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Summary

Many statistical methods have recently been developed for identifying subgroups of patients who 

may benefit from different available treatments. Compared with the traditional outcome-modeling 

approaches, these methods focus on modeling interactions between the treatments and covariates 

while by-pass or minimize modeling the main effects of covariates because the subgroup 

identification only depends on the sign of the interaction. However these methods are scattered 

and often narrow in scope. In this paper, we propose a general framework, by weighting and A-

learning, for subgroup identification in both randomized clinical trials and observational studies. 

Our framework involves minimum modeling for the relationship between the outcome and 

covariates pertinent to the subgroup identification. Under the proposed framework, we may also 

estimate the magnitude of the interaction, which leads to the construction of scoring system 

measuring the individualized treatment effect. The proposed methods are quite flexible and 

include many recently proposed estimators as special cases. As a result, some estimators originally 

proposed for randomized clinical trials can be extended to observational studies, and procedures 

based on the weighting method can be converted to an A-learning method and vice versa. Our 

approaches also allow straightforward incorporation of regularization methods for high-

dimensional data, as well as possible efficiency augmentation and generalization to multiple 

treatments. We examine the empirical performance of several procedures belonging to the 

proposed framework through extensive numerical studies.

Keywords

A-learning; Individualized treatment rules; Observational studies; Propensity score; Regularization

* meyu@biostat.wisc.edu. 

Supplementary Materials
Sample R codes for implementing the proposed method and Web Appendices referenced in Sections 2 – 5 are available with this paper 
at the Biometrics website on Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2017 December 28.

Published in final edited form as:
Biometrics. 2017 December ; 73(4): 1199–1209. doi:10.1111/biom.12676.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

With increasing numbers and types of treatments for many conditions, it is now well known 

that the benefits of many treatments differ substantially across different patient 

subpopulations. A key focus of recent research is to match patients with the most effective 

treatments to improve treatment efficacy when there is substantial heterogeneity of treatment 

effectiveness (Gabriel and Normand, 2012). To optimize treatment selection for individual 

patients, an important strategy is to use patients’ baseline covariates to form a system for 

ranking or scoring their individualized treatment effects (ITEs). Statistical methods for 

estimating ITEs or constructing optimal individualized treatment rules (ITRs) often require 

investigation of treatment by covariate interactions. These treatment-modifying covariates 

are known as treatment-moderators. They need to be contrasted with prognostic covariates 

which lead to poorer or better outcomes under all treatment options. For example, higher 

tumor stage may be generally associated with worse prognosis for all treatments under 

considerations. Therefore if the goal is only for treatment selection, the relevant task is to 

identify treatment-moderators but ignore prognostic covariates.

More concretely, let T = ±1, Z and Y denote the treatment assignment, baseline covariates 

and outcome of interest for a patient, respectively. Algebraically, we can express E(Y|T, Z) = 

m(Z) + TΔ(Z), where m(Z) = 0.5{E(Y|T = 1, Z) + E(Y|T = −1, Z)} is a function that reflects 

the main effect of Z and Δ(Z) = 0.5{E(Y|T = 1, Z)−E(Y|T = −1, Z)} is a contrast function 

that reflects treatment effects given Z. Therefore modeling E(Y|T, Z) is equivalent to 

modeling both m(Z) and Δ(Z) as functions of covariates. Variables involved in m(Z) are 

prognostic variables, while those in Δ(Z) are treatment moderators.

Traditional approaches to developing optimal ITRs model m(Z) and Δ(Z) simultaneously to 

predict the outcomes and then estimate ITEs using these model based estimates. This 

approach requires correct specification for both m(Z) and Δ(Z), even though in the end only 

the latter is used to guide the treatment selection. In this approach, the main effect m(Z) 

becomes a nuisance parameter, whose specification, however, may affect the estimation of 

treatment contrast function Δ(Z). This is especially problematic since in practice there are 

often many prognostic variables but far fewer treatment moderators that actually alter 

treatment recommendation (Kraemer, 2013). However, if our goal is ranking ITE or 

developing ITR, then only ranks or signs of the contrast function Δ(Z) matter. Hence, it is 

desirable to have a robust estimate of ITEs without necessitating the estimation of m(·).

Several robustness approaches to subgroup identification have been proposed in recent 

years. In the randomized clinical trial (RCT) setting, it has been shown that mis-specification 

of the main effects m(Z) has limited effects on estimating the treatment by covariate 

interaction (Qian and Murphy, 2011; McKeague and Qian, 2014; Lu et al., 2013; Ciarleglio 

et al., 2015), especially from the perspective of A-learning (Murphy, 2003; Robins, 2004). In 

the observational study setting, double robust procedure was introduced (Zhang et al., 2012). 

