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1  |  INTRODUC TION

Effective population size (Ne) quantifies genetic drift in a population, 
making it one of the most important parameters in conservation 
and evolutionary biology (Charlesworth, 2009). As Ne declines, the 
rate of genetic drift increases, decreasing the amount of standing 
genetic variation in a population and reducing the effectiveness of 

selection, all of which can limit a population's evolutionary potential 
(Kelly et al., 2013; Lai et al., 2019; Messer & Petrov, 2013). Especially 
in today's changing world, Ne is an important predictor of the reper-
toire of responses available within a population to overcome novel 
environmental challenges. As a result, determining whether and 
when Ne changes over time and how changes in Ne correspond to 
the demographic history of the population remain key priorities in 
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Abstract
The demographic history of a population is important for conservation and evolution, 
but this history is unknown for many populations. Methods that use genomic data 
have been developed to infer demography, but they can be challenging to implement 
and interpret, particularly for large populations. Thus, understanding if and when ge-
netic estimates of demography correspond to true population history is important for 
assessing the performance of these genetic methods. Here, we used double-digest 
restriction-site associated DNA (ddRAD) sequencing data from archived collections 
of larval summer flounder (Paralichthys dentatus, n = 279) from three cohorts (1994–
1995, 1997–1998 and 2008–2009) along the U.S. East coast to examine how con-
temporary effective population size and genetic diversity responded to changes in 
abundance in a natural population. Despite little to no detectable change in genetic 
diversity, coalescent-based demographic modelling from site frequency spectra re-
vealed that summer flounder effective population size declined dramatically in the 
early 1980s. The timing and direction of change corresponded well with the observed 
decline in spawning stock census abundance in the late 1980s from independent fish 
surveys. Census abundance subsequently recovered and achieved the prebottleneck 
size. Effective population size also grew following the bottleneck. Our results for sum-
mer flounder demonstrate that genetic sampling and site frequency spectra can be 
useful for detecting population dynamics, even in species with large effective sizes.
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the fields of conservation and evolutionary biology (Díez-del-Molino 
et al., 2018).

Since it is challenging to collect enough demographic informa-
tion to estimate Ne directly, a rich area of research has focused on 
the development and evaluation of indirect genetic estimators of Ne 
(Luikart et al., 2010). Currently, the most common methods to esti-
mate Ne include the linkage disequilibrium and temporal methods 
(Hill, 1981; Jorde & Ryman, 1995; Krimbas & Tsakas, 1971; Waples 
et al.,  2014). Linkage disequilibrium methods work relatively well 
for populations with small effective population sizes (Ne < 1000) if 
enough individuals are sampled, but once effective size becomes 
large (>1000), robust estimates of Ne are challenging to obtain and 
difficult to interpret (Marandel et al., 2019). With large populations, 
the genetic diversity metrics (i.e., inbreeding, heterozygosity, link-
age, and allelic diversity) that are often used to infer population 
size differ little across a large range of population sizes, resulting in 
lower precision for larger Ne estimates (Palstra & Ruzzante, 2008). 
This has made the estimation of Ne and the detection of changes 
in Ne particularly difficult for large marine populations, which often 
have a million or more individuals (Hare et al., 2011). To improve Ne 
estimates when employing these methods, suggestions have been 
made to use exceptionally large numbers of individuals (e.g., 1% of 
all individuals in a population) and many loci (Marandel et al., 2019; 
Waples et al., 2018; Waples & Do, 2010). Methods that employ the 
site frequency spectrum (SFS) of a single population—or the joint (or 
multisample) SFS for two (or more) populations— have shown prom-
ise for detecting changes in Ne over time (Adams & Hudson, 2004; 
Excoffier et al., 2013; Gutenkunst et al., 2009; Nunziata et al., 2017; 
Nunziata & Weisrock,  2018; Patton et al.,  2019). Power to detect 
changes can be particularly high if archived specimens are available 
to sample a population through time (Nunziata et al., 2017; Nunziata 
& Weisrock, 2018; Ramakrishnan et al., 2005).

Methods that utilize the SFS have become increasingly popu-
lar due to the creation of tractable computational frameworks for 
estimating the SFS for arbitrary demographic histories (Excoffier 
et al., 2013; Gutenkunst et al., 2009) and the ease of generating se-
quencing data for many individuals at thousands of loci. The SFS is a 
count summary of the number of derived or minor alleles in each of 
the sampled populations and is particularly useful when all loci are 
biallelic. The distribution of alleles in the SFS, which is related to the 
rate at which lineages merge, or coalesce, is indicative of the evolu-
tionary history of the population(s) under consideration, including 
changes in population size and migration events. In general, an excess 
of rare alleles in the SFS indicates rapid population expansion (Keinan 
& Clark, 2012), while a deficit of rare alleles may indicate a recent 
population bottleneck because rare variants are lost disproportion-
ately quickly due to genetic drift (Maruyama & Fuerst, 1985). During 
a population bottleneck, faster than expected rates of coalescence 
will result in fewer rare variants. On the other hand, growing pop-
ulation sizes and slower coalescence rates produce larger numbers 
of rare variants (Gattepaille et al., 2013). In theory, multiple demo-
graphic scenarios can result in the same SFS (Myers et al., 2008), so 
distinguishing among similar scenarios can be challenging. However, 

modelling of biologically realistic demographic scenarios suggests 
that underlying demography can often be identified from the SFS, 
especially when enough individuals have been sampled (Bhaskar & 
Song, 2014). SFS-based methods have been successfully applied to 
a number of real data sets to understand past changes in population 
size (Harris et al., 2016; Keinan & Clark, 2012; McCoy et al., 2014; 
Nunziata et al.,  2017; Sovic et al.,  2019), and these methods may 
be particularly good for understanding changes on contemporary 
timescales up to 30 generations ago (Nunziata et al., 2017; Nunziata 
& Weisrock, 2018; Patton et al., 2019).

Effective population size can be estimated over long or short 
time scales, with each having its own utility for practical manage-
ment and conservation goals (Hare et al., 2011). Estimates of effec-
tive population size in deep time (hundreds to thousands of years) 
are useful for placing modern populations within a historical context 
(Harris et al., 2016; Huff et al., 2010; Roman & Palumbi, 2003), but 
contemporary effective population size estimates are more relevant 
for predicting persistence and for guiding management decisions 
(Luikart et al., 2010).

