R
hSRy

(2)H
D

R−1

y
(2)
D y

(2)H
D

RH

hSRy
(2)H
D

=
σ2
SR + σ2

SRg
2|ĥRD|2

1 + g2(1 +
σ2
SR

σ2
w
NSPS)|ĥRD|2

(4.10)

where |ĥRD|2 follows gamma distribution with shape k = 1 and scale θ = σ2
ĥRD

, i.e.,

|ĥRD|2 ∼ Gamma(1, σ2
ĥRD

). The pdf of |ĥRD|2 can be explicitly written as:

f|ĥRD|2(x) =
1

σ2
ĥRD

Exp(− x

σ2
ĥRD

) x ≥ 0 (4.11)
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Therefore, we have the averaged Bayesian MSE:

MSESR = E|ĥ1|2(MSESR)

=

∫ ∞

0

(σ2
SR · 1

1 + αx
+ σ2

SRg
2 · x

1 + αx
)f|ĥRD|2(x) dx

=
σ2
SRg

2

α
+

σ2
SR(g

2 − α)

σ2
ĥRD

α2
Exp(

1

σ2
ĥRD

α
)Ei(− 1

σ2
ĥRD

α
) (4.12)

where Ei(x) is the exponential integral function defined in (4.13) and α � g2(1+
σ2
SR

σ2
w
NSPS).

Ei(x) =

∫ ∞

−x

exp(−t)

t
dt (4.13)

MSESR can be verified to be a decreasing function of lengths of relay training

and source training, NR and NS respectively. By increasing NR we obtain a more accurate

estimation of hRD, which is in turn beneficial for the estimation of hSR during the second

phase.

4.4 An Iterative Searching Algorithm

Rewrite the MSEs in (4.3) and (5.22) as functions of lengths of relay and source

training: MSERD(NR) and MSESR(NR, NS) (Notice that MSERD(NR) equals MSERD(NR)

due to its non-randomness).

Our primary objective is to balance the MSEs as follows:

min
NR,NS

max(MSERD(NR),MSESR(NR, NS))

subject to (PR + PS)NS + PRNR ≤ E (4.14)
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where we assume that the total energy of both phases E is fixed, and the goal is to find

appropriate slots pair (N∗
R, N

∗
S) that minimizes the maximum estimation error results from

two-phase, or say, to achieve balanced estimation errors. The relay amplification factor is

chosen as in (5.13). As mentioned before, g can be chosen as other positive real numbers,

leading to different average relay transmitting power for both phases, P ′
R 
= PR, which we

don’t consider for our slot allocation problem in this dissertation.

It can been easily proven that MSESR(NR, 0) = σ2
SR, MSESR(NR,∞) = 0, and

MSERD(NR) decreases with NR towards zero (when we have infinity length). Therefore,

a finite N ′
R satisfying MSESR(N

′
R,∞) < MSERD(N

′
R) < MSESR(N

′
R, 0) is always

available. MSESR(NR, NS) is a decreasing function of NS . Hence, for any finite N ′
R, a

finite N ′
S can be found to satisfy MSERD(N

′
R) = MSESR(N

′
R, N

′
S) by a bisection method

[5], provided that enough energy available to allocate. Though in practice energy is limited,

we still could find such pair by the iterative bisection algorithm at the end of this section.

Though scarcely possible in reality, it has to be pointed out that with limited en-

ergy, a pair (N ′
R, N

′
S) that satisfies MSERD(N

′
R) = MSESR(N

′
R, N

′
S) does not always

exist, especially when we have much poorer prior knowledge of hRD than of hSR, i.e., σ2
RD

is much larger than σ2
SR. In this case, to balance the errors, we only save one symbol en-

ergy for the second phase training, i.e., NS = 1, and allocate the rest of the energy for the

first phase training, i.e., NR = NR,max. The functionality of this procedure, closing the

gap of two MSEs, relies on the fact that MSERD(NR) has a faster decreasing rate than

MSESR(NR, NS) with respect to NR, such that the initial large gap is being eliminated
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while increasing NR. This is clearly true due to the indirectness of the effect of increasing

NR on MSESR(NR, NS).

With the above discussions, we are able to propose the following iterative search-

ing method to find the optimal slots allocation, instead of solving (4.14), which is a non-

convex problem.

Algorithm Outline

S.1 Check whether or not MSERD(NR,max) < MSESR(NR,max, 0) holds. If not, termi-

nate program with default optimal setting NR = NR,max and NS = 1.

