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ABSTRACT OF THE DISSERTATION 

 

Development of a short-term solar power forecasting capability using ground-

based visible wavelength imagery 

 

by 

 

Bryan Glenn Urquhart 

 
Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 

 
University of California, San Diego, 2014 

 
Professor Jan Kleissl, Chair 

 

A very short term solar power forecasting technology which uses ground-based 

visible wavelength imagery is presented. A sky camera system suitable for use as a 

solar power forecasting tool is described. Relevant imaging considerations are 

discussed, including the need for high dynamic range imaging of the daytime sky and an 

associated stray light assessment. To photogrammetrically calibrate this sky camera 

system, a general camera model applicable to a fixed focal length photo objective lens 



xx 

with significant radially symmetric distortion is developed, and an accurate calibration 

technique for a stationary, skyward pointing daytime camera using the sun's position is 

given. Remote sensing algorithms used in the solar forecasting process are detailed, 

including clear sky characterization, cloud detection, cloud velocity estimation, and cloud 

height estimation using stereography. A cloud stereo photogrammetry method which 

provides dense 3D cloud position is presented. Correspondence is automatically 

determined using intra-scanline dynamic programming applied to a normalized cross 

correlation matching metric; an ordering constraint is implicit in the approach used.  

Using the described remote sensing tools and methods, a complete solar power 

forecasting framework is detailed. The method is based on the estimation of cloud 

shadow position via ray tracing, and the forecast position of the cloud shadows relative 

to solar collectors. A ray tracing procedure that works with a planar mapping of cloud 

position is used to compute shadow position. Cloud transmissivity is characterized using 

past observations and applied to forecast cloud positions. The application of the 

procedure to two case studies: the UCSD DEMROES weather station network, and a 

48MW solar photovoltaic power plant is presented. A comparison of the forecasting 

performance using a common Total Sky Imager is compared to the UCSD Sky Imager, 

where it is shown that the UCSD Sky Imager performs better overall. 

 



1 

1 Introduction 

The use of cameras for atmospheric observations has a long history. Many 

instruments were devised to capture images of the clouds for varying purposes (e.g. 

Whipple 1890, Strachey and Whipple 1890, Acres 1893, Elkholm 1893, Clayden 1898). 

Cloud height and velocities were measured with photographs by the end of the 19th 

century using a pair of cameras (Strachey and Whipple 1890). The basic triangulation 

procedure is described in the latter work, but several advances have been made in 

understanding imaging geometry since that time which facilitate the photogrammetry 

process (e.g. Longuet-Higgens 1981, Faugeras 1993, Hartley and Zisserman 2004). 

The optical hardware used for whole sky imaging was developed during the 

course of the 20th
 century. The use of refraction at an air-water interface to describe the 

view from within a pond has been attributed to RW Wood in his text Physical Optics 

(1905) where he described how the entire 180° field of view could be seen within a 97° 

cone under water. One year later, WN Bond (1906) coined the term "fish-eye" view in a 

paper describing vision underwater and experimentation with an apparatus made from a 

water-filled lard bucket with photographic film placed at the bottom. He took the first 

nearly 180° photograph of the sky using this apparatus. Wood is often incorrectly given 

the credit of coining the term fish-eye because he used it, following Bond, in the second 

edition of Physical Optics (1911) where he described a more compact water-filled 

camera. Photos from Bond’s 1906 paper appeared five years later in Physical Optics 

(1911). In 1922, Bond used a hemispherical glass lens with a pinhole to create wide 

angle images and suggested their use for sky photography and presented the first 

published whole sky imagery results on the subject. The primary drawback to the lens is 

that it could only be focused on a band of the sky (constant zenith). The first design of a 

true modern fish-eye lens is attributed to Robin Hill (1924) where he used a large 
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negative meniscus front element in the lens which allowed the full sky to be in focus. A 

caveat was that bandpass filters had to be used to restrict the wavelength range 

because of blurring due to chromatic aberration at high zenith angles caused by 

dispersion of colors (variation in refractive index with wavelength). A doublet was 

introduced (Miyamoto 1964) that corrected the dispersion and thus reduced issues due 

to chromatic aberration within the visible wavelength range. It is with this final 

development that sharp full color images of the sky could be obtained. 

The development of a refractive lens for capturing full sky images opened up 

many research fields, including canopy research (e.g. The Canopy Camera developed 

by Harry E. Brown, 1962). The development of digital camera systems utilizing 

computers and semiconductor sensors began in the 1970s and 1980s. Some work was 

done by forestry community for canopy research (Chazdon and Field 1987), and in 

parallel the Marine Physical Laboratory (MPL) at the Scripps Institute of Oceanography 

(SIO) was developing a system designed to image clouds (Johnson et al. 1988, 1989). 

An excellent history of the Whole Sky Imager (WSI) can be found in Sheilds et al. 

(2013). 

The application of sky imagery for solar power forecasting, however, is a recent 

development. Various parameterizations of irradiance at the surface have been devised 

which take into account cloud fraction (e.g. Kimball 1928, Lumb 1964, Pfister et al. 2003, 

Kalische and Macke 2008), which is a quantity easily measured with a sky imager. 

Crispim et al. (2008) appear to be the first to use cloud information derived from a sky 

imager for solar forecasting (specifically a TSI, section 2.2.2), where the cloud fraction 

and global horizontal irradiance (presumably from a collocated sensor) was input into an 

artificial neural network and tested for six days of data. Results seem reasonable, 
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although the work makes it difficult to discern the full details of the experiment and 

performance evaluation. 

The first use of a sky imager to estimate sky condition at sites up to 2km away 

was performed by the author and reported in Chow et al. (2011). Five minute forecasts 

of sky condition for the same distant sites were reported in Urquhart et al. 2011. The first 

use of a sky imager to generate 15-minute ahead power forecasts for a large solar 

photovoltaic power plant was reported at the World Renewable Energy Forum in Denver, 

Colorado in May 2012 (Urquhart et al. 2012) and later in Urquhart et al. 2013. The 

deterministic forecasting work at UCSD is continuously evolving and being improved 

(Gohari et al. 2014, Yang et al. 2014). Because of the importance of solar power 

forecasting for economical grid integration, much contemporary work on solar power 

forecasting with a sky imager has also been performed (e.g. Marquez et al. 2012, Chu et 

al. 2013, Marquez and Coimbra 2013, Fu et al. 2013). The solar forecasting procedure 

developed by the author and his colleagues is discussed in Chapter 6, and the related 

remote sensing capabilities are presented in Chapter 4. Imaging issues with the 

hardware uncovered while forecasting for the solar power plant (Urquhart et al. 2012, 

2013) were addressed by the development of a new camera system, presented in 

Chapter 2. A comparison of this new instrument, the UCSD Sky Imager (the "USI") and 

the previously used (and very common) Total Sky Imager is presented in Chapter 7. 

The ray tracing method used to determine the obscuration of the sun at a 

particular ground site requires accurate cloud position information. To determine cloud 

position remotely, both active and passive sensors can be used. Active ground-based 

sensing methods use electromagnetic energy at different parts of the spectrum, e.g. lidar 

uses near infrared and cloud radar uses radio waves (see also Kazantzidis et al. 2012 

about many cloud remote sensing technologies). Cloud radar is prohibitively expensive 
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for solar forecasting applications. The lidar instruments, in general, are used in a vertical 

pointing configuration only. They could be made to scan the sky, and some interesting 

results could be obtained in this manner, however, this avenue was not pursued here. 

Instead, passive sensing of clouds was the preferred method. To determine the position 

of a cloud element from passive observational systems, the cloud element must be 

triangulated by observing it from two different positions. Using cameras to determine 

positional information is known as stereography, and it has a rich history in the 

photogrammetric and computer vision literature (Barnard and Fischler 1982, Dhond and 

Aggarwal 1989,  Brown et al. 2003). To triangulate the position of an object using a pair 

of cameras, the same object must be located in each image, and the pixel position within 

each image must have a known pointing angle in 3-space. The former problem of 

locating the object in two (or more) images is known as correspondence, and the latter 

problem of determining the pointing angle of pixel or set of pixels is known as calibration. 

Both must be performed accurately if the position of the desired object is to be located 

accurately. 

With the forecast procedure developed as presented in Chapter 6 and Urquhart 

et al. 2013, neither an accurate calibration nor a cloud stereographic procedure was 

used. As a means to make targeted improvements in the forecast, these two topics were 

further pursued. A method to geometrically calibrate a whole sky camera with a 180 deg 

field of view was developed along with a general camera model in Urquhart et al. 2014b. 

This geometric calibration method is presented here in Chapter 3. A method for ground-

based cloud stereography to produce dense cloud position maps was developed in 

Urquhart et al. 2014c. A majority of previous methods to determine cloud position 

stereographically either used analog imagery (Kassander and Sims 1957, Orville and 

Kassander 1961, Bradbury and Fujita 1968, Warner et al. 1973) and thus could not be 
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automated, or used digital imagery, but did not provide an automated means to 

determine correspondence (Zehnder et al. 2007, Öktem et al. 2014). Allmen and 

Kegelmeyer (1996) and Nguyen and Kleissl (2014) apply similar automated stereo 

approaches to whole sky imagery (i.e. 180 deg field of view) to generate dense cloud 

height maps, where matching was performed forward and backward to improve the 

confidence in the correspondence. Allmen and Kegelmeyer (1996) rectified image 

patches prior to matching whereas Nguyen and Kleissl (2014) did not. Seiz et al. 2007 

developed a sparse matching routine where features were selected automatically and 

matched using a least squares matching procedure that incorporated intensity and 

geometric constraints. Results presented for this robust method are generally very good, 

although the primary drawback is the computational complexity and sparsity of the 

matching. The method presented here provides dense depth maps with automated 

determination of correspondence using dynamic programming. The triangulation method 

applied is optimal in the projective sense (Hartley and Sturm 1997). The automated 

cloud photogrammetric method is described in Chapter 5. 

This dissertation is organized to follow a logical flow, starting from the hardware 

development aspects of a camera system used for solar power forecasting (Chapter 2). 

The camera must certainly be geometrically calibrated (Chapter 3) so that it can provide 

photogrammetric measurements of the sky scene. The fundamentals of cloud remote 

sensing from a ground-based visible wavelength camera are discussed in Chapter 4, 

along with many specific improvements and modifications which were developed in the 

course of the solar power forecasting work performed at UCSD. The remote sensing of 

cloud position (Chapter 5) was isolated in its own chapter because it relies on additional 

mathematical foundations, and it was (importantly) performed in a much later phase of 

the research work described here. Using the foundation established in the proceeding 
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chapters, Chapter 6 provides an overview of the deterministic geometric solar power 

forecasting developed at UCSD. Chapter 7 gives a brief comparison of the forecasting 

performance when applying the forecasting algorithms in Chapter 6 UCSD Sky Imager 

and the Total Sky Imager. Future work for each of the topics is discussed in Chapter 8. 

An appendix, containing bonus material, develops a means to optimally site photovoltaic 

generation in a distributed generation setting. This latter work was performed while the 

author was visiting the National Renewable Energy Laboratory in Golden, Colorado in 

the first half of 2012. 
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2 Sky Camera Development 

Contributing Authors: 

B. Urquhart, B. Kurtz, E. Dahlin, M. Ghonima, J.E. Shields and J. Kleissl 

2.1 Summary 

To facilitate the development of solar power forecasting algorithms based on 

ground-based visible wavelength remote sensing, we have developed a high dynamic 

range (HDR) camera system capable of providing hemispherical sky imagery from the 

circumsolar region to the horizon at a high spatial, temporal, and radiometric resolution. 

The University of California, San Diego Sky Imager (USI) captures multispectral, 16-bit, 

HDR images as fast as every 1.3 seconds. This article discusses the system design and 

operation in detail, provides a characterization of the system dark response and 

photoresponse linearity, and presents a method to evaluate noise in high dynamic range 

imagery. The system is shown to have radiometrically linear response to within 5% in a 

designated operating region of the sensor. Noise for HDR imagery is shown to be very 

close to the fundamental shot noise limit. The complication of directly imaging the sun 

and the impact on solar power forecasting is also discussed. The USI has performed 

reliably in a hot, dry environment, a tropical coastal location, several temperate coastal 

locations, and in the great plains of the United States. 

2.2 Introduction 

Solar power output of an individual generator, or even a fleet of generators, will 

have some level of variability due to the nature of the input source of light from the sun. 

The source of short-term variability of irradiance at the earth's surface is clouds and 

atmospheric particulates, which are generally not controllable. To reliably integrate 
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increasing amounts solar power into the electric grid, forecasting, storage, additional 

transmission, and ancillary power generation services will constitute a portfolio of 

solutions to counteract variability. 

From a planning and operations perspective, grid operators, require consumption 

and generation estimates from years to minutes ahead. On the scale of days to minutes, 

solar power output forecasts are provided by some combination of weather models and 

remote sensing of clouds, along with stochastic learning methods. Forecasting of solar 

radiation in the 0-30 minute ahead time frame poses unique challenges. High resolution 

models reported for both satellite and numerical weather prediction can issue forecasts 

that have 5 minute time steps for a one kilometer grid (Mathiesen et al. 2011, Perez et 

al. 2013), while the best operational models often have coarser resolutions in both space 

and time (Dupree et al. 2009, Rogers et al. 2012, Mathiesen et al. 2013). However, in 

numerical models, timing and/or positioning errors of clouds are inevitable, and for 

satellites, infrequent image capture and parallax effects can result in inaccurate 

georeferencing of clouds. These errors make it difficult to achieve an accurate, high 

resolution short term solar forecast. This motivates a need for other forecasting tools and 

observational methods. 

One short-term forecasting technology that has emerged recently has been 

based on remote sensing of clouds from ground-based imaging systems (Chow et al. 

2011, Marquez and Coimbra 2013, Urquhart et al. 2013, Yang et al. 2014, Fu and 

Cheng 2013). Urquhart et al. (2013) applied the forecasting method to 48MW of 

photovoltaic generation. One of the key conclusions from that work was that the Total 

Sky Imager (TSI), while providing the ability to monitor sky conditions, had shortcomings 

that limit its effectiveness for solar power forecasting. 
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This work describes the development of sky imaging hardware for short-term 

solar power forecasting at UCSD. The UCSD Sky Imager (USI) provides unique 

capabilities needed for forecasting research and applications. The goal of this article is 

to provide a details on the USI system, and report on its imaging performance so that 

other workers in this field may make more informed purchasing and design decisions. 

The remainder of section 2.2 discusses hardware requirements for sky imaging, and 

reviews relevant sky imaging hardware presented in the literature. Specifics of the USI 

hardware development and system operations are covered in sections 2.3 and 2.4, 

respectively. The imaging performance of the USI is characterized in section 2.5, and 

section 2.6 presents deployments of the USI to date. 

2.2.1 Imaging for Solar Power Forecasting Applications 

Sky imagers were historically built for recording meteorological conditions such 

as sky cover. For this purpose it is not critical to image the area directly around the sun, 

so many systems have sun occluding devices to prevent direct sunlight from entering the 

optics. When the sun is unobstructed, more than 90% of the photons entering the optics 

can come from the direct solar beam. For most camera systems, the handful of pixels 

encompassing the sun saturate and thus direct-beam signal intensity is only known to 

exceed the saturation threshold. Immediately outside the direct beam is a region of 

intense forward scattering. Aerosols and dust scatter the direct beam predominantly in 

the forward direction, increasing the size of region around the sun that will potentially 

saturate in a sky image. Cloud droplets and ice crystals, when present, also 

predominantly scatter in the forward direction and, depending on the scattered intensity 

reaching the camera, can further extend the size of the region that will saturate. 

Obtaining on scale image information about the region around the sun requires 
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appropriate imaging hardware and methods, especially when the region around the sun 

has a very high intensity. Further, this high intensity region can cause image quality 

degradation through internal reflections, diffraction caused by the aperture, sensor 

saturation, smear and blooming, and, potentially, sensor damage (see section 2.5.7 for 

further discussion relating to the USI). This significance of each of these potential issues 

is imaging system dependent. 

The use of occluding devices eliminates many of these potential issues, which is 

why they are often adopted. Blocking the sun and the surrounding area, however, 

eliminates important sky condition information needed to provide reliable forecasts in the 

first few minutes (< 5 min) of the forecast period. If the occluding device obstructed a 

minimal amount of the image along with precision-positioning mechanisms, it could then 

be used without adversely affecting immediate-term forecast accuracy. For cost and 

reliability reasons, these requirements are difficult to achieve in practice. The TSI, for 

example, has a shadowband that occludes 14% of the sky hemisphere, always in the 

region near the sun. Even for a 1.3 km2 solar power plant, the shadowband on the TSI 

has been demonstrated to obscure sky condition information for over half of the plant 

(Urquhart et al. 2013). With proper design, and appropriate image capture and correction 

algorithms, sky imaging systems can acquire atmospheric information from an 

appreciable amount of the region around the sun (e.g. Stumpfel et al. 2004). To this end, 

the high dynamic range imaging method described in section 2.5.5 provides a simple 

and robust approach. 

The spectral content of the sky scene provides important information for the 

remote sensing of clouds and water vapor. Most camera systems capture visible 

wavelength imagery that spans between 350 and 800 nm. This allows the measurement 

of shortwave solar radiation that is scattered by the clouds, atmospheric gases and 
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aerosols. Silicon-based image sensors used in visible wavelength cameras are also 

sensitive up to 1.1 µm in the near infrared. The sixteen bit (or higher) versions of these, 

with a set of selectable bandpass and neutral density filters, can be used for enhanced 

day and nighttime cloud detection (Shields et al. 2013). Long wave infrared (LWIR) 

imaging in the 8-12 μm range measures cloud brightness temperatures which can be 

used to segment different cloud layers, estimate cloud heights, and potentially determine 

optical depth. LWIR imaging hardware costs significantly more than common visible 

wavelength imaging hardware, and it may not be practical for widespread deployment. 

The image formation process in a sky imaging camera redirects radiant energy 

from the sky hemisphere onto the two dimensional image plane. Geometric and 

radiometric calibrations turn the brightness information at a given pixel position into a 

measurement of sky radiance at a given look angle. Geometric calibration relates a pixel 

position on the sensor array to a set of angles (azimuth and zenith) in a defined world 

coordinate system. This is a necessary step to accurately geolocate clouds. Solar 

forecasting methods such as Chow et al. (2011) and Yang et al. (2014) require 

geometric calibration of the imager because cloud positions are explicitly computed. 

Time of arrival methods such as Marquez and Coimbra (2013) or Wood-Bradley et al., 

(2012) do not require metric calibration because only a forecast of when a cloud will 

occlude the sun for the location of the imager is needed. A treatment of geometric 

camera calibration is beyond the scope of this article, but the interested reader is 

referred to Faugeras (1993) or Hartley and Zisserman (2004) for an introduction to the 

calibration process, and Yang et al. (2014) for more on the geometric calibration of the 

USI. Radiometric calibration makes it possible to determine the radiance of the scattered 

light coming from a portion of the sky (Shields et al. 1998b, Feister and Shields 2005, 

Roman et al. 2012), and can be used as input to retrieval algorithms for a number of 
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optical properties of atmospheric aerosols that impact solar energy generation (Nakajima 

et al. 1996). 

2.2.2 Existing sky imaging hardware 

There are three fields where a majority of sky imaging work has been performed: 

atmospheric sciences, forestry and ecology, and astronomy. Camera developers in 

astronomy are typically concerned with having a high sensitivity and low noise so that a 

high percentage of incoming photons from stars, asteroids and other faint objects are 

converted into charge carriers on the image sensor. The sensors used are often full 

frame charge-coupled devices (CCDs) because of the high quantum efficiency and fill 

factor, but require mechanical shuttering which limits the frame rate of the system. One 

system similar to the USI from the astronomy field is the All Sky Infrared Visible Analyzer 

(ASIVA, Klebe et al. 2014, Sebag et al. 2008) with a dual camera system that captures 

both visible and LWIR images. It is one of the few LWIR dioptric (refraction-based) 

whole-sky designs (catadioptric [reflection and refraction] designs similar to the TSI are 

more common). It uses a 640 × 512 uncooled microbolometer array sensitive in the 8–13 

μm range with a germanium fisheye lens. The system has an 8-slot filter wheel allowing 

for multiband LWIR measurements. The ASIVA also has a high-resolution visible 

camera with an 8-slot filter wheel (specific camera model has varied by ASIVA unit).  

The area of forestry has extensively used hemispherical photography (Brown 

1962, Anderson 1964). The high-dynamic-range all-sky-imaging system (HDR-ASIS) is a 

CMOS-based camera that leverages multiple exposures to create a high-dynamic-range 

(HDR) composite sky image for ecosystem and canopy research (Dye 2012). 

Researchers in atmospheric science have very actively developed their own 

instruments over the years. In fact, Robin Hill (1924) mentions cloud photography as a 
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motivation in developing the first the first true fisheye lens design. Digital sky 

photography began in the 1980s with the development of personal computers, and one 

of the leading groups developing imaging systems for atmospheric observation was the 

Atmospheric Optics Group at the Scripps Institute of Oceanography's (SIO's) Marine 

Physical Laboratory (Johnson et al. 1988, 1989). Their well known Whole Sky Imager 

(WSI) is still to this day one of the highest quality, if not the highest quality, sky imaging 

systems ever developed (Shields et al. 2013). It was developed primarily for U.S. military 

applications in the 1980s and early 1990s. More recent designs of the system had a 512 

× 512-pixel temperature-controlled, 16-bit low-noise monochrome CCD camera. It used 

a Nikon Nikkor 8 f/2.8 (8mm) fisheye lens (equidistant projection, section 2.3.1) and two 

filter wheels holding neutral density and spectral filters at multiple wavelengths. The 

image plane was the surface of a tapered fiber-optic bundle that interfaced directly to the 

CCD. Multiple corrections were made to the instrument to improve measurement quality: 

dark field correction; flat field correction (among other things, this corrected imaging 

issues caused by fiber optic imperfections); exposure corrections; linearity corrections; 

rolloff corrections; geometric calibration; and in some cases absolute radiometric 

calibration. By adjusting the neutral density and spectral filter selections, and/or the 

exposure time, the system achieved a wide dynamic range and could capture both 

daytime and nighttime imagery with high accuracy. The cloud detection algorithms 

developed over several decades were sophisticated, with accurate detection of haze, 

thin cloud, and opaque cloud (Shields et al. 1993a, 1993b, 1998a; Feister and Shields 

2005). 

The most widely used outdoor hemispheric camera system, first described by 

Long and DeLuisi (1998) as the Hemispheric Sky Imager (HSI), is the Total Sky Imager. 

It has been commercially available by Yankee Environmental Systems (YES) for over a 
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decade, and has a proven track record of reliably recording sky conditions. The 

catadioptric optical design uses a spherical mirror to reflect the sky hemisphere into a 

downward-pointing camera. The system has relatively low spatial and radiometric 

resolution (640×480 pixels, 48 dB max.), and there is little control of the camera capture 

settings. An antireflective black rubber strip ("shadowband") affixed to the mirror 

prevents direct sunlight from reflecting into the camera optics which improves image 

quality and avoids damage to the sensor. The shadowband covers approximately 0.70 

steradians of the hemisphere, which is about 14% of the image region used for 

forecasting (< 80° zenith angle). A comparison of the solar forecasting performance 

between the TSI and USI was performed by Gohari et al. (2014). 