In addition, Vansteelandt et al. (2008) developed multiply robust estimators for interaction 

parameters, leaving the main effects unspecified. Beyond this robustness from the main 

effect misspecification, it has been found that masking observation such as noninformative 

censoring also only has a limited impact on subgroup identification (Xu et al., 2015). 
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Shifting from the outcome prediction framework, a modified covariate method was proposed 

by Tian et al. (2014) without the need of explicitly modeling main effects for data from 

RCTs. Furthermore, nonparametric approaches based on the regression tree were proposed 

to separate the main effects from the covariate-treatment interaction effects, either through 

sequential testing (Su et al., 2008) or prediction strategies (Foster et al., 2011; Loh et al., 

2015). Lastly, converting the subgroup identification to a classification problem, outcome 

weighted learning methods were developed (Qian and Murphy, 2011; Zhang et al., 2012; 

Zhao et al., 2012; Xu et al., 2015).

All aforementioned methods appear to be very diverse: some are fairly ad-hoc and some are 

heavily model-dependent. The validity of the latter often relies on different parametric or 

non-parametric assumptions for Δ(Z). Furthermore, most existing methods focus on the 

treatment difference Δ(Z) as the metric for summarizing ITE. However, the choice of the 

metric may affect the analysis results and conclusions about ITE. For example, for non-

negative Y, one may choose to use the ratio E(Y|T= 1, Z)/E(Y|T= −1, Z) to measure the ITE 

instead of the difference E(Y|T =1, Z) − E(Y|T =−1, Z). The patients rankings based on E(Y|

T = 1, Z)/E(Y|T = −1, Z) and E(Y|T= 1, Z) − E(Y|T= −1, Z) can potentially be quite 

different although these two metrics may lead to the same ITRs with patients assigned to 

treatment 1 when E(Y|T=1, Z) > E(Y|T=−1, Z). On the other hand, one may employ ITE 

metrics such as E{U(Y)|T=1, Z}−E{U(Y)|T=−1, Z} based on a monotone transformation 

U(·), which would alter both the ranking and the optimal treatment recommendation. 

Although different methods can be developed for specific choices of the ITE metric, we 

propose in this paper a unified framework that can allow for ITEs or ITRs estimation under 

different metrics.

Building upon the weighting approach considered in Tian et al. (2014) for RCT, we propose 

both propensity score weighting and A-learning methods for subgroup identification that are 

applicable for both observational studies and RCTs. Our framework is flexible and includes 

many aforementioned estimators in the literature as special cases, despite their clearly 

different origins. The rest of the paper is organized as follows. In Section 2, we demonstrate 

that minimizers of a class of convex loss functions can recover the optimal ITR. With 

properly chosen loss functions, our proposed estimator can not only recover the ITR but also 

the magnitude of ITE. In Section 3, we show that many recently proposed estimators can be 

represented as special cases within our frameworks. In Sections 4 and 5, we compare the 

finite-sample properties of several estimators and their extensions within our frameworks via 

simulation studies and real data examples. Finally we conclude the paper with some 

discussions including extensions to multiple treatment groups in Section 6.

2. Methods

2.1 Notations and assumptions

We adopt the notation based on the potential outcome framework in causal inference (Rubin, 

2005). Y(1) and Y(−1) are the potential outcomes if the patient receives a new treatment T = 1 

and a standard treatment T = −1, respectively. We also assume that only one of the potential 

outcomes Y(1) and Y(−1) can be observed for each patient, i.e, Y = I(T = 1)Y(1) + I(T = 

−1)Y(−1), where I(·) is the indicator function. We further assume that T is independent of 
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(Y(1), Y(−1)) given the covariates Z, that is the “strongly ignorable assumption” (Rosenbaum 

and Rubin, 1983; Rubin, 2005). For the treatment assignment, we assume that Pr(T = 1|Z) = 

π(Z), where the propensity score π(Z) is typically known and free of Z in randomized trials; 

but is unknown and needs to be estimated (e.g. via regression modeling) in observational 

studies. The observed data {(Yi, Ti, Zi), i = 1, · · · , n} consist of n independent identically 

distributed (i.i.d) copies of (Y, T, Z).

Our goal is to construct a personalized benefit scoring system f (Z) based on the covariates 

Z via both a weighting approach and an A-learning approach such that the new treatment 

shall be recommended for the patients based on f (Z), which is often sign{ f (Z)}. We 

demonstrate in Section 2.2 that the optimality of such a rule under different scenarios. In 

addition, we demonstrate in Section 2.4 that the proposed approach to estimating an optimal 

f (·) is also useful for quantifying the magnitude of treatment benefit.

