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ABSTRACT OF THE DISSERTATION

Bayesian Statistics and Its Application to Quantitative Trait Loci Mapping

by

Xiaohong Che

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2011

Dr. Shizhong Xu , Chairperson

Quantitative trait loci (QTL) mapping is one of the applications of statistics in ge-

netics. This dissertation focuses two problems on QTL mapping which include a new

permutation method used to find the thresholds for the shrinkage Bayesian estimation of

quantitative trait loci parameters and three algorithms of handling the missing genotype

problems in multiple QTL mapping under the generalized linear mixed model frame-

work. In addition, this dissertation includes a review on Bayesian statistics and some

data analyses using Markov chain Monte Carlo (MCMC).

Chapter 2 is a review of the Bayesian statistics and some data analyses using MCMC.

It includes almost all the aspects of Bayesian statistics such as Bayes’ theorem, prior and

posterior distributions, Bayesian inference, and Markov chain Monte Carlo (MCMC) al-

gorithms.

In Chapter 3, a new way to conduct the permutation test under the Shrinkage

Bayesian method is developed. Permutation test is the most frequently used method

for statistical test for QTL mapping. And it was applied on the QTL mapping based

on the Bayesian approach. While using the traditional permutation test to get the

thresholds for QTL mapping from the MCMC algorithms in the Bayesian models is

vi



quite time-consuming, a new way to permute the samples from the MCMC algorithms

is performed in Chapter 3. Empirical power analysis is done to test the method through

the simulations.

Generalized linear mixed model has been applied to analyze the discrete traits. Re-

search on handling the missing genotype problems in multiple QTL mapping under the

generalized linear mixed model framework is presented in Chapter 4. Three algorithms

were proposed: (1) expectation algorithm, (2) overdispersion model algorithm and (3)

mixture model algorithm.
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Chapter 1

Introduction

The Quantitative traits loci (QTL) techniques were developed in the late 1980s.

QTL mapping is the statistical study of the association between the alleles that occur

in a locus and the phenotypes (physical forms or traits) that they produce. In this

chapter, we first give an introduction to QTL mapping and a brief review of the QTL

mapping techniques. Then, an outline and introduction to my research and analysis on

QTL mapping is presented.

1.1 An introduction to Quantitative Trait Loci Mapping

In order to understand what Quantitative Trait Loci mapping is, first, we need to

understand what quantitative traits are and what quantitative trait loci are. Quantita-

tive traits refer to phenotypes (characteristics) that vary in degree and can be attributed

to polygenic effects, i.e., product of two or more genes, and their environment. For ex-

ample, the weight or the height of a person is the quantitative trait. The eye color

of a person is not quantitative trait. Quantitative trait loci (QTLs) are stretches of

DNA containing or linked to the genes that underlie a quantitative trait. QTL mapping

1



studies the alleles that occur in a locus and the phenotypes (physical forms or traits)

that they produce. QTL identify a particular region of the genome as containing a gene

that is associated with the trait being assayed or measured. The basic idea of applying

statistical methods to QTL mapping has been clear since Sax (1923). And since late

1980s, there has been a resurgence of interest in the development of statistical models

and algorithms for genetic mapping, aiming to improve the precision of QTL mapping

and equip the models to suit different genetic designs (F2/backcross or full-sib family),

marker types (dominant, or codominant) or marker spaces (sparse or dense).

1.2 Brief review of Quantitative Trait Loci Mapping Tech-

niques

As stated earlier, the quantitative traits loci techniques were developed in the late

1980s. The basic idea has been clear since Sax (1923). And there had been some

traditional methods of using genetic markers to study quantitative trait loci (Thoday

1960; Jayakar 1970; Soller and Brody 1976; Tanksley, Medina-Filho and Rick 1982;

Edwards, Stuber and Wendell 1987). These methods involve comparing the trait means

of different markers. The difference of the trait means provides an estimate for the

phenotypic effect. To test whether the inferred phenotypic effect is significantly different

from 0, one applies some simple statistical methods such as t-test and simple or multiple

regressions.

But the approach did not become possible in principle until the advent of restriction

fragment length polymorphisms (RFLPs) as genetic markers. With the facility of this

technology, Lander and Botstein (1989) proposed a much-improved method for QTL

mapping, named interval mapping (IM). And there are various modified versions of this

2



approach (Jansen 1993; Zeng 1994).The basic idea of these methods is to divide the

entire genome into a finite number of points 1 or 2 cM apart. These points are subject

to statistical test and evaluation and thus called putative QTL. Their genotypes are not

observable but can be inferred from the genotypes of flanking markers. Two flanking

markers define an interval that may contain several putative QTL which explains why

the method is called interval mapping. Interval mapping is a one-dimensional search

algorithm since it tests one putative position at a time. So, if one wants to test a

series putative position in the entire genome, multiple tests will be required. Lander

and Botstein (1989) used the logarithm of the odds (to the base 10) (LOD) as the test

statistics. From their method, one can get a smoothed plot of the test-statistic value

against the genome position which forms a continuous profile. A significant peak in

the profile indicates a QTL located in the neighborhood of the peak. Since it is a one-

dimensional search algorithm, the interval mapping can only handle the models with a

single QTL. It only considers the effects of the putative QTL at the current position in

the model, and all the other QTL effects are ignored. Those QTL effects not included in

the model are thrown into the residual error. In contrast to interval mapping, multiple

interval mapping (MIM) (Jansen 1993; Zeng 1994) treats QTL effects ignored by the

interval mapping as the background effects, which are absorbed by the selective markers

(called cofactors) outside the tested interval. If the cofactors are chosen properly, MIM

can substantially improve the efficiency of QTL mapping. When multiple QTL are

chosen, one may has to rewrite the model to include all the significant intervals in a

single multiple-QTL model and reestimate the QTL effects with QTL positions fixed

at their estimated values (Yano et. al. 1997; Hunt et. al. 1999; Bunyamin et. al.

2002). This two-step approach may not be optimal and is being replaced by a one-step

multiple-QTL mapping where the values and the locations of the QTL are estimated
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simultaneously (Kao et. al 1999).

Multiple interval mapping has been the most popular QTL mapping procedure.

But it has some disadvantages such as the difficulties in the implementation of the

multiple interval mapping. Recently, people applied the Bayesian methods to QTL

mapping. Section 1.3.1 and section 1.3.2 will give an introduction to the Bayesian

shrinkage method used in QTL mapping and a permutation test based on Bayesian

shrinkage method respectively

1.3 Bayesian Methods and Quantitative Trait Loci Map-

ping

1.3.1 Bayesian Statistics and Data Analysis

Bayes’ theorem originated from Thomas Bayes (1763). It has the general form

introduced by Pierre-Simon Laplace as follow:

P (A|B) =
P (A)P (B|A)

P (B)
=

P (A)P (B|A)∑
P (A)P (B|A)

(1.1)

Starting from this theorem, some formulated a branch of statistics called Bayesian statis-

tics. In Bayesian statistics, ones have the Bayesian inference to do the point estimation,

hypothesis testing, credibility set calculation, analogous to the statistical method. In

Bayesian inference, each parameter θ is regarded as a random variable, and assigned a

prior distribution which has the probability density π(θ). Combining the information

from the prior distribution and the likelihood p(y|θ) for the data y = {y1, ..., yn}, one
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can compute the posterior distribution p(θ|y) through the following expression:

p(θ|y) =
π(θ)p(y|θ)

p(y)
=

π(θ)p(y|θ)∫
π(θ)p(y|θ)dx

(1.2)

And the inference about the parameter θ can be drawn from the posterior distribution.

For example, the posterior mean can be calculated by:

θ̂ = E(θ|y) =
∫

θp(θ|y)dθ (1.3)

The posterior variance can be calculated by:

var(θ|y) =
∫

(θ − θ̂)2p(θ|y)dθ (1.4)

The above examples show that Bayesian inference involves integration. In order to

numerically approximate high dimensional integrals in some complicated Bayesian in-

ference cases, some developed Markov chain Monte Carlo (MCMC) algorithms. To date,

two softwares, WinBUGS and PROC MCMC in SAS can perform MCMC algorithms

for Bayesian analysis. We also demonstrated the implementation of the MCMC algo-

rithm using professional software package-the MCMC procedure in SAS. Three data sets

from agricultural experiments were analyzed to demonstrate the MCMC algorithm in

Chapter 2. Also, in Chapter 2, there is a review about Bayesian statistics.

1.3.2 Bayesian Shrinkage Method and Permutation Test for Quanti-

tative Trait Loci Mapping

Bayesian shrinkage method was satisfactorily applied to QTL mapping by Xu (2003).

In this method, each marker is treated as a putative QTL and thus included in the model
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as a variable. All the markers are analyzed simultaneously. The data are analyzed by

using a Bayesian framework under a random regression coefficient model. In the model,

each gene effect is assigned a normal prior with mean zero and a unique variance. The

effect-specific prior variance is further assigned a vague prior so that the variance can be

estimated from the data. This method can resolve two problems in the QTL mapping.

First, it can handle a single model with a large number of markers. Second, it can deal

with some close-to-zero gene effect in the model. This method will be briefly described

as follows based on the backcross design:

The linear model for the phenotypic value yi of the ith individual is:

yi = b0 +
p∑

j=1

xijbj + ei (1.5)

where yi is the phenotypic value for the individual i, p is the total number of markers in

the entire genome, xij is a dummy variable indicating the genotype of the jth marker

for individual i, bj is the QTL effect associated with marker j, and ei is the residual

error with a N(0, σ2
0) distribution.

The Bayesian framework chooses the following prior distribution, p(b0) ∝ 1, p(σ2
0) ∝

1/σ2
0, p(bj) = N(0, σ2

j ), and p(σ2
j ) ∝ 1/σ2

j for j = 1, ..., p. The joint prior of the unob-

servable p(b, ν) takes the product of the priors of individual parameters. The likelihood

is p(y|b, ν) =
∏n

i=1 p(yi|b, σ2
0) ∝ (σ2

0)
−n/2exp{− 1

2σ2
0

∑n
i=1(yi − b0 −

∑p
j=1 xijb

2
j )}. The

joint posterior distribution has a form of p(b, ν|y) ∝ p(y|b, ν)p(b, ν).

The Bayesian analysis was implemented via the Markov chain Monte Carlo (MCMC).

The sampling is performed by sampling the unobservables from the above joint posterior

distribution in certain sequences.

One of the challenges in the QTL mapping is the problem of setting up the sta-
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tistical tests for the QTL effects. More specifically, we need to set a standard for the

QTL effects, any estimated QTL effect beyond the standard considered to be significant.

Permutation test (Churchill and Doerge 1994) is the most commonly used method for

statistical test for QTL effect. It is very efficient in interval mapping under the maximum

likelihood framework. Kopp et al. (2003) applied the permutation test to determine

empirical thresholds for Bayesian shrinkage mapping. The problem with such a test for

the MCMC implemented Bayesian mapping is the heavy computational burden. Each

MCMC run may take one or a few hours to complete for a reasonable size mapping pop-

ulation. Performing thousands of permutation analyses is not realistic for the Bayesian

method. To solve this problem, I conduct a within-chains permutation test under the

shrinkage Bayesian framework. This procedure is less time-consuming, and according

to the empirical power and false discovery rate analyses, the method turns out to be

efficient. The permutation test based on the above Bayesian shrinkage method for QTL

mapping is presented in Chapter 3.

1.3.3 Quantitative Trait Loci Mapping based on Generalized Linear

Mixed Models

The Bayesian shrinkage QTL analysis is based on the normal error model which

assumes the normal distribution for the traits. But in the reality, there are some traits

which are not normally distributed, especially some discrete traits, like disease. For

the QTL mapping of these non-normally distributed traits, the earliest analysis can be

found in Kruglyak & Lander (1995) and Hackett & Weller (1995) (Henceforth abbrevi-

ated KL and HW). Basically two methods were proposed: nonparametric approach (KL)

for continuous and categorical data and the logistic regression approach for ordinal data

(HW). As for the logistic regression approach for ordinal data (HW), a similar analysis
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can be found in a more recent paper (Rao and Xu 1998). Rebäı (1997) compared these

two methods with a simulation approach.

Besides the nonparametric approaches (Kruglyak and Lander 1995), previously, most

of these types of problems were analyzed based on the generalized linear models (Nelder

and Wedderburn 1972). Lately, with the development of the generalized linear mixed

models which is an extension of the generalized linear models, the non-normally distrib-

uted traits can be analyzed with more advanced models, i.e. generalized linear mixed

models.

Generalized linear mixed models have been well developed till now, and have been

applied to QTL mapping (Yi and Banerjee 2009). Three algorithms for the missing

genotype problems in multiple QTL mapping under the generalized linear mixed model

framework were proposed, which are (1) expectation algorithm, (2) overdispersion model

algorithm and (3) mixture model algorithm. And the three methods were compared

through simulations. The above work is presented in Chapter 4.
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Chapter 2

Bayesian Data Analysis for

Agricultural Experiments

2.1 Introduction

Bayesian statistics is a branch of statistics that originated from the Bayes’ theorem

developed by Thomas Bayes (1763) . The idea of Bayes’ theorem first appeared in the

publication -“A letter to John Canton” in 1763 where the author proved a special case

of what is now called the Bayes’ theorem. Stimulated by this idea, Pierre-Simon Laplace

introduced a general version of the Bayes’ theorem and used this theorem to solve prob-

lems in celestial mechanics, medical statistics, reliability and jurisprudence.

Nowadays, more and more attention has been given to the Bayesian statistics. It

has been applied to many fields, including genetics (Beaumont et al. 2002; Beerli 2006;

Efron and Tibshirani 2002; Hoeschele and VanRaden 1993; Holsinger and Wallace 2004;

Murphy and Mutalik 1969; Sorensen and Gianola 2002; Xu 2003; Yi and Shriner 2008;

Yi and Xu 2008) and medicine (Carlin et al. 1993; Desouza 1991; Halperin et al. 1990;

Heitjan 1997; Loke et al. 2006; Palmer and Muller 1998; Racine et al. 1986; Spiegel-
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halter et al. 2004; Turner et al. 2001; Wakefield and Racine-Poon 1995) . Numerous

publications appeared in various different forms, such as tutorials, reviews and books

(Besag et al. 1995; Casella and George 1992; Chib and Greenberg 1995; Kass et al.

1998) . Some of the review papers emphasized the theory of Bayesian statistics, which

seemed to be too theoretical to applied scientists, and others gave brief summaries on

the applications of Bayesian statistics to some special areas.

In this review, we introduced the basic concept of Bayesian statistics, the Markov

chain Monte Carlo (MCMC) algorithm, the convergence diagnosis and the post MCMC

summary statistics. A complete Bayesian analysis requires three steps: (1) statistical

modeling, (2) scientific computing and (3) model checking. This review focuses on the

first two steps, leaving the third step to the references, e.g., Dey et al. (2000) and Gelman

et al. (2005). We also introduced two professional software packages commonly used for

Bayesian analysis, which are WinBUGS and PROC MCMC. Three examples were used

to demonstrate the applications of the Bayesian statistics to agricultural experiments.

The first example was the “damage data” analysis, modeled using the simple ANOVA

under the random model framework. This data analysis can be done easily with the

maximum likelihood method. The Bayesian analysis gives an empirical posterior sample

for each parameter of interest and the empirical posterior sample for any function of the

parameters. The second example presents the Bayesian analysis for the “seeds data”

under the generalized linear model framework using the logit link function. The diffi-

cult level of this data analysis is intermediate because maximum likelihood method can

still be used to generate very similar result. The third data set was the “fertility data”

collected from a QTL mapping experiment for wheat. The difficult level is high due to

the large data set and the large model. We fit all the 75 pseudo markers in a single

generalized linear mixed model. The maximum likelihood method may not be able to
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fit that many effects and variance components to a single model. This will demonstrate

the advantage of the Bayesian analysis over the maximum likelihood method.

The purpose of this review article is not to criticize the maximum likelihood (ML)

method in favor of the Bayesian. Different methods have different pros and cons and

users have their freedom to choose their favorite methods. The main advantage of

Bayesian analysis is the ability to handle complicated models by taking advantage of

the high power computers. The downside of the method is the intensive computational

cost. The ML method provides hypothesis tests for the parameters of interest. Users are

provided with a clear recommendation whether a parameter is real or not. In Bayesian

analysis, however, users are provided with a posterior sample for each parameter, not a

clear cut recommendation about the parameter. It is up to the users to decide whether

a parameter is “significant” or not. This article targets the group of people (non-

statisticians) who intend to use the Bayesian method to analyze their data but do not

understand exactly what the Bayesian method is and how the method is implemented.

The review is by no mean exhaustive but provides a simple guidance from which more

advanced topics may be accessible. The three sample data analyses may be particularly

helpful to give the users a quick start for the Bayesian tour.

2.2 Theory

2.2.1 Bayes’ Theory

Bayes’ theorem originated from Thomas Bayes (1763) who proved a special case of

the theorem. Pierre-Simon Laplace, one of the main developers of Bayesian statistics,
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introduced the following general form of the Bayes’ theorem,

P (A|B) =
P (A)P (B|A)

P (B)
=

P (A)P (B|A)∑
P (A)P (B|A)

(2.1)

where P (A|B) is the conditional probability of A given B, P (B|A) is the conditional

probability of B given A, P (A) is the prior probability of A (before B is observed)

and P (B) =
∑

P (A)P (B|A) is the marginal probability of B(acting as a normalizing

constant). The summation is taken with respect to all possible events of A. This version

of the Bayes’ theorem applies to discrete variables.

Bayesian inference was formulated based on the above Bayes’ theorem for the condi-

tional probability for continuous variables. Unlike the frequentist (or classical) method

in which the parameters are treated as fixed but unknown constants, the Bayesian

method offers an alternative approach, that is to treat all parameters as random vari-

ables. Suppose that we are interested in estimating θ from data y = {y1, ..., yn} using

the following probability density p(y|θ). In Bayesian inference, we treat θ as a random

variable because it cannot be determined exactly. We use a probability statement to de-

scribe the uncertainty of θ. This probability density is called the prior distribution. For

example, we may say that the prior distribution of θ is normally distributed with mean

0 and variance 1, if it is believed that this distribution best describes the uncertainty

associated with the parameter. Again, the prior distribution is not a true distribution,

but a distribution that represents our lack of knowledge about the parameter.

In general, Bayesian inference follows three essential steps. First, a probability dis-

tribution for is assigned, denoted by π(θ), which is known as the prior distribution.

This prior distribution expresses the prior belief of the investigator about the parame-

ter before the data are examined. Second, a probability density for the data given the
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parameter is chosen, denoted by p(y|θ), which is also called the model. Third, the prior

belief about θ is updated by combining information from the prior distribution and the

data through the calculation of the posterior distribution, denoted by p(θ|y). More

specifically, in the third step, the prior and the model are combined through the Bayes’

theorem in the following expression,

p(θ|y) =
π(θ)p(y|θ)

p(y)
=

π(θ)p(y|θ)∫
π(θ)p(y|θ)dθ

(2.2)

where

p(y) =
∫

π(θ)p(y|θ)dθ (2.3)

is the normalizing constant of the posterior distribution p(θ|y). It is also the marginal

distribution of y.Note that the summation of the normalizing factor in the discrete

situation has been replaced by the integration for the continuous case. Both equations

(2.1) and (2.2)are called the Bayes’ theorem, but the former represents Bayes’ theorem

in the discrete case and the latter represents the continuous case. Since the marginal

probability is not a function of the parameter, it can be ignored in the Bayesian inference.

The likelihood function of θ,denoted by L(θ), is proportional to p(y|θ), i.e. L(θ) ∝ p(y|θ).

The two differ by a constant factor, which is irrelevant to the parameter. We can rewrite

equation (2.2) as

p(θ|y) =
L(θ)π(θ)∫
L(θ)π(θ)dθ

(2.4)

The marginal distribution p(y) in the continuous case is an integral. As long as the

integral is finite, it will not have any impact on the posterior distribution p(θ|y). The

reason is that the integral is a function of the data y but not a function of the parameter.

Therefore, this constant does not affect the inference of the parameter. The posterior
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distribution can be rewritten in the form of proportionality, as shown below.

p(θ|y) ∝ L(θ)π(θ) (2.5)

2.2.2 Prior distribution

A prior distribution must be defined for each parameter before we can perform

Bayesian inference. Based on different categorizing rules, the prior distribution can be

categorized into different types. In this section, we introduce the following concepts of

prior distributions.

2.2.2.1 Informative and uninformative priors

Informative priors provide specific, definite information about a variable. An infor-

mative prior usually has an impact on the posterior distributions. These priors must be

handled with care in practice because when they are in use, people are combining the

past experience and the data obtained from the current experiment to make statistical

inference. An example of the informative priors is the normal distribution with a mean

and a relatively small variance.

Uninformative priors are also known as vague, diffuse or flat priors. An uninfor-

mative prior has minimal impact on the posterior distribution of the parameter. The

uninformative prior is used solely for allowing the investigator to conduct Bayesian in-

ference because a prior is required for each parameter. It is one of many Bayesian

statisticians’ favorite priors due to its objectiveness. More references about the theories

and applications of prior distributions can be found in Berger and Bernardo (1989) and

Tibshirani (1989). The most commonly used uninformative priors include the uniform

prior for θ, i.e. π(θ) ∝ 1, or a normal distribution with mean 0 and an extremely large
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variance, say 1015.

