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Center for Neurotechnology and
Paul G. Allen School of Computer Science & Engineering

University of Washington, Seattle

Abstract

Predictive coding has emerged as a prominent model of how
the brain learns through predictions and prediction errors. Tra-
ditional predictive coding focused primarily on sensory cod-
ing and perception. Here we propose active predictive coding
(APC), a unified framework for perception, action and cogni-
tion. By learning hierarchical world models, the APC frame-
work addresses important open problems in cognitive science
and AI such as: (1) how do we learn compositional repre-
sentations, e.g., part-whole hierarchies for equivariant vision?
and (2) how do we solve large-scale planning problems, which
are hard for traditional reinforcement learning, by composing
complex action sequences from primitive policies? APC ex-
ploits hypernetworks, self-supervised learning and reinforce-
ment learning to learn hierarchical models that combine task-
invariant state transition networks and task-dependent policy
networks at multiple abstraction levels. We illustrate the ap-
plicability of the APC model to active visual perception and
hierarchical planning. Our results represent, to our knowledge,
the first proof-of-concept demonstration of a unified approach
to addressing the part-whole learning problem in vision, the
nested reference frames learning problem in cognition, and the
integrated state-action hierarchy learning problem in reinforce-
ment learning.
Keywords: Predictive coding; neural modeling; vision; hier-
archical reinforcement learning

Introduction
Predictive coding (Rao & Ballard, 1999; Friston & Kiebel,
2009; Keller & Mrsic-Flogel, 2018; Jiang & Rao, 2022b)
has received increasing attention in recent years as a model
of how the brain learns models of the world through predic-
tion and self-supervised learning. In predictive coding, feed-
back connections from a higher to a lower level of a cortical
neural network (e.g., the visual cortex) convey predictions of
lower-level responses and the prediction errors are conveyed
via feedforward connections to correct the higher-level esti-
mates, completing a prediction-error-correction cycle. Such
a model has provided explanations for a wide variety of neu-
ral and cognitive phenomena (Keller & Mrsic-Flogel, 2018;
Jiang & Rao, 2022b). The layered architecture of the cortex is
remarkably similar across cortical areas (Mountcastle, 1978),
hinting at a common computational principle, with superfi-
cial layers receiving and processing sensory information and
deeper layers conveying outputs to motor centers (Sherman
& Guillery, 2013). The traditional predictive coding model
focused on learning visual hierarchical representations and
did not acknowledge the important role of actions in learning
world models.

In this paper, we introduce Active Predictive Coding
(APC), a new model of predictive coding that combines state
and action networks at different abstraction levels to learn
hierarchical internal models. The model provides a unified
framework for addressing several important but seemingly
unrelated problems in perception, action, and cognition as
described below.

