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Background—One potential use for the PR interval is as a biomarker of disease risk. We 

hypothesized that quantifying the shared genetic architectures of the PR interval and a set of 

clinical phenotypes would identify genetic mechanisms contributing to PR variability and identify 

diseases associated with a genetic predictor of PR variability.

Methods and Results—We used ECG measurements from the Atherosclerosis Risk in 

Communities (ARIC) study (n=6,731 subjects) and 63 genetically-modulated diseases from the 

Electronic Medical Records and Genomics (eMERGE) network (n=12,978). We measured 

pairwise genetic correlations (rG) between PR phenotypes (PR interval, PR segment, P wave 

duration) and each of the 63 phenotypes. The PR segment was genetically correlated with atrial 

fibrillation (AF) [rG=−0.88, p=0.0009]. An analysis of metabolic phenotypes in ARIC also 

showed that the P wave was genetically correlated with waist circumference [rG=0.47, p=0.02]. A 

genetically predicted PR interval phenotype based on 645,714 SNPs was associated with AF 

[OR=0.89 per standard deviation change, 95% CI (0.83–0.95), p=0.0006]. The differing pattern of 

associations among the PR phenotypes is consistent with analyses that show that the genetic 

correlation between the P wave and PR segment was not significantly different than 0 (rG=−0.03 

[0.16]).

Conclusions—The genetic architecture of the PR interval comprises modulators of AF risk and 

obesity.
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Electrophysiology; Genetic; Association Studies; Catheter Ablation and Implantable Cardioverter-
Defibrillator

Introduction

The PR interval is an electrophysiological parameter derived from a cardiac 

electrocardiogram and measures the duration of conduction through the atrium and 

atrioventricular (AV) node. The PR interval comprises two components: the P wave, which 

primarily measures atrial conduction, and the PR segment, which primarily reflects AV 

nodal conduction. One potential use for the PR interval is as a biomarker for future disease 

risk. For instance, a prolonged PR interval is associated with an increased risk for atrial 

fibrillation (AF).1,2 If such associations are driven by heritable variation affecting both 

phenotypes, then a risk classifier based on genetic factors modulating the PR interval could 

be used to identify individuals at high risk for AF. Since heritable genetic risk is determined 

at birth, genetic classifiers can be evaluated at early time points, thereby enhancing early 

prevention and risk stratification strategies.

To date, a relatively small number of single nucleotide polymorphisms (SNPs) associated 

with the PR interval have been identified by genome wide association studies (GWAS)3–5, 

and they only account of a small portion of the underlying genetic variability. Hence, 
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building and evaluating a robust genetic classifier for the PR interval based on known SNPs 

is not feasible. Newer genetic approaches, such as those based on generalized linear mixed 

models (GLMM) that measure the contribution of very large numbers of SNPs to a 

phenotype, can circumvent this limitation.6–8 Furthermore, these methods can also identify 

genetically related phenotypes across data sets by measuring genetic correlations based on 

additive genetics between pairs of phenotypes.8–10 A phenotype that is genetically correlated 

(i.e. has a non-zero genetic correlation) with the PR interval likely shares common 

physiological mechanisms and, potentially, can be predicted by a PR interval-based genetic 

classifier.

We used mixed modelling approaches to probe the additive genetic architecture of the PR 

interval based on the extent to which its architecture was shared by a set of clinically-

recognized diseases. This approach identifies both clinical diagnoses genetically related to 

the PR interval and genetically-mediated disease mechanisms underlying PR variability. 

Specifically, we employed a discovery-oriented approach whereby we measured genetic 

correlations between PR interval phenotypes and a collection of clinical phenotypes. To 

ensure that associations are attributable to shared genetic risk factors and not environmental 

factors, we tested associations across populations: PR interval phenotypes were from the 

prospectively studied Atherosclerosis Risk in Communities (ARIC) cohort11 and clinical 

phenotypes were from the Electronic Medical Records and Genomics (eMERGE) network, a 

consortium of medical centers with observational electronic health records (EHR)-linked 

DNA biobanks data sets.12 We show distinct patterns of genetic disease associations among 

the PR phenotypes and that PR interval variability is driven by genetic factors associated 

with electrophysiological and metabolic phenotypes.

