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Driven by advances in microelectronics, processing and memory systems, neural net-

works have matured to be useful in a large number of applications that rely upon optimization

using stochastic gradient descent. Along with this maturity comes the drive to deploy neural

networks in devices that are much closer to the physical systems, the so-called edge devices,

that is, devices at the edge of the internet. Whereas these devices are naturally constrained in

terms of energy, power, memory, memory bandwidth and computation, the application needs for

recognition, optimization tasks has only grown. These trends drive us to seek ultra-efficient im-

plementations of neural networks as algorithms, architecture or directly implemented in hardware.
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This thesis specifically explores the algorithmic optimizations of neural networks, specifically

convolutional neural networks, that make them suitable for implementation in microelectronic

hardware (as ASICs or FPGAs) or in embedded computing systems. As we push the limits of

hardware, we naturally run into the growing conservative guardbands that circuit designers use

in combating effects of variability in nanometer-scale microelectronic devices.

To address the technical challenges posed, we seek cross-layer solutions to the problems

of the high algorithmic demands incurred by deep learning methods and error vulnerability

due to hardware variations. This dissertation is organized as follows. We begin with a review

of the methods and technologies proposed in the literature including weight encoding, filter

decomposition, network pruning, efficient structure design, and precision quantization. We

explore in depth binarization of neural network parameters in a binarized neural network (BNN)

as a means to improve implementation efficiency on an FPGA target. We introduce optimizations

particularly suitable to BNN implementation. Then, we extend BNN on the algorithmic layer

with the binarized separable filters and proposed BCNNw/SF. Although the quantization and

approximation benefit hardware efficiency to a certain extent, the optimal reduction or compres-

sion rate is still limited by the core of the conventional deep learning methods – convolution. To

improve further, we introduce the local binary pattern (LBP) to deep learning because of LBP’s

low complexity yet high effectiveness. We name the new algorithm LBPNet, in which the feature

maps are created in a similar fashion to the traditional LBP using comparisons. Our LBPNet

can be trained with the forward-backward propagation algorithm to extract useful features for

image classification. LBPNet accelerators have been implemented and optimized to verify their

classification performance, processing throughput, and energy efficiency. We also demonstrate

the error immunity of LBPNet to be the strongest compared with the subject MLP, CNN, and

BCNN models since the classification accuracy of the LBPNet is decreased by only 10% and all

the other models lose the classification ability when the timing error rate exceeds 0.01.
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Chapter 1

Introduction

The increasing algorithmic demands have galvanized the prosperity of hardware com-

puting capabilities on both cloud machines and edge devices. Currently popular deep learning

applications, such as robotics, automated driving, and the general purpose artificial intelligence,

fusing and digesting large data continue to demand more processing resources, memory and

memory bandwidth to meet application needs. For instance, to fulfill the level 4 driving automa-

tion [int16] defined by the Society of Automotive Engineers International (SAE), the automobile

manufacturers usually coalesce the on-vehicle sensors to not only 360◦ perspective but also

overlapped with each other to enhance the comprehension of the environment as shown in

Figure 1.1. Furthermore, multiple subtasks, such as lane detection and traffic sign recognition,

may exploit the same sensor reading or video recording and increase the burden of computation.

As a result, the workload of the central workstation on a vehicle requires the ADS providers to

build more and more powerful single-instruction-multiple-data (SIMD) machines on vehicles,

which beget high energy consumption and high hardware cost.

In this dissertation, we shall examine the resource issue in terms of energy, memory, and

computation. We realize the gap between the BNN theory [HCS+16a, CHS+16] and physical

implementation through implementation of an FPGA accelerator for BNN [ZSZ+17]. Finally,

we highlight a new genre of networks utilizing fewer hardware resources while maintaining the

near state-of-the-art performance.
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Figure 1.1. The sensor coverage of an automated driving system (ADS).

1.1 Background and Problems

Although the deep learning community has prospered over the past few decades, the

inference of neural networks still overburdens resource-limited embedded hardware [RORF16a]

for internet of things (IoT) platforms. Table 1.1 lists the performance and hardware demands of

five prestige CNN models designed for the ImageNet [DDS+09] dataset. While pursuing a higher

classification accuracy on ImageNet, the CNN models have grown deeper and deeper to extract

features beneficial to the classification. The core of feature extraction is a convolution, which

is composed of a series of multiplication-and-accumulation (MAC) operations. The extracted

features, i.e., feature maps or activations, must be stored and fed to the succeeding layer as an

input. Billions of the MAC operations mentioned above incur two design challenges for the

practical uses of the models.

First, the computation requirements exceed beyond the computation capability of IoT

devices powered by embedded CPUs, e.g., from the low-cost Cortex M0™ with 64 Mega
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Table 1.1. Model sizes and computational requirements for five well-known CNN architectures
for the classification on ImageNet: AlexNet [KSH12], VGG16 [SZ15], GoogLeNet [SLJ+15],
ResNext101 [XGD+17], and DenseNet201 [HLvdMW17].

AlexNet VGG-16 GoogLeNet ResNeXt-101 DenseNet-201
Top-1 Acc. 58.2% 71.5% 68.7% 77.7% 70.0%
Top-5 Acc. 80.8% 90.1% 89.0% 94.1% 93.7%
Param. Size 233 MB 528 MB 51 MB 319 MB 77 MB
Feat. Size 3 MB 58 MB 26 MB 273 MB 196 MB
FLOP 0.7 Bn 19.6 Bn 1.5 Bn 18.9 Bn 10.9 Bn

instruction per second to the high-end Cortex A73™ with 2.45 Giga instructions per second,

to deliver a real-time frame rate higher than 30 frames per second (fps). Even though the deep

models are carried out on embedded GPUs, such as Jetson TX2™ with 1 Tera FLOP/s, to

achieve a frame rate higher than 50 fps ideally, the embedded GPUs must be preempted for the

concerned single model so that no other tasks can introduce round-robin multitasking to share the

throughput. Despite that the NVIDIA multiple-process service™ [Nvi11] (MPS) is scheduled

to support embedded GPUs in the future, all the requirements of MPS must be strictly satisfied

so that the service can optimize the scheduling overheads, but the ‘one fails, all fail’ property

of MPS still restrains the application and development. As a result, the guardbands in terms of

computation units and energy budgets are difficult to estimate or design because of the enormous

algorithmic demands.

Second, the memory sizes of the trained parameters and the extracted feature maps in the

hidden layers take hundreds of megabytes (MB), which is larger than the on-chip memory in

most processors. Adding off-chip DRAM for extra storage space is the conventional solution, but

the cost regarding the DRAM size and the speed bottleneck formed by the memory input/output

(I/O) bandwidth must be expected. Moreover, the streaming and buffering mechanisms for big

data and large network parameters between the off-chip DRAM and on-chip memory further

deteriorate the throughput if the timing guardbands are over-designed.

As we optimize design, we encounter limitations caused by conservative guardbands

for hardware variations. For example, the gradual voltage decrease due to low battery or the
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temporary voltage droop resulted from an ill-regulated power distribution network (PDN) can

introduce drifts of the transistor bias points. On the other hand, the rising temperature resulted

from the ambient conditions or the internal power dissipation directly decrease the electron/hole

mobility. Both of the two common hardware variations weaken the gate charging/discharging of

transistors and hence induce timing errors. System designers have passively defined guardbands

to prevent the timing errors from causing accuracy degradation or system failure.

As a summary, the resource deficiency problem aroused by the deep models and the timing

errors resulted from hardware variations have hampered IoT applications. This dissertation targets

to the cross-layer optimization for the challenges from algorithm to hardware implementation

and proposes new genres of neural networks that efficiently utilizes computation resources and

effectively segregates the timing error propagation.

1.2 Existing Solutions

We have observed that the solutions fell in several streams. In this section, we discuss

the methodologies and limitations of existing solutions.

1.2.1 Weight Encoding

Without retraining, the storage size of a trained model can be reduced by encoding.

The final stage of Deep compression [HMD15] utilized Huffman coding to take advanced

of the profiled weight distribution and achieved the lossless encoding. The succeeding work

EIE [HLM+16] encoded the sparse weights into the compressed sparse column (CSC) format as

a pair of vectors representing the values and indices in the original weights and then devised a

customized hardware architecture for the inference with the CSC format.

Weightless [RGA+17] combined Bloomier filter with retraining to propose a lossy

encoding approach. Regardless of the loss introduced by the encoding, Weightless’s retraining

provided enough error resilience so that the ensemble results showed no significant accuracy

loss on both MNIST and ImageNet.
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1.2.2 Filter Decomposition

Instead of profiling and encoding the learned parameters, some works [RSLF13, JVZ14,

AP16] decomposed the convolutional filters into vectors and used them to approximate the

original filters. These works differed in the decomposition methods and whether retraining was

involved. As a result, the low-rank approximation guaranteed both the model reduction and

speed-up since two successive 1-dimensional (1-D) convolutions, time complexity O(k), can

be implemented faster than one 2-D convolution, time complexity O(k2), given k is the kernel

width.

1.2.3 Pruning

We introduce both static and dynamic pruning techniques that can reduce hardware

complexity.

Static Pruning

Optimal Brain Damage (OBD) [LDS90] was proposed to prune a fully-connected neural

network into a more efficient model. Intuitively, removing the edges with small values [HKPH91,

HMD15, HPTD15] should not deteriorate the performance since the pruned weights in the

dot-product computation did not contribute as much as other weights do. However, OBD claimed

that magnitude did not equal salience, which was the extent of causing training errors. More

specifically, the authors defined the salience of a parameter as “the change in the objective

function (cost) caused by deleting that parameter.”

If a perturbation dU of parameters was presented to the cost l, the change of the cost is

shown in Eq. 1.1 in its Taylor series.

dl = ∑
i

gidui +
1
2 ∑

i
hiidu2

i +
1
2 ∑

i 6= j
hi jduidu j +O(||dU ||3), (1.1)

where gi =
∂l
∂ui

was the gradient, and the second and third terms hi j =
∂2l

∂ui∂u j made up the
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Hessian of l. The first term vanished after a training process since the gradients with respect

to (w.r.t.) weights must be zero or approaching zero by the end of the convex optimization.

Furthermore, the authors introduced the ”diagonal” approximation to negate the effects resulted

from cross-coupling terms, the Hessian elements for i 6= j.

Optimal Brain Surgeon (OBS) [HSW93] pinpointed, justified, and demonstrated the

diagonal approximation was far from the truth in reality, and the wrong approximation led OBD

to prune the misjudged weights and thereby even multiple retraining cycles cannot compensate

the performance loss of the damaged networks. The Hessian and its inverse matrix of arbitrary

network parameters can be calculated without the erroneous diagonal approximation proposed

in OBD. With the correct hessian matrix calculated, OBS used a simple for-loop to gradually

prune the redundant weights and adjust the remaining until the predefined error tolerance was

reached or all less salient weights have been pruned. OBS pruned the weights to achieve a global

minimum on the error surface without any retraining process, but the computationally expensive

calculation of the Hessian matrices and their corresponding inverses in every update iteration

impeded the application of OBS on larger networks or CNNs.

Although named as Dynamic Network Surgery [GYC16] (DNS), the pruning was done

off-line. The term ”Dynamic” was used because of the heuristic and antagonistic mechanism

including magnitude-oriented pruning and recovery splicing. Without the support of error

resilience from retraining cycle, DNS was able to reduce AlexNet’s model size to 17.7X smaller,

while maintaining the classification accuracy.

Dynamic Pruning

The methods in the previous section pruned and fixed the networks before inference, but

SnaPEA [AYS+18] performed pruning during inference on a pretrained model. To avoid severe

calculation overheads, the pruning in the inference phase can only be greedy and straightforward.

Even though OBS has proven that the magnitude pruning trapped the resultant model in a local

minimum, the rectified linear unit (ReLU) after the accumulation provided an opportunity to
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perform magnitude pruning without any performance degeneration. SnaPEA applied sign-bit

speculation to stop accumulating the unnecessary multiplications and delivered the same output

activation as that before pruning. SnaPEA differed traditional magnitude pruning from the subject

of thresholding: Previous works statically pruned networks according to weight magnitudes, yet

SnaPEA dynamically and speculatively pruned by monitoring the magnitudes of activations. The

dynamic pruning, therefore, required a customized of the hardware architecture and arithmetic

logic unit.

1.2.4 Efficient Structure

More works were exploring efficient network or sub-block structures to push accuracy

while reducing computations [SWLS+15, SVI+15, SIV16, HZRS15, XGD+17].

GoogLeNet

As shown in Table 1.1, GoogLeNet comprised the Inception [SWLS+15, SVI+15,

SIV16] building blocks that utilized the split-transform-merge strategy to efficiently extract

useful features and achieved 68.7% top-1 accuracy on ImageNet. The memory and computation

usage were efficient compared with VGG-16, which achieved slightly higher accuracies but used

almost 10 times of the memory of GoogLeNet and 13 times more operations.

ResNeXt

Inspired by the highly modulized design in VGG and NIN [LCY14], the group con-

volution of AlexNet [KSH12] and the branch convolution structure of Inception and ResNet

[HZRS15], ResNeXt [XGD+17] proposed a building block composed of identical convolutional

transformations and minimized human efforts in the architecture engineering with a new design

dimension ‘cardinality.’ The cardinality is the number of the identical transformation branches

in a ResNeXt block. Increasing cardinality benefited the model performance more especially

when the effect of increasing of layers started to diminish.
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1.2.5 Quantization

Quantization makes NNs hardware-friendly since the resulting fixed-point numbers

[ZSZ+17, FHCW16, VB16, SPM+16, HMD15], ternary values [HS14, ZHMD17], or in the

extreme case — binary values [HCS+16b, SHM14a, KS16, RORF16a] can be stored in smaller

memory space and calculated with cheaper arithmetic logic units (ALUs). Notwithstanding

the precision degradation of real numbers inevitably introduced the loss of information, the

benefits still motivated researchers to compensate for the performance loss. Here we list several

interesting works related to our contributions.

Fix-Point Quantization

Quantizations from 64-bit or 32-bit floating numbers to shorter bit-length fixed-point

numbers were common in the implementation of hardware accelerators [ZSZ+17, FHCW16,

VB16, SPM+16, HMD15], but most of them stopped at a precision no less than than 16-bit to

avoid significant performance loss. However, once the error resilience of retraining was leveraged,

the fix-point precision can be further reduced to a length of 2-bit [HS14, KS16, ZHMD17] with

minor performance loss.

Expect Backpropagation

Expect Backpropagation (EBP) [SHM14a, CSML15] was proposed as a probabilistic

training method without any meta-parameters, i.e., learning rates. The intuition behind EBP

was to infer the most likely binarized weights given a training data set P(W |Dn), where W

represented the binary weights, and Dn was the entire training dataset. Most likely weights were

those weights that produced targets through probabilistic forward propagation. All activations in

EBP were binarized with a sign function.

Two approximations made EBP work:

• Mean-field: Decoupling the effects caused by the ensemble group of parameters into small

independent events with no cross-coupling among the small events. This allowed EBP to
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go through the weight optimization one by one instead of trying an exponential number of

weight combinations exhaustively.

• Large fan-in: Assuming there were infinite neurons in the upper layer, the normalized input

of each layer was a Gaussian distribution according to the Central Limit Theorem (CLT).

This approximation provided a mathematic closed-form of the probabilities propagating

forward and backward in EBP.

However, as shown in [SHM14a], although the sizes of dataset were as small as 4,000,

EBP’s performance was inferior to traditional neural networks. The results indicated that the two

approximations of EBP were too aggressive in ignoring the crossing effects between weights

and assuming infinite fan-in for every neuron.

Binarized Neural Network and XNOR-Net

BNN [HCS+16b] pushed the quantization to the extreme case — binary numbers. Two

important ideas contributed to achieve the near state-of-the-art performance:

• Larger network: As with the well-known exclusive-OR problem [RHW85a], the solution

was to promote the model to a deeper one and increase the number of neurons. Expanding

networks increased the dimension for projection and added more hyperplanes for better

classification.

• Batch normalization [IS15]: The normalization regularized and generalized the network

to enforced the immunity against noise. Besides normalization, the batch normalization

introduced two extra degrees of freedom, scaling and shifting, for every pixel to further

compensate for the additive noises.

Binarization can be considered as an addition of noise (Eq. 1.2) into original real value

weights and activation according to either deterministic or stochastic rules, as shown in Eq. 1.3,

and Eq. 1.4, respectively.

xb = x+n, (1.2)
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Figure 1.2. Batch normalization, marked as BN, before the nonlinear activation function.

where xb is the binarized information, x is the real value information, and n is the additive noise.

It has been demonstrated in the literature that with regularization, neural networks are robust

against additive quantizing noise [CBD15, KS16, DSH13, CDB14, MH12, LCMB15].

n =

1− x, if x≥ 0.5

−x, otherwise
(1.3)

n =

1− x with probability p = σ(x)

−x, with probability p = 1−σ(x)
, (1.4)

where σ(x) is the sigmoid probabilistic density function.

Although the original proposed use of the batch normalization was after an activation

function, BNN intelligently introduced batch normalization between the dot-product and the
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activation function as shown in Figure 1.2. The swapping successfully enable each neuron to

learn a linear transformation for better use of the nonlinear part.

Additionally, the two ideas can be applied towards convolutional neural networks to build

binarized CNNs (BCNNs). The authors have verified BCNNs on more challenging datasets such

as CIFAR-10 and SVHN and achieved the near state-of-the-art results.

Instead of resorting to batch normalization to regularize the additive noise introduced

by binarization, XNOR-Net [RORF16a] alternatively adopted an additional scaling layer to

generalize the training method for binarized weights further. The scaling factors were calculated

from the of the L1-norm errors of weights. Another difference from other neural networks was

the sequence of processing layers in a CNN. The authors moved the convolution behind the

binary activation function to further decrease information loss due to binarization. While BNN

merely achieved a 28.9% on ImageNet top-1 accuracy, XNOR-Net achieved a much higher

accuracy of 44.2%.

In summary, weight encoding, filter decomposition, pruning, and quantization approxi-

mated the trained models in different granularities and introduced approximation errors increasing

the model loss typically. The exploration of efficient structures required the expertise of structural

priors and enormous time and efforts in the expedition. Therefore, we chose to start from quanti-

zation because the quantization is a common step in hardware implementation and optimization.

Through the designing of an accelerator for the extreme-case quantization, BNN, we can realize

the gap between theoretical quantization and practical implementation.

1.3 Preliminary Results from Building a BNN Accelerator

We choose to implement BNN [HCS+16a, CHS+16] on the software-programmable

FPGA as our starting point of the following research because of the open-sourced availability

and architectural simplicity. Table 1.2 lists the architecture of the implemented Binarized CNN

and the model size including feature maps and parameters. The network architecture is the
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Table 1.2. The architecture of the BinaryNet CIFAR-10 BNN — Output bits refer to the total size
of the output feature maps. Conv stands for a convolutional layer, Pool denotes for a max pooling
layer, and FC means a fully-connected layer. The weight bits exclude batch normalization
parameters, whose total size after optimization is 0.12M bits. This is less than 1% of the size of
the weights.

Layer Input output Output Output Weight
ch. Nin ch. Nout dim d2 bits bits

Conv1 3 128 32 x 32 131K 4480
Conv2 128 128 32 x 32 131K 148K
Pool 128 128 16 x 16 33K -

Conv3 128 256 16 x 16 66K 297K
Conv4 256 256 16 x 16 66K 593K
Pool 256 256 8 x 8 16K -

Conv3 256 512 8 x 8 33K 1.2M
Conv4 512 512 8 x 8 33K 2.4M
Pool 512 512 4 x 4 8192 -
FC1 8192 1024 1 1024 8.4M
FC2 1024 1024 1 1024 1.0M
FC3 1024 10 1 10 10K

Total 519.25K 14.2M
Conv 517.19K 4.59M
FC 2.06K 9.46M

same as the CIFAR-10 model delivering 88.60% accuracy in the BNN paper [HCS+16a]. The

weights and bias of fully-connected layers (FC layers) take 9.46M bits and dominate the memory

footprint; the binarized convolutional kernels take other 4.59M bits. Even with pooling and

binarization, we still need an off-chip DRAM to store the parameters and a buffering mechanism

and yield enough block RAMs (BRAMs) to feature maps and activations.

Inside each building block of BNN, every convolutional layer (Conv layer) is followed

with a batch normalization layer (BatchNorm layer) [IS15]. The parameter size of a BatchNorm

layer can be quantized to take only 0.12M bits, but the linear transformation for all input

pixels in a BatchNorm layer cannot be replaced with cheap XNOR operation. Fortunately,

FINN [UFG+17] proposed a smart method as shown in Figure 1.3 to drastically improve the

resource utilization on FPGAs by avoiding the linear transformation at runtime by calculating

the by-pixel thresholds because most of the BatchNorm layers in BNN were followed by a sign
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Figure 1.3. The pre-calculated batch normalization thresholding proposed in FINN [UFG+17]:
(a) The input pixel strengthes; (b) applying the universal threshold ‘0’ on the scaled and schifted
pixels, the green color represents positive output and red represents the negative; (c) the input
pixels and the pre-calculated thresholds (yellow); (d) thresholding the input pixels directly
without the linear transformation.

function to generate binary outputs. Instead of using a universal ‘0’ as the nonlinear threshold,

FINN pre-calculated the thresholds for different pixels and used the new thresholds to decide

whether to output a zero or one immediately upon receiving the input. This smart idea can be

used in our future designs to offload the calculations in an FPGA’s digital signal processing

(DSP) blocks to the look-up-table (LUT) blocks.