Part-Whole Learning Problem. Hinton and colleagues have
posed the problem of how neural networks can learn to parse
visual scenes into part-whole hierarchies by dynamically al-
locating nodes in a parse tree. They have explored networks
that use a group of neurons to represent not only the pres-
ence of an object but also parameters such as position and ori-
entation (Sabour, Frosst, & Hinton, 2017; Kosiorek, Sabour,
Teh, & Hinton, 2019; Hinton, Sabour, & Frosst, 2018; Hin-
ton, 2021), seeking to overcome the inability of deep convo-
lutional neural networks (CNNs) (Krizhevsky, Sutskever, &
Hinton, 2012) which are unable to explain the images they
classify in the way humans do, in terms of objects, parts and
their locations.
Reference Frames Problem. In a parallel line of research,
Hawkins and colleagues (Hawkins, 2021; Lewis, Purdy, Ah-
mad, & Hawkins, 2019) (see also (George & Hawkins, 2009;
George et al., 2017)) have taken inspiration from the cortex
and “grid cells” to propose that the brain uses object-centered
reference frames to represent objects, spatial environments
and even abstract concepts. The question of how such refer-
ence frames can be learned and used in a nested manner for
hierarchical recognition and reasoning has remained open.
Integrated State-Action Hierarchy Learning Problem. A
considerable literature exists on hierarchical reinforcement
learning (see (Hutsebaut-Buysse, Mets, & Latré, 2022) for
a recent survey), where the goal is to make traditional rein-
forcement learning (RL) algorithms more efficient through
state and/or action abstraction. A particularly popular ap-
proach is to use options (Sutton, Precup, & Singh, 1999; Ba-
con, Harb, & Precup, 2016), which are abstract actions which
can be selected in particular states (in the option’s initiation
set) and whose execution executes a sequence of primitive
actions as prescribed by the option’s lower level policy. The
problem of simultaneously learning state and action abstrac-
tion hierarchies has remained relatively less explored.
Contributions of the Paper. The APC model addresses all
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three problems above in a unified manner using state/action
embeddings and hypernetworks (Ha, Dai, & Le, 2017) to
dynamically generate and generalize over state and action
networks at multiple hierarchical levels. The APC model
contributes to a number of lines of research not connected
before: (1) Perception, Predictive Coding, and Reference
Frame Learning: APC extends predictive coding and re-
lated neuroscience models of brain function (Rao & Ballard,
1999; Friston & Kiebel, 2009; Jiang & Rao, 2022b) to hi-
erarchical sensory-motor inference and learning, and con-
nects these to learning nested reference frames (Hawkins,
2021) for perception and cognition; (2) Attention Models:
APC extends previous hard attention models such as the Re-
current Attention Model (RAM) (Mnih, Heess, Graves, &
Kavukcuoglu, 2014) and Attend-Infer-Repeat (AIR) (Eslami
et al., 2016) by learning structured hierarchical strategies for
sampling the visual scene; (3) Hierarchical Planning and Re-
inforcement Learning: APC contributes to hierarchical plan-
ning/reinforcement learning (Hutsebaut-Buysse et al., 2022;
Botvinick, Niv, & Barto, 2009) by proposing a new way
of simultaneously learning abstract macro-actions or options
(Sutton et al., 1999) and abstract states. Our approach brings
us a step closer towards solving an important challenge in
both AI and cognitive science (Lake, Ullman, Tenenbaum, &
Gershman, 2017): how can neural networks learn hierarchi-
cal compositional representations that allow new concepts to
be created, recognized and learned?

Active Predictive Coding
The APC model implements a hierarchical version of the
traditional Partially Observable Markov Decision Process
(POMDP) (Kaelbling, Littman, & Cassandra, 1998; Rao,
2010). Figure 1A shows the canonical APC generative mod-
ule. The module consists of (1) a higher level state embed-
ding vector r(i+1) at level i+1, which uses a function H i

s (im-
plemented as a hypernetwork (Ha et al., 2017) to generate
a lower level state transition function f i

s (implemented as an
RNN), and (2) a higher level action embedding vector a(i+1),
which uses a function (hypernetwork) H i

a to generate a lower
level option/policy function f i

a (implemented as an RNN).
In the brain, a weight-modulation version of hypernetworks
(Jiang & Rao, 2022a, 2023) could be implemented via the
biological mechanism of gain modulation of cortical neurons
(Larkum, Senn, & Lüscher, 2004; Ferguson & Cardin, 2020).
The state and action networks at the lower level are gener-
ated independently (by the higher level state/action embed-
ding vectors) but exchange information horizontally within
each level as shown in Figure 1C. In our current implemen-
tation, the lower level RNNs execute for a fixed number of
time steps before returning control back to the higher level.
For the present paper, we focus on a two-level model (with a
top level and bottom level) as shown in Figures 1B-C.

