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Abstract

Glioblastoma is a grade IV astrocytoma that is widely accepted in clinical neurosurgery as being 

an extremely lethal diagnosis. Long-term survival rates remain dismal and, even when tumors 

undergo gross resection with confirmation of total removal on neuroimaging, they invariably recur 

with even greater virulence. Standard therapeutic modalities as well as more contemporary 

treatments have largely resulted in disappointing improvements. However, the therapeutic 

potential of vaccine immunotherapy for malignant glioma should not be underestimated. In 

contrast to many of the available treatments, vaccine immunotherapy is unique because it offers 

the means of delivering treatment that is highly specific to both the patient and the tumor. Peptide, 

heat-shock proteins, and dendritic cell vaccines collectively encapsulate the majority of research 

efforts involving vaccine-based treatment modalities. In this review, important recent findings for 

these vaccine types are discussed in the context of ongoing clinical trials. Broad challenges to 

immunotherapy are also considered.
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Introduction

Glioblastoma (GBM) is a high-grade glial tumor synonymous with significant morbidity and 

mortality, and an exceptionally poor clinical course. Contemporary management strategies - 

which involve maximum gross total resection combined with adjuvant Temozolomide 

chemo-radiotherapy - yield a bleak median overall survival (OS) of just 14.6 months [1]. By 

and large, attempts at developing a more sustainable treatment solution have been met with 

limited success, despite decades of intense research efforts [2]. The source of this 

discrepancy is manifold including, but not limited to, intra-tumoral heterogeneity [3], brain 

tumor stem cells [4], and genomic subtypes of varying virulence [5]. In the contemporary 

era, GBM thus remains a conundrum for which optimum treatment has yet to be discovered.
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The elegant complexity of GBM tumor biology and immunology indicate that a “magic 

bullet” solution does not exist. The more probable scenario is that successful management of 

this tumor will require a multi-factorial approach designed to challenge tumor growth on 

multiple fronts. In that fashion, vaccine immunotherapy for GBM has often emerged as a 

promising addition to the wide spectrum of available treatment strategies. When compared 

to other therapeutic modalities, vaccine immunotherapy is particularly compelling because it 

can induce a highly patient-specific, anti-tumor response while carrying minimal toxicity [6, 

7]. Furthermore, it promises to induce a paradigmatic shift in which GBM, widely 

recognized as one of the most lethal human tumors, instead becomes known as a chronic 

disease state that can be managed with medication. Much like in the management of diabetes 

or hypertension, patients would follow up with their physicians for scheduled check-ups, 

undergo monitoring of their therapeutic progress, and alter their therapeutic regimen 

accordingly. Personalized to the patient and individualized to the tumor, vaccine 

immunotherapy thus integrates well with the modern concept of “personalized” medicine, as 

it offers the means to approach each GBM as a unique entity requiring unique interventions.

While the translational application of a vaccine to treat brain tumors is a modern concept, 

the fundamental principles behind tumor vaccines largely adhere to those discovered by 

Edward Jenner in 1796. Analogous to the vaccines utilized in the realm of infectious 

disease, tumor vaccines are designed to present tumor-associated antigens (TAAs) to the 

host and to stimulate a pro-inflammatory anti-tumor response. Once the vaccine is injected, 

TAAs are initially ingested by antigen presenting cells (APCs), which subsequently present 

these peptides on Major Histocompatibility Complexes I (MHC I) and II (MHC II). Naïve T 

cells bind accordingly, with CD8+ T cells and CD4+ T cells attaching to MHC I and MHC 

II, respectively. Naïve CD8+ T cells then undergo differentiation into cytotoxic T 

lymphocytes (CTLs) that can lyse pathogens and tumor cells, thus establishing these cells as 

the “effector” arm of the immune response. Naïve CD4+ T cells, on the other hand, adopt 

either a Th1 or Th2 phenotype depending on the release of specific cytokines and 

lymphokines (e.g. interleukins). While both Th phenotypes are respectively crucial to 

physiologic immune function, it is important to note that Th1 favors the effector CD8+ 

response while the Th2 phenotype engenders a humoral, antibody-mediated immune 

response [8].

In that manner, tumor vaccines instigate an immune response that is both tumor-specific and 

patient-specific [9]. Currently, vaccine therapies for GBM have been successfully 

investigated in clinical trials, with promising results so far highlighting their potential for 

future therapeutic integration. Tumor vaccines are categorized according to the manner in 

which they are delivered. Peptide, dendritic cell (DC), and heat shock protein (HSP) 

vaccines represent the most well-known vaccines. In the following sections, this article will 

review recent key findings and discuss ongoing clinical trials for these vaccine types.

