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Abstract: Empirical Likelihood (EL) and other methods that operate within
the Empirical Estimating Equations (E*) approach to estimation and infer-
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1. Introduction: Estimating Equations, Empirical Estimating Equations

In Econometrics and other fields, it is rather common to formulate a model
in terms of the Estimating Equations (EE); cf. Godambe and Kale (1991). The
stochastic part of the model is specified by a random variable X € & < R,
with the cumulative distribution function (cdf) Q, € 2(&’), where (%) is
the set of all cdf’s on &'. Estimating equations are formulated in terms of
estimating functions u(X;0) : & x ® — R’, where 0 € © C RX, There, K can
be, in general, different than J. Estimating equations

8(6) = {Q € 2(Z) : Equ(X; 0) = 0}
serve to form the model ®(0) = | J,., ®(6).

Examples of simple models:

Model 1: Z =R, © = [0,00), u(X;0) =X — 0.

Model 2: =R, © =R, u(X;0) = {X —0,sgn(X — 0)}; cf. Brown and Chen
(1998).

Model 3: =R, ®© =R, u(X;0) = {X — 0,X% — (202 + 1)}; cf. Qin and
Lawless (1994), Example 1.

Given a random sample X' = X3,...,X, from Q,, the objective is to select a
Q from ®(©), and this way make a point estimate 0 of the ’true’ value 6,. In the
case of correctly specified model (i.e., Q, € ®(©)), 0, solves E, u(X;0) = 0.
If the model is not correctly specified, i.e., Q, ¢ ®(©), then 0, can be defined
as the solution of Eq(o ,u(X;60) = 0, where Q(Q,) is the L-projection of Q, on
®(O©), cf. Grendar and Judge (2009a).

In order to connect the model ®(©) with the data X7, the Empirical Estimat-
ing Equations (E®) approach to estimation and inference replaces the model
®(O) by its empirical, data-based analogue ¢,(0) = Ue co ©,(0), where

®,(0)=1{Q, € 2(X]) : Ey u(X;0) =0}

are the empirical estimating equations. E® replaces the set ®(©) of cdf’s sup-
ported on X by the set ¢,(©) of cdf’s that are supported on the data X. An
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estimate § of 6, is then obtained by means of a rule that selects Q,(x; ) from
. (0).

A broad class of methods for selecting a sample-based cdf from &,(©) is
provided by the Generalized Minimum Contrast (GMC) rule, cf. Corcoran
(1998), Bickel, Klaassen, Ritov et al (1993), Kitamura (2007), that suggests
to select

Qn(x;é) = arg lnf D¢(Qn||Qr): (1)

Qn(x)e,(0)

where Q, is a non-parametric estimate of Q,; the divergence (or contrast)

D, « . dQ,

(@112 =9 | 2 ).
and ¢(-) is a convex function, with minimum at 1. Typical choices of ¢(-) are
¢(v) = —logv (leads to the Maximum Empirical Likelihood, Qin and Lawless
(1994)), vlogv (leads to the Exponential Empirical Likelihood, Kitamura and
Stutzer (1997), Imbens, Spady and Johnson (1998), Mittelhammer, Judge
and Miller (2000)), (v®> —1)/2 (leads to the Euclidean Empirical Likelihood,
Brown and Chen (1998)). Another popular option is to use in (1) the Cressie
and Read (1984) class of discrepancies; the resulting estimators are known as
the Generalized Empirical Likelihood (cf. Smith (1997)) estimators.

The 6 part of the optimization problem (1) can be expressed as

5 : : dQ,
Ouc =arginf  inf ~Eq ¢ (d_ér) ; (2)

The convex dual form of (2) is

(0, Dgye = argmin max [,u —Eg ¢"(u+ Au(x; 9))] , (3)
0€0 yeR,AcR’ r

where ¢*(w) = sup, vw — ¢(v) is the Legendre Fenchel transformation of
¢*(v). Asymptotic properties of GMC estimators are known, and provide a
basis for inference. Hypothesis tests and confidence intervals can be also con-
structed by means of the GMC analogue of the Wilks’ Theorem. A GMC test of
the null hypothesis H, : 8 = 6, against the alternative H; : 6 = 6, is based on
the GMC statistic

MOXD = k@) | inf. Dy(@IIQ) - inf, Dy@liR)|. @
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that is asymptotically xﬁ distributed, under regularity conditions (cf. Corcoran
(1998), Owen (2001)), and for an appropriate choice of k,(¢ ).