We consider a loss function M(y, v) satisfying two conditions:

A. Mv(y, v) = ∂M(y, v)/∂v is increasing in v for any given y;

B. U(y) ≡ Mv(y, 0) is monotone in y.

Here, condition A ensures that M(y, v) is convex in v, which allows us to “order” the 

expected utility under the comparative treatments to form an ITR. Condition B is simply to 

make the transformed quantity, i.e. U(Y), an interpretable endpoint. For example, M(y, v) 

can be the squared loss function (y − v)2, which clearly satisfies aforementioned two 

conditions with Mv(y, v) = 2v − 2y and U(y) = −2y. When Y only taking non-negative 

values and Pr (Y(t) > 0|Z = z) > 0 for t = ±1 and any z, we may let M(y, v) = y log{1 + 

exp(−v)} with U(y) = −y/2.

A “Fisher-consistent” ITR d0(z) ∈ {1, −1} can be constructed via M. Specifically, d0(·) 

maximizes the value function U(d) = −E [{U(Y(1)) − U(Y(−1))} d(Z)]. Note that direct 

maximization of U(d) is not feasible both statistically and numerically due to the discrete 

nature of d(·), whereas minimization of smooth loss functions ℓ( f ) with respect to f (·) 
overcomes such difficulties. Here ℓ(·) is constructed based on M as detailed in the next 

section. When U(y) linear and decreasing in y, the maximizer of U(d) is the same as the 

maximizer of the standard value function E[Y(1)I{d(Z) = 1}+Y(−1)I{d(Z) = −1}] employed 

in the literature (Qian and Murphy, 2011; Zhao et al., 2012). The use of a broader class of 

M(·, ·) along with its corresponding U(·) enables us to consider alternative metrics to 

quantify treatment benefits. Throughout, we first assume that π(Z) is known and provide 

discussions on estimating π(Z) in Section 2.3.

2.2 Weighting and A-learning Approaches to Subgroup Identification

Weighting Method—For a given M(·, ·) and covariate level z, we first consider the loss 

function ℓW( f ) = E{ℓW( f, Z)} and let fW0 = argminf ℓW( f ), where
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We next show that d0(Z) = sign{ fW0(Z)} maximizes the value function U(d). For any z, 

the first order condition of the minimization is

(1)

Consequently, for a patient with a negative score (that is, fW0(z) < 0), we have

(2)

(3)

The inequalities in (2) and (3) follow from the fact that Mv(y, v) is increasing in v 
(Condition A) and the equality in (2) is the consequence of the first order condition (1). 

Similarly, for a patient with a positive score (that is fW0(z) > 0), we have E{U(Y(1))|Z = z} < 
E{U(Y(−1))|Z = z}. Hence, d0(z) = sign{ fW0(z)} is an optimal ITR that maximizes U(d).

A-learning Method—We next demonstrate that the optimal ITR can be equivalently 

obtained via a different loss function constructed via A-learning ideas (Murphy, 2003; 

Robins, 2004; Lu et al., 2013; Ciarleglio et al., 2015). Specifically, consider the loss function 

ℓA( f ) = E{ℓA( f, Z)} and let fA0 = argminf ℓA( f ), where

Then for any z with π(z) ∈ (0, 1), the first order condition for fA0 is

(4)

Hence, for a patient with negative score (that is fA0(z) < 0), we can have

(5)
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(6)

The inequalities in (5) and (6) follow from Condition A and the equality in (5) is from the 

first order condition (4). Similarly, for a patient with a positive score, we can have 

E{U(Y(1))|Z = z} < E{U(Y(−1))|Z = z}. Thus, the minimizer fA0 can also be used for 

subgroup identification with d0(Z) = sign{ fA0(Z)} also maximizing the value function 

U(d).

2.3 Implementation

In this section, we provide some details on how to implement the proposed procedures in 

practice. Since most of the discussions apply for both the weighting and A-learning 

methods, we use ★ =W and A to index these two approaches respectively for conciseness. 

To approximate the minimizer f★0 with observed data, one may first estimate the loss 

functions ℓ★ ( f ) empirically. Specifically, it is straightforward to show that ℓW( f) and ℓA( f ) 
can be respectively estimated by

(7)

(8)

Since the form of f★0 is unknown, direct maximization of L★ ( f ) among all functional 

spaces is not feasible. In practice, model assumptions can be imposed to restrict the search 

space of f★0(·). For example, a simple but useful approach is to assume that f★0(·) can be 

approximated by a linear combination of a set of basis functions given a priori. That is, 

, where {Bk(z), k = 1, · · · , K} are K basis functions such as B-

spline bases (Ruppert et al., 2003). One may then find (β1̂, · · · , β̂K) to minimize the loss 

function  or its penalized counterpart and let  be the 

estimated benefit score. Alternatively, one may employ machine learning algorithms such as 

boosting to construct f̂ (·) based on L★( f ) (Hastie et al., 2009).