2.2.2.2 Proper and improper priors

The definitions of proper and improper priors are relatively straightforward. If the

sum (discrete case) or integral (continuous case) of a prior density is finite, the prior

is proper; otherwise, it is improper prior. There are many examples for proper and

improper priors. A simple one occurs in the Bayesian linear regression analysis. One

can use a normal distribution as the prior for a regression coefficient. The integral of

the normal distribution is finite as long as the variance of the normal is finite. So, it is a

proper prior. A typical example of improper prior is Beta(0,0), the beta distribution for

α = 0 and β = 0. Another example of improper is the logarithmic prior on a positive

real number. A proper prior always leads to a proper posterior. However, an improper

prior does not always lead to a proper posterior. Some improper prior may generate

improper posterior and others may generate proper posteriors. A typical example is

the unbounded uniform prior for the regression coefficient of a linear model. With this

prior, the posterior distribution of the regression coefficient is normal. Although the

unbounded uniform prior is improper, the posterior is proper. The property of the

posterior distribution for the residual variance of the linear model, however, depends on

the prior distribution. We often use the improper prior π(σ2) = 1/σ2 to describe the

uncertainty of σ2. This improper prior leads to an improper posterior for σ2. Therefore,

improper prior should be used with caution.

2.2.2.3 Conjugate prior

In Bayesian probability theory, a class of prior distributions is said to be conjugate

to a class of likelihood functions p(y|θ) if the resulting posterior distributions p(θ|y)
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belong to the same family as π(θ). Such a prior is called a conjugate prior. The concept

of “conjugate prior” was introduced by Raiffa and Schlaifer (1961). More discussions

about conjugate priors can be found in Consonni and Veronese (1992) and Diaconis and

Ylvisaker (1979).

The most common conjugate family is the Gaussian family. If the likelihood function

is Gaussian, choosing a Gaussian prior over the mean will ensure that the resulting

posterior is also Gaussian. Let y = {y1, ..., yn} be n independent observations from

a yj ∼ N(θ, φ) distribution, where θ (the mean) is the parameter and φ (the scale or

variance) is assumed to be known. Sometimes it is more convenient to denote the normal

distribution by p(yj |θ) = N(yj |θ, φ). With this notation of the distribution, a normal

prior for parameter θ can be written as π(θ) = N(θ|θ0, φ0). The posterior distribution

of is proportional to the product of the prior and the likelihood

p(θ|y) ∝ π(θ)p(y|θ) ∝ exp[−1
2
θ2(1/φ0 + n/φ) + θ(θ0/φ0 +

n∑

j=1

yj/φ)] (2.6)

If we compare this posterior with the kernel of a normal distribution, we can see that

it is normal p(θ|y) = N(θ|θ1, ϕ1) with mean θ1 = ϕ1(θ0/ϕ0 +
∑

yj/ϕ) and variance

φ1 = (1/φ0 + n/φ)−1. Therefore, the Gaussian family is conjugate. Details of the

derivation and the kernel of the normal distribution will be described in a later section.

2.2.2.4 Jeffreys’ prior

The Jeffreys’ prior was introduced by Jeffreys (1939) in the following form,

π(θ) ∝ |I(θ|y)|1/2 (2.7)
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where I(θ|y) is the Fisher information matrix defined as

I(θ|y) = −E[
∂2lnp(y|θ)

∂θ2
] = E[

∂lnp(y|θ)
∂θ

]2 (2.8)

Here,p(y|θ) is the likelihood function as defined earlier. The Jeffreys’ prior is locally

uniform and hence uninformative. Another property of the Jeffreys’ prior is that it is

invariant with respect to one-to-one transformation (Jeffreys 1946) . More specifically,

in a Bayesian context, if we transform the unknown parameter θ to ψ = ψ(θ), then

∂{lnp(y|ψ)}
∂ψ

=
∂{lnp(y|θ)}

∂θ

dθ

dψ
(2.9)

Squaring and taking expectations over values of y (please note that dθ/dψ does not

depend on y), then we have

I(ψ|y) = I(θ|y)(dθ/dψ)2 (2.10)

Thus, if a prior density p(θ) ∝ |I(θ|y)|1/2 is used, then by the usual chain rule of

differentiation, we have p(ψ) ∝ |I(ψ|y)|1/2. The transformation invariance property can

save much effort in searching for new prior distribution for a transformed parameter,

which is one of the reasons why Jeffreys suggested this prior.

2.2.3 Posterior distribution

In the section of Bayes’ theorem, we introduced the concept of posterior distribution

of a parameter. Like the prior distribution, the posterior distribution of a parameter

is also not a real distribution. It represents our updated degree of belief about the

parameter after information from experiments is combined with our subjective prior
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knowledge. The posterior distribution, if exists, will be narrower than the prior distri-

bution. In other words, we will be more certain about the true value of the parameter

after we observe the data than we were before.

In general, there are three ways to find the posterior distribution. (1) The most

important way is to take advantage of the literature. Most of the problems in agricultural

experiments may be analyzed using similar designs of experiments and similar models

found in other areas. In many situations, the posterior distributions are given by the

investigators in those areas. (2) In the situations where no comparable problems can

be found in the literature, we may choose a prior in the conjugate family. In this case,

the posterior distribution is automatically given because it belongs to the same family

as the prior distribution. (3) Finally, we may try to derive the posterior distribution

by ourselves. The general rule for deriving a posterior distribution is to compare the

kernel of the posterior distribution with the kernels of many existing distributions. The

distribution in the list of existing distributions that has the same kernel as the posterior

distribution is the posterior distribution of the parameter.

We now provide two examples to show how to derive the posterior distribution of

a parameter. The first example is the normal distribution. The problem is slightly

different from that given in the section of conjugate prior. Let y = {y1, ..., yn} be the

data where p(yj) = N(yj |θ, φ) for j = 1, ..., n. The mean θ is the parameter and φ is

a known scalar. Let π(θ) = a be the prior distribution, where a is a constant (not a

function of the parameter). This prior is improper. We want to derive the posterior

distribution p(θ|y).First, we need to find the kernel of this posterior distribution. The
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full expression of the posterior density is

p(θ|y) = π(θ)p(y|θ) =
a

(2πφ)n/2
exp[− 1

2φ

n∑

j=1

(yj − θ)2] (2.11)

where
n∑

j=1

(yj − θ)2 =
n∑

j=1

y2
j − 2θ

n∑

j=1

yj + nθ2 (2.12)

Substituting this sum of squares into equation (2.11), we get

p(θ|y) =
a

(2πφ)n/2
exp[− 1

2φ
(

n∑

j=1

y2
j − 2θ

n∑

j=1

yj + nθ2)]

=
a

(2πφ)n/2
exp[− 1

2φ

n∑

j=1

y2
j + θ

1
φ

n∑

j=1

yj − θ2 n

2φ
]

=
a

(2πφ)n/2
exp[− 1

2φ

n∑

j=1

y2
j ]exp[θ

1
φ

n∑

j=1

yj − θ2 n

2φ
]

= Cexp[θ
1
φ

n∑

j=1

yj − θ2 n

2φ
] (2.13)

where

C =
a

(2πφ)n/2
exp[− 1

2φ

n∑

j=1

y2
j ] (2.14)

is again a constant with respect to variable θ. In other words, C is not a function of θ,

although it is a function of the data and other known quantities. Ignoring this constant,

we get the kernel of the posterior,

K[p(θ|y)] = exp[θ
1

φ/n

n∑

j=1

yj/n− θ2 1
2φ/n

] (2.15)

We used the special notation K[density] to represent the kernel for the density specified

within the brackets. We now compare this kernel with the kernels of existing distri-
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butions to find a match. Let ξ ∼ N(µ, σ2) be a variable with the specified normal

distribution. The density is

N(ξ|µ, σ2) =
1√

2πσ2
exp[− 1

2σ2
(ξ − µ)2]

=
1√

2πσ2
exp[− 1

2σ2
µ2]exp[

µ

σ2
ξ − 1

2σ2
ξ2]

= Cexp[
µ

σ2
ξ − 1

2σ2
ξ2] (2.16)

where

C =
1√

2πσ2
exp[− 1

2σ2
µ2] (2.17)

is a constant with respect to variable ξ.Therefore, the kernel of this normal is

K[N(ξ|µ, σ2)] = exp[
µ

σ2
ξ − 1

2σ2
ξ2] (2.18)

We now compare equation (2.15) with equation (2.18),





K[p(θ|y)] = exp

[∑n
j=1 yj/n

φ/n
θ − 1

2φ/n
θ2

]

K[N(ξ|µ, σ2)] = exp[ µ
σ2 ξ − 1

2σ2 ξ2]

(2.19)

and realize that the two kernels have the same form. Therefore, the posterior distribution

of θ is normal with mean and variance given below,

p(θ|y) = N


θ

∣∣∣∣∣
1
n

n∑

j=1

yj ,
φ

n


 (2.20)

Although the unbounded uniform prior for θ is improper, the posterior is normal with

finite variance and thus it is proper.
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The second example is the Beta prior for the parameter of a binomial distribution.

Let y = m/n be a binomial data with m events out of n trails. Let θ be the parameter

of this binomial distribution. The density is

p(y|θ) =
n!

m!n!
θm(1− θ)n−m (2.21)

Let

π(θ) =
1

Γ(α, β)
θα−1(1− θ)β−1 (2.22)

be the Beta prior distribution for the parameter with shape parameter α and scale

parameter β. The posterior of θ is

p(θ|y) = π(θ)p(y|θ) =
1

Γ(α, β)
n!

m!n!
θm+α−1(1− θ)n−m+β−1 (2.23)

The posterior can be rewritten as

p(θ|y) = Cθ(m+α)−1(1− θ)(n−m+β)−1 (2.24)

where

C =
1

Γ(α, β)
n!

m!n!
(2.25)

is a constant with respect to θ. Therefore, the kernel of the posterior distribution is

K[p(θ|y)] = θ(m+α)−1(1− θ)(n−m+β)−1 (2.26)
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Comparing this kernel with the kernel of the Beta distribution,

K[π(θ)] = θα−1(1− θ)β−1 (2.27)

we realize that the two have the same form. Therefore, the posterior is Beta with a

shape parameter m + α and a scale parameter m + β.The Beta prior is conjugate with

respect to the binomial likelihood. In many problems, explicit forms of the posterior

distributions do not exist. Therefore, special algorithms are required to implement the

Bayesian analysis. These special algorithms will be discussed later.

2.2.4 Bayesian inference

Once the posterior distribution of the parameter of interest is derived, all information

about this parameter can be found from this distribution. It is important to note that

the posterior distribution p(θ|y) is also called the marginal posterior distribution. The

reason we want to emphasize the term of “marginal” is that if there are more than one

parameter involved in the problem, say θ = {θ1, θ2}, the posterior distributions for the

two components are

p(θ1|y) =
∫

p(θ1|θ2, y)p(θ2)dθ2 (2.28)

and

p(θ2|y)
∫

p(θ2|θ1, y)p(θ1)(d)θ1 (2.29)

Each parameter component should be inferred from its own marginal posterior distrib-

ution. Theoretically, once we find the marginal posterior distribution of the parameter,

we are done with the job because we can say that p(θ|y) is is the “Bayesian inference”

of the parameter because all information about θ is contained in p(θ|y). However, just
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providing the posterior distribution without summarizing the distribution seems to be

incomplete. Therefore, we will discuss the following specific statistics drawn from the

posterior distribution.

2.2.4.1 Point estimation

The classical statistical inference is based on the maximization of the likelihood

function whereas the Bayesian inference is based on integration of the probability dis-

tribution. For example, the posterior mean of parameter θ is obtained by integrating

the posterior distribution as

θ̂ = E(θ|y) =
∫

θp(θ|y)dθ

Therefore, the posterior mean is considered as a Bayesian estimate. Similarly, the pos-

terior mode can also be considered as a Bayesian estimate of parameter θ. The posterior

mode is defined as the value of θ that maximize p(θ|y).In addition, the posterior median

(the median of the posterior distribution) is also a candidate Bayesian estimate. All

these candidate Bayesian estimates are called the point estimates.

A point estimate only gives a single value. For example, the posterior mean or

median only represents the central location of the posterior distribution. The shape of

the distribution, however, tells how spread of the distribution away from the central

location. We normally use the square root of the posterior variance as a measurement

of the shape. The posterior variance is defined as

var(θ|y) =
∫

(θ − θ̂)2p(θ|y)dθ
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2.2.4.2 Hypothesis testing

Hypothesis testing in Bayesian analysis is slightly different from that in the maxi-

mum likelihood analysis. The maximum likelihood analysis is often called the classical

or the frequentist method. We first briefly describe hypothesis testing in the frequentist

analysis. Let us denote the parameter space by Θ, which is partitioned into two disjoint

subspaces, Θ0 and Θ1, so that Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅. The null hypothesis and

the alternative hypothesis are defined as H1 : θ ∈ Θ0 and H1 : θ ∈ Θ1, respectively. A

decision regarding which hypothesis should be accepted is made based on the p-value

approach. The p-value is defined as the probability that a test statistic is at least as

extreme as the one that is actually observed assuming that the null hypothesis is true.

Let T (y) be the observed test statistic (a single value calculated from the data of the

current experiment) and p[ξ(y)|θ ∈ Θ0] be the probability density of the test statistic

under the null model. The p-value is expressed as

p− value =
∫ ∞

T (y)
p[ξ(y)|θ ∈ Θ0]dξ (2.30)

If the p-value is small, say p-value<0.05, it means that T (y) is unlikely to be drawn from

p[ξ(y)|θ ∈ Θ0] distribution. Therefore, H0 : θ ∈ Θ0 should be rejected. Rejection of

H0 : θ ∈ Θ0 means acceptance of H1 : θ ∈ Θ1. The small probability for the p-value to

compare is determined by the investigator. It is quite arbitrary, but people often choose

0.05 or 0.01.If p>0.05, we accept H0 : θ ∈ Θ0. If 0.01<p<0.05 we reject H0 : θ ∈ Θ0

and say that the test is significant. If p<0.01,we reject H0 : θ ∈ Θ0 and say that the

test is very significant. The null distribution p[ξ(y)|θ ∈ Θ0] is purely hypothetical. It is

a distribution of the test statistic under the null model assuming that we could repeat

the experiment infinite number of times.
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In Bayesian analysis, hypothesis testing is more intuitive than that in the frequentist

analysis. We do not rely on hypothetical repeated experiments in the future under the

null mode; rather, we only focus on the posterior distribution of the parameter given

the data of the current experiment. Let p0 = Pr(θ ∈ Θ0|y) and p1 = Pr(θ ∈ Θ1|y)

be the posterior probabilities under the two hypotheses. Define π0 = Pr(θ ∈ Θ0) and

π1 = Pr(θ ∈ Θ1) as the prior probabilities. Let p1/p0 be the posterior odds ratio and

π1/π0 be the prior odds ratio. For example, if p1/p0 = 20,we can say that H1 is 20 times

as likely to be true as H0. The posterior odds ratio divided by the prior odds ratio gives

the Bayes’ factor

BF =
p1/p0

π1/π0
=

p1π0

p0π1
(2.31)

The Bayes’ factor can be interpreted as the “odds for H1 to H0”.

2.2.4.3 Credibility set

In the frequentist analysis, we normally define a confidence set for parameters. In

Bayesian analysis, we do not call it a confidence set; instead, we call it a credibility set.

The two (confidence and credibility) sets are similar but defined under different methods

of analysis. In the Bayesian analysis, a 100(1 − α)% credibility set for θ is a subset C

of Θ which satisfies

1− α ≤ P (C|y) =





∫
C P (θ|y)dθ (continuous case),

∑
θ∈C p(θ|y) (discrete case).

(2.32)

When choosing a credibility set for θ, we try to minimize the size of the set. We want to

choose a set that includes the points with the largest posterior density. So, analogous to

the smallest confidence set in frequentist analysis, we have the highest posterior density
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(HPD) region in Bayesian statistics. For each parameter, we can also define the equal

tail credible interval. Details of these credible intervals will be described latter in the

section of post MCMC analysis.

2.3 MCMC Algorithm

Markov chain Monte Carlo (MCMC) refers to an algorithm to implement the Bayesian

analysis. The term Monte Carlo in the context of statistics means computer simulation.

Markov chain represents a special distribution in “time series” where the state of a vari-

able in the current time point depends only on the state of the variable in the previous

time point. Why do we have to use MCMC to implement the Bayesian analysis? The

reason is simple, that is to numerically approximate high dimensional integral. The

largest obstacle in Bayesian analysis is the integration. We are interested in the poste-

rior distribution of parameters conditional on data of the current experiment. But the

posterior distribution rarely has a closed form.

In Bayesian analysis, our goal is usually to obtain the expectation of a function of

the unknown parameters from the posterior distribution. This can be expressed as

E[g(θ)|y] =
∫

g(θ)p(θ|y)dθ (2.33)

But in most cases, this integration is difficult to derive. The MCMC algorithm is a

simulation method to sample parameters from the posterior distribution. In the result-

ing sampling consequence, each observation depends only on the previous one like a

Markov chain in the time series. As in Monte Carlo integration, Monte Carlo is used to
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approximate an expectation by using the Markov chain samples, as shown below,

E[g(θ)|y] =
∫

g(θ)p(θ|y)dθ ∼= 1
M

M∑

t=1

g(θ(t)) (2.34)

where θ(t) is the sampled parameter vector at iteration t and M is the posterior sample

size.

The MCMC algorithm may be accomplished in one of three different ways: The

Gibbs sampler, the Metropolis algorithm and the Metropolis-Hastings algorithm. The

earliest MCMC algorithm is the Metropolis algorithm introduced by Metropolis and

Ulam (1949) and further detailed by Metropolis et al. (1953) . Hastings (1970) made

a generalization of the Metropolis algorithm and developed the so called Metropolis-

Hastings algorithm. Geman and Geman (1984) analyzed an image data set by using

what is now called the Gibbs sampler, which is a special case of the Metropolis-Hastings

algorithm. Gibbs sampler is named after physicist J.W. Gibbs, in reference to an analogy

between the sampling algorithm and statistical physics. All these algorithms can draw a

sequence of samples from the joint distribution of two or more variables. More references

about the MCMC algorithm can be found in the literature given below. The properties

of Markov chains were discussed by these authors, Feller (1968) , Breiman (1968) and

Meyn and Tweedie (1993) . Conditions that govern the Markov chain convergence

and rates of convergence can be found in Amit (1991), Applegate, Kannan and Polson

(1990), Chan (1993), Geman and Geman (1984) , Liu, Wong and Kong (1991a; 1991b),

Rosenthal (1991a;1991b), Tierney (1994), and Schervish and Carlin (1992). Papers that

provide both theoretical and applied treatments of the MCMC algorithm are found

in Tanner (1993), Gilks, Richardson and Spiegelhalter (1996), Chen, Shao and Ibrahim

(2000), Liu (2001), Gelman et al (2004), Robert and Casella (2004), and Congdon (2001;
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2003; 2005).

2.3.1 Gibbs sampler

Gibbs sampler is the simplest MCMC algorithm, in which one parameter is sampled

at a time from its fully conditional posterior distribution. Let m be the number of

parameters and θ = {θ1, ..., θm} be the vector of parameters. The fully conditional

posterior distribution of the kth parameter is denoted by p(θk|θ−k, y), where θk is the

kth parameter and θ−k is an (m−1)×1 vector for the remaining parameters. In order to

perform the Gibbs sampler, p(θk|θ−k, y) must be a distribution with a closed form, i.e.,

this distribution must be known and a random number generator is available for this

distribution. In most situations of the MCMC analysis, this fully conditional distribution

has a simple form, e.g., normal distribution, Bernoulli distribution and so on. For

example, if p(θk|θ−k, y) is normal with mean µ and variance σ2, i.e., p(θk|θ−k, y) =

N(θk|µ, σ2), where µ and σ2 are functions of θ−k and y, then a normal random number

generator is required so that the value of θk can be directly generated from the simulator.

Most software packages do not have an existing generator for such a normal distribution

with mean µ and variance σ2, but they often have a generator for the standardized

normal distribution. In such a case, we first generate a standardized random variable

z ∼ N(0, 1) and then take a linear transformation to get

θk = zσ + µ (2.35)

The original definition of Gibbs sampler is that θk must be a single component of vector

θ. This has been generalized to the so called “block Gibbs sampler” in which θk contains

more than one parameters. The block Gibbs sampler is more efficient than the single
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element Gibbs sampler in terms of speed of convergence to the stationary distribution.

However, it depends on a closed form of the multivariate version of the fully conditional

posterior distribution p(θk|θ−k, y).

Gibbs sampler is a special case of the Metropolis-Hastings algorithm. The algorithm

was named by Geman and Geman (1984) after the American physicist Josiah W. Gibbs.

Gelfand et al. (1990) first used Gibbs sampler to solve problems in Bayesian statistics.

Casella and George (1992) gave a tutorial on Gibbs sampler. The Gibbs sampler can be

summarized as follows,

1. Let t = 0 and initialize all parameters by θ(t) = {θ(t)
1 , ..., θ

(t)
m }.

2. Generate each parameter in turn as follows:

• draw θ
(t+1)
1 from p(θ1|θ(t)

2 , θ
(t)
3 , ..., θ

(t)
m , y)

• draw θ
(t+1)
2 from p(θ2|θ(t+1)

1 , θ
(t)
3 , ..., θ

(t)
m , y)

• ......

• draw θ
(t+1)
m from p(θm|θ(t+1)

1 , θ
(t+1)
2 , ..., θ

(t+1)
m−1 , y)

3. Increment t = t + 1 and repeat step 2 until a desired length of the Markov chain

has been reached.

In the fully conditional posterior distribution, the values of the parameters appearing

after the conditional sign “|” must be the most current values in order to have the

maximum efficiency of the sampling.

2.3.2 Metropolis algorithm

Named after its inventor, the American physicist and computer scientist N. C.

Metropolis, the Metropolis algorithm can be used to generate random samples from any
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complicated target distribution of any form. This makes the algorithm more general

than the Gibbs sampler in which the target distribution must be known. Like the Gibbs

sampler, the Metropolis algorithm can also be performed either in a univariate fashion

or a multivariate (block) fashion. Let us take the univariate Metropolis algorithm as

an example. Suppose that we want to sample θk from p(θk|θ(t)
−k, y) where p(θk|θ(t)

−k, y)

does not have a closed form, i.e., we do not know what type of distribution it is so

that a Gibbs sampler cannot be used. To implement the Metropolis sampler, we first

sample a random number from a symmetric distribution, e.g., a uniform distribution or

a normal distribution. This symmetric distribution is called the proposal distribution.