Populations with well-known demography are critical for as-
sessing the robustness of contemporary effective population size 
estimates because they provide a direct comparison between popu-
lation estimates using genetic data and those using more traditional 
sampling techniques (McCoy et al.,  2014; Nunziata et al.,  2017). 
Harvested and managed fishes represent some of the most well 
studied natural populations, and with a wealth of data over time, 
provide key opportunities for understanding how historical demo-
graphic processes influence genetic variation and effective pop-
ulation size on a contemporary time scale. Theory suggests that 
intensive harvest can induce a genetic bottleneck, and fishing is ex-
pected to reduce genetic diversity (Hauser et al., 2002; Hutchinson 
et al., 2003; Pinsky & Palumbi, 2014; Therkildsen et al., 2019). Yet, 
how the timing and magnitude of genetic declines and recovery cor-
respond to demographic bottlenecks and recovery remains largely 
unexplored in harvested populations (Kuparinen et al.,  2016). The 
large population sizes of many fishery species make estimation of Ne 
challenging using linkage disequilibrium or genetic diversity meth-
ods, but such species provide an opportunity to test if SFS-based 
methods might be particularly well-suited for large populations. 
In addition, while the genetic theory for demographic inference is 
relatively clear, natural populations rarely match all assumptions of 
theoretical methods. Therefore, opportunities that allow for com-
paring known population demography against estimates of con-
temporary effective population size over time provide a promising 
avenue for testing the utility of genetic monitoring in wild popula-
tions (Schwartz et al., 2007).

Of the 450+ managed U.S. marine fish stocks and stock com-
plexes, 45 were rebuilt to their targeted abundance levels between 
2000 and 2018 and another 43 still required rebuilding at the end 
of 2018 (NOAA Fisheries,  2019). One such recovered stock was 
summer flounder (Paralichthys dentatus), an ecologically and eco-
nomically important species in the Mid-Atlantic region of the U.S. 
East coast. Terceiro (2001) suggested that summer flounder biomass 
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was low in the 1960s before doubling in size between 1967–1974. 
Peak commercial landings then occurred in 1979, followed shortly 
thereafter by an estimated 77% decline in spawning stock biomass 
from approximately 53 million pounds in 1982 to 12 million pounds 
in 1989 (Terceiro, 2001). Since then, a strong focus on management 
for rebuilding helped spawning stock biomass increase again to a 
high of 110 million pounds in 2003 (an estimated 800% increase 
from 1989) before tapering off and declining slightly in the present 
(Terceiro, 2016). Starting in 1989 and 1985, the Rutgers University 
Marine Field Station and the NOAA Beaufort Laboratory, respec-
tively, have collected larval summer flounder on a weekly basis as 
the larvae ingress into estuaries that serve as nurseries. These col-
lections represent an unprecedented opportunity to uncover how 
genetic diversity and effective population size changed in response 
to dramatic changes in census population size in an exploited but 
demographically recovered marine population.

Here, we used double-digest restriction-site associated DNA 
(ddRAD) sequencing data from archived collections of larval summer 
flounder (n = 279) from three serially sampled larval cohorts (1994–
1995, 1997–1998 and 2008–2009) along the U.S. East coast to empir-
ically estimate effective population size and genetic diversity just after 
a population decline and during a recovery period following the reduc-
tion of intense fishing pressure. Understanding how Ne and genetic di-
versity respond to a population bottleneck and subsequent recovery 
can allow insight into whether summer flounder may be genetically lim-
ited in their response to future perturbations. Using summer flounder 
as a case study, we ask: (1) How does a severe demographic decline and 
recovery empirically affect genetic diversity and contemporary effec-
tive population size over time in a harvested population? (2) To what ex-
tent do contemporary genetic estimates of demographic history match 
known changes in census population sizes in a natural population?

2  |  MATERIAL S AND METHODS

2.1  |  Abundance estimates at peak spawning from 
fisheries data

Standardized fisheries trawl surveys have been conducted since 
1963 in the waters off the northeastern U.S. (Azarovitz,  1981). 
These data are incorporated into stock assessment models to cal-
culate spawning stock biomass, abundance at age, the proportion 
of mature fish in each age class, mortality due to fishing and natu-
ral causes, and other demographic parameters. Using data from the 
2016 summer flounder stock assessment (Terceiro,  2016), we cal-
culated total abundance of breeding adults at peak spawning (Nps,t) 
for each year from 1982–2015 using Nps,t =

∑A

a=0
Na,te

−pZa,t, where 
p = 10/12 was the fraction of the year that had passed when peak 
spawning occurred (around November 1 for summer flounder), Za,t 
was total mortality (natural mortality + fishing mortality) for age 
class a in year t, Na,t was the number of sexually mature breeding 
adults in a given age class at the beginning of the year, and A was the 
oldest age class.

2.2  |  Larval collections

Larval summer flounder have been collected at the Rutgers 
University Marine Field Station (RUMFS, Little Egg Inlet, New 
Jersey) on a weekly basis since 1989, with fish assemblages from this 
sampling site being representative of much of the New Jersey (NJ) 
coastline (Able et al., 2011, 2017). Summer flounder larvae ingress 
into shallow bays and estuaries, with the peak occurring between 
October–December and continuing through April in New Jersey 
(Able et al., 1990; Keefe & Able, 1993). Based on this timing, we de-
fined a larval collection cohort year as beginning in the fall (October–
December) and extending into the winter (January–March) months. 
We sampled three larval cohort years to examine how contemporary 
Ne had changed over time: Fall 1994–Winter 1995 (1994 cohort), 
Fall 1997–Winter 1998 (1997 cohort) and Fall 2008–Winter 2009 
(2008 cohort). Each sampled larval cohort represented a snapshot 
of the adult summer flounder that contributed alleles to the next 
generation. These years were selected as time periods when sum-
mer flounder population size was low, growing, and high, respec-
tively (Figure 1).

Larvae sampled from RUMFS were pooled with additional larvae 
captured at the NOAA Beaufort (North Carolina) Laboratory from 
the corresponding larval cohort year (Table 1). These North Carolina 
(NC) larvae were initially sampled for another project, but because 
the summer flounder population is effectively panmictic due to high 
dispersal (Hoey & Pinsky,  2018) and larvae disperse across Cape 
Hatteras, NC frequently (Hoey, Fodrie, et al., 2020), we concluded 
that including NC larvae to increase our sample size was appropriate 
for investigations of Ne and genetic diversity.

2.3  |  DNA extraction, library preparation 
& sequencing

For all larval summer flounder samples, the posterior portion of 
the body was used for DNA extraction using DNeasy 96 Blood & 

F I G U R E  1  Abundance estimates of total population size and 
number of mature spawners at peak spawning time from the 
summer flounder stock assessment (Terceiro, 2016).
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Tissue Kits (Qiagen) and the manufacturer's recommended proto-
cols. Individuals were randomly distributed among 96-well plates 
for extractions. DNA extracts were visualized on 2% agarose gels 
to assess quality and were subsequently quantified using PicoGreen 
(Thermo Fisher Scientific) and a SpectraMax M3 Microplate Reader 
(Molecular Devices).