Materials and Methods

An overview of the analyses is presented in Figure 1.

Study populations

Analysis data sets—ARIC: The ARIC population was derived from 13,113 genotyped 

adult subjects and comprised 6,732 unrelated European ancestry (EA) subjects with normal 

ECGs.11 Genetic and phenotypic data were downloaded from dbGaP (phs000280.v3.p1). 

eMERGE: The eMERGE population comprised 12,978 unrelated EA adult subjects 

collected by the eMERGE Phase I Network [Vanderbilt University (VUMC), Marshfield 

Clinic, Northwestern University, Mayo Clinic and Group Health Research Institute], a 

consortium of medical centers using electronic health records as a tool for genomic 

research.13 Genetic data for the eMERGE network is available through dbGaP 

(phs000360.v2.p1).

Replication data sets—BioVU AF registry: The Vanderbilt Lone AF registry data set 

comprised 1,690 European ancestry patients between 18 and 65 years of age enrolled 

through Vanderbilt’s inpatient and outpatient services, as previously described, and had 

1,022 AF cases and 668 control subjects.14 Of the cases, 220 have lone AF, 444 have 

paroxysmal AF and 259 have persistent AF. BioVU VESPA data set: The BioVU VESPA 
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study population comprised 1,206 AF adult cases and 2,405 controls from VUMC’s 

collection of genotyped patients.15,16

All data sets were predominantly composed of self-reported whites so only EA subjects 

were evaluated, defined using STRUCTURE17 in conjunction with ancestry informative 

markers, with European ancestry defined as or >80% (eMERGE subjects) >90% (all other 

data sets) probability of being in the HapMap CEU cluster.

Genetic Data

ARIC: Genotype data were acquired on the Affymetrix 6.0 SNP array. Quality control steps 

for the ARIC data set followed the guidelines accompanying the dbGaP release and included 

removing SNPs with pre-identified chromosomal anomalies and with >5 discordant calls in 

replicate samples, and used a subset of unrelated subjects identified by the ARIC study. 

eMERGE: SNP genotype data were acquired on the Illumina Human660W-Quadv1_A. 

BioVU AF data set: Subjects were genotyped on the Illumina 610-quad Beadchip.14 BioVU 
VESPA: Subjects were genotyped on the Illumina HumanOmni1-Quad and HumanOmni5-

Quad platforms. Quality control steps for the eMERGE and BioVU data sets used 

established protocols18 including filtering for a sample missingness rate<2.0%, a SNP 

missingness rate<2.0% and a SNP deviation from Hardy-Weinberg<0.001

All data sets were imputed to the October 2014 release of the 1000 Genomes cosmopolitan 

reference haplotypes. SNPs were pre-phased using SHAPEIT19 and imputed using 

IMPUTE2.20. The genetic correlation analyses used an intersection of the unimputed ARIC 

and imputed eMERGE data set and contained 503,404 SNPs with MAF>1.0%. The 

BSLMM analyses used an LD-reduced (r-square=0.9) set of SNPs with MAF>1.0% present 

on all platforms (n= 645,714 SNPs).

Phenotype data

The clinical phenotypes for the eMERGE and BioVU data sets were based on PheWAS 

Phecodes which are collections of related International Classification of Disease, Ninth 

revision, Clinical Modification (ICD9) diagnosis codes.21–24 There are over 1,600 defined 

Phecodes, described at http://PheWAScatalog.org. For each Phecode, cases are subjects with 

two or more instances of the phenotype appearing their medical record on two separate 

dates.23 Controls with no instances of the phenotype were randomly selected. There were 