Peptide Vaccines

The eponymously named peptide vaccines constitute one of the major vaccine types in GBM 

immunotherapy, and involve the direct administration of TAAs. In theory, introducing 

TAAs into the host effectively primes the systemic immune response to target all body 
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tissues expressing that antigen. In order to maximize specificity against tumor, it is therefore 

critical to select only those TAAs that are highly expressed in GBM but not in normal tissue. 

Although TAAs can be extracted from raw tumor tissue, synthetic derivations of known 

tumor epitopes have found greater popularity [10]. Unlike DC or HSP vaccines, peptide 

vaccines are not inherently optimized to generate an immune environment conducive to 

antigenic targeting and eradication of tumor tissue. As a result, these vaccines are often 

employed in conjunction with immuno-stimulatory adjuvants such as Toll-Like Receptor 

(TLR) agonists in an attempt to enhance the immune response [10–12].

Within the glioma literature, aberrant expression of TAAs such as gp100, TRP-2, AIM-2, 

MAGE-1, and others have been described [13]. However, peptide vaccines directed against 

the Epidermal Growth Factor Receptor variant III (EGFRvIII) are perhaps the most widely 

recognized. The association between EGFR mutations and cancer has a long history, having 

been implicated not only in the oncogenesis of lung and colon cancer but also in 

gliomagenesis [14–17]. In GBM, EGFRvIII is a constitutively active protein that is not 

expressed in normal human brain [18]. So far, published results for clinical trials using 

EGFRvIII peptide vaccines have involved administration of Rindopepimut (CDX-110) [11, 

19]. Success initially found in experimental animal studies using a peptide vaccine targeting 

the mutated EGFRvIII domain (known as PEP-3-KLH) facilitated entry of this vaccine into 

clinical trials [20]. In 2010, Sampson et al. completed a multi-center Phase II trial in which 

18 eligible patients with EGFRvIII-expressing GBM received intradermal injections of 

CDX-110. Median OS was 26.0 months while median progression-free survival (PFS) was 

14.2 months. When compared to a matched control cohort, patients receiving vaccination 

demonstrated significantly longer OS than those who had not (p=0.001). Several Phase I–III 

trials are ongoing to further validate the therapeutic potential of Rindopepimut, albeit in 

combination with GM-CSF (NCT01498328, NCT01480479) [11, 12].

However, one of the major pitfalls of peptide vaccines is their limited external 

generalizability. For instance, the vast majority of peptide vaccines are restricted to the 

HLA-A*02 haplotype, which calls into question their utility in GBM patients who present 

with different haplotypes [21, 13]. Additionally, peptide vaccines lead to an imperfect 

solution, as tumor recurrence post-vaccination often requires alteration of the therapeutic 

approach. Sampson and colleagues demonstrated that when tumors recurred, 82% of patients 

demonstrated loss of EGFRvIII expression. While this finding suggests that the vaccine 

successfully targeted EGFRvIII+ tumor cells, it also implies that vaccine treatment led to 

selective propagation of EGFRvIII− cells [18]. Future directions with peptide vaccinations 

may thus require targeting of multiple epitopes in order to counteract the inherent 

heterogeneity of GBM tumor cells. In that manner, contemporary vaccines such as IMA950 

(NCT01403285, NCT22418738, NCT01222221, NCT01920191), which consists of a 

collection of 11 synthetically derived peptides, may represent a step in the right direction 

[11, 19].

Heat Shock Protein (HSP) Vaccine

HSPs are primarily involved in the regulation of protein chaperoning and protein folding 

[22]. However, much less recognized is the fact that HSPs also play a role in the immune 
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response [23, 24]. HSP vaccines, which represent a particular type of peptide vaccine, are 

designed to exploit this biologic relationship. In principle, APCs treat HSPs as if they are 

any other antigen: APCs internalize the HSPs through receptor-mediated endocytosis (e.g. 

CD14, CD91) and subsequently present the peptides on MHC complexes to generate 

immunogenicity against those antigens [25–28, 23, 29–31]. As such, HSP vaccines are 

designed as TAAs conjugated to HSPs, with the former designed to incite a specific anti-

tumor response and the latter designed to enhance the inflammatory response.