S.2 Pick a small relay training length N
(0)
R (0 < N

(0)
R < 1) satisfying MSESR(N

(0)
R ,∞) <

MSERD(N
(0)
R ) < MSESR(N

(0)
R , 0). Use bisection search to find N

(0)
S that satis-

fies MSERD(N
(0)
R ) = MSESR(N

(0)
R , N

(0)
S ). Check whether the energy constraint

(PR+PS)N
(0)
S +P

(0)
R N

(0)
R ≤ E holds. If yes, set counter i = 1 and proceed with S.3.

If not, terminate program with default optimal setting NR = 1 and NS = NS,max.

S.3 With fixed N i
R, use bisection search to find N i

S satisfying MSERD(N
i
R) = MSESR(N

i
R, N

i
S).

(This is the inner bisection loop.)

S.4 Check whether all energy has been allocated, i.e., (1 − δ)E < (PR + PS)N
i
S +

P i
RN

i
R ≤ E holds, where δ � 0 (i.e., with a small portion of energy δE remaining

since it is unlikely that optimal allocation consumes exactly all the energy). If so,

terminate the program with converting the current pair into integers, (N∗
R, N

∗
S) =

(floor(N i
R), floor(N i

S)).
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S.5 Check whether there is still more energy to allocate, i.e., (PR + PS)N
i
S + P i

RN
i
R <

(1−δ)E holds. Or by the current allocation the energy limit is already exceeded, i.e.,

(PR + PS)N
i
S + P i

RN
i
R > E holds. Then decide accordingly to which direction we

adjust N i
R (increase N i

R when the former holds and decrease otherwise), then choose

N i+1
R to replace N i

R. Set i = i+ 1 and go to S.3 (This is the outer bisection loop).

Notice that except for the extreme cases, when the optimal pair is chosen as

(NR,max, 1) or (1, NS,max), we can always find a pair (N i
R, N

i
S) (non-integers) that bal-

ances the errors and then round them to floor(N∗
R), floor(N∗

S). Also, the optimal pair for

any given problem is unique. To prove this, consider if we have two optimal solutions:

(N
∗(1)
R , N

∗(1)
S ) and (N

∗(2)
R , N

∗(2)
S ). Since MSERD(NR) is only function of NR and it mono-

tonically decreases, MSERD(N
∗(1)
R ) = MSERD(N

∗(2)
R ) is not possible. Thus, the optimal

solution is unique. Therefore, either solving the non-convex problem in (4.14) or applying

this algorithm would result in the same optimal pair.

4.5 Performance Evaluation

In section A, analysis shows how the estimation errors of hSR varies with different

parameters: the length of relay training slots, the length of sources training slots, the relay

amplification gain, and the prior information about source-to-relay and relay-to-destination

channels. For the sake of simplicity, we assume that the powers PR = PS = 1, all noises

have unit variance, and the prior variances of hSR and hRD are chosen to be σ2
SR = 2 and

σ2
RD = 3 through Figure 4.2 to Figure 4.5. In section 4.5.2, an example of slot allocation is
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illustrated.

4.5.1 Evaluation of the ABMSE

Figure 4.2 shows that for a better estimation of hSR, an accurate ĥRD is necessary

by looking at the curve corresponding to a small NR, while NS and the noise level dominate

when NR is sufficiently large. Figure 4.3 and Figure 4.4 show that when NR is insufficient,

error floors exist no matter how we increase NS or g. Figure 4.5 shows that the less prior

knowledge is known about hSR or hRD, the larger the ABMSE.

Figure 4.1: MSE in estimating hSR as a function of the length of relay training slots NR with

g = 2.
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Figure 4.2: MSE in estimating hSR as a function of the length of source training slots NS with

g = 2 and NR = 10.
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Figure 4.3: MSE in estimating hSR as a function of the relay amplification gain g with

NR = NS = 10.
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Figure 4.4: MSE in estimating hSR as a function of prior information about source-to-relay and

relay-to-destination channels with g = 2.

4.5.2 A Slot Allocation Example

We compare the performance of our proposed slot allocation scheme based on

the iterative searching method in section III with allocations that choose the ratio NS

NR+NS

randomly. The variances of channels and noises are chosen the same as in section IV.A.

We assume the total energy for both phases E = 1000 with powers PR = PS = 1 (assum-

ing a unit energy is consumed by transmitting one symbol with a unit power). The relay

amplification factor g is chosen as in (5.13).