The most prominent member of the GMC class is the Maximum Empirical
Likelihood (MEL) estimator 6y, that can be obtained by choosing ¢(v) =
—logv (hence ¢*(w) = —1 — log(—w)) and choosing as the non-parametric

estimate Q, of Q, the empirical cdf Q,(x) = M, where I(-) denotes the
indicator function:
(0, M)y, = argminmax Eq log(1 4 A'u(x; 0)). (5)
0€0 Aer’ "

It is worth noting that MEL is the Maximum Likelihood estimator in the class
of data-based cdf’s from ®,(©). The GMC statistic is in this case usually known
as the (log) Empirical Likelihood Ratio (ELR) statistic; cf. Owen (2001).

2. Existence problems of E3

The E3-based methods are subject to existence problems that arise from the
fact that the model ®,(©) is data dependent. There are two classes of the exis-
tence problems. Although they are closely related, one pertains to hypothesis
testing and confidence interval construction, the other concerns non-existence
of E3-based estimators.

The inference-related existence problem is well-known, and concerns the
impossibility of constructing a test based on GMC statistic, for a data set X7, for
which @,(6,) = 0. In the literature on the Empirical Likelihood this is known
as the convex hull restriction, cf. Owen (2001).Several ways of mitigating the
problem were proposed; cf. Chen, Variyath and Brown (2008), Emerson and
Owen (2009). Among them is a modification of E? that lifts up the restriction
that Q, € £(X7), in the sense that if x; < x,, x;,x, € Z, then F(x;) may be
greater than F(x,). Permitting the negative weights on data points allows to
escape the convex hull restriction. GMC with divergences that allow negative
'weights’, such as the euclidean one, which is given by ¢(v) = (v —1)/2, can
be used within the modified E* approach (mE?).

Recently, it was demonstrated that E* faces an even deeper existence prob-
lem, the Empty Set Problem (ESP); cf. Grendar and Judge (2009b). ESP con-
cerns the possibility that ,(©) = 0, for some models and data. If for a model
and a data set ¢,(©) is empty, then no E3-based estimate can be obtained.
Consequently, also none E3-based test can be constructed.
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The setting of Model 1 provides a simple instance of ESP. If X7 is such that
the largest value X(,) in the sample is smaller than 0, then &,(®©) = 0. Prob-
ability of obtaining such data set depends on the sample size n and on the
sampling distribution Q, (x).

In the Model 3, ¢,(©) is empty, for any data set X] for which E, X 2 —
2(Eq X )?—1<0,forany Q, € 2(X 1)- As it was demonstrated in Grendar and
Judge (2009b), ¢,(©) is empty for any data set X' = x] such that

2
2 2
q(”i)x(l) + (1 — qg)) Xy — 2 (q("})x(l) +(1- q("}))x(n)) <1, (6)
where .

OO X

N 4(x)y=x(m) "
g, = o) T 7)

X(1) ~ X(n)

and x(1y (x(y)) is the smallest (the largest) observed value in the sample. Con-
sequently, neither MEL nor any other E3-based estimator exists for such a data
set. As it was also noted by the authors, even the methods that operate within
the modified E* approach (i.e., the methods that allow negative weights) face
an empty set problem for such data sets.

Not every E3 model is subject to ESP For instance, Model 2 is free of ESP
Whether a model is subject to ESP or not is, in general, difficult to assess.

ESR in our view, depreciates methods that operate within E* approach. In
Grendar and Judge (2009b) few ways out were identified. One of them is
to return back to EE and use the Maximum Likelihood or Bayesian methods.
Maximum Likelihood with Estimating Equations (ML-EE) method has been
explored in Grendar and Judge (2010). In the discrete case, ML-EE is not
difficult to find, numerically. In the continuous case, it is an open problem
how to make ML-EE operative. In Grendar and Judge (2010), a discretized
version of ML-EE was proposed. The discretized ML-EE avoids ESP, enjoys the
same asymptotic properties as MEL, but its construction is difficult and model-
dependent.