The majority of contemporary clinical trials for HSP vaccines revolve around TAAs bound 

to a 96 kD chaperone heat shock protein, otherwise known as HSP protein complex-96 

vaccine (HSPPC-96; Prophage) [12]. In 2012, Crane et al. reported Phase I results 

demonstrating that administration of this vaccine induced a significant immune response, as 

evidenced by the fact that tumor biopsies revealed marked microenvironment infiltration 

with CD4+, CD8+, and CD56+ T cells. Furthermore, of the 12 patients who were treated, 11 

responded well to the drug, demonstrating a median OS of 47 weeks [32]. In 2014, the same 

group published Phase II results, in which 41 patients were treated with the HSPPC-96 

vaccine. Median OS, at 42.6 weeks, was comparable to the Phase I results, which represents 

an improvement over the benchmark of 14.6 months [33]. Of interest, Wu et al. recently 

described expression of HSP47 as a novel TAA. More specifically, they found that HSP47 

expression was significantly increased in GBM tissue but not in normal tissue, and that 

patients who were able to propagate a CTL response against HSP47 had significantly 

prolonged PFS and OS [34]. As such, future research with other HSP antigens such as 

HSP47 may provide alternative targets for HSP-based vaccine therapies.

Dendritic Cell Vaccine

Dendritic cells (DC) comprise a subset of immune cells that serve as “professional” APCs, 

and these cells play a substantial role in generating both the CD4 and CD8 immune 

responses. Particularly germane to vaccine immunotherapy, DC vaccines are known for their 

robust ability to immunologically present glioma antigens, activate cytotoxic CD8+ cells, 

and induce tumor cell death [35, 36]. Conceptually, the vast majority of DC-based vaccines 

require extraction of autologous DCs from the patient, DC “loading” or “pulsing” with 

tumor lysates or peptides, and subsequent re-introduction into the patient.

DC vaccines carry a long investigational track record within the history of GBM 

immunotherapy and, as a result, perhaps represent one of the most familiar vaccine 

modalities [37–42]. In a Phase I clinical trial published in 2011, 23 GBM patients received 

biweekly treatment with pulsed DCs followed by adjuvant treatment with either imiquimod 

or poly-ICLC. Median OS was 31.4 months and rates of 3-year survival were 47%. 

Interestingly, the authors noted that patients possessing tumors with mesenchymal gene 

expression patterns appeared to be particularly susceptible to this treatment approach [43]. 

This perhaps serves as an indication that particular vaccine types may find therapeutic 

superiority based on the tumor’s genetic composition. In another Phase I trial published in 

2013, 21 patients were enrolled to receive DCs pulsed with an assortment of TAAs. 

Treatment resulted in a median OS and PFS of 38.4 and 16.9 months, respectively [13]. 
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Currently, several Phase II (NCT01280552, NCT01635283, NCT01204684) and Phase III 

trials (NCT00045968) for DC vaccines are ongoing.

More recently, the literature has placed greater emphasis on fine-tuning the DC vaccination 

protocol. In 2013, Prins et al. compared the efficacy and safety of two independent protocols 

for DC vaccine delivery in a Phase I trial. One cohort of 28 patients was treated with DCs 

that had been pulsed with autologous tumor lysates, while the other cohort of 6 patients was 

treated with DCs that had been pulsed with synthetic glioma antigen peptides. The study 

found that while both treatment arms resulted in minimal toxicity and an adequate antitumor 

response, administration of DCs pulsed with autologous tumor lysates was associated with a 

stronger immune response against tumor [44]. Other studies have also focused on 

identifying potentially critical biomarkers to measure immune response against tumor, 

including phospho-STAT [45], regulatory T cells [44], and cytotoxic T-lymphocyte-

associated protein 4 [46]. Characterization of such markers will represent a critical step in 

the right direction, as inherent GBM-induced immunosuppression represents one of the most 

significant barriers to treatment efficacy in immunotherapy.

Challenges to Vaccine Immunotherapy

As is often the case with any investigational therapeutic regimen, vaccine immunotherapy is 

not without its unique set of challenges. First and foremost, the extreme heterogeneity of 

GBM raises significant concerns. Current clinical data for the use of monovalent vaccines 

indicates inadequate tumor control [9, 47]. Monovalent vaccines additionally suffer from the 

potential for tumors to select for those that are resistant to the vaccine, as illustrated 

previously in the aforementioned EGFRvIII trial [18, 12]. This is perhaps unsurprising: 

GBM tumors demonstrate a natural tendency towards harboring multiple different tumor cell 

populations, each with their own unique set of mutations, and it is highly unlikely that 

targeting a single antigen will result in successful tumor control. Beyond the heterogeneity 

of individual tumors, recent molecular classification of GBM into the proneural, neural, 

classical, and mesenchymal subtypes [5] has introduced even greater complexity to the 

disease, and it remains unclear how each subtype responds to the various immunotherapies 

mentioned above. In that manner, future therapeutic investigations must operate from the 

basic premise that a “one-size-fits-all” treatment does not exist. Polyvalent immunizations 

and other multi-faceted therapeutic approaches that target a range of tumor cell populations 

will thus be important to consider.