We applied hardware optimizations, such as loop unrolling, quantization, and customized

sub-word buffering, to implement the BNN accelerator on CIFAR-10 without losing any clas-

sification accuracy. Table 1.3 lists measured the latency, power, and energy efficiency in

img/sec/Watt of our FPGA implementation together with the inference profiles on Intel Xeon

Eg-2640 CPU, NVIDIA Tesla K40 GPU and NVIDIA Jetson TK1 embedded GPU. Although

inference on a NVIDIA Tesla K40 is 9 times as fast as our BNN accelerator, our energy efficiency
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Table 1.3. Energy efficiency comparison between our BNN accelerator on FPGA and software
implementations on Intel Xeon Eg-2640 CPU, NVIDIA Tesla K40 GPU, and NVIDIA Jetson
TK1 embedded GPU. Time is in milliseconds (ms). Conv1 is the first floating-point Conv layer,
Conv2-5 are the binary Conv layers, FC1-3 are the FC layers. A indicates a value we could not
measure. Numbers with * are sourced from datasheets. The last row shows power efficiency in
throughput per Watt.

Execution time per image (ms)
CPU GPU mGPU FPGA(this work)

Conv1 0.68 0.01 - 0.11
Conv2-5 13.20 0.68 - 4.22
FC1-3 0.92 0.04 - 2.03
Total 14.80 0.73 90 6.36

Speedup 2.3x 0.11x 14.2x 1x
Power(Watt) 95* 235* 3.6 4.7

imgs/sec/Watt 0.71 5.83 3.09 33.5

is 5.7X higher than the GPU inference. Our BNN accelerator beats the inference on CPU and

mGPU in both speedup and energy efficiency. For the details of hardware optimization on our

BNN accelerator, please refer to our accelerator paper [ZSZ+17]

From the practical implementation of BNN, we have learned that there exists some room

for improvements in both BNN’s theory and the hardware implementation. For example, the

combinations of the binarized convolutional kernels are very limited and have not been exploited.

The zero paddings in BNN’s theory created an illogical flaw because BNN trained the weights

to be either ‘+1’ or ’-1’, but the padding with ‘0’ introduced the third state of the “binary”

values. We have circumvented the flaw with a “do-nothing” mark when the padding is performed,

but this must be solved to make the feature maps truely binarized. Moreover, FINN’s LUT

batch normalization and SIMD architecture can also be employed to speed up the deep learning

accelerator in the future.

1.4 Thesis Contribution

Figure 1.4 depicts the organization of this dissertation. We pursue efficient algorithms

alleviating the hardware resource deficiency problem. In chapter 2, we first extend BNN with
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Figure 1.4. The dissertation organization.

our binary separable filters to further reduce the model sizes and replace 2-D convolutions with

1-D convolutions to gain speed-ups. We name the first work BCNNw/SF. A hardware accelerator

for BCNNw/SF has been implemented and measured to demonstrate the hardware benefits in

terms of memory footprint and computations.

Then, we set off to rethink the core of the concerned deficiency, which was resulted from

convolution. To extract useful features, there existed numerous streams in computer vision other

than CNN, such as SIFT [Low04], HOG [DT05, WHY09], ShapeContext [BMP02], and the

local binary pattern (LBP) [OPH96]. Among these methods, we re-visite the idea of LBP and

explore possibilities bringing LBP to deep learning so that we can extract the common features

of images with chaep hardware primitives (chapter 3). We implement FPGA accelerators for

LBPNets in chapter 4.

Last but not least, we assesse the vulnerability of four genres of NNs including MLP,

CNN, BNN, and LBPNet, to understand the extent of performance degeneration resulted by

physical variations, i.e., as voltage and temperature fluctuations (chapter 5). LBPNet surprisingly

provides high immunity to the variation errors owing that the high parallelism characteristic of

LBPNet separates and mitigates the error propagation during the inference stage.

Chapter 1 includes part of the results of Ritchie Zhao, Weinan Song, Wentao Zhang, Tian-

wei Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, Zhiru Zhang. “Accelerating Binarized
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Convolutional Neural Networks with Software-Programmable FPGAs”. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA) as

the motivation of the following research in chapter 2 and chapter 3. This dissertation author is

the co-author of this paper.
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Chapter 2

Binarized Convolutional Neural Network
with Separable Filters

State-of-the-art convolutional neural networks are enormously costly in both compute

and memory, demanding massively parallel GPUs for execution. Such networks strain the

computational capabilities and energy available to embedded and mobile processing platforms,

restricting their use in many important applications. In this chapter, we push the boundaries of

hardware-effective CNN design by proposing BCNN with Separable Filters (BCNNw/SF), which

applies Singular Value Decomposition (SVD) on BCNN kernels to further reduce computational

and storage complexity. To enable its implementation, we provide a closed-form of the gradient

over SVD to calculate the exact gradient with respect to every binarized weight in backward

propagation. We verify BCNNw/SF on the MNIST, CIFAR-10, and SVHN datasets, and

implement an accelerator for CIFAR-10 on FPGA hardware. Our BCNNw/SF accelerator

realizes memory savings of 17% and execution time reduction of 31.3% compared to BCNN

with only minor accuracy sacrifices.

2.1 Introduction

Convolutional neural networks (CNN) [LBD+89a] was first shown to be a promising

technique for vision classification since 1989, and Deep Neural Network (DNN) [HOT06]

surmounted the supremacy of the support vector machine in the ImageNet challenge in 2006.
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Since then, the versatility of CNNs has been demonstrated in many fields, including web search

models [HHG+13a], aerial image classification [ME12], and biomedical analysis [SLF14a]. The

number of CNN applications and network architectures continues to grow year after year.

Although the community of neural networks has been prospering for decades, state-

of-the-art CNNs still demand significant computing resources (i.e., high-performance GPUs),

and are eminently unsuited for resource and power-limited embedded hardware or Internet-of-

Things (IoT) platforms [RORF16b]. Reasons for high resource needs include the complexity

of connections among layers, the sheer number of fixed-point multiplication and accumulation

(MAC) operations, and the storage requirements for weights and biases. Even if network

training is done off-line, only a few high-end IoT devices can realistically carry out the forward

propagation of even a simple CNN for image classification.

Binarized convolutional neural networks (BCNNs) [HCS+16a, CBD15, SHM14b, KS16,

RORF16b] have been proposed as a more hardware-friendly model with extremely degenerated

precision of weights and activations. BCNN replaces floating or fixed-point multiplies with

XNOR operations (which can be implemented exceptionally efficiently on ASIC or FPGA

devices) and achieved near state-of-the-art accuracy on many real-world image datasets at time

of publication. Unfortunately, this hardware efficiency is offset by the fact that number of

parameters in a BCNN is typically tens or hundreds more than that in a CNN of equal accuracy.

To make BCNNs practical, an effective way to further reduce the model size is required.

We introduce separable filters (SF) on binarized filters, as shown in Figure 2.1(c), to

further reduce the hardware complexity in two aspects:

• SF reduces the number of possible unique d-by-d filters from 2d2
to just 22d−1, enabling

the use of a small look-up table during the forward propagation. This directly results in

the (d−1)2

d2 reduction of memory footprint.

• SF replaces each d-by-d 2D convolution with two d-length 1D convolutions, which

reduces the number of MAC operations by d/2. This translates to either speedup or the
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(a)

(b)

(c)

Figure 2.1. Comparison of filters: (a) the original floating-point filters; (b) the same filters after
been binarized; (c) the approximated separable binary filters.

same throughput with fewer resources.

In addition, we propose two methods to train BCNNw/SF:

Method 1 - Extended Straight-through Estimator (eSTE):

We take the rank-1 approximation for SFs as a process adding noise into the model and

rely on batch normalization to regularize the noise. During backward propagation, we extend the

straight-through estimator (STE) to propagate gradient across the decomposition.

Method 2 - Gradient over SVD:

Now that SVD is a linear algebraic technique, we can go through the analytic closed-form

of the gradient over SVD to push the chain rule in backward propagation to the binarized filters,

which is the filter before SVD.

The rest of the paper is organized as follows: Section 2.2 provides a brief survey of

previous works, Section 2.3 presents the design of BCNNw/SF and some implementation details,
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Section 2.4 presents two methods for the training of BCNNw/SF., Section 2.5 shows experimental

results, Section 2.6 describes the implementation of BCNNw/SF on an FPGA platform, and

Section 2.7 concludes the paper.

2.2 Related Works

We leverage the lightweight method for training a BCNN [HCS+16a, CHS+16], which

achievedthe state-of-the-art classification results on MNIST, CIFAR-10, and SVHN. Two essen-

tial ideas contributed to the effectiveness of their BCNN:

Batch normalization with scaling and shifting [IS15]: A BatchNorm layer regularized the

training process by shifting the mean to zero, making binarization more discriminative. It also

introduced two extra degrees of freedom in every neuron to further compensate for additive

noises.

A larger Model: As with the well-known exclusive-OR problem [RHW85b], using a larger

network increased the power of the model by increasing the number of dimensions for projection

and making the decision boundary more complex.

XNOR-Net [RORF16b], an alternative BCNN formulation, relied on a multiplicative

scaling layer instead batch normalization to regularize the additive noise introduced by binariza-

tion. The scaling factors are calculated to minimize the L1-norm error between real-valued and

binary filters. While BNN did not perform well on ImageNet [DDS+09] with a top-1 error rate

of 72.1%, XNOR-Net improves this error rate to 55.8%.

Learning with Separate Filters [RSLF13] proposed a rank-1 approximate method to

replace the 2-D convolution in a CNN with two successive 1-D convolutions. Every filter was

approximated by the outer product of a column vector and a row vector which were from the

resultant of Singular Value Decomposition (SVD). The authors proposed two schemes of the

learning of separable filters: (1) retained only the largest singular value and corresponding

vectors to reconstruct a filter; (2) linearly combined the outer products to lower the error rate.
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However, the first scheme sacrificed too much performance because the other singular values can

be comparable with the largest one in terms of magnitude. The second scheme was designed to

compensate for the loss of performance, but more singular values used to recover a filter meant

a lesser compression benefit from the approximation. Although learning with separable filters

was computationally expensive, the low-rank approximation was an important idea to alleviate

hardware complexity.

Inspired by Learning with Separable Filters [RSLF13], more research projects were con-

ducted to explore a more economical model, i.e., networks with smaller memory requirements

for the kernels. Low-Rank Approximation [JVZ14] proposed a filter compression method that

analyzed the redundancy in a pre-trained model, decomposed the filters into single-channel

separable filters, and then linearly combined separable filters to recover original filters. The

decomposition was optimized to minimize the L2 reconstruction error of original filters. Decom-

poseMe [AP16] further reduced the redundancy by sharing the separated filters in the same layer.

To alleviate the computational congestion of GoogLeNet [SWLS+15], the Inception building

block [SVI+15, SIV16] was proposed as a multi-channel asymmetric convolutional structure,

which had the same architecture as the second scheme of Low-Rank Approximation [JVZ14]

but in different purposes: Inception used the asymmetric convolutional structure to avoid the

expensive 2D convolutions and train the filter directly, while Low-Rank Approximation decom-

posed pre-trained filters to exploit both input and output redundancies. However, both Low-Rank

Approximation and DecomposeMe required a pre-trained model, and both Low-Rank Approx-

imation and Inception’s multi-channel asymmetric convolution brought additional channels

requiring a larger memory footprint.

Our proposed method differs from the three methods above because we maintain the net-

work structure during training phase, train rank-1 separable filters directly, and then decompose

the rank-1 filters into pairs of vector filters for hardware implementation. Last but not least, to

the best of our knowledge no existing work provides an analytic closed form of the gradient of

filter-decomposition process for backward propagation.
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Figure 2.2. Comparison of the two SVD flows; (a) Choice 1: binarize the resulting floating-point
filters of SVD; (b) Choice 2: decompose the binarized filters.

2.3 Binarized CNN with Separable Filters

Here we describe the theory of BCNN with Separable filter in details. Our main idea is

to apply SVD on binarized filters to further reduce the memory requirement and computation

complexity for hardware implementation. We present the details of forward propagation in this

section and two methods of backward propagation in the next section.

2.3.1 The Subject of Decomposition

For BCNN, there are two approaches to binary filter decomposition. Figure 2.2 depicts

the two choices. If we adopt flow 1 and apply the rank-1 approximation (the red box) directly on

the real-valued filters, we cannot avoid real-time decomposition during training because the input

filter has an infinite number of possible combinations of pixel strengths. Therefore, we introduce

an extra binarization (the blue box) on the real-valued filters and apply the rank-1 approximation
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on the binarized filters. The number of possible input filters of rank-1 approximation, with this,

is limited to 2d2
, where d is the width or height of a filter. Using flow 2, we can build a look-up

table beforehand and avoid real-time SVD during training.

Naturally, the rank-1 approximation and the extra binarization will limit the size of the

basis to recover the original filters and equivalently introduce more noise into the model, as

shown in Figure 2.1 from (b) to (c). Instead of introducing an additional linear-combination layer

to improve the accuracy, we leave the task to the two aforementioned reasons that make BNN

work.

2.3.2 Binarized Separable Filters

Here we provide the detailed steps from binarized filters to binarized separable filters.

The result of SVD on a matrix A includes three matrices as shown in Eq. 2.1.

A =UDV T , (2.1)

where U and V are the left and right singular matrices containing row singular vectors, and D is

the singular value matrix with the sorted singular values on the diagonal trace from the largest to

the smallest. Similar to real value rank-1 approximation for the separable filters, the binarized

separable filters are obtained with an extra binarization process on the dominant singular vectors

as shown in Eq. 2.2.

Â = b(U [:,1])b(V [:,1]T ), (2.2)

where U [:,1] and V [:,1] stand for the left and right singular vectors corresponding to the largest

singular value, respectively, and the function b(.) denotes the binarization and can be imple-

mented in either a deterministic function or a stochastic process [HCS+16a]. Please note the

largest singular value is dropped because all singular values are always positive and have no

effect on binarization.

Figure 2.3(a) and (c) illustrates a kernel with three filters before and after binarized
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(a)

(b)

(c)

Figure 2.3. Example inputs and outputs of the binarized SVD and the recovered binary filters.
(a) A kernel before approximation; (b) Pairs of vectors (u,vT ) of SVD; (c) A kernel after rank-1
approximation in which every filter is an outer product of u and v. The white and black colors
stand for +1 and −1, respectively.

rank-1 approximation. Analogous with [HCS+16a] we keep a copy of the real-valued filters

during each training iteration and accumulate the weight gradients on them since SGD and other

convex optimization methods presume a continuous hypothesis space. This also allows us to train

the kernels as if the model is real-valued without the need for penalty rules [RSLF13] during

the backward propagation. For the test phase, all filters are binarized and approximated to be

binarized separable.

In our FPGA implementation, we use the pairs of vectors in Figure 2.3(b) to replace 2-D

filters and perform separable convolution, which involves a row-wise 1D convolution followed

by a column-wise convolution in back-to-back fashion before accumulating across different

channels. More details on the FPGA implementation are presented in Section 2.6.
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2.3.3 Details of the Implementation

As mentioned in Section 2.3.1, the benefit of flow 2 is to leverage a finite-sized look-up

table (LUT) to replace the costly SVD computation during the forward propagation of the training

phase. Although the training takes place on a highly-optimized parallel computing machine, the

LUT access is still a potential bottleneck if searching for an entry in the mapping is not efficient

enough.

We build two tables to avoid real-time SVD. The first table is composed of all binarized

separable filters. The number of entries in the first table can be calculated with Eq. 2.3.

K = 22d−1, (2.3)

where d is the width or height of a filter, and K is the number of entries in the first table.

The second table is the mapping relationship between all possible binary filters to their

corresponding binarized separable filters on the fist table. We design an estimation function to

make the tables content-addressable. The key to index the first table can be obtained with Eq. 2.4.

key = Λ ·A, (2.4)

where Λ is a vector or a matrix in the same size of A, and all elements in Λ are the weightings to

convert a matrix A into a number. The most straightforward choice of Λ is the binary-to-integer

conversion method. We take the first element in A as the least significant bit (LSB), so the Λ is

designed as Eq. 2.5.

Λ =

[
20 21 22 . . . 2N

]
, (2.5)

where N is the number of elements of A, and N = d2. With this simple hash function and the

efficient broadcasting technique in Theano [The16], we are able to efficiently obtain the keys for

all filters in a convolutional layer.
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2.4 Backward Propagation of Separable Filters

Besides the extra degrees of freedom regarding filter approximation introduced to BC-

NNw/SF’s forward propagation, two essential techniques make binarized separable filters work.

In this section, we describe the two techniques for the training of BCNNw/SF in details.

2.4.1 Method 1: Extended STE (eSTE)

As shown in Figure 2.2(b), during the forward propagation, all filters must be degraded

thrice. Since binarization can be considered as noise addition into the model and be regularized

with batch normalization, the rank-1 approximation error, which is just another process adding

extra noise, can be regularized as well. In details, we extend the straight-through estimator across

the three degradation processes in Figure 2.2 to update the real-valued filters with the rank-1

approximated filters. Eq. 2.6 shows the backward propagation of the gradient w.r.t. the binarized

rank-1 approximated filter,gÂ, to the gradient of real-valued filter, gr.

gr = gÂ1|r|≤1 (2.6)

This simple method relies on batch normalization to regularize the noise introduced by two

binarization and one rank-1 approximation.

2.4.2 Method 2: Gradient over SVD

Whereas binarization is not a continuous function, BNN [HCS+16a] resorted to the STE

to update the real-valued weights with the gradient of loss w.r.t binarized weights. Howbeit,

owing to the continuity of singular value decomposition, we are allowed to calculate the gradient

w.r.t. the resultant of the first binarization, Wb. More specifically, the rank-1 approximation is

differentiable because all of the three resultant matrices, i.e., U ,D, and V , of SVD in Eq. 2.1

are differentiable w.r.t. every element of the original input matrix, A. From the approximation

we adopt for separable filters as shown in Eq. 2.2, one can quickly obtain the derivative of Â
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w.r.t. the elements of the original matrix before the approximation as Eq. 2.7, if the STE for

binarization is applied.

∂Â
∂ai j

=
∂U [:,1]

∂ai j
b(V [:,1]T )+b(U [: 1])

∂V [:,1]T

∂ai j
(2.7)

Jacobian of Singular Value Decomposition [PL00] provided the mathematical closed-

form of the gradient of the three resultant matrices, as shown in Eq. 2.8, and 2.9.

∂U
∂ai j

=UΩ
i j
U (2.8)

∂V
∂ai j

=−V Ω
i j
V , (2.9)

where Ωi
U j and Ωi

V j are anti-symmetric matrices with zeros on their diagonals, and Eq. 2.10 and

2.11 can give us all off-diagonal elements.

Ω
i j
Ukl

=
dluikv jl +dkuilv jk

d2
l −d2

k
(2.10)

Ω
i j
Vkl

=
dkuikv jl +dluilv jk

d2
k −d2

l
(2.11)

Eq. 2.12 shows the general form of the differential equation.

∂Â
∂ai j

=



∂â11
∂ai j

∂â12
∂ai j

. . . ∂â1N
∂ai j

∂â21
∂ai j

∂â22
∂ai j

. . . ∂â2N
∂ai j

...
... . . . ...

∂âM1
∂ai j

∂âM2
∂ai j

. . . ∂ÂMN
∂ai j


(2.12)

∂âkl

∂ai j
= b(Uk1)

N

∑
n=2

VknΩ
i j
V1n
−b(Vl1)

N

∑
n=2

UlnΩ
i j
U1n

(2.13)

From equations 2.8 to 2.11, we can derive every element in Eq. 2.12 as shown in Eq. 2.13 and
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see there exist cross-terms between elements. The gradient of an SVD resultant matrix w.r.t.

one element in the original input matrix is also a matrix of the same dimension, M-by-N, i.e.,

a single element’s change in the input matrix can affect all other elements in the resultant of

SVD. The intuition behind is that the rank-1 approximation is a matrix-wise filter-level mapping

relationship rather than an element-wise operation, and multiple elements contribute to the

mapping result of a filter.

To recap Eq. 2.12 with the chain rule calculation of backward propagation, we follow a

similar fashion to how neurons on a preceding layer collect errors from the lower layer. Eq. 2.14

shows the dot product for collecting errors from a succeeding layer and propagate the errors

to every element in binarized filters A. For method 2, we also build a table of the derivatives

together with the binarized rank-1 approximation to avoid real-time calculation of Eq. 2.12.

∂loss
∂ai j

≡ dloss
dÂ
· ∂Â

∂ai j
(2.14)

2.5 Experiments

We conduct experiments on the Theano [The16] based on the Courbariaux’s frame-

work [Cou16], using two GPUs: NVIDIA GeForce GTX Titan X and GTX 970 to finish the

training/testing process. In most of the experiments, we obtain the near state-of-the-art results

using BCNNw/SF.