Summer flounder ddRAD libraries were prepared according to a 
protocol adapted from Peterson et al. (2012) and described in detail 
in Hoey and Pinsky (2018). Briefly, successful extracts were digested 
in 50 μl reactions using PstI and EcoRI restriction enzymes for 4 h at 
37°C. Digested samples were cleaned with AMPure beads (Beckman 
Coulter) to remove small DNA fragments less than 100 base pairs 
(bp) in size and any remaining proteins, including restriction en-
zymes. Cleaned digestions were then ligated to P1 and P2 adapt-
ers. The P1 adapter contained individual barcodes. Ligated samples 
were pooled and cleaned before being size selected to a mean size 
of 273 ± 27 bp using a Blue Pippin or Pippin Prep (Sage Science), and 
then amplified using PCR read 1 and read 2 primers specifically de-
signed to only amplify DNA with both P1 and P2 adapters. Read 2 
PCR primers contained one of 12 Illumina indices so that pools could 
be distinguished from one another. PCR products were cleaned and 
Qubit fluorometric quantitation (Thermo Fisher Scientific) was used 
to quantify the final concentration of each pool.

Library preparation for larvae sampled from the 1994 and 1997 
cohorts (historical) was performed in laboratory facilities in sepa-
rate buildings (Marine and Coastal Sciences Building and Waksman 
Institute, Rutgers University) from those in which larvae from the 
2008 cohort (modern) were processed (Environmental and Natural 
Resources Building, Rutgers University). Care was taken to not 
bring equipment, reagents or clothing between the laboratories in 
order to limit contamination of our historical samples by modern 
fish DNA. For samples collected in 1998 and prior (historical), we 
randomly introduced at least one blank control for every 24 indi-
viduals during the extraction and digestion steps and then carried 
these blank controls through to sequencing. In addition, unique P1 
adapters were utilized for historical samples during the ligation step. 
These precautions provided an additional level of confidence that 

cross-contamination between historical and modern samples did not 
occur.

Laboratory work was completed between 2015 and 2018. Pools 
of 24–48 individuals comprised three DNA libraries that were sent 
to the Princeton Genomics Core Facility (Princeton, NJ) for 140 to 
150 bp single-end sequencing on two-lane runs using the Illumina 
HiSeq 2500 platform. In all, 331 larval summer flounder were se-
quenced for this study.

2.4  |  Bioinformatics and genotyping

To distinguish between pooled libraries, sequenced reads were de-
multiplexed by Illumina index using a Python script adapted from 
FASTX Barcode Splitter (Gordon,  2011). Sequenced reads were 
further demultiplexed by barcode and cleaned using process_rad-
tags in STACKS version 1.29 (Catchen et al., 2013). Sequences were 
then run through dDocent version 2.8.12 (Puritz et al.,  2014), an 
analysis pipeline for ddRADseq data that is described next. First, 
all reads were cropped to 140 bp (the lowest common read length 
among sequencing runs) and trimmed for quality using Trim Galore! 
(Krueger, 2015). BWA (Li, 2013) was used to map individual larval 
quality-trimmed reads to a de novo single-end ddRADseq reference 
assembly built from a sequencing run containing 351 larval individu-
als with 150 bp read lengths (299 of which were used in this study, 
plus 52 sequenced for a separate study that were captured between 
1990–1993 and 2010–2012 from NJ and NC). Reference assem-
bly was performed with Rainbow (Chong et al., 2012) using alleles 
with a minimum within-individual coverage level of 4 and a mini-
mum occurrence in 15 individuals. Reference sequences with >90% 
similarity were clustered together using CD-HIT (Fu et al., 2012; Li 
& Godzik,  2006). Following read mapping, single nucleotide poly-
morphisms (SNPs) were identified across all 331 larval individu-
als from the three cohorts of interest using FreeBayes (Garrison & 
Marth, 2012).

We retained variant SNPs that were successfully genotyped 
in at least 50% of individuals with a minimum quality score of 30. 

TA B L E  1  Genetic diversity statistics calculated for summer flounder cohorts. Included are the number of fish from each cohort 
(Total) and from each ingress location within a cohort (NJ, New Jersey or NC, North Carolina), the average observed heterozygosity per 
locus (Hetobs), expected heterozygosity (Hetexp), Wright's inbreeding coefficient (FIS) and nucleotide diversity (π) with bootstrapped 95% 
confidence intervals

Cohort and capture location No. of fish Hetobs Hetexp FIS π π 95% CI

1994–1995: Total 26 0.0654 0.0694 0.0581 0.00457 0.00429–0.00457

Little Egg Inlet, NJ 26

Beaufort, NC 0

1997–1998: Total 103 0.0651 0.0688 0.0543 0.00469 0.00455–0.00483

Little Egg Inlet, NJ 85

Beaufort, NC 18

2008–2009: Total 150 0.0669 0.0698 0.0415 0.00378 0.00367–0.00390

Little Egg Inlet, NJ 138

Beaufort, NC 12



5688  |    HOEY et al.

We did not employ a minor allele frequency nor a minor allele 
count filter. Individuals with >50% missing data were discarded 
(~14% of all individuals). Data were then restricted to variants 
occurring in 95% of remaining individuals with a minimum mean 
depth of 20. Further filtering was conducted using the default 
settings of the dDocent_filters script distributed with dDocent. 
This script filtered variants based on criteria related to site depth, 
quality versus depth, mapping quality, strand representation, and 
allelic balance at heterozygous individuals. Indels were removed, 
and only the first SNP at each contig was retained in order to 
help ensure an unlinked data set. These filtering steps resulted 
in 3905 loci across 284 larvae. To further reduce potential con-
tamination that may have occurred during larval sampling, stor-
age, or DNA library preparation, we calculated the proportion of 
heterozygous loci within individuals and removed five fish whose 
individual heterozygosity was three standard deviations above the 
mean (Petrou et al., 2019). We then identified loci not in Hardy–
Weinberg proportions (HWP; p < .001) using the pegas version 
0.13 package (Paradis, 2010) in R. These additional filters resulted 
in 3749 loci across 279 larvae for downstream analyses, unless 
otherwise noted.

2.5  |  Genetic diversity, single-sample 
Ne, and selection

Nucleotide diversity (π) across 140 bp windows was calculated using 
vcftools version 0.1.17 (Danecek et al., 2011) and all available SNPs 
on a contig for each larval cohort. For within-cohort estimates of 
π, 95% confidence intervals were calculated by bootstrapping 1000 
times across individuals using the boot version 1.3–24 (Canty & 
Ripley, 2019) package in R (R Core Team, 2017). Observed and ex-
pected heterozygosity per locus and FIS were calculated using the 
basic.stats function in the hierfstat version 0.04–22 (Goudet, 2005) 
package in R.