Let ξ ∼ Uniform(−∆,∆) be the proposal distribution where ∆ is a positive number in

the neighborhood of zero (∆ is also called the tuning parameter). Let θ(t) be the current

value of parameter θk. We then let θ∗k = θ
(t)
k + ξ be the proposed value for the next

move.This proposed value may be accepted or rejected based on the Metropolis rule to

be described shortly. If the proposed value is accepted, we let θ
(t+1)
k = θ∗k = θ

(t)
k + ξ,

the parameter is updated. If the proposed value is rejected,θ(t+1)
k = θ

(t)
k , the previous

value is carried over to the next cycle. Unlike the Gibbs sampler where the acceptance

rate is 100%, the Metropolis algorithm does not guarantee that the proposed value is

always accepted. The Metropolis rule says that the proposed value θ∗k is accepted with

probability

α = min

{
p(θ∗k|θ(t)

−k, y)

p(θ(t)
k |θ(t)

−k, y)
, 1

}
(2.36)

In other words, the probability of acceptance is a function of the posterior ratio of the

proposed value to the previous value. If the posterior ratio is greater than one, α = 1

and the proposed value is always accepted. If the posterior ratio is less than one, the

proposed value is accepted but only with a probability α; there is still a 1 − α chance
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that the old value is carried over to the next cycle. The Metropolis algorithm is also

called the random walk algorithm.

The claim that the Metropolis algorithm can be applied to any arbitrary distribution

is perhaps over exaggerated. Some adjustment needs to be done to make the algorithm

sufficiently general for any distribution. For example, if the parameter is a variance

component, which can only take positive number, and the previous value is already close

to the boundary, we cannot simulate the proposed value from a symmetric distribution.

Note that θk > 0 is the domain of the parameter. Let 0 < θ
(t)
k < ∆ be the current value

and ∆ be the tuning parameter of the proposal distribution. The proposed value must

be sampled from

θ∗k = θ
(t)
k + Uniform(−∆∗,∆) (2.37)

where

∆∗ =





∆ for θ
(t)
k ≥ ∆,

θ
(t)
k for θ

(t)
k <∆.

(2.38)

may be smaller than ∆ to guarantee that the proposed value is within the legal domain.

This proposal distribution is not symmetric and thus violates the basic requirement

of the Metropolis algorithm. If we use this asymmetric proposal distribution as the

sampler, the value of θk will be trapped at 0, even if the true value of θk may be much

larger than zero. This problem can be avoided by a proper adjustment of the acceptance

probability, an improvement made by Hastings (Hastings 1970).

2.3.3 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a generalization of the Metropolis algo-

rithm. It was proposed by Hastings (1970) to handle asymmetric proposal distribution.
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We use the asymmetric uniform distribution as an example to demonstrate this algo-

rithm. Let

q(θ∗k|θ(t)
k ) = Uniform(θ∗k|θ(t)

k −∆∗, θ∗k + ∆) (2.39)

be the proposal distribution, where ∆∗ = θ
(t)
k < ∆. We need to examine a reverse prob-

ability of the above proposal distribution. This reverse distribution is the probability

that, given the new value θ∗k, the parameter eventually takes the previous value θ
(t)
k .

This reverse proposal distribution depends on the θ∗k. If θ∗k ≥ ∆, the reverse proposal

distribution is

q(θ(t)
k |θ∗k) = Uniform(θ(t)

k |θ∗k −∆, θ∗k + ∆) (2.40)

Otherwise,

q(θ(t)
k |θ∗k) = Uniform(θ(t)

k |θ∗k −∆∗∗, θ∗k + ∆) (2.41)

where

∆∗∗ =





∆ for θ∗k >∆,

θ∗k for θ∗k <∆.

(2.42)

The Metropolis-Hastings acceptance probability is defined as

α = min

{
p(θ∗k|θ(t)

−k, y)

p(θ(t)
k |θ(t)

−k, y)

q(θ(t)
k |θ∗k)

q(θ∗k|θ
(t)
k )

, 1

}
(2.43)

The proposal ratio is

q(θ(t)
k |θ∗k)

q(θ∗k|θ(t)
k )

=
∆ + ∆∗

∆ + ∆∗∗ (2.44)

When neither θ
(t)
k nor θ∗k is near the boundary, we have ∆∗ = ∆∗∗ = ∆. The proposal

ratio is unity and the Metropolis-Hastings algorithm becomes the simple Metropolis

algorithm. Therefore, the Metropolis algorithm is a special case of the Metropolis-
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Hastings algorithm when the proposal ratio equals one.

We mentioned earlier in the review that the Gibbs sampler is a special case of the

general MH algorithm. The Gibbs sampler draws θk directly from the fully conditional

posterior distribution. Therefore, q(θ∗k|θ(t)
k ) = p(θ∗k|θ(t)

−k, y) and q(θ(t)
k |θ∗k) = p(θ(t)

k |θ(t)
−k, y).

The probability of accepting the new draw is

α = min

{
p(θ∗k|θ(t)

−k, y)

p(θ(t)
k |θ(t)

−k, y)

q(θ(t)
k |θ∗k)

q(θ∗k|θ
(t)
k )

, 1

}
= min{1, 1} = 1 (2.45)

The new draw is always accepted. Therefore, the Gibbs sampler is a special case of

the MH algorithm. All the three algorithms introduced so far are called the MCMC

algorithm.

Choosing the proposal distribution and the tuning parameter can be tedious. How-

ever, we can let the computer to figure out an optimal tuning parameter. Before the

MCMC process starts, we set up a target acceptance probability, say 0.60, and let the

computer to find the tuning parameter so that the acceptance rate is close to the target

acceptance rate. This tuning process can take very long time.

2.3.4 Assessment of Markov chain convergence

2.3.4.1 Burn-in and thinning

The product of MCMC is a posterior sample for all parameters of interest. This

sample is supposed to be generated from the posterior distribution of the parameters,

p(θ|y). However, the MCMC algorithm draws parameters from p(θk|θ−k, y) in turn.

The current observation drawn depends on the previous draw, explaining why the chain

is called the Markov chain. The entire MCMC process is stochastic, meaning that the
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parameters drawn do not converge to some fixed values; instead, they converge to a dis-

tribution. This distribution is the posterior distribution p(θ|y), also called the stationary

distribution. The Markov chain takes some time to reach the stationary distribution.

Before the stationary distribution is reached, the observations drawn cannot be used.

The time from the start of the chain to the point where the stationary distribution is just

reached is called the burn-in period. Observations from the burn-in period should be

discarded. Once the stationary distribution is reached, we can collect the observations

and store them in the computer as random draws from the posterior distribution. How-

ever, observations from consecutive draws may be highly correlated (autocorrelation).

Therefore, we have to delete several observations and keep one observation repeatedly

along the Markov chain. This process is called thinning. The rate of thinning depends

on the degree of autocorrelation. An alternative way of collecting the posterior sample

is to collect only one observation after the burn-in for each chain and restart the chains

using a different set of initial values. For a posterior sample of M observations, we need

M independent Markov chains. This alternative approach is time consuming but avoids

the concern of autocorrelation.

2.3.4.2 Visual analysis of trace plots

One important convergence diagnostic checking method is to use the visual analysis.

This can be done through drawing the trace plots of the parameters. A trace plot of

a parameter is a plot of the sampled value of the parameter against the time (number

of iterations). The trace plot of a parameter provides a lot of information about the

chain, such as whether the chain has converged to the stationary distribution, whether

we need a longer burn-in period or whether the chain mixes well or not. Figure 2.1

gives examples of the trace plots for several different situations. Figure 2.1a shows a
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typical trace plot for a variable. The initial value of the parameter was -10. It takes less

than 100 iterations for the chain to reach the stationary distribution where the mean

of the stationary distribution was 1.0. Afterwards, the value of the parameter tends

to stabilize around 1.0. The chain mixes very well after the stationary distribution is

reached. Figure 2.1b shows an example where the Markov chain does not mix well,

indicating a potential problem of the model. Figure 2.1c shows a situation where the

chain does not converge to any distribution at all.
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Figure 2.1: Trace plots for Markov chain convergence diagnosis for parameter theta (θ
). (a) The Markov chain quickly reaches the stationary distribution. (b) The Markov
chain mixes poorly (high autocorrelation). (c) The Markov chain does not converge at
all.

2.3.4.3 Statistical diagnosis for convergence

Gelman-Rubin R test The Gelman and Rubin R test (Gelman and Rubin 1992;

Brooks and Gelman 1997) requires multiple chains running simultaneously. This diag-

nostic test compares the between chain variance of the parameter of interest with the

within chain variance. A significantly larger between chain variance than the within

chain variance indicates that the chains have not converged to the stationary distribu-

tion. The idea is similar to the analysis of variance where we partition the total variance

of a variable into between and within group variances. Technical details of the R test

36



statistics can be found in the original studies (Gelman and Rubin 1992; Brooks and

Gelman 1997)

Geweke z-test Intuitively, for a Markov chain, if an early part of the chain is very

different from a later part of the chain, then the Markov chain has not converged at the

point where the early part is examined. Based on this idea, Geweke (1992) proposed

a z-test for checking the convergence of a single Markov chain. The basic idea was to

collect two subsamples from the Markov chain, one from an early stage of the chain

with sample size and one from a later stage of the chain with sample size M2, where

M1+M2 < M and M is the total length of the Markov chain. A z-test can be performed

for the sampled parameter of interest. If the means of the two samples are significantly

different, the chain may not have converged at the point where the early stage of the

sample is collected.

2.3.4.4 Autocorrelation

The posterior sample obtained through MCMC sampling is different from a sample

of observations collected from a real agricultural experiment in that the observations

from consecutive draws of the MCMC may be highly correlated. This type of correla-

tion is called autocorrelation or series correlation. A high autocorrelation indicates poor

mixing. Autocorrelation may be monitored by the plot of correlation between consecu-

tive observations against the lag, as demonstrated in Figure 2.2 where panel (a) indicates

low autocorrelation and panel (b) indicates high autocorrelation. The autocorrelation

of lag h for parameter θ in a Markov chain is defined as

ρh(θ) =
covh(θ)
cov0(θ)

, for 0 < h < M (2.46)
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where M is the posterior sample size and

covh(θ) =
1

M − h

M−h∑

i=1

(θ(i+h) − θ̄)(θ(i) − θ̄), for 0 ≤ h < M (2.47)

is called the autocovariance. The denominator in equation (2.46) is the autocovariance

of lag 0, which is expressed as

var(θ) = cov0(θ) =
1
M

M∑

i=1

(θ(i) − θ̄)(θ(i) − θ̄) (2.48)
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Figure 2.2: Auto correlation plots against lag: (a) Low autocorrelation, (b) High
autocorrelation.
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2.3.4.5 Effective sample size (ESS)

The effective sample size is defined as (Kass et al. 1998)

ESS =
M

1 + 2
∑∞

h=1 ρh(θ)
(2.49)

where M is the actual posterior sample size and ρh(θ) is the autocorrelation of lag h

for parameter θ. In practice
∑∞

h=1 ρh(θ) is usually replaced by
∑H

h=1 ρh(θ) where H is

called the correlation time, a positive number so that ρh(θ) ≈ 0 as h > H. Because

the autocorrelation is always positive, the effective sample size is always less than the

actual posterior sample size. A much smaller effective sample size than the actual size

indicates poor mixing of the Markov chain. The concept of effective sample size is much

the same as the effective population size in population genetics.

2.3.5 Post MCMC analysis

The product of the MCMC implemented Bayesian analysis is a posterior sample

for all parameters. The posterior sample of a parameter contains all information about

the parameter. The most informative information is the posterior distribution itself.

However, the investigator needs to summarize the posterior distribution to convince

the readers what he/she wants to tell the readers. Therefore, further analysis of the

posterior sample is necessary to complete the Bayesian analysis. This further analysis

is called the post MCMC analysis, which is often called post Bayesian analysis in the

literature.
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2.3.5.1 Posterior sample and marginal posterior distribution

Recall that the main purpose of Bayesian analysis is to infer the marginal pos-

terior distribution of the parameters of interest. If there are multiple parameters of

interest, the marginal posterior distribution for each parameter should be inferred. Let

θ = {θ1, ..., θm} be the vector of multiple parameters. Our main purpose is to infer

p(θk|y) for k = 1, ..., m. However, we never sample a parameter from this marginal

distribution; instead, we always sample θk from p(θk|θ−k, y). What is the relationship

of the posterior sample drawn from p(θk|θ−k, y) and the marginal posterior distribution

p(θk|y)?

The burn-in period and the thinning of the Markov chain serve as a way to con-

vert the sampled observations from p(θk|θ−k, y) into p(θ|y) = p(θ1, ..., θm|y), the joint

posterior distribution of the parameters. The complete MCMC chain values are not

i.i.d. samples from the posterior distribution. After the burn-in samples are removed

and the chains are thinned to remove the autocorrelation, the remaining samples may

be regarded as i.i.d. samples from the marginal posterior of the parameters. Instead of

inferring the posterior distribution explicitly, we now have a sample drawn from that

distribution. With this sample in hands, we can look at each parameter of interest and

ignore all other parameters. The distribution of this parameter (when other parame-

ters are ignored) is equivalent to the empirical marginal posterior distribution. This is

analogous to the situation of sampling (x, y) from the joint distribution p(x, y). When

examining the sampled values of x and ignoring the values of y, we are actually looking

at the marginal distribution of x.
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2.3.5.2 Summary statistics

Given the posterior sample drawn from the marginal distribution, we are ready

to perform the post MCMC analysis. The following summary statistics are normally

reported in a Bayesian analysis and are discussed in turn as follows. Again, the summary

statistics are computed on chains after removal of burn-in and thinning.

Posterior mean The most important summary statistic for a parameter is the poste-

rior mean, which is simply the arithmetic average of the sampled values of the parameter

in the posterior sample,

E(θ|y) = θ̂ =
1
M

M∑

t=1

(θ(t)) (2.50)

where θ(t) is the tth observation in the MCMC sample and is the posterior sample size.

Posterior mode and median are also relevant posterior statistics. The posterior mode

of a parameter is defined as the most frequent value of the sampled parameters in the

posterior sample. The posterior median is the value of the parameter that divides the

posterior sample into two equal parts. Depending on the shape of the distribution,

the posterior mode and posterior median of the parameter may be different from the

posterior mean. In this case, they should also be reported. These summary statistics

are called the point estimates.

Posterior variance The posterior variance of a parameter represents how the sampled

values spread (deviate from) around the posterior mean. It is calculated as the sample

variance of the parameter in the posterior sample,

var(θ|y) =
1

M − 1

M∑

t=1

(θ(t) − θ̂)2 (2.51)
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The square root of the posterior variance is the posterior standard deviation. We often

call it the posterior “standard error”. However, it should not be confused with the

definition of standard error in a real sample of a variable, where the standard error is

defined as the square root of the variance of the sampled mean. The posterior variance

should be used with caution when the autocorrelation is high. If the Markov chain is

thinned well, the posterior sample should have very low autocorrelation. The posterior

variance is useful only if the autocorrelation is low. In practice, the adjusted posterior

variance should be used, in which the effective sample size is taken into account for the

adjustment.

The effective sample size introduced earlier is useful to adjust the posterior variance

for Bayesian significance test. It is well known that the empirical posterior mean of

parameter obtained from a posterior sample is not affected by the autocorrelation, but

the posterior variance is strongly affected by the auto correlation. This leads to a serious

downwards bias for the estimated posterior variance. Let var(θ|y) be the posterior

variance obtained from the posterior sample with sample size M . We know that var(θ|y)

is biased downwardly due to autocorrelation. The adjusted posterior variance may be

defined as

var∗(θ|y) =
M

ESS
var(θ|y) (2.52)

This adjusted posterior variance should be used when performing any significance test

for parameter θ.

Credibility interval There are two types of credibility intervals to consider in Bayesian

analysis. One is the so called α × 100% equal tail credibility interval and the other is

the (1 − α) × 100% highest posterior density (HPD) interval. The α × 100% equal

tail credibility interval is defined as the interval bracketed by the α/2 quantile and the
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1− α/2 quantile of the posterior sample, where 0 < α < 1. Typical choice of the alpha

value is α = 0.05. The credibility interval is defined as an interval in the posterior

distribution where the posterior density within the interval is higher than the posterior

density outside the interval. If such an interval contains 1− α of the posterior sample,

it is called the (1 − α) × 100% HPD credibility interval. In reality, we do not have

the posterior density; instead, we only have M observations drawn from the posterior

distribution. The credibility interval can be interpreted as the shortest interval that

contains (1− α)×M observations of the posterior sample.

2.4 Software packages

There are many statistical software packages that can perform Bayesian analysis

using the MCMC algorithm. Many of them are specialized for particular problems

in some special areas. Here, we introduce two software packages that are sufficiently

general to handle any problems of Bayesian analysis. One program is called WinBUGS,

a free software package downloadable from the internet. This program uses its own

computer language for program coding, called the BUGS language. The other program is

a SAS procedure called the MCMC procedure. Since SAS is a commercialized statistical

software package, the program is not free. However, the SAS Institute provides excellent

service for technical support to all SAS users.

2.4.1 WinBUGS

WinBUGS is a stand-alone program for Bayesian analysis using the Gibbs sampler.

It is based on the BUGS (Bayesian inference Using Gibbs Sampling) project that began

in 1989 by the MRC (Medical Research Council) Biostatistics Unit. The BUGS project
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was initially conducted under the “Classic” BUGS program, which uses a text-based

model description and a command-line interface. This old version of the BUGS is still

available for all the major computer platforms, e.g., the UNIX and the DOS. WinBUGS

is the Windows version of BUGS that was initially released in 1997. The current version

of the WinBUGS v1.4.3 was developed jointly by the original BUGS group and the

Imperial College School of Medicine at St. Mary’s, London.

The WinBUGS14.exe file can be downloaded from the following website,

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

Once the program is installed in the computer, the user needs to use a patch to upgrade

to WinBUGS version 1.4.3 and a free key to allow for unrestricted use of the program.

The patch and the link to the free key are given at the top of the WinBUGS webpage.

WinBUGS can handle models with high degree of complexity. Users need to provide the

model (also called the log likelihood) to describe the relationship of the data and the

parameters. A proper prior distribution should also be provided by the user for each

parameter. WinBUGS can figure out the fully conditional posterior distribution for

each parameter automatically so that Gibbs sampler can be used to draw the samples.

WinBUGS does not take improper priors.

There are at least three ways that a user can run WinBUGS: (1) Using the Win-

BUGS window interface, (2) Using the script and (3) Running WinBUGS under R.

Directly running WinBUGS under the WinBUGS window can be very tedious and is

only performed for small and simple problems. It is also used for beginners to learn

WinBUGS. Using the script to run WinBUGS is recommended for running large and

complicated problems. Under the script running mode, users can store all the commands

in a text file and execute the script file. The most efficient way of running WinBUGS is

to run the program under R. Users need to download an R package called R2WinBUGS

44



(http://cran.r-project.org/web/packages/R2WinBUGS/index.html). Under R, the data

input and output are handled by R. WinBUGS directly takes the variables from R for

analysis. One of the nice properties of running WinBUGS under R is that users can

fully take advantage of the R package to draw high resolution graphs.

2.4.2 PROC MCMC

Data analysis in SAS is divided into two steps, (1) the data step and (2) the pro-

cedure step. The data step allows the user to input the data. The procedure step is

to perform the statistical analysis using a built-in subroutine within the SAS system.

SAS calls each subroutine a procedure. There are numerous procedures within the SAS

system, each performing some specific task. Users simply select the appropriate proce-

dure to analyze the data with minimum requirement for coding. The SAS has virtually

all procedures that users need for data analysis. The SAS syntax to call a procedure is

“PROC name-of-the-procedure;”

There is a particular procedure named the MCMC procedure. The syntax to call

this procedure is “PROC MCMC”. The MCMC procedure is particularly designed for

the MCMC implemented Bayesian analysis. It is sufficiently general to handle problems

with high level of complexity. It is even more general than WinBUGS because PROC

MCMC, by default, uses the general random walk Metropolis algorithm to sample all

variables. The very reason that PROC MCMC does not use the Gibbs sampler to draw

variable is the emphasis of generality. The Gibbs sampler is problem (distribution) spe-

cific while the random walk Metropolis algorithm is not. PROC MCMC can handle

improper priors. Users have an option to choose any prior distributions, as long as

the log of the prior densities is programmable. There is a tradeoff between generality

and efficiency. PROC MCMC spends most of the time trying to tune the parameter
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of the proposal distribution to optimize the acceptance rate (at about 60%. There-

fore, PROC MCMC usually takes longer time for the MCMC analysis than WinBUGS.

The MCMC procedure is still a trial procedure. Significant improvement is expected in

future releases. For skilled users, PROC MCMC does provide an option to draw vari-

ables using the Gibbs sampler. This is called the User Defined Sampler (UDS) option.

Detailed information about the MCMC procedure can be found in the SAS help and

documentation.

2.5 Data analysis

We analyzed three datasets to demonstrate the Bayesian method and the software

application. Although both WinBUGS and PROC MCMC were introduced, only PROC

MCMC was used for the Bayesian analysis. For each data set, we introduced the data,

selected a model for the data, chose a prior distribution for each parameter and provided

the fully conditional posterior distribution for the parameter. We also provided the SAS

code and reported the result for each data analysis.

2.5.1 The damage data

The first data set was an example to evaluate the variation of the degree of damage

caused by insects for different varieties of wheat (Milliken and and Johnson 2009) . The

data set is given in Table 2.1 and called the “damage” data. The experimenter randomly

selected four varieties of wheat from a large number of varieties and conducted an exper-

iment to evaluate damage caused by insects on the wheat plants just prior to heading.

