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Abstract

Background: Effects of animal source foods (ASF) on atherosclerotic cardiovascular disease 

(ASCVD) and underlying mechanisms remain controversial. We investigated prospective 

associations of different ASF with incident ASCVD and potential mediation by gut microbiota-

generated trimethylamine N-oxide (TMAO), its L-carnitine-derived intermediates γ-butyrobetaine 

and crotonobetaine, and traditional ASCVD risk pathways.

Methods: Among 3,931 participants from a community-based U.S. cohort aged 65+ years, 

ASF intakes and TMAO-related metabolites were measured serially over time. Incident ASCVD 

(myocardial infarction, fatal coronary heart disease, stroke, other atherosclerotic death) was 

adjudicated over 12.5 years median follow-up. Cox proportional hazards with time-varying 

exposures and covariates examined ASF-ASCVD associations; and additive hazard models, 

mediation proportions by different risk pathways.

Results: After multivariable-adjustment, higher intakes of unprocessed red meat, total meat, 

and total ASF associated with higher ASCVD risk, with hazard ratios (95%CI) per interquintile 

range of 1.15 (1.01–1.30), 1.22 (1.07–1.39), and 1.18 (1.03–1.34), respectively. TMAO-related 

metabolites together significantly mediated these associations, with mediation proportions 

(95%CI) of 10.6% (1.0–114.5), 7.8% (1.0–32.7), and 9.2% (2.2–44.5), respectively. Processed 

meat intake associated with a nonsignificant trend toward higher ASCVD (1.11; 0.98–1.25); 

intakes of fish, poultry, and eggs were not significantly associated. Among other risk pathways, 

blood glucose, insulin, and C-reactive protein, but not blood pressure or blood cholesterol, each 

significantly mediated the total meat-ASCVD association.

Conclusions: In this large, community-based cohort, higher meat intake associated with 

incident ASCVD, partly mediated by microbiota-derived metabolites of L-carnitine, abundant in 

red meat. These novel findings support biochemical links between dietary meat, gut microbiome 

pathways, and ASCVD.

Graphical Abstract
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Introduction

Animal source foods (ASF), including unprocessed red meat, processed meat, fish, poultry, 

and eggs, are major components of many diets. The impact of these different foods 

on atherosclerotic cardiovascular disease (ASCVD) have been widely studied but remain 

controversial. Evidence is particularly sparse among older adults, the age group at the 

highest risk for ASCVD and in whom adequate intakes of high-quality protein, which is rich 

in ASF, appears important to offset aging-related losses of muscle mass and strength.1–3

The resulting controversies are exacerbated by poorly understood potential mechanisms 

underlying these associations. A historical focus on saturated fat, for example, has been 

tempered by evidence that its health effects vary according to the food source,4 suggesting 

relevance of other compounds in ASF. Growing evidence highlights newly discovered, 

gut microbiota-generated metabolites of ASF.5–7 These include trimethylamine N-oxide 
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(TMAO), generated by microbial metabolism of dietary L-carnitine (abundant almost 

exclusively in red meat) and choline (present in a variety of ASF). Gut microbial metabolism 

of L-carnitine also generates two intermediates γ-butyrobetaine and crotonobetaine, each 

of which can then be further converted to TMAO (Figure 1). In experiments, TMAO 

promotes macrophage foam cell formation,8 vascular inflammation and inflammasome 

activation,9–12 endothelial dysfunction,13 platelet hyperreactivity and thrombosis,14, 15 and 

decreases reverse cholesterol transport.16 In large clinical samples of patients with prevalent 

diseases, although not other small studies with less robust designs,17, 18 higher plasma levels 

of TMAO were associated with higher risk of ASCVD and total mortality.8, 16, 19–23 It 

has been hypothesized that TMAO and its gut microbiota- generated intermediates may 

partly mediate the effects of consumption of ASF on ASCVD.24 However, no research has 

assessed this hypothesis. Investigation of such mediation would help advance understanding 

of potential mechanisms linking these ASF to ASCVD, as well as reasons for heterogeneous 

associations with ASCVD of different ASF.

To address these important research gaps, we investigated the associations of different 

ASF with incidence of ASCVD in a prospective, community-based cohort of older adults. 

We further evaluated the extent to which plasma levels of TMAO, γ-butyrobetaine, and 

crotonobetaine (referred to hereafter as TMAO-related metabolites) jointly mediated the 

identified associations.

Materials and Methods

Because of the sensitive nature of the data collected for this study, requests to access the 

dataset from qualified researchers trained in human subject confidentiality protocols may be 

sent to the Cardiovascular Health Study Collaborative Health Studies Coordinating Center at 

CHSdata@uw.edu.

Study population

The Cardiovascular Health Study (CHS) is a multi-center, community-based, prospective 

cohort study designed to investigate risk factors for coronary heart disease and stroke 

in older adults. The study design and participant recruitment have been described.25, 26 

Briefly, in 1989–90, 5,201 non-institutionalized adults aged ≥ 65 years were recruited from 

random samples of Medicare eligibility lists in 4 US communities. To enrich minority 

recruitment, an additional 687 African American participants were recruited in 1992–93 

using similar methods, resulting in 5,888 total participants. Trained personnel assessed 

participants’ demographic characteristics, lifestyle, medical history, and other health related 

phenotypes during annual in-clinic exams with intervening phone interviews every 6 months 

through 1999. Thereafter, participants were contacted every 6 months by phone for follow-

up through June 2015. Follow-up for vital status was nearly 100% complete. The study was 

approved by the institutional review board of each participating university. All participants 

provided written informed consent.