Beyond the WSI and TSI, a number of other imaging systems have been 

developed for atmospheric studies. A description of several of these can be found in 

Urquhart et al. (2013) and in Table 1. Outside of systems developed by research groups, 

there are alternatives to the TSI. The SONA (Sistema Automático de Observación de 

Nubes, Gonzales et al. 2012) uses a 1/3", 640 ×480 CCD, has integrated coolers, 

heaters and temperature sensors and is ruggedized for outdoor deployment. It has an 

integrated shadowband with azimuth control that shades part of the lens, but not the full 

optical system (i.e. it does not shade the entire dome). The Eko sky camera, built by 

Schreder, is reported to have 2M pixels, and like the SONA and TSI, has cloud detection 

software and a user interface. The Santa Barbara Instrument Group (SBIG) sells the 

Allsky-340C camera system based on a Truesense KAI-0340, 640 × 480 CCD with a 

specified dynamic range (defined section 2.3.2) of up 69dB, and uses a 1.4mm focal 

length Fujinon FE185C046HA-1 lens. The SBIG camera was used for solar forecasting 

research by Fu and Cheng (2013). The list of systems noted here is far from 
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comprehensive, and with the potential of sky imagery for solar energy applications, new 

systems are continuously being developed. 

Table 2.1.  Research systems for sky atmospheric observations 

System Camera Sensor Resolution Lens Reference 

WSI Photometrics 

S300 

CCD 512 × 512 Nikon, 

equidistant 

Shields et al. 2013 

WSC - CCD, 1/3" 752 × 582 1.6mm Long et al. 2006 

ASI QImaging 

RETIGA 1300C 

Sony ICX085AK 

CCD, 2/3", 12-bit 

1300 × 1030 Fujinon 

FE185C057HA 

Cazorla et al. 2008 

IFM-GEOMAR - 10-bit 3,648 × 2,736 - Kalisch and Macke 

2008 

ASI - 1/3" CCD 2,272 × 1,704 equidistant Huo and Lu 2012 

 

2.3 Hardware design and selection methods 

2.3.1 Optical design 

The University of California, San Diego has developed its own sky imager (the 

USI, Fig. 2.1) to address the instrument needs for short term forecasting. The USI uses 

a Sigma 4.5 mm focal length fisheye lens which allows the entire image circle to fit on 

the sensor. This can easily be verified from the focal length, the lens projection, and 

sensor size. A conventional camera lens has the rectilinear projection function 

              

where   is the focal length,   is the angle from the optical axis, and    is the distance 

from the principal point in the image plane. It is evident that this pinhole camera model 

cannot image points at 90° from the optical axis with a sensor of finite size. In order to 

form the image of points that are 90° from the optical axis within a finite image plane, 

distortion is required, and the type of distortion can be selected by the optical designer. 

The two most common projections used in fisheye lenses are the equidistant and 

equisolid angle projections,     and     , respectively: 
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Each of these projection models provides different performance characteristics. The 

equidistant model provides a linear relation between incidence angle and distance from 

the principle point, and it has slightly less distortion at large angles from the optical axis 

than the equisolid angle projection. The equisolid angle projection is so-named because 

the solid angle subtended by a unit area on the image plane is constant, regardless of 

incidence angle (Miyamoto 1964). A comparison of the different lens projections is 

shown in Fig. 2.2a, along with that measured for the USI system. The angular resolution 

per pixel is shown in Fig 2.2b. Figure 2.2b assumes the sensor is 15.15mm across 

containing 2048 pixels, and uses the specifications for USI 1.2 in Table 2.2. Even though 

the angular resolution at the horizon is coarser for an equisolid versus an equidistant 

projection at the same focal length, the former was selected for the USI because at large 

zenith angles, the horizontal configuration of clouds is difficult to determine because of 

self occlusion and perspective effects. Using more of the sensor area for the sky region 

overhead and near the sun (during midday) was preferred because these sky areas 

contain the clouds causing the current and near future solar power generation impacts 

when power output is highest. 
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a) 

 

b) 

 

c) 

 

Figure 2.1. (a) USI enclosure, (b) top view of enclosure with lid removed, (c) 
components of USI taken out of the enclosure. 

 

a) 

 

b) 

 

Figure 2.2.  (a) Perspective (rectilinear), equidistant, and equisolid angle projection 
distances as a function of incidence angle, along with the projection for USI 1.2 
determined from geometric calibration. The projection distance is normalized by the focal 
length. (b) Angular resolution of projections in (a). 

For a given sensor size, the selected projection places a limit on the maximum 

allowable focal length of a lens while still being able to capture the complete sky dome 

(or conversely, the minimum sensor size given a focal length). The maximum allowable 

focal length for the equidistant projection         is          and for the equisolid angle 

projection         is        , where      is the shortest distance from the principle point 

to the edge of the sensor. For the USI, with a sensor size of 15.15 mm,      is 7.575 mm 

(assuming the principle point is in the center of the image sensor), and a focal length of 
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less than 5.36 mm for the equisolid angle projection is required. Because the principal 

point will in general vary depending on machining and assembly tolerances of the 

components used, the value of       will vary. Table 2 shows the principal point location, 

    , and     , for several USI systems obtained from a nonlinear geometric calibration 

of extrinsic and intrinsic parameters that minimized the squared pixel error between 

actual sun position measurements and modeled sun position. The NREL solar position 

algorithm (Reda and Andreas, 2004) was used for modeled sun position input. The 

principal point shows significant variation because mounting location of the lens 

fluctuates by as much as 0.31 mm. As a result, the radial distance to the edge of the 

detector fluctuates, and thus the maximum allowable focal length. 

Table 2.2.  Intrinsic parameters and lens focal length selection parameters measured for 
7 USI units. The principal point         and focal length   are measured for each USI. 

The minimum distance to the sensor edge      from         yields the maximum 
allowable focal lengths         and         for the equidistant and equisolid angle 

projections, respectively. Units are in mm, except for    and    which are given in pixels.  

USI No.                              

1.1 1032 965 4.437 7.139 4.545 5.048 

1.2 1040 970 4.386 7.176 4.568 5.074 

1.5 1033 963 4.429 7.124 4.535 5.037 

1.6 1028 991 4.377 7.331 4.667 5.184 

1.8 1023 1043 4.448 7.434 4.733 5.257 

1.9 1045 976 4.474 7.220 4.596 5.105 

mean 1033.5 984.7 4.425 7.237 4.607 5.118 

std 7.3 27.7 0.034 0.111 0.071 0.079 

 

Proper selection of the aperture diameter is important to ensure an appropriate 

flux of radiant energy impinges on the sensor plane. If the flux is high, very short 

exposure times are required to obtain quality sky images. Because there is no 

mechanical shutter in the USI, the sensor is always exposed and limiting the incoming 

radiant flux is a way to extend sensor life. If the aperture diameter is small, exposure 
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time must be increased, and motion blur of the clouds is possible. The Sigma lens 

comes with an iris diaphragm which was not used to avoid diffraction caused by the iris 

blades (e.g. Fig. 2.3e). To reduce the amount the incoming radiant flux without the iris 

diaphragm, two methods were tested: 1) a rear neutral density (ND) gelatin filter with a 

transmissivity of 0.1%, and 2) a fixed circular aperture for which several diameters were 

tested. Stray light and spectral effects of each approach are discussed in section 2.5.7. 

Undesirable diffraction patterns were observed on the USI for circular apertures of 

diameter 300 μm, 700 μm, and 1,000 μm (Fig. 2.3). Because diffraction caused by a 

circular aperture generates a known Airy disk pattern, it is possible to partially correct the 

image with deconvolution processing, however this was not done in this work. To 

minimize the incoming flux while also minimizing diffraction, an aperture of 1,250 μm 

was selected. In comparison, the aperture diameter with the ND filter is 9,520 μm. This 

large diameter noticeably reduces the depth of focus of the camera compared to the 

1,250 μm aperture (depth of field is unaffected because a fisheye lens is used). The 

radiant flux is higher using an aperture of 1,250 μm compared to the ND filter 

configuration by a factor of 18. This allows shorter exposures with less motion blur 

caused by longer integration times, but may also lead to increased sensor degradation in 

the long term due to the increased radiation on the sensor. 
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a) 

 

e) 

 
b) 

 

c) 

 

d) 

 

Figure 2.3. (a) Diffraction pattern measured with a 1000 µm aperture on USI 1.8, with 
color red, green, and blue color components shown in (b), (c), and (d), respectively. (e) 
Diffraction of the hexagonal iris blades in the stock lens. 

In order to develop a ruggedized system, it is necessary to protect the lens and 

properly seal the enclosure from the environment. For the lens to have full 180° access 

to the sky with this requirement, a 1/16th in. thick, neutral density acrylic dome was used 

on the USI. The dome has a UV hard-coat applied to minimize transmission of high 

energy solar radiation which helps reduce component degradation. Amorphous silicate 

glass has superior transmissivity and scratch resistance than acrylic, but is more difficult 

to machine and handle, and designing proper sealing for a glass dome is more 

complicated (and thus more expensive). Polycarbonate, while having similar 

transparency and machining characteristics to acrylic, becomes opaque due to 

oxidation, making it a poor choice as a dome material. The use of a neutral density 
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acrylic dome with a higher neutral density and an anti-reflective coating on the inner 

surface is being considered to improve image quality further. 

2.3.2 Camera and image sensor 

The USI uses an Allied Vision GE-2040C camera which contains a 15.15 × 15.15 

mm, 2048 × 2048 pixel Truesense KAI-04022 interline transfer CCD sensor. The camera 

is connected to the computer with a gigabit ethernet interface, and customized control is 

achieved by using the PvAPI for Linux provided by Allied Vision. For solar forecasting 

research, we have found that the ability to adjust exposure integration times, frame 

rates, regions-of-interest, and other parameters is a necessary capability that systems 

such as the TSI do not have. 

The USI imaging system was designed to generate images suitable for cloud 

detection and motion processing. Cloud detection requires spectral measurements, and 

thus a spectral filtering method must be employed in some capacity. Coupled with a high 

quality sensor, camera, and lens, a mechanical shutter and color filter wheel can provide 

very high quality still spectral measurements. These moving components, however, 

complicate system design and HDR capture, and limit frame rates, therefore no 

mechanical shutter or color filter wheel were used. Spectral measurements were instead 

obtained by using a Bayer color filter array (CFA, Bayer 1975). 

The intensity range of the sky necessitates a sensor with a large dynamic range. 

Large dynamic range and global electronic shuttering is available from interline transfer 

CCDs, which is why this technology was selected for the USI. Dynamic range    is 

defined by the ratio of maximum measurable signal to the noise floor: 
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where      is the count value at saturation, which is 4095 for a single USI exposure, and 

    is the read noise. Read noise is introduced by the camera readout electronics, 

including output amplifiers and analog-to-digital converters. For a single USI exposure, 

the dynamic range was measured to be 61 dB over the entire sensor. The sensor 

manufacturer specifies the dynamic range to be 72 dB. This indicates the readout 

electronics in the GE-2040C and the operating temperature of the camera increased the 

noise floor, which lowers the dynamic range. The large dynamic range for the KAI-04022 

is achieved because it has large 7.4µm pixels which have a charge capacity (also called 

full-well depth) of 23,600 e-. 

The use of an interline transfer CCD is not without tradeoffs. Smear is very 

apparent in images with direct sun exposure. Smear has two sources: 1) stray light 

entering the VCCD (vertical transfer CCD) during readout; 2) charge generation 

occurring deeper in the silicon photodiode layer that diffuses to any of the charge 

collection or transfer electronics. The VCCD is the interline column near the exposed 

photodiode column, and is where the vertical readout step is performed. Longer 

wavelengths penetrate further into the silicon before being absorbed and can generate a 

hole-electron pair in undesirable locations. This is why the smear is noticeably worse in 

the red channel of Fig. 2.3b. Blooming, which is apparent as a saturated border of bright 

objects, is another problem for CCDs, and is noticeable in USI imagery near the sun. It is 

not significant however, because each KAI-04022 pixel has a vertical overflow drain to 

prevent large amounts of charge from diffusing to nearby collection sites. 

2.3.3 Enclosure and balance of system design 

For solar forecasting, tough environmental conditions such as hot and dusty 

deserts will be encountered. The USI is designed to survive 60°C ambient air 
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temperature and direct sunlight conditions. It has a light colored exterior to reduce 

shortwave absorption and has two 80W thermoelectric coolers with a NEMA 4X rating. 

To monitor the system’s environmental health, a suite of temperature and relative 

humidity sensors was added to measure camera, power supply, internal and external 

ambient, and dome conditions. The internal enclosure walls are all insulated to reduce 

thermal conductivity of the enclosure, which with the use of active thermal control, keeps 

it cooler on hot days and warmer on cold days. Internal water condensation was initially 

found to be an issue. Improved system sealing and thorough water testing was found to 

be necessary. Three 20 W resistive heating strips were installed on the base of the 

dome to reduce condensation on the exterior dome surface. 

The USI camera is controlled by a 1.8Ghz dual core (Atom D525) embedded 

computer running Linux Ubuntu 12.04. The images can be stored locally on a set of 

internal and USB hard drives, or it can be transferred across a network connection. 

Using an embedded computer gives the system flexibility for customizing the 

configuration on a per deployment basis, and the capture software can easily be 

reconfigured, reprogrammed, or debugged remotely. A labeled CAD model of the USI is 

shown in Fig. 2.4. 
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Figure 2.4.  Component layout of UCSD Sky Imager camera system. 

2.4 System operation 

2.4.1 Image capture and storage 

Images are received from the camera as uncompressed single-channel 12-bit 

images with per-pixel color determined by the CFA. After three exposures are 

composited in the HDR process (section 2.5.5), the combined image is still a single 

channel, but with 16-bits per pixel. Images are compressed and stored in a lossless 16-

bit PNG format as a single channel image. A single pixel contains information about only 

one color of red, green or blue light. To produce a full color image from the pixel array 

suitable for processing, linear demosaicing is applied prior to use. Current image sizes 

are around 3 MB per image, or between 3 and 6 GB/day depending on the time of year. 

The maximum frame rate of the USI system in single exposure mode is 15 fps, 

which is relatively low. Future dynamic computer vision approaches to solar forecasting 

(e.g. optical flow) may require higher frame rates, and for these future methods, the 
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camera used on the USI may not be suitable. In HDR mode, which is the standard USI 

operational mode, three images are captured sequentially in 160ms, which is a frame 

rate of 18.8 fps (or HDR frame rate of 6.3 fps). This increase in frame rate is possible 

because a smaller 1748 × 1748 region of interest, extracted from the center of the 2048 

× 2048 pixel array, is transferred off the camera. After subsequent HDR compositing and 

PNG image compression, the effective frame rate drops to 0.77 fps (i.e. 1.3s per HDR 

image). 

2.4.2 System monitoring and control 

The raw images generated by the camera are inconvenient for qualitative 

inspection on a user's screen because they are not in color (raw Bayer format), the file 

sizes are relatively large so loading is slow, and a majority of the sky resides within the 

lower end of the 16-bit dynamic range which means the image appears very dark except 

for the sun. Preview images are therefore generated, which are full color, but lower 

resolution, compressed, and tonemapped to 8 bits per color channel. These previews 

are small enough to be uploaded to the operator from all sites — including remote ones 

using a cellular modem — and serve as a system heartbeat so that image availability 

and quality can be inspected at a glance. 

In addition, the data acquisition system reports temperature and humidity every 

30 seconds. The internal temperature and dome temperature are used to control the 

heaters and coolers in the USI to ensure that the critical electronics are always within 

their operating temperature bounds, and to avoid conditions that might lead to 

condensation. A live plot of temperature and humidity is uploaded to the operator. An 

important feature of the microprocessor controlled data acquisition system is its ability to 

automatically power-cycle the USI if it fails to respond. This has proven to be a valuable 
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backup, particularly on remote systems that are hard to access and crash more often 

than the others due to bugs in the cellular modem driver. 

2.5 Imaging performance characterization 

2.5.1 Noise sources and photoresponse 

Each pixel in a camera is an independent radiometric sensor, and has small 

response variations from its neighbors due to small manufacturing differences. After 

charge is collected on a pixel, it is converted to a voltage and then to a digital value, and 

at each step in the process noise is introduced. Common sources of noise include dark 

current generated by the semiconductor in the bulk and at the surface, reset noise from 

charge to voltage conversion (which is typically minimized by correlated double 

sampling), read noise from the camera's readout electronics, and photoresponse 

nonuniformity (PRNU) arising from small manufacturing differences of each pixel. 

Because there is a consistent spatial variation of many of these noise sources, it often 

forms a pattern called fixed pattern noise (FPN). Shot noise, arising from the quantum 

nature of the photons generating the signal, occurs in all imaging systems and acts as a 

lower bound to measurement uncertainty. It adds a random element to each image that 

is Poissonian in nature and it can only be reduced by averaging frames, which is not 

feasible for fast moving clouds or when high frame rates are desired. 

Each pixel's response can be characterized and corrected so that under the 

same illumination, the corrected output is the same when averaged over several frames. 

A comparison of the average of several frames is required because shot noise will 

always be present in an individual frame. A polynomial can be used to model a pixel's 

response to light: 
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   2.1 

where          is the camera measurement in counts at the  ,   pixel location,   is the 

irradiance incident on the pixel,   is the integration time of the exposure, and        are 

coefficients that characterize the individual pixels' dark response, and       characterize 

the pixels' photoresponse. Sensor noise and response characteristics are temperature 

dependent, so coefficients       , and       will also vary with temperature. Here it has 

been assumed that dark response and photoresponse can be separated. 

To determine the coefficients in Eq. 2.1, the irradiance   on the sensor plane 

must be known, which when using a lens implies the scene radiance must be known 

over the entire field of view. This can be achieved with a calibrated flat-field source. 

Many of the components of solar forecasting algorithms (e.g. Chow et al. 2011, Yang et 

al. 2014) have a training step where either relative brightness or brightness ratios are 

used to determine thresholds, or texture information is used and therefore calibrated 

radiance is not needed. Instead, these algorithms require spatially consistent 

measurements (i.e. consistent between pixels), for which a simpler radiometric 

uniformity correction (section 2.5.3) can be used. This has the advantage that it can also 

be employed in the field after the instrument has been deployed. The camera output 

signal     after radiometric uniformity correction can be written as: 

                                 
 

 

   

   2.2 

where        provides the dark-field correction, and coefficients       provide the flat-field 

(i.e. uniform illumination) correction.  
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The parameters of the radiometric uniformity correction     and       have 

temperature dependencies that are not treated in the formulation of Eq. 2.2 or 

developments to follow. Sky imaging systems expecting large changes in sensor and 

camera temperature should perform the testing described in sections Dark 

response2.5.2 to 2.5.4 at different temperatures to better understand the impacts. For 

the USI, the dark current of KAI-04022 roughly doubles for every 9°C increase in 

temperature in the system operating range. The USI camera temperature, measured 

with an LM335 thermal probe attached to the camera body, has been observed to 

change by over 20°C between day and night. 

2.5.2 Dark response 

The dark response of the sensor was measured by recording images in complete 

dark (unlit room, USI enclosure closed, lens cap on and covered with a thick, opaque 

cloth) at several integration times. Raw 12-bit images were taken at 25 different 

integration times ranging from 1 ms to 2 sec, and the sequence was repeated ten times 

for a total of 250 images. If the thermally generated dark current is low in comparison 

with the bias (defined below), there should be little increase in measured dark response 

signal as a function of integration time, i.e.        should not vary with time. The low dark 

current of the USI is illustrated in Fig. 2.5a as a set of histograms showing the 

occurrence frequency of each measured dark response count value. The average of ten 

frames at each integration time is used to reduce random noise present in a single 

measurement. Histograms of the difference between a 1ms average image frame 

(averaged from nine, 1ms exposures) and a single frame at each exposure time are 

shown in Fig 2.5b. Both sets of histograms show no strong change as a function of 

exposure time which confirms the thermally-generated dark current for the USI is low. 
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The A/D converters that convert voltage of each pixel to digital counts are calibrated to 

provide on-scale measurements throughout the range of the sensor. This sets the lower 

dark bound (or bias) to always be above zero, which for the USI camera this centered at 

approximately 40 counts (or ~1% of full scale, see dark bias distribution Fig. 2.5a). 

a) 

 

b) 

 

Figure 2.5.  (a) Occurrence frequency of signal measured in a dark room for 25 different 
integration times, ranging from 1ms (black) to 2s (lightest gray). Ten exposures at each 
integration time were averaged to construct each histogram. (b) Occurrence frequency 
of the signal in a single frame with an average 1ms frame subtracted. Individual labels 
for each integration time were not added because curves are not discernable. 

The temporal component of the dark response for the exposure times used on 

the USI (< 1s) is small, but there is still a spatial component of the dark response called 

fixed pattern noise (FPN). The FPN is shown in Fig. 2.6a. There is relatively little 

variation within each column. Two distinct image halves are noticeable, an artifact 

caused by the use of two A/D converters, each serving half the sensor. Columns near 

the center of each half have lower readouts than columns near the edges. The dark FPN 

can be removed by subtracting the measured dark response to obtain the dark field 

corrected signal    
       

   
                          2.3 

which is the same as the term in parenthesis in Eq. 2.2. The dark image term        is 

obtained by averaging several frames at integration time  . An image appears much 
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more uniform after dark correction (Fig 2.6b) which indicates the FPN has been 

eliminated. For over 99.9% of pixels,        does not show significant variation with time, 

however a small number of "hot" pixels have higher than average dark current and/or a 

nonlinear temporal dark response, and thus the time dependence of     is retained. 

a)

 

b) 

 

Figure 2.6.  (a) An example dark frame for a 100ms exposure and (b) the corrected dark 
frame. Typical pixel values in (a) range from 32 to 47 with a mean around 40 counts (of 
212).  

2.5.3 Sensor photoresponse uniformity correction 

Photoresponse nonuniformity is caused by differing gains on each photodetector 

in the focal plane array; i.e.       in Eq. 2.2 differs slightly for each pixel. The most direct 

approach to PRNU correction uses flat-field measurements (uniform lighting over the 

entire field of view) in order to adjust each pixel so that its response is uniform under 

uniform illumination. An alternative method is to use an illumination source that produces 

a smooth image without large brightness gradients. The resulting image can then be fit 

with a surface, and deviations of a given pixel from this surface can be considered the 

non-uniformity of that pixel. At each integration time, 10 exposures are used to obtain an 

average of the dark corrected signal    
       so that the effects of shot noise are reduced 

(the 10 frame average denoted by    
               ). The same integration times used for the 
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characterizing the dark response in section 2.5.2 are used. At each integration time, a 

5th order surface (denoted     
       ) is then fit to the average dark corrected signal 

   
                as a function of pixel location (  and  ). The resulting set of surfaces     

        is 

used to determine the coefficients       as a function of exposure time  : 

    
                  

                
 

 

   

   2.4 

where for each pixel    , both    
                and     

        are a function of position       and 

exposure time (here we assume the scene brightness   is not changing). The surface fit 

also assumes that if a CFA sensor is used, separate fits are used for each color channel. 

Before fitting a surface to    
                (Fig. 2.7c) at each integration time, a row-by-row 

adjustment was applied to remove the imbalance in output from the A/D converters. A 

low-order fit of the row-by-row ratio of two columns on either side of the border between 

image halves was used to adjust the left side of the image.  

An example of the results of the uniformity correction for the red channel is 

shown in Fig. 2.7. For this figure, the terms       in Eq. 2.4 are obtained by using a 

training set of images, setting    . The correction is then applied to a validation set 

using Eq. 2.2. The method corrects hot pixels that have not reached saturation, and 

corrects small-scale FPN, but it fails to correct large-scale nonuniformity. This occurs 

because the surface used for correction is fit to non-uniformities that occur across the 

whole image. It is therefore not as robust as the uniform illumination approach but is a 

useful substitute in field operations. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 2.7.  (a) Raw red image of smooth source; (b) average of red ten frames, 
including (a); (c),(d) uniformity correction applied to (a),(b), respectively. 