Inference in the Active Predictive Coding Model
Inference involves estimating the state and action vectors at
multiple levels based on the sequence of inputs produced by

Figure 1: Active Predictive Coding Generative Module:
(A) Canonical APC generative module. Lower level func-
tions are generated via hypernetworks based on current higher
level state and action embedding vectors. All functions
(in boxes) are implemented as recurrent neural networks
(RNNs). Arrows with circular terminations generate func-
tion parameters (here, neural network weights and biases).
(B) Two-level model used in this paper. (C) Generation of
states/actions in a 2-level model based on states/actions. Pre-
diction errors are not shown in this generative model (see
(Rao et al., 2022) for more detailed figures).

interacting with the environment in the context of a particular
task or goal. The top level runs for T2 steps (referred to as
“macro-steps”). For each macro-step, the bottom level runs
for T1 “micro-steps”. As shown in Figure 1C, Fs,Fa are the
top level state and action networks respectively, and Rt ,At are
the recurrent activity vectors of these networks (i.e., the top
level state and action embedding vectors) at macro-step t. We
use the notation f (;θ) to denote a network parameterized by
θ= {Wl ,bl}L

l=1, the weight matrices and biases for all the lay-
ers. As shown in Figure 1C, the bottom level state and action
RNNs are denoted by fs(;θs) and fa(;θa), while their activity
vectors are denoted by rt,τ and at,τ respectively (t ranges over
macro-steps, τ over micro-steps).

At each macro-step t, the top level state RNN Fs produces
a new state embedding vector Rt based on the previous state
and action embedding vectors. This higher level state Rt de-
fines a new “reference frame” for the lower level to operate
over as follows: Rt is fed as input to the state hypernetwork Hs
to generate the lower level parameters θs(t) =Hs(Rt) specify-
ing a dynamically generated bottom-level state RNN charac-
terizing the state transition dynamics locally (e.g., local parts
and their transformations in vision (see Application 1 below),
navigation dynamics in a local region of a building (see Ap-
plication 2 below), etc.). The current state Rt is also input
to the action/policy RNN Fa which outputs an action embed-
ding vector At (a macro-action/option/sub-goal) appropriate
for the current task/goal (Figure 1C). This embedding vec-
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tor is used as input to a non-linear function, implemented by
the hypernetwork Ha, to dynamically generate the parame-
ters θa(t) = Ha(At) of the lower-level action RNN, which im-
plements a policy to generate primitive actions suitable for
achieving the sub-goal associated with At .

At the beginning of each micro-step, the higher-level state
Rt is used to initialize the bottom-level state vector via a
small feedforward network Inits to produce rt,0 = Inits(Rt).
Each micro-step proceeds in a manner similar to a macro-
step. The bottom-level action RNN produces the current ac-
tion at,τ based on the current lower level state and previous
action (Figure 1C lower right). This action (e.g., sensor/body
movement) results in a new input being generated by the en-
vironment for the bottom (and possibly higher) state network.

To predict this new input, the lower-level state vector rt,τ is
fed to a generic decoder network D to generate the prediction
Ît,τ. This predicted input is compared to the actual input to
generate a prediction error εt,τ = It,τ − Ît,τ. Following the pre-
dictive coding model (Rao & Ballard, 1999), the prediction
error is used to update the state vector via the state network:
rt,τ+1 = fs(rt,τ,εt,τ,at,τ;θ(s)(t)).

At the end of each macro-step (after T1 bottom-level micro-
steps have finished executing), the top level state RNN activ-
ity vector is updated using the final bottom-level state vector:
Rt+1 = Fs(Rt ,At ,ρs(rt,T1)) where ρs() is a single-layer state
“feedback” network. The top-level action RNN then pro-
duces the action vector At+1 based on state Rt+1 and lower
level feedback ρa(at,T1), and the process continues.

Training the Active Predictive Coding Model
Since the state networks are task-agnostic and geared towards
capturing the dynamics of the world, they are trained us-
ing self-supervised learning by minimizing prediction errors
(here, via backpropagation). The action networks are trained
to minimize total expected task loss: this can be done using
either reinforcement learning or planning with the help of the
state networks. In Application 1 below, we illustrate the use
of the REINFORCE algorithm (Williams, 1992) (with back-
propagation) while in Application 2, we illustrate the use of
planning but the APC framework is flexible and allows either
approach for estimating actions.