The design structure was a completely randomized design with four replications or plots

per variety (the plot is the experimental unit). Because of environmental conditions,
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some of the plots were destroyed (flooded out by excess rain). Therefore, the design was

also an unbalanced design. The experimenter randomly selected 20 plants from each

available plot and rated the amount of insect damage done to each plant using a scale

from 0 to 10 where 0 indicates no damage and 10 indicates severe damage. Thus, the

response measured on each plot is the mean of the ratings from the 20 plants within

each plot.

Table 2.1: The average degree of damage caused by insects for four randomly selected
wheat varieties. The original dataset was published by Milliken and Johnson (2009, p.
314). This dataset is called the “damage data” here in this study.

Plot Wheat Damage
1 A 3.90
2 A 4.05
3 A 4.25
4 B 3.60
5 B 4.20
6 B 4.05
7 B 3.85
8 C 4.15
9 C 4.60
10 C 4.15
11 C 4.40
12 D 3.35
13 D 3.80

2.5.1.1 Model

Let y be an n × 1 vector of the response variable (damage) where n = 13, β be a

scalar for the population mean, X be an n× 1 vector of unity, γ = {γA, γB, γC , γD} be

an m× 1 vector for the effects of wheat variety where m = 4 is the number of varieties,

Z be an n ×m design matrix (dummy variables) and ε be an n × 1 vector of residual

errors with an assumed N(0, Iσ2
E) distribution. The linear model for the damage trait

is

y = Xβ + Zγ + ε (2.53)
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Detail of this linear model is shown as follows,
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(2.54)

where vector γ = {γ1, γ2, γ3, γ4} is a numerical representation of vector γ = {γA, γB, γC , γD}.

2.5.1.2 Prior and posterior

The investigator randomly selected four out of many existing wheat varieties. There-

fore, the effects of varieties are random effects. Frequentists call such a model the random

model. Since the population mean β is a fixed effect, this model is represented in the

form of a mixed model. We now choose the following prior distributions,
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π(β) = Normal(β|0, 1015)

π(γ) = Normal(γ|0, Iσ2
A)

π(σ2
A) = Inv − χ2(σ2

A|τ, ω) = Inv − χ2(σ2
A|0, 0) = 1/σ2

A

π(σ2
E) = Inv − χ2(σ2

E |τ, ω) = Inv − χ2(σ2
E |0, 0) = 1/σ2

E (2.55)

We have used a new notation system to represent the density. For example, π(β) =

Normal(β|0, 1015) is equivalent to β ∼ N(0, 1015) and π(σ2
A) = Inv−χ2(σ2

A|τ, ω) is equiv-

alent to σ2
A ∼ Inv − χ2(τ, ω), which is called the scaled inverse chi-square distribution

with degree of belief τ and scale ω. Under the mixed model framework, frequentists call

γ random effects (not parameters), but Bayesians do not specifically distinguish para-

meters from random effects; they call everything, except the hyper parameters, random

variable. The purpose of the analysis was to examine the relative importance of the

variance of wheat varieties to the total variance of the variable damage. This relative

importance is also called the intra class correlation and denoted by

ρ =
σ2

A

σ2
A + σ2

E

(2.56)

The γ vector is an unknown vector whose prior distribution is multivariate normal.

The variance in the prior distribution is given a scaled inverse chi-square distribution

with zero degree of belief and zero scale (also called the Jeffreys’ prior). This prior is

improper, but the MCMC procedure can handle such an improper prior. This mixed

model is also called the Bayesian hierarchical model because of the multiple levels of
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priors. Let us define

V = Var(y) = ZZT σ2
A + Iσ2

E (2.57)

We can derive the fully conditional posterior distribution for each unknown. The priors

we chose are conjugate and hence they generated the following fully conditional posterior

distributions,

p(β|...) = Normal[β|(XT V −1X)−1(XT V −1y), (XT V −1X)−1]

p(γ|...) = Norma[γ|σ2
AZT V −1(y −Xβ), σ2

A(I − ZT V −1Zσ2
A)]

p(σ2
A|...) = Inv − χ2(σ2

A|τ + m,ω + γT γ) = Inv − χ2(σ2
A|4, γT γ)

p(σ2
E |...)Inv − χ2(σ2|τ + n, ω + SS) = Inv − χ2(σ2

E |13, SS) (2.58)

where

SS = (y −Xβ − Zγ)T (y −Xβ − Zγ) (2.59)

is the sum of squares of the residual errors. Only two random number generators are

required in this problem, the normal variable generator and the scaled inverse chi-square

variable generator. To generate a scaled inverse chi-square variable, we need a chi-square

variable generator, which is available in most software systems. Let χ2
df be a random

variable sampled from a chi-square distribution with degrees of freedom df . The scaled

inverse chi-square variable with p(σ2
A|...) = Inv− χ2(σ2

A|τ + m,ω + γT γ) distribution is

simply obtained by

σ2
A =

ω + γT γ

χ2
τ+m

(2.60)

Since every unknown has a closed form distribution, the Gibbs sampler algorithm can
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be used for the MCMC experiment.

2.5.1.3 SAS code

%let dir=C:\Bayes\damage;

libname xx "&dir";
filename aa "&dir\post-sample.csv";

data damage;
input plot y x z1-z4;

datalines;
1 3.90 1 1 0 0 0

2 4.05 1 1 0 0 0

3 4.25 1 1 0 0 0

4 3.60 1 0 1 0 0

5 4.20 1 0 1 0 0

6 4.05 1 0 1 0 0

7 3.85 1 0 1 0 0

8 4.15 1 0 0 1 0

9 4.60 1 0 0 1 0

10 4.15 1 0 0 1 0

11 4.40 1 0 0 1 0

12 3.35 1 0 0 0 1

13 3.80 1 0 0 0 1
;
run;

ods graphics on;

proc mcmc data=damage outpost=xx.postsample nmc=100000
thin=100 seed=246810 nbi=5000 ntu=3000
monitor=(beta gamma1-gamma4 sigma2_a sigma2_e rho);

ods select PostSummaries ESS Geweke PostIntervals TADpanel;
array gamma[4];
array z[4] z1-z4;
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parms beta 0;
parms gamma: 0;
parms sigma2_a 1;
parms sigma2_e 1;
begincnst;

tau=1e-10;
omega=1e-10;

endcnst;
prior beta ~ normal(mean = 0, var = 1e15);
prior gamma: ~ normal(mean = 0, var = sigma2_a);
prior sigma2_a ~ sichisq(tau,omega);
prior sigma2_e ~ sichisq(tau,omega);

/* prior sigma2_a ~ general(-log(sigma2_a));*/

/* priorsigma2_e~ general(-log(sigma2_e));*/
mu = x*beta;
beginprior;

rho=sigma2_a/(sigma2_a+sigma2_e);
endprior;
do k=1 to 4;

mu = mu + z[k]*gamma[k];
end;
model y ~ normal(mean = mu, var = sigma2_e);

run;
ods graphics off;

proc export data=xx.postsample outfile=aa dbms=csv replace;
run;

Here is a brief explanation of the SAS code. The statements before “proc mcmc” are

typical SAS statements for creating the SAS dataset for analysis. Readers are supposed

to be familiar with the SAS language, and thus no explanation is given. The MCMC

procedure starts with the statement “proc mcmc”. Here are the explanations of the

options of the “proc mcmc” statement.

data=damage: Tells proc mcmc to use data with a name damage

outpost=xx.postsample: Tells proc mcmc to write the posterior sample
to a SAS dataset named xx.postsample. The two level SAS dataset name
means that the posterior sample will be stored in the folder with
libname xx as a permanent SAS dataset. The dataset contains all
variables defined in the parms statements plus the log likelihood,
the log prior density and the log posterior density.

nmc=100000:This option defines the total length of the Markov chain
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after the burn-in deletion.

thin=100: This option defines the thinning rate. In this case, the
posterior sample will keep one draw in every 100 iterations. In this
example, the posterior sample size (named xx.postsample) will
contain 100000/100=1000 observations.

seed=246810: This option allows users to set the seed for random
number generators. Choosing the same seed will allow the users to
duplicate the results. If no seed is given, proc mcmc assumes a
default seed of zero, which will generate a different sequence of
random numbers every time the program is executed. The difference
between different runs is called the Monte Carlo error.

nbi=5000: Defines the number of iterations in the burn-in period. In
this case, proc mcmc starts to collect posterior sample after 5000
iterations. The burn-in period does not affect the posterior sample
size stored in the outpost dataset. For example, the current setting
requires proc mcmc to run a total of 100000+5000=105000 iterations,
although the posterior sample only contains 1000 observations.

ntu=3000: Define the number of iterations for tuning the parameter
of the proposal distribution to reach a desirable acceptance rate.
Users can ignore this option.

monitor=(beta gamma1-gamma4 sigma2_a sigma2_e rho): Variables
included in the braces are subject to the post MCMC analysis. Note
that variable rho is not a true variable but a function of sigma2_a
and signa2_e. This new variable must be defined within the proc mcmc
procedure in order to monitor this variable.

The following paragraph explains the statements within the MCMC procedure.

ods select PostSummaries ESS Geweke PostIntervals TADpanel; This
statement tells proc mcmc to select the following items to be
handled by the SAS output delivery system (ODS) for output: (1) The
post MCMC summaries for the variables contained in the monitor()
option, effective sample sizes, (2) the Geweke z-test diagnostic
statistics for convergence, (3) the credibility intervals and (4)
the trace-autocorrelation-density (TAD) panels. Each monitored
variable has a TAD panel that contains three figures drawn in the
same page (the trace plot, the autocorrelation plot against lag and
the marginal posterior density).

array gamma[4]; Define an array named gamma. Later on, you can refer
gamma1-gamma4 for the four variables defined by this array
statement.

array z[4] z1-z4; Define an array named z which refers to z1-z4.
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parms beta 0; Define a parameter named beta and assign a value 0 as
the initial value.

parms gamma: 0; Define an array named gamma (four variables) as
parameters and assign each of the four elements an initial value of
zero. It also tells proc mcmc to draw the four variables
simultaneously as a block. If you want to draw each element
separately, you need four parms statements, one for each element.
Note that adding ":" after gamma means gamma1-gamma4.

parms sigma2_a 1; Define signma2_a as a parameter and assign an
initial value 1 to the parameter.

parms sigma2_e 1; Define signma2_e as a parameter and assign an
initial value 1 to the parameter.

begincnst; Start a "begin constant and end constant" block.
tau=1e-10; Assign variable tau a constant (a very small number).
omega=1e-10; Assign variable omega a constant (a very small number)

endcnst; End the "begin constant and end constant" block. Within
this block, each variable is assigned a constant. Throughout the
entire MCMC sampling process, tau and omega are two constant values.

prior beta ~ normal(mean = 0, var = 1e15); Assign parameter beta a
normal prior with mean zero and a very large variance.

prior gamma:~ normal(mean = 0, var = sigma2_a); Assign each of the
gamma variables a normal prior with mean zero and a common variance
sigma2_a.

prior sigma2_a ~ sichisq(tau,omega); Assign sigma2_a a scaled
inverse chi-square prior distribution with tau and omega as
the degree of belief and scale, respectively.

prior sigma2_e ~sichisq(tau,omega); Defined the same prior as
sigma2_a.

/*prior sigma2_a ~ general(-log(sigma2_a));*/

/* prior sigma2_e ~ general(-log(sigma2_e));*/

The above two statements are commented out. These statements assign
the variance components a Jeffreys’ prior (improper). Since the
Jeffreys’ prior is a user defined prior distribution, you must use
the general function and put the log density of your prior density
inside the general function. Note that log(1/sigma2_a) =-log(sigma2_a).
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beginprior; Define a "begin prior and end prior" block.

rho=sigma2_a/(sigma2_a+sigma2_e); Create a new variable rho.

endprior; End the "begin prior and end prior" block. The reason that
we placed this statement inside the beginprior and endprior block is
to save computing time. This assign statement will only be executed
twice per iteration when placed inside this block. Otherwise, it
will be executed n = 13 times per iteration. mu = x*beta; Define the
fixed effect.

do k=1 to 4;

mu = mu + z[k]*gamma[k];

end;

Define mu as the sum of the fixed and the random effects.

model y ~ normal(mean = mu, var = sigma2_e); Define the model, i.e.,
the likelihood function or the density of the data given the
parameters.

The last line of the code calls another SAS procedure named PROC EXPORT.

proc export data=xx.postsample outfile=aa dbms=csv replace;

The EXPORT procedure simply writes the posterior sample stored in the SAS dataset

xx.postsample into a physical excel file with a name defined in the filename aa statement.

The filename aa refers to a physical file “post-sample.csv” in the “C:\Bayes \damage”

folder.

2.5.1.4 Result

Figure 2.3 shows the posterior TAD (trace-autocorrelation-density) panels for the

population mean (beta or β). The Markov chain converges very well with very low

autocorrelation and almost a perfect normal posterior distribution. Figure 2.4 gives

the TAD panels for the intra class correlation (rho or ρ). Because of the small sample

size (n = 13). the intra class correlation is hard to estimate accurately. The trace plot
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shows that the Markov chain mixes poorly with very high autocorrelation. The posterior

distribution seems to be bimodal (two peaks). The posterior mean estimate is 0.3779

with a large posterior standard deviation 0.3098.
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Figure 2.3: The posterior TAD panels (trace, autocorrelation and density) for parameter
beta (β ) of the damage data.
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Figure 2.4: The posterior TAD panels for parameter rho (ρ = σ2
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damage data.
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Table 2.2 gives the summary statistics for all the variables, including parameters and

the random effects. The posterior means for the between variety variance and within

variety variance are σ̂2
A = E(σ2

A|y) = 0.1197 and σ̂2
E = E(σ2

E |y) = 0.0913, respectively.

The posterior mean of the intra class correlation (relative importance of between variety

variance) is ρ̂ = E(ρ|y) = 0.3779. This Bayesian estimate is not the same as

σ̂2
A

σ̂2
A + σ̂2

E

=
0.1197

0.1197 + 0.0913
= 0.5673 (2.61)

This ratio would be the maximum likelihood estimate of the ratio if both variance

components were the maximum likelihood estimates.

Table 2.2: Summary statistics of the posterior sample for the damage data.
Standard Equal-Tail-Interval HPD(95%)

Parameter Mean deviation 2.5% 97.5% HPD(left) HPD(right)
β 4.0044 0.1868 3.6492 4.4128 3.6479 4.3874
γ1 0.0361 0.1905 -0.3605 0.4336 -0.3455 0.4466
γ2 -0.0384 0.1822 -0.4713 0.3043 -0.4379 0.3227
γ3 0.1900 0.2233 -0.1431 0.6834 -0.1590 0.6576
γ4 -0.1965 0.2366 -0.7632 0.0956 -0.7197 0.0996
σ2

A 0.1197 0.3052 0.0001 0.7357 0.0000 0.4497
σ2

E 0.0913 0.0594 0.0289 0.2460 0.0219 0.1976
ρ 0.3779 0.3098 0.0008 0.9323 0.0002 0.8930

Table 2.3 shows the Geweke z test for convergence and other diagnostic statistics.

Parameters that have converged well include β, γ1, γ2, γ4 and σ2
A. SS denotes the

posterior sample size. ESS denotes the effective sample size. The most important

parameter ρ behaves very badly, which is consistent with the trace plot. Because the

sample size is so small, it is hard to obtain good estimate for this ratio parameter.
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Table 2.3: Diagnostic test statistics for the Markov chain convergence of the damage
data.

Parameter Geweke-z p-value SS ESS Correlation time Efficiency
β -0.4524 0.6510 1000 636.8 1.5704 0.6368
γ1 1.3413 0.1798 1000 537.0 1.8621 0.5370
γ2 0.1325 0.8946 1000 601.6 1.6621 0.6016
γ3 2.4789 0.0132 1000 67.4 14.8397 0.0674
γ4 -1.9281 0.0538 1000 47.7 20.9737 0.0477
σ2

A -0.3054 0.7601 1000 279.4 3.5790 0.2794
σ2

E -4.2433 <.0001 1000 349.1 2.8649 0.3491
ρ 3.6545 0.0003 1000 21.6 46.1933 0.0216

2.5.2 The seeds data

The purpose of this experiment was to investigate the effect of host plants (bean and

cucumber) on the seed germination of two Orobanche cernua aegyptiaca plant varieties

(O.a75 and O.a73). The Orobanche cernua is a kind of parasitic plant that lives on

other plants. In other words, roots of the parasitic plant penetrate into other plants to

extract nutrition from the host plants. This is a 2 × 2 factorial design of experiment.

The response variable is the germination rate and the depend variables are the plant

variety and the root extract. The data are given in Table 2.4 as a binomial data set with

the trial being the number of seeds and the event being the number of germinated seeds.

This data set is called the “seed” data in this study. The original data were obtained

from Crowder (1978)
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Table 2.4: Seed germination of two different varieties of Orobanche cernua aegyptiaca
plants (O.a75 and O.a73) in two different host plants or root extracts (bean and cu-
cumber). The data set was published by Crowder (1978) and called the “seeds data”
in this study. The column headed “germinated” is the numbers of germinated seeds.
The column headed “seed” is the number of seeds planted. The column headed “rate”
is the proportion of the germinated seeds (number of germinated seeds / total number
of seeds planted).

Plate Breed Host Germinated Seed Rate
1 O.a75 Bean 10 39 0.2564
2 O.a75 Bean 23 62 0.3710
3 O.a75 Bean 23 81 0.2840
4 O.a75 Bean 26 51 0.5098
5 O.a75 Bean 17 39 0.4359
6 O.a75 Cucumber 5 6 0.8333
7 O.a75 Cucumber 53 74 0.7162
8 O.a75 Cucumber 55 72 0.7639
9 O.a75 Cucumber 32 51 0.6275
10 O.a75 Cucumber 46 79 0.5823
11 O.a75 Cucumber 10 13 0.7692
12 O.a73 Bean 8 16 0.5000
13 O.a73 Bean 10 30 0.3333
14 O.a73 Bean 8 28 0.2857
15 O.a73 Bean 23 45 0.5111
16 O.a73 Bean 0 4 0.0000
17 O.a73 Cucumber 3 12 0.2500
18 O.a73 Cucumber 22 41 0.5366
19 O.a73 Cucumber 15 30 0.5000
20 O.a73 Cucumber 32 51 0.6275
21 O.a73 Cucumber 3 7 0.4286
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2.5.2.1 Model

The response variable is binomial with two data points per observation. The numer-

ator is the number of germinated seeds (event, denoted by mj) and the denominator is

the total number of seeds planted (trial, denoted by nj). The observed germination rate

is rj = mj/nj for j = 1, ..., n, where n = 21 is the sample size (number of plates in the

seed data). Since the data point is not normally distributed, we used the generalized

linear model to fit the data. Let E(rj) = µj be the expectation of the binomial data

point, which is connected to two independent variables, breed of the O.a plant (O.a 75

and O.a 73) and host plant (bean and cucumber). Let

ηj = Xjβ + Zj1γ1 + Zj2γ2 + Zj3γ3 (2.62)

be a linear combination of the model effects, where Xj = 1 for all j = 1, ..., n, β is the

intercept, γ1 is the effect of breed, Zj1 = {0, 1} is a binary indicator variable assigned

a value 0 for O.a 75 and 1 for O.a 73, γ2 is the effect of host, Zj2 = {0, 1} is a binary

indicator variable assigned a value 0 for bean and 1 for cucumber, γ3 is the interaction

effect of the breed and host and Zj3 = Zj1×Zj2 = {0, 1} is an binary indicator variable

with value 1 for the (O.a 73,Cucumber) combination and 0 otherwise. We are interested

in estimating the parameter vector θ = {β, γ1, γ2, γ3}. A significant γ1 indicates that the

two breeds of O.a plants have different germination rate. A significant γ2 indicates that

the two host plants cause different germination rates for the O.a plants. A significant

γ3 indicates a strong interaction effect between breed and host. In matrix notation, the

linear model is

η = Xβ + Zγ (2.63)
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The relationship between µj and ηj is through the the logit link,

ηj = logit(µj) = log
(

µj

1− µj

)
(2.64)

More intuitively, the inverse of the logit link is

µj = logistic(ηj) =
exp(ηj)

1 + exp(ηj)
=

exp(Xjβ + Zjγ)
1 + exp(Xjβ + Zjγ)

(2.65)

The likelihood function (model) of the jth data point is

p(mj |nj , µj) = Binomial(mj |nj , µj) =
(nj)!

(mj)!(nj −mj)!
µ

mj

j (1− µj)nj−mj (2.66)

2.5.2.2 Prior and posterior

Each parameter is assigned a flat normal prior, i.e.,

π(β) = Normal(β|0, 1015)

π(γ1) = Normal(γ1|0, 1015)

π(γ2) = Normal(γ2|0, 1015)

π(γ3) = Normal(γ3|0, 1015) (2.67)

None of the parameters has a closed form of the fully conditional posterior distribution.

Therefore, Gibbs sampler cannot be used for the MCMC sampling; instead, the general

random walk Metropolis algorithm must be used.

Although our parameter vector is θ = {β, γ1, γ2, γ3}, the investigator’s real interest
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was to conduct various comparisons for the germination rates. Let the average germi-

nation rates for the four combinations be

ψ00 = logistic(β) (O.a75, Bean)

ψ01 = logistic(β + γ2) (O.a75, Cucumber)

ψ10 = logistic(β + γ1) (O.a73, Bean)

ψ11 = logistic(β + γ1 + γ2 + γ3) (O.a73, Cucumber) (2.68)

The following comparisons are of interest,

ψBreed = (ψ10 + ψ11)− (ψ00 + ψ01)

ψHost = (ψ01 + ψ11)− (ψ00 + ψ10)

ψBreed×Host = (ψ01 + ψ10)− (ψ00 + ψ11) (2.69)

Therefore, we can report the summary statistics of these additional parameters.