315 phenotypes with more than 500 cases in the eMERGE data set. Atrial fibrillation cases 

and controls were based on PheWAS code 427.21 (“Atrial Fibrillation”) which has been 

previously used in other genetic studies.22,23,25

ARIC phenotypes came from the GENEVA substudy (pht000114.v2.p1) and from ECG 

measurements taken at visit 1 (pht004071.v1.p1). Subjects with a baseline ECG diagnosis of 

atrial fibrillation, AV block other than first degree, Wolff-Parkinson-White, a non-sinus 

rhythm or a pacemaker were excluded. Subjects on AV nodal blocking drugs were also 

excluded. The PR interval was extracted from the ECG. The P wave duration was based on 

lead aVR and the PR segment duration was calculated as the difference between the PR 

segment and P wave duration. Subjects with a PR interval ≤80 or ≥320 ms were excluded, as 

were subjects with a P wave duration ≤50 or ≥140 ms. Phenotypes definitions for metabolic 
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phenotypes were based on previously described thresholds for the ARIC data set26: elevated 

waist circumference (≥102 cm [men] or ≥88 cm [women]); insulin resistance (fasting 

glucose ≥100 mg/dl or history of diabetes); hypertension (systolic blood pressure ≥130 mm 

Hg, diastolic blood pressure ≥85 mm Hg or use of antihypertensive medications); elevated 

triglycerides (≥150 mg/dl or use of medications for elevated lipids); low HDL cholesterol 

(<40 mg/dl [men] or <50 mg/dl [women] or use of medications for elevated lipids); and 

metabolic syndrome (3 or more abnormal metabolic components). Subjects who were not 

fasting for >8 hours at their first visit were excluded from the analysis of metabolic 

phenotypes (n=150).

Analyses

Linear mixed models (LMM) and generalized LMM (GLMM) estimate the additive-genetic 

variance or liability, respectively, attributable to a collection of common SNPs among 

unrelated individuals by modelling the genetic similarity between pairs of individuals as 

random effects.6,7,27 The linear mixed model is expressed as:

where y is phenotype vector, X is a vector of fixed effects (covariates and principal 

components) and ε is a vector of errors. The term gG is a vector of random polygenic effects, 

and AG is often referred to as the Genetic Relationship Matrix (GRM), with each element in 

the matrix defined by the equation (1/N) ΣN
i=1 (xij−2pi)(xik−2pi) / 2pi(1−pi) where N in the 

number of SNPs analyzed, x is the genotype at that SNP (coded 0, 1 or 2) for individuals j 

and k, and p is the allele frequency. The variance components are estimated by a restricted 

maximum likelihood (REML) algorithm. These analyses used LMMs and GLMMs as 

implemented in the Genome-wide Complex Trait Analysis (GCTA) program.6,7,9,27,28 To 

ensure only unrelated subjects are analyzed, subjects with a genetic relatedness score>0.05 

were excluded. Genetic liability estimates, adjusting for birth decade, sex and 20 principal 

components (PCs), were computed for each eMERGE PheWAS phenotype29 with >500 

cases, and phenotypes with a genetic liability estimate p<0.05 (n=63) were used for the 

exploratory genetic correlation analyses (Supplementary Table 1).

A bivariate extension of the GLMM was used to undertake the exploratory genetic 

correlation analyses (Supplementary Table 1). Here, y is now comprised of pairs of 

phenotype vectors. For each pair of traits (t1 and t2), the bivariate GLMM estimates the 

genetic variance (σ2
G) for the phenotypes and the genetic covariance between the 

phenotypes covg(G_t1,G_t2).9,10 The genetic covariance is a measure of how much pairs of 

traits change together based on the additive genetic effects from common SNPs. This model 

is most commonly applied to data from two different non-overlapping samples, where the 

trait (y) values are simply set to missing when not observed (e.g., for subjects in the study of 

trait t1, their t2 values are set to missing).9,10 The genetic correlation between pairs of traits 

is then defined as: rG = covg(G_t1,G_t2) / sqrt[(σ2
Gt1)(σ2

Gt2)]. This genetic correlation is a 

measure of the extent to which the additive genetic effects estimated from common SNPs are 

shared between a pair of traits. rG is computationally analogous to a Pearson’s correlation 

coefficient, and has a value of −1 to +1. Genetic correlations were computed between the 
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ARIC PR phenotypes (PR interval, the P wave and PR segment) and each eMERGE 