Application 1: Visual Perception
A long standing problem in vision and cognitive science is
(Hinton, 2021): how can neural networks learn intrinsic refer-
ences frames for objects and concepts, and parse inputs (e.g.,
images) into part-whole hierarchies? Human vision provides
an important clue. Unlike convolutional nets which need to
process an entire scene, human vision is an active sensory-
motor process, sampling the scene via eye movements to
move the high-resolution fovea to task-relevant locations, ac-
cumulating evidence for or against competing visual hypothe-
ses (Liversedge, Gilchrist, & Everling, 2011; van Gompel,
Fischer, Murray, & Hill, 2007). The APC model is well-
suited to emulating the sensory-motor nature of human vi-
sion, given its integrated state and action networks.

For visual perception and part-whole learning, the actions
in the APC model emulate eye movements (or “attention”) by
moving a “glimpse sensor” (Mnih et al., 2014) which extracts
high-resolution information about a small part of a larger in-
put image. Given an input image I (of size N×N pixels), this
sensor, G, takes in a location l and a fixed scale fraction m,
and extracts a square glimpse/patch g = G(I, l,m) centered at
l and of size (mN)× (mN). At each macro-step t, the top-
level action vector At generates two values: (a) a location Lt
and (b) a macro-action (or option) zt . The location Lt is used
to restrict the bottom level to a sub-region I(1)t = G(I,Lt ,M)
corresponding to a new frame of reference selected by the top
level within the input image. The option zt , which operates
over this frame of reference, is used as an embedding vec-
tor input to the hypernetwork Ha to generate the parameters
of the bottom-level action RNN. For exploration during re-
inforcement learning, we treat the output of the location net-
work as a mean value L̄t and add Gaussian noise with fixed
variance to sample an actual location: Lt = L̄t + η, where
η ∼ N (0,σ2). We do the same for the option zt . Based on
the current bottom-level state and action, the bottom-level ac-
tion RNN generates a new action at,τ. A location lt,τ is cho-
sen as a function of at,τ, resulting in a new glimpse image
gt,τ = G(I(1)t , lt,τ,m) of scale m centered around lt,τ and yield-
ing a nested reference frame within the larger reference frame
of I(1)t specified by the higher level. The bottom level follows
the same Gaussian noise-based exploration strategy for sam-
pling locations as the top level. The bottom-level state vector
rt,τ, along with locations Lt and lt,τ, are fed to a generic de-
coder network D to generate the predicted glimpse ĝt,τ. Fol-
lowing the predictive coding model (Rao & Ballard, 1999),
the resulting prediction error εt,τ = gt,τ − ĝt,τ is used to up-
date the state vector: rt,τ+1 = fs(rt,τ,εt,τ, lt ;θ(s)(t)). For the
results below, the state networks at both levels were trained to
minimize image prediction errors while the action networks
were trained using reinforcement learning (the REINFORCE
algorithm (Williams, 1992); reward based on image recon-
struction error - see (Rao et al., 2022)).

Results
We first tested the APC model on the task of sequential
part/location prediction and image reconstruction of objects
in the following datasets: (a) MNIST: Original MNIST
dataset of 10 classes of handwritten digits. (b) Fashion-
MNIST: Instead of digits, the dataset consists of 10 classes
of clothing items. (c) Omniglot: 1623 hand-written charac-
ters from 50 alphabets, with 20 samples per character. For our
APC models, we used 3 macro- and 3 micro-steps (except 4
macro-steps for Omniglot). A single dense layer, together
with an initial random glimpse was used to initialize the state
and action vectors of the top level.
Parsing Images and Perceptual Stability. Figure 2 shows an
example of a learned parsing strategy by a two-level APC
model for an MNIST digit. The top-level learned to cover
the input image sufficiently while the bottom level learned to
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Figure 2: Learned Two-Level Parsing Strategy and an Il-
lustration of Perceptual Stability in the presence of Eye
Movements: 1st row: Initialization glimpse (purple box)
and sampled top-level reference frames (red, green, blue
boxes), 2nd row: Sampled bottom level parts within each
top-level frame, 3rd & 4th rows: Predicted versus actual
parts/glimpses, and 5th row: “Perception” of the model (ob-
ject reconstructed from current network state) over time.