2.5.2.3 SAS code

%let dir=C:\Bayes\seeds;

libname xx "&dir";
filename aa "&dir\post-sample.csv";

data seeds;
input plate x z1 z2 z3 m n;
r=m/n;

datalines;

1 1 0 0 0 10 39

2 1 0 0 0 23 62
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3 1 0 0 0 23 81

4 1 0 0 0 26 51

5 1 0 0 0 17 39

6 1 0 1 0 5 6

7 1 0 1 0 53 74

8 1 0 1 0 55 72

9 1 0 1 0 32 51

10 1 0 1 0 46 79

11 1 0 1 0 10 13

12 1 1 0 0 8 16

13 1 1 0 0 10 30

14 1 1 0 0 8 28

15 1 1 0 0 23 45

16 1 1 0 0 0 4

17 1 1 1 1 3 12

18 1 1 1 1 22 41

19 1 1 1 1 15 30

20 1 1 1 1 32 51

21 1 1 1 1 3 7;

run
;

ods graphics on; proc mcmc data=seeds outpost=xx.postsample
seed=123456

nmc=100000 thin=100 nbi=5000 ntu=3000
monitor=(beta gamma1-gamma3

psi_00 psi_01 psi_10 psi_11
psi_breed psi_host psi_bxh)

stats(percent=(2.5 5 50 95 97.5))=all simreport=5
diagnostics=(all geweke(f1=0.3 f2=0.3));
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ods select PostSummaries ESS Geweke PostIntervals TADpanel;
array gamma[3];
array z[3];
parms beta 0 gamma: 0;
prior beta ~ normal(mean=0,var=1e15);
prior gamma: ~ normal(mean=0, var=1e15);
beginprior;

psi_00=logistic(beta);
psi_01=logistic(beta+gamma2);
psi_10=logistic(beta+gamma1);
psi_11=logistic(beta+gamma1+gamma2+gamma3);
psi_breed=(psi_10+psi_11)-(psi_00+psi_01);
psi_host=(psi_01+psi_11)-(psi_00+psi_10);
psi_bxh=(psi_01+psi_10)-(psi_00+psi_11);

endprior;
eta=x*beta;
do k=1 to 3;

eta=eta+z[k]*gamma[k];
end;
mu = logistic(eta);
model m ~ binomial(n = n, p = mu);

run;
ods graphics off;

proc export data=xx.postsample outfile=aa dbms=csv replace;

run;

2.5.2.4 Result

The summary statistics for all the parameters, including functions of the parame-

ters, are listed in Table 2.5. The three most important parameters are γ = {γ1, γ2, γ3},

which are translated into three comparisons of the average germination rates ψ =

{ψbreed, ψhost, ψb×h}. The equal-tail credibility intervals and the HPD intervals all show

that the two breeds of O.a plants have no difference in germination rate, i.e., γ1 and

ψbreed are not different from zero. The two host plants (bean and cucumber) have sig-

nificant effects on the germination rate, i.e., γ2 and ψhost are significantly different from

zero. The interaction effect is also significant, i.e., γ3 and ψbreed×host are different from
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zero.

Table 2.5: Summary statistics of the posterior sample for the seeds data.

Standard Equal-Tail-Interval HPD(95%)
Parameter Median Mean Deviation 2.5% 97.5% HPD(left) HPD(right)

β -0.5596 -0.5603 0.1222 -0.8059 -0.3284 -0.7991 -0.3243
γ1 0.1399 0.1372 0.219 -0.2903 0.5508 -0.2707 0.5674
γ2 1.3175 1.3221 0.1738 0.9877 1.6703 0.981 1.6548
γ3 -0.772 -0.7747 0.3095 -1.3689 -0.1827 -1.3622 -0.181
ψ00 0.3637 0.3639 0.0282 0.3088 0.4186 0.3069 0.4162
ψ01 0.6813 0.6812 0.0264 0.6267 0.7322 0.6313 0.7349
ψ10 0.3962 0.3965 0.0433 0.319 0.4858 0.3176 0.4819
ψ11 0.531 0.5308 0.0426 0.4494 0.6131 0.4559 0.6182

ψBreed -0.1193 -0.1178 0.071 -0.2584 0.0164 -0.2505 0.0219
ψHost 0.4528 0.4515 0.0725 0.3102 0.5928 0.3185 0.5955
ψB×H 0.1811 0.183 0.0732 0.0448 0.3242 0.0485 0.3269

Table 2.6 shows the convergence test for all the unknowns. The Markov chains

behave very well for all the unknowns. The p-values for the Geweke z-test are larger

than 0.05 for all unknowns. The effective sample sizes are very close to the actual

posterior sample sizes. Figure 2.5-2.7 gives the posterior TAD panels for γ1,γ2 and γ3

respectively. The autocorrelations are all very small. Overall, this data set is sufficient

to allow more precise estimates of the parameters.

Table 2.6: Diagnostic test statistics for the Markov chain convergence of the seeds data.
Parameter Geweke-z p-value SS ESS Correlation time Efficiency

β 1.8167 0.0693 1000 1000.0 1.0000 1.0000
γ1 -0.7885 0.4304 1000 974.5 1.0261 0.9745
γ2 -1.6777 0.0934 1000 964.6 1.0367 0.9646
γ3 0.4744 0.6352 1000 908.5 1.1007 0.9085
ψ00 1.8031 0.0714 1000 1000.0 1.0000 1.0000
ψ01 -0.4548 0.6493 1000 867.6 1.1526 0.8676
ψ10 0.1273 0.8987 1000 902.5 1.1081 0.9025
ψ11 -0.5571 0.5775 1000 1034.3 0.9668 1.0343

ψBreed -0.7166 0.4736 1000 975.8 1.0248 0.9758
ψHost -1.2368 0.2162 1000 1000.0 1.0000 1.0000
ψB×H -0.4182 0.6758 1000 907.1 1.1024 0.9071
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Figure 2.5: The posterior TAD panels for parameter gamma1 (γ1) of the seeds data.
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Figure 2.6: The posterior TAD panels for parameter gamma2 (γ2) of the seeds data.
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Figure 2.7: The posterior TAD panels for parameter gamma3 (γ3) of the seeds data.
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2.5.3 The fertility data

This example demonstrates the application of the generalized linear model to quan-

titative trait locus (QTL) mapping for binary traits in wheat. The experiment was

conducted by Dou et al. (2009) who made the data available to us for this analysis.

A female sterile line XND126 and an elite cultivar Gaocheng8901 with normal fertility

were crossed for genetic analysis of female sterility measured as a binary trait. The

parents, their F1 and F2 progeny were planted at the Huaian experimental station in

China for the 2006-2007 growing season under the normal autumn sowing condition.

The mapping population was an F2 family consisting of 243 individual plants. The

binary trait was the presence of seed setting of the female plants. The trait is called the

wheat fertility and thus the dataset is named the “fertility data”. About 84% of the F2

progeny had seeded spikelets (phenotype 1) and the remaining 16% plants did not have

seeded spikelets (phenotype 0). This is a typical binary trait regarding the presence of

seeds. A total of 28 SSR markers were used in this experiment. These markers covered

5 chromosomes of the wheat genome with an average genome marker density of 15.5 cM

per marker interval. The five chromosomes are only part of the wheat genome.

These chromosomes were scanned for QTL of the binary trait using the MCMC im-

plemented Bayesian method. The purpose of QTL mapping was to identify chromosome

regions that are associated with the binary fertility trait. The dependent variable is the

binary trait phenotype while the independent variables are numerically coded genotype

indicator variables for the part of genome under investigation. We emphasize the advan-

tage of the Bayesian analysis over the frequentist method for detecting multiple QTL

simultaneously within a single model. To conduct the multiple locus analysis, we placed

one pseudo marker in every 5 centiMorgan (cM) of the genome. This generated 75
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pseudo markers for the five chromosomes. Therefore, we have a total of 75 independent

variables. For each independent variable, the numerically coded value was the differ-

ence between the conditional probabilities of the two homozygote genotypes. Let A1A1,

A1A2 and A2A2 be the three genotypes for the kth pseudo marker of the genome. The

numerically coded value for the locus is

Zjk = p(Gjk = A1A1|marker)− p(Gjk = A2A2|marker) (2.70)

for k = 1, ..., 75 . The map of the 75 pseudo markers, the phenotypic values (binary

phenotypes) of the 234 plants and the 75 numerically coded independent variables can

be downloaded from our website (www.statgen.ucr.edu) in the Bayesian Review software

section.

2.5.3.1 Model

The observed binary trait is rj = {0, 1} for j = 1, ..., n, where n = 243 is the sample

size. Let E(rj) = µj be the expectation of the binomial data point, which is connected

to the m = 75 independent variables through

ηj = Xjβ +
m∑

k=1

Zjkγk (2.71)

where Xj = 1 for all j = 1, ..., n, β is the intercept, γk is the effect of the kth pseudo

marker and Zjk is the conditional expectation defined earlier. We are interested in

estimating the parameter vector θ = {β, γ1, ..., γ75}.The relationship between µj and ηj

is through the probit link,

ηj = probit(µj) = Φ−1(µj) (2.72)
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More intuitively, the inverse of the probit link is

µj = Φ(ηj) = Φ

(
Xjβ +

m∑

k=1

Zijγk

)
(2.73)

The likelihood function (model) of the jth data point is

p(rj |µj) = Bernoulli(rj |µj) = Binary(rj |µj) = µ
rj

j (1− µj)1−rj (2.74)

2.5.3.2 Prior and posterior

The intercept is assigned a flat normal prior, i.e.,

π(β) = Normal(β|0, 1015) (2.75)

Each of the QTL (pseudo marker) effect is assigned a normal prior,

π(γk) = Normal(γk|0, σ2
k) (2.76)

which is QTL specific, i.e., each QTL has its own prior variance. The variance in the

prior is assigned a higher level prior (hierarchical prior),

π(σ2
k) = Inv − χ2(γk|τ, ω) = Inv − χ2(γk|10−10, 10−10) (2.77)

This hierarchical model is also called the Bayesian shrinkage analysis . There is no

closed form of the fully conditional posterior distribution for β and γk. However, given

γk, the fully conditional posterior distribution of σ2
k remains scaled inverse chi-square,
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i.e.,

p(σ2
k|...) = Inv − χ2(σ2

k|τ + 1, ω + γ2
k) = Inv − χ2(γk|10−10 + 1, 10−10 + γ2

k) (2.78)

2.5.3.3 SAS code

The Bayesian shrinkage analysis for the generalized linear model is new and has

never been used to map QTL for the binary fertility trait of wheat. We are not so

sure about the efficiency of the method. Therefore, we analyzed the fertility data using

both the MCMC procedure under the multiple QTL model and the GENMOD procedure

under the single QTL model. The GENMOD procedure is the fixed model version of the

generalized linear model producing the maximum likelihood estimates of the parameters.

PROC MCMC

%let dir=C:\Bayes\fertility;

libname xx "&dir";
filename aa "&dir\fertility.csv" lrecl=200000;
filename bb "&dir\post-sample.csv";

data fertility;
infile aa dlm=’,’ firstobs=2;
input plant fert_rat fert_bin z1-z75;
r=fert_bin;

run;

%macro fertility;
ods graphics on; proc mcmc data=fertility outpost=xx.postsample
seed=12345

nmc=50000 thin=50 nbi=5000 ntu=3000
monitor=(beta gamma1-gamma5 sigmasqr1-sigmasqr5)
stats(percent=(2.5 5 50 95 97.5))=all simreport=5
diagnostics=(all geweke(f1=0.3 f2=0.3));

ods select PostSummaries ESS Geweke PostIntervals TADpanel;
array gamma[75];
array sigmasqr[75];
array z[75];
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parms beta 0;
prior beta ~ normal(mean=0,var=1e15);
%do k=1 %to 75;

parms gamma&k 0;
parms sigmasqr&k 1;
prior gamma&k ~ normal(mean=0, var=sigmasqr&k);
prior sigmasqr&k ~ sichisq(1e-10,1e-10);

%end;
eta=beta;
do k=1 to 75;

eta=eta+z[k]*gamma[k];
end;
mu = probnorm(eta);
model r ~ binary(mu);

run;
ods graphics off;
%mend;

%fertility

proc export data=xx.postsample outfile=bb dbms=csv replace;

run;

Here is a brief explanation of the code. Since the data set is relatively large, it was

stored in an excel file as an external file. In the input data (fertility data set), there

are two fertility phenotypes, one is the ratio of the number of seeded spikelets to the

total number of spikelets named fert rat and the other is the binary seed presence and

absence trait named fert bin. We only analyzed the binary trait renamed r = fert bin.

Since the data set is large along with a large model, the MCMC procedure took much

longer time to finish. We put an option in the proc mcmc statement called simreport=5.

This option tells proc mcmc to report 5 times about the progress of program running to

allow the programmer to monitor the remaining running time. For example, this data

set took about 22 hours to finish and thus the program delivered a message in about

every 4 hours on the SAS log to report the progress.

Another important difference between this program and the previous ones is the
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use of SAS macro for handling large model. We used the array statement to define the

gamma vector γ = {γ1, ..., γ75} and the sigmaˆ2(sigmasqr) vector σ2 = {σ2
1, ..., σ

2
75}.

The problem with the MCMC procedure is that it does not take the following do loop,

do k=1 to 75;
parms gamma[k] 0;
parms sigmasqr[k] 1;
prior gamma[k] ~ normal(mean=0, var=sigmasqr[k]);
prior sigmasqr[k] ~ sichisq(1e-10,1e-10);

end;

The parms and prior statements only take the following forms of the do loop,

%do k=1 %to 75;
parms gamma&k 0;
parms sigmasqr&k 1;
prior gamma&k ~ normal(mean=0, var=sigmasqr&k);
prior sigmasqr&k ~ sichisq(1e-10,1e-10);

%end;

which must be executed as a macro.

Proc GenMod

%let dir=C:\Bayes\fertility;
libname xx "&dir";

filename aa "&dir\fertility.csv" lrecl=200000;

filename bb "&dir\genmod_out.csv" lrecl=200000;

data one;
infile aa dlm=’,’ firstobs=2;
input plant fert_rat fert_bin z1-z75;
event=fert_bin;
trial=1;

run;

proc genmod data=one;
model event/trial =z1 / dist = bin

link = probit lrci type1;
ods output ParameterEstimates=parms Modelfit=fitness Type1=Type1;

run;

%macro genmod;
%do i=2 %to 75;
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proc genmod data=one;
model event/trial = z&i / dist = bin

link = probit lrci type1;
ods output ParameterEstimates=parms1 Modelfit=fitness Type1=type1;

run;
proc append base=parms data=parms1;
%end;
%mend genmod;

%genmod

data xx.parms;
set parms;
if (parameter ^= "Intercept" and parameter ^="Scale");

run;

proc export data=xx.parms outfile=bb dbms=csv replace; run;

2.5.3.4 Result

The burn-in period was 5000, after which one observation was collected in every 50

iterations until the posterior sample size reached 1000. Therefore, the total length of

the Markov chain was 5000 + 50× 1000 = 55000. The MCMC procedure took about 22

CPU hours to complete the MCMC sampling. About half of the computing time was

spent on tuning the parameter of the proposal distribution, trying to reach the target

acceptance probability.

We did not monitor all the parameters except the intercept and the first five pseudo

markers. The posterior TAD panels for the intercept (beta or β) are presented in Figure

2.8, clearly showing that the chain has converged. Figure 2.9 shows the posterior means

of the 75 pseudo markers (QTL) effects plotted against the genome location (panel a)

and LOD (log of odds) profile (panel b). The LOD score for a particular pseudo marker

was calculated as

LOD(γk) =
γ̂2

k

4.61× var(γk|data)
(2.79)
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where γ̂k is the posterior mean and var(γk|data) is the posterior variance of γk. The

QTL effect profile indicates a major QTL on chromosome 2 and a few minor QTL on

chromosome 5. However, the LOD score profile shows that only one QTL exits, that is

the major one on chromosome 2. The other minor QTL all have large posterior standard

errors and thus have very small LOD scores. Note that the LOD score cannot be used

as significance test in Bayesian analysis. It only indicates a major QTL.
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Figure 2.8: The posterior TAD panels for parameter beta (β) of the fertility data.
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Figure 2.9: Posterior mean of QTL effect (panel a) and LOD score (panel b) plotted
against the genome location of the wheat fertility trait (the fertility data) from the
MCMC implemented Bayesian analysis (multiple QTL model). The five chromosomes
are separated by the dotted reference lines.
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To further validate the major QTL on chromosome 2, we re-analyzed the data using a

single QTL model to scan the entire genome for the 75 pseudo markers. The maximum

likelihood method was implemented using the GENMOD procedure of SAS (see the

code given in the previous section). The corresponding QTL effect and LOD profiles are

given in Figure 2.10, showing that a large peak occurs on chromosome 2 also. The peak

position is off by one pseudo marker (5 cM) away from that of the Bayesian analysis.
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Figure 2.10: The estimated QTL effect (panel a) and LOD score (panel b) plotted
against the genome location of the wheat fertility trait (the fertility data) from the
maximum likelihood analysis implemented in the generalized linear model (single QTL
model). The five chromosomes are separated by the dotted reference lines.
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We now focus on the major QTL on chromosome 2 and present some details of this

QTL. Figure 2.11 gives the trace plot and the posterior density for the QTL. The Markov

chain reached the stationary distribution, but did not mix well (panel a). The posterior

distribution fits a normal distribution very well (panel b). The QTL is represented by

pseudo marker number 22 (γ22) with the posterior mean ± standard deviation γ̂22 =

1.4338± 0.6796. The posterior median is 1.4579, almost overlapping with the posterior

mean. The 5% equal tail (credible) interval is (0.00881,2.7167) and the 10% equal tail

interval is (0.0901,2.5371). The 95% HPD interval and the 90% HPD are the same as the

equal tail intervals due to the normality of the posterior distribution. Neither interval

covers zero, meaning that the QTL is real with very high credibility.
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Figure 2.11: The trace plot (panel a) and the posterior density (panel b) of the QTL
detected in chromosome 2 for the binary fertility trait of wheat (the fertility data).
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2.6 Discussion

The original Bayesian method was more complicated than the classical maximum

likelihood method because multiple integrals are often involved. In most situations,

explicit form of the multiple integrals does not exist, and thus limits the application of

Bayesian analysis. Although Bayesian inference was proposed earlier than the maximum

likelihood inference, it becomes popular only more recently due to the advent of high

computing power and the advanced MCMC algorithm for numerical integrations. With

the MCMC implemented Bayesian method, we often adopt hierarchical models to fit

a complicated data and partition the complicated models to many small parts, each is

described by a simple model. We then draw one or a few parameters with other para-

meters fixed at values already drawn previously. Because the fully conditional posterior

distribution is often very simple, the MCMC process is much easier to understand than

the maximum likelihood method. The MCMC algorithm has revolutionarized the field

of Bayesian inference. Thanks to the MCMC algorithm, we, the non-statisticians, can

also perform Bayesian analysis. Conducting an MCMC sampling process is no more

complicated than doing a field experiment. The MCMC turns a statistician into an

experimentalist who plants the “seeds” of parameters and let them “grow” into full “pa-

rameters”. The only difference is that the MCMC experimentalist does the experiment

in computers rather than in the actual field.

The MCMC experiment is more of an art than a science, requiring a lot of experience

before the first successful MCMC experiment happens. Without closely monitoring the

convergence process of the MCMC sampler, the result can be misleading. This is why

the WinBUGS software always prompts a warning message - “MCMC sampling can be

dangerous!”. However, we should not be discouraged by the warning message. People
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should try to use different priors and use longer chains to draw the posterior samples.

It does not cost anything other than a little longer CPU time to run more and longer

MCMC experiments. Even if the results are bad and wrong, it is not “life threatening”.

The time when caution should be taken is when we are ready to report the result. It

is always a good idea to compare the result with that of the ML analysis if possible.

If the two results are not comparable or completely different, extra caution should be

taken or more analyses with different models and different priors should be conducted

before the final report. Analyzing simulated data is another way to verify the model and

the priors. In the fertility data analysis, we used a new model under new priors, and

produced result that has never been reported before. Therefore, we analyzed the same

data using PROC GENMOD under the single QTL model. The two results do share

some similarity. Such a comparison increased our confidence on the Bayesian analysis.
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Chapter 3

Significance Test and Genome

Selection in Bayesian Shrinkage

Analysis

3.1 Introduction

Interval mapping (Lander and Botstein 1989) and multiple interval mapping (Kao

et. al. 1999) are the most commonly used methods for QTL mapping. These methods

are developed in the maximum likelihood framework, which has limitation in terms of

handling large saturated models. Bayesian mapping (Satagopan et. al. 1996, Sillanpää

and Arjas 1998, Yi and Xu 2000, Yi and Xu 2000, Yi and Xu 2001) deals with large mod-

els more efficiently through the reversible jump Markov chain Monte Carlo (RJMCMC)

(Sillanpää 1998) , the shrinkage analysis (Wang et. al. 2005, Xu 2003) or the stochastic

search variable selection (SSVS) (Yi et. al. 2005) . Shrinkage mapping and SSVS are

more efficient in terms of whole genome evaluation because they are statistically easy
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to understand and also provide better chance to evaluate the entire genome. These

two methods are related to the Lasso method for regression analysis (Tibshirani 1996).

Rather than deleting non-significant QTL explicitly from the model, these methods use

a special algorithm to shrink estimated QTL effects to zero or close to zero. A QTL

with zero estimated effect is treated the same as being excluded from the model. No

statistical test is required because genome regions bearing no QTL often show no bumps

(QTL effects) in the QTL effect profile (plot of QTL effects against genome location).

The visual inspection on the QTL effect profile is not optimal because small QTL may

come and go during the MCMC sampling process. It is desirable to provide some kind

of statistical confidence on these small QTL.

Permutation test (Churchill and Doerge 1994) itself is not a method of QTL map-

ping; rather, it is a method to find the critical value used to declare the significance of

QTL for any method of QTL mapping. It is very efficient in interval mapping under the

maximum likelihood framework. A new resampling method was developed by Zou et al.