PheWAS phenotype (n=63), adjusting for age, sex and 20 PCs. P-values for genetic 

correlations were determined using a likelihood ratio test comparing the bivariate GLMM to 

a model where the genetic correlation was fixed at 0. While standard errors are given for rG 

point estimates, the 95% confidence intervals surrounding these estimates under the 

assumption of asymptotic normality may fall outside the range of plausible values for rG. 

False discovery rate (FDR)-adjusted p-values (q-values) were determined using a Benjamini-

Hochberg (B-H) adjustment. While not all pheWAS phenotype pairs are independent, the 

test statistics meet B-H criteria by the positive regression dependent criterion.30

Bayesian Sparse linear mixed modelling (BSLMM) was used to compute genetically 

predicted levels of PR phenotypes in the eMERGE and BioVU data sets. BSLMM employs 

a hybrid of GLMM and sparse regression models.31 In general, this method estimates the 

proportion of variance explained by a set of SNPs and the distribution of effect sizes for the 

SNPs and then jointly models the contribution of all SNPs to the phenotypic variance. The 

posterior SNP weights generated by this approach can be used in conjunction with SNP 

genotypes to compute a genetically predicted value for a phenotype. Each PR phenotype in 

the ARIC data set was first adjusted for age, gender and 3 PCs using linear regression. 

BSLMM was then used to generate SNP effect sizes (α and β) for the PR phenotype 

residuals. These effect sizes were then used to compute the genetically predicted value for a 

PR phenotype for an individual in the eMERGE and BioVU data sets using the equation:

where α is the small SNP effect, βγ is the large SNP effect.

Multivariable logistic regression adjusting for 3 PCs, age and sex was used to test the 

association between the predicted phenotype levels and the EMR PheWAS and AF 

phenotypes. The predicted phenotypes were set to have a standard deviation of 1, so ORs 

reflect risk per standard deviation increase in the predicted phenotype. A FDR-adjusted q-

value<0.1 was considered significant.

Genetic risk scores based on either odds ratios (OR) or Beta coefficients for previously 

reported SNPs reaching genome-wide significance (p<5x10−8) were computed for the PR 

interval (n=9 SNPs), BMI (n=98) and atrial fibrillation (n=10 SNPs).5,14,32 The SNPs used 

to compute the GRS in each data set are shown in Supplementary Tables 2 and 3. A GRS 

was computed using previously the publish association statistics for each individual using 

the formulas:33

Only 8 of 9 SNPs for the PR GRS passed QC protocols and were used in the calculations. To 

ascertain whether the genetic risk scores are differentially associated with the PR 
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phenotypes, partial correlation coefficients between each PR phenotype and each GRS were 

computed using PROC CORR (SAS) and adjusted for age and sex.

All quality control analyses and SNP association analyses were performed using PLINK 

v1.07.34 Genetic liability and correlation estimates were computed using the GCTA v1.24.27 

BSLMM is part of the GEMMA v0.94.1 program package.31 All other analyses were 

performed using SAS v9.3 (SAS Institute, Cary, NC).

Ethics Statement

The eMERGE study has been approved by the Institutional Review Board (IRB) at each 

site.12,15. Vanderbilt’s BioVU resource operates as nonhuman subjects research according to 

the provisions of 45 Code of Federal Regulations, part 46, with oversight by Vanderbilt’s 

Institutional Review Board (IRB), as previously described.15 IRB approval for the current 

study was obtained through Vanderbilt’s IRB.

Results

The ARIC population comprised 6,731 unrelated EA subjects with a normal ECG. Their 

median age was 54 years and 45% of subjects were males (Supplementary Table 4). Almost 

a quarter of subjects had three or more metabolic syndrome phenotypes. The eMERGE data 

set comprised 12,978 subjects, of which 48% were male, with an average of 44 clinical 

diagnoses per subject (Supplementary table 1).