In this section, we describe the network structures we use and list the classification

result on three datasets. We compare our result with related works and then analyze different

perspectives, including the binarized separable filters and learning ripples.

2.5.1 Datasets and Models

We evaluate our methods on three benchmark image classification datasets: MNIST,

CIFAR-10, and SVHN. MNIST is a dataset for 28x28 gray-scale handwritten digits, which
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Table 2.1. Network architecture for different datasets. The dimension of a convolutional layer’s
kernel stands for number of kernels on the concerned layer M, number of channels C, the width
of a filter W , and the height of a filter H; the dimension of a fully-connected layer’s weights
means the number of preceding layer’s neurons and the number of the concerned layers’ neurons.

Name MNIST(CNN) CIFAR-10 SVHN
Input 1x28 3x32x32 3x32x32

Conv-1 64x3x3 128x3x3 64x3x3
Conv-2 64x3x3 128x3x3 64x3x3
Pooling 2 x 2 Max Pooling
Conv-3 128x3x3 256x3x3 128x3x3
Conv-4 128x3x3 256x3x3 128x3x3
Pooling 2 x 2 Max Pooling
Conv-5 256x3x3 512x3x3 256x3x3
Conv-6 256x3x3 512x3x3 256x3x3
Pooling 2 x 2 Max Pooling

FC-1 1024 1024 1024
FC-2 1024 1024 1024
FC-3 10 10 10

has a training set of 60K examples, and a testing set of 10K examples. SVHN is a real-world

image dataset for street view house numbers, cropped to 32x32 color images, with 604K digits

for training, 26K digits for testing. Both of these datasets classify digits ranging from 0 to 9.

CIFAR-10 dataset consists of 60K 32x32 color images in 10 mutually exclusive classes (airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck), with 6,000 images per class. There

are 50K training images and 10K test images.

The convolutional neural networks we use has almost the same architecture as BNN

[HCS+16a]’s except for some small modification. The VGG [SZ14] network inspires us these

architectures. It contains three fully-connected layers and six convolutional layers, in which the

kernels for convolutional layers is 3 x 3. Please refer to Table 2.1 for the detailed numbers of

parameters.

In each experiment, we split the dataset into three parts: 90% of the training set is used

for training the network, the remaining 10% is used as a validation set. During the training, we

use both the training loss on the training set and inference error-rate on the validation set as
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Table 2.2. Classification Accuracy (Error Rate) Comparison on Different Datasets. BCNNw/SF1
stands for our training method 1; BCNNw/SF2 denotes for our training method 2.

Dataset MNIST(CNN) CIFAR-10 SVHN
No binarization (standard results)

Maxout Networks [GWFM+13] 0.94% 11.68% 2.47%
Binarized Network

BCNN(BinaryNet) [HCS+16a] 0.47% 11.40% 2.80%
Binarized Network with Separable Filters

BCNNw/SF Method 1 (this work) 0.48% 14.12% 4.60%
BCNNw/SF Method 2 (this work) 0.56% 15.46% 4.18%

performance measurements. To evaluate the different trained models, we use the classification

accuracy on the testing set as the evaluation protocol.

In order for all these benchmarks to remain challenging, We did not use any pre-

processing, data-augmentation or unsupervised learning. We use a binarized hard tangent

[HCS+16a] function as the activation function. The ADAM adaptive learning rate method

[KB14] is used while minimizing the square hinge loss with an exponentially decaying learning

rate. We also apply batch normalization to our networks, with a mini-batch of size 100, 50 and

50 (separately for MNIST, CIFAR-10, and SVHN), to speed up the learning, and we scale the

learning rate for each convolutional layer with a factor from Glorot’s batch normalization [IS15].

We train our networks for 300 epochs on MNIST and CIFAR-10 datasets, and 200 epochs on

SVHN datasets. The results are given in Section 2.5.2.

2.5.2 Benchmark Result

Figure 2.4 depicts the learning curves on the CIFAR-10 dataset. There exists certain

accuracy degradation if we compare BCNN with our methods due to a more aggressive noise. By

the end of the training phase, our method 1 yields an accuracy less than that of BCNN by roughly

2.72%, and method 2 reaches an even more inferior accuracy. For the sake of CIFAR-10’s higher

difficulty, the loss of accuracy meets our expectation. We will discuss in detail the benefit of

using the exact gradient over the rank-1 approximation in next sub-section.
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Figure 2.4. Learning Curves of BNN(red), BNNw/SF1(green) and BNNw/SF2(blue) on the
CIFAR-10 dataset. The dashed lines represent the training costs(square hinge losses) and the
solid lines the corresponding validation error rates.

Table 2.2 summarizes the experimental results in terms of error rate. Compared with

BNN [HCS+16a], for the gray-scale manuscript number classification, both of our two training

methods achieve accuracy close to that of the binarized convolutional neural networks. The

difference is within 0.09%. It is noteworthy that our method 2 outperforms method 1 on SVHN by

0.42% error rate. For CIFAR-10 and SVHN, our methods are inferior to BCNN by a difference

less than 2.72% because we limit choices of filters from 512 to 32, where the filter size is

3x3. Since the performance degradation on CIFAR-10 is the largest, we implement a hardware

accelerator in FPGA to inspect at what extent of hardware complexity can be improved with the

sacrifice of the 2.72% accuracy loss. Section 2.6 provides the details and a comparison with a

BCNN accelerator to demonstrate the benefits of BCNNw/SF.

2.5.3 Scalability

We also explore different sizes of networks to improve the accuracy and exam the

scalability of BCNNw/SF. Table 2.3 lists two additional larger models and an AlexNet-like
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Table 2.3. The 1st column shows a deeper model with two extra convolutional layers, and the
2nd column shows a widened network with all numbers of kernels doubled. The 3rd column is
inspired by AlexNet to include 3 sizes of filters.

Name Deeper Wider AlexNet-like
Input 3x32x32 3x32x32 3x32x32

Conv-1 128x3x3 256x3x3 96x5x5
Conv-2 128x3x3 256x3x3 256x5x5
Pooling 2 x 2 Max Pooling
Conv-3 256x3x3 512x3x3 512x3x3
Conv-4 256x3x3 512x3x3 512x3x3
Pooling 2 x 2 Max Pooling
Conv-5 512x3x3 1024x3x3 256x3x3
Conv-6 512x3x3 1024x3x3 512x1x1
Pooling 2 x 2 Max Pooling
Conv-7 512x3x3 - -
Conv-8 512x3x3 - -
Pooling 2x2 Max Pooling - -

FC-1 1024 1024 1024
FC-2 1024 1024 128
FC-3 10 10 10

model for CIFAR-10. The wider one stands for a model with all numbers of kernels doubled,

and the deeper one is a network including two extra convolutional layers. Different from the

models above, the AlexNet-like model includes three sizes of filters: 5-by-5, 3-by-3, and 1-by-1.

Applying our rank-1 approximation on 5-by-5 filter, we can get 64% memory reduction. We

train the three bigger networks with our method 1, and Figure 2.5 shows the learning curves of the

two enlarged models for CIFAR-10. Since the number of trainable parameters has increased, it

requires more epochs to travel in the hypothesis space and reach a local minimum. Therefore, we

train these two bigger networks with 500 epochs and compare the results with BCNN(BinaryNet).

As shown in Figure 2.5 the wider one (blue) starts with largest ripples yet catch up the same

performance as BCNN(black) does around the 175th epoch.

Table 2.4 lists the results on CIFAR-10 of the three bigger models as well as the CIFAR-

10 results in Table 2.2. The performance improvement of the deeper networks is very scarce

since the feature maps experience the extra destructive max pooling layer as shown in Table 2.3,
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Figure 2.5. Learning Curves of the larger BCNNw/SF models: deeper Network(red), BC-
NNw/SF with wider Network(blue) and the original BCNN on the CIFAR-10 dataset. The
dotted lines represent the training costs(square hinge losses) and the solid lines the corresponding
validation error rates.

which reduces the size of the first fully-connected layer, FC-1, and hence suppresses the im-

provement. The wider network achieves 11.68%, which is very close to the performance of

BCNN(BinaryNet). The AlexNet-like model demonstrates that a model with 5-by-5 filters sacri-

fices more accuracy to provide higher memory reduction. In summary, the accuracy degradation

of BCNNw/SF has been compensated by enlarging the sizes of the networks.

2.5.4 Discussion

In this section, we use the experimental results on CIFAR-10 as an example of a detailed

analysis. We unpack the trained rank-1 filters and learning curves to gain a better understanding

of the mechanism of BCNNw/SF.

Figure 2.6 lists all the 32 rank-1 filters and their frequency on CIFAR-10. Although

certain filters are rarely used, there is no filter forsaken. In Figure 2.6 we can learn that the

all-positive and all-negative filters are trained most frequently, and these two filters render the
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Table 2.4. Classification Accuracy (Error Rate) of the three larger models.

Dataset CIFAR-10
BCNN(BinaryNet) [HCS+16a] 11.40%
Binarized Network with Separable Filters (this work)
BCNNw/SF Method 1 14.12%
BCNNw/SF Method 1 depper 14.11%
BCNNw/SF Method 1 wider 11.68%
BCNNw/SF Method 1 AlexNet-like 15.1%

Figure 2.6. Separable Filters and Frequencies used in CIFAR Model

convolution to running-sum calculation with a sliding window. As mentioned in Section 2.3.1,

through the summation of separated convolution from a preceding layer, we can achieve the

tangled linear combinations, which are essential to BCNNw/SF.

Unknowing the spectrum of the ripple, we apply Savitsky-Golay filter [SG64] to obtain

the baseline of validation accuracy and, thereby, subtract the original accuracy with the baseline

to get the ripple. The window width of the Savitsky-Golay filter is 51, and we use a quadratic

equation to fit the original learning curve. All ripples are quantized into 100 categories for the

statistic analysis.
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Table 2.5. The statistics of the ripples in terms of percent of error rate.

Statistics mean std max
BCNN(BinaryNet) [HCS+16a] 0.052 1.213 5.09
BCNNw/SF Method 1 0.055 1.059 4.465
BCNNw/SF Method 2 0.035 0.723 3.622

Table 2.5 compares our method 1 and methods 2 with BCNN. All three statistic advan-

tages of method 2 are reduced. The analytic gradient over the rank-1 approximation stabilizes

the descending trajectory with more accurate gradient calculation. Both BCNN and our method

1 rely on the gradient w.r.t. binarized filters to update all parameters due to the lack of analytic

gradient w.r.t. real-valued filters. However, it is also the rigorous gradient that limits the possibil-

ity to escape a local minimum on the error surface. As we can see in Table 2.2, the results of

our method 1 are closer to that of BCNN. We use the trained binarized separable filter from our

method 1 to implement an FPGA accelerator for CIFAR-10 in the following section.

2.6 FPGA Accelerator

2.6.1 Platform and Implementation

To quantify the benefits that BCNNw/SF can achieve for hardware BCNN accelerators,

we created an FPGA accelerator for the six convolutional layers of the Courbariaux’s CIFAR-10

network. Our accelerator is built from the open-source FPGA implementation in [ZSZ+17].

The dense layers were excluded as they are not affected by our technique. As BCNNw/SF is

ideal for small, low-power platforms, we targeted a Zedboard with a Xilinx XC7Z020 FPGA

and an embedded ARM processor. This is a much smaller FPGA device compared to existing

CNN FPGA accelerators [QWY+16, SCD+16]. We write our design in C++ and use Xilinx’s

SDSoC tool to generate Verilog through high-level synthesis. We implement both BCNN and

BCNNw/SF and examine the performance and resource usage of the accelerator with and without

separable filters.

Our accelerator is designed to be small and resource-efficient; it classifies a single
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image at a time and executes each layer sequentially. The accelerator contains two primary

compute complexes: Conv1 computes the first (non-binary) convolutional layer, and Conv2-5 is

configurable to compute any of the binary convolutional layers. Other elements include hardware

to perform pooling and batch normalization, as well as on-chip RAMs to store the feature maps

and weights. Computation with the accelerator proceeds as follows. Initially, all input images and

layer weights are stored in off-chip memory accessible from both CPU and FPGA. The FPGA

loads an image into local RAM, then it loads the layer’s weights and performs the computation

for each layer. Larger layers require several accelerator calls due to limited on-chip weight

storage. Intermediate feature maps are fully stored on-chip. After completing the convolutional

layers we write the feature maps back to main memory and the CPU computes the dense layers.

We kept the BCNN and BCNNw/SF implementations as similar as possible, with the

main difference being the convolution logic and storage of the weights. For BCNN, each output

pixel requires 3×3= 9 MAC operations to compute. For BCNNw/SF we can apply a 3x1 vertical

followed by a 1x3 horizontal convolution, a total of 6 MACs. As the MACs are implemented by

XORs and an adder tree, BCNNw/SF can potentially save resource.

In terms of storage, BCNN requires the 9 bits to store each filter. Naively, BCNNw/SF

requires 6 bits, as each filter is represented as two 3-bit vectors. However, recall we only use

rank-1 filters — Eq. 2.3 shows that the number of unique 3×3 is 32, meaning we can encode

them losslessly with only 5 bits. A small decoder in the design is used to map the 5-bit encodings

into 6-bit filters.

2.6.2 Results and Discussion

Table 2.6 compares the execution time and resource usage of the two FPGA implementa-

tions. Resource numbers are reported post place and route, and runtime is wall clock measured

on a real Zedboard. We exclude the time taken to transfer the final feature maps from FPGA to

main memory, as it is equal between the two networks; transfer time for the initial image and

weights are included.
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Table 2.6. Comparison of performance and resource usage between BCNN and BCNNw/SF
FPGA implementations. Runtime is for a single image, averaged over 10000 samples.

BCNN BCNNw/SF (this work) δ

Conv layer
0.949 0.652 -31.3%

runtime (ms)
LUT 35255 36384 +3.2%
FF 41418 41054 -1.0%
Block RAM 94 78 -17.0%
DSP 8 8 0.0%

Our experimental results show that BCNNw/SF achieves runtime reduction of 31% over

BCNN, which equates to a 1.46X speedup. This is due mostly to the reduction of memory

transfer time of the compressed weight filters. For similar reasons, BCNNw/SF is able to save

17% of the total block RAM (RAMs are used for both features and weights). Look-up table

(LUT) counts have increased slightly, due most likely to the additional logic needed to map

the 5-bit encodings to actual filters. Overall, BCNNw/SF realizes significant improvements to

performance and memory requirement with minimal logic overhead.

2.7 Conclusion and Future Work

In this chapter, we proposed the binarized convolutional neural network with Separa-

ble Filters (BCNNw/SF) to make BCNN more hardware-friendly. Through binarized rank-1

approximation, 2D filters are separated into two vectors, which reduce memory footprint and

the number of logic operations. We have implemented two methods to train BCNNw/SF with

Theano and verified our methods with various CNN architectures on a suite of realistic image

datasets. The first method relies on batch normalization to regularize noise, making it simpler

and faster to train, while the second method uses gradient over SVD to make the learning curve

more smooth and potentially achieves better accuracy. We also implement an accelerator for the

inference of a CIFAR-10 network on an FPGA platform. With separable filters, the total memory

footprint is reduced by 17.0% and the performance of the convolution layers is improved by

1.46X compared to baseline BCNN.
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Integrating probabilistic methods [SHM14b] to reduce the training time and exploring

more elegant structures of networks [SIV16] will be a promising direction for future works.

Chapter 2 contains reprints of Jeng-Hau Lin, Tianwei Xing, Ritchie Zhao, Zhiru Zhang,

Mani Srivastava, Zhuowen Tu, and Rajesh K. Gupta.“Binarized Convolutional Neural Networks

with Separable Filters for Efficient Hardware Acceleration.” In Computer Vision and Pattern

Recognition Workshop (CVPRW). IEEE, 2017. This dissertation author is the primary author of

this paper.
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Chapter 3

Local Binary Pattern Networks

Emerging edge devices such as sensor nodes are increasingly being tasked with non-

trivial tasks related to sensor data processing and even application-level inferences from this

sensor data. These devices are, however, extraordinarily resource constrained in terms of CPU

power (often Cortex M0-3 class CPUs), available memory (in few KB to MBytes), and energy.

Under these constraints, we explore a novel strategy to carry out character recognition tasks

using local binary pattern networks, or LBPNet, that can learn and perform bit-wise operations

in an end-to-end fashion. LBPNet has its advantage for characters for which the features are

composed of structured strokes and distinct outlines. LBPNet uses local binary comparisons

and random projections in place of conventional convolution (or approximation of convolution)

operations, providing an important means to improve memory efficiency as well as inference

speed. We evaluate LBPNet on a number of character recognition benchmark datasets, as well as

several object classification datasets, and demonstrate its effectiveness and efficiency.

3.1 Introduction

Rigid and deformable objects like optical characters are interesting patterns to study in

computer vision and machine learning. In particular, instances found in the wild – handwriting,

street signs, and house addresses (as shown in Figure 3.1) – are of high importance to the

emerging mobile edge systems such as augmented reality glasses or delivery UAVs. The recent
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Figure 3.1. Examples from character recognition datasets.

innovations in Convolutional Neural Networks (CNN) [LBD+89b] have achieved state-of-the-

art performance on these OCR tasks [YWZL13]. As deep learning models evolve and take on

increasingly complex pattern recognition tasks, however, they demand tremendous computational

resources with correspondingly higher performance machines and accelerators that continue to

be fielded by system designers. This can limit their use to only applications that can afford the

energy and/or cost of such systems. By contrast, the universe of embedded devices, especially

when used as intelligent edge devices in the emerging distributed systems, presents a higher

range of potential applications from augmented reality systems to smart city systems. As a result,

seeking for memory and computationally efficient deep learning methods becomes crucial to the

continued proliferation of machine learning capabilities to new platforms and systems, especially

mobile sensing devices with ultra-small resource footprints.

Various methods have been proposed to perform network pruning [LDS90, GYC16],

compression [HMD15, IHM+16], or sparsification [LWF+15], in order to reduce the model

complexity. Impressive results have also been achieved lately by binarizing selected operations

40



in CNNs [CBD15, HCS+16b, RORF16b]. At their core, these efforts seek to approximate the

internal computational granularity of CNNs, from network structures to variable precisions,

while still keeping the underlying convolution operation exact or approximate. However, the

nature of character images has not been fully taken advantage yet.

In this work, we propose a light-weight and compact deep learning approach, LBPNet,

that can leverage the nature of character images. Particularly, we focus on the character classi-

fication task and explore an alternative to convolutional operations – the local binary patterns

(LBP), which employs a number of predefined sampling points that are mostly on the perimeter

of a circle, compares them with the pixel value at the center using logical operations, and yields

an ordered array of logical outputs in order to learn the patterns in an image. This operation

makes LBP particularly suitable for recognizing characters that consist of discriminative outlines

and structured strokes. We note that our work has roots in research before the current generation

of deep learning (DL) methods, namely, the adoption of LBP [OPH96]. While LBP gives rise

to a surprisingly rich representation [WHY09] of the underlying image patterns and has shown

to be complementary to the SIFT-kind features [Low04], it has been under-explored in the

DL research community, where the feature learning primarily refers to the CNN features in a

hierarchy [KSH12, HZRS15].

Multiple innovations and important properties within LBPNet distinguish it from previous

attempts:

• Multiplication and accumulation free. We employ the LBP that involves only logic opera-

tions to extract features of images, which is in stark contrast to previous attempts trying to

either directly binarize the CNN operations [HCS+16b, RORF16b] or approximate LBP with

convolution operations [JXBS17]— convolution requires expensive, power-hungry multipliers

and slow accumulation operations.

• Learnable LBP kernel. The sampling points in a traditional LBP kernel are at fixed locations

upon initialization, due to the lack of a sustainable mechanism to deform the sampling patterns
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Figure 3.2. The LBPNet micro-architecture: The LBP operation generates feature maps via
comparison and bit allocation, and the random projection fuses the intermediate channels to final
output.

for feature extraction, and they only learned the linear combination of the resultant generated

from the fixed patterns. Instead, we design a differentiable function to learn the sampling

patterns and prove the effectiveness of LBPNet’s learning via the optical flow theory and

gradient descent.

• Compact model size. CNN-based models are stored in dense matrices which usually takes

mega-byte storage space, while LBPNet learns discrete and sparse patterns. Without further

encoding or compression, the typical sizes of the kernels in LBPNets are on the kilo-byte level,

yielding 1,000X model reduction in parameter size.

• Fast inference speed. The accumulation in convolution impedes CNN’s inference speed. Even

though the basic linear algebra subprogram (BLAS) library utilizes techniques such as loop

unrolling and tiling, there still exists the accumulation of small accumulating blocks. However,

LBPNet’s memory indexing, comparison, and bit-allocation have no data-dependency on the

neighboring computing elements, and can thus be parallelized. This significantly boosts the
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inference speed for LBPNet on common single-instruction-multiple-data (SIMD) architectural

systems like GPUs or pipeline-parallel systems like FPGAs or ASICs.

• Optimized backward propagation and end-to-end learning. The backprop of LBPNet

follows the framework of the state-of-the-art fastest implementation of Conv Layer, Spatial-

ConvolutionMM [CPS06]. Owing to the sparse sampling patterns in LBPNet, we can replace

part of the gradient computation with much simpler CUDA-C routines.