(Zou et. al. 2004) for significance test under the composite interval mapping or other

multiple effect based QTL mapping schemes. The new resampling method is compu-

tationally less intensive and may perform better than the permutation test. However,

it has not been as popular as we would have thought. The reason for this is perhaps

due to the fact that the theory behind the method is not straightforward to most QTL

mapping experimentalists. The permutation test, although time consuming, does not

requires any theory and easy to understand. People tend to trust a simple method they

understand, rather than a comprehensive method they do not, even if the simple method

is suboptimal. Therefore, the permutation test remains the most popular method for

finding the critical value of a test statistic for QTL detection. Kopp et al. (Kopp et.

al. 2003) applied the permutation test to determine empirical thresholds for Bayesian
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shrinkage mapping. The problem with such a test for the MCMC implemented Bayesian

mapping is the heavy computational burden. Each MCMC run may take one or a few

hours to complete for a reasonable sample size of the mapping population. Performing

thousands of permutation analyses is not realistic for the Bayesian method. Therefore,

improvement of the permutation test applied to Bayesian analysis is required. This is

the first objective of this study.

Broman and Speed (Broman and Speed 2002) treated multiple QTL mapping as

a model (variable) selection problem and developed a new method called BICδ. More

recently, Manichaikul et al. (Manichaikul et. al. 2009) extended the Broman and Speed

(Broman and Speed 2002) model selection by allowing epistatic (non-allelic interaction)

effects to be included in the model. They called the extended model selection method

the penalized LOD score method (pLOD). Two versions of the penalized LOD score

method were investigated, one is called heavy penalized LOD score (pLODH) and the

other called the light penalized LOD score (pLODL). With this new notation, the

original BICδ of Broman and Speed (Broman and Speed 2002) was renamed as pLODa,

penalized LOD score for additive effects only. The authors compared these methods

along with two other BIC-based methods and the Bayesian model selection method of

Yi, Xu and Allison (Yi, Xu and Allison 2003) using both simulated data and real data.

They concluded that the pLOD methods including epistatic effects and the Bayesian

model selection method outperformed other methods in most cases they evaluated.

The model selection methods are alternative method of QTL analysis. They cannot

replace the Bayesian shrinkage analysis because the two have quite different purposes.

Model selection aims to detecting QTL while Bayesian shrinkage focuses on genome

evaluation. We realized that if the Bayesian shrinkage analysis is accompanied with a

significance test, it can serve both QTL detection and genome selection. The original
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Bayesian shrinkage analysis (Wang et. al. 2005, Xu 2003) has no significance test

associated with the method because the entire genome was evaluated simultaneously in

a single model. More recently, researchers, especially animal and plant breeders, became

interested in genome selection (Weuwissen et. al. 2001, Weuwissen et. al. 2009) using

the Bayesian method. Application of genome selection to laboratory mice (Legarra et.

al. 2008) and human (Lee et. al. 2008) were also reported. Genome selection does

not require statistical tests because QTL of the entire genome, regardless the sizes, are

included to predict the genomic effect of individuals. However, there is no report so

far to investigate whether inclusion of small QTL will benefit genome selection. Cross

validation can be used to determine how large a QTL should be included in genome

selection. This is the second aim of this study.

3.2 Methods

3.2.1 Model

For the paper to be self contained, we briefly introduce the Bayesian shrinkage model

here. Let yj be the phenotypic value of a quantitative trait measured for individual j

for j = 1, ..., n, where n is the sample size. Suppose that the individual is genotyped for

m markers, which are more or less evenly distributed across the genome. Let Xjk be

the genotype indicator variable for individual j at marker k, for k = 1, ..., m. The linear

model describing the relationship between the phenotype and the genotypes of markers

is

yj = b0 +
m∑

k=1

Xjkbk + ej (3.1)
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where b0 is the intercept, bk is the QTL effect for marker k and ej is the residual error

with an assumed N(0, σ2) distribution. The reason that the Bayesian shrinkage method

can handle large m is the prior distribution assigned to each QTL effect,

p(bk) = N(bk|0, σ2
k) (3.2)

where σ2
k is a QTL specific prior variance. This prior alone is not sufficient to generate

the desired shrinkage estimate of QTL effect. A hierarchical model with a higher level of

prior assignment is necessary, in which the prior variance σ2
k is further assigned a scaled

inverse chi-square distribution,

p(σ2
k) = Inv − χ2(σ2

k|τ, ω) (3.3)

In the original shrinkage analysis, Xu (Xu 2003) set τ = ω = 0, leading to p(σ2
k) = 1/σ2

k.

Ter Braak et al (ter Braak et. al. 2005) claimed that this prior is improper and leads

to an improper posterior distribution. They revised the prior so that the posterior

distribution becomes proper. Their revised prior is

p(σ2
k) = Inv − χ2(σ2

k| − 2δ, 0) ∝ 1
(σ2

k)
1−δ

(3.4)

where 0 < δ ≤ 0.5. If δ = 0, this revised prior would be equivalent to Xu’s (Xu 2003)

vague prior. However, Xu’s vague prior is just excluded from the revised prior. In this

study, we used the proper prior of Ter Braak et al (ter Braak 2005) , as a precaution to

avoid any potential problems caused by the improper posterior distribution of σ2
k.
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3.2.2 Permutation between Markov chains

In the MCMC implemented Bayesian shrinkage analysis, Xu (Xu 2003) plotted the

estimated QTL effects against the genome location. We could have plotted a test sta-

tistic, say a t-test or an F-test, against the genome location. Unfortunately, the test

statistic requires the posterior standard deviation of each sampled QTL. The empirical

posterior standard deviation highly depends on the thinning rate of the Markov chain

and thus is always underestimated due to possible autocorrelation. Therefore, we pre-

fer to use the QTL effect profile rather than a test statistic profile. To determine the

threshold values for the QTL effects under the null model, we employed a permutation

test just like frequentists do in interval mapping (Churchill and Doerge 1994) . Let

y = {yj} be the vector of the phenotypic values ordered according to the individuals’

natural identification numbers, i.e., the original data set where the individuals’ pheno-

types match their marker genotypes in the files. Let y∗ = {y∗j } be a randomly rearranged

vector of phenotypes, called a permutation, in which the phenotypes do not match the

marker genotypes. Performing a Bayesian shrinkage analysis on the permuted data by

running a Markov chain with a desired length, we obtain a posterior sample for all the

parameters. For the parameters of interest, say the QTL effects, we record their values

and save them in a file as one observation from one permutation analysis. The permuta-

tion analysis is repeated independently for a thousand times, we then obtain a thousand

observations for each of the interested parameters (QTL effects). This sample contains

observations from the empirical distribution of the null model (no QTL effects). The

1
2α × 100% and (1 − 1

2α) × 100% percentiles of a parameter in the thousand permuted

samples are the empirical critical values used to declare statistical significance for a

QTL in the analysis of the original data set (phenotypes match the genotypes). This
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permutation strategy was first applied by Kopp et al (Kopp et al. 2003) . This so called

“permutation outside the Markov chain” approach is the traditional application of the

permutation test (Churchill and Doerge 1994) to the Bayesian analysis. The problem

with this strategy is the extensive CPU time. Each MCMC run may take an hour or so

and a complete permutation experiment consisting of 1000 permutation analyses may

take a month computing time. Therefore, we will invent a more efficient permutation

method to replace this traditional method of permutation.

3.2.3 Permutation within Markov chain

As the name of the method implies, this permutation strategy permutes the phe-

notypes in every h-th iteration within a Markov chain, where 1 ≤ h ≤ L and L is the

length of the Markov chain. If h = L, this approach is equivalent to the permutation-

between-chains approach. If h = 1, we permute the phenotype in every iteration. The

approach is implemented as follows. For each iteration, after all parameters are sampled,

the phenotypes are reshuffled before the next round of sampling starts. The total length

of the chain is not necessarily longer than a regular Markov chain for the un-shuffled

data. Therefore, a complete data analysis requires only two chains, one for the original

data and one for the reshuffled data. The reshuffled chain provides the 1
2α× 100% and

(1− 1
2α)× 100% percentiles used as critical values of the QTL effects.

The within-chain permutation is a strategy to generate the posterior distributions

of the regression coefficients under the null model. If the genotypes do not match the

phenotypes, the Bayesian estimates (posterior means) of the regression coefficients are

expected to be zero across all loci. The posterior variances are determined by the residual

variance and the variance of the genotypic indicator variables, which are preserved in

the permuted sample, regardless how frequent the phenotypes are reshuffled. There is
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not much theory behind this permutation test. We chose this test for the very reason of

simplicity. As long as we can control the type I error for the entire genome and produce

reasonable powers for all the large QTL, the permutation test should be admissible.

3.2.4 Genome selection

Genome selection aims to evaluate the genetic effect for the entire genome using

dense markers for each individual. When all individuals in a population are evaluated,

the genomic effects of different individuals can be compared and the ”best” individu-

als are selected for breeding. How to combine the QTL mapping result with genome

selection is an important but not yet answered question. We adopted a five-fold cross

validation test (Tibshirani 1996) to answer this question. In the cross validation analy-

sis, we partition the sample into five equal parts (subsamples). Each time, we use four

parts (4n/5 individuals) to estimate the QTL effects and perform within-chain random

shuffling to determine the empirical percentiles for QTL detection. Only significant QTL

at the level are used to predict the total genomic effect for an individual in the remaining

part (n/5 individuals). Note that that the training sample (4n/5 individuals) is used

for parameter estimation and significance test and the testing sample (n/5 individuals)

is used for prediction. The squared prediction error (PE) for the s-part is defined as

∆s(α) =
5
n

n/5∑

j′=1

(yj′ − b0 −
m∑

k=1

Xkj′bk)2 (3.5)

where yj′ is the phenotypic value of an individual in the test sample and j′ indexes all

individuals in the test sample. The intercept and the regression coefficients are estimated

from the training sample. Note that b̂k equals the shrinkage estimate if it passes the
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thresholds and b̂k = 0 otherwise. The overall PE for the cross validation test is

PE(α) =
1
5

5∑

s=1

∆s(α) (3.6)

We vary α from 0 to 1 incremented by 0.5. The α value that minimizes the PE is the

optimal one used as the criterion of QTL inclusion for genome selection.

3.3 Results and Discussion

3.3.1 Simulation study

The design of the simulation experiment conducted by Wang et al (Wang et. al.

2005) was adopted here expect that the population simulated was an F2 rather than a

BC population. The sample size was fixed at 500, which is a typical sample size used

in most QTL mapping experiments. The genome size was 2400 cM long covered by

241 evenly distributed markers (10 cM per marker interval). A total of 20 QTL were

placed on the genome and the positions and effects of the 20 QTL are presented in Table

3.1. The QTL size varied from 0.3% phenotypic variation to 13% phenotypic variation.

These proportions of QTL explaining the total phenotypic variance were calculated

based on the following method. The genotype indicator variable for individual j at

locus k is defined as Xjk = {1, 0,−1} for the three genotypes (A1A1, A1A2, A2A2),

respectively. Dominance effects were not simulated and also not included in the model

for this simulation experiment because they do not help answer questions addressed in

this study These parameter values were used to generate a quantitative trait with a

population mean b0 = 10.0 and a residual error variance σ2 = 10.0. The total genetic
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variance for the trait is

VG =
20∑

k=1

20∑

k′=1

bkbk′cov(zk, zk′) =
1
2

20∑

k=1

20∑

k′=1

bkbk′(1− 2rkk′) (3.7)

where rkk′ is the recombination frequency between QTL k and k′, cov(zk, zk′) = var(z)(1−

2rkk′) is the covariance between Zk and Zk′ , and var(z) = 1/2 is the variance of Z (as-

suming no segregation distortion). The total genetic variance for the quantitative trait

is VG = VQ + VL = 66.384,which is the sum of the genetic variances due to QTL(VQ)

and covariance between linked QTL(VL), where

VQ =
1
2

20∑

k=1

b2
k = 46.7806 (3.8)

and

VL =
20∑

k>k′
bkbk′(1− 2rkk′) = 19.6034 (3.9)

The residual error variance for the trait is σ2 = VE = 10.0. Therefore, the total phe-

notypic variance is VP = VG + VE = 76.384. The proportion of the genetic variance

contributed by each QTL is 0.5b2
k/VG for the kth QTL (given in the column headed

with Prop-G in Table 3.1). The corresponding proportion of the phenotypic variance

contributed by the kth QTL is 0.5b2
k/VP and given in the column headed with Prop-P

in Table 3.1. The true QTL effects are depicted in Figure 3.1.

All 241 markers were included in the model, leading to the dimensionality of the

model of n× (m + 1) = 500× (241 + 1). The burn in period was 1000. The chain was

thinned by keeping one observation out of 10 iterations until the posterior sample size

reached 5000. The total number of iterations was 1000 + 5000× 10 = 51000. The true

values of the QTL effects and the locations of the simulated QTL are depicted in Table
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3.1. In the table, Prop-G means the proportion of genetic variance contributed by the

QTL and Prop-P means the proportion of phenotypic variance contributed by the QTL.

Table 3.1: QTL parameters used in the simulation experiment.
QTL Position Marker Effect Prop-G Prop-P

1 50 11 4.47 0.1505 0.1308
2 125 26 3.16 0.0752 0.0654
3 205 42 -2.24 0.0378 0.0328
4 235 48 -1.58 0.0188 0.0163
5 355 72 2.24 0.0378 0.0328
6 360 73 3.16 0.0752 0.0654
7 610 123 1.10 0.0091 0.0079
8 630 127 -1.10 0.0091 0.0079
9 800 161 0.77 0.0045 0.0039
10 900 181 1.73 0.0225 0.0196
11 905 182 3.81 0.1093 0.0950
12 920 185 2.25 0.0381 0.0331
13 1100 221 -1.30 0.0127 0.0111
14 1210 243 -1.00 0.0075 0.0065
15 1305 262 -2.24 0.0378 0.0328
16 1335 268 1.58 0.0188 0.0163
17 1345 270 1.00 0.0075 0.0065
18 1365 274 -1.73 0.0225 0.0196
19 1800 361 0.71 0.0038 0.0033
20 2300 461 0.89 0.0060 0.0052
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Figure 3.1: The true and estimated QTL effects for the entire genome of the simulated
data. (a) The true positions and effects of the simulated QTL, (b) The estimated
positions and effects of QTL using the Bayesian shrinkage method.

The true values and estimated values of QTL are depicted in Figure 3.1. Clearly, the

Bayesian shrinkage method provides very good estimates to the true effects. Regions

without QTL show no sign of major QTL. For the small QTL, say QTL numbers 19

and 20, the estimated effects are also small with values no larger than the bumps in the

no QTL regions (noises).

We calculated the equal tail credible interval at α = 0.05, i.e., the 2.5%-97.5%

percentile range, for each marker. Only one (the largest) QTL was detected because the
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interval excluded 0 (data not shown). The equal-tail credible intervals of all other QTL

covered zero, and thus, they are “not significant” in terms of statistical testing. Using

the equal tail credible interval at α = 0.10, two more QTL were detected in addition to

the largest QTL (data not shown). Certainly, the equal tail credible interval is not a

good criterion for significance test. The posterior distributions for most estimated QTL

effects have a special distribution with a spike at zero, which is the cause for the failure

of equal tail credible interval as the criterion for significance test. These intervals cannot

be used for significance test under the Bayesian shrinkage mapping. The reason is that

almost all QTL have an equal-tail interval covering the null value, e.g., zero. Even the

largest QTL in our simulation had a high probability mass at zero (see Figure 3.2). This

spike-shaped or zero inflated posterior distribution for QTL effect is typical in Bayesian

shrinkage mapping. If we had used the equal tail interval at α = 0.05 as the significance

test criterion, only one QTL (the largest one), out of the 20 simulated QTL, would have

reached the statistical significance level. The permutation test, however, detected many

major QTL, as demonstrated next in the permutation test sections.
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Figure 3.2: Posterior distribution of QTL number 1 of the simulation experiment. The
true effect of the simulated QTL is 4.47. There is a high probability mass at value zero,
even though this is the largest QTL out of the 20 QTL simulated.
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3.3.2 Permutation outside Markov chain

We generated a total of 5000 permuted samples. Each permuted sample was subject

to the same MCMC analysis as the original data (51000 iterations). The total com-

puting time of the entire permutation experiment was approximately 20 days in a Dell

PC (2.5 GHz and 3.25 Go of RAM). For each marker, the 2.5%-97.5% and 5%-95%

intervals (corresponding to α = 0.05 and α = 0.10) were calculated. The profiles of

these percentiles along with the estimated QTL effects are given in Figure 3.3a. Using

the 2.5%-97.5% interval, we can detect 15 QTL out of the 20 simulated QTL. A few

more QTL with small effects were detected when 5%-95% interval was used. The results

here are more reasonable than that when the equal tail credible interval was used. The

conclusion is that permutation test applies well to the Bayesian shrinkage mapping.

3.3.3 Permutation inside Markov chain

This permutation strategy only requires running one more chain in addition to the

MCMC run of the original data. The phenotypes are reshuffled in every h-th iteration

within the Markov chain. We first evaluated the following the performance of h =

1, i.e., reshuffling the phenotype in every iteration. The 2.5%, 5%, 95% and 97.5%

percentiles plotted against the genome location are shown in Figure 3.3b to compare

with the result of permutation outside the chains. These intervals (the within-chain

permutation) appear to be wider that the intervals of the between-chain permutation

analysis. Therefore, the tests for the within-chain permutation are more conservative

than the between-chain permutation. Using the within-chain permutation, 13 QTL were

detected for α = 0.05 and 19 QTL were detected for α = 0.10, not too much different

from the result of the between-chain permutation. A more conservative test is better
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Figure 3.3: Empirical threshold values generated from permutation analysis and the
estimated QTL effects (simulated data). Empirical threshold values generated from
permutation analysis at α = 0.05 (2.5%-97.5%) and α = 0.10 (5%-95%) along with
the estimated QTL effects (simulated data). Percentiles for the 2.5%-97.5% interval
are plotted against the genome location as dashed lines (wider interval). Percentiles of
the 5%-95% interval are plotted against the genome location as solid lines (narrower
interval). (a) Shows the result of “permutation outside the Markov chain”, (b) Result
of “permutation within the Markov chain” with phenotype reshuffling in every iteration
(h = 1).
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than a more liberal test, as long as the statistical power is not compromised (examined

later in the power study section).

We now evaluate situations where h is greater than one. This time we chose three

different levels, h = 5, 10 and 100. The 2.5%, 5%, 95% and 97.5% percentiles plotted

against the genome location are shown in Figure 3.4. These intervals appear to be

similar to h = 1 except that the higher h′s tend to generate rougher percentile profiles.

Therefore, h = 1 is more preferable than other values of h. Hereafter, we choose h = 1

for all subsequent analyses.
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Figure 3.4: Empirical threshold values generated from “permutation within Markov
chain” and the estimated QTL effects (simulated data). Empirical threshold values
generated from “permutation within Markov chain” analysis at α = 0.05 (2.5%-97.5%)
and α = 0.10 (5%-95%) along with the estimated QTL effects (simulated data). Per-
centiles for the 2.5%-97.5% interval are plotted against the genome location as dashed
lines (wider interval). Percentiles of the 5%-95% interval are plotted against the genome
location as solid lines (narrower interval). (a) Phenotype reshuffling in every 5 itera-
tions (h = 5), (b) Phenotype reshuffling in every 10 iterations (h = 10), (c) Phenotype
reshuffling in every 100 iterations (h = 100).
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3.3.4 Power analysis

Using the same parameters given in Table 3.1, we simulated 100 more independent

samples to investigate the statistical power of the Bayesian shrinkage method. Two

MCMC runs were conducted for each sample. One run was the MCMC sampler on the

original data to estimate QTL effects and the other run was the MCMC sampler on

the within-chain reshuffled data to generate the critical values for QTL detection. The

statistical power for each QTL was calculated based on the proportions of samples in

which the QTL fell outside the empirical intervals. We observed that if a true QTL

failed to be detected at the locus where it was placed, the effect was often picked up

by a marker nearby (10 cM away). Therefore, a true QTL was claimed to be detected

if one or more of the triplets (three loci) covering the true QTL (20 cM range) was

detected. The statistical powers for the 20 QTL are depicted in Figure 3.5. The powers

seem to be reasonable, seven out of the 20 simulated QTL have a power reached 80% at

α = 0.10. Therefore, the conserved within-chain permutation significance test does not

sacrifice much statistical power.
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Figure 3.5: Empirical statistical power for the simulated QTL. Empirical statistical
powers for the simulated QTL obtained from 100 replicated experiments. (a) Statistical
powers at Type I error of α = 0.05; (b) Statistical power at Type I error of α = 0.10.
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3.3.5 False positive rate

For the 241 marker effects included in the model, 20× 3 = 60 loci were reserved for

the true QTL (20 true QTL plus 40 flanking markers), leaving 241 − 60 = 181 model

effects as false QTL. If a false QTL was detected based in a particular sample, it was

counted as one false positive. For each false QTL, we counted the total number of

false positives among the 100 replicated experiments. The proportion of false positive

(false positive rate or type I error) was recorded for each false QTL simulated. The

false positive rate (FPR) profiles are depicted in Figure 3.6. The upper panel of this

figure shows the observed false positive rate when α = 0.05. Only two markers had

false positive rate larger than the controlled value of 0.05. All other markers had false

positive rate less than 0.05. The average false positive rate of all markers was about

0.02. The observed false positive rate is indeed less than 0.05, confirming our previous

conclusion that the within-chain permutation approach is conservative. The lower panel

of Figure 3.6 shows the observed false positive rate at α = 0.10. Only four markers has

false positive rate larger than 0.10. The average false positive rate for all these markers

was about 0.05, again confirming the conservativeness of the within chain permutation

approach.
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Figure 3.6: False positive rate profiles for the simulated markers obtained from 100
replicated experiments. (a) False positive rate at α = 0.05; (b) False positive rate at
α = 0.10.
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3.3.6 Cross validation for genome selection

Using the original data simulated in the beginning of the experiment (not a sample

from the power study), we performed the five fold cross validation study to determine

how large a QTL should be included in the model to predict the total genetic value of

an individual. The PE (squared prediction error) values are plotted against the α value

in Figure 3.7. The minimum PE value occurs when α = 0.2. The decrease of the PE

from α = 0.0 to α = 0.2 is very sharp, but after α = 0.2, the PE value tends to be

stabilized or slightly increased. The conclusion is that in genome selection, we should

choose the α around 0.2. Of course, this optimal value may vary from sample to sample.