In many modern applications, the number of covariates is large but typically only a small 

subset is relevant to the treatment selection. Therefore, it is desirable to incorporate variable 

selection in subgroup identification using penalization approaches such as lasso (Hastie et 

al., 2009). For our proposed framework, it is easy to apply appropriate regularization to 

minimize the penalized loss function L★( f ) + λ( f ) where the penalty term λ( f ) can be 

chosen to screen out noise features or encourage specific structure of the benefit score f (·).
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It is also important to note that in observational studies, the propensity scores π(Zi) are 

unknown and need to be replaced by their consistent estimators in constructing L★( f ). 
When Z is discrete or low dimensional, non-parametric estimators can be used for π(·). 

When the dimension of Z is not small, regression models such as logistic regression can be 

imposed for π(·).

To improve estimation efficiency, we may add possible augmentation to M(·, ·) function, 

while still preserve the same interpretation of obtained benefit scores. In Web Appendices A 

and B, we provide the justification and implementation for the efficiency augmentation.

2.4 Estimating the Magnitude of Individualized Treatment Effect

We have shown above that the benefit score, defined as the minimizer of the appropriately 

constructed loss function, can be used for subgroup identification since the sign of the score 

is consistent with the direction of the treatment effect. In this section, via several examples, 

we will demonstrate that often the value of the benefit score can also be used to approximate 

the size of the ITE. By choosing different M, the corresponding minimizers may reflect ITE 

quantified by different metrics. For example, when Y is non-negative, one may summarize 

the ITE given Z as E(Y(1)|Z) − E(Y(−1)|Z) or E(Y(1)|Z)/E(Y(−1)|Z) (VanderWeele and Knol, 

2014). Both metrics are widely used when investigating treatment covariate interactions and 

the preference of one over the other seems to be quite problem-specific (VanderWeele and 

Knol, 2014). In the traditional outcome prediction approach, one needs to employ seemingly 

different regression models to estimate such ITEs. Here, we will show that the ITEs under 

different metrics can be naturally unified under our proposal by considering different M(·, ·).

To this end, we first consider M(y, v) = (y−v)2 and the corresponding propensity score 

weighted empirical loss function is

(9)

Assuming that fW0 minimizes ℓW( f ) = E{LW( f )}, the first order condition given in (1) 

leads to 2 fW0(z) = E(Y(1)|Z = z) − E(Y(−1)|Z = z). Hence once an estimator f̂ (·) of fW0(·) is 

obtained, we can use 2f̂ (Z) to approximate the ITE. Similarly, we can consider the A-

learning loss function corresponding to the quadratic loss,

(10)

The first order condition (4) implies that fA0(·) = argminf E{LA( f )} = E(Y(1)|Z = z) − 

E(Y(−1)|Z = z). Therefore, we also can approximate ITE by constructing appropriate 

estimator for the minimizer of E{LA( f )}. Thus, the quadratic loss M(y, v) = (y − v)2 
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recovers treatment benefit scores that approximate treatment benefit measured by mean 

differences.

Next, we consider the exponential loss M(y, v) = y exp(−v). The corresponding empirical 

loss functions are

Similarly, the first order conditions (1) and (4) imply that

respectively. Thus, the exponential loss leads to benefit scores that recover the ITE measured 

by the ratio of the expect outcomes under two different treatments.

3. A Review of Several Methods and Their Relationship with Our Framework

Tian et al. (2014) proposed a method for RCTs, which is a special case of our weighted loss 

function LW( f ) in (7). Particularly, three different types of M, were described in their paper 

for continuous, binary, and survival type of outcomes, respectively. For continuous 

outcomes, M(y, v) = (y − v)2. For binary outcomes, M(y, v) = −[yv − log{1 + exp(v)}]. For 

survival outcomes

where y = (X, δ) = {X̃ ∧ C, I(X ̃ ≤ C)}, X̃ is the survival time, C is the censoring time, N(t) = 

I(X̃ ≤ t)δ and τ is a fixed point such that P(X ≥ τ) > 0. However, the interpretation of U(y) = 

Mv(y, 0) is trickier due to the two-dimensional outcomes and Tian et al. (2014) proved that 

U(y) is a monotone transformation of survival time X̃ given additional conditions. Besides, 

the optimal efficiency augmentation forms proposed by Tian et al. (2014) can also be viewed 

as special cases of our efficiency augmentation.

For d(Z) = ±1, an outcome weighted estimator (OWE) finds the optimal decision rule by 

dopt(Z) = argmindE[{Tπ(Z) + (1 − T)/2}−1YI{Td(Z) < 0}] (Qian and Murphy, 2011; Zhao et 

al., 2012; Zhang et al., 2012). However, since the 0–1 loss I(v < 0) is neither convex nor 

continuous, it needs to be replaced by a convex and continuous surrogate loss operationally 

to overcome the computational obstacle, e.g., replacing yI(v < 0) by M(y, v) = yϕ(v). Xu et 

al. (2015) used the logistic loss function ϕ(v) = log {1 + exp(−v)} and Zhao et al. (2012) 

used the hinge function ϕ(v) = (1 − v)+, where x+ = max(x, 0). With those surrogate loss 

functions, it is clear that the outcome weighted estimation procedure is equivalent to ours 

based on the loss function LW( f ) with the corresponding M(·, ·). Although the 

aforementioned justification of our proposal is based on differentiable M(·, ·), we show that 
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it can be extended to non-differentiable hinge function for subgroup identification in Web 

Appendix C.