3.2 Related Work

Related work regarding model reduction of CNN falls within four primary categories.

Character Recognition. In addition to the CNN-based solutions to character recognition

like BNN [HCS+16b], the random forest [YBL14, YBSL14] was prevailing as well. However, it

usually required one or more techniques such as feature extraction, clustering, or error correction

codes to improve recognition accuracy. Our method, instead, provides a compact end-to-end and

computationally efficient solution to character recognition.

Active or Deformable Convolution. Among the notable line of recent work that learned

local patterns were active convolution [JK17] and deformable convolution [DQX+17]. While

they indeed learned data dependent convolution kernels, which still heavily relied on multipli-

cation and addition operations, they did not explicitly seek to improve the network efficiency.

By contrast, our LBP kernels learn the best location for the sampling points in an end-to-end

fashion via simple yet effective logic operations, without the need for multiplication and addition

operations required in convolutions.

Binarization for CNN. Binarizing CNNs to reduce the model size has been an active

research direction [CBD15, HCS+16b, RORF16b]. Through binarizing the weights and/or

activations, these works replaced multiplications with logic operations thus reducing the model

size. However, non-binary operations such as batch normalization in BNN [HCS+16b] and

scaling and shifting in XOR-Net [RORF16b] still required floating-point operations. Both BNN
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and XNOR-Net can be considered as the discretization of real-valued CNNs, and thus the two

works were still fundamentally based on spatial convolution — we instead leverage the less

computationally hungry LBP that employs logic operations.

CNN Approximation for LBP Operation. Recent work on local binary convolutional

neural networks (LBCNN) [JXBS17] took an opposite direction to BNN [HCS+16b]. LBCNN

utilized the difference between pixel values together with a ReLU layer to simulate the LBP

operations. During training, the sparse binarized difference filters were fixed, and only the

successive 1-by-1 convolution kernel, serving as a channel fusion mechanism, and the parameters

in the batch normalization layer (BatchNorm layer), were learned. However, the feature maps of

LBCNN were still made up of floating-point numbers, and this resulted in significantly increased

model complexity as we shall show later in Table 3.3 and 3.4.

Although LBCNN have achieved some degree of model compression on OCR tasks, it

still relied heavily on using batch normalization layers, which must be performed in floating

numbers for the linear transformation. While implementing hardware accelerators, people have

found that the four BatchNorm parameters at most can be quantized from 32-bit floating numbers

to 16-bit fixed numbers without significant accuracy loss [ZSZ+17]. Because the size and

computation of a batch normalization layer were linear in the size of the feature maps, LBCNN

was still too cumbersome for IoT devices built with limited memory and compute resources.

Even for binarized neural networks, the convolutional kernels and batch normalization layer

parameters were still so large that an off-chip DRAM and on-chip buffering mechanism are

required [ZSZ+17, UFG+17]. Therefore, we propose LBPNet to directly learn the sparse and

discrete LBP kernels, which are typically as tiny as several kilobytes.

3.3 Local Binary Pattern Network

In LBPNet, the forward propagation is composed of two key procedures: the LBP opera-

tion and channel fusion. In this section, we elaborate on them, describe the carefully designed

44



Figure 3.3. The traditional and our local binary patterns: (a) A traditional local binary pattern.
(b)-(d) Our learnable local binary patterns. The red arrows denote pushing forces during training.

network structure of LBPNet, and present a back-of-the-envelope calculation of hardware gains

of LBPNet.

3.3.1 LBP Kernel and Operation

Figure 3.3 (a) shows a traditional LBP with a fixed structure: there are eight sampling

points (the green circles) surrounding a pivot point (the meshed star) at the center of the kernel.

The pixel at each of the sampling points will be compared with the one at the center, and if

the sampled pixel value is larger than that at the center, we output a bit “1”; otherwise, the

output is set to “0”. These eight 1-bit comparison outcomes are assigned to a bit array according

to predefined order, either clockwise or counter-clockwise. The bit array is interpreted as an

integer and can be further used with learning methods such as support vector machine, histogram

analysis, multi-layer perceptrons, etc.

In LBPNet, we make the fixed sampling points in a traditional LBP kernel adaptive and

learnable, as shown in Figure 3.3(b)-(d): The learnable patterns are first initialized at random

locations within a given area following a uniform distribution and then pushed to better locations

to minimize the classification error using our proposed mechanism. The sizes of the sampling

points (in green) correspond to the bit positions of the comparison outcomes in the output bit

array – a larger circle corresponds to a more significant bit. The red arrows represent the driving

forces that can push the sampling points, and we defer the details of the deformation mechanism
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Figure 3.4. An example of the LBP operation on two input channels – ch.a and ch.b: There are
four sampling points in each 3-by-3 LBP kernel, and each sampling point produces a logic bit
which is assigned to a certain position (marked with arrows) in the output array (shown at the
bottom in pink and yellow).

to the next section. The model size of an LBPNet is tiny compared with CNN because the

learnable patterns in LBPNet are comprised of the sparse and discrete sampling indices within

the window. Finally, multiple patterns in different channels form a kernel of LBPNet.

Figure 3.4 shows a snapshot of the LBP operation. Given two input channels, ch.a and

ch.b, we perform the LBP operation on each channel with different 3-by-3 kernel patterns. We

only put four sampling points, as an example, in each kernel to avoid cluttered figures, and

the two 4-bit binary response arrays are shown at the bottom (in pink and yellow). For clarity,

we use green dashed arrows to mark the corresponding pixels for the resulting bits and list the

comparison equation under each bit. In LBPNet, we slide the LBP kernel over an entire image,

as convolution is done in CNN, to produce a complete feature map, and we perform the LBP
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Figure 3.5. An example of LBP channel fusion. The two 4-bit responses in Figure 3.4 are fused
and assigned to pixel s13 in the output feature map.

operation on each input channel of the image.

3.3.2 Channel Fusion with Random Projection

With the LBP operation, the number of resulting channels might grow exponentially:

suppose we have N LBP layers, and each uses K kernels, the number of the output channels in

the last layer will be O(KN). Akin to channel-wise addition in normal convolutional operation,

we need a channel fusion mechanism to avoid the potential explosion. We resort to random

projection [BM01] as a dimension-reducing and distance-preserving step to select output bits

among intermediate channels for the concerned output channel, as shown in Figure 3.5. The

random projection is implemented with a predefined mapping table for each output channel. By

way of explanation, the mapping between the bit in the output pixel and the channel of the image

is fixed upon initialization, and all output pixels in the same output channel follow the same

mapping. For example, in Figure 3.5, the two pink bits in the output pixel come from ch.a while

the two yellow bits come from ch.b. As a result, only the most and least significant bits on ch.a

47



Figure 3.6. Building block architecture: (a) the well-known building block of residual networks.
(b) The transition-type building block uses a 1-by-1 convolutional layer as an alternate channel
fusion for the preceding LBP layer; this structure is considered as a baseline in evaluation. (c)
The multiplication and accumulation (MAC) free building block of our LBPNet.

and the two middle bits on the ch.b need to be computed. In other words, for an n-bit output

pixel, the random projection will select only n channels to make n comparisons, eliminating

the need of comparing all sampling points with the pivots. The fusion step essentially makes

the number of comparisons independent from the number of input channels Kin and reduces the

memory complexity from O(KinKout) to O(nKout), where Kout is the number of output channels.

Although Kin is removed from the memory complexity, it still affects the algorithm because a

larger Kin will result in more variations–there would be
Kin

n

 combinations–for the projection.

3.3.3 Network Structures of LBPNet

The network structure of LBPNet must be carefully designed. Owing to the binary

nature of the comparison, the outcome of an LBP layer is very similar to the result of difference

filtering. In other words, our LBP layer is good at extracting high-frequency components in

the spatial domain but relatively weak at understanding low-frequency components. Therefore,

we use a residual-like structure to compensate for this weakness of LBPNet. Figure 3.6 shows

three kinds of residual-net-like building blocks. Figure 3.6 (a) is the typical building block for
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Table 3.1. The number of logic gates for arithmetic units. Energy usage for technology node:
45nm.

Device #bits #gates Energy (J)

Adder
4 20 ≤ 3E-14
32 160 9E-13

Multiplier 32 ≥144 3.7E-12
Comparator 4 11 ≤ 3E-14

residual networks, where the convolutional kernels learn to obtain the residual of the output

after the addition. Similarly, in LBPNet, because the pixels in the LBP output feature maps are

always positive, we use a shifted rectified linear layer (shifted-ReLU) accordingly to increase

nonlinearities, as shown in Figure 3.6 (c). The shifted-ReLU truncates any magnitudes below the

half of the maximum of the LBP output. More specifically, if a pattern has n sampling points,

the shifted-ReLU is defined as

f (x) =

 x, x > 2n−1−1

2n−1−1, otherwise.

As mentioned earlier, the low-frequency components evanesce as the information passes

through several LBP layers. To preserve the low-frequency components while making the basic

block multiplication-and-accumulation free (MAC-free), we introduce a joint operation, which

cascades the input tensor of the block and the output tensor of the shifted-ReLU along the

channel dimension. The number of channels is under controlled since the increasing trend is

linear in the number of input channels.

Throughout the forward propagation, there are no multiplication or addition operations.

Only comparison and memory access are used. Therefore, the design of LBPNets is efficient

with regard to both software and hardware.
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3.3.4 Hardware Benefits

LBPNet avoids the computation-heavy convolution operations and thus saves hardware

costs. Table 3.1 lists the reference numbers of logic gates of the concerned arithmetic units. A

ripple-carry full-adder requires 5 gates for each bit. A 32-bit multiplier includes a data-path

logic and a control logic. Because there are too many feasible implementations of the control

logic circuits, we conservatively use an open range to give a sense about the hardware expense.

The comparison can be implemented on a pure combinational logic circuit comprised of 11

gates, which also means that only the infinitesimal internal gate delays dominate the computation

latency. The comparison is not only cheap regarding its gate count but also fast due to the

absence of sequential logic internally. Slight difference in numbers of logic gates may apply

if different synthesis tools or manufacturers are chosen. With the capability of an LBP layer

as strong as a convolutional layer concerning classification accuracy, replacing the convolution

operations with comparison gives us a 27X saving of hardware cost. Another important benefit

is energy savings. The energy demand for each arithmetic device has been shown in [Hor14]. If

we replace all convolution operations with comparisons, the energy consumption is reduced by

153X. Moreover, the core of LBPNet is composed of bit-shifting and bitwise-OR, and both of

them do not have the concurrent accessing issue as in convolution’s accumulation process. If

we implement an LBPNet hardware accelerator, no matter on FPGA or ASIC flow, the absence

of the concurrent issue will guarantee a speedup over CNN hardware accelerator. For more

justification, please refer to the forward algorithm in the appendices.

3.4 Backward Propagation of LBPNet

There exist two problems in the backward pass of LBPNet that prevent it from being

trained with ordinary gradient descent methods:

1) Non-differentiability of comparison. Inherently, LBPNet requires binary comparison of

activations; however, this is not differentiable.

50



2) The lack of a driving force for parameter updates. The learnable parameters (excluding

those present at the MLP stage) in an LBPNet are the sampling points’ locations within each

pattern. A gradient (or approximation) between the rest of the network and a given configuration

of sampling points was not clearly defined.

3.4.1 Differentiability of comparison

The first problem can be solved if we model the comparison operation with a shifted and

scaled hyperbolic tangent function as

Ilbp > Ipivot
modeled→ 1

2

(
tanh

(
Ilbp− Ipivot

α

)
+1
)
, (3.1)

where α is a scaling parameter to accommodate the number of sampling points from a previous

LBP layer, Ilbp is the sampled pixel in a learnable LBP kernel, and Ipivot is the sampled pixel at the

pivot. We provide a sensitivity analysis of α w.r.t. classification accuracy in the appendices. The

hyperbolic tangent function is differentiable and has a simple closed-form for the implementation.

3.4.2 Deformation with Optical Flow

The aperture problem within the optical flow theory provides a sustainable mechanism

that can push sampling points to extract common features for classification. In this section, we

provide a brief proof of the effectiveness of LBPNet regarding feature extraction.

The optical flow equation [BFB94] states:

∂I
∂x

Vx +
∂I
∂y

Vy =−
∂I
∂t
, (3.2)

where the left-hand side of the optical flow equation can be interpreted as a dot-product of the

image gradient ( ∂I
∂x x̂+ ∂I

∂y ŷ) and optical flow (Vxx̂+Vyŷ), and this product equals the negative

derivative of luminance versus time across different images, where x̂ and ŷ denote the two

orthogonal unit vectors on the 2-D coordinate, and the infinitesimal time difference ∂t can be
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controlled to be a constant.

In the Lucas-Kanade method [LK81], the optical flow is constrained to be constant in

a neighborhood around each point in the image. Therefore, the optical flow equation can be

rewritten as

Av = b, (3.3)

where A =



Ix1 Iy1

Ix2 Iy2

...
...

Ixm Iym


, b =



−It1

−It2
...

−Itm


, v =

vx

vy

, Ixi =
∂I[i]
∂x , Iyi =

∂I[i]
∂y , Iti =

∂I[i]
∂t , and m is the

number of sampled pixels. The unknown optical flow vector v can, therefore, be solved since the

number of equations depends on the number of pixels sampled, which can be designed to make

the equation over-determined.

Applying the singular value decomposition (SVD) to the image gradient matrix A in

Eq. (3.3) and move all three decomposition matrices to the right-hand side (RHS), we get the

optical flow vector:

v = VD−1U>b, (3.4)

where U and V are the left and right singular matrices which comprise orthonormal column

vectors and possess the property of U>U = I and V>V = I, and D is a diagonal matrix containing

the singular values on its diagonal trace. VD−1U> forms a left generalized inverse of A.

We now show how this solution to the optical flow problem can provide useful gradient

signal to the sampling points of an LBP pattern. Applying the chain rule within backpropagation

to the sampling points (please refer to the appendices for more details of LBPNet’s chain rule

equations.):

g = kA, (3.5)

where k =

[
go1

∂Fm1
∂Ilbp1

,go2
∂Fm2
∂Ilbp2

, . . . ,gom
∂Fmm
∂Ilbpm

]
, g =

[
∂loss

∂x , ∂loss
∂y

]
, and A is the image gradient

matrix in Eq. (3.3), go is the error propogated from the succeeding layer, Fm is the output
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feature map, ∂Fmi
∂Ilbpi

= 1
α

[
1− tanh2

(
Ilbpi−Ipivoti

α

)]
, and (Ilbpi, Ipivoti) is a pair of sampled pixels for

comparison.

With the gradient of loss and the optical flow vector, we can derive the relation between

gradient descent and the minimization of pixel difference as follows.

Multiply Eq. (3.5) to Eq. (3.4) from the left to get Eq. 3.6.

gv = kUU>b (3.6)

Please note that UU> = I only when A is invertible.

Eq. 3.6 can be interpreted as gv = k′b, where k′ is a transformed error vector. When the

gradient descent minimizes the loss to a local minimum on the error surface, the gradient of

loss w.r.t. positions g will converge be minimized presumably. Thereby the LHS of Eq. 3.6 will

reduced, and the inner product of k′ and the temporal difference b decreases. LBPNet, therefore,

senses weaker and weaker differences between images.

3.4.3 Implementation

None of the existing deep learning (DL) libraries can be used to implement LBPNet

because the logical operation such as comparison and bit-allocation are radically different from

the arithmetic ones, and the deformation of sampling patterns violates the regularity on which

conventional DL libraries rely. We, hence, directly use BLAS library to deliver a custom GPU

kernel in order to provide a high-level interface for conventional DL libraries to integrate with

the fundamental LBPNet operations.

We adopt the framework of convolution in Torch, SpatialConvolutionMM [CPS06], in

order to trade memory redundancy via building Toeplitz matrices for speed-ups and leverage the

GPU supported primitive functions, e.g., im2col, col2im, GEMM, and GEMV. We refer readers

to the appendices for the detailed forward and backward propagation algorithms.
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Table 3.2. Details of the datasets used in our experiments.

#Class #Example State-of-the-Art error rate
DHCD 46 46x2,000 1.53% [APG15]
ICDAR-DIGITS 10 988 -
ICDAR-UpperCase 26 5,288 10% [WWCN12]
ICDAR-LowerCase 26 5,453 -
Chars74K-EnglishImg 62 7,705 52.91% [DCBV09]
Chars74K-EnglishHnd 62 3,410 23.33% [KGV17]
Chars74K-EnglishFnt 62 62,992 30.29% [DCBV09]

3.5 Evaluation

We conduct a series of experiments on five datasets – MNIST, SVHN, DHCD, IC-

DAR2005, and Chars74K – to demonstrate the capability of LBPNet. Some example images

in these character datasets are shown in Figure 3.1. To demonstrate its potential in general

applicability, we further evaluate LBPNet on a broader set of tasks including face and pedestrian

detection as well as affNIST and observe promising results.

3.5.1 Datasets

Images in the MNIST dataset are hand-written numbers from 0 to 9 in 28×28 grayscale

bitmap format. The dataset provides a training set of 60,000 examples and a test set of 10,000

examples. Both staff and students wrote the manuscripts. Most of the images can be easily

recognized and classified, but there is still a portion of sloppy images in MNIST. SVHN is a

photo dataset of house numbers. Although cropped, images in SVHN include some distracting

numbers around the labeled number in the middle of the image. The distracting parts increase

the difficulty of classifying the printed numbers. There are 73,257 training examples and 26,032

test examples in SVHN. Table 3.2 summarizes the details of the remaining seven datasets in our

experiments. DHCD has handwritten Devanagari characters. ICDAR2005 contains three subsets,

which are photos of numbers, lowercase and uppercase English characters. We shall note that

the ICDAR2005 dataset was created mainly for text localization and recognition in the wild. We
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use the cropped ICDAR because we only focus on the recognition task. Chars74K combines

both numbers and English characters together and is considered to be challenging because an

alphanumeric dataset that includes some labels is more prone to errors, e.g., classifying character

O to number zero or vice versa. The three subsets of Chars74K are cropped photos, handwritten

pictures, and printed fonts.

3.5.2 Experimental Setup

In all the experiments, we use all the training examples to train the LBPNet and validate

on the provided test sets. There is no data augmentation used in the experiments.

In addition to the LBPNet shown in Figure 3.6 (c), we implement another version of

LBPNet as a comparison: we utilize a 1×1 convolution to learn a combination of the LBP feature

maps, as illustrated in Figure 3.6 (b). While this convolution still incurs too many multiplication

and accumulation operations, especially when the number of LBP kernels increases, we shall

demonstrate how this version of LBPNet performs for comparison purposes. In the rest of

this section, we call the LBPNet using 1× 1 convolution as the channel fusion mechanism

LBPNet (1×1), and our proposed LBPNet utilizing random projections LBPNet (RP) (totally

convolution-free). The number of sampling points in a pattern is set to 4, and the size of the

window within which the pattern can be deformed is 5× 5. A brief sensitivity analysis of

the number of sampling points versus classification accuracy on MNIST is provided in the

appendices.

LBPNet also has a multilayer perceptron (MLP) block, which consists of two fully-

connected layers of 512 neurons and the number of classes in every dataset, respectively. In

addition to the nonlinearities, there is one batch normalization layer. The MLP block’s perfor-

mance without any convolutional layers or LBP layers is shown in Table 3.3, and the results

on SVHN are in the appendices. The model size and speed of the MLP block are excluded in

the comparisons since all the models have an MLP block, and so we focus on the convolutional

layers and LBP Layers.
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To understand the capability of LBPNet when compared with existing convolution-based

methods, we build two feed-forward streamline CNNs as baselines. CNN-baseline is designed

with the same number of layers and kernels as our LBPNet; the other CNN-lite is designed

subject to the same memory footprint as the LBPNet (RP). The basic block of the CNNs contains

a spatial convolution layer (Conv) followed by a batch normalization layer and a rectified linear

layer (ReLU).

In the BNN [HCS+16b] paper, the classification on MNIST was performed with a

binarized multilayer perceptron network (MLP). We adopt the binarized convolutional neural

network (BCNN) in [HCS+16b] for SVHN to perform the classification and re-produce the same

accuracy as shown in [LXZ+17] on MNIST.

3.5.3 Experimental Results

Table 3.3 summarizes the experimental results of LBPNet on MNIST together with the

baseline and previous works. We consider three metrics: classification error rate, model size,

and the number of operations during inference. As a reference, we also provide the reduction

in the number of operations compared with the baseline CNN. The number of operations in

giga-operation (GOP) is used for a fair comparison of computation complexity regardless of

platforms and implementation optimizations, such as loop tiling or unrolling, pipelining, and

memory partitioning.

MNIST. The CNN-baseline and LBPNet (RP) share the same network structure, i.e., 39-

40-80, and the CNN-lite is limited to the same memory size, and so its network structure is 2-3.