Single-sample estimates of Ne were generated for each sampled 
larval cohort using the linkage disequilibrium method (Waples & 
Do, 2010) with random mating implemented in NeEstimator version 
2.1 (Do et al., 2014). All other options were set to the default. We 
report point estimates resulting from the removal of singleton alleles 
and confidence intervals from jackknifing across individuals (Jones 
et al., 2016).

SNP genotypes were screened for temporal outliers among 
the three larval cohort years using BayeScan version 2.1 (Foll & 
Gaggiotti, 2008). BayeScan uses the difference in allele frequencies 

between samples across space or time to estimate the posterior 
probability of loci being under selection.

2.6  |  Demographic modelling

We fit demographic models of recent population size changes using 
a simulation-based approach and the SFS in fastsimcoal2 version 
2.6 (Excoffier et al., 2013, 2021). In addition to the filtering steps 
mentioned above, we removed all loci with missing data, resulting 
in 1068 loci across 279 summer flounder individuals. We then sum-
marized these loci across our three larval cohorts as the observed 
minor allele (folded) multiSFS in Arlequin version 3.5.2.2 (Excoffier 
& Lischer, 2010). Using fastsimcoal2, we fit parameters for seven de-
mographic models with serial sampling to our observed SFS and es-
timated the likelihood of our data under each model. Monomorphic 
sites and mutation rate were ignored during parameter estimation 
by using the --removeZeroSFS option. Our seven simple models 
were chosen to represent the range of likely scenarios that under-
lie the evolutionary history of summer flounder (Figure 2), including 
Model 1 a constant population size through time, Model 2 a bot-
tleneck and then an instantaneous change in population size, Model 
3 a bottleneck and then an exponential change in population size, 
Model 4 exponential change in population size followed by a bot-
tleneck and then an instantaneous change in population size, Model 
5 two bottlenecks with instantaneous changes in population size, 
Model 6 exponential change in population size before and after the 
bottleneck, and Model 7 exponential change in ancestral population 
size prior to reaching carrying capacity.

Parameters estimated from the models included modern Ne at 
the time of sampling in 2008 (NPOP08), Ne during the bottleneck 
(NBOT), Ne just prior to the bottleneck (NPREBOT), the duration and 
ending times of the bottleneck (TLEN and TBOT, respectively), and 
the ending time of the ancestral change in population size (TCAR; 
Figure 2). For Models 4, 6, and 7, we also estimated Ne (NANC) after 
the Last Glacial Maximum (Clark et al.,  2009). Parameters for the 
two-bottleneck model (Model 5) were the same as for the single 
bottleneck models but were differentiated between the first and 
second bottlenecks.

We determined female generation length by calculating the aver-
age age of females weighted by the number of eggs produced in each 
age class. Male generation length was calculated assuming that each 
age class contributed equally to reproduction. Calculations were 
based off of estimated abundance and the proportion of mature fish 
in each age class from Terceiro (2016), age-length relationships from 

F I G U R E  2  Demographic models with serial sampling for summer flounder: Model 1 constant population size, Model 2 a bottleneck and 
then an instantaneous change in population size, Model 3 a bottleneck and then exponential growth or decline (depicted here as growth), 
Model 4 exponential change in population size (depicted here as growth) before a bottleneck followed by an instantaneous change in 
population size, Model 5 two bottlenecks with instantaneous changes in population size, Model 6 exponential change in population size 
before and after the bottleneck (depicted here as growth), and Model 7 exponential change in ancestral population size prior to reaching 
carrying capacity. For the demographic scenarios with instantaneous change in population size, pre- and post-bottleneck sizes could be 
greater or less than population size during the bottleneck.
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Penttila et al. (1989) and length-fecundity curves from Morse (1981). 
Average generation length of females and males from 1982–2008 
was calculated to be 2.01 years (Figure S1).

Initial values for the maximum-likelihood search procedure for 
population size (NANC, NPREBOT, NBOT, and NPOP08) were log-
uniformly distributed from 100 to 100,000 haploid units; for bot-
tleneck duration (TLEN) were uniformly distributed from 1 to 5 
generations; for the end of the bottleneck (TBOT) were uniformly 
distributed from 1 to 12 generations; and for the end of the ancestral 
change in population size (TCAR) was log-uniformly distributed from 
1 to 5000 generations. While the lower limit on initial values served as 
a bound on the search space, the upper limit did not bound the search 
space. A total of 100,000 simulations were performed to estimate the 
SFS with a maximum of 40 loops (ECM cycles) for each demographic 
scenario. For each model, 50 replicate runs with different initial values 
were performed as single threaded processes on the Amarel Linux 
computing cluster (Rutgers University), and the overall maximum-
likelihood (ML) was retained. The relative likelihood was compared 
across models and the best fitting demographic model was selected 
using Akaike's Information Criterion (Akaike, 1974) after converting 
the log10-likelihoods reported by fastsimcoal2 to ln-likelihoods.

We also performed two sensitivity analyses to understand how 
model specifications impacted our demographic results. First, we 
expanded the range for TBOT to 1–30 generations and TLEN to 1–15 
to test the sensitivity of our results to the initial value ranges. Based 
on the ML from 50 replicate runs, our parameter estimates did not 
differ and we did not pursue this sensitivity test further. Following 
recommendations from fastsimcoal2 to fix one parameter when ig-
noring monomorphic sites, we also performed a second sensitivity 
analysis by fixing TLEN at three generations.

Confidence intervals for parameters in the best-supported 
model were obtained through non-parametric bootstrapping. Loci 
from the observed data set of 1068 loci across 279 larvae were res-
ampled to generate 100 bootstrapped SFS using Arlequin (Excoffier 
& Lischer, 2010). For each bootstrapped SFS, 30 replicate runs were 
performed to identify the ML parameter set. The ML parameter es-
timates for the best-fit model on the observed data set were used as 
the starting values for each run in order to efficiently estimate confi-
dence intervals (--initValues). Monomorphic sites were also ignored 
when estimating parameters for each run (--removeZeroSFS). The 
set of MLs from the 100 bootstrapped SFS were used to determine 
95% confidence intervals for each parameter.