Moreover, negative outcomes may cause ill-behaved OWES. One way to deal with this 

problem is to shift all outcomes to positive values. However, the estimation efficiency may 

be compromised after such a shift. On the other hand, one may employ a flipping 

transformation: for negative outcome Y with treatment assignment T: we can change its 

outcome and treatment assignment to −Y and −T, respectively. This flipping transformation 

does not change the 0–1 loss based on the original data, but in general affects the losses 

based on the surrogate function ϕ(v) with unclear consequences in final estimation. 

However, within the proposed framework, it is equivalent to using a flipping version of M(·, 

·) function. For example, the flipping version for outcome-weighted logistic loss function 

M(y, v) = y log{1 + exp(−v)} used by Xu et al. (2015) is M(y, v) = |y| log[1 + 

exp{−sign(y)v}] with Mv(y, v) = −y[1 + exp{sign(y)v}]−1. It is not hard to verify that this 

flipping version of M(·, ·) satisfies the two conditions mentioned in Section 2 and thus can 

be used to yield a valid estimator for the benefit score. In addition, we show that a doubly 

robust AIPWE estimator proposed by Zhang et al. (2012) can be obtained using a 

generalized augmented loss in Web Appendix F.

Lu et al. (2013) and Ciarleglio et al. (2015) proposed an A-learning estimator for the 

semiparametric outcome model: E(Y|T, Z) = m(Z) + TCG(Z; β), where m(·) is unspecified 

and β is a finite dimensional vector. Let f (Z) = CG(Z; β), their proposed A-learning 

estimator is equivalent to minimizing our A-learning type loss function LA( f) with M(·, ·) 

being the squared loss M(y, v) = (y−v)2. According to our justification, this A-learning 

method can also be extended to other M(·, ·), and we will illustrate the logistic loss in 

numerical studies.

4. Simulation

4.1 Continuous outcomes

We conducted extensive numerical studies with both continuous and binary outcomes. We 

generated a p = 50 dimensional covariate vector Z = (Z1, · · · , Zp)′ from a mean-zero 

multivariate normal distribution with variance 1 and covariance ρ, where ρ is set to be either 

0 for the independent setting or 1/3 for the correlated setting. The treatment assignment T 
was generated from a simple logistic regression model logit{π(Z)} = −1 + Z1. The outcome 

Y was simulated from nonlinear model

where ε ∼ N(0, 2) and (γ0, · · · , γ4) = (0.4, 0.8, −0.8, 0.8, −0.8). The coefficients for the 

main effects were set as either (i) β0 = 6−1/2, β1 = β2 = 0, βj = 0.5 × 6−1/2, j = 3, · · · , 10, 

representing moderate main effects; or (ii) β0 = 3−1/2, β1 = β2 = 0, βj = 0.5 × 3−1/2, j = 3, · · 

· , 10, representing large main effects. Throughout, we let the training sample size n = 300 
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and tested the performances of methods using an independently generated test data with a 

sample size of 10,000. For each simulation scenario, results were summarized based on 500 

datasets. For all methods, we center the outcome Y by its sample average before model 

fitting.

We considered two functional classes of f (·) when minimizing the loss functions: (i) a linear 

model with  where the lasso regularization was used to estimate the 

βi’s and the tuning parameter of lasso was chosen by 5-fold cross-validation (CV); (ii) an 

additive model with , where fi(·), i = 1, · · · , p, are nonlinear functions 

to be estimated. In fitting the additive model, we first screened the covariates by applying 

lasso regularization to the simple linear additive model. Then, the B-Spline method was 

implemented based on the selected variables (Ruppert et al., 2003). Operationally, we 

capped the maximum number of selected covariates in the first step to meet the requirement 

of R package mgcv, which was used to fit the additive model. The propensity score function 

π(·) was treated unknown and estimated by a fitting a lasso-regularized logistic regression 

with tuning parameter also selected via 5-fold CV.