Clinical phenotypes genetically correlated with PR phenotypes

The estimated heritability explained by the SNPs for the PR interval in the ARIC data set 

was 0.23 (standard error 0.05) (Table 1). We measured the genetic correlation (rG) between 

the PR interval and 63 eMERGE phenotypes (listed in Supplementary Table 1). The 

strongest genetic correlations were with “atrial fibrillation/atrial flutter” [rG=−0.59, p=0.02] 

and AF [rG=−0.57, p=0.02], but were not significant (FDR q>0.1) after adjusting for 

multiple testing (Figure 2A and Table 2). (Characteristics of the AF cases and controls are 

shown in Supplementary Table 5).

We next examined the P wave and the PR segment durations (Table 1), which comprise the 

PR interval. The point estimate of the genetic correlation between the PR segment and the 

PR interval [rG=0.89 (0.04)] was larger than that for the P wave and the PR interval 

[rG=0.49 (0.16)]. The genetic correlation between the P wave and the PR segment was not 

significantly different from zero (rG=−0.03 [0.16]). The PR segment showed a similar 

pattern of genetic correlations with the eMERGE phenotypes as the PR interval, with the 

exception that the genetic correlation with AF was significant after multiple testing 

correction [rG=−0.88 (95% CI: −1.6 to −0.19), p=0.0009, FDR q=0.047] (Table 2 and 

Figure 2B). For both the PR interval and PR segment, the AF correlation was negative 

indicating that genetic factors associated with a longer interval are associated with a 

decreased risk of AF. There were no significant genetic correlations with the P wave (Figure 

2C). The most strongly genetically correlated phenotype was type 2 diabetes [rG=0.49, 

p=0.008, FDR q=0.26].
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We examined the impact of adjusting for PR phenotypes on the genetic correlation between 

the PR interval duration and AF. Adjusting for the P wave duration minimally impacted the 

genetic correlation between the PR interval and AF [rG=−0.84, p=0.001] (Table 2). In 

contrast, adjusting for the PR segment further attenuated the P-wave-AF correlation 

[rG=0.33, p=0.22] (Table 2). Thus, the genetic signal in the PR interval that is associated 

with AF is most strongly captured by the PR segment.

Associations with a genetically predicted PR interval

The mixed models analyses indicate that a highly polygenic SNP-based genetic classifier 

could capture up to ~23% of the variability of the PR interval. We used BSLMM31 to 

construct a highly polygenic SNP classifier for the PR interval in then ARIC data set, and 

this was used to impute a genetically predicted PR interval for each subject in the eMERGE 

population. We then tested for an association between the predicted PR interval and 261 

clinical phenotypes (with >250 cases and a genetic liability p<0.2).35 Significant 

associations were seen with arrhythmia phenotypes including AF [OR=0.89, 95% CI (0.83–

0.95), p=0.0006, FDR q=0.04) (Table 3 and Figure 2D). Thus, a genetically predicted 

prolonged PR interval is associated with decreased AF risk. The magnitude of this 

association was modestly attenuated when adjusting for genetic risk scores based on 

significant GWAS SNP associations for the PR interval and AF or when adjusting for these 

SNPs (n=17) as covariates, though the p-value was no longer significant in the latter model 

(Table 3). While no associations with an opposite direction of effect were significant, the 

strongest associations were with first degree AV block, a diagnosis of a prolonged PR 

interval, and morbid obesity (Figure 2D). Analyses using a genetically predicted PR segment 

or P wave duration did not identify any significant associations, though the top associations 

for the PR segment were the same as those seen for the genetically predicted PR interval 

(Supplemental Figure 1).