Furthermore, the presence of MHC I− glioma tumor cells, which make up 30–60% of the 

entire tumor population [48], hinders the effectiveness of immunotherapies since MHC I 

molecules on the tumor cell surface are essential for CTL-mediated localization and 

eradication of cancer cells. To overcome this, utilization of adjuvants that facilitate targeting 

of these otherwise immune-evasive tumor cell types has been suggested as a potential 

strategy [48]. The combined use of glioma vaccines with chemotherapy or other biological 

therapies that can recruit NK or macrophages may act to supplement the immune response, 

and eradicate MHC I− glioma tumor cells as well [48]. Additionally, adaptive 

immunotherapy, which relies on ex vivo activation and expansion of autologous immune 

cells that are later infused into the patient, is another potential adjuvant that could act to 
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overcome this challenge. It has been shown that autologous lymphocytes can be directed to 

generate NK cells in the presence of IL-2, which can then be intratumorally injected to 

combat the MHC I− glioma tumor cells [12].

Secondly, it is also important to note that while vaccine therapies have demonstrated 

efficacy in immune activation, with associated improvements in clinical outcome in GBM 

patients, improving our understanding of the interplay between immunotherapy and current 

cancer management protocols is crucial. Chemoradiation and immunotherapy must be 

combined in a strategic fashion so as to maintain, or even augment, the efficacy of both 

interventions. Myelosuppression and lymphodepletion, which are a common result of the 

natural GBM disease process as well as being adverse effects of chemotherapy and 

radiation, generally present large obstacles for immunotherapy [12]. In order to minimize 

this two-pronged attack on the immune response, local administration of chemotherapy may 

be preferable to systemic administration, especially for intracranial tumors [12]. However, it 

has also been postulated that exploitation of postoperative inflammation and enhanced 

tumor-infiltrating immune cell fractions may be possible, indicating that timing will be 

crucial when combining immunotherapy with current standard-of-care [12].

Enhanced efficiency may also be gained by way of adjuvants targeting immunosuppressive 

mediators that induce GBM immune escape. For example, interleukins (IL) are a family of 

lymphokines that influence the differentiation of naïve T cells. Of particular interest, IL-4, 

IL-10, and IL-13 lead to a bias towards Th2 differentiation, the same phenotype generally 

induced by GBM [49, 50]. Additionally, TGF-β is known to inhibit both the innate and 

adaptive immune response, and elevated levels of TGF-β are commonly associated with 

glioma [51]. Lastly, programmed death ligand-1 (PD-L1) has been proven to be a key 

immunosuppression factor that is highly expressed in glioma [52, 53]. PD-L1, expressed on 

both glioma and lymphocytes exposed to glioma, binds to its respective receptor, 

programmed cell death protein 1 (PD-1), on T lymphocytes, and results in T-cell apoptosis 

[52].

Of interest, the PI3K pathway has been shown to mediate the production of these 

immunological substances [53–55]. As such, PI3K inhibitors have recently been 

investigated in early Phase clinical trials for the treatment of glioma [56, 57]. However, 

utilization of PI3K pathway inhibitors as adjuvants to immunotherapy must be approached 

with some caution. Interferons, which are pro-inflammatory proteins that can inhibit tumor 

growth, are decreased in response to PI3K pathway inhibitors [58–60]. PI3K pathway 

inhibitors also increase the proportion of regulatory T cells (Tregs) by specifically targeting 

and inhibiting proliferation of other T cell subsets [61]. This further diminishes the release 

of pro-inflammatory cytokines and shifts the immune phenotype towards Th2 [62]. As such, 

while adjuvants such as PI3K pathway inhibitors are potentially promising additions to 

enhance vaccine immunotherapy, a fine balance must be struck between their pro-

inflammatory and anti-inflammatory responses.
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Conclusion

Vaccine immunotherapy for malignant glioma offers the means of delivering treatment that 

is highly specific to both the patient and the tumor. Mainly comprised of peptide, heat-shock 

proteins, and dendritic cell vaccines, this emerging therapeutic arm has proven to be a safe 

and effective way to combat some of the challenges facing standard-of-care for GBM 

patients. As new potential targets are uncovered and existing trials continue on to Phases II 

and III, the clinical benefit and role of immunotherapy in the management of malignant 

glioma will become clearer. Encouraging data from early phase trials, as well as the 

challenges they have presented, should endorse further research into this treatment modality.
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