2.5.4 Photoresponse linearity 

Knowledge of the camera’s response as a function of both intensity and 

exposure time is a prerequisite for the HDR process. The simplest model for a pixel's 

photoresponse is linear in the product of irradiance   on the sensor plane and exposure 

time   

                          2.5 

where   and   from Eq. 2.1 have been taken as zero and one, respectively. Assuming 

a constant intensity during the exposure sequence, we convert the value measured in an 
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exposure of integration time   to the expected value had it been captured at integration 

time     : 

                             
    

 
          2.6 

This linear model predicts that the measurement values of the same scene 

should be scaled by the ratio of the exposure times from one image to the next. For 

example, we would expect that all the values in a 6 ms exposure would be 4 times as 

large as the values of the corresponding pixels in a 1.5 ms exposure. Figure 2.8 shows 

the ratio of modeled values based on a longer exposure to the measured values in a 

shorter exposure (i.e            ). An average of five frames was used at each 

exposure time in making the comparison. To avoid negatively biasing the results, pixels 

that saturate in the longer image were removed, which corresponds to pixel values of 

over 1024 in the shorter exposure.  

The observed deviation from unity is a measure of the error we introduce by 

scaling up a given value from the short exposure to place it in a composite with the 

longer exposure. Below 100 counts (~2.5% full scale), there appear to be significant 

non-linearity effects, and we do not recommend using signals below this level. Between 

about 400 and 800 counts, the median deviation is nearly zero. Deviations are small 

(<5%) from around 150 counts to the end of the overlap range just above 1000 counts. 

Over the majority of the range, neither exposure time nor color has a significant effect on 

the result. The overlap of this "sufficiently linear" region on the abscissa of Fig. 2.8 

extends from 409 counts (the lower limit in the short exposure) to 921 counts (the upper 

limit in the long exposure after multiplying by the integration time ratio, i.e.           

   ). We have therefore elected, for the purposes of this work, to consider pixel 
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response to be sufficiently linear if the value is between 10% and 90% of full scale, i.e. 

409 to 3686 counts. 

a) 

 

b) 

 
c) 

 

Figure 2.8.  Evaluation of sensor linearity using sky images under thin overcast 
conditions. In (a), a point cloud (and median in red) showing the distribution of the ratio 
between a 6 ms exposure and a modeled 6 ms exposure generated from a 1.5 ms 
exposure, as a function of measured value in the 1.5 ms image. In (b), the same as (a), 
but with 6 ms and 24 ms exposures. In (c) the median line for each color is shown. To 
reduce random noise, each of the compared images is the average of five exposures 
captured over the course of approximately 3 seconds. 

2.5.5 High dynamic range imaging 

In order to image the daytime sky it is important that the camera have an 

extremely large dynamic range, since we wish to obtain images of both very bright 

objects (such as the sun and sunlit clouds) as well as very dark objects, such as the 

undersides of thick clouds. Unfortunately, 12 bit (or fewer) image sensors generally do 

not have sufficient dynamic range for this task in a single exposure. Instead, we capture 
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multiple exposures with different integration times in quick succession and combine 

those exposures into a single high dynamic range image (Debevec and Malik, 1997). 

Three 12-bit exposures are composited together to produce a single 16-bit image.  

Although methods exist that would allow us to use a more sophisticated 

photoresponse model than Eq. 2.5 (e.g. Mann and Picard, 1994), by only using pixels in 

the linear region of the sensor photoresponse (section 2.5.4), we can apply the simple 

linear response model without significant error. For purposes of the HDR composite, this 

means that for a single exposure the pixels with values below 409 or above 3,686 counts 

are excluded. The integration times on the USI are separated by factors of four (i.e.  , 4 , 

and 16 , where   is system dependent). This ensures that the region between 409 and 

921.5 counts in a shorter exposure will overlap with the region between 1,636 and 3,686 

counts in a longer exposure. Based on the results shown in Fig. 2.8, these settings 

ensure the linear approximation in Eq. 2.5 is applicable for the subset of overlapping 

pixels in the HDR image.  

The HDR process is straightforward. First we select the pixels in each of the 

three exposures that are properly exposed, eliminating areas that are below 10% or 

above 90% of full scale. Next, using Eq. 2.6, we map the values for each pixel to what 

they would have been in the frame with the longest exposure time. This assumes that for 

short duration of an HDR exposure sequence, scene intensity is constant. Finally, we 

combine the exposures, using the average of all valid values for each pixel. This method 

is simple and effective, as demonstrated in Figs. 2.9 and 2.10. It is, however subject to 

small composition artifacts if the sensor response linearity is not properly characterized. 

If an image patch contains values for which sensor response is nonlinear and the HDR 

algorithm transitions from using a different subset of the three available exposures within 
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this patch, a small 1-2 pixel intensity step will occur, which after demosaicing into a color 

image, appears as a color fringe. 

Figure 2.9 and 2.10 demonstrate the HDR method applied to two systems, USI 

1.2 and USI 1.8 respectively (see Table 2.3). USI 1.2 used a 9,520 μm diameter 

aperture and neutral density filter, whereas USI 1.8 used a modified aperture of diameter 

1,000 µm (note the spectral variation between instruments). Figure 2.9a and 2.9b 

highlights the differences between the HDR capture sequence in cloudy conditions for 

an obstructed and unobstructed sun. Figure 2.10 provides an overview of imaging 

performance in a variety of sky conditions, with both obstructed and unobstructed sun. 

Figure 2.10d shows a thin cloud in low lighting conditions, and in Fig. 2.10g a halo 

caused by the thin clouds can be seen. 
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a-i) 

 

b-i) 

 
a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 
a-iv) 

 

b-iv) 

 

Figure 2.9.  USI 1.2 high dynamic range (HDR) exposure sequence for (a) May 23, 
2013, 3:22 pm PDT and (b) May 23, 2013, 2:48 pm for integration times of (i) 30 , (ii) 
120, and (iii) 480 ms. (a-iv) and (b-iv) show the final HDR composites. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 

Figure 2.10.  HDR images from USI 1.8 in April and May, 2013, showing a variety of sky 
conditions. Color correction has been applied. Images required intensity rescaling for 
display purposes. 
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2.5.6 Brightness measurement uncertainty in HDR imagery 

Two images of the exact same scene will not be identical due to the random shot 

noise present in the measurements. Electron generation in the sensor follows a Poisson 

distribution, so the root mean square (RMS) of the shot noise is expected to be          

    , where     is the quantum unit being measured at pixel  ,  . The quanta considered 

here is electrons. Assuming shot noise is the dominant noise source, this square root 

increase in RMS shot noise with stored electric charge     implies the signal-to-noise 

ratio also increases as     . Shot noise places a fundamental limit on the lower bound of 

measurement uncertainty for an image sensor. The predicted RMS noise as a function 

of count value for a 12-bit image is shown in Fig. 2.11a. For this calculation, the 

manufacturer specified gain   of 0.174 counts per electron was used. Measured system 

noise as a function of pixel value (in counts) was quantified by computing the pixel-by-

pixel standard deviation     for ten frames of a stationary scene, binning     by the pixel-

by-pixel mean     into bins 0 to 4095, and finally by taking the median   of each bin. The 

drop-off near the maximum occurs because the upper bound that the saturation limit 

imposes causes the standard deviation of measured values to reduce. 

When combining exposures in an HDR composite, the shot noise present in an 

individual pixel will depend on which exposures were compiled for that particular pixel, 

and the scaling factor        for each pixel in the composition. For sufficiently large 

number of electrons, the Poisson distribution is approximately normal by the central limit 

theorem, and thus the RMS noise from each frame can be summed in quadrature to 

obtain the RMS shot noise          in an HDR exposure, i.e. 

            
    

  

 

 
         

  
 
    2.7 
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where   is the individual frame index,   is the number of frames, which ranges from one 

to three in this work. The actual RMS noise present in an HDR image was computed 

using the method described for Fig. 2.11a, and is shown in Fig. 2.11b. The noise is 

compared to the shot noise limit (Eq. 2.7, black line, Fig. 2.11b), where the number of 

frames in the HDR composition is determined using the algorithm described in the 

previous section. The use of different combinations of frames can be seen as sharp 

jumps in the theoretical minimum in Fig. 2.11b. 

a) 

 

b) 

 

Figure 2.11.  Photon transfer curve for a USI system for (a) a 12-bit image, and (b) and 
HDR image. The theoretical minimum shot noise limit is shown as a black line, and the 
median of the noise distribution at each count value is shown in red. In (b), the density of 
the pixel standard deviation distribution is shown behind the curves. 

The curves presented in Fig. 2.11 are similar to photon transfer curves (PTCs) 

which characterize not only shot noise, but all random noise present in the image 

sensor. Noise sources such as dark current and read noise are subtracted out of a PTC. 

The closeness of the curves to the noise limit indicates that for the USI system, sources 

of noise other than shot noise are small in both a 12-bit image, and the HDR 

composition. The fluctuations in each curve, and the dips below the theoretical minimum 

occur because a limited number of samples were taken (10 frames). Above 15,000 
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counts, very few samples were present in the HDR images, so noise in this region is not 

well characterized here. 

2.5.7 Stray light 

The red-blue-ratio image (RBR), defined as the ratio of the red channel to the 

blue channel, is the most common feature used for cloud detection. Clear sky has a 

relatively low RBR and clouds have a higher RBR. RBRs typically span between 0.4 and 

1.2 for the USI, and the threshold for cloud is about 0.5. Stray light, due to exposure of 

the optical assembly to the direct beam, results in spots and artifacts in the image that 

are brighter generally whiter (i.e. more spectrally neutral) than they should be, resulting 

in either false positive cloud detections when the stray light pushes a hazy sky above the 

cloud threshold, or missing clouds due to contamination of the clear sky library (see 

Chow et al. 2011 or Yang et al. 2014 for details). 

In order to characterize the stray light present in our system, we used a simple, 

hand-held shade to block the sunlight. Measurements were conducted on a clear day 

(May 13, 2013) and shaded and un-shaded images were taken 30 seconds apart. By 

comparing images captured with and without the shading device, we can observe the 

effect of stray light on the resulting images. Three different pairs of images are 

compared in Fig. 2.12. First, a normal image is compared to one taken with the dome 

removed. Second, with the dome removed, images taken with and without the shade are 

compared. The third and final comparison considers shaded and un-shaded images with 

the dome on. The latter comparison gives the best estimate of the total effect of stray 

light on the images produced by the USI, while the first two allow us to qualitatively 

separate effects due to the dome and the lens. To quantify the effects of stray light, the 

residual fractional intensity            is computed and shown in the left column of Fig. 
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2.12, where    is the image with the shade (or without dome, pair 1), and    is the image 

without the shade (or with dome, pair 1).  

Increases or decreases in residual fractional intensity affect the radiometric 

analysis of sky imagery, but for solar forecasting primarily the RBR is of interest. 

Therefore, it is primarily spectral variations in stray light that are of interest. Increases in 

RBR due to stray light are expected since the majority of stray light originates from the 

direct solar beam, which is whiter than most of the sky. To quantify the impacts of stray 

light on cloud detection, the difference           of each of the three described pairs 

is shown in Fig. 2.12ii.  

The following stray light effects were identified: 1) an overall increase in 

measured intensity averaging 12% across the image (Fig. 2.12c-i); 2) concentric ring-like 

reflections off the front face of the camera lens that reflect off the inner-surface of the 

dome (Fig. 2.12a versus b); 3) particularly strong (and bluish) forward scattering off the 

dome (bright circle in Fig. 2.12a-ii); 4) sharp reflections off of elements in the optical 

assembly, visible as spots along the intersection of the solar principal plane and the 

image plane (all); 5) a "swoopy" shape resulting from reflection of sunlight off the rear 

gelatin neutral density (ND) filter at the back of the lens (all); and 6) vertical smear that 

results near the sun from signal overflow during sensor readout (all); 7) at higher solar 

elevations (Fig. 2.13), a reflection of the sun off the surface of the image sensor. Here, 

the solar principal plane is defined by camera zenith vector and the vector to the sun. 

The dome decreases the stray light intensity by about 46% because of the ND acrylic 

used (Fig. 2.12a versus b and c). While the dome surface was clean during testing, in 

normal operations dirt or scratches on the dome will result in additional scattering with a 

specific pattern that changes not just with the position of the sun, but also as a function 

of time since last cleaning. 
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a-i) 

 

a-ii) 

 
b-i) 

 

b-ii) 

 
c-i) 

 

c-ii) 

 

Figure 2.12.  Stray light from the dome (top), lens and neutral density filter (middle), and 
whole system (bottom). The left column shows the fractional change in intensity due to 
stray light, while the right column shows the shift in the red-blue ratio from the shaded to 
unshaded image. Images were recorded against a clear (blue) sky, so stray (white) light 
shifts toward the red. Note the scale change between (a) and (b),(c) in the left column. 

 

 



44 

 

a) 

 

b) 

 

 

Figure 2.13.  Stray light comparison between two designs of the USI; (a) design with filter, 
and (b) design with modified aperture. 

Stray light impacts of the modified aperture versus the ND filter were qualitatively 

evaluated by visually inspecting a clear sky images such as those in Figure 2.13. The 

following differences between the modified aperture and the wide-open, filtered 

configuration are noted: i) reflection from the ND filter surface is, naturally, missing in the 

model without a filter; ii) the wide open aperture in the filtered configuration exhibits a 

pair of reflections of the sun striking the image sensor that become visible at high solar 

elevations (when the direct-beam is nearly orthogonal to the image plane); this has not 

been observed using the modified aperture; iii) the modified aperture shows a larger 

number of circles along the diameter containing the sun (i.e. intersection of the solar 

principal plane and the image plane); iv) a "feathery" radial pattern is sometimes 

observed near the sun with the modified aperture, arising from imperfections in the 

circularity of the aperture; v) the modified aperture has a more prominent smear stripe 

because the selected aperture diameter allows more light into the camera; and vi) 

prototypes with extremely small apertures exhibited diffraction rings around the sun (Fig. 

2.30). Effect iii occurred because the antireflective black-oxide coating applied to the 

steel was mistakenly polished by the machinist, which increased its reflectivity.  
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To correct these issues, we have performed experimentation with a stray light 

ratio lookup table as a function of solar zenith angle, sun-pixel angle, and image zenith 

angle (similar to the clear sky library, Chow et al. 2011). However, the results, while 

promising, were inconsistent and thus are not reported here. From our experience using 

the USI for forecasting, the stray light features discussed here negatively affects image 

quality and results in identifiable forecast performance degradation. Yang et al. (2014) 

have implemented adjustments to the cloud detection methods of Chow et al. (2011) to 

specifically address solar power forecast errors due to stray light. In future work we hope 

to develop corrections for the USI imagery so that stray light levels in imagery is reduced 

prior to being input into the cloud detection algorithms. 

2.5.8 Color balancing 

The neutral density filters currently used in the USI (Kodak Wratten 2, No 96 

ND3.0) introduce a color cast to the image. Basic color correction is performed by 

applying the following color correction matrix provided by Truesense Imaging (pers. 

comm.): 

     
                       
                       
                      

      

This color correction tends to increase the range over which RBR varies and decreases 

the lower bound (Figure 2.14). In the future we may use a color reference chart (e.g. the 

IT8.7/2-1993 calibration target) in order to improve the color balance of USI images in a 

way that might impact forecasting performance more. 
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a) 

 

b) 

 

c) 

 

Figure 2.14.  Red-blue-ratio (RBR) comparison of (a) a sky image (Figure 2.10) for (b) 
color corrected image and (c) original image. The RBR scale is given in the colorbar. 

2.6 Deployment experience 

The UCSD USI system has been deployed across the United States (Table 2.3). 

The predominant cloud types in coastal California (USIs 1.1, 1.2, 1.9) are marine 

stratocumulus. In Kahului, Hawaii there are persistent orographic clouds over the West 

Maui Mountains to the west-northwest of USI 1.10 which makes it an interesting place to 

study non-advective solar forecast schemes. Redlands, California is hot and dry, and 

usually clear, but often sees higher ice clouds and larger synoptic systems. In Billings, 

Oklahoma there is a wide diversity of cloud conditions that occur from high ice clouds, to 

lower cumulus clouds. Solar forecasting algorithms may have location dependent 

performance, and testing components of an algorithm in multiple locations can help to 

identify shortcomings and areas for improvement.  

The data gathered from the two instruments in Billings Oklahoma are of particular 

interest because they were fielded at a United States Department of Energy 

Atmospheric Radiation Measurement Program field site (the Southern Great Plains site). 

The site is outfit with a diverse suite of measurement equipment, including cloud radar 

covering a number of bands, several lidar systems, shortwave and longwave 
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radiometers, aerosol measurements, and a doppler wind profiler. These collocated 

measurements will be used to assess the performance of a number of remote sensing 

algorithms developed for the USI. 

Table 2.3.  USI Locations in the United States and deployment time ranges 

USI 

No. 

Longitude 

[deg] 

Latitude 

[deg] 

Altitude 

[m] 

State City Start Date Stop Date 

1.1 -117.233088 32.881090 120 California La Jolla 2012-04-21 - 

1.2 -117.240987 32.872136 135 California La Jolla 2012-06-06 - 

1.5 -117.243111 34.076355 347 California Redlands 2012-10-18 2014-03 

1.6 -117.209333 34.079822 384 California Redlands 2012-05-45 2014-03 

1.7 -97.478766 36.618377 304 Oklahoma Billings 2013-03-11 2013-11-04 

1.8 -97.484871 36.604094 318 Oklahoma Billings 2013-03-11 2013-11-04 

1.9 -117.238378 32.707122 15 California San Diego 2013-04-19 2014-03 

1.10 -156.479136 20.890549 20 Hawaii Kahului 2013-08-21 - 

 

2.7 Conclusions 

Clouds have a high degree of spatial complexity and the intensity range within a 

single scene can be over five orders of magnitude (including the sun). For solar 

forecasting applications, it is important to capture this information at a high spatial and 

radiometric resolution to facilitate the development of advanced algorithms and 

techniques. The UCSD Sky Imager system is a step in this direction. Ten instruments 

have been built and can be made available to other researchers. The units come with a 

camera and system control software and an extensive library of processing tools is 

available. The developers are also open to commercializing the instrument and 

extensive design documentation is available. 
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3.1 Summary 

A camera model and associated automated calibration procedure for stationary 

daytime sky imaging cameras is presented. The specific modeling and calibration needs 

are motivated by remotely deployed cameras used to forecast solar power production 

where cameras point skyward and use 180 degree fisheye lenses. Sun position in the 

sky and on the image plane provides a simple and automated approach to calibration; 

special equipment or calibration patterns are not required. Sun position in the sky is 

modeled using a solar position algorithm (requiring latitude, longitude, altitude and time 

as inputs). Sun position on the image plane is detected using a simple image processing 

algorithm. The performance evaluation focuses on the calibration of a camera employing 

a fisheye lens with an equisolid angle projection, but the camera model is general 

enough to treat most fixed focal length, central, dioptric camera systems with a photo 

objective lens. Calibration errors scale with the noise level of the sun position 

measurement in the image plane, but the calibration is robust across a large range of 

noise in the sun position. Calibration performance on clear days ranged from 0.94 to 

1.24 pixel root mean square error. 

3.2 Introduction 

The power output variability of renewable energy sources poses challenges to its 

integration into the electricity grid. Forecasting of renewable power generation (e.g. 

Monteiro et al. 2009, Perez et al. 2010, Kleissl 2013) enables more economical and 
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reliable scheduling and dispatch of all generation resources, including renewables, 

which in turn accommodates a larger amount of variable supply on the electricity grid. 

Specifically for solar power forecasting, a number of technologies are being applied: 

numerical weather prediction (e.g. Lorenz et al. 2009, Mathiesen and Kleissl 2011, 

Perez et al. 2013); satellite image-based forecasting (e.g. Hammer et al. 1999, Perez 

and Hoff 2013); and stochastic learning methods (e.g. Bacher et al. 2009, Marquez and 

Coimbra 2011, Pedro and Coimbra 2012). For very short term (15 minutes ahead) solar 

power forecasting on the kilometer scale, sky imaging from ground stations has 

demonstrated utility (Chow et al. 2011, Urquhart et al. 2013, Marquez and Coimbra 

2013, Yang et al. 2014).  

Some of these sky imaging methods require the camera to be geometrically 

calibrated, i.e., each pixel must be associated with a corresponding view direction. 

Together with cloud height estimates, the view direction allows geolocation of clouds and 

their shadow projections such that their position is known relative to solar power plants. 

Geometric calibration is a common task in photogrammetry and computer vision, and 

calibration methods have been developed for a variety of applications. Some methods 

for calibrating a stationary camera require the use of calibration equipment or setups 

(Tsai 1987, Weng et al. 1992, Heikkilä and Silvén 1996, Shah and Aggarwal 1996) or 

planar targets (Wei and Ma 1993, Sturm and Maybank 1999, Zhang 2000). Geometric 

scene information can be used to calibrate the camera's internal parameters (Liebowitz 

and Zisserman 1998) or estimate lens distortion (Brown 1971, Devernay and Faugeras 

2001, Tardif et al. 2006). Scenes with parallel or perpendicular lines or primitive shapes 

are not generally available for skyward pointing cameras and thus there are no 

structures from the built environment around which to base a generic and automated 

calibration procedure. 
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Cameras used for solar power forecasting often employ fisheye lenses, which 

require appropriate camera modeling and associated model parameter estimation 

methods due to the large distortion required to achieve the approximately 180° field of 

view. Many models which include lens distortion cannot account for distortion present in 

lenses which have a field of view equal to or exceeding 180° because they rely on 

converting 'distorted' image coordinates (which are finite measurements on the image 

plane) to 'undistorted' image coordinates which are infinite at angles 90° from the optical 

axis (e.g. Tsai 1987). Gennery (2006) and Kannala and Brandt (2006) propose generic 

camera models suitable for fisheye lenses, and the form of the camera model presented 

here has features of both. The goal of the current work is to develop 1) a general camera 

model and 2) a calibration method for a wide angle dioptric sky camera with a photo 

objective lens that can be automated with little user input. 

The calibration approach taken here is sometimes referred to as stellar 

calibration, where the 3D position of an object or set of objects is treated as known. In 

particular the sun position in the sky is treated as a known input which is used along with 

the corresponding measured sun position to calibrate a stationary camera of fixed focal 

length. Sun position has been used previously for camera calibration. Lalonde et al. 

(2010) have used manual image annotation to select the sun position in a few images, 

and with this estimated the focal length, principle point, and two of the three rotational 

degrees of freedom (the camera horizontal axis was assumed parallel to the ground). 

The work presented here builds on this idea and extends it using a more generalized 

camera model and automated sun detection. The camera model here allows any pose, 

non-square pixels, and both radially symmetric and decentering distortion components. 

The layout of this paper is as follows. Section 3.3 discusses the forward and 

backward camera model. Section 3.4 discusses the imaging equipment and solar 
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position input used for the calibration process. Section 3.5 provides details of the 

calibration procedure: initialization, linear estimation, and nonlinear estimation. Section 

3.6 provides results for both measured solar position input and synthetic data. Synthetic 

data is used to assess the uncertainty in calibration performance and parameter 

estimation as a function of measurement uncertainty. 

3.3 Camera Model 

The forward camera model projects points from a 3D scene onto the image 

plane. The backward camera model described in section 0. projects points on the image 

plane to rays in 3-space. Both models are developed assuming that the camera-lens 

system is central, i.e. all refracted rays within the lens pass through a single point. This, 

while not physically accurate, yields a close approximation (Ramalingam et al. 2005). 