As shown in Table.1, the stared row denotes the optimal slots pair with (N∗
R, N

∗
S) =
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(67, 467). If too less slots are allocated for the relay training, e.g. (NR, NS) = (5, 497), the

relay-to-destination channel estimation becomes too bad, which in turn affects the source-

to-relay channel estimation, resulting in worse performances for both phases than with our

scheme. If too many slots are allocated for the relaying training, e.g. (NR, NS) = (980, 10),

the energy left for source training is then not enough for combating inaccuracy brought by

noise, which causes the MSESR to be 22 times higher than the stared counterpart. In prac-

tice, equal slot allocation is most used if without scheduled allocation, i.e., (NR, NS) =

(333, 334), the errors (MSERD,MSESR) = (0.0030, 0.0220) resulting from both phases

are severely unbalanced.

Table 4.1: Slot Allocation for Balanced Estimation Errors

NR NS
NS

NS+NR
MSERD MSESR

5 497 0.99 0.1875 0.0168

53 474 0.90 0.0187 0.0154

*67 *467 *0.87 *0.0151 *0.0149

111 445 0.80 0.0090 0.0162

176 412 0.70 0.0057 0.0185

250 375 0.60 0.0040 0.0188

333 334 0.50 0.0030 0.0220

429 286 0.40 0.0023 0.0237

538 231 0.30 0.0019 0.0284

667 167 0.20 0.0015 0.0373

770 115 0.13 0.0013 0.0508

811 91 0.10 0.0012 0.0616

980 10 0.01 0.0010 0.3345
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4.6 Conclusion

In this chapter, we have considered a fundamental problem of channel estimation

error propagation for a two-hop amplify-and-forward relaying system. A close-form ex-

pression of ABMSE of channel estimation of both phases is derived as function of lengths

of relay and/or source training slots. We have shown that the proposed iterative searching

method finds the optimal allocation which balances the channel estimation errors. Analysis

shows how the estimation errors of StR channel varies with different parameters: the length

of relay training slots, the length of sources training slots, the relay amplification gain, and

the prior information about StR and RtD channels. This allocation is done off-line before

training.
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Chapter 5

Full-duplex Cooperative Transmission

Scheduling in a Fast-fading MIMO

Relaying Wireless Network

5.1 Network Assumptions

A wireless network with K users, one relay node, and one destination node is

considered as shown by Figure 1.3. The network is described as follows.

• Three time scales: period, frame and slot. One period contains multiple frames and one

frame contains multiple time slots.

• The users: locations of users are fixed; they are able to transmit directly with the des-

tination; each source transmits only one packet in one frame during its scheduled time

slot and the schedule repeats from frame to frame.
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• The relay: works with a full-duplex mode; it is able to collect packets lost from source-

to-destination transmission (based on feedback from destination which is assumed to

decrease throughput negligibly in this paper) and resend them later on; it can transmit

multiple times in a frame if scheduled.

• The destination: has multiple reception capability, i.e., can receive multiple success-

ful transmissions during one time slot; a packet is successfully received as long as the

signal-to-noise-ratio (SINR) exceeds a threshold β.

• For ease of understanding, we only consider a single relay and single destination case,

while it can be extended straightforwardly to include the multiple relays and destinations

case.

A baseline frame schedule denotes a tuple

B = (H1, H2, . . . , HM1). (5.1)

where Hk is the set of users that transmit simultaneously in the k-th time slot. A cooperative

frame schedule is a tuple

C = (H̃1, H̃2, . . . , H̃M2). (5.2)

where H̃k is either only some set of users or some users along with the relay node that

transmit simultaneously in the k-th time slot. A period schedule is a tuple, for example

P = (B,B, . . . , C, C, C, . . .). (5.3)

which contains multiple baseline frames and cooperative frames. During one period sched-

ule, the number of packets entering into the relay equals the number of those leaving.

Details about the above schedules are specified in Section IV.
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User Ti ∈ Hk can be successfully received by the destination if

SINRTi,D(k) =
P r
Ti,D

α
∑

T̄∈Hk\{Ti} P
r
T̄ ,D

+ Pn

≥ β. (5.4)

where α is the correlation between different codes, P r
Ti,D

is the signal power from Ti re-

ceived at destination, Pn is the noise power at the destination, and T̄ denotes other nodes

transmitting at k-th time slot except Ti.

5.2 MIMO Throughput Calculation

Suppose that each user has NT transmitting antennas, the relay has NR receiving

antennas and NR transmitting antennas, and the destination has ND receiving antennas.

The channel matrix between the relay and destination is

H = [hT
1 h

T
2 . . .hT

ND
]T . (5.5)

The channel matrix between the i-th transmitter and destination is

Gi = [giT
1 giT

2 . . .giT
ND

]T . (5.6)

We assume that every antenna of all nodes has equal transmitting power, i.e.

PR

NR

=
PT

NT

= pa. (5.7)

where PR denote the total transmitting power of the relay, PR denote the total transmitting

power of the users, and pa is the power per antenna.