In this work we continue the quest for a method that i) operates within
EE, consequently ii) it avoids ESP (and also the convex hull problem), ii) en-
joys the same asymptotic properties as EL, iv) is comparable to MEL also from
the computational point of view. To this end we explore the non-parametric
Bayesian Maximum A-posteriori Probability (MAP) method within EE approach.
MAP-EE helps us to find a non-bayesian method that achieves all the four
goals.



M. Grenddr and G. Judge /Revised empirical likelihood 6
3. Maximum A-posteriori Probability with Estimating Equations

The Empty Set Problem (ESP) of E2 arises as a consequence of the restriction to
the probability distributions that are supported by data. Due to this restriction,
E2 methods ignore the information about the support Z of X.

One option to avoid ESP is to return back to the model, ®(©), that is
specified by Estimating Equations (EE). To place EE into Bayesian setting, let
a strictly positive prior IT be put over ®(©). The prior combines with data
X! =X;,X,,...,X, to define the posterior distribution

fo e—ln(q)n(dQ)
f@(e) e HOn(dQ)

I,01X7) =

where O C ®(0), [,(q) = —27:1 logq(x;), q = ‘;—Z, and u is assumed to be ei-
ther the counting or the Lebesgue measure. The Maximum A-posteriori Proba-
bility with Estimating Equations (MAP-EE) Oy;xpr estimator of 6 is defined as
the parametric component of

Q(x; é)MAP—EE =arg sup IL,(: |XD (8)
Qe2(0)

3.1. Discrete case: Dirichlet prior MAP-EE

Let X be a univariate, discrete random variable with finite support Z = {x;, x5,
..., X} Let the prior IT over ®(©) be given as a normalization of the prior over
2%),ie,I(0) = fo H(dQ)/f(p(@) I1(dQ), where O C ®(©). We assume the
Dirichlet prior which leads to the Dirichlet posterior

M,(q|X™) o e™o@),

where .
12(q) = = Y (nopo, +n; — 1)logq(x;; 0),
i=1

n, € N, is the precision parameter, and p,; > 0,1 <i < m, Z;n:lpo,i =1,
is the base measure, with cdf P,; cf. Ghosh and Ramamoorthi (2003). Also,
there n; = 2?21 I(X; = x;) and I(-) is the indicator function. Then, MAP-EE is
given as

A(x; 0 = inf 1°(-)/n.

Q(x; 0 )vap—kk arnglg(e) L()/n 9)
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Density (i.e., pmf), corresponding to the optimal cdf Q(x; 6)yap_gs can be ex-
pressed as

J v+ (ngpy; — 1)/n
4(x;; 0, A(0))ymap—pe = {  (noPo, A/)/ — 1<i<m,
14+ (ng—m)/n+ Au(x;;0)

where A € R/, and v = n;/n is pmf corresponding to the empirical cdf Q..
The optimal values of 8, A can be found as the solution of the convex dual
problem

-m
(0, Myiap_ge = =arg | inf sup Eg 4 (n,p,—1)/n 108 (1 + + Au(x;; 9)) . (10)

€0 jers
The convex dual for MEL (5) and MAP-EE (10) are worth comparing. Since
MAP-EE operates within the EE approach, it is free of ESP More precisely, if
ny, and P, are such that, ngp,; # 1 for all i = 1,...,m, then Gyapgs(x;;-) is
non-zero, even for data sets for which v" may be zero. Under this condition
the Dirichlet prior MAP-EE avoids ESP.

Example 1. Let = (0,1,2,3), ©® = [0.52,0.96], so that ®(©) # 0. Let
the estimating functions be the same as in Model 3. Let the sample of size
n = 10 be such that it induces type (i.e., the vector of relative frequencies)

=[2,3,5,0]/10.

E3-based methods a priori put zero probability to those outcomes that do
not appear in the sample. Since ¢,(©) is data-dependent, it may be empty
for some models and data sets, as it is the case in this setting, for this sample
(type); cf. Grendar and Judge (2009b), Sect. 2.1 and Grendar and Judge

(2010). Thus, neither MEL nor any other E3-based estimate exists for the
sample.