3.3.1 Forward Camera Model 

3.3.1.1 Projective Transformation Camera Model 

The standard model for a camera without distortion is a 3D to 2D projective 

transformation, mapping points              in    to            in   : 

        3.1 

where   is a 3 × 4 perspective projection transformation with 11 degrees of freedom (it is 

defined up to scale), and    is the  th dimension of projective space. The points      

and      are homogeneous quantities and thus are also defined only up to scale. The 

corresponding inhomogeneous points in Euclidean space are                   

          
 
,      , and                       ,      . The tilde overbar indicates 

inhomogeneous coordinates throughout this work. When scale factors   or   are zero, 

the corresponding Euclidean point is infinite. For points not lying on the plane or line at 
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infinity, we can write          
 
 and           , respectively. The point imaging 

transformation   is given by a composition of Euclidean, affine and perspective 

transformations 

   

     

     
   

  
    
    
    

  

           
           
           
    

    3.2 

      

 affine perspective Euclidean   

where the affine transformation is known as the camera calibration matrix (denoted by  , 

parameters defined later), the perspective transformation              projects 3D space 

points to 2D image points, and the Euclidean transformation gives the rotation and 

displacement of the camera center relative to the world coordinate system. The 

Euclidean transformation can be written in block matrix notation as 

 
  
   

     

where the upper left block   with components     is a rotation from world coordinates into 

the camera coordinate system, and the upper right block   with components    is a 

translation giving the displacement from the origin of the camera coordinate system (i.e. 

the camera center) to the origin of the world coordinate system. The rotation matrix has 

only three degrees of freedom and can be represented by the angle-axis three vector  , 

where             ;      is the matrix exponential and the notation      indicates 

the     skew symmetric matrix corresponding to the vector argument. The three 

rotation plus three translation parameters are known as the camera's extrinsic 

parameters. In inhomogeneous coordinates, the rigid body (Euclidean) transformation 

from world coordinates    to camera coordinates       is 
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or equivalently using homogeneous coordinates 

      
  
   

     3.3 

The calibrated points                on the image plane given by                  , 

can be converted to pixel coordinates            by the affine transformation   

   

     

     
   

         3.4 

where    and    are the effective focal lengths (in pixels) in the   and   directions, 

respectively,        
     is the principal point (i.e. the point of intersection of the 

optical axis with the image plane), and   is the skewness of the pixel coordinate axes. 

The five parameters in matrix   are known as the camera's intrinsic parameters. The 

effective focal lengths        and            account for the actual focal length   

(in meters) and the potential for pixel sizes      and      (in meters per pixel) to vary in 

the   and   directions, respectively. The angle   is the angle between the   and   axes, 

which is close to     for our camera, thus       . The skewness          is the 

degree to which the rows and columns of the image sensor are not orthogonal. 

In summary, the model of a camera given by equation 3.1 is known as the 

pinhole camera model. It contains six extrinsic (external) and five intrinsic (internal) 

camera parameter's and thus has 11 degrees of freedom. While the pinhole camera 

model has been widely used, it does not account for lens distortion and assumes that 

the camera is a central projection camera. Since we seek to develop a model for use 

with a fisheye lens exhibiting a significant amount of distortion, the above model must be 

modified appropriately. 
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3.3.1.2 Distortion Model 

An equivalence class         in projective space (i.e. a point or vector in   ) 

defines a ray          in Euclidean space (  ): 

   
 
 
  

 
 
 
 
      

     
      

 

    
 

     
    

    
 

 
 
 
 
 

   3.5 

where   is the angle between the ray and the optical axis (i.e. the camera zenith angle), 

and   is the angle from the positive     -axis to the projection of the ray onto the 

          plane. The angle   is positive in the counterclockwise direction. The 

incoming ray   is mapped onto the image plane by a mapping   as  

 
   

   
         3.6 

where          
 
 are calibrated inhomogeneous coordinates in the image plane (the hat   

denotes a calibrated point, and the tilde   denotes an inhomogeneous coordinate, 

defined previously). The mapping   is, in general, nonlinear and includes the distortion 

produced by the lens-camera system. Here we model   following Brown (1971) as  

           
    
    

   
      

      
   3.7 

where       is the normalized radius on the image plane, and     and     account for 

decentering distortion in the x and y directions, respectively. The normalized radial 

distance    is obtained by dividing the actual radial distance in the image plane by the 

focal length  . These terms will be further discussed in the following subsections. 

Radially Symmetric Distortion 

The most common form of distortion in dioptric imaging systems with a photo 

objective lens is radially symmetric distortion. Several adjustments to the pinhole model 
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to account for radially symmetric distortion have been proposed for small field of view 

lenses exhibiting moderate amounts of pincushion or barrel distortion (e.g. Slama 1980). 

In order to generate a one-to-one mapping of hemispherical radiance (180° field of view) 

to the image plane, fisheye lenses must introduce extreme radial distortion. For a 

centered lens system,     and     can be taken as zero and       can be set to one of 

the following projection functions (Miyamoto 1964): 

              perspective projection (not fisheye), 3.8a 
    

         equidistant projection, 3.8b 
    

                 equisolid angle projection, 3.8c 
    

                 stereographic projection, 3.8d 
    

              orthographic projection, 3.8e 

Equations 3.8b to 3.8e correspond to fisheye lens projections. Equation 3.8a is 

the undistorted perspective projection (i.e. same projection model as equation 3.1), but 

can still be used in the camera model and calibration as described here. 

Fisheye lens designers generally strive to meet one of the above projections, but 

due to manufacturing and assembly tolerances, the standard projections (equations 

3.8b, c, d, e) only approximate a particular lens-camera system. In order to model wide 

angle and fisheye lenses more accurately, a number of models have been proposed 

(e.g. Kannala et al. 2006, and Shah and Aggarwal 1996). Here, instead of modeling the 

radially symmetric distortion using a polynomial in   (e.g. Kannala et al. 2006), we follow 

a suggestion by Gennery (2006) and use one of the standard models       in Eq. 3.8, 

and then fit a polynomial to the residual radial distortion as  

                
 

 

 
  3.9 
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where       is the normalized radius on the image plane, and the polynomial in    

models deviations from      . In this work,   was set to nine. In section 3.5 the 

coefficients    are denoted as a vector  , where     . 

Decentering Distortion 

In addition to radially symmetric distortion, lenses exhibit tangential distortion 

which is a deviation from the radial alignment constraint (Tsai 1987) and causes the 

measured azimuth of a point   to differ from its true azimuth  . Tangential distortion is 

due in part to a decentering of lens elements (Conrady 1919, Brown 1966). Based on 

the paraxial optics assumption, Conrady (1919) developed the following radial    
  and 

tangential    
  distortion terms arising from decentering for a point located at       on the 

image plane: 

   
      

                                3.10a 
  

   
     

                            3.10b 

where    and    are constants that determine the magnitude of each centering defect,   

is the radius in the image plane taken from the principal point,    and    are reference 

axes for the distortion effects. The constants are proportional to the lens decentering 

magnitude   as      and      . Conrady (1919) did not develop terms of higher 

than first order in  , i.e. only terms containing    were developed. The terms containing 

   (investigated for this work) are the only higher order terms that are not constant or 

symmetric over the image. 

The Brown-Conrady distortion model (Brown 1971) formulates the radial     and 

tangential     decentering distortion components with reference axis    to be that of 

maximum tangential distortion with   is positive counter clockwise from the  -axis (  is 

positive clockwise): 
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where the terms containing    have been neglected, and the profile function      
 . 

Because Conrady did not develop terms in   of higher order than one, Brown speculated 

that   could be extended as a polynomial in even powers of   (written here as a 

normalized radial distance): 

             
 

 
  

 

Expanding the aberrations due to decentering as developed by Conrady (1919), 

one finds that the second and third order terms in   produce only lower order terms in   

(i.e.    and   ). The zeroth order term in   (which is thus present in centered lens 

systems) produces a shift in the image proportional to    and is commonly known as 

pincushion or barrel distortion. Because decentering effects in most lenses are small 

(   
       pixels for our lense), it is reasonable to neglect   . 

The use of the Brown-Conrady decentering distortion model for a fisheye lens 

should only be considered as an expedient for model fitting, and not as a physical 

description of optical distortion. Conrady derived the decentering formulae following a 

paraxial method he devised to analytically obtain the five classical Seidel aberrations 

(Conrady 1918). Expressions 3.10 are therefore only valid under the small angle 

approximation       , and are thus not valid for the large incidence angles in a 

fisheye lens. Additionally, there is no physical justification for Brown's extrapolation of   

as an even ordered polynomial in   (recall that Conrady's original model had no higher 

order terms than   ). The retention in this work of the Brown-Conrady decentering 

distortion model is for model fitting only. 
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The radial and tangential distortion can be converted to the corresponding 

Cartesian components as 

 
   

   
   

         
        

  
   

   
    

 

which upon expanding gives 

 
   

   
    

                               

                               
    3.11 

Following Brown by taking 

               
  

              
  

   
    

  
     

 

it can be easily shown that 

                                          
      

       3.12a 
  

                                          
      

       3.12b 

Here only    through    are used. In section 3.5, the coefficients    are denoted as a 

vector  , where     . 
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3.3.1.3 Forward Camera Model Overview 

Summarizing the results of this section, the forward projection of a 3D space 

point to 2D pixel coordinates consists of the following four steps: 

1. Euclidean transformation 

      
  
   

   

2. Cartesian to spherical coordinates 

   
 
 
   

          
      

       

               

   

3. Lens-camera projection with distortion 

 
   

   
             

 
 

 
  

    
    

 

          
      

   
                        

                        
  

4. Affine transformation 

 
 
 
 
   

     

     
   

  
   

   

 

  

 

3.3.2 Backward Projection 

In many cases, one is given points   in image coordinates and what is needed is 

the back projection of those points into world coordinates. This is true for the application 

of solar forecasting where many quantities derived from images are assigned a space 

angle   according to their image coordinates. For example, Chow et al. (2011) back 

project cloud positions detected within an image to a 3D world plane to generate a 

mapping of the clouds, and subsequently used this cloud map to ray trace cloud 

shadows. Note that obtaining the distance from the camera to an object in the scene is 

not possible from a single image because the projective nature of the imaging process. 

Therefore, in general, converting from a back projected ray to a point in the world 

reference frame is not possible from a single image. 
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The inversion of mapping   (equations 3.6 and 3.7) is the most difficult part of 

developing a back projection model from a forward projection model, and Kannala et al. 

(2006) suggest a function inversion approach to this end. An alternative is to formulate a 

separate back projection model and fit it using synthetic data generated from the forward 

projection. 

After converting to calibrated inhomogeneous image coordinates using 

           
 

            , the decentering distortion is formulated as a function of the 

polar coordinate       in the image plane 

 
        

        
         

     
     

   
                        

                        
    3.13 

where 

 
 
    

          

             

    3.14 

The residual radially symmetric distortion polynomial (equation 3.9) is reformulated as a 

function of  : 

             
 

 

 
  3.15 

where   , equivalent to its definition in the forward projection, is the radial coordinate after 

adjustment for decentering: 

                  
 
               

 
  3.16 

  for the back-projection is set to nine. An image point can then be back-projected using 
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where inversion of    from any of the options listed in equation 3.8 is straightforward. 

The ray   can be parameterized in the world reference frame as 

 

    

    

    
 

     
     

   
  

        
        

    
 

    3.18 

where   is a scalar. For sky imaging, the camera center is often considered the origin of 

the world coordinate system and thus    . 

3.4 Solar Position Input from Sky Imager Data 

3.4.1 Imaging Equipment and Setup 

The University of California, San Diego (UCSD) sky imager (USI) camera system 

was developed for the purpose of solar power forecasting (Urquhart et al. 2013). The 

camera is an Allied Vision GE-2040C camera which contains a 15.15 mm × 15.15 mm, 

2048 × 2048 pixel Truesense KAI-04022 interline transfer charge coupled device (CCD). 

The lens is a Sigma circular fisheye lens with a 4.5 mm nominal focal length and 

equisolid angle projection (equation 3.8c). Images are captured every 30 seconds during 

daylight hours, which for this experiment yielded over 1,400 images per day. The USI 

uses 3 exposures at integration times of 3, 12, and 48 ms to generate a composite HDR 

image. The system clock is regularly updated using the network time protocol, so image 

capture times are accurate to within a second. Extensive details of the USI can be found 

in Urquhart et al. 2014. 

The USI used in this work was deployed at the Department of Energy, 

Atmospheric Radiation Measurement (ARM) Program, Southern Great Plains (SGP) 

Climate Research Facility from March 11th, 2013 to November 4th, 2013 at a longitude, 

latitude, altitude of -97.484856°E, 36.604043°N, 318 m. The horizon around the SGP 
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site is free of mountainous terrain, thus the USI has a nearly 180° field of view of the sky. 

The camera nominally points straight up, but has a slight angular offset due to the 

ground not being perfectly level. No leveling of the equipment was performed. Figure 3.1 

shows the USI on its portable mounting stand. 

 

Figure 3.1.  USI 1.8 in the instrument field at the Department of Energy, Atmospheric 
Radiation Measurement Program, Southern Great Plains Climate Research Facility. 

3.4.2 Solar Position Modeling 

The input used in calibrating the camera model (i.e. fitting the camera model 

parameters) is the angular position of the sun    and the corresponding position of the 

sun in a sky image        
 . The ray           

  is defined following equation 3.5, but 

is a function of    instead of     , where     is the vector pointing to the sun in the world 

coordinate system. The angular solar position    is estimated using the NREL solar 

position algorithm (Reda and Andreas 2004), which adopts the procedure from Meeus 

(1998). The algorithm takes observer position (latitude, longitude, altitude) and time as 

inputs, and outputs the topocentric solar zenith angle    and topocentric solar azimuth 

angle   . The refractive index of the air is a function of its density (hence a function of 
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temperature and pressure) along the optical path, and because the atmospheric density 

gradient is predominantly vertical, the apparent solar zenith angle must be corrected 

accordingly (Brown 1964). A correction using annual averages of surface air pressure 

and temperature is included in the algorithm, and the default value for refraction 

magnitude at sunrise/sunset is used. The uncertainty on solar zenith angle reported by 

Reda and Andreas is ±0.0003°, however assuming the image capture time may be one 

second off, the error in solar hour angle may be ±0.004°. In comparison, for our lens a 

one pixel measurement uncertainty in sun position measurements corresponds to 

approximately     0.14° at the horizon. The sun detection process, therefore, 

introduces significantly more error than the solar position model. For the 'full' calibration 

dataset (case 3, below), 82% of measurements were within the one pixel measurement 

uncertainty bounds. 

3.4.3 Solar Position Calibration Input 

Measurement data consists of automated detection of the sun's position        
  

in an image using a set of methods described in Appendix 3.1. From the resulting set of 

sun coordinates         
   , the median of each       and       were taken as the final 

sun coordinate            
 
 to be used for calibration. Here,   is the image index. The 

detection methods leverage the fact that the sun is the brightest object in a daytime sky 

image. For the days chosen, the sun could be seen at solar zenith angles near 90°, 

indicating that the horizon is at a similar altitude as the instrument. The sun could be 

detected reliably for images with           . The sun detection algorithm described 

here was tested on predominantly clear days which simplifies detection because clouds 

cause occlusion of the sun or saturation of cloudy pixels near the sun. 
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The sun position is detected in a series of images collected from sunrise to 

sunset, yielding over 1,400 calibration points per day. The set of points collected 

throughout a single (clear) day nominally forms a smooth arc. To evaluate the camera 

model and calibration performance under different solar arc input possibilities, five input 

cases were tested: 1) a single solar arc, 2) two solar arcs on consecutive days, 3) four 

solar arcs, 4) ten solar arcs with measurement noise due to occasional clouds, 5) a 

single solar arc with noise due to clouds (Table 3.1). The solar arcs for cases 1, 4 and 5 

are shown in Figure 3.2. Case 1 would be preferred in practice as it requires only an - 

admittedly perfectly clear - day of data. However, limitations in sun position availability 

during one day may not provide sufficient constraints for the optimization. The 

improvement associated with adding more days is evaluated in cases 2 and 3. Cases 4 

and 5 were designed to provide more realistic and noisy data that would be found in 

climates without completely clear days. 

Table 3.1.  Calibration test cases. The days included in each test case are given along 
with the number of sun position points and an estimate of measurement standard 
deviation STDm which represents the extent to which the data deviate from a smooth arc. 
See also Fig. 3.2 and Eq. 3.19.  

  Day(s) points STDm [pixels]  

 case 1 May 13 1,582 0.4346  

 case 2 May 13,14 3,195 0.4313  

 case 3 May 13,14 

June 2,11 

6,543 0.6237  

 case 4 May 13,14,22 

June 1,2,3,7,9,10,11 

15,966 2.4883  

 case 5 June 7 1,482 5.2107  

 



66 

 

a) 

 

b) 

 

c) 

 

Figure 3.2.  Solar position measurements on (a) May 13, 2013 (case 1); (b) three days 
in May and seven days in June 2013 with an image on June 11, 2013 (case 4); (c) 
June 7, 2013 (case 5). Measurements are overlaid on example images.  

The sequence of sun position detections forms an arc that should be a smooth 

curve. The detection process, however, is associated with errors, especially when clouds 

are present. The deviation of the measured data from a smooth arc can be used to 

quantify the error. Separately for each day, a 9th order polynomial is fit to the   and   

pixel coordinates as a function of solar hour angle   (obtained from the NREL solar 

position algorithm). A separate polynomial is obtained for   and  , which after obtaining 

the polynomial coefficients    and    can be written as 

        
 

 

 
          

 
 

 
 3.19a,b 

where           is the pixel coordinate. The polynomials are (quite apparently) valid only 

for the single day being investigated. The standard deviation of the pixel-by-pixel 

distance between the measurements and the polynomial fit (equation 3.25c) is given in 

Table 3.1 as STDm and is a useful estimate of the detection error. 

3.5 Calibration Procedure 

The calibration procedure is a three step process: 1) generate a rough estimate 

of the intrinsic parameters; 2) estimate the camera pose (rotation and translation) 

assuming one of the projections in equation 3.8; 3) perform a three stage nonlinear 
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parameter estimation using the Levenberg-Marquhardt algorithm to obtain the final 

intrinsic and extrinsic parameters. Steps 1 and 2 will be described in section 3.5.1 and 

step 3 will be discussed in section 3.5.2. Calibration results are given in section 3.6. 

3.5.1 Model Initialization 

In order to apply the Levenberg-Marquhardt (LM) algorithm to estimate the model 

parameters, the parameter vector              
              

 
 must be initialized 

with a reasonably close estimate (see section 3.3 for the definitions of the components 

of  ). 

3.5.1.4 Intrinsic Parameter Estimation 

In whole sky imagery, the entire sky hemisphere is visible and forms an ellipse 

on the image plane with eccentricity near unity (e.g. Figure 3.2 or 3.3). A Hough circle 

transform is used to obtain the approximate center     
  of and radius      of this near 

circular ellipse. The principal point   
  is initialized to     

 . The   and   focal lengths are 

assumed to be equal, i.e.        , and are determined using an unnormalized 

version of equation 3.9 where         : 

                  3.20 

where the radius      from the Hough circle detection process corresponds to the 

maximum field of view. For the USI,      is taken to be     and    is given by equation 

3.8c, thus          . Initially it is assumed that  ,  , and   are all zero, i.e. there is 

negligible distortion beyond the nominal equisolid angle projection, and the camera pixel 

axes are orthogonal. The initial estimate of the camera calibration matrix    is then 

    

      

      

   

    3.21 
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3.5.1.5 Pose Estimation 

The camera pose is estimated by computing the linear transformation between 

the inhomogeneous camera coordinates and the homogeneous world coordinates: 

                         3.22 

where   is the data point index for the set of points to be used in calibration. The camera 

coordinates         are obtained by first computing the calibrated image coordinates 

      
    , and then by using 

 
      

      
   

  
       

             
    3.23 

where     is given by equation 3.16 with decentering distortion set to zero, and finally by 

projecting onto the unit sphere: 

         

      

      

      

   

                      

                      

           

    3.24 

The calibrated perspective projection matrix              from equation 3.22 can 

be obtained using the Direct Linear Transform (DLT) algorithm. Premultiplying equation 

3.22 by the left nullspace of        : 

        
  

  
          

where      denotes the nullspace of the argument. Applying the     operator yields 

     
          

  
  

              

where   is the Kronecker product. Our design matrix then contains subblocks    

    
          

  
  

. Stacking rows    to form a matrix   gives the homogeneous linear 

equation 
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where           . Due to measurement noise, the right hand side is not identically zero. 

A least squares solution is obtained by computing the singular value decomposition of   

and taking    as the right singular vector corresponding to the smallest singular value 

(Hartley and Zisserman 2004). As always with the DLT algorithm, appropriate data 

normalization is required (Hartley 1997). 

Due to imperfect data, the left     subblock of    is likely not an orthogonal 

matrix in       as is required for rotation matrices. To obtain   and   from the DLT 

estimate of    we take              where   is the     left subblock of    and   is the 

rightmost column vector. We then use singular value decomposition to write        

where   comprises the left singular vectors and   comprises the right singular vectors of 

  (both    and   are orthogonal matrices), while   contains the singular values of  . An 

orthogonal in       is obtained by taking        where                 . This 

gives the closest matrix   to   in the sense of the Frobenius norm. The translation 

vector  , which is nominally zero here, is given by           
, where the tilde indicates 

that after computing the nullspace, the resulting homogeneous 4-vector is converted to 

an inhomogeneous 3-vector before multiplication by  . 

3.5.2 Nonlinear optimization of model parameters 

The nonlinear calibration of the forward model is performed in three successive 

stages: 1) take     and    , i.e. do not include residual radial distortion and 

decentering distortion; 2) include residual radial distortion terms  , but take    ; 3) 

include both residual radial distortion   and decentering distortion  . Three stages of 

nonlinear optimization were used because it was found that this approach was more 

consistent across the different test cases. The multi-stage optimization process first fits 

the most basic model parameters, and additional degrees of complexity are sequentially 
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added (i.e. radial followed by decentering distortion). The motivation in doing so is to 

avoid local minima that would result in errors in the estimation of the basic parameters 

(          
       ). 

The model fitting for each stage is accomplished by using the Levenberg-

Marquhardt (LM) algorithm, for which an excellent introduction is given in Hartley and 

Zisserman (2004). Initial intrinsic and extrinsic parameter estimates for the first 

calibration stage are those determined in section 3.5.1, and the subsequent stages are 

initialized with the results of the previous stage. The model is fit by minimizing the sum of 

squared distances of the measured and modeled solar inhomogeneous pixel 

coordinates: 

             
  

 
    

where   is the Euclidean distance function. In the case of the synthetic data of section 

3.6.3, the sum of squared distances is taken for the ground truth data with noise added 

        and the modeled data     (i.e.         
 
      

  
 ). 

Calibration Constraints 

It was found necessary to enforce additional constraints in the model fitting 

process to ensure consistent and physically significant results. The first constraint  

          
   

 

 

    

 

           
   

    

 

 

 
      

ensures that the residual and nominal radially symmetric distortion are orthogonal 

functions over the field of view. Without this constraint, the LM algorithm tended to 

decrease       and increase the    to compensate, leaving the focal lengths at values 

that were obviously incorrect based on the nominal lens and sensor specifications. This 
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constraint is very important if the formulation in equation 3.9 is to be used for the radially 

symmetric distortion.  

The specific shape of the solar arc used to calibrate the camera, particularly 

when only a single day was used, resulted in a falsely large skewness  . This was 

corrected by applying a penalty on deviations from circularity of the ellipse formed at 

     parameterized by varying the azimuth angle. A simple metric such as the standard 

deviation of the radius of the ellipse at different azimuth angles, taken from the center   
  

is simple and effective for this purpose. A similar and simpler approach would be to 

place a penalty that is proportional to    , however this was not tested in this work. The 

last constraint applied was that       was forced to be monotonically increasing with   

(the lens mapping would not be one-to-one if it was not!) by applying a penalty if 

           . 