We define dR as the path-loss between relay and destination antenna pairs, since

the spatial separation among antennas of a same node is much smaller than between that
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between different nodes. With interference from the transmitters, a packet from the re-

lay can be recovered by the destination if the γR,D(k) = SINRR,D satisfies the following

relationship at the k-th time slot.

S = Pr(γR,D(k) > β) = Pr
( ND∑

n=1

pa‖hn‖2(1 + rR)
−a

αIN(k) + σ2
D

> β
)
. (5.8)

where rR is the distance from relay to destination and S is defined as the throughput be-

tween relay and destination, γIN(k) is the interference power at time slot k, σ2
D is the

time-invariant noise power at the destination, and a is the path-loss exponent.

The interference αIN(k) is calculated by

αIN(k) = α
∑
i∈Hk

ND∑
n=1

NT∑
m=1

|gin,m|2pa(1 + ri)
−a. (5.9)

where hn,m and gip,q are assumed to be i.i.d. complex Gaussian random variables with zero

means and unit variances. The SINR can be written as

γR,D(k) =
pa

∑ND

n=1

∑NT

m=1 |hm,n|2(1 + rR)
−a

αpa
∑

i∈Hk

∑ND

p=1

∑NT

q=1 |gip,q|2(1 + ri)−a + σ2
D

. (5.10)

Therefore, we only care about the path-loss between relay and destination

dR = (1 + rR)
−a. (5.11)

and the path-loss from transmitter i to destination

di = (1 + ri)
−a. (5.12)

Then the SINR is thus simplified as

γR,D(k) =

∑ND

n=1

∑NR

m=1 dR|hn,m|2
α
∑

i∈Hk

∑ND

p=1

∑NT

q=1 di|gip,q|2 + θ
. (5.13)
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where θ = σ2
D/pa. Define

hre
m,n =

√
2Re{hm,n}, him

m,n =
√
2Im{hm,n},

gi,rep,q =
√
2Re{gip,q}, gi,imp,q =

√
2Im{gip,q}.

which all has zero mean and unit variance, the SINR is written as

γR,D(k) =

∑ND

n=1

∑NR

m=1 dR[(h
re
m,n)

2 + (him
m,n)

2]∑
i∈Hk

∑ND

p=1

∑NT

q=1(γdi)|[(gi,rep,q )2 + (gi,imp,q )2] + 2θ
. (5.14)

Divide both the numerator and denominator by a common term

T = 2γNDNT

∑
i∈Hk

di (5.15)

and the follows is obtained

γR,D(k) =

∑ND

n=1

∑NR

m=1 d̃R[(h
re
m,n)

2 + (him
m,n)

2]∑
i∈Hk

∑ND

p=1

∑NT

q=1 d̃i|[(gi,rep,q )2 + (gi,imp,q )2] + 2θ′
. (5.16)

where ∑
i∈Hk

ND∑
p=1

NT∑
q=1

d̃i = 1, (5.17)

d̃R = dR/(2γNDNT

∑
i∈Hk

di), (5.18)

θ′ = θ/(2γNDNT

∑
i∈Hk

di). (5.19)

Lemma 1 A quick and easy approximation to pdf of sum weighted chi-squares:

X =
n∑

i=1

cix
2
i . (5.20)

where the x1, . . . , xn are independent and identically distributed standard normal variables

and ci’s are positive weights. Without loss of generalization we assume

N∑
i=1

ci = 1. (5.21)
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Let Y be the positive random variable with density function:

gY (y) =
1

2

n∑
i=1

(
y

2ci
)

1
2ci

−1
e
− y

2ci /Γ(
1

2ci
), y > 0 (5.22)

It was proved that the first three moments of X and Y are identical, i.e.,

EY = EX, EY 2 = EX2, EY 3 = EX3. (5.23)

Proof: See [22] (Gabler 1987).

Define random variable

Z =

ND∑
m=1

NR∑
m=1

[(hre
m,n)

2 + (him
m,n)

2], (5.24)

Y =
∑
i∈Hk

ND∑
p=1

NT∑
q=1

d̃i[(g
i,re
p,q )

2 + (gi,imp,q )2]. (5.25)

We can find the pdf’s of Z and Y as follows

fZ(z) =
1

2NΓ(N)
zN−1e−z/2, z > 0 (5.26)

fY (y) =
M

2

|Hk|∑
i=1

(
y

2d̃i
)

1
2d̃i

−1
e
− y

2d̃i /Γ(
1

2d̃i
), y > 0 (5.27)

where N = 2NDNR and M = 2NDNT . The SINR can thus be denoted as a function of Z

and Y

γR,D(k) =
dRZ

Y + 2θ′
. (5.28)
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The probability of detection can be calculated as follows