Validating the atrial fibrillation association

To confirm the genetic correlation between the PR interval and AF, we tested the association 

between the genetically predicted PR interval and AF in two independent data sets. A 

second EHR-derived data set (1,206 AF cases and 2,405 controls) that used the same AF 

phenotype definition as the discovery set had a significant association [OR=0.90 (0.85–

0.98), p=0.01] (Table 3). A comparable result was seen using subjects (1022 cases, 668 

controls) from Vanderbilt’s AF registry [OR=0.90 (0.81–0.99), p=0.03] (Table 3). There was 

a similar magnitude and direction of effect when the results were stratified by AF subtypes 

(lone, paroxysmal and persistent AF) (Table 3).

PR components and metabolic syndrome phenotypes

Other than AF, the strongest genetic correlations for the PR phenotypes were with metabolic 

phenotypes (diabetes, obesity). Epidemiological studies have also shown that P wave 

duration is positively associated with metabolic syndrome phenotypes.26 We measured the 

genetic correlations between each PR interval component and metabolic phenotypes in the 

ARIC subjects. The PR interval and PR segment were not genetically correlated with any 

metabolic phenotype (Table 4). The P wave was positively genetically correlated with waist 

circumference [rG=0.47, p=0.03].
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Associations between PR components and genetic risk scores

Finally, we examined whether there was a differential association between genetic risk 

scores based on known genetic modulators of the PR interval, atrial fibrillation and weight 

(measured by body mass index [BMI]), and the PR phenotypes. The PR GRS was 

significantly linearly correlated with each PR phenotype, and had the largest linear 

correlations with PR interval and PR segment (Table 5). The AF GRS was weakly correlated 

with the P wave duration (partial r=0.024, p=0.049), while the BMI GRS was correlated 

with both the PR interval (partial r=0.035, p=0.004) and P wave (partial r=0.048, p<0.001) 

(Table 5).

Discussion

We employed a discovery-oriented approach to identify clinical phenotypes modulated by 

genetic factors that also modulate the PR interval. We found that AF risk was genetically 

correlated with the PR interval, and this association was also observed using a highly 

polygenic risk score derived from the PR interval. We also observed genetic correlations 

with metabolic phenotypes including measures of adiposity. Thus, the genetic architecture 

underlying PR interval variability is driven, in part, by SNP variation that predisposes to AF 

risk and SNP variation which modulates body mass. Our analyses also found that the 

constitutive components of the PR interval (the PR segment and the P wave) were associated 

with different phenotypes and further characterizing their individual genetic architectures 

may enable the development of better genetic risk prediction tools.

While the PR interval is a genetically modulated measure of cardiac conduction, relatively 

few SNPs associated with this phenotype have been identified.3–5 This paucity is not 

unexpected, as the genetic variability underlying many complex phenotypes is driven by 

numerous SNPs with small effect sizes that are difficult to detect by GWAS. We used 

modelling approaches which analyze the contributions of large number of SNPs to broadly 

characterize the genetic architecture of the PR interval. We found that common SNP 

variation accounted for at least 23% of phenotypic variability in the PR interval, indicating 

that much of the additive heritability of PR interval is currently hidden. When we examined 

the individual constituents of the PR interval, we found that the genetic correlation between 

PR segment and P wave durations was not significantly different for zero, suggesting that 

they differing genetic architectures. This observation is consistent with GWAS studies which 

have found that these intervals are associated with different SNPs.36 To further characterize 

the genetic architectures of the PR phenotypes, we examined their genetic correlations with 

a large number of clinical phenotypes.

The individual PR phenotypes were not uniformly genetically correlated with the same 

clinical phenotypes. The most significant association was between the PR interval and PR 

segment and AF. The genetic correlation was negative, indicating that a genetically 

prolonged PR interval is associated with decreased risk of AF. This finding was not 

anticipated, as epidemiological studies have frequently observed that a prolonged PR 

interval is associated with an increased risk of AF.1,2 This epidemiological association is 

attributed, in part, to prolongation in the PR interval due to acquired structural changes to the 

atrium that manifest as slowed atrial conduction and lead to increased atrial 
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arrythmogenicity.37 Indeed, the PR interval duration increases with age, cardiac diseases38 