3.5.3 Backward projection 

The calibration of backwards projection model parameters was performed with a 

single stage. The parameter vector used in the LM algorithm consisted only of    and   . 

The constraints were found to be unnecessary because the process involves fitting only 

the residual radially symmetric and decentering distortion. The focal lengths    and    

are already set, thus the orthogonality constraint is not required. The other two 

constraints treat the specific shape of the solar arc, and the back projection parameters 

are fit using synthetic data points generated from the forward projection which cover the 

whole image, and therefore are not required. To initialize LM for back-projection fitting, 

coefficients    can be set to the    obtained in the forward projection. It was found 

empirically that    are very close to    for the equisolid angle lens used on the USI, and 

should be even closer if an equidistant lens is used. 
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3.6 Calibration Results 

3.6.1 Calibration Performance Metrics 

The root mean square error (    ), mean absolute error (   ) and standard 

deviation (   ) are computed as 

      
 

 
    

    

 

   
 
   

   3.25a 

  

    
 

 
      

 

   
   3.25b 

  

     
 

 
          

  

   
 
   

   3.25c 

where the total number of measurements is  , and               is the distance vector 

from the measured solar position      to the modeled point   . The vertical bars     denote 

the 2-norm of the argument, and     is the mean displacement vector for all points  . 

These definitions hold for the evaluation of measurement error as well, where instead 

                (see section 3.4.3 for description of the polynomial fit      ). 

3.6.2 Calibration using the Solar Position 

The results of calibrating the USI for the five different solar arc cases is shown in 

Table 3.2. In the cases using more than one solar arc (cases 2-4), the principle point is 

consistent to within 0.60 pixels (4.4 µm). The   and   focal lengths are consistent to 

within 0.77 pixels (5.7 µm) for all cases and consistent to within 0.29 pixels (2.1 µm) for 

cases 2-4. The camera pose results presented here are represented by three angles in 

Table 3.2:     is the angle of rotation of the camera     -axis from the world  -axis 

about the world  -axis (effectively the instrument's rotation from a northern alignment); 

    is the angle between the camera      and world  -axis (i.e. the degree to which the 

system is tilted); and    is the azimuthal direction towards which the     -axis is tilted. 
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The pose determined in all cases was very consistent, with a maximum difference in     

and     of 0.2 degrees. Because the tilt angle     was very small, there was increased 

variability in the tilt direction    which is to be expected. Anecdotal observations of the 

USI 1.8 system as deployed at the SGP site indicate that it was tilted slightly southwest, 

which is supported by the estimated pose.  

Table 3.2.  Camera model parameters (excluding distortion terms) determined from the 
five test cases of solar input data. The mean and standard deviation are also given. The 
units denoted [pixels/f] is pixels per focal length.  

     

[pixels/f] 

   

[pixels/f] 

  

[pixels/f] 

   

[pixels] 

   

[pixels] 

    

[deg.] 

    

[deg.] 

   

[deg.] 

 

 case 1 601.44 601.44 -1.94•10
-3

 873.24 881.62 47.89 2.58 136.51  

 case 2 601.40 601.40 1.72•10
-3

 871.48 882.97 47.90 2.47 141.48  

 case 3 601.32 601.32 2.57•10
-3

 871.96 883.00 47.91 2.46 140.16  

 case 4 601.12 601.11 4.14•10
-3

 871.97 883.31 47.93 2.43 140.06  

 case 5 601.88 601.88 2.53•10
-3

 874.20 880.84 47.90 2.63 134.02  

 mean 601.43 601.43 1.80•10
-3

 872.57 882.35 47.91 2.51 138.45  

 std 0.25 0.25 2.03•10
-3

 1.00 0.95 0.01 0.06 2.76  

 

The performance of camera calibration using solar position is given in Table 3.3 

along with the estimated measurement error of the sun position (subscript ‘m’ in Table 

3.3). While not a true lower bound on calibration accuracy, the measurement errors 

given here can be used to assess the calibration accuracy relative to the estimated 

accuracy of the input data. The polynomial fit to the measurement data (equation 3.19) 

does not have the same constraints as fitting the camera model parameters to the 

measurement data, thus the measurement standard deviation (    ) and root mean 

square difference (     ) are lower than the     and      obtained for camera 

calibration, with            lying between 1.8% to 24%. This proportionality of 

calibration and measurement error, along with the consistency of the parameter 

estimation indicates that the camera model presented here reasonably approximates the 
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imaging process for the camera tested. It also indicates that the calibration procedure is 

consistently obtaining reasonable parameter estimates for the model used. Additionally, 

the robustness of the model and calibration to larger measurement errors and outliers is 

demonstrated in case 5. 

Table 3.3.  Calibration error metrics for each case: root mean square error (RMSE); 
mean absolute error (MAE); standard deviation (STD); and measurement root mean 
square difference (RMSDm) and standard deviation (STDm).  

 RMSE MAE STD RMSDm STDm 

 [pixels] [µm] [pixels] [µm] [pixels] [µm] [pixels] [µm] [pixels] [µm] 

case 1 0.9370 6.931 0.7775 5.752 0.5229 3.868 0.8099 5.991 0.4346 3.215 

case 2 0.9635 7.128 0.8089 5.984 0.5235 3.873 0.7802 5.772 0.4313 3.191 

case 3 1.2381 9.159 1.0241 7.576 0.6956 5.146 1.0538 7.795 0.6237 4.614 

case 4 2.9351 21.712 1.4852 10.987 2.5316 18.727 2.8080 20.772 2.4883 18.407 

case 5 6.2994 46.510 3.4777 25.726 5.2525 38.855 6.1871 45.769 5.2107 38.546 

 

3.6.3 Camera Model Parameter Uncertainty 

As with any image detection algorithm, there are errors in the position of the sun 

obtained from the detection algorithm (Tables 3.1 and 3.3). Depending on the content of 

each image, such as the possibility of thin clouds veiling a still visible sun, or more 

opaque clouds passing near or occluding the sun, the magnitude of the detection error 

will vary. A Monte Carlo method was used to assess the uncertainty in model 

performance and parameter estimation as a function of measurement error. A ground 

truth synthetic calibration dataset was constructed with    1673 data points by 

simulating a single solar arc on May 13, 2013 (Figure 3.3). The points in the world 

coordinate system                   
            were obtained by computing 

solar position every 30 seconds from sunrise to sunset with the NREL solar position 

algorithm (Reda and Andreas 2004), and then by projecting the solar position onto the 

unit sphere centered at the camera center. The ground truth pixel coordinates     
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           were obtained by applying the forward camera model 

(section 3.3.1) to points   . The ground truth camera model parameters were set 

according to the results from solar calibration case 3. The points    were treated as 

known points in space corresponding to synthetic measurements      , where    is the 

measurement error generated as follows. The points    were taken as the mean 

measurement values for     independent normal probability distributions         with 

standard deviations    where      . Standard deviation    was varied from 0 to 10 

pixels in steps of 0.25 pixels (thus       ). The point measurements           used in 

calibration trial     were obtained by sampling        . A number of trials         was 

performed for each  , yielding      calibration trials. For the  th trial at error level   , a 

set of model parameters                 
              

  

 
                is 

obtained. The distribution of     at each   (i.e. along dimension  ) is a measure of the 

uncertainty in the model parameters at error level   . 

 

Figure 3.3.  Synthetic dataset point distribution. The 1673 points are generated from 
taking the solar position every 30 seconds from sunrise to sunset on May 13, 2013, and 
projecting onto the image plane using a set of ground truth camera model parameters. 
Background image (for visual reference only) is from May 3, 2013.  
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The distribution of true root mean square calibration error (    ) for           

pixels is shown in Figure 3.4.      is computed as 

       
 

 
           

  

   
   3.26 

where    is the ground truth pixel position of the  th point (as described above), and       

is the modeled pixel position of the  th point (i.e. the projected pixel position of   ) for 

calibration trial   at error level   . Even for       pixels, the average      is below 1 

pixel. For reference, the measurement error standard deviation in Table 3.1 for clear 

days is less than 0.75 pixels, and the worst case tested here (Case 5) has a 

measurement standard deviation of 5.21 pixels. Based on Fig 3.4, these measurement 

errors correspond to true errors of 0.14±0.03 pixels and 0.37±0.11 pixels (mean ± 90% 

confidence interval), respectively. This assumes measurement errors are normally 

distributed. 

 

Figure 3.4.  Root mean square calibration error distribution (Eq. 3.25a as a function of 
simulated measurement error standard deviation   . The mean, 50% and 90% 

confidence intervals are shown as curves.  

Distributions of parameter estimation for four of the intrinsic parameters are 

shown in Figure 3.5. For both    and    the 90% uncertainty bounds are nearly linear 

and approximately follow                 , which is about 0.09% error at      

   pixels. The overbar indicates the mean value. Similar results hold for the 90% 
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uncertainty bounds of        , which follow                     and gives 0.29% 

error at         pixels. The latter error percentage is computed using              

    , where        pixels is the radius of the usable sky image circle (Fig. 3.3) For 

the application of solar forecasting using sky imagery, these error levels are satisfactory. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 3.5.  Distributions of (a)  -focal length   ; (b)  -focal length   ; and (c), (d) 

principal point         are shown as a function of measurement error standard deviation 
  . The mean, 50% and 90% confidence intervals are shown as curves.  

3.7 Conclusions 

The increasing use of stationary daytime sky imagery instruments for solar 

forecasting applications has motivated the need to develop automatic geometric camera 

calibration methods and an associated general camera model. The camera model 

presented is not specific to fisheye lenses, and is generally applicable to most dioptric 
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camera systems with a photo objective lens. We have proposed a method to 

automatically detect and use the sun position over a sequence of images to calibrate the 

proposed camera model. Calibration performance on clear days ranged from 0.94 to 

1.24 pixel root mean square error (RMSE). An uncertainty analysis indicated that if 

measurement errors are normally distributed, this corresponds to a true calibration error 

of 0.14 ± 0.03 to 0.16 ± 0.03 pixels RMSE (0.07 ± 0.02 to 0.08 ± 0.02 pixels STD), 

respectively. A back-projection model, which may be more useful for many applications, 

is proposed as a straightforward extension of the forward projection model. The 

uncertainty in the forward model parameters was analyzed and is provided graphically 

as a function of solar position measurement error. 
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Appendix 3.1 Sun Position Detection 

The sun is only detected for images with solar zenith angles           . For 

approximately         the pixels surrounding the sun's location saturate for the USI 

camera. For the purposes of image detection, this saturated region, which is larger than 

the sun itself, will be referred to as the 'sun' when discussing the image of the daytime 

sky. The USI uses 3 exposures at different integration times to generate a composite 

HDR image which reduces the number of saturated pixels encompassing the sun. When 
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the sky is clear, the sun is the only saturated object in the sky which simplifies its 

detection. With the lens used on the USI, the sun appears as a nearly circular ellipse. 

The high intensity and near circularity of the sun along with the vertical smear stripe 

(occurring in columns containing the sun) are the primary image features used in the sun 

position detection process. 

Both the red-green-blue (RGB) and hue-saturation-value (HSV) color spaces 

were used for detection, and each color image matrix will be referred to as an X-image, 

e.g. the R-image (the red image). The approximate diameter of the sun is detected by 

constructing a binary image by thresholding the V-image at the 99.99th percentile, and 

then performing an erosion and dilation to remove noise. The diameter of the largest 

connected binary entity is taken. The apparent sun diameter changes with solar zenith 

angle, and this size metric is used in constructing detection filters. Three filters are then 

constructed and subsequently convolved with the V-image: 1) a binary circular kernel; 2) 

a Gaussian kernel; and 3) a modified Gaussian kernel which has a flattened top. The 

standard deviation   (in units of pixels) used for constructing the Gaussian kernels is 

                
            

which was obtained empirically for our camera. Kernel 3 was 'flattened' such that the 

circular flat top of the Gaussian was the diameter of the sun. For each kernel, the row 

and column of the maximum value of the convolution image was taken to be the solar 

position. 

The columns containing the vertical smear (Fig. 3.2) are detected by extracting 

the first row of the V-image and the sum of the first row for the R,G and B-images (i.e. 

three times the first row of the equal weight grayscale image). A measure of the local 

mean is subtracted from each row separately using a 100 pixel moving average filter. 

The corresponding pixels from the modified V and gray scale rows are multiplied which 
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gives a very strong peak at the smear column which is taken as the column of the sun. A 

sub image extracted from the original image consisting of the set of columns surrounding 

the sun column (~     columns) is used for further sun position detection. A Förstner 

circle detector (Förstner and Gülch 1987) is applied to this sub-image with a window size 

of 7.5   columns and the resulting maximum minor eigenvalue is taken as the sun 

location. 

The detection processes described yield four row-column pairs (three from the 

circular kernel convolutions and a fourth from the Förstner operator), and the detection 

of maximum smear gives a fifth column estimate for a total of 4 detected rows and 5 

detected columns. The median of the row and column position is taken as the true 

position. Generally these methods are consistent to within 3 pixels. The detection 

process would be simpler and more accurate if the camera had been set up to take very 

short (microsecond) exposures because the saturated sun region would be only a few 

pixels in diameter instead of 10s of pixels. This was not available for the calibration set 

used here, but is strongly recommended for operational autocalibration when using the 

solar position as calibration input. 

It should be noted that the sun detection method is purely empirical and was not 

designed to have the fastest performance. In practice, any reasonable algorithm can be 

used for the sun position detection. If the position errors are zero mean and normally 

distributed, then the uncertainty analysis in section 3.6.3 can be used as a guide for 

expectations of calibration accuracy. The detection method described here is one of 

many that can be used, and the authors expect that other superior algorithms could be 

constructed. Since small calibration errors were obtained, the present algorithm is 

sufficient to demonstrate the calibration methodology. 
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4 Remote Sensing of Clouds: Detection and Velocity Estimation 

Contributing Authors: 

B. Urquhart, C.W. Chow, M. Ghonima, J Shields and J. Kleissl 

4.1 Introduction 

The hardware used for sky imaging was developed during the course of the 20th 

century. The use of refraction at an air-water interface to describe the view from within a 

pond has been attributed to RW Wood in his text Physical Optics (1905) where he 

described how the entire 180° field of view could be seen within a 97° cone under water. 

One year later, WN Bond (1906) coined the term "fish-eye" view in a paper describing 

vision underwater and experimentation with an apparatus made from a water-filled lard 

bucket with photographic film placed at the bottom. He took the first nearly 180° 

photograph of the sky using this apparatus. Wood is often incorrectly given the credit of 

coining the term fish-eye because he used it, following Bond, in the second edition of 

Physical Optics (1911) where he described a more compact water-filled camera. Photos 

from Bond’s 1906 paper appeared five years later in Physical Optics (1911). In 1922, 

Bond used a hemispherical glass lens with a pinhole to create wide angle images and 

suggested their use for sky photography and presented the first published imagery 

results on the subject. The primary drawback to the lens is that it could only be focused 

on a band of the sky (constant zenith). The first design of a true modern fish-eye lens is 

attributed to Robin Hill (1924) where he used a large negative meniscus front element in 

the lens which allowed the full sky to be in focus. A caveat was that bandpass filters had 

to be used to restrict the wavelength range because of blurring due to chromatic 

aberration at high zenith angles caused by dispersion of colors (variation in refractive 

index with wavelength). In 1964, Kenro Miyamoto introduced a doublet that corrected the 
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dispersion and thus reduced issues due to chromatic aberration within the visible 

wavelength range. It is with this final development that sharp full color images of the sky 

could be obtained. 

The light gathering element of an optical system is called the objective, which for 

sky photography is a camera lens. The lens accepts light from the scene of interest, 

which in this case is the sky, and through refraction it is redirected onto the image plane 

of the sensor. A standard camera lens is typically a grouping of multiple elements (e.g. 

8-12 elements) to form a lens system. To image the entire sky within a single frame a 

wide angle lens with a 180° field of view (FOV) must be used. Lenses that meet this 

FOV requirement, conventionally called fisheye lenses, use different projection systems 

to redirect light onto the sensor (compared to the rectilinear projection of smaller FOV 

lenses). The most common projection is the equidistant projection where the incident 

zenith angle is linearly proportional to radial distance of the pixel measuring the light. 

This projection provides a higher resolution at the horizon because each pixel will 

subtend a smaller solid angle as radial location on the sensor increases. The equisolid 

angle projection is the second most common approach which attempts to maintain 

consistency of the subtended solid angle of each pixel. Mathematical descriptions of 

each lens are given in section 3.3.1.2. 

The development of a refractive lens for capturing full sky imaging opened up many 

research fields, including canopy research (e.g. The Canopy Camera developed by 

Harry E. Brown, 1962), and daylighting research (Shahriar et al. 2009). The 

development of digital systems utilizing computers and semiconductor sensors began in 

the 1980s. Some work was done by forestry community for canopy research (Chazdon 

and Field 1987), and in parallel the Marine Physical Laboratory (MPL) at the Scripps 

Institute of Oceanography (SIO) was developing a system designed to image clouds 
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(Johnson et al. 1988, 1989). This system and several other notable developments 

following it are described in chapter 2. 

At the heart of using a sky imager to as a means to generate power forecasts is a 

retrieval of the cloud field configuration from ground-based imaging devices. Once the 

position and motion are determined, the future positions can be estimated. This chapter 

focuses on visible wavelength passive remote sensing from the ground to detect clouds 

(section 4.2), and determine their velocity (4.3). A discussion of cloud height estimation 

is deferred until Chapter 5. 

4.2 Cloud Detection and Opacity Classification 

Sky imagers provide a visual measurement of a whole sky dome with high temporal 

and spatial resolution. Spatial resolution is determined by the camera’s ability to resolve 

a single picture element (pixel), the solid angle subtended by this pixel, and the distance 

of the cloud from the imager. Temporal resolution is dictated primarily by the operational 

ability of the image processing algorithm. In order to predict cloud positions in the 0-20 

minute forecast horizon, current cloud locations, and specifically cloudy pixels, in the 

image must first be detected accurately. A review of image processing techniques in the 

literature is presented in section 4.2.1 along with basic concepts of detection. In section 

4.2.4 a brief overview of the cloud detection and opacity classification method (Ghonima, 

Urquhart et al. 2012) developed at UCSD is provided. An overview of cloud type 

classification is given in section 4.2.5. 

4.2.1 Review of Cloud Detection Methodologies  

After the development of digital sky photography and its application for atmospheric 

research, image processing techniques began to develop for better detection of clouds. 

In order to detect clouds in digital images, the ratio of the red channel to the blue 
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channel of an image, better known as the red-blue ratio (RBR), is used (Johnson et al. 

1989, 1991; Shields et al. 1993, 2007, 2009). Use of the RBR takes advantage of a 

fundamental difference in scattering by clouds versus a clear sky: molecular scattering in 

the clear sky has a strong wavelength dependence where shorter wavelengths are 

scattered more heavily resulting in an observable blue color; scattering by clouds whose 

particles are much larger is nearly uniform across the visible spectrum and results in a 

gray color. Taking a spectral ratio at the extremes of the visible provides an image with 

high contrast between clear sky and cloud. The RBR of cloudy pixels in a digital image 

are close to one whereas for clear pixels the ratio is close to 0.5. By characterizing the 

typical RBR of clear and cloudy pixels, it is possible to segment images into two states, 

clear or cloudy, by thresholding the RBR image. The result is a binary mapping of sky 

condition. 

The RBR method utilizes the RGB color space, but techniques for pixel classification 

involving other color spaces have been developed as well. With the hue, saturation, 

value (HSV) color space, the saturation channel of the image can be used for cloud 

detection. Value is a measure of total brightness, hue is a measurement of the spectral 

content (i.e. the color), and saturation ( ) describes color “purity”, and is expressed as: 

    
 

       
             4.1 

Clear skies, which scatter much less red light than blue, have a low            which 

causes the saturation value to be higher which indicates that the clear sky color is 

“pure”. Clouds have similar red, green, and blue content and thus saturation is low and 

the color is not as “pure”. Martins et al. (2003) and Souza-Echer et al. (2006) used the 

saturation value of digital images for cloud detection. Image pixels were classified into 

clear or cloudy if they fell within three standard deviations of the mean for each class. 
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Using a k-means clustering technique, it can be shown that RBR and saturation 

have an approximately inverse monotonic relationship. Figure 4.1 shows the results for a 

single image where the clustering process where the number of clusters was set to 100 

and the 10 iterations were performed. Figure 4.1d shows clusters which have a mean 

RBR exceeding 0.62 which correspond well with cloudy regions of the image. 

a) b) RBR 

 
 

c) cluster # d) cluster # 

  

Figure 4.1.  (a) raw USI 1.7 HDR image 20130503T193330 rescaled for display; (b) 
RBR image from original HDR image (not rescaled image); (c) clustering with 100 
clusters ; (d) clusters whose RBR mean is less than 0.62. 

Figure 4.2 shows the mean RBR, saturation, and normalized intensity of each 

cluster (intensity was normalized by the max observed for plotting). A distinct step in 
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RBR (and saturation) can be attributed primarily to the clear/cloudy bimodality of RBR 

which is leveraged for cloud detection. There are three noticeable regions, a flat initial 

region of low RBR in the clear sky parts of the image, a region of rapid change, which is 

between clear, thin and thick clouds, and finally 'flatter' region of higher RBR, attributable 

thick clouds. It should be noted that the image selected does not have thick 'dark' clouds 

with low intensity (a case which is often observed in other images). In cases of dark thick 

clouds, RBR tends to be much lower and approaches that of clear sky. 

 

Figure 4.2.  Characteristics of clusters. Clusters have been sorted in ascending RBR 
order, nominally placing the clear sky on the left and thicker clouds on the right of the 
plot.  

Neural networks have been used by Cazorla et al. (2008a, 2008b, 2009) for cloud 

detection in all-sky-images. Multiple image parameters such the red channel magnitude, 

blue-green ratio, RBR, etc. were input into a neural network to classify pixels into clear 

skies, thin and thick clouds. Another image processing technique utilizes the Euclidean 

geometric distance and pattern statistical analysis to classify cloudy and clear pixels 

(Neto et al. 2010). A combination of both fixed and adaptive thresholding methods for 
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cloud detection was presented by Li and Yang (2011). In this method the RBR of all-sky 

digital images is first obtained, next the image is classified as either unimodal, a sky 

image that is predominately clear or cloudy, or bimodal, a sky images that contains a 

mixture of clear and cloudy pixels. Unimodal images are then classified according to the 

fixed thresholding technique. Bimodal images, on the other hand, are classified based 

on the minimum cross entropy method. A comprehensive review of cloud detection 

methodologies can be found in Tapakis and Charalambides (2013). 

4.2.2 Clear Sky Library 

One major drawback of a fixed threshold RBR method is that it is frequently unable 

to distinguish between thin clouds and clear sky. Figure 4.3 shows histograms of the 

RBR of clear, thick cloud, and thin cloud states from a set of 60 manually annotated 

images captured using the TSI system (section 2.2.2). Significant overlap of the thin 

cloud histogram can be seen with both clear and thick cloud histograms indicating a 

single threshold is problematic. 

 

Figure 4.3.  Histograms of clear sky, thin cloud, and thick cloud generated from a set of 
60 manually annotated images captured by the TSI. These histograms are assessed to 
select red-blue ratio detection thresholds. Adjusted RBR is RBR - CSL RBR. 