We recommend such a cross validation test for each data analysis to determine how

many QTL should be included. From the PE profile, including all QTL (α = 1) into the

prediction model (regardless the sizes of the QTL) does not lead to any significant loss in

the precision of genome selection compared to the optimal number of QTL determined

by the cross validation test. Therefore, a robust choice is simply to include all QTL in

the model for genome selection.
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Figure 3.7: Prediction error (PE) plotted against the Type I error for the simulated
data. The squared prediction error (PE) plotted against the Type I error obtained from
the five-fold cross validation test for the simulated data.

3.3.7 Real data analysis

We now use three sample data to demonstrate the application of the permutation test

associated Bayesian shrinkage analysis. These data were collected from QTL mapping

experiments in model plants and agricultural crops. The original data are downloadable

from the internet and also attached to this manuscript as supplemental material.

3.3.7.1 Arabidopsis data

The first data set is the recombinant inbred line data of Arabidopsis data (Loudet et.

al. 2002) , where the two parents initiating the line cross were Bay-0 and Shahdara with

Bay-0 as the female parent. The recombinant inbred lines were actually F7 progeny of

single seed descendants of the F2 plants. The residual heterozygosity was low (Loudet

et. al. 2003). Flowering time was recorded for each line in two environments: long

day (16 hour photoperiod) and short day (8 hour photoperiod). We used the short day
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flowering time as the quantitative trait for QTL mapping. The two parents had very little

difference in short day flowering time. The sample size (number of recombinant lines)

was 420. A couple of lines did not have the phenotypic records and their phenotypic

values were replaced by the population mean for convenience of data analysis. A total

of 38 microsatellite markers were used for QTL mapping. These markers are more or

less evenly distributed along five chromosomes with an average 10.8 centiMorgan (cM)

per marker interval. The marker names and positions are given in the original article

(Loudet et. al. 2003) .

We inserted a pseudo marker in every 2 cM of the genome. Including the inserted

pseudo markers, the total number of loci subject to analysis was 200 (38 true markers

plus 162 pseudo markers). All the 200 putative loci were evaluated simultaneously in a

single model. Therefore, the model for the short day flowering time trait is

y = b0 +
200∑

k=1

Xkbk + ε (3.10)

where Xk is a 420×1 vector coded as 1 for one genotype and 0 for the other genotype for

locus k. If locus k is a pseudo marker, Xk = Pr(genotype = 1), which is the conditional

probabilities of marker k being of genotype 1. Finally, bk is the QTL effect of locus k.

For the original data analysis, the burn-in period was 1000. The thinning rate was 10.

The posterior sample size was 10000, and thus the total number of iterations was 1000+

10000×10 = 101000. The posterior sample size of the within-chain permutation analysis

was 80000, i.e., 1000+80000×10 = 801000 iterations in total. The estimated QTL effects

and the permutation generated 2.5%-97.5% and 5%-95% intervals are plotted in Figure

3.8a. A total of 4 QTL were detected on three chromosomes at α = 0.05. Chromosomes

1 and 4, each has one QTL and chromosome 5 has two QTL. When α = 0.10 was used,

109



one more QTL on chromosome 1 was detected.

The five-fold cross validation shows that the optimal strategy of genome selection

for this data set was to include all QTL in the model, regardless the significance of the

estimated QTL effects (see Figure 3.8b). The general pattern of the PE profile remains

the same as that of the simulated data. Below α = 0.2 the decrease of PE was dramatic

but after α = 0.2 the PE values approached a stable value.
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Figure 3.8: Result of the Arabidopsis data analysis. (a) The upper panel shows the
estimated QTL effects for the entire genome and the empirical thresholds drawn from
permutation within the Markov chain analysis at α = 0.05 (2.5%-97.5%, wider interval)
and α = 0.10 (5%-95%, narrower interval). (b) The lower panel shows the plot of the
squared prediction error (PE) against the Type I error obtained from the five-fold cross
validation test.
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3.3.7.2 Barley data

The second data are the double haploid (DH) data obtained from Luo et al (Luo et.

al. 2007) . This data set consists of 150 double haploids (DH) derived from the cross of

two spring barley varieties, Steptoe and Morex, designated as the cross. The phenotype

was the spot blotch (a fungus Cochliobolus sativus) resistance measured as the lesion

size on the leaves of barley seedlings. The total number of markers was 495 distributed

along seven chromosomes of the barley genome. Because of the small sample size, we

could not analyze all the 495 markers simultaneously (high collinearity). Therefore,

we placed one pseudo marker in every 5 cM and overall obtained 225 pseudo markers

for the entire genome. The genotypes of the pseudo markers were inferred from the

multipoint method (Jiang and Zeng 1997) ). All the 225 putative loci were evaluated

simultaneously in a single model. Therefore, the model for the disease resistance trait

is

y = b0 +
225∑

k=1

Xkbk + ε (3.11)

where Xk is a 150×1 vector coded as 1 for one genotype and 0 for the other genotype for

locus k. If locus k is a pseudo marker, Xk = Pr(genotype = 1), which is the conditional

probabilities of marker k being of genotype 1. Finally, bk is the QTL effect of locus k.

The parameters of the MCMC experiment (e.g., burn-in period, thinning rate and

so on) were the same as the Arabidopsis data analysis. The estimated QTL effects and

the permutation generated 2.5%-97.5% and 5%-95% intervals are plotted in Figure 3.9a.

A total of two QTL were detected on chromosome 7 at α = 0.05. These two are major

because their estimated values are way over the critical value. When the critical values

at α = 0.10 were used, five more QTL were declared as significant.

The cross validation shows that the optimal strategy of genome selection for this
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data set was to include all QTL that are significant at α = 0.15 (see Figure 3.9b).

Below α = 0.15 the decrease of PE was dramatic but after α = 0.15 the PE values

increased slightly until it reached a plateau at α = 0.3 (see Figure 3.9b). This example

demonstrated the usefulness of using cross validation to select QTL for inclusion for

prediction of genomic effect.
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Figure 3.9: Result of the barley data analysis. (a) The upper panel shows the estimated
QTL effects for the entire genome and the empirical thresholds drawn from permutation
within the Markov chain analysis at α = 0.05 (2.5%-97.5%, wider interval) and α =
0.10 (5%-95%, narrower interval). (b) The lower panel shows the plot of the squared
prediction error (PE) against the Type I error obtained from the cross validation test.
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3.3.7.3 Wheat data

This example demonstrates the application of the Bayesian shrinkage analysis to

QTL mapping for the number of seeded spikelets (a female fertility trait) in wheat.

The experiment was conducted by Dou et al. (Dou et. al. 2009) who made the data

available to us for this analysis. A female sterile line XND126 and an elite cultivar

Gaocheng 8901 with normal fertility were crossed for genetic analysis of female sterility

measured as a quantitative trait. The parents, their F1 and F2 progeny were planted at

the Huaian experimental station in China for the 2006-2007 growing season under the

normal autumn sowing condition. The mapping population was an F2 family consisting

of 243 individual plants. A total of 28 SSR markers were used in this experiment. These

markers covered 5 chromosomes of the wheat genome with an average genome marker

density of 15.5 cM per marker interval. The five chromosomes are only part of the

wheat genome. These chromosomes were scanned for QTL of the fertility trait using

the MCMC implemented Bayesian method. The dependent variable was the fertility

phenotype while the independent variables were numerically coded genotype indicator

variables for the part of genome under investigation. We placed one pseudo marker

in every 5 centiMorgan (cM) of the genome. This generated 75 pseudo markers for

the five chromosomes. Therefore, we have a total of 75 independent variables. For

each independent variable, the numerically coded value was the difference between the

conditional probabilities of the two homozygote genotypes. Let A1A1, A1A2 and A2A2

be the three genotypes for the kth pseudo marker of the genome. The numerically coded

value for the locus is

Xjk = p(Gjk = A1A1|marker)− p(Gjk = A2A2|marker) (3.12)
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for k = 1, ..., 75. The map of the 75 pseudo markers, the phenotypic values of the

243 plants and the 75 numerically coded independent variables can be found from the

supplemental material of this study.

The parameters of the MCMC experiment (e.g., burn-in period, thinning rate and

so on) were the same as the previous two data analyses. The estimated QTL effects

and the permutation generated 2.5%-97.5% and 5%-95% intervals are plotted in Figure

3.10a. A total of two QTL were detected on chromosome 2 at α = 0.05. When we

lowered the critical value to α = 0.10, one more QTL was detected on chromosome 5.

The cross validation shows that the optimal strategy of genome selection for this data

set was to include all QTL that are significant at α = 0.1 (see Figure 3.10b). Below

α = 0.1, the decrease of PE was dramatic but after α = 0.1 the PE values increased

slightly until it reached a plateau at α = 0.3.

In general, the optimal alpha value is somewhere between 0.1 to 0.2, but it varied

from one experiment to another. The last two data analyses did indicate that including

small QTL can be detrimental to genome selection. Cross validation is an experimental

specific approach and is useful to decide how large a QTL should be included in the

model for genome selection.
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Figure 3.10: Result of the wheat data analysis. (a) The upper panel shows the estimated
QTL effects for the entire genome and the empirical thresholds drawn from permutation
within the Markov chain analysis at α = 0.05 (2.5%-97.5%, wider interval) and α =
0.10 (5%-95%, narrower interval). (b) The lower panel shows the plot of the squared
prediction error (PE) against the Type I error obtained from the cross validation test.
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3.4 Discussion

Bayesian shrinkage analysis can be used for both QTL mapping and genome selec-

tion. The two applications are quite different. QTL mapping aims to detect QTL with

large effects while genome selection tries to predict the total genetic values of individuals

using markers of the entire genome. In QTL mapping, significance test is important, but

Bayesian inference usually does not mix with significance test. This is because Bayesian

inference focuses on the probability statement of a parameter given the information

drawn from the current data and it does not intend to extend the statement beyond the

data. Significance test, however, assumes a null distribution and tries to compare the

statistics against the null distribution. The null distribution is purely hypothetical and,

therefore, significance test gives conclusion that applies to hypothetical future experi-

ments. The permutation test adopted in the Bayesian analysis is a convenient way to

connect significance test with Bayesian analysis. Permutation analysis is a way to draw

the null distribution. If a statistics, e.g., estimated QTL effect, is far away from the null

distribution, we are confident that this QTL is true. This type of significance test pro-

vides different conclusion from the Bayesian credible statement. In Bayesian analysis,

people often report the α-equal-tail interval or α-highest posterior density (HPD) inter-

val. These intervals cannot be used for significance test under the Bayesian shrinkage

mapping. The reason is that almost all QTL have an equal-tail interval covering the null

value, e.g., zero. Even the largest QTL in our simulation had a high probability mass at

zero (see Figure 3.2). This zero inflated posterior distribution for QTL effect is typical

in Bayesian shrinkage mapping. If we had used the equal tail interval at α = 0.05 as the

significance test criterion, only one QTL (the largest one), out of the 20 simulated QTL,

would have reached the statistical significance level. The permutation test, however,
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detected many major QTL.

In the simulation experiment, we observed that the percentile profiles for the 1
2α×

100%−(1− 1
2α)×100% interval were pretty much constant across the entire genome (see

Figures 3.3 and 3.4). This is due to the uniform information content across the genome.

We simulated 241 markers covering the entire genome evenly with 10 cM per marker

interval. These markers were co-dominant with no missing genotypes. In contrast, the

three real data analyses showed that the percentile lines varied dramatically across the

genome. The intervals were narrow at marker positions and wide when the positions are

away from the markers. The lengths of marker intervals also varied across the genome,

making the information content much uneven across the genome. The location spe-

cific empirical threshold values in real data analysis mean that different locations of

the genome should use different criteria for QTL detection. Two QTL with the same

estimated effect but located in different regions of the genome, one may be declared

as significant but the other may not be significant due to the variation in information

content. This actually justifies the use of estimated QTL effects, not some kind of test

statistics, for significance test.

In classical QTL mapping experiments, investigators always use some kinds of test

statistics (e.g., t-test, F-test, likelihood ratio test or LOD score) to decide whether a

QTL is significant or not. A permutation test also draws critical values for the test

statistic under consideration, not the critical values for the QTL effects. This merely

reflects the tradition or convention of people who do statistical analysis and does not

mean a test statistic is the only quantity that can be used in QTL mapping. The

reason for using test statistics is that one can compare the observed test statistic (cal-

culated values) with the critical values of some distribution, e.g. normal distribution,

F-distribution, t-distribution and chi-square distribution. The critical values of these

119



standard distributions can be found from statistical tables or calculated from statistical

analysis software. With the permutation test, we never need the critical values of the

standard distributions. Therefore, there is no need to stick with the test statistics. Di-

rectly comparing the estimated QTL effects with the critical values is more intuitive.

Significance test can help us decide which QTL should be claimed as significance.

The significant QTL will be the targets for further study, e.g., cloning or marker assisted

selection. What do we do with those QTL whose effects do not reach the significance

level? These QTL may not be significant individually, but collectively they may con-

tribute to a large proportion of the phenotypic variance. This implies that they are

perhaps useful to predict the total genetic effects of individuals (Meuwissen et. al.

2001) , a technology called genome selection. Our cross validation experiments showed

that QTL should be used to predict the total genetic effects once they reached a certain

critical value. Including many small QTL can be harmful to genome selection. Common

sense tells us that estimated effects of small QTL are most likely caused by noises rather

than by true signals and inclusion of the many small QTL to predict the genetic effects

may be even worse than inclusion of only the significant QTL.
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Chapter 4

Generalized Linear Mixed Models

for Mapping Quantitative Trait

Loci

4.1 Introduction

Linear mixed model methodology is a powerful technology to analyze models con-

taining both the fixed and random effects. The model was first proposed to estimate

genetic parameters for unbalanced data (Henderson 1950). This technique has been

used to map genes controlling the variation of quantitative traits (Xu and Yi 2000;

Boer et al. 2007). The mixed model methodology cannot be directly applied to traits

with discrete distributions. Wedderburn (1974) proposed a linear predictor and a link

function to handle discrete traits. The linear predictor is simply a linear model com-

bining information from the independent variables. The link function is to describe the

relationship between the linear predictor and the expectation of the response variable.
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This approach eventually leads to a special area of statistics called the generalized linear

model (McCullagh and Nelder 1989). The generalized linear model takes advantage of

all theory and methods developed in the usual linear model methodology (Searle 1997).

It has been applied to QTL mapping for some special traits, e.g., binary traits (Xu and

Atchley 1996, Deng et al. 2006, Yi and Xu 1999a,b, Yi and Xu 2000), ordinal traits

(Hackett and Weller 1995; Rao and Xu 1998) and Poisson traits (Cui et al. 2006, Cui

and Yang 2009). Depending on the special characteristics of the traits, distribution spe-

cific generalized linear models have been developed for these traits. These methods are

not sufficiently general to extend to all traits that can be modeled by the generalized

linear model. For example, the EM algorithm developed by Xu et al. (2003, 2005)

only applies to binary and ordinal traits. They treated both the marker genotypes and

the latent variable as missing values. Although parameter estimation under the EM

algorithm is simple, the information matrix of the estimated parameters is difficult to

calculate. A more comprehensive analysis of the generalized linear model applied to

QTL mapping is the seminal paper by Lange and Whitaker (2001). They adopted the

generalized estimating equations (GEE) approach to analyze multiple traits with arbi-

trary combination of continuous and discrete trait components. The method replaces

the unobserved QTL genotypes by the conditional expectations of the genotype indi-

cator variable given flanking marker information. The uncertainties of the genotype

indicator variables are ignored. In addition, detailed formulas for the partial derivatives

of the expectation of the data with respect to the parameters are not given.

Xu and Hu (2010) recently developed a generalized linear model approach to inter-

val mapping for traits with arbitrary distribution. The purpose of that study was to

investigate the efficiencies of different methods for handling missing genotypes. Three

algorithms have been proposed: (1) expectation algorithm, (2) heterogeneous variance
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algorithm and (3) mixture model algorithm. The expectation algorithm is the simplest

one in which the missing genotypes of QTL are replaced by the conditional expecta-

tion of the genotype indicator variable. The heterogeneous variance algorithm takes

into account the heterogeneous variances of different genotypes due to heterogeneous

information contents. The mixture model fully utilizes the conditional distribution of

the missing genotypes. Theoretically, the mixture model approach should be optimal,

followed by the heterogeneous variance model and the expectation algorithm. In prac-

tice, the heterogeneous model is more efficient because it is robust to departure from

the assumed normal distribution of the residuals. On the contrary, the mixture model

is very sensitive to the departure of an assumed distribution and the choice of the initial

values of the parameters. The three algorithms of handling missing genotypes have not

been applied to multiple QTL mapping and this study aims to explore their application.

When the number of QTL included in a model reaches a certain level, the model is

oversaturated. In this case, some kind of penalty is required to shrink the superfluous

QTL down to zero. When the linear predictor contains both fixed and random effects,

the model is then called the generalized linear mixed model (Breslow and Clayton 1993;

McCulloch and Neuhaus 2005). Special algorithms have been developed to estimate vari-

ance components and predict the random effects, e.g., the pseudo likelihood algorithm

(Wolfiner and O’Connell 1993). However, existing generalized linear mixed models have

not fully considered the missing genotype problem. The hierarchical generalized linear

model for multiple QTL mapping developed by Yi and Banerjee (2009) also ignored the

missing genotype problem and thus the method only applies to marker analysis.

When there are no missing values, commercial software packages are available to

estimate parameters of a generalized linear mixed model under a wide range of distri-

bution of the traits, e.g., GLIMMIX procedure in SAS (SAS Institute 2008). These
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programs may handle missing values using the imputation algorithm, the missing pat-

terns handled by these commercial programs are usually different from that of QTL

mapping. In QTL mapping, genotypes are missing for every individual at a putative

QTL position unless the QTL overlaps with a fully informative marker. In the statistics

literature, generalized linear model with missing covariates is often handled with the

EM algorithm (Horton and Laird 1998). However, other methods are also available, as

summarized by Ibrahim et al. (2005), who reviewed four general approaches: maximum

likelihood method implemented via the EM algorithm by the method of weights (Horton

and Laird 1998), multiple imputation (Rubin 1987), fully Bayesian (Ibrahim et al. 2002)

and weighted estimation equation (Robins and Rotnitzky 2001). Ibrahim et al (2005)

concluded that the most accurate method is the fully Bayesian method, although the

method is associated with a high cost in terms of computing time. The second best

method is the EM algorithm via the method of weights. Applications of these methods

to multiple QTL mapping have not been attempted. In this study, we proposed three

algorithms to handle the missing genotype problems in multiple QTL mapping under

the generalized linear mixed model framework.

4.2 Methods

4.2.1 Generalized linear mixed model

We use a binomial trait as an example to demonstrate the new methodology, al-

though the method can be applied to other discrete traits. Let yj be the number of

events and tj be the number of trials for individual j from a population of n individuals.

Let E(yj/tj) = µj be the expectation of the binomial trait. Define ηj = Φ−1(µj) as

a linear predictor with the probit link function. The logit link function may also be
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applied, ηj = logit(µj) = ln[µj/(1− µj)], but we prefer the probit link function because

the normal latent variable seems to be more appropriate for modeling an underlying

quantitative trait. The linear predictor is a function of marker genotypes, as described

below,

ηj = β +
p∑

k=1

Zjkγk (4.1)

where β is the intercept, γk is the marker effect for locus k and Zjk is an independent

variable determined by the genotype of marker k of individual j and p is the total

number of markers included in the model. Details about Zjk will be described later.

The log likelihood function for parameters {β, γ} is

L(β, γ) =
n∑

j=1

[yj ln(µj) + (tj − yj)ln(1− µj)] (4.2)

The prior distribution for β is assumed to be uniform, but p(γk) = N(γk|0, σ2
k) is cho-

sen as the prior distribution for each γk. When p is large, a typical case for genome

prediction, we need a hierarchical prior for each variance component,

p(σ2
k) = Invχ2(σ2

k|τ, ω) (4.3)

when (τ, ω) are the hyper-parameters. When (τ, ω) = (−2, 0), this prior is equivalent

to the uniform prior, leading to the usual generalized linear mixed model (GLMM,

McCulloch and Neuhaus 2005). Let G = {σ2
k} be the array of variance components.

In the GLMM framework,θ = {β, G} are treated as parameters and γ are considered

as missing values. We now describe an EM algorithm to estimate the parameters θ, to

infer the QTL effects γ and to test the significance of γ.

The EM algorithm used here is a sequential approach that updates one element of
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the parameters (including missing values) at a time conditional on values of all other

parameters. This approach is also called the descent coordinate algorithm. When all

parameters are updated in turn, one cycle of the iterations is completed and the iteration

process continues until a certain criterion of convergence is reached. The EM iteration

process starts with initial values of all unknowns provided by the investigator, denoted

by {β(0), γ(0), G(0)}. Updating β and G represents the maximization steps and updating

γ represents the expectation steps.

1. Update β using the following equation,

β(t+1) = β(t) −
[
L′′(β(t), γ(t))

]−1
L′(β(t), γ(t)) (4.4)

where L′(β(t), γ(t)) and L′′(β(t), γ(t)) are, respectively, the first and second partial

derivatives of the log likelihood function with respect to β evaluated at β(t) and

γ(t). This equation is the first step of the Newton-Raphson iteration. Once β is

updated, and β involved in the future steps will be replaced by the most current

value of β.