The baseline CNN achieves the lowest classification error rate of 0.44%. The BCNN-6L achieves

a decent speedup while maintaining the classification accuracy. Notwithstanding LBCNN-75L

claimed its saving in memory footprint, to achieve 0.49% error rate, 75 layers of LBCNN basic

blocks are used. As a result, LBCNN-75L loses speedups. Both the 3-layer LBPNet (1x1) with

40 LBP kernels and 40 1-by-1 convolutional kernels and the 3-layer LBPNet (RP) achieve an

error rate of 0.50%. Despite the slightly inferior performance, LBPNet (RP) reduces the model
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Table 3.3. The performance of LBPNet on MNIST.

Error ↓ Size ↓ #Operation ↓
Reduction ↑

(Bytes) (GOPs)
MLP Block 24.22% - - -
CNN-baseline 0.44% 1.41M 0.089 1X
CNN-lite 1.20% 792 0.0004 219X
BCNN-6L 0.47% 153.7K 0.304 0.292X
BCNN-6L-noBN 88.65% 146.5K 0.303 0.293X
BCNN-3L-noBN 89.60% 5.94K 0.087 1.02X
LBCNN-75L 0.49% 12.2M 6.884 0.013X
LBCNN-75L-noBN 90.20% 2.8M 6.882 0.013X
LBCNN-3L-noBN 90.20% 244K 0.276 0.322X

LBPNet (this work)
LBPNet (1x1) 0.50% 1.27M 0.011 7.80X
LBPNet (RP) 0.50% 715.5 0.0007 136X

size to 715.5 bytes and the number of operations to 0.7MOPs. Even BCNN cannot be on par

with such a vast memory and computation reduction. The CNN-lite demonstrates that, if we

shrink a CNN model down to the same memory size as the LBPNet (RP), the classification

performance of CNN is compromised.

In addition to reproducing the results of BCNN-6L and LBCNN-75L with their open-

sourced code, we remove the batch normalization layer inside every basic block (BCNN-6L-

noBN and LBCNN-75L-noBN) and reduce the model to 3 layers (BCNN-3L-noBN and LBCNN-

3L-noBN) for a fair comparison with LBPNet (RP). As shown in Table 3.3, once the batch

normalization layers are removed, interestingly and surprisingly, both BCNN and LBCNN result

in high error rates – almost identical to random guess – 90%. In other words, neither BCNN nor

LBCNN can learn useful features without BatchNorm Layers. Meanwhile, LBPNet still achieves

the state-of-the-art accuracy without the support of batch normalization.

SVHN. For the results on SVHN, we observe a similar pattern to the results on MNIST.

Therefore, we defer the results and discussion on SVHN to the appendices.

More OCR Results. Table 3.4 lists the results of LBPNet (RP) on all the character

recognition datasets studied in this chapter. The network structures of both the baseline CNNs
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Table 3.4. The structures and experimental results of LBPNet on all considered datasets.

Model Structure Error↓ Size↓ Size Red. ↑ GOPs ↓ Op Red. ↑

MNIST
CNN-3L 39-40-80 0.44% 1.41M - 0.089 -

LBPNet(RP) 39-40-80 0.50% 715.5 1971X 0.0007 136X

SVHN
CNN-8L 37-40-80-80-160-160-320-320 6.69% 10.11M - 1.86G -

LBPNet(RP) 37-40-80-80-160-160-320-320 7.10% 10.62K 952X 0.010 193X

DHCD
CNN 63-64-128-256 0.72% 4.61M - 0.637 -

LBPNet(RP) 63-64-128-256 0.81% 2.30K 2004X 0.002 304X

ICDAR-Digits
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet(RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

ICDAR-LowerCase
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet(RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

ICDAR-UpperCase
CNN 3-4 0.00% 44.47K - 0.0002 -

LBPNet(RP) 3-4 0.00% 31.5 1411X 0.00003 7.76X

Chars74K-EnglishImg
CNN 63-64-128-256-512 40.54% 12.17M - 2.487 -

LBPNet(RP) 63-64-128-256-512 41.69% 4.793K 2539X 0.004 152X

Chars74K-EnglishHnd
CNN 63-64-128 28.68% 1.95M - 0.174 -

LBPNet(RP) 63-64-128 26.63% 1.15K 1699X 0.001 610X

Chars74K-EnglishFnt
CNN 63-64-128 21.91% 1.95M - 0.174 -

LBPNet(RP) 63-64-128 22.74% 1.15K 1699X 0.001M 610X

and LBPNets are designed to be the same for a fair comparison. The model sizes are the actual

file sizes (without compression) of the LBP layers, including the discrete LBP kernels and

random projection maps. Regarding the model size reduction, it is noteworthy that the wider the

model is (i.e., more kernels), the higher the memory reduction rate we can obtain, with the cause

explained earlier in section 3.3.2.

LBPNets not only deliver competitive results with the baseline CNNs but also achieve

or approach the state-of-the-art error rates listed in Table 3.2. In other words, LBPNet reduces

resource demands while maintaining the classification performance on OCR tasks.

3.5.4 Results on Other Objects and Deformable Patterns

We also explore how LBPNet performs on datasets containing general objects. Through-

out the following experiments, we built CNNs and LBPNets with structures similar to the one

for MNIST, as detailed in the first row of Table 3.4. We observe that LBPNet is able to achieve

the same order of reductions in model size and operations.

Pedestrian: We first evaluate LBPNet on the INRIA pedestrian dataset [DT05], which

consists of cropped positive and negative images. Note that we did not implement an image-based

object detector since this is not the focus of this study. Figure 3.7 shows the trade-off curves of a

58



Figure 3.7. Classification error trade-off curves of a 3-layer LBPNet and a 3-layer CNN on
the INRIA pedestrian dataset [DT05]. We also plot the results in Figure8(a) of [DWSP09] for
comparison with the other five approaches.

3-layer LBPNet (37-40-80) and a 3-layer CNN (37-40-80).

Face: We also examine how well LBPNet performs on the FDDB dataset [JLM10] for

face classification. Same as previously, we perform training and testing on a dataset of cropped

images; we use the annotated positive face examples with cropped four non-person frames in

every training image to create negative face examples, for the purposes of both training and

testing. The structures of the LBPNet and CNN are the same as before (37-40-80), and LBPNet

achieves 97.78% while the baseline CNN reaches 97.55%.

affNIST: We conduct another experiment on affNIST [Tie13], which contains 32 trans-

lation variations of MNIST (including the original MNIST). To accelerate the experiment, we

randomly draw three variations of each original example to get training and testing subsets of

affNIST. We repeat the same process to draw examples and train the networks ten times to get an

averaged result. The network structure of LBPNet and the baseline CNN are the same, 39-40-80.

To improve the translation invariance of the networks, we use two max-pooling layers following

the first and second LBP layer or the convolutional layer. With the training and testing on the

subsets of affNIST, LBPNet achieves 93.1%, and CNN achieves 94.88%.

Traffic Sign: Traffic sign recognition (TSR) is an essential task in autonomous driving

systems. Dispatching low-level tasks such as TSR to low-cost/low-power compute nodes to
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Table 3.5. The performance of LBPNet on two traffic sign datasets.

Model Structure Error↓

GTSRB
CNN 61-64-128-256-512 1.16%

LBPNet(RP) 61-64-128-256-512 1.99%

BTSC
CNN 39-40-80 2.30%

LBPNet(RP) 39-40-80 2.51%

relieve the workload for central SIMD workstation is the modern trend in system designs.

The state-of-the-art error rates are 0.29% [AGÁGSM18] and 1.08% [YLW+16] for GTSRB

and BTSC, respectively. Table 3.5 lists the classification error rates on the two traffic sign

classification datasets. Although the results on the two datasets are slightly weaker than the

baseline, the reductions in model size and operations, which are on the order as shown in

Table 3.4, hold promise for deploying TSR tasks on low-cost compute nodes.

3.6 Conclusion and Future Work

In this work, we have built a convolution-free, end-to-end LBPNet upon basic bitwise

operations and verified its effectiveness on character recognition datasets. Without significant

loss in classification accuracy, LBPNet can achieve orders of magnitude reductions in inference

operation (100X) and model size (1000X), when compared with the baseline CNNs. The learning

of local binary patterns yields unprecedented model efficiency since, to the best of our knowledge,

there is no compression/discretization of CNNs that can achieve a kilobyte level model size

while still maintaining the state-of-the-art accuracy on the character recognition tasks. We also

provide encouraging preliminary results on more general tasks such as pedestrian and face

detections. LBPNet points to a promising direction for building a new generation of lightweight,

hardware-friendly deep learning algorithms to deploy on resource-constrained edge devices.

Chapter 3 contains reprints of Jeng-Hau Lin, Justin Lazarow, Yunfan Yang, Dezhi Hong,

Rajesh K. Gupta, Zhuowen Tu. “Local Binary Pattern Networks for Character Recognition”.

Submitted to International Conference on Computer Vision 2019 (ICCV). This dissertation
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author is the primary author of this paper.
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Chapter 4

LBPNet Accelerator

Fueled by the success of mobile devices, the computational demands on these platforms

have been rising faster than the computational and storage capacities or energy availability to

perform tasks ranging from recognizing speech, images to automated reasoning and cognition.

While the success of convolutional neural networks (CNNs) have contributed to such a vision,

these algorithms stay out of the reach of limited computing and storage capabilities of mobile

platforms. It is clear to most researchers that such a transition can only be achieved by using

dedicated hardware accelerators on these platforms. However, CNNs with arithmetic-intensive

operations remain particularly unsuitable for such acceleration both computationally as well as

for the high memory bandwidth needs of highly parallel processing required. In this chapter, we

implement and optimize an alternative genre of networks, local binary pattern network (LBPNet)

which eliminates arithmetic operations by combinatorial operations thus substantially boosting

the efficiency of hardware implementation. LBPNet is built upon a radically different view

of the arithmetic operations sought by conventional neural networks to overcome limitations

posed by compression and quantization methods used for hardware implementation of CNNs.

This paper explores in depth the design and implementation of both an architecture and critical

optimizations of LBPNet for realization in accelerator hardware and provides a comparison of

results with the state-of-art CNN on multiple datasets.
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4.1 Introduction

Convolutional Neural Networks (CNNs) [LBD+89b, KSH12, SZ15] have outperformed

other supervised learning methods in computer vision and have been used in many domains,

such as web searching [HHG+13b], speech/pattern recognition [DSH13], biomedical anal-

ysis [SLF14b]. For most applications, CNN training through convex optimization requires

intensive gradient computations. As a result, often the training phase is offline and done sep-

arately from the target platforms where recognition tasks may be needed. This is particularly

true of devices at or near the edge of the network, the so-called “edge devices.” Even with this

split, the convolution operation in the inference phase still overburdens the resource-limited

embedded hardware [RORF16b] for the Internet of Things (IoT) or real-time edge computing

applications. To be specific, the edge devices challenges consist of congested inter-neurons

connections, intensive memory accesses, large memory footprint to store parameters and feature

maps, and high-latency high-precision multiplication and accumulation (MAC) operations.

There are two main approaches to alleviate the burdens of CNNs for hardware imple-

mentations. One approach is to prune the less salient weights to skip the arithmetic operations

with less significant numbers [LDS+89, HSW93, GYC16]. The other is to quantize floating

numbers either statically [ZHMD17] or dynamically [QWY+16] to degrade the precision for

low-bit arithmetic logic units (ALUs). Binarization [HCS+16b, RORF16b, LXZ+17] pushed the

static quantization to the limit, and thereby the original floating point multiplication was replaced

with a 1-bit exclusive-nor gate (XNOR). There existed more intricate hybrid works of the two

trends [HMD15], as well as other explorations of efficient network structures [SIV16, XGD+17]

that mainly aimed to reduce the model size from the network structure level.

While carrying out the trained models of the two aforementioned approaches, hardware

platforms driven by CPU and GPU clusters inevitably encountered challenges such as the

overhead of irregular memory accesses arisen from the pruned irregular matrices, and the

limitation of current computer architecture to support sub-word variable storage units and
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arithmetic operations. On the other hand, field programmable gate arrays (FPGAs) provide an

attractive alternative because they allow a highly customized design to handle the limitations on

CPU/GPU machines [QWY+16]. Many hardware accelerators for pruned CNNs or binarized

CNNs have been proposed [ZSZ+17, UFG+17]. However, the equivalent compression rate of

memory footprint and computation latency are still incremental and continue to be a challenge

for effective use of machine learning in edge devices.

LBPNets [LYGT18] fundamentally transforms the arithmetic multiply-and-accumulate

(MAC) operations into sampling processes and logic operations. We note that despite the

similarity in names, local binary pattern (LBP) and LBPNets are two very different techniques.

LBP refers to a known method in the computer vision [OPH96] as a type of visual descriptor

used in image classification based on texture maps. Such a descriptor could be used by various

classifier algorithms including support vector machines or other machine learning algorithms.

LBPNet is a new way to implement neural network algorithms, which obviates the need for

computing dot products and sliding windows for convolution operations. Instead, LBPNets

sample and compare the input image and records the comparison results to a predefined bit

location. In other words, there is no MAC operation in an LBP layer, and only the trained

patterns of sampling locations need to be stored. Therefore, the convolution-free LBPNets are

hardware-friendly that can achieve significant benefits over the other CNN models.

We implement and optimize an LBPNet for multiple datasets on FPGA targets to charac-

terize its efficiency. Based on these experiments, we propose an efficient architecture for LBPNet

and critical optimization strategies. We implement and evaluate the complete system in terms of

classification accuracy, latency, resource utilization, and energy efficiency.

4.2 Preliminary

Since the LBPNet [LYGT18] was proposed to be an alternative of the prevailing deep

learning method CNN, we start from the preliminary knowledge of CNNs.
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Figure 4.1. The snapshot of a convolution process in a hardware point of view. Dot-products
and sliding window operation compose the convolution. The dot-product results from all input
channels are fused together by a summation.

4.2.1 Convolutional Neural Networks

Figure 4.1 illustrates the operation in a convolutional layer (Conv layer). A Conv layer

performs a 2-D spatial convolution on the input images or feature maps with kernels composed

of multi-channel dense filters. Stacking multiple Conv layers up means taking the output

feature maps of the previous Conv layer as the input of the current concerned Conv layer.

Deepening network structure can extract more abstract representations embedded in the images

for classification.

4.2.2 Local Binary Pattern Network

LBPNet [LYGT18] operates based on the optical flow theory, more specifically in ad-

dressing the aperture problem. The image gradient of the input image/feature map guides the

training of patterns. The local binary patterns are trained to minimize the cross-entropy of a
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Figure 4.2. The snapshot of the LBP operation from a hardware point of view. Memory indexing
and pixel comparison compose the LBP operation. The larger the round aperture is, the higher
order bit the comparison result is allocated. Random projection fuses the comparison results
from all input channels together by a bit allocator according to a predefined random projection
mapping table.

softmax cost function. The learning process deforms the sampling points in a pattern to a better

set of locations for discriminative features. The channel fusion process is done with a random

projection, which has bee proven to be an effective distance preserving method [BM01].

Figure 4.2 illustrates the operations in an LBP layer; three local binary patterns are

visualized as black masks with certain apertures on them. Analogous to a Conv layer, there are

multiple local binary patterns, which record the sampling positions for the comparison with

a pivot sampling. For each comparison pair, the pivot(a star-shaped aperture) and a sampling

point(a round aperture) are used to index two values from the input features. The results of

comparisons are allocated to predefined locations in a bit array. If multiple input channels

presents, results of LBP operations on all channels are fused together according to a random

projection map. There is no MAC operation or convolution in an LBP Layer. The low bit

comparison can be implemented in combinational logic, and bit allocations require only a good

buffer design.
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The benefit of LBPNet is multi-fold. First, the sparse sampling pattern greatly reduces

the model size. An LBP pattern contains Nsampling sampling points’ locations on a window.

Assuming the number of input channel is Nin, and the number of output channel is Nout , the num-

ber of sampling locations is 2∗NoutNinNsampling, where the number 2 means the two dimension

locations. However, the presence of random projection instructs us to compare only a part of

the sampling pairs and drop the unused pairs. Therefore, we only need store 2∗NoutNsampling

sampling positions and a mapping table of size Nout ×NSampling. All of them are typically in

Kbits.

Second, the convolution-free design of LBP layers unleashes the computation latency

from the system pipelined cycles. We can design a customized comparator module for the data

parallelism in an LBP Layer. The speedup of an LBP layer over a Conv layer with massive MAC

operation is, therefore, guaranteed.

Third, LBPNets reduce hardware cost. In FPGA, it takes 62 LUTs to implement an 8-bit

multiplier, and 8 LUTs for 8-bit adder, while a boolean comparator requires only 4 LUTs, which

implies we can either use cheaper FPGA with less computation capability or implement more

data parallelism within the same FPGA compared with a CNN-based accelerator.

Last but not least, the energy efficiency is expected to be higher than CNN-based ac-

celerator because we only need comparison and buffering to implement LBPNets. For many

application, such as unmanned aerial vehicles or hearing aided devices, short battery life is

usually a critical issue. The hardware accelerated LBPNets can be used on the energy efficiency

concerning applications to boost user experience.

4.3 Analysis and Modifications of LBPNets

The multi-layer perceptron (MLP) classifier in LBPNet [LYGT18] was not the main

focus, and hence the floating arithmetics were adopted. To fill the gap between theory and

practice, we modify the MLP classifier with two advanced techniques and train the networks
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Table 4.1. The architecture of our modified LBPNet on MNIST. The binarized MLP classifier is
composed of two binarized FC layers and one modified batch normalization layer [UFG+17].
Although binarized, the FC parameters can only be stored in an off-chip DRAM due to the
limitation of FPGAs’ typical on-chip BRAM size [ZSZ+17].

Layer Input output Fmap Fmap size Param
ch Nin ch Nout dim d (Kbit) (Kbit)

LBP1 1 39 32 x 32 - 2.18
Joint1 40 40 32 x 32 163.84 -
LBP2 40 40 32 x 32 - 2.24
Joint2 80 80 32 x 32 327.68 -
LBP3 80 80 32 x 32 - 4.48
Joint3 160 160 32 x 32 655.36 -

AvgPool 160 160 5 x 5 32.00 -
FC1 4000 512 1 4.10 2,056.19

BatchNorm 512 512 1 0.51 8.19
FC2 512 512 1 0.08 5.28

Total
LBP 1,178.88 8.90
FC 4.69 2,069.66

from scratch for FPGA implementation. In this section, we start with an overview of the network

structure and then dive into the modifications for hardware.

4.3.1 Structures of LBPNets

We implemented multiple LBPNets for different datasets. Despite the numbers of kernels

and depths, all network structures share the same characteristics. In this section, we use the

network for the MNIST dataset as an example to analyze the structure before describing the

FPGA architecture.

The LBPNet structure we adopt is visualized in figure 4.3. We list the model sizes for the

MNIST dataset in table 4.1.

There are three LBP layers in a pipeline extracting the feature maps. Each 3-D volume

of LBP pattern contains four learnable sampling points and four pivot point in the center. After

the LBP operation and channel fusion, there is a shifted ReLU function [LYGT18] to introduce

nonlinearity in the LBPNet. A Joint layer after every LBP layer stacks the LBP results on the
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Figure 4.3. The network structure of the LBPNet for MNIST, which includes 3 LBP layers and
2 FC layers. The left sub-figure shows the LBP layers, and the MLP classifier is shown on the
right-hand side.

input feature maps brought by the shortcut branch. Once again, there is no multiplication or

additions in these operations.

For the MLP classifier part, an average pooling layer is then used to reduce 2-D images.

The two binarized FC layers and one modified batch normalization layers are designed to reduce

the dimension of data further and extract features for the 10 classes of MNIST dataset.

4.3.2 Quantization of the Average Pooling

All floating numbers in the MLP classifier must be quantized to fixed numbers or integers,

or the floating-point calculation will form a bottleneck of the entire system. We remove the

division from the AvgPool Layer and then profile all the output pixel values to linearly scaling

them into the range of unsigned char by bit shifting.
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4.3.3 Binarization of Weights

We binarize the weights of both the two fully connected layers to either -1 or 1. Then,

we set all -1 to 0 for digital circuitry. The input of the first layer is the averaged value from the

AvgPool Layer, which is in floating or fixed numbers. Although we cannot use an XNOR gate to

replace the multiplication between the input and a weight, binarized weights enable us to use

a multiplexer to select whether to add or subtract the input from an accumulator. The second

binarized fully connected layer takes binarized input from the BatchNorm layer. Therefore, we

can replace the multiplication with an XNOR operation in the dot-product. However, binarization

has proven to be lossy [CBD15]. We must expect inferior classification accuracy and evaluate

the difference for the trade-off between binary and floating arithmetic operations.

4.3.4 Simplification of Batch Normalization Layer

To avoid on-chip floating point arithmetic operations, we also introduce the method

for the batch normalization layer mentioned in FINN [UFG+17]. This consists of methods to

combine the binarization activation function with the linear transformation and calculating a

threshold for each input activation off-line as shown in Eq. 4.1 and Eq. 4.2.

γ(x−µ)/σ+β > 0, (4.1)

where x is the input, µ is the mean over a mini-batch, σ is the standard deviation over a mini-batch,

γ is the learned scaling factor, and β is the learned shifting factor.

x > threshold , γσ > 0

x < threshold , otherwise,
(4.2)

where threshold = µ− βσ

γ
is calculated off-line after the modification from Eq. 4.1 to Eq. 4.2

and is lossless due to the mathematical equivalence.