In addition, we performed two sets of simulations to determine 
the power within our data set for distinguishing among the seven 
demographic hypotheses. First, we simulated 10 pseudo-observed 
SFS for each model with fastsimcoal2 by using the previously ob-
tained ML parameter estimates of each model. We then fit each 
of the seven models to each of the 70 pseudo-observed data sets 
using the initial starting points and run specifications as previously 
described. Ten replicate runs with different initial values were per-
formed for each model fit to a pseudo-observed data set. The run 
with the ML was retained, and AIC was used to determine the best-
fit model for each pseudo-observed data set. We then compared 

the best-fit model to the known generating model to produce a con-
fusion matrix. Second, to help disentangle the effects of temporal 
sampling from unequal sampling over time, we assessed the power 
for inferring the correct demographic model when equal numbers of 
individuals were sampled across cohorts. We simulated 50 pseudo-
observed data sets for the best-fit model when 1068 loci and 80 
diploids in each cohort were sampled. We then fit our seven demo-
graphic models to each of the 50 pseudo-observed data sets. Ten 
replicate runs with different initial values were performed for each 
model fit to a pseudo-observed data set, and the best-fit model for 
each pseudo-observed data set was selected using AIC.

3  |  RESULTS

3.1  |  Genotyping results

The number of quality-filtered reads per individual was 
576,441 ± 626,768 (mean ± SD). Mapping to our reference assem-
bly resulted in an average coverage of 25x per individual. Variant 
calling across individuals identified 314,570 putative SNPs, and of 
these, 3905 loci with an average read depth of 61x across 284 larvae 
passed initial filtering.

3.2  |  Genetic diversity, single-sample 
Ne, and selection

Nucleotide diversity (π) across 140 bp windows was lowest in the 
2008 larval cohort (π  =  0.00378; 95% CI: 0.00367–0.00390) and 
highest in the 1997 larval cohort (π = 0.00469; 95% CI: 0.00455–
0.00483) (Table 1). Observed heterozygosity for each larval cohort 
ranged from 0.0651–0.0669 and expected heterozygosity ranged 
from 0.0688–0.0698 (Table 1). Wright's inbreeding coefficient (FIS) 
for each cohort varied from 0.0415–0.0581 and declined slightly 
over time (Table  1), suggesting that inbreeding was highest in the 
1994 cohort when summer flounder abundance was reduced. 
Estimates of Ne with 95% confidence intervals from NeEstimator 
were 1168 (365–infinite individuals) for the 1994 larval cohort, in-
finite (8377–infinite) for the 1997 cohort and 56,672 (5786–infinite) 
individuals for the 2008 cohort. No temporal outlier SNPs were de-
tected using BayeScan. Therefore, no SNPs were removed prior to 
demographic modelling.

3.3  |  Demographic modelling

Demographic modelling from serial sampled larval summer flounder 
strongly supported exponential growth of the ancestral population, 
followed by a bottleneck, followed by additional rapid exponential 
growth (Model 6) as the best-fitting model (Tables  S1 & S2). The 
second-best model (Model 4) had a ΔAIC of 13 and the third-best 
model (Model 7) had a ΔAIC of 22. While the top three models 
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demonstrate clear support for ancient growth up until roughly 10 
generations ago, a model containing a subsequent bottleneck fol-
lowed by an increase in population size was strongly preferred 
(Tables S1 & S2). Together, these results suggest that historical fish-
ing had a noticeable genetic effect in summer flounder.

The best-fit demographic model estimated that the ancestral 
population grew quite slowly (exponential increase of 0.00034 per 
generation) to 32,209 (95% CI: 9671–57,485) diploid individuals prior 
to the bottleneck (Table 2 and Figure S2; NPREBOT). The bottleneck 
lasted two (95% CI: 1–4) generations (Table 2; TLEN) and the end of 
the bottleneck occurred 12 (95% CI: 8–15) generations prior to 2008 
(Table 2; TBOT). When translated into years, the bottleneck occurred 
from approximately 1980–1984, which aligns well with the low ma-
ture spawner census sizes from 1988–1994 (Figure 1). Ne during the 
bottleneck was 910 (95% CI: 154–1963) individuals (Table  2 and 
Figure S2; NBOT). The population then grew rapidly (exponential in-
crease of 0.20 per generation) before reaching a Ne of 10,212 (95% CI: 
5859–37,013) individuals after the bottleneck (Table 2 and Figure S2; 
NPOP08). The NBOT/NPREBOT ratio was 0.028, suggesting a sub-
stantial decline (95% CI: 0.0105–0.0566) and the NPOP08/NBOT 
ratio was 11.2 (95% CI: 5.27–143), suggesting that the summer floun-
der population achieved a certain degree of recovery after substantial 
growth following the bottleneck. The degree to which summer floun-
der recovered to the prebottleneck effective level can be summarized 
as NPOP08/NPREBOT. This ratio was 0.317 (95% CI: 0.150–2.95), 
suggesting some uncertainty in the degree to which summer flounder 
recovered to the prebottleneck size by 2008.

Overall, the best-fit model suggests that summer flounder Ne had 
been slowly increasing before declining sharply in the early 1980s 
(Figure 3). The demographic modelling suggested a rapid exponen-
tial increase in effective population size after the bottleneck, leading 
to a noticeable recovery in population size. When TLEN was fixed at 
three generations (or 6 years) based on summer flounder abundance 
over time, all parameter estimates were similar to those produced 
when TLEN was estimated (Table 2).

Simulations revealed high power within the data set for accurately 
selecting Model 6 (90% probability of selecting Model 6 when it was 
the true model; Figures S3 and S4). Model 6 was never mis-identified 
as Model 4 and occasionally (10% of simulated data sets) mis-identified 
as Model 7 (Figure  2). While the ancestral population size changed 

exponentially in all three of these models, a bottleneck did not occur 
following this change in Model 7, whereas a bottleneck did occur in 
both Models 4 and 6. The only difference between Models 4 and 6 
was that Model 4 had an instantaneous change after the bottleneck, 
while Model 6 had an exponential change. There was a high chance of 
incorrectly selecting Models 6 or 7 (40% probability each) when the 
true model was Model 4. In contrast, there was a high probability of 
correctly selecting Model 7 when the true model was Model 7 (80% of 
simulated Model 7 data sets; Figures S3 and S4). However, there was a 
low probability of falsely selecting Model 6 when the true model was 
Model 7 (20%; Figures S3 and S4), suggesting that we can be quite 
certain of two things: (1) that summer flounder experienced exponen-
tial growth of the ancestral population, and (2) that this growth was 
most likely followed by a bottleneck, followed by additional increase 
in population size, regardless of whether this increase occurred instan-
taneously (Model 4) or exponentially (Model 6). Additionally, simula-
tions with equal sample sizes across cohorts suggest high power for 
accurately selecting Model 6 (88% probability of selecting Model 6 
when it was the true model; Figure S5). There was a low probability of 
incorrectly selecting Models 4 and 7 when the true model was Model 
6 (4 and 8%, respectively). This series of simulations provides clear 
evidence that our temporal sampling scheme resulted in strong infer-
ential power to recover the underlying demographic history.