After excluding participants without joint assessments of diet and TMAO, with extreme 

reported energy intake (<500 or >5000 kcal/day), and with prevalent CVD (myocardial 

infarction [MI], stroke, angina, coronary revascularization) at the time of their first 
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joint assessment of diet and TMAO, a total of 3,931 participants were included in 

this investigation (Supplemental Figure S1). Compared to included individuals, excluded 

individuals were slightly more likely to be male, non-White, older, less educated, and less 

healthy by self-report (Supplemental Table S1).

Assessment of dietary habits (exposures)

We focused on foods with significant associations with ASCVD in prior meta-analyses of 

generally middle-aged populations, including processed meat, unprocessed red meat, and 

fish.27–32 We hypothesized that processed meat and unprocessed red meat consumption 

would be positively associated with incidence of ASCVD, and that these associations 

would be partly mediated by plasma levels of TMAO-related metabolites; and that fish 

consumption would be inversely associated with ASCVD, and that its association would 

become stronger (i.e., more protective) after accounting for plasma levels of TMAO-related 

metabolites. In exploratory analyses, we examined the associations of secondary dietary 

exposures including total meat (i.e., unprocessed red meat plus processed meat), poultry, 

eggs, and total of these ASF with ASCVD. Dairy foods were not included given these are 

not appreciable dietary sources of TMAO precursors.

Usual dietary habits over the past year were assessed in 1989–90 using a validated 99-

item picture-sort food-frequency questionnaire (FFQ) adapted from the National Cancer 

Institute,33, 34 and again in 1995–96 using a validated Willett semi-quantitative FFQ.35–37 

The Pearson correlation coefficients between the Willett FFQ and two 1-week dietary 

records ranged from 0.56 to 0.83 for individual food groups of meats, eggs, and fish.36 

For each FFQ, participants were asked to indicate how often, on average, they had eaten 

given amounts of various foods during the past year. The picture-sort FFQ used a 5-category 

frequency of intake ranging from “never” to “almost every day or at least five times per 

week”, based on medium portion sizes. The Willett FFQ used a 10-category frequency of 

intake ranging from “never or less than once per month” to “6+ per day”, with defined 

standard portion sizes. Frequencies of intake were converted to servings/day using the 

midpoint of the relevant response category.38, 39 Food intakes were adjusted for total energy 

using the residual method.40

Assessment of plasma TMAO-related metabolites (mediators)

We primarily focused on the joint mediation by TMAO and its two intermediate gut 

microbiota-dependent metabolites derived from dietary L-carnitine, γ-butyrobetaine and 

crotonobetaine. We also explored path-specific mediated associations by each TMAO-

related metabolite and mediation by plasma levels of each nutrient precursor (i.e., choline, 

betaine, carnitine). Measurements were performed using stored frozen (−80 °C) fasting 

blood samples collected at enrollment (1989–90 or 1992–93) and again in 1996–97. Each 

biomarker was quantified using its deuterium-isotopologue as internal standard via a stable-

isotope dilution assay coupled with high-performance liquid chromatography, with online 

electrospray ionization tandem mass spectrometry on a Shimadzu 8050 mass spectrometer. 

All laboratory measurements were performed at the Cleveland Clinic Lerner Research 

Institute, with laboratory CVs < 10% for each metabolite, as previously described.7
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Assessment of traditional ASCVD risk factors and other covariates

At each in-clinic exam, information on sociodemographics, lifestyle, anthropometrics, 

medical history, medications (including antibiotic use in the past 2 weeks), and other risk 

factors were assessed by trained personnel using standardized questionnaires and physical 

examination.25 Physical activity (excluding chores, kcal/week) was assessed by a modified 

Minnesota Leisure Time Activities Questionnaire.41, 42 Information was collected on alcohol 

intake, including usual frequency and types of alcoholic beverages (wine, beer, liquor), 

smoking status (never, former, or current; lifetime pack-years), and self-perceived general 

health (excellent, very good, good, fair, poor). Anthropometrics were directly measured, as 

were two seated resting blood pressure measurements. Fasting glucose, total cholesterol, 

HDL cholesterol, and triglyceride levels were measured from collected blood samples using 

standardized methods; and LDL cholesterol level calculated using the Friedewald formula 

excluding patients with hypertriglyceridemia. C-reactive protein (CRP) was measured using 

a high-sensitivity enzyme-linked immunosorbent assay.43 Cystatin-C and creatinine were 

measured and used to calculate estimated glomerular filtration rate (eGFR) using the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.44–46 Diabetes 

was defined by treatment with oral hypoglycemic agents or insulin, fasting plasma glucose ≥ 

126 mg/dl, or 2-hour post-oral glucose challenge ≥ 200 mg/dl.47

Assessment of ASCVD (outcome)

The primary outcome was incident ASCVD, defined as a composite of first definite or 

probable MI, fatal coronary heart disease (CHD), stroke (excluding transient ischemic 

attack), or other atherosclerotic death. Potential ASCVD events were identified during 

annual examinations and interim telephone interviews.48 All ASCVD events were 

adjudicated continuously from baseline through June 2015 by centralized committees 

based on information from interviews, medical records, physician questionnaires, death 

certificates, medical examiner forms, Health Care Financing Administration hospitalizations 

and available brain imaging.48, 49 The detailed methods for follow-up and classification of 

events have been published.48, 49 Briefly, MI was classified based on chest pain, cardiac 

enzymes and electrocardiogram findings. Fatal events with suspected coronary cause not 

meeting criteria for MI were classified as fatal CHD if occurring within 72 hours of chest 

pain or with an antecedent history of CHD.39 Stroke was defined as neurological deficit 

of rapid onset lasting longer than 24 hours unless death supervened or as a subarachnoid 

hemorrhage.