We also considered various choices of M(y, v). Specifically, we considered the following 7 

methods: (1) Full: Full regression by regressing Y on Z, (T + 1)/2 and (T + 1)/2 × Z and 

then use the estimated treatment-covariate interaction terms to construct ITE; 

(2)Wsq–L:Weighting method with the squared loss M(y, v) = (y − v)2 and f = flin. This is a 

generalization of the modified covariate model proposed by Tian et al. (2014); (3) Wsq–A: 

Weighting method with the squared loss M(y, v) = (y − v)2 and f = fadd; (4) Wflo–L: 

Weighting method with the flipping version of the outcome-weighted logistic loss M(y, v) = 

|y| log[1 + exp{−sign(y)v}] and f = flin. This is a variant of the estimator proposed by Xu et 

al. (2015) using flipping transformation; (5) Asq–L: A-learning method with the squared loss 

M(y, v) = (y − v)2 and f = flin. This is the A-learning estimator proposed in Lu et al. (2013); 

(6) Asq–A: A-learning method with the squared loss M(y, v) = (y−v)2 and f = fadd; (7) Aflo–L: 

A-learning method with the flipping version of the outcome-weighted logistic loss M(y, v) = 

|y| log[1 + exp{−sign(y)v}] and f = flin. This is the extended version of the simple outcome-

weighted logistic loss under the A-learning framework.

Figure 1 shows the boxplots for the rank correlation coefficients between the estimated 

scores and true treatment effects Δ(Z) in the test set. Higher rank correlation coefficients 

should indicate better performance. Here we used Δ(Z) = E(Y(1) − Y(−1)|Z) as the ITE 

metric. We further evaluate performances regarding subgroup identification, that is in 

identifying the subgroup of patients . Figure 2 shows the 

average receiver operating characteristic (ROC) curves among 500 runs. The full regression 

has the worst performance among these methods, especially with correlated covariates, and 

other methods approximating the benefit score with a linear function have comparable 

performance. More flexible nonlinear additive models outperform their linear counterparts 

as expected. The A-learning method with the squared loss M(y, v) = (y − v)2 performs 

slightly worse than the weighting method with correlated covariates, while A-learning and 

weighting with M(y, v) = |y| log[1 + exp{−sign(y)v}] have similar performances. When 
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there are big main effects, the performances of all methods become slightly worse than the 

scenarios with moderate main effects, especially when the covariates are correlated, likely 

due to the fact that main effect may mask the interactions of interest.

We also checked the performance of efficiency augmentation and possible influence of 

incorrect propensity score model. These additional results are in Web Appendix D.

4.2 Binary outcomes

For binary outcomes, we simulated the outcome by dichotomizing a continuous latent 

response:

and all other settings were the same as those for continuous outcomes. To improve 

estimation efficiency, we also subtracted 0.5 from all Ys before the analysis for flipping 

version of outcome-weighted logistic loss. This subtraction was used because when y = 0, 

M(y, v) = 0 for some choices of M. Although subjective, this shift was quite helpful for 

efficiency gain. Parallel to the settings with continuous outcome, we first implemented the 

traditional full logistic regression with both main effects and interaction effects. Secondly, 

we employed both weighting and A-learning methods with logistic likelihood M(y, v) = −

[yv − log{1 + exp(v)}] (Wlo and Alo) proposed by Tian et al. (2014), and the flipping 

outcome-weighted logistic loss M(y, v) = |y| log[1 + exp{−sign(y)v}] (Wflo and Aflo). The 

latter case was of particular interest since the shifted outcome may take negative values. The 

benefit score was approximated by either the simple linear or the nonparametric additive 

function. The lasso regularization was used for feature selection. Figures 3 and 4 show the 

corresponding results for rank coefficients and ROC curves, respectively. The nonlinear 

methods outperform their linear counterparts in terms of rank correlations with the 

underlying ITE but similarly based on ROC curves. On the other hand, the A-learning 

method seems to perform better than the weighting method in terms of the ROC curves but 

similarly based on rank correlations.

5. Real Data Example (Mammography Screening Study)

This is a randomized study for female participants who were non-adherent to mammography 

screening guidelines at the study baseline. One primary interest of the study was to compare 

the intervention effects of phone counseling on mammography screening (phone 

intervention) versus usual care at 21 months post-baseline. The outcome is whether the 

subject took mammography screening during this time period. We conduct outcome shift by 

subtracting 0.5 from all binary outcomes for flipping version of outcome weighted logistic 

loss. There are 530 subjects with 259 in the phone intervention group and 271 in the usual 

care group. 16 binary baseline covariates, including sociodemographics, health belief 

variables, and stage of readiness to undertake mammography screening, and 1 categorical 

variable, number of years had a mammogram in past 2 to 5 years, are available in the study. 
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Considering the covariates’ first and second order interactions, there are 204 features in 

total.