However, MAP-EE exists. Assume, for instance, the uniform base measure
and n, = 5. By means of the standard numeric methods, it can be found that
Aviapge = (20.02761, —6.69760) and Byuppz = 0.74757. Though the fourth
outcome from & has not appeared in the sample, the pmf recovered by MAP-
EE has fourth element non-zero, §(x,; A, 8 )yapgr = 0.21547. ¢

The main difference between the Dirichlet MAP-EE (10) and MEL (5) lays
in the (nyP, — 1)/n term, that permits to avoid ESP Asymptotic frequentist
properties of the estimator in (10) are the same as those of MEL: under the
regularity conditions of Theorem 3.6 of Owen (2001), the MAP-EE estimator
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of 0 is consistent and asymptotically normally distributed, with the covariance
matrix

T = Eau/(E ’)‘1Eau R (11)
~ %50 M Fae |

The log-posterior ratio Ryap_gr(©,) for the null hypothesis that 6 = 6,,,

IT,,((*; 09 )mapee |XD
Hn@(‘§ é)MAP—EE |Xf)

Ryiap—ge(©g) = log

is such that —2Ry.p_gs(6,) is asymptotically y2 distributed. Proofs follow the
lines of Qin and Lawless (1994). The log-posterior ratio is free of the convex
hull problem, that hampers the Empirical Likelihood Ratio (cf. Sect. 2).

3.2. Continuous case

In the continuous case, it is in general difficult to make MAP-EE (8) opera-
tional. Part of the difficulty arises from the fact, that even for the simplest prior
— the Dirichlet process prior, it is necessary to resort to Monte Carlo simula-
tions. Florens and Rolin (1994) explored this route, for the exactly identified
EE model (i.e., J = K). The authors note that this approach is not viable for
over-identified models (i.e., J > K).

Another option is to partition the support &, and this way turn the setup
into a discrete one. However, partitioning is arbitrary. Moreover, there is an-
other problem with this option. Even in the univariate case, where the Dirichlet
prior can be employed, the resulting posterior involves the range of support,
which must be necessarily finite. Despite these limitations, discretized support
together with the Dirichlet prior can be used to motivate a revision of MEL that
can be used in discrete as well as continuous case, univariate or multivariate
case, and what is the most important, avoids ESP We now turn to the Revised
Empirical Likelihood method.

4. ReEL: Revised Empirical Likelihood

Consider the following method for selecting a cdf from ®(©)

Q(x;0)=arg inf L(Q||(1 - a)Q,+ aPy), (12)
Qe¥(0)
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where L(V ||U) = —Ey log g—x is the L-divergence Grendar and Judge (2009a)
of V€ (&) with respect to U € 2(X'); a € (0,1), and P, € 2(Z). The
convex dual form of (12) is

(0, )) = arg inf sup E1—a)q, +ap, 108 (14 A'u(x;0)) . (13)
0€0 jcps e

To tie the method with data, replace the unknown Q, in (12), (13) by a data-
based estimate Q,. Resulting method will be named Revised Empirical Likeli-
hood (ReEL'). Though ReEL is not a Bayesian method, the cdf P, € 2(%") will
be called the base measure, and a will be related to the precision parameter
ny € (0,n), as @ = ny/n. The main purpose of P, is to bring into model the in-
formation about support and this way avoid ESP. Through P, it is also possible
to enter an extra-sample, extra-EE, prior information into the model.

In what follows, we will consider two instances of ReEL. In the first one,
Q, =Q, (i.e., the empirical cdf). It is worth stressing that this instance of ReEL
turns into MEL, for n, — 0. The other instance of ReEL is such that the pdf
corresponding to Q, is estimated by kernel density estimator. This instance of
ReEL will be named kernel ReEL. With a little danger of confusion, we reserve
ReEL to mean the empirical cdf ReEL.

Density corresponding to the sought cdf Qg.; takes the following form

(1 — )4, (x) + apy(x)

q x;é,i eFL = = ~
q( DReEL 1+ Au(x:0)

, (14)

where §, = % is the density corresponding to the estimator Q, of the true

data-sampling cdf Q,; and p, = %’ po > 0. For Q, = Q,, §,(x) = %Ixle’
[=1,2,...,n.

Example 2. As the first illustration of ReEL, consider the setting of Model
1: Z =R, © =[0,00), u(X;60) =X — 6. Recall that in this setting MEL does
not exist for any data set X7, for which the largest value X, < 0. Since ReEL
operates on ®(©) rather than on ¢,(0), it is not affected by ESP The ReEL

estimator of 0 is X
o 0 iff,<o0,
REL 1 6, otherwise,

where

Ou = E(l—a)Q,+aP0X

’Re’ may stand for revised, regularized, reconsidered, rescued, reformed, recovered, etc.
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is the unrestricted ReEL estimator of 6.