Statistical Analysis

Cox proportional hazards models with time-varying exposures and covariates assessed the 

association (hazard ratio, HR) between each dietary exposure and incidence of ASCVD 

(i.e., main dietary association). Time at risk was calculated from the first joint availability 

of diet and TMAO measures (i.e., time zero) to the occurrence of ASCVD, death due 

to non-ASCVD reasons, or last study contact, whichever occurred first (Supplemental 

Figure S2). The proportional hazards assumption was examined using a test based on 

Schoenfeld residuals.50 Given that two covariates (sex, self-perceived health status) violated 
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the assumption, we used risk-set stratified Cox models for these two covariates in all 

multivariable-adjusted analyses.

To leverage serial dietary measures, reduce exposure misclassification, and obtain estimates 

of long-term dietary intake, we assessed time-varying cumulative averages of dietary 

consumption (i.e. cumulative updating):40 dietary measures at or before the first TMAO 

measure in 1989–90 were related to ASCVD risk until the timepoint of the second TMAO 

measure in 1996–97, and the average of serial dietary measurements at or before 1996–97 

was related to subsequent risk until 2015. For participants with only one dietary measure, 

that dietary measure was carried forward. Dietary exposures were analyzed as linear terms 

measured in units of the difference between the midpoints of the first and fifth quintiles 

(inter-quintile range, IQR). In sensitivity analyses, we used restricted cubic splines to 

explore potential non-linear associations and used the most recent intake (i.e., simple 

updating) instead of cumulative updating for time-varying dietary exposures.

We adjusted for pre-specified covariates including age, sex, race, study site, education, 

and household income, and time-varying smoking status, alcohol intake, physical activity, 

self-perceived health status, antibiotic use, and dietary habits including intakes of total 

energy, fruits, vegetables, dietary fiber, total dairy, and mutual adjustment for the other 

ASF. In sensitivity analyses, we further adjusted for traditional CVD risk factors that may 

be intermediate outcomes on the causal pathway between diet and ASCVD, including 

body mass index (BMI), waist circumference, diabetes, systolic blood pressure, diastolic 

blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, CRP, anti-hypertensive 

medication use, lipid lowering medication use. In sensitivity analysis, we further adjusted 

for eGFR which could be both a confounder and mediator (i.e., on the causal pathway) 

of TMAO’s effects on ASCVD.51 TMAO is renally cleared,7 which could make eGFR 

a confounder; and TMAO also experimentally causes renal fibrosis and dysfunction,52, 53 

which could make eGFR a mediator of the association with ASCVD. In this context, 

including eGFR in the primary model would be subject to overadjustment. All time-varying 

covariates were updated at the time of TMAO updating using the most recent measure. 

Covariates with missing values were imputed using single imputation via best-subset 

regression; previous studies in CHS have documented minimal differences in results using 

this approach compared to multiple imputation.54

We used additive hazard models to perform causal mediation analyses.55–57 The three 

TMAO-related metabolites (TMAO, γ-butyrobetaine, crotonobetaine) were analyzed as 

time-varying linear variables. Simple updating was used for these mediators to ensure 

that mediators were measured no earlier than the measurement of dietary exposures 

(Supplemental Figure S2). The associations between each dietary exposure and ASCVD 

(measured by rate difference) were decomposed into those independent of and mediated 

via the three TMAO-related metabolites based on the conceptual diagram shown in 

Figure 2. Mediation proportions were defined as the mediated association/ | (independent 

association + mediated association) |. A detailed description of calculations of independent 

and mediated associations was included in supplemental materials. Supplemental Figure 

S3 (study design flowchart) summarizes all main analyses performed in the study. Given 

that animal feeding studies have established the causal interconversions between these 
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metabolites but not the precise order of the pathways,6, 58 we evaluated alternative 

conceptual diagrams changing the sequence of the three mediators, and findings were 

not appreciably changed (data not shown). We also explored and compared mediation 

proportions for traditional ASCVD risk factors.

We explored effect modification by baseline renal function (eGFR <60 vs. ≥ 60 mL/min/

1.73m2) for main dietary associations, based on recent findings suggesting renal function 

could be an effect modifier of the TMAO-ASCVD association,51 using multiplicative 

interaction terms between each dietary exposure and eGFR. In post-hoc exploratory 

analyses, we similarly explored effect modification by age ((≥ vs. < median, 72 years), 

sex, race/ethnicity (White vs. non-White), education level (<high school, high school, 

some college, or college graduate), and smoking status (never smoked, former smoker, or 

current smoker); with Bonferroni correction for testing of these exploratory interactions 

(5 interaction variables × 7 dietary exposures=35 comparisons; corrected threshold 

of significance: 0.05/35=0. 0014). Analyses were performed using Stata version 14.2 

(StataCorp) and R version 4.0.3 (The R Foundation). Statistical significance for main dietary 

associations was assessed using a two-sided alpha=0.05. Statistical significance of mediation 

was assessed by the 95% confidence intervals.