To further evaluate model fit with temporal sampling, we com-
pared the observed minor allele SFS for each larval cohort with the 
expected minor allele SFS averaged across 100 SFSs generated using 
the ML parameters of the three best-fitting models. The observed 
SFSs most closely matched with the SFSs expected under Model 6 
with exponential growth before and after the bottleneck (Figure S6). 
However, none of our models could fully explain the relatively high 
prevalence of alleles with minor allele count 1 in the 1997 larval co-
hort, but Model 6 came closest to doing so. In addition, none of our 
models were able to explain both the relatively high prevalence of 
minor allele counts 2–3 in the 1997 and 2008 larval cohorts, nor the 
relative rarity of alleles with minor allele counts 4–7 or 7 in the 1997 
and 2008 larval cohorts, respectively. In addition, the expected av-
eraged SFSs based on the ML parameters for Model 6 illustrate that 
the prevalence of rare alleles differed over time, further suggesting 
that our ability to temporally sample larvae aided in recovering the 
contemporary demographic history of summer flounder (Figure S7). 

TA B L E  2  Maximum-likelihood (ML) demographic parameter estimates and 95% confidence intervals (CIs) for summer flounder under 
the best-fitting demographic model (Model 6: Exponential growth in the ancestral population followed by a bottleneck and then rapid 
exponential growth in population size). The results from an alternative analysis that fixed TLEN at 3 generations is also presented. Compare 
to Figure 2 for interpretation of the parameters

Parameter ML estimate 95% lower CI 95% upper CI ML fixed TLEN Unit

NANC 1052 355 1903 581 Diploid individuals

NPREBOT 32,209 9671 57,485 22,972 Diploid individuals

NBOT 910 154 1963 387 Diploid individuals

NPOP08 10,212 5859 37,013 10,171 Diploid individuals

TLEN 2 1 4 3 Length of bottleneck in generations

TBOT 12 8 15 11 Number of generations after bottleneck
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While differences in the SFS among larval cohorts became less ap-
parent if equal numbers of individuals were sampled in each cohort, 
small differences were still apparent. In particular, a small but clear 
pattern of relatively more rare alleles in the earlier cohorts provided 
additional support that temporal sampling aided in the inference of 
demographic history (Figure S8).

4  |  DISCUSSION

Effective population size is an important indicator of evolutionary 
potential, particularly for understanding how species respond to and 

recover from exploitation. We utilized archived larval summer floun-
der specimens from periods of low, increasing, and high spawning 
stock biomass to estimate genetic diversity and to test if SNP data 
were useful for detecting changes in summer flounder demography. 
A small decline in genetic diversity was observed between 1997 to 
2008, but in general, stable levels of genetic diversity suggested 
that summer flounder population size has remained relatively large 
over time. The single-sample NeEstimator results indicated that Ne 
could not be accurately estimated from linkage-disequilibrium pat-
terns and that the signal could not be distinguished from sampling 
variance. However, coalescent-based demographic modelling using 
the joint site frequency spectrum revealed a substantial decline and 
subsequent recovery in summer flounder effective population size, 
consistent with population dynamics recorded by stock assessments 
of this species (Terceiro, 2001). The timing of the decline in effec-
tive population size was also congruent with the timing of the low-
est estimates of spawning stock biomass from fisheries data sets, 
with a difference of only a few generations. Our results in summer 
flounder suggest that coalescent-based demographic modelling and 
SNP-based SFS data from only a few hundred archived specimens 
can be a useful strategy for detecting changes in the magnitude and 
timing of contemporary Ne.

A growing number of studies have employed coalescent-based 
demographic modelling and the SFS to estimate Ne on contempo-
rary time scales (Patton et al., 2019; Sovic et al., 2019), but only a 
subset have benefited from independent estimates of demography 
(McCoy et al., 2014; Nunziata et al., 2017). Similar to studies in other 
organisms that combined coalescent-based demographic modelling 
and independent estimates of demography (McCoy et al.,  2014; 
Nunziata et al., 2017), we also detected changes in effective popula-
tion size that corresponded well with known changes in the census 
population size of summer flounder. Much like Nunziata et al. (2017), 
we used serial sampling and SFS-based demographic modelling to 
demonstrate that very recent demographic events (~10 generations 
ago) are detectable. However, our study extends these results to 
species with a large effective size and more complex historical de-
mography. In particular, the NBOT/NPREBOT ratio indicated a sharp 
drop in Ne roughly 10 generations ago following a long period of an-
cestral growth. In line with the recovery of census abundance, we 
also found clear evidence for effective population growth and recov-
ery following the bottleneck. Our simulations revealed that distin-
guishing among Models 4 and 6 could be difficult in some cases, but 
these models were qualitatively similar and were the top two mod-
els during model selection. The only difference between Models 4 
and 6 was an instantaneous change in population size following the 
bottleneck versus an exponential one, respectively. Prior research 
also suggests that SFS-based methods are well-suited to detect re-
cent changes in population size (Nunziata et al., 2017; Nunziata & 
Weisrock, 2018; Patton et al., 2019), though additional studies will 
be helpful for assessing the generality of this result.

Whether or not Ne recovers in line with census abundance is 
an important question given the influence of Ne on inbreeding, 
genetic diversity, evolutionary potential, and other considerations 

F I G U R E  3  Line plot of estimated effective population size over 
(a) contemporary and (b) deeper time from the maximum-likelihood 
demographic model: Positive exponential growth before and after 
a bottleneck (model 6; black line). The 100 grey lines in each plot 
illustrate scenarios used to estimate the 95% confidence intervals 
for each parameter. Summer flounder generation time was 
estimated to be 2 years and Ne estimates have been converted to 
diploid units.



    |  5693HOEY et al.