parse “sub-parts” inside the reference frame computed by the
higher level. Figure 2 provides a proof-of-concept demon-
stration of how perception can appear stable despite dramatic
changes in retinal images as the eyes move to sample a scene:
the last row shows how the model maintains a visual hypoth-
esis that is gradually refined and does not exhibit the kind of
rapid changes seen in the sampled images (“Actual Glimpses”
in Figure 2). Figure 3 shows a learned part-whole hierarchy
for an MNIST input, in the form of a parse tree of “parts” and
“sub-parts” (strokes and mini-strokes) with locations. The
model learns different parsing strategies for different classes
of objects (Figure 4). Comparison to human image parsing
remains a direction for future research.
Prediction of Parts and Pattern Completion. To investigate
the predictive and generative ability of the model, we had the
model “hallucinate” different parts of an object by setting the
prediction error input to the lower level network to zero. This
disconnects the model from the input, forcing it to predict the
next sequence of parts and “complete” the object. Figure 5a
shows that the model has learned to generate plausible pre-
dictions of parts given an initial glimpse.
Transfer Learning. We tested transfer learning for reconstruc-
tion of unseen character classes for the Omniglot dataset. We
trained a two-level APC model to reconstruct examples from
85% of classes from each Omniglot alphabets. The held-out
classes were used to test transfer: the trained model had to
generate new programs (via the state and action hypernets) to
predict parts for new character classes for each alphabet. The
model successfully performed this task (Table 1, Figure 5b).
Ablation Studies. To test the utility of having 2 levels of
abstraction, we compared (on held-out samples) the recon-
struction performance of the 2-level APC model (APC-2) to
a 1-level model (APC-1) and a Randomized Baseline model
(RB), which samples glimpses (same size as APC-1 and
APC-2) from T i.i.d. locations (T same as for APC-1 and

(a)

(b)

Figure 3: Example Parse Tree with Inferred Locations of
Parts: Hierarchy of (a) sampled parts and (b) sampled loca-
tions, inducing a hierarchy of reference frames.

MNIST FMNIST Om-Tst Om-Trn
RB 0.0120 0.0145 0.0307 0.0301
APC-1 0.0114 0.0138 0.0324 0.0323
APC-2 0.0085 0.0138 0.0227 0.0226

Table 1: Ablation Studies: Reconstruction Mean-
Squared-Error (per pixel) for Different Models Across
Datasets: See text for details. FMNIST, Om-Tst and Om-
Trn denote Fashion-MNIST, the Omniglot test and transfer
datasets respectively.

APC-2, i.e., 9 for MNIST/FMNIST, 12 for Omniglot), ex-
tracts an average feature vector and feeds this to a feedfor-
ward network to reconstruct the image. As shown in Table 1,
APC-2 outperforms or matches APC-1 and RB. APC-2 also
outperforms RB and APC-1 on the Ommiglot transfer learn-
ing task (“Om-Trn” in Table 1).

Application 2: Hierarchical Planning
We now show that the same APC framework used for learn-
ing part-whole hierarchies can also be used for learning hier-
archical world models for efficient planning. We introduce a
new compositional, scalable “multi-rooms” building naviga-
tion task to illustrate this. Consider the problem of navigat-
ing from any starting location to any goal location in a large
building environment such as the one in Figure 6A (gray:
walls, blue circle: agent, green square: current goal). In
the traditional non-hierarchical RL approach, the states are
the discrete locations in the grid, and actions are going north
(N), east (E), south (S) or west (W). A large reward (+10)
is received at the goal location, with a small negative reward
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(a)

(b)

Figure 4: Class-Based Hierarchical Representation of Ob-
ject Parts and Locations: (a) Parts and sub-parts recognized
by a 2-level APC network trained on the Fashion- MNIST
dataset for an input image of a T-shirt. The order of sam-
pled locations within each frame of reference is 1st: red, 2nd:
green and 3rd: blue. (b) Each panel shows the top-level part
locations selected by the trained APC network in (a) for all
classes. Note the differences in the network’s action strate-
gies between vertically symmetric items and footwear.