Pr
(
γR,D(k) > β

)
= 1− Pr

(
γR,D(k) ≤ β

)
= 1− Pr

( dRZ

Y + 2θ′
≤ β

)
= 1− Pr

(
Z ≤ β(Y + 2θ′)

dR

)
= 1−

∫ ∞

0

FZ [
β(y + 2θ′)

dR
]fY (y)dy. (5.29)

The cumulative distribution function

FZ(z;NR) = P (NR, z/2) (5.30)

where P (s, z) is the regularized Gamma function defined as

P (s, z) =
γ(s, z)

Γ(s)
=

1

Γ(s)

∞∑
k=0

zse−z

s(s+ 1) . . . (s+ k)
. (5.31)

where Γ(s) denotes the Gamma function. Plug in expression of fY (y) we have

Pr
(
γR,D(k) > β

)
= 1−

∫ ∞

0

FX [
β(y + 2θ′)

dR
]fY (y)dy

= 1− M

2

∫ ∞

0

P (NR,
β(y + 2θ′)

2dR
)

×
|Hk|∑
i=1

(
y

2d̃i
)

1
2d̃i

−1
e
− y

2d̃i /Γ(
1

2d̃i
)dy

∼= 1− M

2

∫ c

0

P (NR,
β(y + 2θ′)

2dR
)

×
|Hk|∑
i=1

(
y

2d̃i
)

1
2d̃i

−1
e
− y

2d̃i /Γ(
1

2d̃i
)dy. (5.32)

where by simulation we observe that by choosing c ≥ 30 the the accuracy of the above

approximation is guaranteed. The integration can easily be calculation by MATLAB.
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5.3 Full-duplex Cooperation Framework

Figure 5.2 shows one transmission period under our full-duplex cooperation frame-

work. One period contains Nb baseline frames (BF) and Nc cooperative frames (CF). Each

BF is made up of M1 time slots and each CF has M2 time slots.

Figure 5.1: A transmission period.

In the BF’s only users transmit, while relay can transmit during any time slot in

the CF’s, as long as it is scheduled. In one CF, we have M2 = Q1+Q2 slots in total, where

Q1 denotes the number of time slots that only users transmit and Q2 denotes the number

while users and relay transmit simultaneously. The full-duplex relay collects packets all

the time in a period but only transmits during the Q2 time slots. A packet enters a relay if it

fails to be collected by the destination but is successfully detected by the relay. Denote the

number of packets entering the relay during the BF as Eb and those during the CF as Ec as

follows

Eb =

M1∑
k=1

∑
Ti∈Hk

PrHk
(Ti, R)[1− PrHk(Ti,D)], (5.33)

Ec =

M2∑
k=1

∑
Ti∈H̃k

PrH̃k(Ti,R)[1− PrH̃k
(Ti, D)]. (5.34)

Since we assumed that the packets entering and leaving the relay are equal, the following
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relation holds

NbEb +NcEc = NcQ2. (5.35)

Then we obtain the ratio of CF’s in one period

η =
Nc

Nb +Nc

� Nc

Np

=
Eb

Q2− Ec + Eb

. (5.36)

The overall throughput in one period is calculated by

Sp = NbSb +NcSc

= (1− η)NpSb + ηNpSc. (5.37)

where Sb and Sc are the total throughput in one baseline and cooperative frame respectively.

Once the scheduling is done, Eb, Ec, Q2, Sb, Sc are known and η can be calculated. Then

according to how long we want our period to be we choose Np = Nb +Nc. Therefore, Nb

and Nc can be calculated. In our simulations in Section VI, the average throughput in one

time slot is compared for different schemes, which is calculated by

Savg =
Sp

Np

. (5.38)

5.4 Scheduling Algorithm

An optimal schedule of the cooperative can be found by exhaustive search with

complexity of O(2K+1), which is prohibitive when K is large. Therefore, we instead sched-

ule the cooperative frame by Algorithm 1, which has a complexity of O((K + 1)2). We
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refer the reader to [53] for details of the complexity analysis and the scheduling of the

baseline frame.

Algorithm 1 Outline

S.1 Set k = 1 and mark all users and relay node as unscheduled.

S.2 Label both the unscheduled users and relay node according to decreasing values of

the throughput when each node transmit alone. S0 denoting the relay throughput is

largest followed by throughput S1, and the lowest throughput is SK .

S.3 For each i, where 0 ≤ i ≤ K, we form the set Θi = (Si, Si+1, . . . , Si+ni−1, Si+ni
),

where i+ ni ≤ K. Add the sources Si, . . . , Si+ni
sequentially into the time slot until

the throughput stops increasing. Calculate the corresponding throughput T (Θi).