To compare different methods, we randomly selected 80% participants and set the rest as a 

test set to evaluate the performance of the estimated benefit scores for ITEs. Specifically, 

following Xu et al. (2015), we evaluate the performance of a treatment recommendation rule 

 by the enhanced treatment effects E[Δ{Z, t, d̂ (·)}] = E(Y|d̂ (Z) = t, T = 

t) − E(Y|d̂ (Z) = t, T = −t), which can be estimated by the empirical weighted averages in the 

test set. This quantity measures the difference in the outcome between participants received 

the recommended intervention and those didn’t. If both E[Δ{Z, 1, d̂ (·)}] and E[Δ{Z, −1, d̂ 

(·)}] are positive, then the benefit score-based recommendation of the intervention is helpful 

for the participants in the study population. When coupled with the inverse probability 

weighting technique, the enhanced treatment effects score is still a valid measure when the 

data are from observational study. The procedures were repeated for 200 random splits and 

the mean enhanced treatment effects (and estimated standard errors from these 200 splits) 

for different methods are reported in Table 1, where larger average enhanced treatment effect 

indicates better performance of the estimator. The benefit scores are approximated by simple 

linear functions since most features are binary. The full regression performs the worst among 

all methods, and the flipping outcome-weighted logistic loss M(y, v) = |y| log[1 + 

exp{−sign(y)v}] seems slightly better than the logistic likelihood loss M(y, v) = −[yv − 

log{1 + exp(v)}] under the same setting, while comparable with the efficiency-augmented 

logistic likelihood loss. Additional real data analysis for a national supported work study can 

be found in Web Appendix E.

6. Discussion

In this article, we proposed a flexible framework for treatment scoring in both observational 

studies and RCTs, based on weighting and A-learning methods. The proposed methods are 

quite flexible and many recently proposed estimators can be represented as special cases 

within our frameworks.

A very practical issue of applying our proposal is the choice of the M(·, ·) and f (·) functions. 

As we demonstrate in Section 2.4, the choices may depend on the preference of the ITE 

metrics. For example, if ITE is quantified by E(Y(1)|Z)/E(Y(−1)|Z) instead of E(Y(1)|Z)

−E(Y(−1)|Z), suitable M needs to be constructed accordingly. We also note that different M 
can have equivalent U(Y) and ITR. For example, M(y, v) = (y − v)2 and M(y, v) = y log{1 + 

exp(−v)} both have U(Y) as a linear transformation of Y, and therefore should identify the 

same subgroup. However, they can have fairly different performances in finite-sample 

studies as demonstrated in numerical studies.

When specifying the class of functions for f, one also needs to balance the bias variance 

tradeoff. A simple linear form may be appropriate for a specific data with one type of ITE 

while nonlinear bases functions might be needed to adequately approximate the ITE for 

other cases. With sufficiently large sample size, one may use cross-validation or sample split 

to select an optimal set of basis for a given dataset with a given M. When the number of 

covariates or the number of basis functions is large, one may overcome overfitting by 
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employing popular lasso or elastic net regularization to help with variable selection and 

stabilize model fitting.

Suitable efficiency augmentation such as outcome shift may help to reduce the variability 

and enhance the robustness of relevant estimators. Thus it is crucial to withhold an 

independent test set to objectively examine the performance of resulting ITR estimators 

based on different combinations of M, f, regularization procedure and efficiency 

augmentation method (Zhao et al., 2013). An appropriate choice of the estimation procedure 

may be made by considering the complexity, clinical interpretability and computational cost 

associated with the estimation.

When the models for the propensity and/or f are misspecified, the rank of the estimated 

benefit scores can still be informative. To account for mis-specification in f, one may 

nonparametrically calibrate the treatment effect estimator according to the rank of the scores 

as in Cai et al. (2011) and construct the corresponding ITR. Mis-specification in the 

propensity score may lead to sub-optimal estimation of the benefit scores, but one may use 

such scoring systems for future clinical trials to more accurately determine ITR.

Although our framework described in earlier sections focuses on binary treatments, the 

generalization to multiple treatments is feasible. In Web Appendix G, we extend our 

framework to multiple treatments with an additional assumption on M using the weighting 

method. Tao and Wang (2016) proposed a method for multi-treatment selection by 

generalizing the OWE to settings with more than two treatment arms. Their multi-treatment 

OWE could be viewed as a special case of our generalized framework for multiple 

treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots for the rank correlation coefficients between the estimated benefit scores and true 

treatment effects for continuous outcomes. Method “Full” uses the full regression; Method 

“Wsq–L” uses the weighting method with squared loss M(y, v) = (y − v)2 and a linear f ; 
Method “Wsq–A” uses the weighting method with squared loss M(y, v) = (y − v)2 and a 

nonparametric additive f ; Method “Wflo–L” uses the weighting method with flipping 

outcome-weighted logistic loss M(y, v) = |y| log[1 + exp{−sign(y)v}] and a linear f ; Method 

“Asq–L” uses the A-learning method with M(y, v) = (y − v)2 and a linear f ; Method “Asq–A” 

uses the A-learning method with M(y, v) = (y − v)2 and a nonparametric additive f ; Method 