(Kuparinen et al., 2016). An empirical study using a limited number 
of markers and a theoretical study investigating the consequences 
of fishing on Ne have reported that genetic diversity and Ne can 
recover following heavy exploitation at the temporal scale of de-
cades (Hutchinson et al., 2003; Kuparinen et al., 2016). Gene flow, 
population growth, and evolution were proposed as the dominant 
mechanisms behind these increases. While our study demonstrates 
that summer flounder effective population size achieved substantial 
recovery, there remains considerable uncertainty in the exact mag-
nitude. This could be because not enough time has passed for re-
covery to be fully reflected in the SFS and/or because higher sample 
sizes are needed for very recent events. In general, parameters for 
recent demographic events are more challenging to estimate than 
for ancient events (Adams & Hudson, 2004; Robinson et al., 2014). 
This is because the timing and intensity of historical events strongly 
influence the shape of the SFS, particularly the distribution of rare 
alleles that are important for demographic inference. For example, 
Gattepaille et al. (2013) found that the SFS tends to remain deficient 
in rare alleles long after a bottleneck strength of 80%, but with a 
strength of 95%, the deficit of rare alleles quickly turns into an ex-
cess for the very rarest variants, even when the bottleneck is young. 
These results suggest that signatures of historical demographic 
events can persist in the SFS, which could obscure signatures of 
more recent events. In particular, scenarios involving a population 
bottleneck followed by expansion can be challenging to detect from 
the SFS (Adams & Hudson, 2004; Nunziata et al., 2017; Robinson 
et al.,  2014), though our temporal sampling design revealed high 
power to detect such a decline and recovery. Rare alleles can be 
indicative of population expansion, but they are also quickly lost 
during a population bottleneck (Maruyama & Fuerst,  1985). The 
relative rarity of alleles with a minor allele count of 1 in the 2008 
cohort might be partially reflective of the slow rate at which rare 
alleles are regenerated through mutation or the challenge of de-
tecting rare alleles using a genotyping-by-sequencing approach 
(e.g., RADseq). Sampling more individuals or additional cohorts 
from more recent years could result in more precise estimates of 
Ne change after the bottleneck (Keinan & Clark,  2012; Robinson 
et al.,  2014), but theory has demonstrated diminishing returns on 
the accuracy of SFS-based inferences as sample size increases for 
a given number of SNPs (Terhorst & Song, 2015). Rather, increasing 
the number of SNPs may be more important for improving the pre-
cision around estimates of recent demographic change. For exam-
ple, Nunziata and Weisrock (2018) found that the coalescent-based 
method required many SNPs (25,000–50,000) for accurate infer-
ence. However, the coalescent method required substantially fewer 
individuals (on the order of 20) than methods based on linkage dis-
equilibrium that would require about 1% of the census population 
(Marandel et al.,  2019; Nunziata & Weisrock,  2018). In summer 
flounder, 1% of the census population would be nearly 200,000 
samples. Even though we identified a recent population bottle-
neck and expansion based on our summer flounder SFS, additional 
simulation-based studies will be useful for more clearly delineating 
the power to detect demographic fluctuations that have occurred 

only a few generations in the past with SFS-based or other methods 
based on linkage disequilibrium, runs of homozygosity or identity by 
descent (Gattepaille et al., 2013).

Although our results highlight the promise of genetic data for de-
tecting changes in population size, characteristics of the population 
of interest or violation of model assumptions can impact the SFS and 
subsequent inferences. For example, we utilized summer flounder 
from different sampling locations to increase our sample size in the 
more recent cohorts in order to increase our power for detecting a 
recent population size change. However, using fish from different 
locations may contribute to slight population differentiation, which 
could artificially increase the number of rare alleles in the SFS and 
influence downstream demographic inferences (Städler et al., 2009). 
This effect would appear in the most recent cohorts, though our ob-
servations instead suggested a slight deficit of singletons in the 2008 
cohort. Summer flounder have also been found to have high rates 
of dispersal across their species range and no evidence for subpop-
ulations with divergent allele frequencies that could be the source 
of migrants with different allele frequencies has been found (Hoey 
& Pinsky, 2018). We also did not detect any intracohort population 
structure in these data. Still, the possibility of subtle, undetected 
population structure exists. Similarly, we also tested for but did not 
find any temporal outliers, yet small increases in allele frequencies 
due to ecological or evolutionary processes over time could poten-
tially influence our estimates of Ne.

An additional point of consideration is that the fastsimcoal2 pro-
gram is based off of the Kingman (1982) coalescent, which assumes 
discrete generations and small reproductive variance under the 
Wright-Fisher model (Fisher, 1930; Wright, 1931). However, many 
species violate these assumptions and alternative models might 
better reflect biological reality. For example, many marine species, 
including summer flounder, are characterized by overlapping gen-
erations and large variance in reproductive success. Overlapping 
generations result in slower rates of coalescence, though time res-
caling can approximate the Kingman coalescent (Kaj et al.,  2001). 
Overlapping generations in combination with population size 
changes also lead to an increase in the neutral substitution rate, 
which could potentially affect the SFS (Balloux & Lehmann, 2012). 
A recent computationally efficient framework that allows for over-
lapping generations (Kamm et al., 2017) might hold promise for im-
proving SFS-based demographic estimates for species that violate 
assumptions of the Wright-Fisher model. Violating the assumption 
of small variance in reproductive success leads to star-shaped gene-
alogies, and the resulting SFS has an excess of rare and common vari-
ants when compared to the expected number under the Kingman 
coalescent (Eldon & Wakeley, 2006; Tellier & Lemaire, 2014). Under 
the Kingman coalescent, an excess of rare variants is often inter-
preted as a population expansion, but this interpretation can become 
muddled for species with strong sweepstakes reproduction. Multiple 
merger coalescent models can incorporate variance in offspring 
number by allowing more than two lineages to coalesce, resulting in 
a genealogy that is not a binary tree (Tellier & Lemaire, 2014). Even 
though aspects of summer flounder biology depart from traditional 
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Wright-Fisher assumptions, our reported estimates of Ne are prob-
ably not strongly biased because many summer flounder individuals 
do not survive into the next generation.