In order to use the uniform prior, we decided to work with cdf’s on [—10, 10].
Note that then, Ep X = 0. Thus, 0,=01- a)Eq ()X . We put ny = 1 and esti-
mate Q, by the empirical cdf.

A random sample of size n = 10 from n(0, 1) was generated, with the high-
est observed value —0.63617. For such a sample, MEL does not exist. ReEL
estimator of @ is 0, since 8, < 0. Associated ReEL density Gre (x;0,A) is de-
picted at the upper left panel of Figure 1. Next, we shifted the data by 1 to
the right. Since 0, remained negative, Oz = 0. Corresponding ReEL den-
Sity reg(X; 0, A) is at the upper middle panel of Figure 1. Finally, yet another
shift of the data by 1 to the right, resulted in 6, > 0, and hence Oz = 0,
Corresponding ReEL density is at the upper right panel of Figure 1.

For the same data, we estimate g, by the kernel density estimator with band-
width selected by Silverman (1986) 'rule of thumb’ (the default of R’s R De-
velopment Core Team (2009) function density). Resulting kernel-ReEL pdf’s

I !l 1
10 [¢) 10

Fig 1. Upper row: ReEL density (solid red line), MEL weights (vertical black lines). Lower row:
Kernel ReEL density (solid red line), kernel density (dashed line).



M. Grenddr and G. Judge/Revised empirical likelihood 11

are exhibited at the lower part of Figure 1. ¢

Example 3. Next, consider the setting of Model 3 (i.e., Qin and Lawless
(1994), Example 1): & = R, © = R, and the feasible set of cdfs is (©) =
{Q € 2(X) 1 Ex(X — 0) = 0,Ey(X* — (20% + 1)) = 0; 0 € ©}. Recall, that in
the E3 approach, the set ®(©) of cdfs supported on & is replaced by the set
®,(0) ={Q, € 2(X]) : Ey (X — 0) = 0,E, (X*>—(26%>+1)) =0;0 € ©} of
cdfs supported on the data X7. Also, recall that ®,(©) is empty for any data
set for which (6), (7) hold.

ReEL selects cdf from ®(0), hence existence of ReEL estimator is not data
dependent. As in the above Example, we use the uniform base measure on
[—10,10]. The precision parameter n, is set up to 0.1.

For a three samples of size n = 10 from n(0, 1), resulting ReEL pdf’s are
exhibited on Figure 2. On the left and middle panels, there are data for which
MEL exists, since ®,(60) # 0. For the data on the right panel there is ESE hence

| H | L

i

Fig 2. Upper row: ReEL §(x; - )gepr (solid red line), EL weights (vertical lines). Lower row: Kernel
density estimator q,.(x) (dashed), Kernel ReEL §(x;)gep (solid red line), EL weights (vertical
lines)

-10 10 -10 [ 10



M. Grenddr and G. Judge /Revised empirical likelihood 12

MEL does not exist. At the bottom part of Figure 2, kernel ReEL densities are
depicted, for the same data as in the upper part.

To compare small-sample performance of ReEL and kernel-ReEL with the
gaussian Maximum Likelihood (ML) and the sample mean, we conduct an MC
study for the gaussian n(0,1) data. For n = 10, kernel-smoothed distribution
of ReEL and kernel ReEL for n, = (0.1,0.5, 1), as well as for ML and the sample
mean are depicted at Figure 3. Among the 1000 MC samples there were 91
for which ®,(©) = 0, consequently, MEL was excluded from the comparison.

hat @ hat @

hat @

Fig 3. Distribution of estimators: ReEL (solid red line), kernel ReEL (solid green line), ML (dotted
line), mean (dashed line). Left, n, = 0.1; middle, ny = 0.5; right, n, = 0.5. Based on 1000 MC
samples of size n = 10.