Results

Participant characteristics

Among participants at baseline, mean (SD) age was 72.9 (5.5) years, most were female 

(63.5%), and 12.0% were non-White (Table 1). Educational attainment ranged from < high 

school (25.9%) to college graduates (21.4%). About 20% of participants had diabetes, 

40% were on anti-hypertensive mediations, and 3% had taken antibiotics in the previous 2 

weeks. Participants with higher unprocessed red meat intake were more likely to be male, 

current smokers, less educated, physically inactive, and have prevalent diabetes; and have 

lower intakes of fruits, vegetables, and dietary fiber. Patterns of participant characteristics 

across quintiles of processed meat intake were similar (Supplemental Table S2). Opposing 

patterns were observed for fish intake, with participants having higher intake being more 

likely female, never or former smokers, more educated, and to have higher intakes of fruits, 

vegetables, and dietary fiber (Supplemental Table S3).

Correlations between dietary exposures and TMAO-related biomarkers

At baseline, small (Spearman rho=0.05 to 0.07) but statistically significant positive 

correlations were seen between plasma TMAO levels and self-reported intakes of 

unprocessed red meat, total meat, fish, and total ASF, but not processed meat, poultry, 

or eggs (Table 2). The L-carnitine metabolites γ-butyrobetaine and crotonobetaine positively 

correlated with intakes of unprocessed red meat, processed meat, total meat, and eggs (rho= 

0.03 to 0.15), and inversely correlated with intakes of fish and poultry (rho= −0.03 to −0.08). 

Correlations for nutrient precursors of TMAO (choline, betaine, carnitine) are also shown. 

Similar modest diet-biomarker associations have been reported previously for TMAO,59–61 

which could relate to imperfect measurement of self-reported diet, the temporal difference 

between assessment of usual dietary habits (1 year) vs. shorter term dietary variations 
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that alter TMAO levels (weeks), and/or inter-individual biologic variation in microbial 

conversion of precursors to TMAO.

Associations of dietary exposures with the risk of ASCVD (main dietary associations)

The median follow-up was 12.5 years (range:0.01 to 26.0). Numbers of events among 

participants included in the analysis of each dietary exposure are shown in Table 3. After 

adjusting for sociodemographic factors, lifestyle, dietary factors, and antibiotics use, higher 

intake of unprocessed red meat was associated with 15% higher incidence of ASCVD 

per IQR (HR=1.15, 95%CI: 1.01–1.30, P=0.031) (Table 3). Processed meat intake was 

associated with a similar but nonsignificant trend toward higher ASCVD risk (HR=1.11 

[0.98–1.25], P=0.089). Total meat intake (unprocessed red meat + processed meat) was 

associated with 22% higher incidence of ASCVD (HR=1.22 [1.07–1.39], P=0.004).

Intakes of fish, poultry, and eggs were not significantly associated with incident ASCVD. 

Total ASF intake was associated with 18% higher risk (HR=1.18 [1.03–1.34], P=0.016) per 

IQR. Dietary associations estimated by additive hazard models (used for mediation analyses) 

showed similar findings on the scale of rate difference (Table 3), although the association 

for unprocessed red meat did not reach statistical significance (rate difference: 4.0 events per 

1000 person-years per IQR intake, 95%CI: −0.1, 8.0, P=0.059).

Analyses of dose-response relationships between the extent of intakes of the various ASF 

and ASCVD (assessed using restricted cubic splines) showed key significant associations 

(Figure 3). In particular, increasing intakes of unprocessed red meat and total meat 

were dose-dependently significantly associated with increased risk of ASCVD. Processed 

meat ingestion trended toward both an overall and a threshold association, but neither 

achieved statistical significance. A non-linear relationship was suggested for poultry 

(P-nonlinearity<0.001), with lower ASCVD risk up to a nadir of about 0.4 servings/

day, and then diminished benefits thereafter; this nonlinear association was no longer 

statistically significant (P-nonlinearity=0.083) in sensitivity analyses removing observations 

with extreme exposures (i.e., the top and bottom 1% of the exposure distribution).

Gut microbiota-generated metabolites of L-carnitine significantly mediate ASF-associated 
ASCVD risk

In mediation analyses, the three gut microbiota-generated metabolites of dietary L-

carnitine (TMAO, γ-butyrobetaine, and crotonobetaine) appeared to jointly mediate 

part of the association between unprocessed red meat intake and incident ASCVD. 

Among the total 3.92 (0.42 +3.50) excess ASCVD events per 1000 person-years 

associated with each IQR higher intake, 0.42 events (95%CI: 0.04, 0.85) or 10.6% 

(95%CI: 1.0, 114.5) appeared attributable to plasma levels of these metabolites 

(Table 3). The three microbial metabolites also significantly mediated part of the 

associations of total meat and total ASF with ASCVD, accounting for 7.8% 

(95%CI: 1.0, 32.7) and 9.2% (95%CI: 2.2, 44.5) of the observed excess risk, 

respectively. In exploratory analyses examining path-specific mediated associations, 

the four paths via crotonobetaine alone (γ-butyrobetaine→crotonobetaine→ASCVD, 

γ-butyrobetaine→ crotonobetaine→TMAO→ASCVD, crotonobetaine→ASCVD, and 
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crotonobetaine→TMAO→ASCVD; see Figure 2) also significantly mediated the 

associations of unprocessed red meat, processed meat, total meat, and total ASF with 

ASCVD risk.

Interestingly, fish intake was not associated with ASCVD risk overall, but had an estimated 

adverse impact mediated through plasma levels of these gut microbial metabolites (0.45 

excess ASCVD events per 1000 person-years [0.07, 0.88] per IQR), mostly related to 

TMAO. No significant mediated associations were observed for any foods for the paths via 

γ-butyrobetaine or TMAO alone. Nor did we observe significant mediated associations by 

any of the nutrient precursors (i.e., carnitine, choline, and betaine) (Supplemental Table S4).