S.4 Choose the optimal set T (Θopt) among all T (Θi), i.e., T (Θopt) = max{T (Θi), 0 ≤

i ≤ K}. H̃k = Θopt and k = k + 1.

S.5 All users in Θopt is marked scheduled, while the relay node is still treated as unsched-

uled. Go to S.2 if the number of unscheduled node is larger than 1, while algorithm

terminates otherwise.
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Figure 5.2: Proposed scheduling vs other schedulings.

5.5 Performance Evaluation

In this section, we compare the throughput obtained by using the half-duplex co-

operative (HDC) scheme in [53], random access (RA) scheme, time division multiple ac-

cess (TDMA) scheme, and our proposal full-duplex cooperative (FDC) scheme with vary-

ing the correlation parameter γ, the number of antennas equipped for each node, and the

threshold β. For simplicity, we assume the same number of antennas are employed at

transmitter, relay, and receiver, i.e., N = NT = NR = ND.

In Figure 5.3 - Figure 5.5, we set the noise power σ2
D = 10−3, the path-loss

exponent a = 3, and γ ranges from 0 to 1. Each node is assumed to have unit trans-
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mitting power, i.e., P = 1. The locations of the transmitters are randomly generated but

fixed for all of our simulations. The distances between the users and the relay dTR =

[5.65 6.58 7.22 8.16 8.69 9.36 10.86], and the distances between the users and the desti-

nation dTD = [7.55 8.69 9.36 9.77 10.86 10.86 12.57]. Once the locations of users are

changed, we should reschedule our transmission.

In Figure 5.3, assuming β = 1, N = 2, we compare the average throughput

Savg of the four schemes. It is observed that cooperative schemes significantly outperform

noncooperative schemes and among cooperative schemes FDC outperforms HDC scheme.

When γ is very small, one can schedule all the node to transmit at the same time slot and

expect to reach the maximum throughput so that we can just apply the TDMA scheme.

In Figure 5.4, assuming β = 1, we compare the throughput by applying FDC

scheme with vary the number of antennas N at all nodes and γ. It is observed that using

multiple antennas significantly increases throughput as expected.

In Figure 5.5, assuming γ = 0.5, N = 2, we compare the throughput by applying

FDC and HDC schemes with varying the threshold β. It again shows the superiority of

FDC over HDC scheme.
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Figure 5.3: Throughput comparison among FDC, HDC, RA, and TDMA with varying correlation

γ.
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Figure 5.5: Throughput comparison between FDC and HDC with varying threshold β.
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5.6 Conclusion

This chapter has included a MAC scheduling algorithm for an uplink full-duplex

cooperative network with a full-duplex relay and MIMO nodes. This new algorithm can

yield much larger throughput than a previously developed cooperative algorithm based on

a half-duplex relay and SISO nodes. We have also compared our algorithm with TDMA

and random access.
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Chapter 6

Conclusion

In this dissertation, we have provided novel designs for a few fundamental prob-

lems of optimizations, estimation, and scheduling in both optical and radio frequency wire-

less communications. For an IM/DD multi-carrier optical wireless system, a power effi-

cient constellation design procedure is shown in our study, which takes advantage of the

compactness of sphere-packing in high dimensional space. Our scheme fully utilized the

lighting bias energy to carry information instead of conventional non-information-carried

DC-bias to get one extra feasible modulation dimension and highly increase data rate. It

can also flexibly constrain peak-to-average power ratio (PAPR) into a desirable range to

get better bit-error-rate (BER). A zero-forcing digital pre-equalizer is considered for the

first time in optical MSM systems for diffuse/selective fading channel. Further, an optimal

bits-to-symbol mapping algorithm in multiple dimensions is provided.

For an IM/DD multi-color visible light communication system, we have provided

power efficient constellation design subject to multiple practical lighting constraints such
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as the average optical power, illumination color, CRI, LER, and PAPR. For systems hav-

ing ideal channel, we have shown that with our optimized constellations and labeling,

significant power gain is achieved and this gain grows while illumination color becomes

more unbalanced. For systems having channel with cross-talks, we propose to employ an

SVD based pre-equalizer and redesign the constellations subject to a transformed set of

constraints. It is illustrated then that systems employing such method greatly outperform

counterparts employing ZF or LMMSE based post-equalizers at the receiver end.

In the third part, a training source allocation scheme was propose to uniquely find

the optimal solution that fixes the problem of unbalanced channel estimation error in a

two-hop relaying system. Close-form expressions of estimation error for both phases are

derived in terms of lengthes of training pilots in both phases. Performance analysis includes

plots of the estimation errors of source-to-relay channel against the length of relay training

slots, the length of sources training slots, the relay amplification gain, and channel prior

information channels accordingly.