(-0.1) for each action to encourage shortest paths.

Problems with traditional RL. (1) Sample inefficiency: As the
environment gets larger, the number of interactions with the
environment required to learn the value function explodes,
(2) Risk of catastrophic consequences: Taking actual actions
in the real-world to estimate the value function might have
catastrophic consequences (injury or death), and (3) Inflex-
ibility: A new goal requires learning a new value function.
How the APC model solves these problems. First, note that
just as an object (e.g., an MNIST digit) consists of the same
parts (e.g., strokes) occurring at different locations, the multi-
rooms environment in Figure 6A is also made up of the same
two components (“Room types” R1 and R2), shown in Fig-
ure 6B, occurring at different locations (some example lo-
cations highlighted by yellow and red boxes in Figure 6C).
These components form part of the higher-level states in the
APC and are defined by state embedding vectors R1 and R2,
which can be trained to generate, via the hypernet Hs (Fig-
ure 1B), the lower-level transition functions fs for rooms R1
and R2 respectively. Next, similar to how the APC model
was able to reconstruct an image using top-level action em-
bedding vectors to generate policies and actions (locations)
to compose parts using strokes, the APC model can compute

(a) (b)

Figure 5: Prediction of Parts, Pattern Completion and
Transfer Learning: (a) Given an initialization glimpse (pur-
ple boxes on the ”0” and ”3” images), an APC model trained
on MNIST predicts its best guess of the parts of the object
and their locations (colored segments in row below). (b) APC
model trained on Omniglot can transfer its learned knowledge
to predict parts of previously unseen character classes. First
column: all the predicted parts. Middle column: input from a
novel class. Last column: APC model reconstruction.

Figure 6: The Multi-Rooms Building Navigation Problem
and State-Action Hierarchy. The problem of navigating in
a large building (A) (blue: agent location, gray: walls, green:
goal) can be reduced to planning using high-level states ((B)
and (C)) and high-level actions (D). See text for details.

top-level action embedding vectors Ai (option vectors) for
the multi-rooms world that generate, via hypernet Ha (Fig-
ure 1B), bottom-level policies fa which produce primitive ac-
tions (N, E, S, W) to reach a goal i encoded by Ai.
Local reference frames allow policy re-use and transfer. Fig-
ure 6D illustrates the bottom-level policies for three such ac-
tion embedding vectors A1, A2 and A3, which generate poli-
cies for reaching goal locations 1, 2, and 3 respectively. Note
that the Ai are defined with respect to higher-level state R1
or R2. Defining these policies to operate within the local ref-
erence frame of the higher-level state R1 or R2 (regardless
of global location in the building) confers the APC model
with enormous flexibility because the same policy can be re-
used at multiple locations to solve local tasks (here, reach
sub-goals within R1 or R2). For example, to solve the naviga-
tion problem in Figure 6C, the APC model only needs to plan
and execute 3 higher-level actions or options: A1 followed
by A2 followed by A3, compared to planning a sequence of
12 lower-level actions to reach the same goal. Finally, since
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Figure 7: Planning and Model Predictive Control. To nav-
igate to the green goal in (A, top panel), the agent (blue)
uses its learned high-level state network to sample N high-
level state-action trajectories (N = 2 in (A, bottom panel)),
picks the sequence with highest total reward, executes this
sequence’s first action to reach the location in (B, top panel),
and repeats to reach the goal with 3 high-level actions (B, bot-
tom panel). Small red dot: intermediate location; small blue
dot: intermediate goal. In (A, bottom panel), high-level state
is depicted by predicted R1 or R2 image and its location X in
the global frame, action by its goal (purple) in a square local
frame. (C), (D) APC model performance: see text for details.

the Ai embedding space of options is continuous, there is
an unprecedented opportunity for the APC model to exploit
properties of this space (such as smoothness) to interpolate
or extrapolate to create and explore new options for transfer
learning; this possibility will be explored in future work.