Cloud droplets, ice particles and aerosols particles, such as dust or sea salt have 

nearly spectrally uniform scattered intensities within the visible spectrum. This is due to 

the size distribution of these particles relative to the wavelength of incident visible light - 



88 

 

the interaction of light with these particular particles shows a weaker wavelength 

dependence than scattering by molecules (McCartney, 1976). This acts to increase the 

relative red content of a pixel over that observed in clean, clear skies. The increase in 

RBR is attributable to the number concentration of the particles: up to an optical depth of 

about 5, the RBR increases with increasing particle number concentration. Thin clouds, 

like aerosols, have lower number concentrations and the RBR lies somewhere between 

that of a clean, clear sky and thick clouds. Additionally, the RBR in the whole sky 

hemisphere in clear conditions is not spatially uniform due to aerosol and airmass 

effects. The spatial pattern of scattering by aerosols is apparent near the horizon where 

relative optical airmass increases and more total aerosols occupy the optical path 

through the atmosphere. In the circumsolar region the forward scattering effects of 

aerosols are also apparent as a whiter region around the sun. A final complication is 

that, in general, different instruments will vary in measured RBR distribution throughout 

an image due to specific measurement hardware characteristics and the level and type 

of instrument calibration. Specifically, this may include impacts by such factors as 

scattering off the front optical surface. With some instruments a single RBR threshold 

can be used effectively for opaque clouds, but not for thin clouds. These phenomenon 

render a single RBR threshold for the image prone to significant detection error. 

Specifically, for the TSI440 and the USI we found that a single RBR threshold for the 

entire image is not appropriate. To address the issue of spatial uniformity in a clear sky, 

a Clear Sky Library (CSL based on Shields et al., 2009) was developed which serves to 

provide a background of expected clear sky conditions (Chow, Urquhart et al. 2011). Our 

implementation of the CSL was compiled as a sun-pixel-angle by zenith angle lookup 

table from a full day of images. In Figure 4.4a, sky imager zenith angles larger than 75° 

correspond to the horizon, and small sun-pixel-angles (approximately <35°) correspond 
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to the circumsolar region. It can be seen in Figure 4.4a that clear pixels away from the 

sun and horizon have rather uniform RBR. Decreasing the distance from the sun 

increases RBR because the forward scattering of sunlight turns the circumsolar region 

whiter and brighter. Near the horizon, the higher aerosol concentration and optical depth 

(due to the airmass effect) causes increased Mie scattering and thus also acts to 

increase RBR. Figure 4.4b presents the standard deviation of the clear sky RBR to 

quantify the RBR variation during the (clear) day in Figure 4.4a. Larger variation of RBR 

leads to less accurate cloud decisions since it makes it more likely that a clear sky RBR 

would be larger than the threshold and classified as cloudy. For sun-pixel-angles greater 

than 50° and sky imager zenith angle less than 60° (i.e. in the region with the highest 

occurrence, Figure 4.4c) the variation in the clear sky RBR is small and our method 

performs well. However, the standard deviation of the RBR in the circumsolar region is 

found to be largest when the sun is near the horizon (low sun-pixel-angle and high zenith 

angle). Anecdotal observations confirm that clear conditions in the circumsolar region at 

low sun elevation are often misclassified as cloudy while the horizon and circumsolar 

region appear white. In addition, at larger solar zenith angles less sunlight reaches the 

TSI due to the increased optical path length through the atmosphere.

    

Figure 4.4.  (a) Average RBR (colorbar) as a function of zenith angle and sun-pixel-
angle based on TSI imagery on a clear day (September 24, 2009); (b) Standard 
deviation (colorbar) of clear sky RBR; and (c) number of occurrence (colorbar) for each 
zenith angle and sun-pixel-angle pair. 
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4.2.3 Cloud Detection with the CSL 

Nominally, a pixel is considered cloudy if its RBR is above a threshold value 

determined from instrument characterization (e.g. Figure 4.3). To use the CSL for 

improving cloud detection accuracy, a clear sky background image is generated for each 

sky image based on the current solar zenith angle (Figure 4.5c) by extracting the RBR 

for each pixel from the lookup table shown in Figure 4.4. The CSL threshold is defined to 

be the RBR in the clear sky background image plus an additional constant threshold 

value. A pixel is classified as cloudy if its RBR (Fig. 4.5b) is larger than the CSL 

threshold. In general, the method using the CSL is able to detect bright opaque clouds 

accurately. However, within the circumsolar region, thick dark clouds cannot be identified 

since they have a lower RBR than the CSL threshold. This is still an issue at the time of 

writing and active research is engaged at improving detection in this troublesome region. 

   

 

  

Figure 4.5.  Processing chain of a sky image on October 4, 2009 15:45:30 PST (a) to 
obtain the cloud decision image (d). The dotted black lines show the borders of the 
circumsolar region defined here as solar azimuth ±35°. (b) RBR image and (c) clear sky 
RBR background image plus the threshold. Pixels in (b) with RBR > CSL +   are 

assumed to be cloudy (d), where   is a constant threshold.  

a) b) c)

d)
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Particularly challenging are cases with high concentrations of aerosols or haze. 

When the aerosol concentration is high, more of this spectrally uniform scattering 

occurs, which results in cloud free pixels having larger than average RBR. This can 

result in haze and aerosols being inaccurately classified as thin clouds, to address this, a 

Dynamic Clear Sky Library was developed. 

4.2.4 The Dynamic Clear Sky Library for the USI 

To address detection problems of thin clouds in conditions with increased levels of 

aerosol and haze, Shields et al. (2010) developed a technique to characterize the RBR 

of clear skies and store it as a function of solar zenith angle and look angle (a pixel's 

zenith-azimuth coordinate pair). Thick clouds are detected and classified based on a 

fixed threshold. Next, a clear sky background image is constructed using the stored 

RBR. A perturbation ratio is then computed, which is the ratio of RBR for the remaining 

unclassified (non-thick) pixels to the background RBR of the generated clear sky. Finally, 

a fixed threshold is used to classify the remaining pixels into either clear sky pixels or 

thin cloud pixels (Shields et al. 2010). 

To be able to detect cloudy pixels and differentiate between thick and thin clouds in 

various atmospheric conditions, an algorithm was developed by Ghonima et al. (2012). 

The RBR of pixels inside the solar region is close to 1 as the inputs to all three channels 

of the CCD camera are saturated. In the circumsolar region, the RBR of pixels is also 

always close to 1 because of forward scattering by aerosols. Outside the solar region, 

clear-sky and cloudy pixels can be classified based on their RBR. However, for a given 

image, the RBR of clear pixels varies as a function of the pixels’ angular distance from 

the sun, as well the atmospheric aerosol optical depth (AOD) for that particular day 

(Shields et al. 2010, Ghonima et al. 2012; see Figure 4.6). A three-dimensional CSL was 
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constructed in which the RBR of clear-sky pixels was stored as a function of pixel zenith 

angle, sun-pixel-angle, and solar zenith angle (refer to Figure 4.6b). 

a) 

 

b) 

 

Figure 4.6.  (a) Raw USI image captured on November 19, 2011; (b) RBR of the image. 

For each captured sky image, the algorithm constructs a clear-sky background 

image by looking up each pixel’s clear-sky RBR for a given SPA and SZA from the 

library. The difference is then computed between the RBR of the sky image and the 

constructed CSL RBR image. Next, pixels with a difference value greater than a certain 

thick-cloud threshold value are classified as thick cloud. To account for the variations in 

the CSL RBR image caused by varying AOD, a haze correction factor is applied to the 

CSL RBR image (Ghonima et al. 2012). Finally, utilizing the haze-corrected difference 

and a fixed clear-sky threshold value, any pixels not already classified as thick are 

classified as thin-cloud and clear. 
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(a) 

 

 

(b) 

 

 

Figure 4.7.  Clear-Sky Library (CSL) lookup table as a function of pixel-zenith angle 
and scattering angle (Sun-pixel angle) for the USI over an entire day (a) and for the 
USI at selected solar-zenith angles (b). Near the Sun and the horizon, the scattered 
intensity measured on the red channel increases and thus the RBR is greater.  

4.2.5 Classification of Cloud Type 

The methods described thus far have treated the problem of cloud detection - 

determining if a cloud exists in a given pixel or not - primarily through RBR or saturation 

thresholding. Determination of cloud type extends the detection capability of the sky 

imager to identify phenomenological characteristics of clouds. While microphysical 

parameters and macroscopic optical properties of clouds can have large variations 

within a genera of cloud, the structural features of clouds, which are closely associated 
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with type, do impact variability characteristics. This is exhibited as an identifiable cloud 

type 'fingerprint' of oscillations within the irradiance signal measured at the ground. The 

cloud type can potentially inform uncertainty assigned to a forecast, or to augment the 

forecast with a variability or confidence metric. 

The identification of cloud type falls under the general discipline of classification. The 

field of machine learning defines classification as a form of supervised learning because 

information about the desired categories, to be determined by a detection algorithm, are 

available for training. Supervision comes in the form of a user generated set of labeled 

or annotated observations that form a training set. For clouds, these labels or 

annotations could be user identifications of different cloud types, such as cirrocumulus, 

altostratus, stratocumulus, etc. From the set of annotations, features (also called 

descriptors) are computed. In computer vision, a feature is the formal term for a quantity 

like RBR or saturation that denotes a single piece of information. Multiple relevant 

features can be constructed into a feature vector, which for a set of observations will 

span a feature space. A single feature for a single cloud category will not have a unique 

value, but rather will have a distribution of values. Figure 4.3 is an example of a scalar 

feature space (where only one feature, RBR, is considered), and the histogram provides 

information about how the three selected categories occupy this feature space. With only 

a single feature, reliable distinction between each of the three categories is not possible, 

but consideration of additional independent features will allow for further separation of 

the categories within the expanded feature space and accuracy of classification will 

improve. 

Much work has been done on the classification of clouds from satellite images, but 

surprisingly little research has been conducted on the classification of clouds using sky 

imager systems. One of the first studies on cloud classification using a sky imager was 
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conducted by Buch et al. (1995) using a WSI instrument (section 2.2.2). The authors 

utilize a binary decision tree and nine features for classification, and report moderate 

success. An excellent review of cloud classification methodologies applied in remote 

sensing is given by Singh and Glennen (2005). The focus of this work is automatic 

identification of convective clouds for air traffic control, but the work documents well the 

differences between satellite and ground-based detection, and illuminates challenges 

specific to ground-based cloud classification. The authors apply several pattern 

recognition techniques to distill images into a form suitable for classification, and utilized 

both k-nearest neighbor and neural network classifiers. Due to the similarity of many 

convective cloudforms, results were moderate. Calbó and Sabburg (2008) classified 

images from both a TSI and the WSC (section 2.2.2) located in Australia and Spain, 

respectively. This work clearly explains the set of textural and spectral features used, 

and in addition the authors attempt a novel Fourier power spectrum approach to 

incorporate information about larger scale cloud structure not contained within the other 

selected features. Using the distribution of each feature to construct a parallelepiped 

classifier, the authors report a 76% success rate for five cloud classes. A very successful 

reporting of cloud classification is that of Heinle et al. (2010). The authors use several of 

the same features employed by Calbó and Sabburg (2008), but were using a higher 

resolution camera (IFM-GEOMAR, section 2.2.2) along with a k-nearest neighbor 

classifier. While the reported success rate was still at the 75% benchmark, this was for 

seven cloud classes. The selected set of cloud classes is relevant because in the 

literature this is the set that most closely resembles the 10 classes of the International 

Cloud Atlas (WMO, 1987). Kazantzidis et al. (2012) follow closely the method of Heinle 

et al. (2010), using the nearly identical features, the same classifier, and the same 7 

cloud classes, but with the distinction of separating processing into regimes based upon 
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cloud cover percent, solar zenith angle, and solar disk visibility fraction. Both sensor and 

cloud illumination change with these three quantities which will in turn broaden feature 

distributions and reduce classification performance. This insightful approach, which the 

authors term 'subclassing,' yielded an average classification success rate of 88%. 

4.3 Cloud Velocity Estimation 

Cloud speed and direction are determined by analyzing the change in cloud position 

between consecutive images. Change in cloud position is detected using a normalized 

cross correlation (NCC) procedure. The process begins by first breaking one image into 

small tiles and then cross correlated each tile with the second image. The set of 

displacements between each tile and its matching location yields a vector field 

quantifying how the clouds have transformed between images.  

The size of the region in the second image that a tile is cross-correlated with is 

restricted to prevent matches from outside of a physically realistic area. The tiling 

procedure and the corresponding search area are illustrated in Figure 4.8 for two 

consecutive images. In Figure 4.8b the original tile position and the position of maximum 

cross-correlation within the search window are shown. The figure illustrates the process 

using raw images in the coordinates of the imaging system; in other words, each image 

as shown has not been projected into pseudo-Cartesian coordinates (Koehler and 

Shields 1990, Allmen and Kegelmeyer 1996). This figure is for illustration only, and the 

actual NCC is computed using images transformed into pseudo-Cartesian coordinates.  
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a) 

 

b) 

 

Figure 4.8.  Illustration of the normalized cross correlation method used to compute 
inter-image cloud motions. The image (a) at t0-30 sec is broken into small tiles, and each 
of these tiles cross correlated with the corresponding search window in (b) the image at 
t0. 

Cross correlation between two consecutive images yields a motion vector field at a 

single instant in time, consisting of one vector for each tile. This vector field may have 

erroneous vectors and thus requires quality control (QC). Furthermore, in Chow et al. 

(2011) the long term trend in the velocity field was shown to be stable, but there was 

considerable inter-image fluctuation. This indicates the procedure, on average, will 

provide a stable measurements, but there will be short-term variance in velocity 

estimation due to the particular clouds occupying the imager field of view and their 

evolution over a short time window. To address this issue a second level of QC was 

devised to reduce inter-image fluctuation. The first level (L1) of quality control applied to 

the raw vector field of a single image pair is described in Table 4.1 and generates a 

single representative velocity for the image pair being correlated. For the second level 

(L2) of QC, L1 output and raw velocity field is screened for criteria listed in Table 4.1, 

and if the velocity passes the screening it is incorporated into the cloud velocity estimate 

through a low pass filter: 
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       4.2c,d 

where    are the filtered velocities,    are the raw cross correlation outputs, and    and 

   are the corresponding weights. Both weights    and    logarithmically decrease to 

zero at ten minutes in the past and are normalized such that the previous filtered 

estimates (  )are weighted at 80% and previous unfiltered estimates (  ) at 20% (Eq. 

4.2c,d). This filtering is independently applied to the east-west and north-south velocity. 

Figure 4.9 shows a velocity profile with much less high frequency noise than previous 

methods. A large spike in velocity was not filtered out by the method because false cloud 

detection near the sun in a period of low cloud fraction caused erroneously high 

correlations that passed both L1 and L2 QC. Another contribution to this event is that 

cloud velocity linearly scales with cloud height, which was determined to be 7 km during 

the spike versus 4 km otherwise. Accuracy in determination of cloud height is also 

impacted during low cloud fraction periods. In lieu of adding additional screening to 

address this, better cloud detection in the solar region has been developed (Ghonima et 

al., 2012), along with higher quality imaging equipment (USI, Chapter 2). 
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Figure 4.9.  Cloud speed measured near Boulder City, Nevada, on November 12, 2011, 
using a TSI. The cloud fraction indicates how much data is available to detect motion. 

 

Table 4.1.  Quality Control (QC) of Sky Imager Cloud Motion Vectors 

Level 1 (L1) QC 

1. Vector must have inter-image correlation exceeding 0.8 

2. Vector removal process: 

a. magnitude is greater than 1.5 standard deviations from the mean 

b. azimuth is greater than a standard deviation from the mean 

c. magnitude is greater than a standard deviation from the mean 

d. azimuth is greater than 1.5 standard deviations from the mean 

3. Average vector field for most representative vector 

Level 2 (L2) QC 

Screening for inclusion of L1 output in L2 filtering: 

1. Require that raw vector field has enough vectors to consider it reliable (>3) 

2. Require that the step velocity change for L1 output be within a tolerance (computed using standard 

deviation of past L2 estimates)  

3. Require cloud fraction be above a threshold (>5%) 
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B. Urquhart, D. Nguyen and J. Kleissl 

5.1 Introduction 

Cloud height plays a vital role in intra-hour solar forecasting. The distance between a 

vertical projection of a cloud onto the ground versus the actual shadow location 

increases linearly with cloud height. For typical midlatitude solar zenith angles of 45°, a 

change of 1 km in cloud height causes a 1 km translation of the cloud shadow on the 

ground. Ceilometers, typically as part of automated airport weather stations, are the 

most common ground-based cloud height observational tools. Ceilometers provide a 

vertical profile of atmospheric backscatter and compute cloud base height (CBH) directly 

above a single ground location because retrievals are made using a vertically pointing 

high intensity near infrared laser beam. Satellite imaging is another popular approach for 

estimating cloud top height, but such measurements require atmospheric temperature 

profiles and the spatial and temporal resolution is coarse. Radiosondes can also provide 

accurate cloud height profiles, but with a 12 hour repeat time the temporal resolution is 

insufficient and long term operation is not feasible for short-term solar forecasting. 

Stereographic methods applied to sky imagery can provide cloud base height at a 

high resolution. With a single sky imager, whole sky visualization is possible. Two 

imagers allow cloud position to be triangulated using viewing geometry and the distance 

between sky imagers. There have been a limited number of studies for which cloud 

height (or position) have been calculated. Approaches reviewed here are grouped into 

two categories: 1) a 2D framework with a single cloud layer at a constant height 

(Kassianov et al. 2005, Nguyen et al. 2013); 2) the height of each image segment is 
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determined separately through intra-image matching techniques and triangulation 

between instruments (Allmen and Kegelmeyer 1997, Seiz et al. 2007). 

5.1.1 Statistical Whole Image Matching Analysis for Single Cloud Layer 

Kassianov et al. (2005) proposed a statistical approach of CBH retrieval with the 

assumption that there is only a single cloud layer and a single CBH for this layer. The 

procedure begins by collecting two images simultaneously from two closely located 

instruments. The images are cropped at 100° field of view to remove pixels with large 

zenith angles. Cloud detection is applied (section 4.2) to identify the cloudy and clear sky 

regions. A pseudo-cartesian transform is applied (Allmen and Kegelmeyer 1996, section 

6.3) to remove distortion due to the projection used in fisheye lenses (section 2.3.1 and 

3.3.1.2). The matching process begins by placing the two images on top of eachother 

and computing the mean square error (MSE), i.e. compute the sum of the squared pixel 

matching error (difference in intensity values) divided by the number of overlapping 

pixels. The process is repeated, moving the images apart pixel by pixel, and the MSE is 

recorded as a function of the displacement   between image centers. The minimum 

MSE provides the displacement    that yields the best match, and the CBH is computed 

from    and the geometry of the system. 

Nguyen and Kleissl (2014) developed a similar whole image matching approach 

which projected the saturation images (HSV colorspace, section 4.2.1) from two imagers 

to georeferenced planes at different heights (section 6.2), referred to here as the 

georeferenced projection method (GPM). The two images are projected to successive 

height levels, and the height with the minimum root mean square matching error   is 

selected as the cloud height. The height search is separated into two steps: first, errors 

are computed at intervals of 100m; second a binary search at a resolution of 1m is used 
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to find the cloud height at a high resolution. This method is very efficient which lends 

itself well to operational implementation. On four days tested, the root mean square 

height error was 281 meters (14.9%). The results presented in that work are by far the 

most comprehensive cloud stereography results from a ground based imager presented 

to date, and the time series comparisons between a collocated ceilometer and the sky 

imager are highly correlated (by visual inspection). A method to determine optimal 

imager spacing for the 2D method is also presented. 

5.1.2 Cloud depth estimation using epipolar geometry 

Allmen and Kegelmeyer (1996) developed a matching method for cloud images 

captured with a fisheye camera that determined correspondence using the intensity and 

optical flow as matching metrics. While performing the matching along epipolar lines, a 

pseudo-Cartesian transform was applied to both the image intensity window (a small 

neighborhood about the point of interest) and the optical flow field neighborhood. 

Matching was performed asymmetrically (i.e. only one image was taken as reference) 

following Algorithm 1. The 'hysteresis' in a forward and reverse matching procedure was 

used to determine the confidence of the match. The method was tested on both real and 

simulated cloud data. The tests on the simulated data yielded decent results, with 

standard deviation of the error ranging from 0.3 to 1.3 km. The standard deviation of the 

error in the real results was 0.75 and 1.25 km for the two days tested with optimal 

parameter settings (many tests were reported at different settings to assess their 

impact).  The use of optical flow to aid in determining correspondence actually reduced 

the accuracy of the results. 
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Algorithm 1.  Allmen and Kegelmeyer epipolar matching procedure 
adapted from Allmen and Kegelmeyer (1996). Notation here is different from the remainder of the dissertation. 

 

1. For each point    in image 1 

a) compute the epipolar curve for    in image 2. 

b) for each point     along the epipolar curve, compute the correlation coefficient for the 

neighborhoods around    and     

c) find the point    along the epipolar curve with maximum correlation coefficient 

 

2. For each point    located within image 2 

a) compute the epipolar curve for    in image 1. 

b) for each point     along the epipolar curve, compute the correlation coefficient for the 

neighborhoods around    and     

c) find the point    along the epipolar curve with maximum correlation coefficient 

 

3. Compute the cloud height using    and   . 

4 .The difference between    and    is the confidence metric for match 

 

Seiz (2003) and Seiz et al. (2007) report on stereographic determination of cloud 

height from ground based cameras. The camera system used in both works was an ETH 

Zurich cloud stereographic system. The ETH system does not have large radial 

distortion like the fisheye lens presented here, although three radial and two decentering 

distortion parameters were added to the camera model following Brown (1971). A Whole 

sky imager (Shields et al. 2013) was presented in Seiz et al. (2007), but was not used for 

stereographic determination. A discussion was included indicating such a system may 

not be well designed for stereography applications. Matching was performed using both 

a cross correlation method and what is termed the 'multi-photo geometrically 

constrained' matching (MPGC, Baltsavias 1991). MPGC is a least squares matching 

method that simultaneously enforces collinearity (i.e. geometric) constraints across the 

patch being matched, and minimizes the error in the area matching metric selected (e.g. 

grey level error, cross correlation coefficient, etc.). It also incorporates a rectification 

procedure to ensure that when the two images are compared, local distortion is 

removed. The method was tested for three days in a sparse matching configuration with 
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47, 62, and 64 points selected match points (a Förstner operator was used to select 

features, Förstner and Gulch 1987). The RMS difference in height between 

correspondences measured manually and determined through MPGC was 60.1, 8.7, 

and 60.1 meters, with a maximum height error of 413.6 meters. Heights for the 

remaining cloud pixels was interpolated from this sparse set. A time series of cloud 

heights for a single location above a ceilometer was generated for a 30 minute window 

at 5 minute steps (only a few pixels were used corresponding to the projected position of 

the ceilometer). Comparisons to the ceilometer give a mean height difference of 49 

meters and a standard deviation of 74 meters. It was observed that the ceilometer had 

limitations with broken clouds whereby the ceilometer could not retrieve a cloud height 

because the cloud was not directly overhead, a limitation that the sky imager does not 

have. While MPGC algorithm is robust, it also requires solving a linear system for each 

match point which takes significant computational power for dense depth estimation. 