Mediation of ASF-associated ASCVD risk by traditional risk factors

Evaluating traditional ASCVD risk factors as mediators, neither blood cholesterol levels 

nor blood pressure levels significantly mediated the associations of unprocessed red meat, 

processed meat, or total meat with ASCVD (Table 4). In contrast, fasting blood glucose 

and insulin were each significant mediators of these associations; for example, mediating 

26.1% (12.7, 82.7) and 11.8% (4.3, 43.2) of the total meat-ASCVD association, respectively. 

CRP also significantly mediated the associations of intakes of processed meat (13.9% [2.8, 

192.7]) and total meat (6.6% [0.4, 27.5]), but not unprocessed red meat (0.9% [−18.6, 21.2]), 

with ASCVD.

Sensitivity analyses

Results for the main dietary associations and mediation by the TMAO-related metabolites 

were not appreciably changed when using simple updating of dietary intakes in place 

of cumulative updating (Supplemental Table S5). Results were also similar after further 

adjustments for additional CVD risk factors (Supplemental Table S6). Spearman correlations 

between eGFR and TMAO, γ-butyrobetaine, and crotonobetaine were −0.31, −0.34, and 

−0.38, respectively (P<0.001 each). After additional adjustment for eGFR which could 

be both a confounder and mediator for the metabolites-ASCVD associations, although 

the magnitude of main dietary associations remained similar, mediation proportions 

were attenuated and no longer statistically significant. Examination of the modeling 

results revealed that this was related to attenuation of the mediator-outcome association 

(i.e., associations of these metabolites with ASCVD), rather than the exposure-mediator 

association. Renal function did not significantly modify the associations between any of the 

ASF and the risk of ASCVD (P-interaction>0.10 for each). Exploratory analyses identified 

no significant interactions of the ASF-ASCVD relationships by age, sex, race/ethnicity, 

education level, or smoking status (P-interaction>0.0014 each).

Discussion

In this large, community-based prospective cohort of older adults, higher intakes of 

unprocessed red meat, total meat, and total ASF were each associated with higher risk of 

ASCVD, with processed meats trending toward higher risk. These associations were partly 

(~8–11%) mediated by plasma levels of three dietary L-carnitine-derived gut microbiota-

generated metabolites: TMAO, γ-butyrobetaine, and crotonobetaine. Path-specific analyses 
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suggested that plasma crotonobetaine accounted for the largest proportion of the observed 

mediation. Intakes of fish, poultry, and eggs were not statistically significantly associated 

with ASCVD. To our knowledge, this is the first study to investigate the association of 

ASF with ASCVD and potential mediation by gut microbiota-generated TMAO-related 

metabolites.

Prior studies of ASF and CVD have primarily included middle-aged participants. In 

these studies, processed meat intake most consistently associates with higher risk, while 

associations for unprocessed red meat have been smaller and less consistent.28, 29, 62–72 

A recent meta-analysis suggests similar overall magnitudes of associations as in our 

investigation, with HRs (95% CIs) for CVD of 1.18 (1.10 – 1.30) for processed meat 

and 1.08 (1.03 – 1.16) for unprocessed red meat (scaled to the same servings as in our 

study).29 Associations for fish intake have generally been specific to coronary events, 

especially sudden death,27, 72–74 but less consistently with stroke or total ASCVD 29 – 

for example, a recent meta-analysis identified a pooled HR for CVD per 2 weekly fish 

servings of 1.00 (95%CI: 0.98 – 1.02).29 Eggs and poultry have also generally had minimal 

or neutral associations with ASCVD in prior analyses. 29, 71, 72, 75–78 Our findings for 

ASF and ASCVD in this population of older US adults, average age 73 years at baseline 

and followed for an average of 13 years, were generally consistent with these previous 

studies. We demonstrated a linear dose-response relationship between higher unprocessed 

red meat and total meat intake and higher incidence of ASCVD later in life. Processed 

meat was associated with a similar magnitude of increased risk, although the association did 

not achieve statistical significance, perhaps related to the relatively low intake in CHS of 

processed meat (median: 0.2 servings/day) vs. unprocessed red meat (median: 0.4 servings/

day).

Several ingredients and mechanisms have been proposed to explain potential harmful effects 

of meat intake on ASCVD. These include contents of saturated fat, cholesterol, and heme 

iron in red meats, as well as sodium, nitrites, and high temperature cooking of processed 

meats.66 However, true mechanisms are surprisingly poorly understood. Mounting evidence 

indicates heterogeneous health effects of saturated fat on blood cholesterol levels and 

ASCVD depending on the type of saturated fat as well as the food source.4, 79 A consensus 

has also emerged that dietary cholesterol has little meaningful effects on blood cholesterol 

levels or ASCVD risk at amounts commonly consumed.80, 81 Consistent with this, in our 

analysis, neither blood cholesterol levels nor blood pressure levels significantly mediated 

the associations between unprocessed red meat, processed meat, or total meat and incidence 

of ASCVD. In contrast, blood glucose levels and insulin sensitivity (measured by fasting 

insulin) mediated a significant proportion of the meat-ASCVD associations. Red meat is the 

major source of dietary heme iron, which is implicated as a causal factor in development of 

type 2 diabetes 82–85 and associated with increased CVD.86 In a previous mediation analysis, 

increased cardiovascular mortality associated with processed red meat intake was mediated 

by both heme iron (24.1%) and nitrite (72.0%) intake; and with unprocessed red meat 

intake, mediated by heme iron (20.8%) with a large portion of the remaining excess risk 

unexplained.70 Our findings support mechanisms related to glucose-insulin homeostasis, and 

therefore potentially heme content, as one important pathway whereby meat consumption 

may influence ASCVD. TMAO-related metabolites may play a role here, since TMAO 
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has been mechanistically linked to hyperglycemia and insulin resistance.87 88 Systematic 

inflammation as assessed by CRP also mediated a significant proportion of the association 

between processed meat, but not unprocessed red meat, and ASCVD.