Results
For simplicity, we assume the higher level states capture 3×3
local reference frames and are defined by an embedding vec-
tor generating the transition function for “room type” R1 or
R2 , along with the location for this local reference frame in
the global frame of the building. The lower-level action net-
work is trained to map a higher-level action embedding vector
Ai to a lower-level policy that navigates the agent to a partic-
ular goal location i within R1 or R2. For the current exam-
ple, eight embedding vectors A1, . . . ,A8 were trained, using
REINFORCE-based RL (Williams, 1992), to generate via the
hypernet Ha eight lower-level policies to navigate to each of
the four corners of room types R1 and R2. The higher-level
state network Fs was trained to predict the next higher-level
state (decoded as an image of room type R1 or R2, plus its
location) given the current higher-level state and higher-level

action. The trained higher-level state network Fs was used
for planning at each step a sequence of 4 higher-level ac-
tions using random-sampling shooting model-predictive con-
trol (MPC) (Richards, 2004): random state-action trajecto-
ries of length 4 were generated using Fs by starting from the
current state and picking one of the four random actions Ai
for each next state; the action sequence with the highest total
reward was selected and its first action was executed (Fig-
ures 7A and B).

We compared the two-level APC model with both a heuris-
tic lower-level-only planning algorithm and a REINFORCE-
based RL algorithm using primitive states and actions. The
task involved navigating to a randomly selected goal location
in a building environment (as in Figure 6A), with the goal lo-
cation changing after some number of episodes. Figure 7C
shows how the APC model, after an initial period spent on
learning the hypernet Ha to generate the lower-level options,
is able to cope with goal changes and successfully navigate to
each new goal by sequencing high-level actions (+10 reward
for goal; -0.1 per primitive action). The RL algorithm, on the
other hand, experiences a drop in performance after a goal
change and does not recover even after 500 episodes. Fig-
ure 7D demonstrates the efficacy of APC’s higher-level plan-
ning compared to lower-level planning (MPC using random
sequences of 4 primitive future actions; Euclidean distance
heuristic): the average number of planning steps to reach the
goal increases dramatically for larger distances from the goal
for lower-level compared to higher-level planning.

Conclusion
Our results represent a first proof-of-concept demonstration
of a unified approach to the problems of part-whole learning
(Hinton, 2021), learning nested reference frames (Hawkins,
2021), and integrated state-action hierarchy learning for com-
positional problem solving (Hutsebaut-Buysse et al., 2022).
Our APC model is inspired by the growing evidence for pre-
dictive sensory-motor processing in the cortex (Schneider,
Sundararajan, & Mooney, 2018; Keller & Mrsic-Flogel,
2018). The APC model for vision employs “eye movements”
for visual sampling, and performs end-to-end learning and
parsing of part-whole hierarchies from images. We also
showed how the same APC framework provides a flexible ap-
proach to hierarchical planning and action selection.

Our results relied on assumptions such as a fixed number
of time steps at each level, a two-level hierarchy, hard-coded
glimpse operators, and pre-identified higher-level states and
actions for planning. Future work will involve relaxing these
assumptions, comparing to other part-whole learning ap-
proaches with different metrics, and employing more sophis-
ticated planning and RL methods for scaling to more com-
plex tasks. Given the growing interest in predictive coding as
a model for cortical computation, the diverse applicability of
active predictive coding hinted at by our results support the
intriguing hypothesis of a common computational principle
operating across the cortex (Mountcastle, 1978; Rao, 2022).
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