Nguyen and Kleissl (2014) report on dense 3D cloud field determination for a 

single whole sky image. Matching was performed along epipolar curves (due to lens 

distortion, the apparent intersection of the epipolar plane and the image plane is a curve 

in the image plane, in general. Variable window cross correlation matching was applied 

to the saturation image, with a window size set such that the standard deviation of the 

pixel values within the window exceeded a threshold. Matching was performed following 

Algorithm 1, and               was used confidence metric. The difference in median 

cloud height for the single image and ceilometer measurements in a ±10 minute window 

of the image capture time was +8 meters, and 67% of the pixels were within 2 standard 

deviations (341 meters) of the reported ceilometer height of 1826 meters MSL. 
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5.2 Experimental Setup 

5.2.1 Camera System 

The University of California, San Diego (UCSD) sky imager (USI) camera system 

was developed for the purpose of solar power forecasting (Urquhart et al. 2013a). The 

camera is an Allied Vision GE-2040C camera which contains a 15.15 mm × 15.15 mm, 

2048 × 2048 pixel Truesense KAI-04022 interline transfer charge coupled device. The 

lens is a Sigma circular fisheye lens with a 4.5 mm nominal focal length and equisolid 

angle projection. The USI uses 3 exposures at integration times of 3, 12, and 48 ms to 

generate a composite 16-bit HDR image. The final sky images have an effective spatial 

resolution of 1748 × 1748 and radiometric resolution of 65,536 levels per color channel. 

The two USIs used in this work were deployed at the Department of Energy, 

Atmospheric Radiation Measurement (ARM) Program, Southern Great Plains (SGP) 

Climate Research Facility from March 11th, 2013 to November 4th, 2013. The longitude, 

latitude, altitude of USI 1.7 was -97.478766°E, 36.6183435°N, 304.5 m, and for USI 1.8 

was -97.484856°E, 36.604043°N, 318 m (Figure 5.1). Both cameras were geometrically 

calibrated using the method described in Urquhart et al. 2014b using solar position data 

on March 31, 2013. Extensive details of the USI can be found in Urquhart et al. 2014a. 

5.2.2 Ceilometer 

A Vaisala Ceilometer Model CL31 (hereinafter 'ceilometer') was used for cloud 

height validation. The ceilometer emits pulses of near infrared light, and detects the 

backscattered near infrared signal within an 18.7 deg field of view. It can detect up to 

three cloud layers and has a 7,600 m vertical range. The ceilometer was located at a 

longitude, latitude, altitude of -97.485516°E, 36.605128°N, 316 m, which is 1,590 m from 

USI 1.7 at 202 deg azimuth (SSW), and 134 m from USI 1.8 at 334 deg azimuth (NNW). 
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a) 

 

b) 

 
c) 

 

d)

 
e)

 

Figure 5.1.  (a) Satellite image showing the camera and ceilometer locations, along with 
geographic coordinates. Close-ups of the locations for (b) USI 1.7 near the Bobbit 
roundtop and (c) USI 1.8 in the ARM SGP instrument field. Angled views showing (d) the 
height of the instrument field relative to the roundtop and (e) a north-south looking view. 
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altocumulus-01, 2013-04-13 T 00:15:00 

  
 
 
 

broken-02, 2013-04-09 T 00:04:00 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). (continued) 
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cirrocumulus-03, 2013-04-12 T 16:52:00 

  
 
 
 

cirrus-04, 2013-04-06 T 14:47:30 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). (continued) 
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cirrocumulus-03, 2013-04-12 T 16:52:00 

  
 
 
 

cirrus-04, 2013-04-06 T 14:47:30 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). (continued) 
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cumulus-05, 2013-05-03 T 19:33:30 

  
 
 
 

cumulus-06, 2013-04-04 T 22:30:30 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). (continued) 
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lowsparse-07, 2013-04-11 T 15:08:00 

  
 
 
 

lowsparse-08, 2013-04-11 T 21:03:30 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). (continued) 
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overcast-09, 2013-04-07 T 17:41:00 

  
 
 
 

twolayers-10, 2013-04-14 T 16:08:00 

  
Figure 5.2.  Image pairs for which a dense estimation of cloud position was performed. 
Images on the left are from USI 1.7 (note Farmer Bobbit's roundtop barn), and images 
on the right are from USI 1.8. All images are color corrected HDR with a logarithmic 
intensity rescaling (similar to gamma correction). 
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5.2.3 Cloud Conditions 

A variety of conditions were selected for validation (Figure 5.2). Due to the wide 

baseline and occlusion of higher layers when lower layers have sufficient areal 

coverage, cloud height detection in two layers is often not possible and  only a single 

image with multiple layers was tested (twolayers-10). The single-layer images contain 

different texture length scales (a spatial feature) and intensity scales (altocumulus-01, 

cirrocumulus-03, cirrus-04, overcast-09). The image set also tests the stereo algorithm 

under extreme dissimilarity in perspective (e.g. low clouds, broken-02, cumulus-06, 

lowsparse-07, lowsparse-08). For good measure, an easy case was also included, 

where the main features are near the image centers (cumulus-05). 

5.3 Methods 

Stereo determination of scene depth from images captured with a fisheye lens 

has the additional complication that, in general, correspondence must be determined 

along curves instead of straight lines. While it is possible to determine correspondence 

along these curves, it is not as computationally efficient as matching along frame buffer 

axes (pixel axes) in the image. Additionally, depending on the feature location within the 

field of view, each camera will image the feature with potentially differing amounts of 

distortion, further complicating the matching process. To simplify the correspondence 

problem, a pseudo-image which follows an ideal perspective projection is constructed by 

sampling the original image. The points to sample are determined by defining a viewing 

direction and desired field of view of a 'pseudo-camera' from which to take a 'snapshot'. 

This section discusses the construction of a pseudo-image which can greatly simplify 

matching and convert the originally distorted scene information into a format that can be 

readily used with a host of computer vision stereography techniques. The generation of 
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a pseudo-image is a process which involves obtaining the perspective projection matrix 

of the pseudo-camera, and performing epipolar rectification such that matching can be 

performed along corresponding columns. 

5.3.1 Coordinate System 

To obtain georeferenced position information about the cloud field, it is important 

to clearly define the coordinate systems used. The topocentric 'world' coordinate system 

is defined such that the origin is at a point   which is the center of the reference camera 

(here, USI 1.7). The coordinate axes are aligned with the cardinal directions such that 

the  -axis is positive east, the  -axis is positive north and the  -axis is positive upwards 

aligned with the zenith. A point in this coordinate system is denoted              
 
. The 

tilde overbar indicates that the point is inhomogeneous, that is, it is in Euclidean space 

     . This notation is to distinguish it from the corresponding set of homogeneous 

points in projective space     , where              and                   

          
 
. Similar notation holds for a point in 2-dimensional projective space     , 

          , with corresponding Euclidean point                       ,      . 

When scale factors   or   are zero, the corresponding Euclidean point is infinite. For 

points not lying on the plane or line at infinity, we can write          
 
 and   

        , respectively. 

The  th camera has a center        in the world coordinate system. A point 

      in the camera coordinate system (where the camera index   has been dropped) 

can be written using homogenous coordinates as  

      
     

     
     5.1 
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where        is the rotation from the world to camera coordinate system (i.e. the rows 

of   form an orthonormal basis for the camera coordinate system). Equivalently, in 

inhomogeneous coordinates we can write               . 

5.3.2 Scene Plane Definition 

The desired viewing direction for a single camera can be defined by zenith angle 

  and azimuth angle  , where   is the angle from the vertical direction ( -axis) and   is 

the angle positive east from north in the plane parallel to the ground (i.e. the angle from 

the positive  -axis in the     plane, positive clockwise). The vector   pointing in 

direction          can be defined as 

   
        
        

    

     

Orthogonal axes to span the plane defined by normal   can be defined: 

    
     
    
 

       
         
         

    
     

which gives an orthonormal basis for the pseudo-camera coordinate system: 

             5.2 

For     , we have 

              5.3 

The field of view, which is a pyramidal in shape, can be defined by the horizontal 

and vertical field of view angles,    and   , respectively. The four corners of our plane 

in the camera coordinate system        ,          , can be defined using these angles: 

 
             

 

 
      

 

 
     

 
              

 

 
      

 

 
     

 
  5.4a,b 

 
            

 

 
       

 

 
     

 
               

 

 
       

 

 
     

 
  5.4c,d 
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which are, sequentially, the top-left, top-right, bottom-right, and bottom-left corners. We 

can use Eq. 5.3 to compute the corresponding world coordinates of the scene plane 

corners. 

5.3.3 Affine Homography between Calibrated and Uncalibrated Pseudo-image 

Coordinates 

The projective point transformation that describes the perspective camera model 

can be written as  

        5.5 

where the perspective projection matrix        is given by 

    
     

     
    5.6 

The matrix        is an affine transformation known as the camera calibration matrix. 

The calibrated points                on the image plane given by                  , can be 

converted to pixel coordinates            by the affine transformation  :       . The 

calibrated point    in homogeneous coordinates is equivalent to the inhomogeneous 

coordinate      , hence we also have 

            5.7 

The corners in Eq. 5.4 are defined to correspond to  

                           5.8a,b 

                           5.8c,d 

where             
  is a homogeneous point in the image plane,   is the number of 

desired columns, and   is the number of desired rows in the pseudo-image. The values 

of   and   determine the sampling resolution for the pseudo-image. Multiplying by the 

left nullspace of   , Eq. 5.7 (for the  th corner) becomes  



118 

 

   
  

  
            5.9 

where      denotes the nullspace of the argument (hence    
  

  
 is the left nullspace). 

Applying the     operator to Eq. 5.9 yields 

        
     

  
  

             

which is a homogeneous linear equation in          . The Direct Linear Transform 

algorithm can be used to solve for   (see Hartley and Zisserman 2004 for an excellent 

introduction and Hartley 1997 for the importance of data normalization when using the 

DLT algorithm; see also section 3.5.1.5). 

The perspective projection matrix                   , with           , 

and   obtained as just described, defines our 'pseudo-camera'. For the reference 

camera,     , and for all other cameras    is the baseline vector between cameras (i.e. 

the displacement vector from the secondary camera to the reference camera). Matrices 

  and   will vary for each camera based on the parameters  ,  ,   ,   ,  , and   

selected for that camera. To 'point' two pseudo-cameras at the same volume of object 

space,  ,  ,   , and    must be set appropriately for each camera. 

5.3.4 Pseudo-image Rectification 

The geometry between two cameras is well known (e.g. Longuet-Higgens 1981, 

Faugeras 1993, Gu and Zhang 1993, Hartley and Zisserman 2004, etc.), so only a 

cursory introduction is provided here. Two cameras with centers    and   , record a 

point   in object space at image points    and    (where the subscript corresponds to 

the camera number). Points   ,   , and   define an epipolar plane in object space. For 

an object at  , imaged at point    in image 1, the corresponding point    in image 2 must 

lie somewhere within this plane. An epipolar plane intersects the image plane in a line 
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known as an epipolar line, thus when searching in image 2 for point    corresponding to 

the point    in image 1, we must only search along this line. All epipolar planes pass 

through the 3-space baseline connecting the two cameras (i.e.          ,     ). The 

point of intersection of   and an image plane is known as an epipole     , which is 

equivalently the position in the image of other camera, i.e. it is the image of the camera 

center of the opposing camera: 

                  5.10 

where    is epipole in image 1,    is the epipole in image 2,        
  and        

 . 

All epipolar lines intersect the epipole. 

If the two image planes are parallel (non-verged geometry), then the epipoles are 

at infinity (i.e.             
 
 where     ). When this occurs the epipolar lines 

intersect at infinity, and thus they are parallel. The goal of image rectification in binocular 

stereo is to transform the pair of images such that the epipolar lines are parallel and 

aligned with the frame buffer axes (i.e. pixel axes). This simplifies the algorithmic 

implementation of determining correspondence and reduces computational complexity of 

the matching process. We seek to rectify the images such that corresponding columns 

are in correspondence, and matching can be performed along each column to determine 

which rows within that column are in correspondence between the two images. This 

breaks from the typical convention to rectify images such that rows are in 

correspondence. For convenience, Algorithm 2 describes how rectify an image column-

wise (the column-wise version of the algorithm is uncommon and generally not included 

in texts). Once the matrix   (Algorithm 2) is obtained, the rectified camera matrix is 

                    5.11 
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Algorithm 2.  Column-wise image rectification in binocular stereo 

Column-wise image rectification in binocular stereo. The steps here develop a projective 

transform   that shift the epipole   to infinity along the positive y-axis, i.e.           . Epipolar 

lines are thus parallel to columns in the image. 

Note: algorithm update equations should not be confused with proper mathematical equations 

1. Shift a point of interest             , often the image center, to the origin 
 

    
     

     

   

      

 
2. Rotate the image such that the epipole    has zero  -component     
 

                  

 

    
          
         
   

        

 
3. Shift the epipole to infinity such that it has zero  -component     
 

        , where    is the second row of   

 

   
 

 
 

   
   
          

        

 
4. Once the epipole is at infinity, reverse the rotation and translation 
 

           

 
Update   such that the sign of the bottom right element is positive: 
 
              

 

 
  



121 

 

The Fundamental Matrix  , which is a point-to-line transform, defines the epipolar 

line in the second image, given a point in the first, i.e. 

        12 

where       is the epipolar line in image 2 associated with a point    in image 1. 

Similarly, we can define an epipolar line       in image 1 associated with a point    as 

       , where the transpose of   is required. The fundamental matrix for the rectified 

pair image cameras          and          is 

               
  13 

where the notation      indicates the     skew symmetric matrix corresponding to the 

vector argument,             
 
, and    

  is the pseudoinverse of    . 

The epipolar lines for cameras     and     are parallel with the columns in each 

image, however, the columns corresponding to pairs of epipolar lines are not the same 

in each image in general, e.g. if the epipolar line in image 1 corresponds to column 1, 

the paired epipolar line in image 2 does not necessarily correspond to column 1 in image 

2. We must apply an additional transformation to one of the images so that columns are 

in correspondence. Algorithm 3 provides the approach used. 

5.3.5 Pseudo-image Construction 

Once the pseudo cameras have been properly defined (obtaining matrices   and 

 ), and rectified (obtaining   from Algorithm 1 and    from Algorithm 3), a pseudo-

image can be constructed (Algorithm 4). 
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Algorithm 3.  Rescaling of rectified images  

Rescaling the  -axis of an image so that paired epipolar lines correspond to the same column 

number in each image. The angles    and    are the zenith angles of the view direction for 

camera 1 and camera 2, respectively. The image coordinates    are defined in Eq. 5.8. 

Note: algorithm update equations should not be confused with proper mathematical equations 

1. Compute epipolar lines 

if         

       % epipolar lines in image 2 

else 

        % epipolar lines in image 1 

end 

scale each              
  such that    

    
        

2. Determine mapping between corners 

The corners in the opposite image correspond to: 

               
 
               

 
 

               
 
               

 
 

 

We seek    such that corners    are remapped to    :        . 

Use the DLT algorithm to find   . 

 

3. Update camera projection and fundamental matrices 

if         

Update    :            

else 

Update    :            

end 

The new fundamental matrix is then (all 3 terms must be updated): 

               
 

 

 

Algorithm 4:  Construction of a pseudo-image 

Given camera calibration matrix  , camera rotation matrix  , epipolar rectification matrix   and 

scaling matrix   , construct a pseudo-image. (The notation    here differs from main text.) 

Note: algorithm update equations should not be confused with proper mathematical equations 

1. Construct a discretized grid representing the coordinates of each pixel 

     
 
                             

 

2. Backproject to world coordinates 

             
    

 
 

 

3. Compute forward projection using calibrated camera model (Urquhart et al. 2014b, Chapter 3) 

         

 

4. Sample the distorted image at points    using bilinear interpolation to construct the pseudo 

image. 
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5.3.6 Correspondence in Cloud Images Using Dynamic Programming 

With the images rectified such that corresponding epipolar lines lie along 

corresponding columns, what is left is to match rows within each column. The 

correspondence problem can be decomposed into local and global methods, where the 

former seeks only to determine correspondence by applying constraints only to a small 

number of pixels, and the latter uses information from entire scanlines or the entire 

image. For both local and global methods, a matching metric must be selected which is 

typically derived from image primitives which are computed from neighborhoods of 

varying size and shape within the image. Common examples are pixel intensity, cross 

correlation, sum of squared differences, edge or corner elements, etc. An excellent 

overview of stereo methods can be found in Brown et al. (2003). The methods for full 3D 

reconstruction of the cloud base in both Allmen and Kegelmeyer (1996) and Nguyen and 

Kleissl (2014) use a local method. Seiz (2003) and Seiz et al. (2007) apply a least 

squares method that is nominally local, however it is set up in a hierarchical 

configuration that enables information from a subsampled version of the entire image to 

influence the final stereo matching results. The method applied here is dynamic 

programming which uses scanline constraints, and thus is a semi-global method, i.e. it is 

global within each scanline, but not global to the entire image. 

Dynamic programming is the decomposition of a problem into simpler sub-

problems. Ohta and Kanade (1985) developed a framework for intra-scanline search 

which integrated an implicit ordering constrained: "when we examine the 

correspondence of two edges, one on the right and one of the left scanline, the edges 

which are on the left of these edges on each scanline must already be processed." This 

method is implemented here by finding the maximum path through the 2D matching 

score matrix (an alternative formulation is the minimum path through the matching cost 
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matrix). Each scanline has a matching score        associated with position          

along the left scanline and position          along the right scanline (here      ). 

Figure 5.3 shows the matching score for (vertical) scanline 400 in the test case 

altocumulus-01. The maximum path, shown in black, determines which rows are in 

correspondence. The path is determined by using Algorithm 5, following a similar 

algorithm described in Ohta and Kanade (1985). The missing rows (in grey) are the rows 

in image 1 for which there was no cloud detected; similarly, the missing columns (in 

grey) are the rows in image 2 where no cloud was detected. An ordering constraint is 

implicit because the maximum path can only move down and to the right, starting from 

the top left (row 1 in both images). This means that if row   in image 1 is matched to row 

  in image 2, row     can only match from row   to M in image 2, (i.e. cannot match to 

anything less than row  ). When a single row from one image corresponds to several in 

the other, the maximum path will have a vertical or horizontal segment. This often 

indicates an occlusion or discontinuity in one of the images. In Figure 5.3, a vertical 

segment indicates a stretch of pixels visible in image 1 is not visible in image 2 and thus 

are occluded in image 2. A horizontal segment of the maximum path indicates an object 

in image 2 is occluded in image 1.  
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Figure 5.3.  Matching score (normalized cross correlation) for scanline 400 in testcase 
altocumulus-01. The maximum path, shown in black, indicates which rows are in 
correspondence. The column (scanline 400) is defined to be in correspondence because 
it is an epipolar line. The missing rows (in grey) are the rows in image 1 for which there 
was no cloud detected; similarly, the missing columns (in grey) are the rows in image 2 
where no cloud was detected. 

Dynamic programming works with any block matching metric (e.g. pixel intensity, 

cross correlation, sum of squared differences). The block matching metric used here is 

normalized cross correlation (Lewis 1995). This is one of the most commonly used 

matching metrics because of its accuracy and robustness; however, it is at the expense 

of computational speed. No other metrics were tested here, and it is left to future work to 

explore more computationally efficient methods for matching cloud features. For a single 

cloud layer, the assumption of ordered correspondence implicit to dynamic programming 

is applicable. When two or more layers are present, it is not common that an isolated 

low-level cloud is positioned between the two imagers while the upper cloud layers are 

clearly visible in both cameras. In this latter case, the ordering constraint breaks down 

and this method cannot be used. 
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Algorithm 5.  Dynamic programming for intra-scanline search 

The function        represents the matching score for row         in image 1 and row   

      in image 2. 

 

1. Compute maximum running sum table   with the following recursive forumulae 

 

              % Origin 

                       % First row, image 1 

                       % First row, image 2 

                                        % First row, image 2 

 

2. Find the maximum path by traversing M from        (in matlab pseudocode) 

 

P = false(   ,   ); % Allocate M × N matrix for path 

  =  ;   =  ; % start at the bottom right 

flag = false; 

while(   > 1 ) 

  while(   > 1 ) 
     

    P(   ) = true;       
     

    if(          ) >          ) 

        =   - 1; 
    else 

        =   - 1; 
    end 

     

    % Exit conditions 

    if(   == 1 ) 

      P(   , 1:   ) = true; 
      flag = true; 

      break; 

    end 

     

    if(   == 1 ) 

      P( 1:   ,   ) = true; 
      flag = true; 

      break; 

    end 

     

  end 

  if( flag ) , break; end 

end 

5.4 Results and Discussion 

The methods described in section 5.3 provide a dense mapping of cloud position 

over the field of view pseudo-image. Only clouds elements that are visible are assigned 

a position. The ceilometer, however, provides a backscatter intensity as a function of 
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height within the 18.7 deg field of view measurement cone. Because the ceilometer is an 

active sensing device, it can 'see through' lower layers of clouds and return a 

backscatter signal from clouds that would otherwise be occluded. Noise in the ceilometer 

data was filtered an a threshold was applied to eliminate erroneous returns. The 

resulting filtered time-height signals are given in Figures 5.4 through 5.13, subfigure (c). 

All height values computed from the ceilometer were obtained from a ±10 minute 

window about the associated image capture time. The height map (dense  -coordinate 

map of cloud position) from the sky imager was not filtered or corrected for occlusions 

prior to making comparisons, and results are expected to improve after further post-

processing of the height maps. Height maps for each case are given in Figures 5.4 

through 5.13, subfigure (b). 

The two instruments do not provide a one-to-one comparison of cloud height. To 

assess the performance of the height retrieval from the USI, the median and the 20th 

and 80th percentiles of cloud height measurements are given in Table 5.1 (given as P50, 

P20, and P80, respectively). For the ceilometer, Table 5.1 contains the backscatter-

weighted cloud height along with the 20th and 80th percentile of the heights which 

returned a backscatter signal (after filtering and noise elimination). Overall, the height 

estimated from the USI was positively biased, ranging from 31 to 332 meters when 

comparing the ceilometer mean and USI P50 (Table 5.1). The mean difference between 

the USI P50 and the ceilometer mean was 136 meters, and the root mean square 

difference (RMSD) was 215 meters. The consistency of the height estimation for both 

methods (ceilometer and USI stereo) can be observed when looking at the P20 and P80 

levels which give mean differences of 285 and 208 meters respective, and RMSDs of 

369 and 125 meters, respectively. These statistics do not include case lowsparse-07 

which was significantly impacted by the sun's presence for much of the image. Proper 
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filtering of the USI stereo results should reduce the problems associated with the sun. 

Additionally, the cloud detection scheme used here to segment the images into clear sky 

and cloudy pixels was rudimentary and did not leverage the techniques described in 

Chapter 4. 

Table 5.1.  Cloud heights measured by the ceilometer and the pair of sky imagers. 
Ceilometer height statistics are derived from the time-height data in a ±10 minute 
window about the image capture time. The mean ceilometer height is a backscatter 
weighted height of a filtered dataset (filtered to remove noise). The sky imager data is 
unfiltered. The 20th, 50th (median) and 80th percentiles are given as P20, P50 and P80, 
respectively. The bias between the P50 USI and mean ceilometer measurements is 
given. 

 ceilometer sky imager  

Case mean 

[m] 

P20 

[m] 

P80 

[m] 

P50 

[m] 

P20 

[m] 

P80 

[m] 

P50 - mean 

[m] 

altocumulus-01 4,360 4,095 4,545 4,575 4,464 4,670 215 

broken-02 1,295 615 1,335 1,408 1,369 1,438 113 

cirrocumulus-03 3,805 3,465 4,035 3,996 3,945 4,073 191 

cirrus-04 5,656 5,385 5,895 5,988 5,525 6,455 332 

cumulus-05 2,353 2,235 2,655 2,486 2,318 2,680 133 

cumulus-06 955 825 1,095 996 909 1,090 41 

lowsparse-07 -   808 521 11,096  

lowsparse-08 1,380 1,275 1,485 1,411 1,326 2,112 31 

overcast-09 558 225 645 636 575 826 78 

twolayers-10 1,318 

5,014 

1,155 

4,695 

1,425 

5,145 

1,369 

5,190 

1,283 

5,106 

1,456 

5,539 

51 

176 

        

5.4.1 Discussion of individual daily results 

Reviewing the cloud height maps for the individual days (Figures 5.4 through 

5.13, subfigure b), it can be seen that, with the exception of overcast-09 and lowsparse-

07 and -08, the height results are consistent and comparable with the ceilometer 

measurements (Table 5.1 and Figures 5.4 through 5.13, subfigure c). The presence of 

the sun in the images significantly impacted the results in lowsparse-07 and -08 because 

this is a saturated region of low texture and there was not a significant amount of cloud 

texture surrounding it to limit its impact on the circumsolar region. In cirrocumulus-03 
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and twolayers-10, the two other images with a visible sun, there was an impact in the 

immediate vicinity of the sun, but outside of this circumsolar region, results were 

consistent. This was due to the texture of the cirrocumulus clouds surrounding the sun in 

both cases. 