In the last part, we considered a transmission scheduling problem for an uplink

MIMO relaying network. A MIMO full duplex relay was employed to collect lost pack-

ets from transmitting nodes to destination links. A close-form expression of throughput

was derived for a point-to-point fast-fading MIMO link, based on which throughput for

transmitting nodes and relay are calculated. Then we propose a low complexity search-

ing algorithm, which provides optimized schedules of nodes and relay accesses. Our full

duplex scheme is compared with a half duplex counterpart as well as random access and
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TDMA access methods, and significant thoughput gains are observed.
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Appendix A

Selected Optimized Constellations

The optimized constellations Θ0,2
E,16, Θ0,2

P,16, Θ
1,2
E,16, and Θ1,2

P,16 are listed with a given

order (0000, 0001, . . . , 1111) by applying the BSA at SNR=10dB.

Θ0,2
E,16 = {(1.4514, 0.0527, 0.6814, 0.3327, 0.0282), (0.7202, 0.5695, 0.1722, 0.3244, 0.2160),

(1.2032, 0.2489, 0.3290,−0.2405, 0.7819), (1.1484,−0.2025,−0.0656, 0.6490, 0.4580),

(1.4097, 0.6370, 0.1505,−0.1936,−0.2851), (1.1380, 0.1383,−0.0538, 0.6275,−0.4886),

(1.4055, 0.3465,−0.5197, 0.0022, 0.3691), (0.7123, 0.3648,−0.5046,−0.1093,−0.3425),

(0.7042, 0.0167, 0.6471,−0.3300, 0.0151), (0.7097,−0.6024, 0.1988, 0.2763,−0.2043),

(1.4127,−0.6016, 0.1626,−0.1893, 0.3320), (0.7121,−0.3645,−0.5056,−0.1100, 0.3416),

(1.1716,−0.1970, 0.2791,−0.2796,−0.7582), (0.0173, 0, 0, 0, 0), (1.1215, 0,−0.1417,

− 0.7808,−0.0007), (1.4179,−0.3368,−0.5555,−0.0263,−0.3595)}
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Θ0,2
P,16 = {(1.4976, 0.3817, 0.6085, 0.1446,−0.3005), (1.5015,−0.3913, 0.5752, 0.1322,

0.3329), (1.0434,−0.0129, 0.1305,−0.7170,−0.1426), (1.5320,−0.6861,−0.1680,−0.2493,

− 0.1301), (1.4980, 0.7078,−0.1088,−0.3211, 0.1024), (2.1578, 0.0221, 0.0177, 0.0027,

− 0.0026), (0.7029, 0.3826, 0.5762,−0.1057, 0.2517), (1.1242, 0.0122,−0.1249,−0.1455,

0.6901), (1.1508,−0.0242,−0.1371, 0.0674,−0.6917), (1.1764,−0.0020, 0.0725, 0.7514,

0.0062), (0.7595,−0.5048, 0.5416,−0.0235,−0.3083), (0.7537,−0.6670,−0.2388, 0.2658,

0.2217), (0.7410, 0.6899,−0.1923, 0.2692,−0.1642), (1.5241, 0.1483,−0.7023, 0.2567,

0.1128), (0.0112, 0, 0, 0, 0), (0.6930, 0.0131,−0.6804,−0.2681,−0.0102)}

Θ1,2
E,16 = {(1.6562,−0.4895, 0.2213, 0.5880, 0.2367), (1.0887,−0.2969, 0.7102, 0, 0),

(0.8165, 0, 0,−0.0286,−0.5766), (0, 0, 0, 0, 0), (1.3608, 0, 0, 0.0477, 0.9611),

(1.0887, 0.6551, 0.4043, 0, 0), (1.6614, 0.1615, 0.5024, 0.0238,−0.6466),

(1.6614,−0.5471,−0.2474, 0.5094, 0.1762), (1.0887,−0.7294,−0.2462, 0, 0),

(1.6562,−0.4895, 0.2213,−0.5616, 0.2938), (1.0887, 0.1292,−0.7589, 0, 0),

(1.3608, 0, 0, 0.8084,−0.5219), (0.8165, 0, 0,−0.4851, 0.3131), (0.8165, 0, 0,

0.5137, 0.2635), (1.6114, 0.5471,−0.2474,−0.4894, 0.2258), (1.3608, 0, 0,

− 0.8562,−0.4392)}
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Θ1,2
P,16 = {(1.6293, 0, 0,−0.9651,−0.6292), (0.8165, 0, 0, 0.4443, 0.− 0.3687),