Additionally, errors in estimating the SFS can influence down-
stream demographic inferences, though temporal samples can in-
crease the statistical power for detecting past demographic events 
(Ramakrishnan et al., 2005). We took advantage of archived speci-
mens for improved inferences of historical summer flounder popula-
tion size changes, but this also introduced differences in sample sizes 
over time. In particular, we had more limited ability to detect rare al-
leles in the early cohorts. Though fastsimcoal2 accounts for sample 
size when simulating the SFS and calculating likelihoods (Excoffier 
et al., 2013), increasing the number of individuals from the earliest 
cohort would probably have helped to improve the precision of our 
inferences (Keinan & Clark,  2012; Robinson et al.,  2014). This is a 
common problem since the availability of archived samples for non-
model organisms is often limited. For RADseq data, bioinformatic 
choices often reflect a tradeoff between data quality and quantity 
(Matz,  2018; Shafer et al.,  2017). Bioinformatic pipelines employ-
ing de novo approaches may result in a high number of singletons 
and make demographic inference difficult (Shafer et al., 2017). Very 
rare alleles may also result from sequencing or bioinformatic errors 
(Johnson & Slatkin, 2008), potentially overrepresenting rare variants 
in the SFS and influencing demographic conclusions. In addition, 
aligning RADseq data to a reference genome can lead to more con-
sistent demographic estimates (Shafer et al., 2017), but a genome is 
not yet available for summer flounder. Null alleles can also bias pop-
ulation genomic statistics and affect the distribution of alleles in the 
SFS (Arnold et al., 2013; Gautier et al., 2013). Null alleles in RADseq 
occur when a mutation in a restriction enzyme recognition sequence 
results in an unrecognized cut site, causing the RAD tag to not be se-
quenced. This can either result in missing data or heterozygous indi-
viduals being falsely identified as homozygotes due to allelic dropout. 
In order to minimize the number of null alleles without distorting the 
SFS, Matz (2018) suggests applying a bioinformatics filter requiring 
that variants be present in a high proportion of individuals, similar to 
the proportion of missing data filter that we applied. Another study 
showed that rare variants were common when loci with no miss-
ing data were present in the SFS, but that the SFS was character-
ized by a greater number of variants with intermediate frequencies 
when loci with missing data due to null alleles were included (Arnold 
et al., 2013). As a result, Arnold et al. (2013) suggest limiting loci to 
only those with complete data, but this strategy may inadvertently 
favour loci that have experienced recent positive selection or strong 
purifying selection. In addition, Gautier et al. (2013) report that null 
alleles tend to affect DNA sequences containing ancestral alleles, 
which are often at high frequency themselves, thus artificially inflat-
ing the minor allele frequency and making rare alleles appear more 
common in the SFS than they actually are. Although null alleles can 
lead to biases, they can be challenging to identify and attempts to 
remove them may also have unintended consequences. For estimat-
ing summer flounder demography, we removed variants missing in 
a high proportion of individuals, removed loci with missing data and 

combined this with tests for temporal outliers to detect loci that may 
have undergone recent selection. Evidence also suggests that popu-
lations with very large effective sizes (Ne > 105) are more likely to be 
affected by null alleles (Gautier et al., 2013). Even though our SNP 
data set may have contained null alleles due to the slightly elevated 
FIS, particularly for the 1994 cohort, we estimated the 2008 summer 
flounder effective population size to be between 5859–37,013 indi-
viduals, suggesting that null alleles may not be strongly influencing 
our conclusions in summer flounder.

While it is clear that Ne recovered after the bottleneck, our anal-
ysis was unable to determine if recovery to the prebottleneck effec-
tive size was achieved, in spite of census population size achieving 
the corresponding level of recovery. If present, differences in effec-
tive vs. census recovery from historically intense fishing pressure 
could result from a combination of anthropogenic and biological 
factors. First, harvest reduces the number of adults contributing to 
the next generation and results in lower Ne (Kuparinen et al., 2016; 
Therkildsen et al.,  2019). Even though summer flounder are cur-
rently (post-1990) fished less intensely than in the past, manage-
ment choices may bias reproductive success in a way that has kept 
Ne low. For example, female summer flounder grow faster (King 
et al., 2001) and mature at a larger size than males (Morse, 1981). 
Summer flounder harvest is regulated by a minimum length limit, 
resulting in a higher probability of catching a female at a given age 
(Morson et al.,  2015). The increased fishing mortality for females 
may have skewed the sex ratio and kept Ne from recovering as fast 
as census size. In addition, we used a constant generation length of 
2 years over time for demographic modelling, which may influence 
estimates of bottleneck timing and length. Summer flounder genera-
tion length can be challenging to estimate due to serial spawning and 
a limited understanding of how age influences egg production and 
hatching success rate. Recovery of the summer flounder fishery was 
also accompanied by an increased proportion of older, larger individ-
uals in the population (Bell et al., 2014; Terceiro, 2016). These older, 
larger individuals probably contributed disproportionately to the 
next generation, leading to a higher generation length as the fishery 
recovered. Older and larger fish could have also resulted in increased 
variance in reproductive success among individuals, reducing the 
ratio of Ne to census size and preventing Ne from recovering as much 
as census size (Barneche et al., 2018; Kuparinen et al., 2016).

Most estimates of Ne in marine species are one or more orders 
of magnitude smaller than census size, though particularly small ra-
tios of Ne to census sizes have been called into question (Hauser 
& Carvalho,  2008; Hoarau et al.,  2005; Waples,  2016; Waples 
et al.,  2018). Using our point estimates of Ne obtained from de-
mographic modelling with their associated uncertainty and the 
maximum number of adult breeders (Nc) in the equivalent year, 
we estimated the Ne/Nc ratio with the corresponding 95% CIs for 
summer flounder to be 2.49 × 10−5 (4.22 × 10−6–5.37 × 10−5) and 
1.79 × 10−4 (1.03 × 10−4 6.49 × 10−4) in 1984 (end of the bottleneck) 
and 2008, respectively. The Ne/Nc ratio for 1980 (prior to the bot-
tleneck) could not be calculated because the fisheries data set that 
we used to estimate abundance begins in 1982. Keeping in mind all 
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of the challenges associated with estimating Ne and Nc, these ratios 
suggest the convergence of Ne and Nc over time, despite the overall 
increase in census size as the fishery recovered over this timeframe. 
In general, our estimates of contemporary Ne were relatively large 
over time, even after the population declined. These large sizes 
probably contributed to the temporally stable genetic diversity that 
we observed among larval cohorts. Although estimates of genetic 
diversity prior to the bottleneck were unavailable, our estimates 
during and after the bottleneck suggest that genetic diversity has 
not increased. In general, genetic diversity can increase in a pop-
ulation through gene flow or through novel mutations. Summer 
flounder are unlikely to have benefited from gene flow, however, 
because they are essentially panmictic across their species range 
(Hoey & Pinsky,  2018). In addition, accumulating novel mutations 
is a slow process that is unlikely to have had much impact to date 
(Charlesworth,  2009). Continued monitoring of summer flounder 
would be useful to understand if effective population size continues 
to track changes in census size, especially since the population con-
tinues to be exploited.

4.1  |  Conclusions

The availability of both demographic data and archived specimens 
over time is relatively rare and provided an opportunity to compare 
genetic estimates of demography with known population history in 
an important fishery species, summer flounder. Temporal samples 
corresponding to different points in the population history of sum-
mer flounder probably aided in the inference of demography over 
time. Thus, SNP data and coalescent-based demographic modelling 
were useful for detecting changes in the magnitude and timing of 
contemporary population dynamics in summer flounder. Fisheries 
species are some of the most well-studied wild populations and 
include a wide diversity of life history strategies and population 
histories. When coupled with long-term collections and molecular 
methods, these data sets provide valuable opportunities to test 
genetic and evolutionary theory and illustrate the value of com-
bining existing data sets. For summer flounder in particular, we 
detected a substantial decline in effective population size followed 
by growth and recovery of Ne. Genetic methods can provide useful 
and independent approaches for estimating population dynamics 
in species of concern, even for large marine populations.
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