“Aflo–L” uses the A-learning method with flipping outcome-weighted logistic loss M(y, v) = 

|y| log[1 + exp{−sign(y)v}] and a linear f.
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Figure 2. 
ROC curves of estimated benefit scores for subgroup identification when the outcomes are 

continuous. Method “Full” uses the full regression; Method “Wsq–L” uses the weighting 

method with squared loss M(y, v) = (y−v)2 and a linear f ;Method “Wsq–A” uses the 

weighting method with squared loss M(y, v) = (y−v)2 and a nonparametric additive 

f ;Method “Wflo–L” uses the weighting method with flipping outcome-weighted logistic loss 

M(y, v) = |y| log[1 + exp{−sign(y)v}] and a linear f ; Method “Asq–L” uses the A-learning 

method with M(y, v) = (y − v)2 and a linear f ; Method “Asq–A” uses the A-learning method 

with M(y, v) = (y − v)2 and a nonparametric additive f ; Method “Aflo–L” uses the A-

learning method with flipping outcome-weighted logistic loss M(y, v) = |y| log[1 + 

exp{−sign(y)v}] and a linear f.
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Figure 3. 
Boxplots for the rank correlation coefficients between the estimated benefit scores and true 

treatment effects for binary outcomes. Method “Full” uses the full logistic regression; 

Method “Wlo–L” uses the weighting method with logistic loss M(y, v) = −[yv − log{1 + 

exp(v)}] and a linear f ; Method “Wlo–A” uses the weighting method with logistic loss M(y, 

v) = −[yv − log{1 + exp(v)}] and a nonparametric additive f ;Method “Wflo–L” uses the 

weighting method with flipping outcome weighted logistic loss M(y, v) = |y| 

log[1+exp{−sign(y)v}] and a linear f ;Method “Alo–L” uses the A-learning method with 

logistic loss M(y, v) = −[yv − log{1 + exp(v)}] and a linear f ; Method “Alo–A” uses the A-

learning method with logistic loss M(y, v) = −[yv − log{1 + exp(v)}] and a nonparametric 

additive f ;Method “Aflo–L” uses the A-learning method with flipping outcome weighted 

logistic loss M(y, v) = |y| log[1 + exp{−sign(y)v}] and a linear f.
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Figure 4. 
ROC curves of estimated benefit scores for subgroup identification when outcomes are 

binary. Method “Full” uses the full logistic regression; Method “Wlo–L” uses the weighting 

method with logistic loss M(y, v) = −[yv − log{1 + exp(v)}] and a linear f ; Method “Wlo–A” 

uses the weighting method with logistic loss M(y, v) = −[yv − log{1 + exp(v)}] and a 

nonparametric additive f ; Method “Wflo–L” uses the weighting method with flipping 

outcome-weighted logistic loss M(y, v) = |y| log[1 + exp{−sign(y)v}] and a linear f ; Method 

“Alo–L” uses the A-learning method with logistic loss M(y, v) = −[yv − log{1 + exp(v)}] and 

a linear f ; Method “Alo–A” uses the A-learning method with logistic loss M(y, v) = −[yv − 

log{1 + exp(v)}] and a nonparametric additive f ; Method “Aflo–L” uses the A-learning 

method with flipping outcome-weighted logistic loss M(y, v) = |y| log[1 + exp{−sign(y)v}] 

and a linear f.
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Table 1

The average estimated enhanced comparative treatment effect (standard errors) and average subgroup sizes 

(proportions) in test data based on 200 random splits of mammography screening study

Method

t = 1 t = −1

Mean (SE) Subgroup Size Mean (SE) Subgroup Size

Full −0.005 (0.009) 62 (59%) 0.039 (0.011) 44 (41%)

Wlo–L 0.008 (0.009) 53 (50%) 0.058 (0.011) 53 (50%)

WloE–L 0.020 (0.010) 49 (46%) 0.073 (0.010) 57 (54%)

Wflo–L 0.014 (0.010) 52 (49%) 0.070 (0.010) 54 (51%)

Alo–L 0.002 (0.009) 52 (49%) 0.056 (0.011) 54 (51%)

AloE–L 0.021 (0.010) 49 (47%) 0.072 (0.010) 57 (53%)

Aflo–L 0.012 (0.010) 52 (49%) 0.069 (0.011) 54 (51%)

NOTE: “Full” uses full logistic regression; “Wlo–L” uses weighted logistic likelihood loss M(y, v) = −[yv − log{1 + exp(v)}]; “WloE–L” uses 

weighted efficiency-augmented logistic likelihood loss; “Wflo–L” uses weighted flipping outcome-weighted logistic loss M(y, v) = |y| log[1 + 

exp{−sign(y)v}]; “Alo–L” uses A-learning method with logistic likelihood loss; “AloE–L” uses A-learning method with efficiency-augmented 

logistic likelihood loss; “Wflo–L” uses A-learning method with flipping outcome-weighted logistic loss.
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