and metabolic phenotypes such as obesity and hypertension.39–41 These increases are most 

pronounced for the P wave.26 These epidemiological associations are consistent with the 

trends in the genetic correlations that we observed when analyzing P wave duration. The P 

wave was most strongly genetically correlated with metabolic phenotypes including waist 

circumference and type 2 diabetes and a genetically predicted P wave duration was most 

strongly associated with a diagnosis of obesity. While not significant, the genetic correlation 

between the P wave and AF was positive, suggesting that a prolonged P wave duration is 

associated with an increased risk of AF. In turn, these results indicate that there are genetic 

factors, such as those that modify BMI, which prolong the PR interval by affecting the P 

wave and which increase the risk of AF.

The epidemiological association between PR interval and AF is U-shaped, as a short PR 

interval is also associated with increased AF risk.42–45 Hence, our observation that a 

genetically shorter PR interval and PR segment is associated with an increased AF risk 

suggest the inverse association is genetically mediated, and that a short PR interval 

represents an accumulation of PR-shortening genetic variants, some of which also 

predispose to AF risk. Our results also suggest that the genetic mechanisms modulating the 

PR interval duration modulate AF risk in different directions. Thus, the genetic risk 

relationships between AF and each PR phenotype should be evaluated individually to better 

define this association. Another approach to examining the U-shaped relationship between 

the PR interval and AF is to employ non-linear statistical models. However, we believe that 

ascribing the non-linear association to the individual effects of the PR phenotypes is 

biologically more plausible than non-linear additive genetic effects underlying the PR 

interval. Our findings also indicate there is opportunity for more discovery. For instance, we 

found that a genetic risk score comprised known AF SNPs more strongly reflected the 

genetic risk associated with the P wave, as compared to the PR segment. Thus, identifying 

and evaluating additional SNP variants associated with the PR segment may reveal 

additional genetic mechanisms contributing to AF risk.

A significant genetic correlation between a pair of phenotypes suggests that they are 

modulated by a common set of genetic factors. Hence, a genetic predictor derived from one 

phenotype should associate with the other phenotype, provided that that predictor is able to 

capture a sufficient portion of the underlying genetic architecture of the first phenotype. We 

used BSLMM, which models phenotypes based on large numbers of SNP, to compute 

genetically predicted PR intervals in three data sets. This genetically predicted PR interval 

was associated with AF risk in each data set, and the direction was consistent with that 

observed with the genetic correlations analyses. As larger sample sizes become available and 

new polygenic modelling techniques are developed, it may be possible to develop a PR 

interval-derived genetic classifier which can robustly predict AF risk and can offer sufficient 

lead time to maximize the benefit of intervention strategies.

There are several limitations to this study. We used phenotypes derived from EHR data sets, 

which often lack rigid phenotype definitions and can have incomplete ascertainment. 

Incomplete ascertainment and phenotype misclassification can attenuate associations. In 

support of the validity of our EHR AF phenotype, we note that it has been used for several 
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genetic studies and has been shown to replicate known SNP associations.22,23,25 It is 

possible that the genetic correlations we observed are spurious and are caused by SNPs 

simultaneously tagging disparate causative genetic variants that impact the phenotypes 

through distinct mechanisms.46 However, all of our genetic correlations are supported by 

epidemiological observations, so this is unlikely for the phenotypes we identified. Our AF 

cases also had more comorbidities as compared to our controls, which could inflate genetic 

correlation estimates for risk factors related to the metabolic syndrome. We also did not have 

sufficient individuals of other ancestries to evaluate and validate our findings in these other 

racial groups.

In conclusion, we used mixed models to characterize the genetic architecture of the PR 

interval. We found that SNP variants which predispose to AF and elevated body mass, 

modulate the PR interval and that these variants differentially influence the P wave and PR 

segment durations. Future GWAS studies should examine the constitutive PR phenotypes 

separately in order to more fully define the genetic modulators of the PR interval. 