The modified LBPNets are trained on a GPU machine with an NVIDIA Tesla K40, and
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Figure 4.4. System-level architecture for LBPNet accelerator. The data buffer is used for storing
both input data and intermediate results. Parameters Buffer stores the parameters of the network.
A set of logical binary operations are dedicated to LBP operations. A set of ALUs is dedicated
to each AvgPool, FC, and BatchNorm layer.

the training achieves 100.0% accuracy. The test accuracy is 99.34% on MNIST. Compared

with the LBPNet paper [LYGT18], as mentioned earlier, we have sacrificed some classification

accuracy to make LBPNet hardware-friendly through binarizing the MLP classifier.

4.4 FPGA Accelerator Design

4.4.1 Accelerator Architecture

An overview of the accelerator architecture is shown in Figure 4.4. The accelerator

consists of four compute units as shown for each different type of layer, data and weight buffers,

a memory access controller for off-chip memory transfers, and a controller. The operations of

the LBP, Average Pool, Fully-Connected, and BatchNorm layers are performed through the four

compute units LBP, AvgPool, FC, and BatchNorm, respectively. The LBP unit — dedicated to

performing the compare operations in the LBP layer – consists of a set of logical elements, while

the other compute units are made up of arithmetic units to perform operations such as addition
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and the simplified multiplication in Section 4.3.3. The input data and the parameters of the layers

loaded from the off-chip memory are stored into the on-chip Data buffer and Parameters buffer,

respectively.

In addition to storing the input data, the Data buffer can accommodate the intermediate

results of the layers which are necessary for the computations of their next layer. Because the

size of the intermediate outputs of the layers is in 4-bit fixed numbers, they are small enough to

be stored on the available on-chip memories. This eliminates the need to transfer intermediate

outputs between the accelerator and the off-chip memory. Thus, off-chip memory transfers

are only needed for the input image, loading each layers weights, and sending back the final

prediction output. This is one of the benefits of LBPNet compared to most other CNN-based

accelerators where the size of intermediate results in floating or longer bit-length fixed numbers

typically exceeds the available on-chip storage. On the other hand, the Parameter buffer can store

all the weights for all the LBP layers at once. So only one time data and weight load is required

for all the LBP layers to compute the input of the AvgPool layer. On the other hand, there is only

enough space to store a portion of the FC layers weights. Each time a new set of weights are

loaded into the parameter buffer and a new set of intermediate result is generated. This continues

until all FC layer outputs are generated and stored in the on-chip Data buffer. To accelerate the

communication and parallelize computations, we pack our 8-bit weights and generate to 64-bit

words, store these words in the buffers, and unpack them to perform parallel computations.

4.4.2 Execution Flow of the Accelerator

In the beginning, the input image and parameters of the three LBP layers are loaded from

the off-chip memory to the Data buffer and Parameters buffer. Afterward, the LBP compute unit

performs the corresponding comparison operations starting from the layer LBP1. Accordingly,

the output of LBP1 is stored in Data buffer on top of the input data. The process continues until

all the LBP layers are performed. Then, the AvgPool unit starts performing a quantized version

of average pooling operations on the data to reduce its dimensions. At this point, the parameters
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stored in the Parameters buffer are not needed any longer, and the space can be freed to store the

parameters of other layers.

The next pass operates on layer FC1. Since the parameters of this layer exceed the

size of the Parameters buffer, a portion of the parameters are loaded into the on-chip buffer,

and the corresponding MAC operations are performed, and the partial outputs are stored in the

Data buffer. Then, the process moves to the computations with the next part of parameters by

loading them into Parameters buffer and performing the corresponding FC computations. After

all the computations of the layer FC1 are completed, the parameters of the BatchNorm layer are

brought into the Parameters buffer and overwrite the parameters of FC1. Then, the compute unit

BatchNorm performs the batch normalization on the results of FC1 which are available in the

Data buffer. The new outputs generated by the BatchNorm unit are stored in the Data buffer.

Finally, the computations of the last layer are performed similarly to executing the layer FC1.

The last FC unit generates prediction output values. The final label is computed using ArgMax

operation on the results of the last FC layer and is written back to off-chip memory.

4.4.3 Compute Units Architecture

LBP Layers: The LBP unit is the most critical component of the accelerator responsible

for a number of repeated LBP layers. Each unit in the LBP layer is responsible for reading

eight input pixels from the data buffer and performing four comparison operations to generate

one output. The position of these eight points are read from the weight buffer; then we can

access the corresponding locations in the data buffer, compare every two of them together, and

generate the corresponding output pixel by concatenating the four comparison results. As the

weights are 8-bits for these layers, and they are stored in 64-bit words, we only need to read

two words from the weight buffer which can be done in one cycle. These values indicate the

position of points that should be accessed from a tensor in the data buffer. After reading each

two-pixel values, a comparison is performed, and 1 bit of the output pixel is generated. This

process is performed for every input channel in a pipeline fashion. This process is repeated in a
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sliding window pattern for the whole image. To improve the latency of the LBP computations,

the operations inside the LBP can be parallelized. In this case, we partition the tensor input

horizontally, and each processing element performs the aforementioned operations on one part.

In order for the processing elements to access to data buffer at the same time, we partition the

data buffer BRAM horizontally. There is clearly a trade-off between resource utilization and

performance as we change the level of parallelism.

FC Layer: Each cycle we read in N data words and an equal number of weight words.

N here is the input parallelization factor (we used 8 in our implementation). We apply appropriate

memory partitioning to be able to access to 8 data words in one cycle. N simplified multiplications

implemented with multiplexers are done in parallel, and this process is pipelined until an output

is generated. As we perform quantization on FC layers, we only have fixed-point accumulator

and multiplexers. After the computations on the available set of weights are done, a new set of

weights are loaded from the off-chip memory, and the next set of outputs are generated. Note

that the level parallelism in FC layer is typically bound by the memory bandwidth of the off-chip

connection, rather than the throughput of the accelerator.

BatchNorm Layer: We implement batch normalization layer using a parallel compari-

son between the data and weights, and multiplexers [UFG+17] to generate a binarized output for

the next fully-connected layer. In each cycle, eight parallel comparisons are made to generate

eight outputs, and this process is performed in a fully pipelined fashion.

AvgPool Layer: This layer is relatively simple. It averages over 5-by-5 windows from

input channels. The required memory read, computation, and memory write is fully pipelined.

4.5 Experimental Results

4.5.1 Dataset

Table 4.2 lists all the datasets used in this experiment. We convert all colorful images

from RGB channels to YUV channel and only use the Y-channel as the input image to train
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Table 4.2. The datasets we used in the experiment.

#Class #Examples Description
MNIST 10 60,000+10,000 Handwritten number
SVHN 10 73,257+26,032 Photos of house number
DHCD 46 46x2,000 Handwritten Devanagari characters

ICDAR-DIGITS 10 988 Photos of numbers
ICDAR-UpperCase 26 5,288 Photos of lower case Eng. char.
ICDAR-LowerCase 26 5,453 Photos of upper case Eng. char.

Chars74K-EnglishImg 62 7,705 Photos, Alphanumeric
Chars74K-EnglishHnd 62 3,410 Handwritten, Alphanumeric
Chars74K-EnglishFnt 62 62,992 Printed Fonts, Alphanumeric

LBPNets and verify on FPGA after the hardware implementation.

4.5.2 Experiment Setup

We implemented our design in C++ and used Xilinx Vivado HLS and Vivado Suite

2015.4 as the primary tool for synthesizing the accelerator. We evaluate resulting designs on a

low-cost Xilinx Zynq-7000 series (XC7Z020 FPGA) target. We performed HLS design space

exploration to select the design options that strike a balance between resource utilization and

latency. In our final design, we use 64-bit words, and the LBP compute unit consists of four

parallel processing units. The resource utilization and power numbers are reported by Vivado

tool after placement and route.

4.5.3 Results

Table 4.3 lists the LBPNet structure and the accuracy for every dataset as well as the

CNN baseline. For those baseline results without references, we build CNNs with the same

network structures like LBPNets.

The resource utilization for our design is 7954 LUT, 7188 FF, 68 BRAM, and 16 DSP.

Our FPGA implementation works at 200 MHz. We evaluate performance of our accelerator

for different datasets. The latency break-down for different layers and total execution time

is summarized in Table 4.4. The last column in this table (labeled as Total Runtime), shows
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Table 4.3. LBPNet structure and Accuracy. We use the same binarized MLP classifier throughout
the experiment. The CNN baseline results are listed as well.

layer structure CNN Baseline Accuracy
MNIST 39-40-80 99.60% [SSP03] 99.34%
SVHN 39-40-80-160-320 95.10% [SCL12] 93.40%
DHCD 63-64-128-256 98.47%[APG15] 99.16%

ICDAR-Digit 3-4 100.00% 100.00%
ICDAR-Lower 39-40-80 100.00% 100.00%
ICDAR-Upper 39-40-80 100.00% 100.00%
Chars74K-Img 63-64-128-256-512 47.09%[DCBV09] 58.31%
Chars74K-Hnd 63-64-128 71.32% 73.37%
Chars74K-Fnt 63-64-128 78.09% 77.26%

Table 4.4. Latency (number of clock cycles) break-down for different layers and total run time
for different datasets. The runtime is in millisecond.

LBP AvgPool FC BatchNorm Total Runtime
MNIST 286953 72726 260399 75 3.1
SVHN 1227777 290826 1477931 75 15.6
DHCD 961693 232671 822571 75 10.5

ICDAR-Digit 11820 3619 15147 75 0.16
ICDAR-L/U 286953 72726 260399 75 3.24

Chars74K-Img 1965239 465308 1641771 75 21.2
Chars74K-Hnd 459920 116361 260399 75 4.3
Chars74K-Fnt 459920 116275 260399 75 4.3

the execution time (in millisecond) per image for the optimized design for different datasets.

This table also shows the break-down of latencies (number of cycles) per layer in columns 2-5.

Column 2 and 4 shows the sum of latencies for all LBP layers and FC layers. Since different

LBP and FC layers work on different data sizes, their latency is different. For example, for the

MNIST dataset, the latency of three LBP layers are 51745, 78404, 156804 cycles respectively.

For the same dataset, the latencies in the two FC layers are 259588 and 811 cycles respectively.

Similarly, there are differences in the runtime for different datasets because they use different

numbers of LBP kernels.

We compare our design with off-the-shelf CNN FPGA implementations. Table 4.5

compares the resource utilization for different FPGA implementations of LeNet with LBPNet.

76



Table 4.5. The comparison of resource utilization, throughput, and accuracy in different imple-
mentations of LeNet and LBPNet. Numbers for resource utilization is in percentage.

[VB16] [FHCW16] [FHCW16] [GWL+18] LBPNet
Backbone LeNet-5 LeNet-5 LeNet-5 LeNet-5 LBPNet-3L
Precision fixed-16 floating-32 fixed-24 fixed-16 fixed-4 & 1-bit

DSP 3.64 80 43 93.18 7.27
BRAM 13.2 83 66 86.43 48.60

LUT 54.64 77 73 71.68 15.20
Flip-Flops 39.02 25 26 40.05 6.75

Clock (MHz) 100 100 166 200 200
Throughput(GOP/s) 0.48 - - 76.48 61.62

Accuracy(%) 97.92 99.01 99.01 99.10 99.34

As shown, our accelerator achieves the highest accuracy among all implementations. It utilizes

only 48.6% of BRAMs, 7.3% of DSP units, 15.2% of LUTs, and 6.8% of Flip flops on our target

FPGA. Comparing to CNN architectures, we mostly have better resource utilization. We also

compare our throughput to other works. Throughput is shown in giga-operations-per-second

(GOPS). Our accelerator achieves better throughput that CNN-based accelerators. We have

better power consumption when compared to CNN implementations. For example, [FHCW16]

utilizes 3.32 W power, while our accelerator consumes only 0.5 W to perform classification. Our

accelerator is more energy efficient than CNN due to replacing expensive convolution operations

with simple logical operations. In general, LBPNet enables us to achieve a good balance between

resource utilization and throughput, while maximizing accuracy.

LBPNet’s inference operations on a CUDA-supported GPU presents a latency of 0.7 ms

per image for MNIST dataset, the average power consumption of 130, and the memory consump-

tion of 44 MBytes. By comparison, FPGA implementation of LBPNet here is 4.4X slower than

a Tesla K40 GPU, but 52X more energy efficient compared to the GPU implementation.

4.6 Related Work

Our work is the first to approach the design of hardware-accelerated LBPNets. While

it is hard to conduct a direct comparison with existing hardware accelerators for CNNs because
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of the diversity of implementation choices, the effect on computation and memory size can be

examined. Here we provide three published works regarding the compression of CNNs as a

reference as these use common essential techniques.

Deep Compression [HMD15] utilized multiple techniques to achieve a compression

rate of 35X: pruning, quantization, customized weight encoding, Hoffman encoding. However,

owing to that the pruning and quantization retraining loops were not combined to minimize the

interactive effects, there was no guarantee to the global minimum of the training result.

FINN [UFG+17] fully exploited the critical characteristics of BNN: 1) a popcount

module was synthesized to count the number of 1’s. 2) redesigning BatchNorm to threshold

the popcount results with different values, which can be calculated off-line. Although FINN

provided a complete synthesizing flow for trained BNNs, it degraded the classification accuracies

because the padding subroutine was not correctly imposed.

BCNN Accelerator [ZSZ+17]. The authors adopted a partially shared streaming ar-

chitecture and managed to process sub-word buffering and storing efficiently. By adding the

2-bit ignoring elements surrounding the feature maps, BCNN Accelerator circumvented the

zero-padding issue as FINN encountered.

All the three works were based on CNN, and the smallest model size they achieved was

still a couple of Mbits. The most efforts in those work were the quantization of CNNs because

CNNs were not designed to be hardware-friendly. Instead, our accelerated LBPNets are designed

for bit-wise operation since the development of its algorithm [LYGT18].

4.7 Conclusion and Future Work

We have presented an efficient accelerator for LBPNet on FPGA with distinct imple-

mentation advantages and ability to make hardware related design tradeoffs. The accelerated

LBPNets achieve Kbit model size and high throughput while maintaining the state-of-the-art

accuracy on all datasets. Our future work includes the combination of binarized FC layers with
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LBP layers to further reduce the memory footprints and accesses an exhaustive exploration of

systolic and SIMD architectures for the acceleration of LBP layers’ indexing operations.

Chapter 4 contains reprints of Jeng-Hau Lin, Atieh Lotfi, Vahideh Akhlaghi, Zhuowen Tu,

and Rajesh K. Gupta, “Accelerating Local Binary Pattern Networks with Software-Programmable

FPGAs”, Design, Automation, and Test in Europe (DATE), 2019. This dissertation author is the

primary author of this paper.
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Chapter 5

The Error Immunity of LBPNets

As a supervised learning method, neural networks (NNs) have shown broad applicability

from medical applications, speech recognition, and natural language processing. This success

has even led to the implementation of NN algorithms into hardware. In this chapter, we explore

two questions: (a) to what extent microelectronic variations affects the quality of results by

neural networks; and (b) if the answer to the first question represents an opportunity to optimize

the implementation of neural network algorithms. Regarding first question, variations are

now increasingly common in aggressive process nodes and typically manifest as an increased

frequency of timing errors. Combating variations – due to process and/or operating conditions –

usually results in increased guardbands in a circuit and architectural design, thus reducing the

gains from process technology advances. Given the inherent resilience of neural networks due to

the adaptation of their learning parameters, one would expect the quality of results produced by

neural networks to be relatively insensitive to the rising timing error rates caused by increased

variations. On the contrary, our results on multiple-layer perceptron (MLP), convolutional

neural network (CNN), binarized convolutional neural network (BCNN), and local binary pattern

network (LBPNet) show that physical variations can significantly affect the inference accuracy.

This paper outlines our assessment methodology and use of a cross-layer evaluation approach

that extracts hardware-level errors from twenty different operating conditions and then injects

such errors back to the software layer in an attempt to answer the second question posed above.
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5.1 Introduction

Neural network algorithms have found use in a wide range of applications such as medical

diagnostics [YJZ+06], image classification [KSH12], speech recognition [HDY+12], and natural

language processing [CWB+11]. This versatility has led to their implementation on a variety of

hardware platforms: GPU [CLL+14], FPGA [HAM07], and ASIC [CDS+14].

With the continuous scaling of CMOS technology, the underlying transistors in all

these implementations are increasingly susceptible to variations in manufacturing and operating

conditions. Dynamic variations in microelectronic systems, which is the main focus of this paper,

are caused by environmental factors such as supply voltage droops and temperature fluctuations.

Voltage droops are caused in response to instantaneous current fluctuations due to activities on

the power delivery network. Temperature fluctuation could alter the circuit parameters such

as carrier mobility, threshold voltage, etc. Such variations can manifest themselves as timing

errors, leading to incorrect computation results and system failures. Such variations have led

to increasing use of overdesign and guardbands in a circuit and architectural design to ensure

reliability, which reduces the gains from process technology advances.

Due to the ability to adapt their learning parameters and to extract the abstract common

features in data, neural networks have an inherent resilience to errors. Thus, one would expect that

the quality of results produced by hardware neural networks (HNNs) to be relatively insensitive

to the rising timing error rates caused by increased variation, thus opening doors for opportunistic

reduction of guardbands to increase the operational efficiency of hardware. There is a need for a

quantitative assessment here to explore the extent to which guardbands can be reduced in HNNs.

We investigate this question as to whether and how much accuracy of HNNs could be affected by

dynamic variations. To do this, we capture and represent variations from low-level hardware, and

then expose them to neural networks inferences. Unlike logic errors which can be derived through

a mathematical formulation[DLC+15][MSS+16][ZWT+15], variation-induced timing errors

can only be obtained using gate-level simulation, making the error injection implementation
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time-consuming and not scalable.

Approach and Contributions: We propose a cross-layer approach to assess the vulner-

ability of HNNs to dynamic voltage and temperature variations, in which we extract the timing

errors from hardware layer using gate-level simulations and examine their effects in the software

layer using error injections. To evaluate the soundness of this approach, we measure the timing

errors using gate-level simulations (GLS) of post-layout circuits in TSMC 45nm technology. We

vary the voltage and temperature in a wide range to examine the effects of variations. Then, we

represent and inject these timing errors to neural networks during their inference. Finally, we

examine the resilience of four types of neural networks, MLP, CNN, BCNN, and LBPNet, by

testing them on MNIST dataset[LCB98].

Based on our implementation and evaluation, this paper makes the following contribu-

tions:

• We extract the circuit level timing errors caused by voltage and temperature variations

from twenty different operating conditions using gate-level simulations.

• We inject such timing errors back into neural network inference and evaluate the accuracy

on MNIST dataset at different conditions.

• Our results quantitatively show that variations can significantly affect the inference accu-

racy on NNs.

• Among the four subject networks, LBPNet provides the strongest error immunity that the

other three networks cannot be on par with.

5.2 Hardware Neural Networks

Modeled for neural processing, Figure 5.1 shows a typical neural network, an MLP

consisting of an input layer, hidden layers, and an output layer. Except for the input layer, all

remaining layers are composed of artificial neurons that represent the basic computation unit.
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Figure 5.1. An example of a 4-layer multi-layer perceptron neural network.

An artificial neuron consists of a linear processing part followed by a non-linear processing part.

The linear part collects the output information, namely the activations, from the previous layer.

The collection method is a dot production between weights and activations. The nonlinear part

includes regularization like dropout, and activation functions such as logistic sigmoid, hyperbolic

tangent, or rectilinear unit. The nonlinear activation function enables a neural network to be

a universal function approximator [Gyb89]. [RHW85b] intelligently applies the chain rule of

calculus and gradient descent on neural networks to train the weights and hence minimizes the

classification errors.

Since proposed in 1989, CNNs [LBD+89a] have pushed the performance of neural

networks to a new realm. Figure 5.2 depicts the internal processes in a convolutional layer with 9

kernels, each of which consists of three filters. The convolution operation models the hardwired

bonding between the neurons on adjacent layers. It uses a sliding filter to perform dot-products

of the filter and uses a portion of the input image to generate an output image, namely the feature

map. Since the convolution operations are differentiable, the filters can be trained to capture

the features of the input images with backward propagation [RHW85b]. Pooling is used to

reduce the size of a feature map and increase the reception area by selecting the maximum pixel
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Figure 5.2. The processes among a convolutional layer.

strength or averaging several pixel strengths. It benefits the translation invariance because it

drops unnecessary minor information and preserves the most dominant features for the overall

classification task.

The robustness of a neural network comes from many aspects. From a higher level

point of view, the training process of a neural network model is simply an ensemble of multiple

linear or logistic regressions working in parallel. The regression itself ignores minor noises

of the data and yields a model for the most likely distribution of the given data. Second, the

regularization process inside a neural network also contributes to robustness because no matter

how deterministically penalties on weights are added or how stochastically certain partials

of the model are dropped, the weights are trained to accommodate the majority of the data

with a simplest probable distribution. Moreover, if a retraining process is involved, the convex

optimization enforces the learnable parameters in a model to descend on the error surface again.

Please note that we only assess the inference performance in this work without performing any

re-training.