Our novel findings further suggest that L-carnitine derived microbiome metabolites play a 

larger mediating role in meat-ASCVD associations than blood pressure or blood cholesterol 

levels. This result is consistent with, and may partly help explain, the neutral associations 

of saturated fat consumption with CVD;4, 89 and suggest that attention to other meat 

constituents and risk pathways is needed. The interplay between diet, the gut microbiota, 

and microbial-generated metabolites increasingly appears to be a novel pathway linking 

ASF, especially red meat, to cardiovascular health.5, 90 Dietary L-carnitine, a nutrient 

abundant almost exclusively in red meat, can be metabolized to γ-butyrobetaine and 

crotonobetaine, and ultimately TMAO through the action of gut microbiota and hepatic 

flavin monooxygenases (Figure 1);16, 58 and habitual red meat ingestion increases plasma 

TMAO more than other animal or plant-based protein sources.7 Our findings suggest that 

TMAO, γ-butyrobetaine, and crotonobetaine together explain about 8–11% of observed 

excess ASCVD risk associated with intakes of unprocessed red meat and total meat. 

Exploratory analyses suggested that γ-butyrobetaine and especially crotonobetaine may 

be at least as important as TMAO in such mediation, important given that these specific 

metabolites are derived from the carnitine-pathway, rather than the alternative choline-

pathway, for TMAO production.

In experimental studies, TMAO promotes cholesterol accumulation in macrophages by 

upregulating cell surface expression of the proatherogenic scavenger receptors CD36 

and SR-A1;8 inhibits reverse cholesterol transport and alters sterol metabolism;16 

enhances vascular inflammation through activation of mitogen-activated protein kinase 

and nuclear Factor-κB signaling9 and inflammasome activation;91 impairs endothelial 

function by increasing superoxide-associated oxidative stress;13 and promotes platelet 

hyperresponsiveness and thrombosis potential by enhancing stimulus-dependent Ca2+ 

release from intracellular stores.14 TMAO also induces hyperglycemia by binding to 

endoplasmic reticulum stress kinase PERK (EIF2AK3).88 Possible pro-atherogenic effects 

of γ-butyrobetaine and crotonobetaine have not been reported. Our findings highlight the 

need to investigate whether these metabolites have independent physiologic effects, or 

simply provide an additional or even superior measure of overall tissue exposure to TMAO.

The estimated mediation proportions were attenuated by about half following adjustment 

for eGFR. Because these metabolites are renally cleared, impaired renal function could 

confound their associations with ASCVD. On the other hand, mechanistic studies 

demonstrate that TMAO directly causes renal tubulointerstitial fibrosis, reduced renal 

filtration, and elevated cystatin-C levels.52 In addition, suppression of TMAO generation 

prevents renal impairment in animal models.53 Thus, impaired renal function may also be an 

intermediate outcome (i.e., mediator) on the causal pathway between these TMAO-related 

metabolites and ASCVD. Future experimental studies are needed to further investigate the 

potential interplay and extent of confounding vs. mediation between intakes of ASF, these 

gut microbial metabolites, renal function, and ASCVD.
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Prior work by our group and others has demonstrated that cardiovascular benefits of 

fish consumption or omega-3 supplementation may depend on outcomes examined, with 

stronger associations for CHD, especially fatal CHD or arrhythmic cardiac death, than stroke 

or total ASCVD;29, 92, 93 and on fish preparation methods, with protective associations 

for tuna fish or broiled/baked fish but not fried fish or fish sandwiches.93 The specificity 

for coronary events is consistent with the experimental impact of omega-3 fatty acids on 

stabilization of partially depolarized, acutely ischemic myocytes, reducing susceptibility 

to acute ventricular arrhythmias.94 Our focus in the present analysis was on total fish 

consumption and total ASCVD, and the absence of significant association with this 

compositive endpoint is consistent with extant literature.29, 92 Nonetheless, while there 

was no evidence of overall association (HR=1.00), our mediation analyses suggest the 

relationship between fish intake and these TMAO-related plasma metabolites was associated 

with some excess risk. Other beneficial compounds in fish could offset this estimated harm, 

so the overall association of fish with total ASCVD was neutral. In contrast to meats, the 

largest mediated association for fish was via TMAO, consistent with fish being a rich source 

of choline (a precursor of TMAO) but not L-carnitine (a precursor of γ-butyrobetaine, 

crotonobetaine, and TMAO).

The association of poultry consumption with CVD has not been well-studied,29 especially in 

older populations. Our exploratory analyses suggested a possible non-linear dose-response, 

with lowest risk at about 0.4 servings/day. Adequate intakes of protein can help prevent 

aging-related loss of muscle mass, improving physical functioning and long-term health 

outcomes later in life.1–3 Our findings suggest that poultry might be a healthy source of 

protein for older adults when consumed moderately. However, the non-linear analyses were 

exploratory, so conclusions based on them may be due to chance, and should be interpreted 

with caution until confirmed in other investigations.