Furthermore, focusing on genetic variation underlying the PR segment may identify novel 

AF genetic risk factors and mechanisms, which may lead to better AF risk prediction 

models.47 Finally, a portion of the genetic predisposition towards AF is driven by genetic 

factors for metabolic risk factors including obesity, highlighting the continued need for 

aggressive risk modification and treatment for these predisposing conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

Biomarkers which predict disease risk enable risk stratification and disease prevention. 

Since many biomarkers and diseases are modulated by underlying genetic risk, it is 

possible to associate them based on this shared genetic risk. Importantly, these genetic 

associations can be assessed across different datasets, as long as all subjects have 

genotypic data, and the approach can be used to study relationships between potential 

biomarkers and disease. Here, we measured genetic correlations, a measure of genetic 

association, between a potential biomarker, the PR interval (and its individual 

components, the P wave and the PR segment), and 63 electronic health record (EHR) 

disease phenotypes. The ECG phenotypes were analyzed in the Atherosclerosis Risk in 

Communities (ARIC) cohort, and the EHR phenotypes in the Electronic Medical Records 

and Genomics (eMERGE) network. We found that a genetically predicted PR interval 

was associated with atrial fibrillation (AF) risk, consistent with previous epidemiological 

studies, but with an opposite direction of association. The individual components had 

different genetic architectures, were not correlated with each other, and AF risk was 

predominantly associated with genetically-determined PR segment. This study 

establishes that the shared genetic architectures of clinical phenotypes like AF and 

putative biomarkers like the PR and its components can identify epidemiological 

associations, validate the biomarkers, and point to disease mechanisms.
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Figure 1. 
Overview of approach. A) GLMMs were used to measure the pair-wise genetic correlations 

(rG) between each ARIC PR phenotype (PR interval, PR segment and P wave duration) and 

each genetic eMERGE phenotype. B) BSLMMs were used to compute SNP weights for 

each PR phenotype. These weights were used to compute genetically predicted PR 

phenotype values in eMERGE subjects. Logistic regression was used to test the association 

between the predicted PR phenotypes and eMERGE clinical phenotypes. C) GLMMs were 

used to compute rG between ARIC PR phenotypes and metabolic phenotypes. D) Partial 

correlation coefficients were calculated between ARIC PR phenotypes and genetic risk 

scores based on SNPs identified by prior GWAS studies.
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Figure 2. 
Phenotypes genetically associated with PR phenotypes. (A–C) Genetic correlations between 

the (A) PR interval, (B) PR segment and (C) P wave duration, measured in ARIC subjects, 

and 63 phenotypes measured in eMERGE subjects, adjusted for age, gender and PCs. P-

values are based on a likelihood ratio test comparing a full model to a model where the 

genetic correlation was fixed at 0. (D) Plot of p-value versus odds-ratio (OR) from logistic 

regression analyses of the association between a genetically predicted PR interval and 261 

eMERGE phenotypes, adjusted for sex, gender and PCs. ORs represent the risk per standard 

deviation change in the predicted PR interval. For all graphs, each point represents a 
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phenotype and green colored points have an FDR q<0.1. The purple dotted line denotes the 

expected false positive rate, and the blue line corresponds to a Bonferroni correction.
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Table 1

Heritability/liability estimates for the ARIC cohort.

Characteristic Heritability/liability (s.e.)*

EKG parameters [mean (s.d.)]

PR interval duration (ms) 0.23 (0.05)

P wave duration (ms) 0.19 (0.05)

PR segment duration (ms) 0.18 (0.05)

Metabolic traits [n (%)]†

 Waist circumference 0.14 (0.04)

 Insulin Resistance 0.05 (0.04)

 Hypertension 0.18 (0.04)

 Triglycerides 0.15 (0.04)

 HDL cholesterol 0.14 (0.04)

 Metabolic syndrome 0.21 (0.04)

*
Heritability or liability estimates or metabolic traits and ECG phenotypes are based on genetic linear mixed models adjusting for age, sex and 20 

principal components.

†
See Methods for metabolic trait definitions.
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