Hardware variations could impact HNNs through timing errors in both computation
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to extract the timing errors under different operating conditions; b) SW-layer: Timing Error
injection into neural network and perform inference.

logic and control logic. The errors in control logic could lead to catastrophic results, but,

fortunately, most critical paths lie in computation logic, which is mainly composed of additions

and multiplications, two of the most frequently used operations. Both the forward and backward

propagation require intensive additions and multiplications, but most HNNs on ASIC, FPGA,

and embedded GPUs do not support on-chip learning. Thus, we mainly focus on the timing

errors that occur in addition and multiplication during the inference phase of HNNs.

5.3 Cross-layer Vulnerability Assessment

The cross-layer vulnerability assessment is comprised of two phases as shown in Fig-

ure 5.3: Timing Error Extraction and Timing Error Injection. a) The Timing Error Extraction

phase implements the standard ASIC flow and uses gate-level simulation (GLS) to generate

timing errors at each operating condition. b) In the Timing Error Injection phase, we inject the

timing errors into neural networks and then perform inference. We vary the neural network

genres and operating conditions to examine the resulted accuracy. More details about the two

phases are illustrated as follows.
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5.3.1 HW-layer: Timing Error Extraction

We extract the timing errors through Timing Error Extraction module as illustrated in

Figure 5.3, which is divided into several steps. Note that we focus on dynamic variation-induced

timing errors of computation units. We extract timing errors from the adder and the multiplier,

which are the two most frequently used computation units in neural networks computation. We

use FloPoCo [DDP11] to generate the synthesizable VHDL codes of floating point units. We

use Synopsys Design Compiler to synthesize the Verilog codes and use Synopsys IC Compiler

to generate the post place-and-route netlist in TSMC 45nm technology. Next, we use Synopsys

PrimeTime to perform static timing analysis, generating Standard Delay Format (SDF) files

at different operating conditions. To do this, we use the voltage-temperature scaling features

of Synopsys PrimeTime for the composite current source approach of modeling cell behavior.

We consider twenty operating conditions as shown in Figure 5.7, which could introduce both

mild and aggressive timing errors. Then, we use Mentor Graphics ModelSim to do SDF back-

annotation gate-level simulations under nominal frequency to generate output data at different

operating conditions. To extract timing errors, we compare the GLS output y[t] with a pure-RTL

simulation result y gold[t], which is free from timing errors because there is no delay annotation.

If there is a mismatch, then we define it as a timing error.

5.3.2 SW-layer: Timing Error Injection

We inject the timing errors extracted by the Timing Error Extraction phase to the neural

networks by using second phase Timing Error Injection. During the forward propagation in the

neural network inference, we inject the errors into the arithmetic computations (addition and

multiplication) in the convolutional layer (Conv layer), fully-connected layer (FC layer), average

pooling layer (AvgPool layer), batch normalization layer (BatchNrom layer), and local binary

pattern layer (LBP layer). There are several noteworthy facts must be highlighted regarding the

error injection in the software layer: First, the XNOR operation and pop-count accumulation
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in BCNN and the comparison operation in an LBP Layer are not implemented in conventional

arithmetic and logic units (ALUs) on CPUs or processing elements (PEs) on GPUs. We have

to use multiplier and adders to carry out the 1-bit XNOR and the following accumulation in

BCNN. For the comparison in an LBP Layer, we use the sign bit of subtraction to produce the

comparison result instead. Therefore, the TER from adders and multiplier can affect the outputs

of binarized Conv, binarized FC, and LBP layers.

On a circuit, different input could excite different paths, resulting in an input-specific

timing error behavior. To mimic this, an exhaustive look-up table containing the entire input

space for each bit position of each computation unit under all operating conditions needs to

be implemented. Then, the computations need to look up the table to check whether it has a

match on any input operands in the input space. This makes the inference process prohibitively

slow. To approximate the situation, we inject the timing errors as [SDF+11]: let the computation

units return a random value each time they have timing errors. We inject the error into the

computation with the pair of adder TER and multiplier TER extracted from the Timing Error

Extraction phase to mimic the time error behavior. For example, if adder has a TER at 0.1, we

inject errors to 10% of the total additions. This probability is determined by operating conditions

and computation logic (addition or multiplication), which can represent the impact of timing

errors on computation logic. We vary the error injection probability for each operating condition.

5.4 Experimental Results

In this section, we measure timing errors under twenty operating conditions. Then, we

measure HNNs accuracy as a function of varying timing error rates. Finally, we characterize the

HNNs accuracy under dynamic variations using MLP, CNN, BCNN and LBPNet.

5.4.1 Experimental Setups

In this work, we use tiny-dnn [Nom16], a header only, dependency-free deep learning

library written in C++, as our deep learning platform for MLP and CNN. This platform is
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Figure 5.4. MLP accuracy as a function of TER.

light weighted and is designed for deep learning on the limited computational resource, such

as embedded systems and IoT devices. For CNN, we use LeNet-5 like architecture and replace

LeNet-5’s RBF layer with normal fully-connected layer. For MLP, we use 3-layer MLP with

a hidden layer of 60 neurons. We adopt the same structure of the BCNN for MNIST in the

BNN paper [LXZ+17], and the LBPNet for MNIST in the previous chapter and the LBPNet

paper [LYGT18]. The synthesizable C codes for BCNN and LBPNet implemented by us for

FPGA accelerators are used for the error injection. All the for sets of weights and kernels are

pre-trained either from the referred tiny-dnn source or by us on an Nvidia Tesla K40 GPU.

We use MNIST (Mixed National Institute of Standards and Technology) database of

handwritten numbers [LCB98] as our dataset to evaluate the neural network accuracy. This

dataset is a well-known dataset for evaluating the performance of neural network classifiers. The

dataset is split into training set and test set with 60,000 and 10,000 28×28 images. We vary the

voltage from 0.81V to 0.90V with a step at 0.01V and the temperature from 50◦C to 100◦C.
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Figure 5.5. CNN accuracy as a function of TER.

5.4.2 Accuracy under the Threat of Timing Errors

Before the error extraction, we assess the performance degeneration as a function of

timing error rates. The accuracy is evaluated for both MLP and CNN under the TER at 0,

0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 at three configurations as shown in Figure 5.4

and Figure 5.5; add only means we only inject timing errors to adder, mul only means we only

inject timing errors to multiplier and both means we inject errors to adder and multiplier at the

same time. We observe that for both MLP and CNN, as the TER increases, the accuracy drops

monotonically. When the TER is 0.00001, the HNN can still deliver a decent accuracy close to

original accuracy. Once the TER of adder reaches 0.0001, the accuracy drops to around 90%

and continue dropping to 60% when the TER of adder reaches 0.001. In contrast, the multiplier

exhibits much less significant impact on HNN accuracy: the HNN can still deliver 90% accuracy

even when the TER of multiplier reaches 0.001. In fact, for all examined TERs, the mul only

resulted accuracy is always higher than that of add only. Moreover, the accuracy under both

configuration is almost identical to that of add only configuration, suggesting that adders-induced
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Figure 5.6. TER of adder and multiplier under different operating conditions.

errors contribute to most of the accuracy drop.

One main reason is that the accumulated convolution sum or dot-product sum are fed into

a nonlinear activation function and thereby directly affect the activation, while the errors from

multipliers will be averaged and diluted. This suggests that more hardware design effort should

be made on the adder to ensure its low TER. On the other hand, the worst accuracy of both NN

genres is around 10%, when either add only or mul only is 0.1. We can observe that such an

accuracy drop starts saturating at 0.1 TER, almost identical to a random guess of the 10-class

recognition task. In summary, such observations show that even though neural networks have

inherent error resilience, the timing errors still can significantly affect neural network accuracy

and motivate this work.

5.4.3 Accuracy Versus Dynamic Variations

We then use the real dynamic operating conditions to obtain realistic timing error rates

and thereby characterize the vulnerability of HNNs to dynamic variations. Particularly, we use

the Timing Error Extraction described in Section 5.3.1 to characterize the timing error behavior
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Table 5.1. HNN accuracy under dynamic variations.

HNN (0.90V, 50◦C) (0.90V, 100◦C) (0.89V, 50◦C) (0.89V, 100◦C) (0.88V, 50◦C) (0.88V, 100◦C)
MLP 96.79% 96.03% 94.90% 87.93% 75.56% 57.76%
CNN 98.37% 97.31% 95.87% 85.15% 70.34% 48.64%

BCNN 99.58% 98.09% 97.49% 96.79% 82.65% 73.29%
LBPNet 99.52% 99.53% 99.49% 99.49% 99.48% 99.37%

HNN (0.87V, 50◦C) (0.87V, 100◦C) (0.86V, 50◦C) (0.86V, 100◦C) (0.85V, 50◦C) (0.85V, 100◦C)
MLP 25.67% 15.89% 10.45% 10.33% 9.42% 9.91%
CNN 18.85% 11.13% 9.81% 9.80% 9.81% 9.81%

BCNN 36.00% 10.52% 9.81% 9.83% 9.89% 10.02%
LBPNet 99.21% 98.20% 87.58% 50.98% 30.25% 11.03%

HNN (0.84V, 50◦C) (0.84V, 100◦C) (0.83V, 50◦C) (0.83V, 100◦C) (0.82V, 50◦C) (0.82V, 100◦C)
MLP 9.89% 9.80% 9.72% 9.60% 10.15% 9.60%
CNN 9.75% 9.81% 9.89% 9.80% 9.91% 9.84%

BCNN 9.99% 9.72% 9.90% 9.74% 9.99% 9.93%
LBPNet 11.72% 10.23% 10.56% 10.25% 10.19% 10.67%

of 32-bit floating point adder and multiplier under different operating conditions as shown in

Figure 5.6. Besides the ideal condition without any error, the selected operating conditions cover

a wide range of TERs: at the best condition (0.90V, 50◦C) with TERs less than 0.0001; at the

worst condition (0.81V, 50◦C), 0.5 and 1.0 TER are found in adders and multipliers, respectively.

By comparing these two computing units, we find that TER of the multiplier is always higher

than the adder under the same condition. This is because the multiplier design has more critical

paths than the adder, resulting in more timing violations. The TER of adder reaches 1% when

the operating condition is around 0.86V. Based on Figure 5.4 and Figure 5.5, the accuracy drop

starts to saturate when the TER of adder reaches 0.01; thus we expect to see the worst accuracy

starting at around 0.86V.

We then present the accuracy of MLP, CNN, BCNN, and LBPNet under the twenty

operating conditions, as shown in Figure 5.7 and Table. 5.1, where we observe several important

facts:

1. First, the lowest accuracy under worst-case operating conditions is around 10% for all

the four networks across multiple conditions from (0.85V, 100◦C) to (0.81V, 100◦C). (For

better space utilization, we do not present the accuracy under 0.82V in Table. 5.1, where

the accuracies are around 10%.) For MLP, CNN, and BCNN, this observation is expected
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Figure 5.7. HNN accuracy as a function of dynamic variations.

as we can see from Figure 5.4 and Figure 5.5 where the accuracy drops to 10% when the

TER of either unit reaches 0.01.

2. Second, the four curves can be categorized into two groups because the MLP, CNN, and

BCNN behaviors similarly, and the LBPNet’s accuracy curve demonstrate a high immunity

to the TER residing in adders and multipliers.

3. Third, Table. 5.1 shows that under the condition between (0.90V, 50◦C) and (0.86V, 50◦C),

where the TER of adder is less than 0.01, the accuracy drop of MLP to its original accuracy

is less than that of CNN, indicating MLP might be more resilient than CNN within a

certain TER. Part of the reason for this is that given the same TER, the amount of errors in

CNN is larger than MLP because CNN has more arithmetic operations, and the percentile

of multiplications among all arithmetic computations are higher in CNN.

4. Fourth, BCNN sustains slightly more timing errors than MLP and CNN because the

binarized values and operations in BCNN rectify a portion of the injected errors and

thereby enhances the robustness.
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5. Fifth, LBPNet keeps immune against the variation until we impose much harsher condi-

tions. A 10% accuracy deterioration is observed at (0.86V, 50◦C), while all the other three

models significantly lose classification ability and fall around 10% accuracy. LBPNet

totally fails to classify upon (0.85V, 100◦C), at with the TERs climb to 0.1 and 0.5 for

adders and multipliers, respectively.

6. Last but not least, we find the voltage and temperature both play an important role in

determining the inference accuracy. By fixing the temperature at 100◦C, reducing the

voltage by 0.01V from 0.89V to 0.88V results an accuracy drop of the CNN model from

85.15% to 48.64%; by fixing the voltage as 0.88V, increasing the temperature by 50◦C

results an accuracy drop from 70.34% to 48.64%. By comparing the accuracy at (0.90V,

50◦C) and (0.86V, 50◦C), we find the accuracy drops to worst case at around 10% from

best case at around 98% by a voltage reduction of 0.04V.

The immunity of LBPNet outperforms the other models with a remarkable gap. There are

multiple causes contribute to this immunity that can be qualitatively justified through a re-visit

of the details in an LBP Layer. The comparison is simulated with the sign bit from the adder’s

subtraction output. Then, the sign bits corresponding to an LBP kernel are produced by adders in

parallel and form a bit sequence to represent an integer on the output feature map. Whenever the

adder is stochastically selected for an error injection, the sign bit is flipped randomly according

to a uniform distribution. Therefore, on the one hand, an injected error can only affect a single

bit rather than an output value as in MLP and CNN. Furthermore, if the selected bit is not the

most significant bit (MSB) of the output value, the effect of error injection is scarce. On the other

hand, the sign bits are combined with a bit shift and a logic OR operations in parallel, which

are relatively less affected by the hardware variations given their circuitry simplicity and not

discussed in the scope of this work. The absence of accumulation helps LBPNet to preclude the

error accumulation and hinder the propagation of errors.
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5.5 Discussion

Threats to Validity: In this work, we mainly focus on variation-induced timing errors

in computation logic. However, the timing errors could also occur in control logic, which might

lead to more severe accuracy drop or malfunction. Fortunately, it was observed that control logic

only contributes a small set of critical paths [WDF+17], making it less vulnerable to timing

errors.

Future Work: In this work, we focus on assessing the effects of hardware variations on

neural network performance. The next question is how we can mitigate such timing errors. For

future work, we focus on integrating the timing errors as a vector for backpropagation to enable

an adaptive training method. Moreover, we plan to design a reconfigurable architecture that can

automatically select suitable weights for a given voltage and temperature from a set of pre-stored

weights.

5.6 Related Work

We describe the related work in three parts: combating timing errors, neural network

resiliency and the main difference of our work with them.

Various hardware techniques have been developed to combat timing errors. Razor

[ESKD+03], used a shadow flip-flop to detect timing errors and used recovery circuits to correct

them. Error-detection sequential circuits (EDS) [BTK+09], double sampled and compared

signals arriving at different timings through such flip-flops and then corrected them. Several

learning methods were used to predict timing errors for functional units or instructions to enable

an adaptive design [JRN+15, JJRG16, JJRG17]. A multi-armed bandit based optimization

method was proposed to enable dynamic timing speculation [ZG17]. Going up to the system

level, Bayesian networks have been used to calculate the system reliability with both hardware

and software in consideration and acquired higher accuracy [JZS+13, JZL+14].

More recent approaches to improving cost and energy efficiency have advocated tolerance
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to computational approximations, such as approximate adders [CSE16, JCC+17]. These errors,

originating from the inexact logic design of computing units, have been used in hardware

neural networks to improve operational efficiency [DLC+15, MSS+16, ZWT+15]. [DLC+15]

substituted the normal multipliers with inexact multipliers that provide inexact logic but with

less hardware cost. [MSS+16] further optimized such design with a uniform structure suitable

for hardware implementation. [ZWT+15] provided a framework for hardware neural network

designers to choose which parts were suitable for an approximation that led to less impact on

accuracy based on a criticality ranking. These works intentionally designed inexact hardware

and introduced logic errors in exchange for less hardware cost.

Compared to logic errors, timing errors were less exploited in neural networks because

of its unpredictability and uncertainty. Logic errors could be determined once the design is fixed

but timing errors can only be obtained through simulations. A retraining-based method has been

proposed to mitigate the timing errors in hardware neural networks [WDF+17]. However, these

works assumed a fixed timing variation for each gate without considering hardware variations as

the root cause, which might be unrealistic.

In summary, there have been no prior works assessing the neural network vulnerability

to dynamic variations. In this work, we do not introduce the errors intentionally but focus on

the unintentional timing errors caused by hardware variations. We link the timing errors with

low-level hardware variations and characterize them under different operating conditions and

present the importance of considering variations when designing hardware neural networks.

5.7 Conclusions

In this chapter, we assess the effects of dynamic voltage and temperature variations on the

performance of hardware neural networks. We first extract the timing errors of post place-and-

route computation units under twenty operating conditions through gate-level simulations. We

then inject such errors to the neural network inference phase and evaluate the resulted accuracy.
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With the results on MLP, CNN, BCNN, and LBPNet, we demonstrate that dynamic voltage

and temperature variations can cause a significant drop in inference accuracy. The variation

immunity of LBPNet is the highest among the tested models and hence and sustain more tough

conditions in practical applications.

Chapter 5 contains the re-organized reprints of Xun Jiao, Mulong Luo, Jeng-Hau Lin,

Rajesh K. Gupta. “An Assessment of Vulnerability of Hardware Neural Networks to Dynamic

Voltage and Temperature Variations”. In Proceedings of the 36th International Conference on

Computer-Aided Design (ICCAD). IEEE Press, 2017. p. 945-950. The dissertation author is the

co-author and primary investigator of this paper.

96



Chapter 6

Conclusion and Future Directions

In this dissertation, we have dove into the core of algorithmic demands to pursue a cross-

layer optimization for deep learning application. Particularly, we developed energy efficient

algorithms, implemented GPU training programs, and finally carried out the trained models

on software-programmable FPGAs. Two types of neural networks, BCNNw/SF and LBPNet,

have been proposed to loosen the strain of physical resource deficiency. Since the hardware

incarnation of neural networks in the practical application can never be isolated from hardware

variations, we also extracted timing errors from gate level simulation and injected errors in neural

network models and discovered the high noise immunity of LBPNet. The efficiency in terms of

computation resource and energy consumption and effectiveness in error immunity can benefit

and reduce the guardbands in a system.

Looking beyond this dissertation, several promising directions can be further explored in

the future:

Fast Object Detection. The object detection task requires a fast and robust method to

produce candidate positions that possibly contain the targets. Given that LBPNet is strong and

swift in answering ‘Yes’-or-‘No’ questions, we can combine LBPNet into objection detection

methods, such as YOLO or fastRCNN.

Improving the pre-trained LBP Kernels with Data-Driven Methods. Since the result

of LBPNet’s training is the sparse and discrete sampling positions, we can apply the Monte-Carlo
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method to the sampling positions for a better leverage of the input data. However, directly swap

sampling points with a heuristic or stochastic method, such as the simulated annealing algorithm,

may lead to suboptimal results. A possible combination is to perform Monte-Carlo after the

forward-backward algorithm on LBPNets.

Aggregation in LBPNet. The disadvantage of LBPNet is the absence of information

aggregation. If a small number of additions are allowed in the LBPNet, the information or prior

distributions of input images can be accumulated and propagated across LBPLayers. Although

introducing aggregation in LBPLayer increases the complexity of backward propagation, the

variety of kernels may benefit the higher abstract feature extraction.
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Appendices

We include LBPNet’s details of implementation and analysis in this section.

A.1 Examples of Feature Extraction

Figure A.1.1 shows five examples of the input and output of a trained LBP layer. The

first three rows are images of label ’4’, and we see that strokes in the same relative position get

enhanced. For the other images with different labels, the trained LBP is also able to enhance

different portions, and the resulting output maps include more distinguishable features for

classification.

A.2 Learning Curves

Figure A.2.2 shows the learning curves of LBPNets on MNIST and SVHN.

A.3 Sensitivity Analysis of the Scaling Parameter

Figure A.3.3 shows the sensitivity analysis of the parameter α in Eq. 3.1 w.r.t. the training

accuracy. The LBPNet structure we use is 3-layer, 39-40-80. We gradually reduce α from 10 to

0.01 to verify the effect on the learning curves. Sub-figure (a) and (c) show that the smaller α is,

the lower the error rate is, but it saturates when α is below 1. Sub-figure (b) shows that a smaller

α can better reduce the variance of training loss. As a summary, because we approximate the

comparison function with a shifted and scaled hyperbolic tangent function. A smaller α implies

lower error between the approximation and the original comparison curve, hence simulating
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Figure A.1.1. The input images and output features maps of a LBP Layer.
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Figure A.2.2. Error curves of LBPNets on benchmark datasets: (a) test errors on MNIST; (b)
test errors on SVHN.

Figure A.3.3. Sensitivity analysis of α w.r.t. training error on MNIST. (a) Training error; (b)
training loss; (c) test error.
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Figure A.4.4. The effect of the number of sampling points on training error on MNIST: (a)
Training error; (b) training loss; (c) test error.

the comparison while securing differentiability. In this paper, we choose α = 0.1 to balance

between classification accuracy and the overflow risk of the gradient summation during backward

propagation.

A.4 Sensitivity Analysis of #Sampling Point

Figure A.4.4 shows how the number of sampling points nS affects the training accuracy.