Our study has several strengths. The relationship between ASF, plasma levels of 

microbiome-derived TMAO-related metabolites, and ASCVD events has not been fully 

established and warrants careful investigation, especially in community-based prospective 

cohorts such as the CHS with well-measured metabolite biomarkers, ASCVD risk factors 

(including detailed sociodemographics, traditional CVD risk factors, and lifestyle habits), 

and a sufficient number of outcomes. Such findings are less subject to bias, residual 

confounding, and reverse causation; have greater statistical power; and have greater 

generalizability than many of the prior studies. We evaluated multiple ASF in relation to 

risk of ASCVD in older adults, the age group at the highest risk; and further investigated 

potential mediation by a novel set of microbiome-derived metabolites, providing an 

important new piece of evidence in the puzzle of diet, the microbiome, and ASCVD.

Potential limitations should be considered. The observational design cannot exclude residual 

confounding. However, we adjusted for a broad range of well-measured risk factors for 

ASCVD, and results were robust except for additional adjustment for eGFR, which could 

be both a mediator and confounder for the metabolites-ASCVD associations. Factors known 

to influence TMAO’s generation such as host hepatic flavin-containing monooxygenase 

(FMOs) and choline TMA-lyase carried by some bacterial species in the gut were not 

measured; yet, there is no established evidence that these enzymes alter dietary intake or 
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affect CVD risk via paths independent of TMAO. Thus, the potential for major confounding 

that could fully account for the observed associations, conditional upon all other covariates 

in the model, is not high. Although we applied statistical methods for causal mediation 

analysis, the study findings are observational and cannot prove causality. Dietary habits 

were self-reported, which could cause non-differential measurement errors with respective 

to ASCVD and metabolite measurements. Because dietary data in CHS were validated 

against nutrients rather than foods, we could not perform correction for such measurement 

errors, although we took advantage of serial measures from two validated FFQs. Analyses 

for secondary dietary exposures should be interpreted with caution, although the total 

meat-ASCVD association (P=0.004) would remain significant after adjusting for multiple 

comparisons (adjusted alpha=0.05/4=0.0125). Our findings may not be generalizable to 

young populations, different races, or other nations.

Conclusions

In this large, community-based cohort of older US adults, higher intakes of unprocessed red 

meat, total meat, and total ASF were associated with higher incidence of ASCVD, partly 

explained by plasma levels of γ-butyrobetaine, crotonobetaine, and TMAO. The higher 

risk of ASCVD associated with meats further appeared partly mediated by glucose-insulin 

homeostasis and systematic inflammation, but not blood pressure or blood cholesterol levels. 

These novel findings support a biochemical link between dietary meat intake, carnitine-

related gut microbiome pathways, and ASCVD.
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TMAO trimethylamine N-oxide
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CHS Cardiovascular Health Study
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eGFR estimated glomerular filtration rate

CHD coronary heart disease

MI myocardial infarction

HR hazard ratio
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Highlights

• In a community-based cohort of older US adults aged ≥ 65 years, higher 

intakes of unprocessed red meat, total meat (unprocessed red meat plus 

processed meat), and total animal source foods were prospectively associated 

with a higher incidence of atherosclerotic cardiovascular disease (ASCVD) 

during a median follow-up of 12.5 years.

• These associations were partly mediated (8–11% of excess risk) by plasma 

levels of gut microbiota-generated metabolites, including trimethylamine N-

oxide (TMAO) and its two intermediates derived from L-carnitine, abundant 

in red meat.

• The higher risk of ASCVD associated with meat intake was also partly 

mediated by glucose-insulin homeostasis and systematic inflammation, but 

not blood pressure or blood cholesterol levels.

• Intakes of fish, poultry, and eggs were not significantly associated with 

ASCVD.
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Figure 1. Pathways for generation of trimethylamine N-oxide (TMAO) and its intermediates.
Arrows in black represent transformations performed by the host, and arrows in red 

represent transformations performed by gut microbes. The endogenous biosynthesis of 

carnitine involves multiple steps from lysine to γ-butyrobetaine, indicated by a chain of 

arrows. In healthy subjects, γ-butyrobetaine is also endogenously synthesized from lysine, 

independent of gut-microbiota (6,58). In contrast, production of TMAO and crotonobetaine 

are profoundly suppressed by antibiotic administration (58), supporting a dominant role of 

gut microbial metabolism in their generation.
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Figure 2. Conceptual diagram of dietary exposures, gut microbiota-generated TMAO-related 
metabolites (mediators), and ASCVD.
For mediation modeling, eight potential causal pathways were jointly 

assessed: 1) ASF (animal source food)→ASCVD through other pathways; 

and ASF to ASCVD via: 2) γ-butyrobetaine→ASCVD; 3) γ-butyrobetaine→ 
crotonobetaine→ASCVD; 4) γ-butyrobetaine→ crotonobetaine→TMAO→ASCVD; 

5) γ-butyrobetaine→TMAO→ASCVD; 6) crotonobetaine→ASCVD; 7) 

crotonobetaine→TMAO→ASCVD; 8) TMAO→ASCVD. Confounders are not shown in 

the graph to focus on the main causal pathways and for better visualization.
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Figure 3. Multivariable adjusted relationships between intakes of each ASF and the risk of 
ASCVD, evaluated using restricted cubic splines.
Knots were evaluated at the 10th, 50th, and 90th percentiles. Dotted vertical lines represent, 

from left to right, the 10th, 25th, 50th, 75th, and 90th percentiles of dietary intake. Covariates 

are specified in Table 3. The top 1% of the exposure distribution was not shown for better 

visualization.
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Table 4.