For a more quantitative comparison, MC study of mean and variance of the
estimators was conducted for n = (10,50, 100). Results are presented in Table
1.0

Table 1
Mean and variance, multiplied by 10°, of the sample mean, ML and ReEL (with
ny = (0.1,0.5,1)), from 1000 MC simulations. In the ReEL block, the upper line is for ReEL, the
lower line for the kernel ReEL.

n Mean ML ReEL
0.1 0.5 1.0
10 -5 98 -6 80 -7 125 -9 163 | -15 216
-15 166 | -17 219 | -21 296
50 -7 19 -7 19 -8 22 -9 24 -9 27
-9 28 -10 31 -11 36
100 | -0.5 10 -0.8 9 -1.6 10 -1.6 11 | -1.6 12
-2 13 -2 14 -2 15
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As far as asymptotic properties of ReEL are concerned, the estimator is
asymptotically normally distributed with covariance matrix given by (11), un-
der the regularity conditions of Theorem 3.6 of Owen (2001). It is straightfor-
ward to see that ReEL also satisfies the Bayesian consistency under misspecifi-
cation requirement; cf. Grendar and Judge (2009a).

In analogy with the Empirical Likelihood Ratio (ELR) it is possible to define
the (log) Revised Empirical Likelihood Ratio (ReELR) Ry (q,), for the null
hypothesis that 6 = 6,,

R 6,)= inf R— inf R. 15
ree(60) Qelql}( 5) Qelg(e) (15)
Under the regularity conditions of Theorem 3.6 of Owen (2001), it can be

shown that +2nRg.g (6,) — x2. Since ReEL is not affected by empty set prob-
lem, ReELR is not affected by convex hull constraint.

Example 4. As an illustration of the y? asymptotics of ReELR, consider the
simple setting of testing the mean; i.e., u(X;0) =X — 60, Z =R, © =R. The
data are sampled from n(0,1). The null hypothesis is given by ©, = {0}. As
before, the base measure is uniform on [—10, 10]. Then,

Rpexr.(60) = Eq1-0)q, +ap, 108 (1 + i(O)X) .

100 1
10 4 F)

10

50

Fig 4. Quantile-quantile plots for ReELR, uniform base measure, ny, = 1 (solid), ELR (dashed)
versus the reference X12 distribution. Left: n = 10, middle: n = 100, right: n = 1000. The crosses
on the y = x line indicate the 90%, 95%, and 99% quantiles of the )612 distribution. MC sample
size 5000.

ELR is affected by the convex hull restriction. If the data X] = xT are such
that x(,) < 0, ELR does not exist. Among 5000 MC samples of size n = 10, ELR
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did not exist for 9 samples. ReELR is not affected by convex hull restriction.
For the sake of comparison with ReELR, we plot the quantile-quantile curve
also for ELR, excluding the data sets that are out of the convex hull. Figure
4 demonstrates the asymptotics, for empirical cdf ReELR. Kernel-based ReELR
behaves similarly.

5. Conclusions and implications

Replacement of Estimating Equations (EE) by Empirical Estimating Equations
(E®) seems to be a natural way to link the model with data. The resulting E3
model &,(©) is data dependent and for some models there are data samples
for which ¢,(©) is empty. Consequently, E? models has to be checked on case-
by-case basis for Empty Set Problem (ESP) — a tedious task. The E3-based
methods can be applied only to those models that are free of ESP and this
makes the E* approach peculiar.

In Grendar and Judge (2009b), a few ways out of the ESP were identi-
fied. One of them is the Generalized Method of Moments; cf. Hansen (1982).
Another option, proposed here, is to return back to EE and apply to it the
Bayesian Maximum A-Posteriori Probability (MAP) method. In the univariate
discrete case, the Dirichlet prior MAP-EE is a natural and at the same time
ESP-free method. For continuous, multivariate case implementation of MAP-
EE would require Monte Carlo sampling. However, Dirichlet MAP-EE moti-
vates a Revised Empirical Likelihood (ReEL) method, that i) operates on EE,
and hence avoids ESP as well as the convex hull restriction, ii) is applicable
to multivariate as well as univariate, continuous as well as discrete cases, iii)
enjoys the same basic asymptotic properties as EL, and finally, iv) its computa-
tional complexity is comparable to that of EL. ReEL combines an EE model, a
data-based estimate of sampling distribution, and a ’prior’ information about
range of values (support). We explored two instances of ReEL: the empirical
cdf ReEL, and kernel smooth ReEL, at few simple settings. Much of further
explorations is warranted.
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