Since there is no significant improvement after nS >= 4, we choose to use 4 sampling points per

kernel to save the memory and computation resource.

A.5 SVHN Results

Table A.5.1 shows the experimental results of LBPNet on SVHN together with the

baseline and previous works. The CNN-baseline and LBPNet (RP) share the same network

structure, 37-40-80-80-160-160-320-320, and the CNN-lite is limited to the same memory size so

that the network structure is 13-20. BCNN-6L outperforms our baseline and achieves 2.53% with

smaller memory footprint and higher speed. LBCNN-40L also achieves good memory reduction,

but loses the speedup since it stacks 40 building blocks. The 20-layer LBPNet (1x1) with 40

LBP kernels and 32 1-by-1 convolutional kernels achieve 8.33%. The convolution-free LBPNet
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Table A.5.1. The performance of LBPNet on SVHN.

Error ↓ Size ↓ Latency ↓
Operations ↑

(Bytes) (GOPs)
MLP Block 77.78% - - -
CNN-baseline 6.69% 10.11M 1.86 1X
CNN-lite 54.40% 10.90K 0.003 598X
BCNN-6L 2.53% 153.8K 0.306 6.089X
BCNN-6L-noBN 80.41% 146.6K 0.306 6.094X
BCNN-8L-noBN 79.92% 46.42K 0.632 2.947X
LBCNN-40L 5.50% 6.70M 6.088G 0.306X
LBCNN-40L-noBN 80.41% 1.7M 6.087G 0.306X
LBCNN-8L-noBN 80.41% 461.81K 1.281 1.529X

LBPNet (this work)
LBPNet (1x1) 8.33% 5.35M 0.058 32X
LBPNet (RP) 7.10% 10.62K 0.010 193X

Table A.6.2. The error rates of fixed LBP kernels. From left to right, the number of fixed LBP
layers are increased from the first layer to the last layer.

Dataset 0 1 2 3 4 5 6 7 8
MNIST 0.50 1.70 5.51 15.84 - - - - -
SVHN 7.10 32.94 41.76 53.97 58.25 59.30 61.02 65.62 66.16

(RP) for SVHN is built with 8 layers of LBP basic blocks, 37-40-80-80-160-160-320-320, and

achieves 7.10% error rate. Compared with CNN-lite’s high error rate, the learning of LBPNet’s

sampling point positions proves to be effective and economical. The error rates of the remaining

four models, BCNN-6L-noBN, BCNN-8L-noBN, LBCNN-40L-noBN, and LBCNN-8L-noBN,

are similar to random guess, 80% (Note that the SVHN dataset is not balanced). However,

LBPNet (RP) reaches the same level of error rate as the CNN-baseline, yet with 10.62KB model

size, which is 952x smaller.

A.6 LBPNet Results When the Patterns Are Fixed upon
Initialization

Table A.6.2 lists the error rates when part of the LBPNets are not optimized. The increase

of error rates as more layers are fixed demonstrates the effectiveness of SGD optimization.
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Figure A.7.5. The axes and dimensions for the six tensors in the following sections. Img, Fm,
gi, and go share the same coordination, while Knl shares the same coordination with gP. gi’s
shape of is (ci,h,w), Knl’s shape is (co,ci,k,k), and Fm’s shape is (co,h,w). Img, Fm, and Knl
are in the same sizes with gi, go, and gP, respectively.

A.7 Detailed Description of the LBPNet Algorithm

The training of CNN includes forward, backward propagation, and parameter update.

The forward propagation defines how to generate the feature maps. The backward propagation

comprises the calculations of two derivatives: the gradient with respect to the input ∂loss
∂input (or gi)

and the gradient with respect to parameter ∂loss
∂parameter (or gP). The parameters are updated using a

convex optimization method. We, first, introduce the training algorithm of a convolutional layer

(ConvLayer) and then explain the optimized GPU algorithm for CNN.

A.7.1 Training algorithm of CNN

All the axes and dimensions in the following equations and algorithms are illustrated in

Figure A.7.5.
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Forward Propagation. As shown in Eq. (1), the spatial non-inverted discrete convo-

lution is composed of three nested summations. Although there are three nested loops, the

kernels are moving spatially, i.e., along x- and y-axes, because both the input image and the

convolutional kernels have the same number of input channels.

Fm[x][y][z] =
ci

∑
ζ=1

k

∑
η=1

k

∑
ξ=1

Knl[ξ][η][ζ][z]Img[x+ξ][y+η][ζ], (1)

where Fm is an output feature map, (x,y) denotes a spatial position on f m, z is the index of a

concerned output channel, Knl is the four dimensional convolutional kernel, (ξ,η) is a dummy

tuple denoting a spatial position on Knl of size co-by-ci-by-k-by-k, ζ is the dummy variable

iterating over all input channels, (ξ,η) denotes a spatial position on knl, and Img is the input

image. The subject of the summations is the dot-product between the input image and the

convolution kernel.

Algorithm 1 describes the forward propagation algorithm of a ConvLayer, which is

composed of dot-product and sliding window operations, where 〈〉 stands for the element-wise

multiplication. The two innermost loops describe the sliding window operation, and the only

equation inside is a dot-product between a kernel and a portion of the input feature map as shown

in Eq. (1). All kernels are involved with the same convolution operation as described as the

outermost loop.

Backprop of CNN w.r.t. Input. Eq. (2) shows the backward propagation for the

preceding layer.

gi[x][y][z] =
co

∑
ρ=1

k

∑
η=1

k

∑
ξ=1

Knl[ξ][η][z][ρ]go[x+ξ][y+η][ρ], (2)

where gi is the gradient of loss with respect to an input image, (x,y) denotes a spatial position on

gi, z is the index of a concerned input channel, (ξ,η) denotes a dummy spatial position on Knl,

ρ is a dummy iterator over the output channel, and go is the gradient of loss with respect to an
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Algorithm 1: Forward of CNN
input :An input tensor Img of shape (ci, h, w), previous kernel Knl of shape (co, ci, k,k), and the

padding width d =
⌊ k

2

⌋
.

output :An output tensor Fm of shape (co, h, w).

1 ImgP← ZeroPadding(Img,d)
2 for z = 1 to co do
3 for y = 1 to h do
4 for x = to w do
5 Fm[x][y][z] = 〈Knl[1 : k][1 : k][1 : ci][co], ImgP[x : x+ k−1][y : y+ k−1][1 : ci]〉
6 end
7 end
8 end
9 return Fm

output image.

Algorithm 2 describes the algorithm of CNN backward propagation to calculate gradient

w.r.t. input. Analogous to the forward propagation, the two innermost loops perform the

sliding window on the go to collect the supervised learning errors, which are weighted with

the convolutional kernel Knl, as shown in Eq. (1). The outermost loop iterates over the input

channels to build gi.

Algorithm 2: Backprop of CNN: Gradient w.r.t. input
input :An output gradient tensor go of shape (co, h, w) and previous kernel W of shape (co, ci, k,k).
output :An input gradient tensor gi of shape (ci, w, h).

1 for z = 1 to ci do
2 for y = 1 to h do
3 for x = to w do
4 gi[x][y][z] = 〈Knl[1 : k][1 : k][z][1 : co], go[x : x+ k−1][y : y+ k−1][1 : co]〉
5 end
6 end
7 end
8 return gi

Backprop of CNN w.r.t. Parameter. Eq. (3) shows the backward propagation for

learnable parameters.

gP[ξ][η][ζ][ρ] =
ho

∑
x=1

ho

∑
y=1

Img[ξ+ x][η+ y][z]go[x][y][ρ], (3)
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where, gP is the gradient with respect to the learnable parameters, (x,y,z,d) is the 4-ary tuple in

format of (column index, row index, input channel index, output channel index), and (ξ,η) is

the dummy tuple denoting for the spatial position on go. Algorithm 3 describes the algorithm of

CNN backward propagation to calculate gradient w.r.t. parameter.

Algorithm 3: Backprop of CNN: Gradient w.r.t. parameters
input :An output gradient tensor go of shape (co, h, w) and an input feature map Img of shape (ci,

h,w).
output :A parameter gradient tensor gP of shape (co, ci k, k).

1 ImgP← ZeroPadding(Img,d)
2 for ρ = 1 to co do
3 for ζ = 1 to ci do
4 for η = 1 to k do
5 for ξ = 1 to k do
6 gP[ξ][η][ζ][ρ] = 〈Go[1 : w][1 : h][ρ], ImgP[ξ : ξ+w−1][η : η+h−1][ζ]〉
7 end
8 end
9 end

10 end
11 return gP

A.7.2 GPU-accelerated CNN

The three algorithms in the previous section contain loops, which can be replaced entirely

with GPU supported primitive functions in the basic linear algebra subprogram (BLAS) library

shown in the following list.

• GEMV: General 2-D matrix to 1-D vector multiplication.

• GEMM: General 2-D matrices multiplication.

• im2col: Converting a 2-D matrix into another 2-D matrix simulating the sliding window

operation, a.k.a. the Toeplitz matrix format.

• col2im: Accumulating the Toeplitz matrix format back to an image. col2im equivalently

performs local window summations.
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Since GEMV and GEMM carry out the matrix arithmetic in linear algebra with hardware

support primitives, we explain the rest two functions in this section.

Image to Toeplitz Matrix Format Conversion. The im2col function trades redundant

memory footprint for speedup due to the elimination of loops. Algorithm 4 describes the parallel

access and allocation happening in every processing element.

Algorithm 4: im2col
input :A 2-D matrix A of shape (h, w) and the a window size (k, h).
output :Another 2-D matrix B in the Toeplitz matrix format of shape (k2, (h− k+1)(w− k+1)).

1 /* Invoke k2-by-(h− k+1)(w− k+1) parallel processing units for the following instructions. */
2 nc = w− k+1
3 B[x][y] = A[y%nc+ x%k][by/ncc+ bx/kc]

Toeplitz Matrix Format to Image Conversion. The col2im function accumulates all

local elements covered under a window into a value and allocates the value to the image format.

Algorithm 5 describes the parallel operations happening in every processing element. The two

summations are hardware supported and can be achieved in parallel, respectively.

Algorithm 5: col2im
input :The shape of the output image (h, w), and the a window size (k, h), and a 2-D matrix B in the

Toeplitz matrix format of shape (k2, (h− k+1)(w− k+1)).
output :Another 2-D matrix A of shape (h, w).

1 /* Invoke h-by-w parallel processing units for the following instructions. */
2 A[x][y] = ∑

k
η=1 ∑

k
ξ=1 B[(k+1−η)k+(k+1−ξ)][(y− k+η)w+(x− k+ξ)]

GPU-accelerated ConvLayer With the four BLAS primitives, Algorithm 1, 2, and 3

can be rewritten as loop-free Algorithm 6, 7, and 8.

The temporary matrix Clns denotes the resultant of im2col conversion, and the shape of

Clns is (hw,cik2).

A.7.3 LBPNet

The forward and backward propagations of LBPNet are illustrated in the main paper

with high-level descriptions. In this section, we formulate the descriptions into Algorithm 9 and
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Algorithm 6: Loop-free Forward Propagation of CNN
input :An input tensor Img of shape (ci, h, w), the previous kernel Knl of shape (co, ci, k,k) and the

padding width d =
⌊ k

2

⌋
.

output :An output tensor Fm of shape (co, h, w).

1 ImgP← ZeroPadding(Img,d)
2 ImgP← Reshape(ImgP,(ci,(h+2d)(w+2d)))
3 Knl← Reshape(Knl,(co,cik2))
4 Clns← im2col(ImgP,((h+2d),(w+2d)),(k,k))
5 Fm← GEMM(Knl,ClnsT )
6 Fm← Reshape(Fm,(co,h,w))
7 return Fm

Algorithm 7: Loop-free Backprop of CNN: Gradient w.r.t. input
input :An output gradient tensor go of shape (co, h, w) and the previous kernel W of shape (co, ci,

k,k).
output :An input gradient tensor gi of shape (ci, w, h).

1 go← Reshape(go,(co,hw))
2 Knl← Reshape(Knl,(co,cik2))

3 Clns← GEMM(gT
o ,Knl)

4 gi← col2im(Clns,(h,w),(k,k))
5 gi← Reshape(gi,(ci,h,w))
6 return gi

a set of equations in Section 17 first, and then propose a loop-free algorithm, GPU-LBPNet,

leveraging the parallelism of GPU to accelerate both the forward and backward propagations.

Forward Propagation of LBPNet

The forward propagation is designed to be multiplication and accumulation free (MAC-

free). The LBP operation [OPH96] and random projection [BM01] compose LBPNet’s forward

Algorithm 8: Loop-free Backprop of CNN: Gradient w.r.t. parameters
input :An output gradient tensor go of shape (co, h, w) and the input feature map Img of shape (ci,

h,w).
output :A parameter gradient tensor gP of shape (co, ci k, k).

1 ImgP← ZeroPadding(Img,d)
2 ImgP← Reshape(ImgP,(ci,(h+2d)(w+2d)))
3 Clns← im2col(ImgP,((h+2d),(w+2d)),(k,k))
4 gP← GEMM(ClnsT ,gT

o )
5 gP← Reshape(gP,(co,ci,k,k))
6 return gP
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propagation. We can implement the two ideas together to avoid redundant memory accesses and

comparisons if we loop up the projection map before comparison.

Algorithm 9: Forward of LBPNet
input :An input tensor Img of shape (ci, h, w), the LBP kernel P of shape (co, ns), and the fixed

projection map M of shape (co, ns). The pattern width k and padding width d =
⌊ k

2

⌋
. Please

note that every element of P is a tuple denoting a spatial position on the sliding window.
output :An output feature map Fm.

1 ImgP← ZeroPadding(Img,d)
2 for z = 1 to co do
3 for y = to h do
4 for x = 1 to w do
5 for i = 1 to ns do
6 ζ = M[z, i]
7 (ξ,η) = P[z, i]
8 Ipivoti = ImgP[x+d][y+d][ζ]
9 Ilbpi = ImgP[x+ξ][y+η][ζ]

10 if Ilbpi > Ipivoti then
11 Fm[x][y][z]|= 1� is
12 end
13 end
14 end
15 end
16 end
17 return Fm

Algorithm 9 summarizes the forward algorithm of an LBP layer. The three outermost

nested loops form the sliding window operation to generate an output feature maps, and the

innermost loop is the LBP operation. The core of LBPNet is implemented with bit shifting and

bitwise-OR as shown in the if-condition block of Algorithm 9 or the exponentially weighted

summation in Eq. 4.

Fm[x][y][z] =
ns

∑
i=1

[2i−1(Ilbpi > Ipivoti)], (4)

where ns is the number of samplings in an LBP pattern, Ilbpi is the i-th sampled pixel value as

shown in line 9 of Algorithm 9 and Ipivoti is the center pixel value in the window in line 8 of

Algorithm 9. The exponential term 2i−1 simulates the bit allocation of the comparison result.

Please note that the design goal of LBPNet is to leverage bit-wise operation in edge devices, the
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accumulation in Eq. 4 is a mathematically equivalent form to the bit allocation for the derivation

of backward propagation. While designing hardware accelerators on FPGA, the bitwise-OR can

be implemented in parallel with proper block ram partition.

Backward Propagation of LBPNet

As shown in Eq. 3.1, an approximation from comparison to a scaled and shifted hyperbolic

tangent function is adopted to make the LBPNet trainable with convex optimization methods.

Substituting Eq. 3.1 into Eq. 4, we can get Eq. 5.

Fm[x][y][z] =
ns

∑
i=1

[
2i−2(tanh(

Ilbpi− Ipivoti

α
)+1)

]
, (5)

Eq. 6 is the calculation of the gradient of loss with respect to an input image.

gi[x][y][z] =
co

∑
ρ=1

k

∑
η=1

k

∑
ξ=1

(go[x+ξ][y+η][ρ]
∂Fm[x][y][ρ]

∂Ilbpi

), (6)

where ∂Fm[x][y][ρ]
∂Ilbpi

is shown in Eq. 7.

∂Fm[x][y][ρ]
∂Ilbpi

=
2i−2

α

[
1− tanh2(

Ilbpi− Ipivoti

α
)

]
(7)

Eq. 8 shows the calculation of the gradient of loss with respect to the learnable sampling

position.

gP[ξ][η][ζ][ρ] =

ho

∑
y=1

wo

∑
x=1

[
go[x][y][ρ]

∂Fm[x][y][ρ]
∂Ilbpi

(
∂Ilbpi

∂x
x̂+

∂Ilbpi

∂y
ŷ)
]
,

(8)

where go is the backward propagated error, ∂s
∂Ilbpi

is the gradient of an output pixel on Fm with

respect to a sampled input pixel, and (x̂, ŷ) denotes the unit vector of the spatial axes. The last
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Algorithm 10: Loop-free Backprop of LBPNet: Gradient w.r.t. input
input :An output gradient tensor go of shape (co,h,w), the input image Img of shape (ci,h,w), the

previous discrete kernel P, and the fixed random projection map M. Both P and M are in the
same shape (co,ns), but every element in P is a tuple of sampling position in a sliding
window. The pattern width k and padding width d =

⌊ k
2

⌋
.

output :An input gradient tensor gi of shape (ci, w, h).

1 ImgP← ZeroPadding(Img,d)
2 go← Reshape(go,(co,hw))
3 T h← BuildTanhI(ImgP,M,P,k,d)
4 T h← Reshape(T h,(co,cik2hw))
5 tGo← tile(go,(cik2,1))
6 preClns← T hFtGo
7 Clns← GEMV (preClnsT ,onesI)
8 gi← col2im(Clns,(h,w),(k,k))
9 gi← Reshape(gi,(ci,h,w))

10 return gi

term of Eq. 8 (
dIlbpi

dx x̂+
dIlbpi

dy ŷ) is the image gradient of Img at the sampling position.

A.7.4 GPU-Accelerated Forward propagation of LBPNet

Because the forward propagation of LBPNet shown in Algorithm 9 involves bitwise

operation and allocation, it cannot be implemented efficiently with the four primitives mentioned

in Section A.7.2. However, we can avoid the sliding window operation through the low-level

CUDA programming to define each processing element, i.e., CUDA core, to perform the

innermost loop in Algorithm 9, and thereby generate the feature map. The resultant algorithm is

the innermost loop of Algorithm 9.

GPU-Accelerated Backprop of LBPNet w.r.t. Input

We propose Algorithm 10, which is a loop-free algorithm, to accelerate the calculation

of gi.

onesI is a constant vector of length co. The BuildTanhI(.) function implementing Eq. 7

converts the sparse and irregular LBP kernel into a regular dense intermediate matrix T h of

shape (co,cik2hw) as shown in Algorithm 11.

An Even Aggressive Approximation. Since an LBP layer works similarly with a
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Algorithm 11: BuildTanhI
input :The input image Img of shape (ci,h,w), the previous discrete kernel P, and the fixed random

projection map M. The pattern width k and the padding width d =
⌊ k

2

⌋
.

output :A rank 6 tensor T h of shape (co,ci,k,k,h,w)).

1 /* Invoke co-by-ns-by-h-by-w parallel processing units for the following instructions. */
2 ζ = M[ρ, i]
3 (ξ,η) = P[ρ, i]
4 Ipivoti = ImgP[x+d][y+d][ζ]
5 Ilbpi = ImgP[x+ξ][y+η][ζ]

6 T h[x][y][ξ][η][ζ][ρ] = 2i

4k

[
1− tanh2(

Ilbpi−Ipivoti
k )

]

pooling layer for the sampling apertures, we can bypass the calculation of gi and merely forward

the errors to those input pixels which are sampled and used. We propose an even aggressive

approximation of LBPNet’s training, which is to skip the calculation of gi. We name this method

GPU-LBPNet(P).

GPU-Accelerated Backprop of LBPNet w.r.t. Parameter

Algorithm 12 shows a loop-free algorithm accelerating the calculation of gP.

Algorithm 12: Loop-free Backprop of LBPNet: Gradient w.r.t. parameter
input :An output gradient tensor go of shape (co, h, w), an input feature map Img of shape (ci, h,w),

the previous discrete kernel P, and the fixed random projection map M. The pattern width k
and the padding width d =

⌊ k
2

⌋
.

output :An parameter gradient tensor gP of shape (co, ns), while every element is a tuple of a force
vector to push the sampling vector for a convex optimization method.

1 ImgP← ZeroPadding(Img,d)
2 ImgGrad← CalcImgGrad(ImgP)
3 go← Reshape(go,(co,hw))
4 tGo2← tile(go,(cins,1))
5 (T hx,T hy)← BuildTanhP(ImgP, ImgGrad,M,P)
6 T hx← Reshape(T h2x,(co,cinshw))
7 T hy← Reshape(T h2y,(co,cinshw))
8 preClnsx← T hxFtGo2
9 preClnsy← T hyFtGo2

10 gP← pair(GEMV (preClnsT
x ,onesP),GEMV (preClnsT

y ,onesP))
11 gP← Reshape(gP,(co,ci,k,k))
12 return gP

The subroutine BuildTanhP(.) is similar to BuildTanhI except for its element-wisely

multiplication of the resultant tensor and the image gradient, in which every element is a tuple of
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the x-gradient and y-gradient. onesP is a constant vector of length hw.
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Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.
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