(0.8165, 0, 0, 0.0971, 0.5691), (1.6614, 0.3886, 0.3517, 0.6243,−0.1700),

(1.0887, 0.7255, 0.2574, 0, 0), (1.0887,−0.0927, 0.7642, 0, 0), (1.0887,

− 0.3240,−0.6983, 0, 0), (0, 0, 0, 0, 0), (1.6293, 0, 0,−0.9651,−0.6292),

(1.3608, 0, 0, 0.1639,−0.9482), (1.6614, 0.3886, 0.3571,−0.0548,−0.6447),

(0.8165, 0, 0,−0.5414,−0.2004), (1.0887,−0.7403, 0.2109, 0, 0), (1.4808,

0.5793,−0.8722, 0, 0), (1.3608, 0, 0, 0.7392, 0.6161), (1.3608, 0, 0, 0.9031, 0.3321)}
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Appendix B

Proof of Proposition 1

The transmitted signal si(t), i ∈ [1, Nc], can be written as

si(t) = η[mi(t) + bi(t)] t ∈ [0, Ts] (B.1)

where mi(t) is an electrical domain waveform before biasing, bi(t) = ci,0Π(
t
Ts
) is the DC-

bias. For notation simplicity, we replace si(t) and bi(t) by s(t) and b(t) = c0Π(
t
Ts
). s(t)

goes through a frequency selective fading channel defined as in (2.14), where maxi(τi) �

Ts such that Π( t−τi
Ts

) can be approximated by Π( t
Ts
), the receiver-side signal y(t) can be

written as

y(t) = γη[m(t) + b(t)] ∗ h(t)

=
∑
i

βim(t− τi) + c0
∑
i

βib(t− τi) (B.2)

where γη = 1 is assumed thus the above equation holds. Using basis defined in equation

(5.22)−(2.8) and with some manipulations, we have
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∑
i

βim(t− τi) ≈
K∑
k=1

[
cck

∑
i

βi cos(2πfk(t− τi))

+ csk
∑
i

βi sin(2πfk(t− τi))

]
Π(

t

Ts

)

=
K∑
k=1

[
cckRe

(∑
i

βie
−j2πfkτi · ej2πfkt)

+ cskIm
(∑

i

βie
−j2πfkτi · ej2πfkt)]Π( t

Ts

) (B.3)

where cck and csk are the real and imaginary part coefficients modulating the k-th basis

function. Define zk =
∑

i βie
−k2πfkτi , thus the equation on the bottom of page holds:

In order to compensate the selective fading channel effect, we input cck and csk into

the corresponding pre-equalizer which guarantees⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ĉckRe(zk) + ĉskIm(zk) = cck

ĉskRe(zk)− ĉckIm(zk) = csk

(B.4)

Therefore ⎡
⎢⎢⎣ Re(zk) Im(zk)

−Im(zk) Re(zk)

⎤
⎥⎥⎦
⎡
⎢⎢⎣ĉ

c
k

ĉsk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣c

c
k

csk

⎤
⎥⎥⎦ (B.5)

⎡
⎢⎢⎣ĉ

c
k

ĉsk

⎤
⎥⎥⎦ =

1

|zk|2

⎡
⎢⎢⎣Re(zk) −Im(zk)

Im(zk) Re(zk)

⎤
⎥⎥⎦
⎡
⎢⎢⎣c

c
j

csj

⎤
⎥⎥⎦ � Pk

⎡
⎢⎢⎣c

c
j

csj

⎤
⎥⎥⎦ (B.6)

Thus we obtain the pre-equalizers Pk (k=[1,K]) for each subcarrier. For the biasing part,

similarly

∑
i

βib(t− τi) ≈ c0(
∑
i

βi)Π(
t

Ts

) (B.7)
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therefore, the corresponding pre-equalizer p0 = 1/
∑

i βi.

Remark: The above analysis is based on pulse shape defined by (2.8). When β is

small, the proposition holds approximately when pulse shape given by (2.9) is used. There

are other ways of choosing the pulse-shaping functions, e.g., the cyclic shifted squared

root of raised cosine (SRRC) pulse-shaping function suggested in [62]. However, since

the complex exponentials are the only eigenfunctions of linear time invariant (LTI) system

and use of SRRC will distort the basis, Proposition 1 no longer holds. One might need

to design a joint pre-equalizer P̃ of size (2K + 1) × (2K + 1) with non-zero non block-

diagonal elements to compensate for both the selective fading channel and change of basis

instead of the block diagonal P suggested in Proposition 1. This is out of the scope of the

paper and will be discussed in our future work.
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