Risk of incident ASCVD associated with time-varying intakes of meats (per IQR) and mediation by time-

varying traditional CVD risk factors

Unprocessed red meat Processed meat Total meat *

Mediator: Total cholesterol

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of cholesterol 3.9 (−0.2, 8.0) 3.5 (−0.5, 7.6) 6.3 (1.8, 10.8)

 Dietary association mediated via cholesterol 0.0 (−0.1, 0.1) 0.0 (−0.1, 0.2) 0.0 (−0.1, 0.2)

Mediation proportions (%) 0.5 (−3.2, 8.4) 0.8 (−2.8, 12.9) 0.6 (−1.1, 4.4)

Mediator: Fasting triglycerides

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of triglycerides 4.0 (−0.1, 8.1) 3.3 (−0.7, 7.4) 6.2 (1.6, 10.7)

 Dietary association mediated via triglycerides 0.0 (−0.2, 0.2) 0.1 (−0.1, 0.3) 0.1 (−0.1, 0.3)

Mediation proportions (%) 0.3 (−10.4, 11.3) 1.6 (−8.5, 30.1) 1.6 (−2.4, 8.8)

Mediator: LDL cholesterol

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of LDL 3.9 (−0.2, 8.0) 3.6 (−0.5, 7.6) 6.3 (1.8, 10.8)

 Dietary association mediated via LDL 0.0 (−0.1, 0.1) 0.0 (−0.1, 0.1) 0.0 (−0.1, 0.1)

Mediation proportions (%) 0.2 (−3.6, 6.0) 0.1 (−5.3, 6.4) 0.2 (−1.6, 2.7)

Mediator: HDL cholesterol

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of HDL 3.9 (−0.2, 8.0) 3.6 (−0.5, 7.6) 6.3 (1.7, 10.8)

 Dietary association mediated via HDL 0.1 (0.0, 0.2) 0.0 (−0.1, 0.1) 0.1 (−0.1, 0.2)

Mediation proportions (%) 2.0 (−1.1, 20.6) −0.3 (−12.1, 8.1) 0.9 (−1.6, 5.7)

Mediator: Systolic blood pressure

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of SBP 3.8 (−0.3, 7.9) 3.7 (−0.3, 7.7) 6.3 (1.8, 10.9)

 Dietary association mediated via SBP 0.1 (−0.3, 0.5) −0.1 (−0.5, 0.4) 0.1 (−0.4, 0.5)

Mediation proportions (%) 2.1 (−21.7, 33.7) −1.6 (−48.3, 18.9) 0.8 (−10.8, 11.2)

Mediator: Diastolic blood pressure

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of DBP 3.9 (−0.2, 8.0) 3.7 (−0.3, 7.6) 6.4 (1.8, 10.9)

 Dietary association mediated via DBP 0.1 (−0.1, 0.2) 0.0 (−0.2, 0.2) 0.1 (−0.1, 0.3)

Mediation proportions (%) 1.3 (−5.6, 17.1) 1.0 (−8.3, 18.0) 1.0 (−2.7, 6.4)

Mediator: Fasting glucose

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of glucose 3.4 (−0.7, 7.5) 2.4 (−1.5, 6.4) 4.9 (0.4, 9.4)

 Dietary association mediated via glucose 0.9 (0.4, 1.5) 1.2 (0.7, 1.9) 1.7 (1.0, 2.6)

Mediation proportions (%) 21.5 (8.5, 175.8) 34.0 (13.7, 366.1) 26.1 (12.7, 82.7)

Mediator: C-reactive protein

No. of excess events per 1000 persons per year (95%CI)
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Unprocessed red meat Processed meat Total meat *

 Dietary association independent of glucose 4.0 (−0.1, 8.1) 2.9 (−1.1, 6.9) 5.8 (1.3, 10.4)

 Dietary association mediated via glucose 0.0 (−0.3, 0.4) 0.5 (0.1, 0.9) 0.4 (0.0, 0.8)

Mediation proportions (%) 0.9 (−18.6, 21.2) 13.9 (2.8, 192.7) 6.6 (0.4, 27.5)

Mediator: fasting insulin

No. of excess events per 1000 persons per year (95%CI)

 Dietary association independent of glucose 3.7 (−0.4, 7.8) 3.1 (−0.9, 7.1) 5.7 (1.2, 10.3)

 Dietary association mediated via glucose 0.4 (0.1, 0.7) 0.6 (0.2, 1.0) 0.8 (0.3, 1.3)

Mediation proportions (%) 9.6 (2.7, 90.6) 15.7 (4.8, 186.6) 11.8 (4.3, 43.2)

Additive hazard models were adjusted for age (years), sex, race (white vs. non-white), study site (4 categories), education (<high school, high 
school, some college, or college graduate), income (<$11,999, $12,000 to 24,999, $25,000 to $49,999, or >$50,000), and time-varying self-reported 
health status (excellent, very good, good, fair, or poor), smoking status (never smoked, former smoker, or current smoker), alcohol intake 
(drinks/week), physical activity (kcal/week, log transformed for additive hazard model), antibiotic use (yes vs. no), and intakes of total energy 
(kcal/day, log-transformed for additive hazard models), fruits (servings/day), vegetables (servings/day), dietary fiber (g/day), total dairy products 
(servings/day), and the other animal source foods mutually adjusted (servings/day). Imputed values were used when animal source foods were 
adjusted covariates.

Confidence intervals excluding zero indicate statistically significant association or mediation proportion. Triglycerides, CRP, and fasting insulin 
were log-transformed.

*
Total meat: unprocessed red meat plus processed meat.

IQR: interquintile range, comparing the midpoints of the first and fifth quintiles.
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