2. Update each γk using the posterior mean, which is inferred by combining both the

prior information and the likelihood function. Let

γ̃k = γ
(t)
k −

[
L′′(β(t), γ(t))

]−1
L′(β(t), γ(t)) (4.5)

the first step Newton-Raphson update of γk, and

s2
k = −

[
L′′(β(t), γ(t))

]−1
(4.6)
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be an approximate variance of this update, where the first and second partial

derivatives are now taken with respect to γk. The QTL effect is now inferred from

two sources of information, one from the likelihood and the other from the prior.

Assume that the information from the likelihood is approximately normal, i.e.,

γk ∼ N1(γ̃k, s
2
k). Recall that the prior distribution of γk is N2(0, σ2

k). Combining

the likelihood and the prior, we get posterior distribution of γk, which is normal

with mean

E(γk) =
(

1
σ2

k

+
1
s2
k

)−1 1
s2
k

γ̃k (4.7)

and variance

var(γk) =
(

1
σ2

k

+
1
s2
k

)−1

(4.8)

The updated γk is the posterior mean, i.e., γ
(t+1)
k = E(γk).

3. Update σ2
k using the equation given by Xu (2010)

σ2
k =

E(γ2
k) + ω

τ + 2 + 1
=

[E(γk)]2 + var(γk) + ω

τ + 2 + 1
(4.9)

This equation is different from the posterior mode estimation of σ2
k in which E(γ2

k)

is simply replaced by [E(γk)]2 with var(γk) ignored. This explains why the algo-

rithm is call the EM algorithm.

4.2.2 Missing genotypes

In QTL mapping, the genotype indicator variable (Zjk) is missing if the QTL po-

sition does not overlap with a fully informative marker. However, partial information

is available due to linkage disequilibrium. We propose three approaches to handling

the missing genotypes. The differences of the three approaches are reflected by the
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differences of the log likelihood functions, which are described in the following sections.

4.2.2.1 Expectation model

The linkage disequilibrium allows us to infer the conditional distribution of Zjk given

information from linked markers. Let A1A1, A1A2 and A2A2 be the three genotypes

of a QTL for an individual in an F2 population. The Z variable is determined by the

genotype of locus k,

Zjk =





+1 for A1A1

0 for A1A2

−1 for A2A2

(4.10)

In the context of generalized linear mixed model, γk = ak, where ak is called the additive

effect of locus k. When Zjk is missing, the expectation and variance of it are inferred

from the genotypes of flanking markers. Let pj(+1), pj(0) and pj(−1) be the conditional

probabilities of the three genotypes inferred from flanking markers. The expectation and

variance of Zjk are

E(Zjk) = Ujk = pj(+1)− pj(−1) (4.11)

and

var(Zjk) = Σjk = [pj(+1)− pj(−1)]− [pj(+1)− pj(−1)]2 (4.12)

With the expectation approach, we simply replace Zjk by Ujk. Therefore, the linear

predictor is defined as

ηj = β +
p∑

k=1

Ujkγk (4.13)

Everything else remains the same as the situation with complete genotypic information.
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4.2.2.2 Overdispersion model

The expectation method only takes advantage of the first moment of the distribution.

The second moment information has been ignored, which will generate a situation called

overdispersion. For locus k, the overdispersion is defined as

ojk = Σjkγ
2
k + 1 (4.14)

Incorporating this overdispersion, we redefine the linear predictor as

ηjk =
1√
ojk

(β + Ujkγk + ξjk) (4.15)

where

ξjk =
p∑

k′ 6=k

Ujk′γk′ (4.16)

is an offset of the linear predictor contributed by other loci. We now have a locus specific

log likelihood function,

L(γk) =
n∑

j=1

[yj ln(µjk) + (tj − yj)ln(1− µjk)] (4.17)

where µjk = Φ(ηjk).Note that if a QTL overlaps with a fully informative marker,

E(Zjk) = Ujk = Zjk and var(Zjk) = Σjk = 0, leading to ojk = 1.

4.2.2.3 Mixture model

The optimal approach is to take advantage of the conditional distribution of the

missing genotypes. When the genotype of a QTL is missing, the model becomes a
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mixture model. Let us define

µj(−1) = Φ(β − γk + ξjk)

µj(0) = Φ(β + ξjk)

µj(+1) = Φ(β + γk + ξjk) (4.18)

as the expectations of the trait for the three genotypes. The log likelihood of the mixture

model for locus k is

L(γk) =
n∑

j=1

ln

{
3∑

i=1

pj(i− 2)[µj(i− 2)]yj [1− µj(i− 1)]tj−yj

}
(4.19)

Note that pj(i− 2) is the conditional probability, not pj multiplied by (i− 2).

4.3 Application

4.3.1 Simulation study

4.3.1.1 Binomial data

We simulated a single large chromosome of 2400 cM long evenly covered by 241 co-

dominance markers (10 cM per marker interval). The simulated population was an F2

family derived from the cross of two inbred lines with sample size n = 500.The genotype

indicator variable for individual j at locus k was defined as Zjk = {−1, 0, 1} for the three

genotypes (A1A2, A1A2, A2A2), respectively. Dominance effects were not simulated and

also not included in the model for this simulation experiment. A total of 20 QTL were

simulated with the sizes and locations of the QTL depicted in Figure 1a (the top panel).

Positions of the simulated QTL were not evenly placed, as indicated by the inward ticks
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on the horizontal axis. Most QTL were placed in the left partof the genome. Some

QTL were far apart from each other while others were clustered in some narrow regions.

About half of the simulated QTL overlapped with true markers (known genotypes)

and the remaining QTL were located between markers (having missing genotypes). We

first generated a linear predictor, ηj , for each individual using the genotypes of the

20 simulated QTL and the true effects of these QTL. The linear predictor was then

transformed into the probability of a binomial variable using µj = Φ(ηj). We then

simulated a zero-truncated Poisson variable with mean 4 as the number of trials for

individual j, denoted by tj (the number of trial must be greater than zero). We then

simulated the number of events yj from the corresponding binomial distribution defined

by µj and tj , i.e., yj ∼ Binomial(µj , tj), The simulation experiment was replicated 1000

times.

In the binomial data analysis, we added a pseudo marker in every marker interval so

that the total number of loci analyzed was p = 241 + 240 = 481 with 241 true markers

and 240 pseudo markers. Genotypic probabilities of the pseudo markers were inferred

from information of flanking markers. The hyper-parameter values (τ, ω) = (−1, 0) were

chosen for the analysis. We also tested (τ, ω) = (0, 0) and the results were similar to the

ones with (τ, ω) = (−1, 0) and thus we only presented the results for (τ, ω) = (−1, 0).

The mixture model failed to converge and thus was not used in the binomial data

analysis.

The average estimated QTL effects from the 1000 replicated simulations are depicted

in Figure 4.1b (the panel in the middle) for the expectation model and Figure 4.1c (the

bottom panel) for the overdispersion model. The true QTL effects are shown in the top

panel of Figure 4.1 for comparison. The differences between the two models were barely

noticed from the visual plots. The two models share the following common features:
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(1) they both underestimated the QTL effects (bias towards zero due to shrinkage) and

(2) a QTL with large effect was usually estimated as two or a few smaller QTL in the

neighborhood of the true QTL. The simulation experiments allow us to evaluate the

bias and estimation error of each QTL and eventually the mean squared error (MSE)

for the QTL. Let γ̄k be the average estimate of γk for the 1000 replicates and s2
k be the

variance of the estimated γk across the replications, the MSE for γk is defined as

MSEk = (γ̄k − γk)2 + s2
k (4.20)

The sum of MSE’s for all QTL is

MSE =
p∑

k=1

(γ̄k − γk)2 +
p∑

k=1

s2
k = Bias + Error (4.21)

The MSE’s for the two models (expectation and overdispersion) are shown in Table

4.1. The overdispersion model has a much smaller overall bias but the small bias was

compromised by a slightly larger error. The overall MSE is 6.3081 for the overdispersion

model and 7.1049 for the expectation model, indicating a noticeable improvement of the

overdispersion model over the simple model.

Table 4.1: Comparison of the mean squared errors (MSE) for the three models in the
replicated simulation study.

Data type Model Bias Error MSE
Mixture – – –

Binomial Expectation 4.6925 2.4124 7.1049
Overdispersion 3.5768 2.7313 6.3081

Mixture 4.6126 2.9622 7.5749
Binary Expected 4.7447 3.0791 7.8238

Overdispersion 4.6055 2.9338 7.5393

The simulation experiment was replicated 1000 times. The mixture model did not work
for the binomial data analysis.
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Figure 4.1: True QTL effects (top panel) and their estimated values for the simulated
binomial trait using the expectation model (panel in the middle) and overdispersion
model (bottom panel). The estimated QTL effects are the averages of 1000 replicated
samples. The positions of 20 simulated QTL are indicated by the inward ticks on the
horizontal axis.
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4.3.1.2 Binary data

The experimental design was exactly the same as in the binomial experiment. The

only difference in the simulation is that the trial was a fixed number of one for every

individual in the binary data simulation experiment. For the binary data, the mixture

model converged nicely and, therefore, each dataset was analyzed using three models

(mixture, expectation and overdispersion). The average estimated QTL effects across

the 1000 replicated simulations are depicted in Figure 4.2, where the mixture model is

on the top panel, the expectation model on the panel in the middle and the overdis-

persion model on the bottom panel. The true QTL effects can be found in Figure 4.1

(the top panel). Again, the differences among the three models are barely noticeable.

For the binary data, the models were only able to detect QTL with large effects and

the estimated QTL effects were all biased towards zero (shrinkage). The biases, errors

and MSE’s of the binary data analysis are given in Table 4.1 also. The mixture and

overdispersion models are much the same to each other but both have much smaller

biases than the expectation model. The two models also have slightly smaller errors

than the expectation model. As a result, both models have small MSE’s relative to the

expectation model.

The conclusion of the simulation studies were: (1) the mixture model did not work

for binomial data analysis, (2) the overdispersion and mixture models worked equally

well for binary traits, (3) both overdispersion and mixture models outperformed the

expectation model in terms of generating smaller MSEs.
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Figure 4.2: The estimated QTL effects for the simulated binary trait using the mixture
model (top panel), expectation model (panel in the middle) and overdispersion model
(bottom panel). The estimated QTL effects are the averages of 1000 replicated samples.
The positions of 20 simulated QTL are indicated by the inward ticks on the horizontal
axis.
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4.3.2 Mapping wheat fertility QTL

The experiment was conducted by Dou et al. (2009). The mapping population

contained 243 F2 individuals derived from the cross of two inbred lines. The trait of

interest is the female fertility measured as a binomial trait. The event is the number

of seeded spikelets per plant (average 19.13 seeded spikelets) and the trial is the total

number of spikelets per plant (average 25.15 spikelets). A total of 28 markers were

genotyped in this experiment. These markers covered five chromosomes of the wheat

genome with an average marker interval of 15.5 cM. The five chromosomes are only part

of the wheat genome.

4.3.2.1 Binomial trait

Since the marker map is sparse, we inserted one pseudo marker in every two cM,

generating a total of 197 loci (28 true markers and 169 pseudo markers). The pseudo

markers have missing genotypes and the probability distributions of these pseudo mark-

ers were inferred from linked markers using the multipoint methods (Jiang and Zeng

1997). The sample size was n = 243 and the size of the model was p = 197. Since

the sample size is much larger than the size of the model, we chose a weak shrinkage

prior for the QTL variance represented by (τ, ω) = (−2, 0), equivalent to the uniform

prior for σ2
k. Two models (expectation and overdispersion) were used for the binomial

data analysis. Unfortunately, the mixture model approach did not work. The mixture

model did work for binary traits, as demonstrated later. Therefore, we only presented

the results for the expectation and overdispersion models for the binomial trait analysis.

For the real data analysis, we need to calculate the LOD score for each marker. The

136



LOD score test statistic was calculated using

LODk =
γ̂2

k

2ln(10)var(γk)
(4.22)

The estimated QTL effects for the two models are depicted in Figure 4.3a (the top

panel). The LOD score profiles for the two models are depicted in Figure 4.3b (the

bottom panel). The two models show some similarity and differences. Using the LOD

= 3 as the threshold, the expectation model detected 17 QTL while the overdispersion

model detected 15 QTL. Among these detected QTL, eight of them were detected by

both models. The effects along with the estimation errors and the LOD scores obtained

from the overdispersion model are listed in Table 4.2. Most detected QTL were located

on chromosome II, IV and V. The QTL with the largest effect and LOD score occurred

on the second chromosome at position 28.71 cM (cumulative position of 104.60 cM). Un-

like the simulation study where the true effects of QTL were known, for the wheat data,

the true QTL were not known. Therefore, we were not able to compare the biases and

the mean square errors of the estimated QTL effects. We chose an alternative method

to evaluate the two models, that is the leave-one-out cross validation. The cross valida-

tion only evaluates the predictabilities of the models. Due to linkage disequilibrium, a

wrong model may have a high predictability. For the purpose of molecular breeding and

marker assistant selection, higher predictability is more preferable. For the purpose of

gene cloning, the biases of QTL estimates are of major concern. We used the Pearson

correlation coefficient between the observed and predicted trait values as a measurement

of the predictability. The Pearson correlation coefficients for the expectation model and

overdispersion model were 0.5166 and 0.5290, respectively. The overdispersion model

shows a slight advantage over the expectation model. We concluded that incorporation
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of overdispersion does show the expected benefit (increase in predictability) in QTL

mapping over the simple model.
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Figure 4.3: Binomial trait analysis of the wheat experiment using the expectation model
(blue) and the overdispersion model (red). The top panel shows the estimated QTL
effects and the bottom panel shows the LOD scores. Chromosomes are separated by the
dotted vertical lines. Positions of true markers are indicated by the inward ticks on the
horizontal axis.

138



Table 4.2: QTL detected for the binomial trait of wheat fertility using the overdispersion
model.
QTL Chromosome Position Marker 1 Estimate 2 StdErr 3 LOD

1 1 0.00 1 0.2171 0.0266 14.40
2 2 0.00 1 -1.0517 0.0278 308.75
3 2 2.12 1 0.9841 0.0283 260.97
4 2 10.96 1 0.3985 0.0303 37.36
5 2 16.16 0 -0.7670 0.0311 131.24
6 2 28.70 0 1.6423 0.0306 621.89
7 2 38.29 1 -0.1356 0.0272 5.37
8 3 67.32 1 0.1635 0.0273 7.78
9 4 9.20 1 0.5755 0.0293 83.30
10 4 14.92 1 -0.6445 0.0300 99.78
11 5 0.00 1 0.3878 0.0281 41.17
12 5 20.83 0 -0.8852 0.0336 150.14
13 5 39.87 0 0.5121 0.0292 66.67
14 5 63.60 0 -0.6898 0.0321 100.17
15 5 82.68 0 0.6414 0.0301 98.17

1 This column indicates whether the QTL overlaps with a true marker (1)
or a pseudo marker (0).

2 This column gives the estimated QTL effect.
3 This column shows the standard error of the estimated QTL effect.

139



4.3.2.2 Binary trait

Among the 243 plants, 39 of them did not have seeds at all. The frequency distrib-

ution of the number of seeded spikelets is shown in Figure 4.4. It appears that the zero

category was inflated. The binomial data analysis did not differentiate QTL responsible

for seed presence and absence. We now defined a binary trait as seed presence/absence

and used the three models (expectation, overdispersion and mixture) to analyze the

binary trait. The estimated QTL effect profiles are shown in Figure 4.5a (the top panel)

and the LOD score profiles are depicted in Figure 4.5b (the bottom panel). The three

models appeared to generate much the same result. Using the LOD 3 criterion, we

only detected a single QTL at position 28.71 cM of chromosome II (cumulative position

104.60 cM). This QTL was the same one detected for the binomial trait (the largest

QTL for the binomial trait). Our conclusion was that, except this particular QTL, the

multiple QTL detected for the binomial trait reported early were all responsible for the

variation of the number of seeded spikelets, not the seed presence/absence trait. Leave-

one-out cross validation analysis did not show much differences for the three models.

The Pearson correlation coefficients between the observed and predicted trait values

were 0.4715, 0.4729 and 0.4721, respectively, for the three models (expectation, overdis-

persion and mixture). As expected, the predictability for the binary trait is lower than

that of the binomial trait.
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Figure 4.4: Frequency distribution of the number of seeded spikelets of the F2 wheat
population. Among the 243 plants, 39 of them have no seeds (zero category).
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Figure 4.5: Binary trait (seed presence/absence) analysis using the expectation model
(blue), overdispersion model (red) and mixture model (black). The top panel shows the
estimated QTL effects and the bottom panel shows the LOD scores. Chromosomes are
separated by the dotted vertical lines. Positions of true markers are indicated by the
inward ticks on the horizontal axis.
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4.3.2.3 Truncated binomial trait

We deleted the 39 individuals with zero seeds and only analyzed the 204 seeded

plants. This analysis would detect QTL only responsible for the variation of the number

of seeded spikelets. Since the trait had a zero-truncated binomial distribution, the

modified log likelihood is

L(β, γ) =
n∑

j=1

{
yj ln(µj) + (tj − yj)ln(1− µj)− ln

[
1− (1− µj)

tj
]}

(4.23)

The last term, 1 − (1 − µj)tj ,is the probability of yj > 0.The truncated binomial trait

was only analyzed using the expectation and overdispersion models because the mixture

model failed to converge. The results are depicted in Figure 6a (the top panel) for the

estimated QTL effects and the Figure 6b (the bottom panel) for the LOD scores. The

expectation model detected six QTL and the overdispersion model detected seven. Five

QTL were detected by both models. The largest QTL on chromosome II at position

28.71 cM (cumulative position 104.60 cM) detected by both the binomial and binary

trait analyses remain significant for the zero-truncated binomial trait.
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Figure 4.6: Zero-truncated binomial trait (excluding plants with no seeds) analysis using
the expectation model (blue) and overdispersion model (red). The top panel shows the
estimated QTL effects and the bottom panel shows the LOD scores. Chromosomes are
separated by the dotted vertical lines. Positions of true markers are indicated by the
inward ticks on the horizontal axis.
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4.4 Discussion

We proposed three algorithms to handle the missing genotype problem in multiple

QTL mapping. The overdispersion algorithm appears to be optimal over the expectation

and mixture model algorithm in terms of less bias, small MSE and high predictability.

The advantage of the overdispersion algorithm over the expectation algorithm will di-

minish as the marker density increases. In the situation where the entire genome is

sequenced, all three algorithms would converge to the same result because genotypes

of all markers will be observed. However, full genome sequences for most species are

not expected soon. In addition, missing genotypes may still exist due to human and

technical errors in experiments. Therefore, the missing genotype handling algorithms

remain useful for the foreseeable future.

The generalized linear mixed model is sufficiently general so that it can handle traits

with any distributions as long as a likelihood function is programmable. Normal dis-

tribution is included as a special case. The Newton-Raphson step is on the likelihood

function to infer the parameters using information from the data. Combining the prior

information and the data, the posterior distribution is inferred. An alternative approach

is to perform the Newton-Raphson step on the log posterior, as done by McGilchrist

(1994). For the normal priors of QTL effects, this approach is the same as what we did.

The advantage of the Newton-Raphson on the log posterior is that we can choose any

arbitrary priors for the QTL effects other than the normal priors. The Newton-Raphson

step does not need to have an explicit form because the first and second partial deriv-

atives of the log posterior can be easily found numerically through efficient subroutines

of computer programs.

The generalized linear mixed model proposed differs from the usual GLMM in that
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the variance components are assigned a scaled inverse chi-square distribution to further

shrink the variance components towards zero. An obvious question is how to select the

shrinkage parameters. In the simulated data analysis, we chose (τ, ω) = (−1, 0) as the

hyper parameters. For the real data analysis, (τ, ω) = (−2, 0) was used. The optimal

way of choosing the hyper parameters is to use a cross validation scheme. There are two

hyper parameters in the scaled inverse chi-square prior. This means that the search is

two-dimensional. Using the grid search scheme, the range of the hyper parameters may

take −2 ≤ τ ≤ 0 and 0 ≤ ω ≤ 0.5. Our past experience showed that we may set ω = 0

and only vary τ (Xu 2010). This will leave the search as one dimensional. A general

guideline is to choose a large τ value for large models. In the extreme case where τ = 0,

the scaled inverse chi-square is proportional to 1/σ2
k, the Jeffreys’ prior (Jeffreys 1946).

This prior leads to is a strong shrinkage. When τ = −2, the prior is uniform and the

model becomes a standard generalized linear mixed model if genotypes of putative QTL

are fully observed.

In the wheat fertility QTL mapping experiment, the binomial trait appears to be

inflated for the zero category. Such a zero-inflated binomial data can be analyzed using

the zero inflated binomial distribution (Hall 2000) assuming that QTL genotypes are

observed and all effects are fixed. A generalized linear mixed model for zero-inflated

binomial traits has not been available yet and it is an interesting topic to be developed.

We used an ad hoc approach to analyzing such a zero-inflated binomial trait by perform-

ing two separate analyses. One analysis was the binary trait generalized linear mixed

model by treating seed presence and absence as 1 and 0, respectively, regardless how

many seeds carried by each plant. The other analysis was a zero-truncated binomial trait

analysis where only plants with at least one seeded spikelets were subject to the analy-

sis. The log likelihood function was modified to take into account the zero truncation.
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Interestingly, we found one QTL responsible for both the binary trait and the truncated

binomial trait. Many QTL were found only affected the zero-truncated binomial trait.

This discovery is novel and useful to plant breeders for further investigation. We do

not expect much difference between this ad hoc analysis and the actual zero-inflated

binomial trait analysis. Of course, this is only a speculation and an accurate answer will

not be achieved unless a zero-inflated binomial trait analysis is actually done.
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