As expected with the intra-scanline approach to dynamic programming, the 

height maps have many vertical streaks. These streaks occur when the maximum path 

through the matching score matrix has vertical or horizontal segments. These can either 

occur because of an occlusion or because a patch in one image is falsely matched with 

a several consecutive rows in the other image. Occlusions typically occur on the upper 

or lower boundary of the cloud edges as sharp height gradients, whereas the false 

matches occur in the core of the clouds as smaller height gradients which are distinct 

from the surrounding cloud (e.g. Figures 5.5, 5.9 and 5.12) If these horizontal or vertical 

segments of the maximum path are filtered out, any occlusions associated with these 

segments are properly filtered out. Falsely matched regions will be filtered out as well 

because looking at the maximum path of a single column alone does not distinguish 

between occlusions and false matches. To improve the results, interscanline dynamic 

programming (Ohta and Kanade 1983) could be implemented which will better identify 

occlusions and reduce the number of falsely matched segments. The number of falsely 

matched segments is inherently reduced in this work because the matching metric used 

is normalized cross correlation from a 41×41 pixel window. This window size 

incorporates support from 20 columns on either side of the column being matched, 

which reduces the 'streakiness' due to falsely matched cloud patches. 

The altocumulus-01, broken-02, cirrocumulus-03, cumulus-05 and twolayer-10 

give the best results when evaluating the height map qualitatively. Occlusions are 

properly identified when they occur (by a horizontal or vertical segment in the maximum 
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path leading to a height gradient on the edge of a cloud) and the height map is 

consistent across the image with heights comparable to the ceilometer readings. In the 

twolayer-10 case, the method was able to correctly identify the height of each layer 

present. This was one of the simplest possible two layer cases to test because there 

was no occlusion of the higher layer due to the lower layer in one. The two layers were 

on differing sets of epipolar lines which meant that the row matching procedure for each 

column (i.e. determining the maximum path) did not have to distinguish between layers. 

The performance of the stereo algorithm for the cirrus-04 and cumulus-06 was 

qualitatively poorer than the five cases just mentioned, with cumulus-06 case having a 

frequent occurrence of false matches. There was a large degree of dissimilarity of 

perspective between the two cameras in cumulus-06, with the low clouds being directly 

overhead in USI 1.8 and down near the horizon in USI 1.7 (Figure 5.9). Matching in this 

case was expected to be difficult. Case cirrus-04 was expected to perform better, 

although the 'wispy smooth' texture of the cirrus clouds has a larger scale than the 

41×41 matching window used. Visually the two rectified images have a high enough 

degree of similarity that quality matching should be possible if a larger window is used. 

The lowsparse-07 and -08 cases were attempted to test the ability of the stereo camera 

setup to determine correspondence between clouds that are visually difficult to identify 

as the same cloud in the raw images. While the sun plagued the overall results in each 

case, the clouds and image columns not adversely affected by the sun were matched 

reasonably well and the triangulated cloud heights are reasonable when compared to 

the ceilometer measurements. These very low cloud fraction cases would benefit greatly 

from a space carving method, because much of the volume over the test site would have 

been labeled as clear which can help in the post processing of the stereo matching 

results. The overcast-09 case was attempted because it is nearly impossible to 
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determine corresponding cloud features in this textureless full-sky cloud type. The 

quantitative results are reasonable, but this is mostly due to the pointing angles and field 

of view selected (section 5.3.2) and has less to do with correspondence being accurately 

determined. In other words, this case was designed to fail and the results should be 

completely discarded. 

5.5 Conclusions 

A method generate dense cloud position estimates from sky imagery with a large 

amount of radial distortion in a computationally efficient way was presented. The method 

performs well for higher clouds containing a reasonable amount of texture with which to 

determine correspondence. Due to the 1.7km baseline, the matching results for lower 

clouds yielded poorer results than the high clouds, in general. The use of dynamic 

programming for single cloud layer matching was shown to work very well and provide 

consistent and reasonable dense cloud height estimates. Multiple cloud layers were 

successfully distinguished and the heights determined for each layer was consistent with 

ceilometer measurements. This indicates the method may have promising outcomes for 

more complicated multi-layer cloud height cases assuming that the ordering constraint is 

not violated. 

Improved cloud position information will benefit geometrically based deterministic 

solar power forecasting with sky imagers by allowing more accurate shadow position 

estimation. As future work, the algorithm developed here will be automated and 

parallelized on a GPU platform for operational forecasting use. 
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a-i) 

 

b-i) 

 
a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 

c) 

 

Figure 5.4.  Stereography output for case altocumulus-01 for (a) USI 1.7 and (b) USI 
1.8. (i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 
c) 

 

Figure 5.5.  Stereography output for case broken-02 for (a) USI 1.7 and (b) USI 1.8. (i) 
Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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b-ii) 

 
a-iii) 

 

b-iii) 

 
c) 

 

Figure 5.6.  Stereography output for case cirrocumulus-03 for (a) USI 1.7 and (b) USI 
1.8. (i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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b-i) 

 
a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 

c) 

 

Figure 5.7.  Stereography output for case cirrus-04 for (a) USI 1.7 and (b) USI 1.8. (i) 
Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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b-i) 

 
a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 

c) 

 

Figure 5.8.  Stereography output for case cumulus-05 for (a) USI 1.7 and (b) USI 1.8. 
(i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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a-iii) 

 

b-iii) 

 

c) 

 

Figure 5.9.  Stereography output for case cumulus-06 for (a) USI 1.7 and (b) USI 1.8. 
(i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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a-iii) 

 

b-iii) 

 
c) 

 

Figure 5.10.  Stereography output for case lowsparse-07 for (a) USI 1.7 and (b) USI 
1.8. (i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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a-ii) 

 

b-ii) 

 
a-iii) 

 

b-iii) 

 
c) 

 

Figure 5.11.  Stereography output for case lowsparse-08 for (a) USI 1.7 and (b) USI 
1.8. (i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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b-iii) 

 
c) 

 

Figure 5.12.  Stereography output for case overcast-09 for (a) USI 1.7 and (b) USI 1.8. 
(i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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a-iii) 

 

b-iii) 

 
c) 

 

Figure 5.13.  Stereography output for case twolayers-10 for (a) USI 1.7 and (b) USI 1.8. 
(i) Input images with field of view bounds; (ii) rectified images; (iii) cloud height map. 
Ceilometer returns are shown in (c) with image capture time indicated by dashed lines. 
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6 Solar Power Forecasting 

6.1 An Informal History of UCSD Solar Forecasting 

While sky imagers have a long history of providing atmospheric observations, 

prior to 2010, they had seen little use for forecasting solar radiation. With the exception 

of Crispim et al. 2008, no other work with which the author is familiar had been 

published. Forecasting using cloud imagery had primarily been performed using data 

from satellites using techniques like frozen cloud advection. The University of California 

has had a long history of cloud observation using sky imaging systems at the Scripps 

Institute of Oceanography (Shields et al. 2013). In the fall of 2009, a Total Sky Imager 

(TSI) was installed on the campus gymnasium with the intent to monitor the campus 

microclimate. Based on past experience with satellite-based irradiance estimation 

(Urquhart 2010), the idea was conceived to use the sky imager for forecasting following 

similar approaches to those of satellites. The remote sensing techniques of Chapter 4 

were subsequently developed from 2009 through 2010. 

The question we asked of ourselves was how do we turn sky cover information 

into a forecast for an irradiance sensor? The answer to this question was ultimately what 

spawned the overall forecasting approach currently used. Instead of forecasting solely 

for the location of the sky imager (a procedure followed by many current forecast 

methods as of this writing), we attempted to generate forecasts for a large spatial extent 

surrounding the imaging system. To accomplish this, several techniques described in the 

remainder of this Chapter were devised. 
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6.2 Forecasting Methodology 

The deterministic geometric projection sky imager solar forecasting method is 

constantly evolving as it is an active area of research, thus freezing the procedure in 

time to describe it in writing can only capture the current state of the art. The forecast 

procedure described here was developed by the author and used for the case study 

presented in section 6.5. Improvements and adaptations (e.g. Yang et al. 2014) are 

constantly building on this approach, but those developments will not be described here. 

The flowchart in Figure 6.1 gives a basic overview of the forecast procedure. The 

procedure is broken up into two steps: one that relies on sky-imager data and one that is 

designed for use with ancillary sensor data from the forecast target of interest (e.g. a 

pyranometer or a set of photovoltaic panels). This section provides an overview of the 

procedure, and details of each procedure are left to their respective sections. 

 

Figure 6.1.  Flow chart showing basic operations for constructing the power forecast in 
theCopper Mountain case study. Relevant sections of the dissertation are indicated 
where appropriate. 
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After a new image is collected, it is cropped, corrected for nonuniformity (section 

2.5.2 and 2.5.3), and image-specific masks are generated (for the sun, shadowband, 

etc.). Due to potential instabilities in the internal configuration of the camera (i.e. the 

intrinsic geometric calibration parameters may vary if the system is moved, bumped, or 

maintenance is performed), the geometric calibration (section 3) should be kept current. 

Using the geometric calibration, a map of scattering angle based on the current solar 

zenith angle is constructed for the entire image (also referred to as the sun-pixel-angle). 

Radiance calibration similar to that for the WSI could be performed as well (Shields et al. 

1998a).  

Following the above set of preprocessing steps, clouds are detected (section 4.2) 

and cloud altitude is computed (e.g. section 5, however nearby ceilometers located at 

airports are often used as a supplement for stereographically determined cloud height). 

The binary cloud/no-cloud (or trinary clear/thin cloud/thick cloud) information is still in the 

original distorted image coordinates       , but what is needed is georeferenced cloud 

mapping (see section 6.3 regarding georeferencing). To obtain this, the pseudo-

Cartesian transform following Allmen and Kegelmeyer (1996) is applied: 

                         
      

      
    6.1 

where   is the cloud height above the camera,              
 
 is view direction of pixel 

     , and   parameterizes the plane at    . This transform requires geometric 

calibration of the imaging system such that each pixel has a known look angle     in the 

world coordinate system (zenith-azimuth coordinate pair    ). Each transformed pixel 

     is assigned a latitude and longitude based on the sky imager latitude and longitude, 

and a conversion from meters to either degrees latitude to or degrees longitude 

computed for the sky imager position (these conversions are functions of latitude). 
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Altitude is considered constant for this cloud mapping. The resulting georeferenced map 

of clouds is termed the “cloudmap,” which is a planar (constant altitude) mapping of 

cloud position above the forecast site. 

Cloud velocity (section 4.3) is then used to advect the planar cloudmap to 

generate a cloud-position forecast for each forecast interval. Typically, the cloud position 

is advected at 30 second intervals out to a 15 min forecast horizon for every new image 

captured (Figure 6.2). The use of 30 seconds is a throwback to the capture frequency of 

the TSI used in the initial forecasting investigation (Chow et al. 2011). The forecast 

horizon of 15 minutes is limited by practical considerations such as significant changes 

in cloud morphology or viewing angles which render cloud images older than 15 minutes 

almost unrecognizable when compared to current conditions. 

0-min 

 

5-min 

 

10-min 

 

15-min 

 

Figure 6.2.  Sequential cloud advections for a single forecast issue. The cloud positions 
are shown for the nowcast (a), along with the 5 min (b), 10 min (c), and 15 min (d), 
cloud-position forecasts. 

The forecast domain can be defined as any set of latitude, longitude coordinates, 

either, for example, in a regular grid, a set of regular grids or polygons, or a list of 

latitude, longitude pairs. For each latitude, longitude coordinate, a ray is traced along the 

vector to the sun and the intersection with the cloudmap is determined (Figure 6.4). If the 

intersected point is clear, that ground location is deemed clear, whereas if the 

intersection is cloudy, the ground point is deemed shaded by cloud. Repeating the 

shadow-mapping process for each latitude, longitude coordinate point constructs a map 
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of cloud shadows (termed a shadowmap). When a regular grid of latitude, longitude 

coordinates is used, the resulting cloud shadows form a single map. This ray tracing 

process provides information about which locations on the ground are shaded. 

Shadowmaps are constructed for each advected cloudmap out to the 15 min forecast 

horizon. 

The set of shadowmaps contained in a single forecast issue provide only a 

prediction of the progression of cloud shadows as they move over the ground. This 

information is binary (or trinary) and does not provide power output or irradiance 

estimates. To estimate the solar power striking the points of interest, past observations 

are used to characterize the transmissivity of the clouds and clear sky (section 6.4). The 

characteristics transmissivities are then weighted by the corresponding ground coverage 

fractions (from the progression of shadowmaps) for the subset of latitude, longitude 

coordinates of interest to determine an average sky transmissivity for the set of 

coordinates. The average sky transmissivity is then converted to either power or 

irradiance time series, depending on the application. 

6.3 Geometric Forecasting Approach 

The geometric forecasting approach seeks to determine cloud-caused sun-to-

ground obstructions by using the position information of detected clouds. A single 

camera gives only the angular position of the cloud observed; i.e. the ray     to the 

cloud at pixel       (section 3.3.1.2). To determine the distance to the cloud along ray 

   , additional information from another instrument is needed. One option is to use a 

ceilometer which provides the cloud based height, from which the position of the cloud 

can be determined by computing the intersection of ray     with a plane at    , where 

  is the cloud height. Another possibility explored in Chapter 5 is to use a second 
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camera to determine the position of clouds in the sky. The planar approximation method 

will be discussed here. 

A ground station at                     is shaded when a cloud is at 

position                    , where       points in the direction of the sun (Figure 

6.3). The use of the tilde overbar   will be dropped in this section and all coordinates 

given are Euclidean (i.e. no homogeneous coordinates will be used). The intersection of 

the ray to the sun           
  extended from ground station    with a plane at     

is  

                 
     

     
    6.2 

where the expression is written as a 2-vector with a lowercase notation. For 

convenience, Figure 6.3 is drawn with    aligned with   , however it should be noted 

that this is not true in general. 

 

 

 

Figure 6.3.  Side view of ray tracing a vector from ground station    to intersection point 

  .at cloud height   for ground station height   and solar zenith angle   . The sky 

imager is located at  . Note that                 only for convenience of drawing (i.e. 

they point the same direction), but this is not true in general. 
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By assuming that the spatial coverage of the sky imager is small enough, an 

analogous expression to Eq. 6.3 can be devised such that georeferenced coordinates    

(i.e. expressing position    in latitude, longitude altitude, Chow et al. 2011): 

       
         

         
               

     

     
     6.3 

where    is the pixel position in the cloud map,     and     are the latitude and 

longitude, respectively, of the ground station (subscript  ) and the cloudmap origin 

(subscript  ), and    and    are a scaling matrices 

    
     
     

      
     
     

   

where   is a conversion from degrees longitude or latitude to cloudmap pixel 

coordinates, and   converts from meters to degrees longitude or latitude (depending 

upon the subscript). The assumption of small spatial scale allows the latitude and 

longitude to locally be considered as a regular Cartesian grid (an assumption which 

becomes invalid as the poles are approached. The georeferenced geometric approach is 

illustrated for UCSD campus in Figure 6.4. 
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Figure 6.4.  Ray tracing to construct a georeferenced mapping of shadows. The shadow 
value for a given point in the forecast domain grid is determined by tracing a ray along 
the solar vector and determining the cloud value at the intersection with the cloudmap. 

The shadowmap introduced in section 6.2 is the result of computing intersections 

for a set of ground station locations       . Typically, but not required, the      form a 

regular grid such that actual maps can be produced. The value of the shadowmap 

associated with      is set by the state of the cloudmap (clear, cloud, etc.) at the point 

intersection of the ray    extending from      and the plane    . 

6.3.1 Application to UCSD DEMROES Network 

The UCSD testbed had six meteorological stations monitoring global horizontal 

irradiance (GHI) at 1 Hz with Li-COR 200SZ pyranometers (Figure 6.5, Table 6.1). The 

instruments are spatially close enough that they can be calibrated against each other on 

clear days to ensure consistency (see Lave et al., 2011 for a more detailed study of the 

irradiance fluctuations at these sites). The 1 Hz GHI data collection is faster than the 

image capture frequency, so validation GHI time series were constructed for each 
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station by using only the data points gathered at the time when the sky image was taken 

(no averaging is performed). 

 

Figure 6.5.  Map of UCSD showing sky imager coverage, weather stations, and PV 
arrays. The coverage area of the sky imager is a function of cloud base height. The 
region displayed here has a radius of approximately 2 km which would apply to a cloud 
base height of 1150 m at a maximum zenith angle of 65°. 

 

Table 6.1.  Location and status information for weather stations used to validate TSI 
cloud shadow maps. 
       

Station Identifier RIMC BMSB EBU2 TIOG HUBB MOCC 
       

   Location   

latitude [deg] 32.8852 32.8758 32.8813 32.8790 32.8673 32.8782 

longitude [deg] -117.2401 -117.2362 -117.2330 -117.2434 -117.2535 -117.2231 

altitude [m] 124 134 104 158 12 104 

distance to TSI [m] 15 1,107 789 760 2,362 1,770 
       

   Operational Status   

Sept 14, 2009                   

Oct 4, 2009          N/A N/A    

Mar 4, 2010 N/A N/A    N/A    N/A 

Mar 10, 2010    N/A    N/A    N/A 
       

  Operational  N/A Unavailable   Cloud too low, out of range 
 

Sky Imager

Weather Monitoring Station

Photovoltaic Array

Sky Imager Coverage

TIOG

HUBB

RIMC

MOCC

BMSB

EBU2
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Binary irradiance time series were produced for ground stations in the UCSD 

DEMROES weather station network. When the sun is occluded the GHI is assumed to 

equal 40% of the clear sky value (i.e. clear sky index       , section 6.4). This value is 

chosen because the clouds that occurred on the days selected for validation were 

optically thick and reduced the irradiance to approximately this level. While the binary 

irradiance time series is not used in a quantitative evaluation, it is useful for a qualitative 

evaluation of the method. 

Figure 6.6, showing MOCC on October 4, 2009 indicates that GHI variability can 

be estimated using a TSI. The morning period is dominated by false clouds due to 

MOCC’s projected sky position being located in the shadowband area of the circumsolar 

region (     35°). Once the projected sky position moved outside the circumsolar 

region (outer region) the TSI nowcasts the sky conditions between the sun and MOCC 

correctly 68.3% of the time in clear conditions and 80.4% in cloudy conditions, where 

clear is defined as       . 

  

  

Figure 6.6.  Time series (a) of MOCC station for October 4, 2009 showing measured 
GHI (blue) versus the TSI nowcast. The TSI shadow map is separated into circumsolar 
(red) and outer-region (green). Nowcasts of the TSI after 1100 PST (b),(c) and (d) match 
the trends in the measured data well.  
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Nowcast accuracy is expected to decrease with distance from the TSI due to the 

lower resolution at large sky imager zenith angles (in an extreme case on March 4, low 

clouds over the HUBB station 2.4 km to the southwest were out of sight of the TSI). 

However, the TSI was able to capture the trends in GHI at the HUBB station (Figure 6.7) 

on the other days. When HUBB was in the outer region, the TSI correctly predicted clear 

skies 60.0% of the time, and cloudy skies 90.6% of the time.  

  

  
Figure 6.7.  (a) TSI nowcast and measured GHI (blue) at HUBB station for March 10, 
2010. Zooming in, (b–d) show the ability of the TSI to produce nowcasts for a distant 
site. 

Since binary descriptive statistics are most appropriate to validate the binary TSI 

cloud estimate the clear-cloudy co-occurrence was tabulated (Table 6.2) for images 

taken when the cloud fraction    was in the range 0.2      0.8. This restriction on 

cloud fraction is used to ensure that the results are not biased by nearly cloud free or 

overcast conditions which would result in a near perfect sky condition nowcast. For the 

four days chosen and for all available stations (Table 6.1), the TSI correctly estimated 

the condition of the sky 69.7% of the time in the outer region. This ratio was significantly 

different in measured clear (59.4%) and cloudy conditions (81.5%). It was more often 

predicted cloudy when it was clear than predicted clear when it was cloudy. 
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Table 6.2. Distribution of measured versus TSI nowcast clear (CLR) and cloudy (CLD) 
conditions for skies with cloud fraction            (fraction of hemispheric solid 
angle). In line 1, the first term denotes measured clear sky index, and the second is the 
TSI estimate, thus CLD/CLR means the ground station measured cloudy conditions 
         but the TSI estimated clear. CLRm and CLDm are the number of clear and 
cloudy measurements, respectively, in the outer region. The last column shows the 
overall statistics (not conditioned on cloudy or clear). Data is for all available stations. 

 

 CLR/CLR 

[%] 

CLR/CLD 

[%] 

CLRm 

 
 

CLD/CLR 

[%] 

CLD/CLD 

[%] 

CLDm 

 
 

% 

correct 

 

Sept 14, 2009 47.1 52.9 594  28.3 71.7 368  56.6  

Oct 4, 2009 76.2 23.8 441  10.3 89.7 419  82.8  

Mar 4, 2010 63.1 36.9 157  33.3 66.7 144  64.8  

Mar 10, 2010 52.7 47.2 110  7.0 93.0 201  78.8  

Total 59.4 40.6 1302  18.5 81.5 1132  69.7  

           
 

Forecasts for up to five minutes ahead are shown in Figure 6.8 for individual 

stations (Figure 6.8a-d) and for all four stations (Figure 6.8e). In general the sky 

condition was forecast correctly more often than incorrectly. However, this was primarily 

due to clear conditions being both measured and forecast. The most interesting 

comparison is when it is measured cloudy (cldm, Figure 6.8): cloudy conditions are more 

frequently forecast than clear on average. On two of the days when the sensor condition 

was measured as cloudy, the forecast at certain horizons was more frequently forecast 

clear than cloudy, which was a significant error during this test. The specific source of 

these particular errors was not identified due to the forecast complexity, but the primary 

sources of error are considered to be cloud position inaccuracies due to calibration 

offsets, uncertainty in cloud height and velocity, and cloud detection errors (essentially 

each major component of the forecast is suspected to play a role). Cloud detection 

outside the circumsolar region is considered to be reasonable, however if the camera is 

not geometrically calibrated (which for this work it was a very rough calibration), the 

detected cloud is assumed to be at the incorrect position. The distance of many of these 
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sites poses the additional complication of projective distortion. Gaps in the clouds cannot 

be seen, and cloud sides are treated as cloud base, which leads to further errors for 

more distant stations. Cloud velocity is difficult to validate without the aid of a wind 

profiler or radiosonde, so the effect of cloud velocity is unclear. Finally, clouds are 

dynamic and evolving, which makes forecast horizons longer than 15 minutes nearly 

impossible without a dynamic and thermodynamic simulation (i.e. LES or NWP). Even at 

five minutes, clouds change significantly, further making the estimation of irradiance at a 

distant site challenging. 

The root mean square error of the sky imager GHI estimates (Figures 6.6 and 

6.7) indicate a negative bias (not shown). The negative bias in the circumsolar region is 

primarily due to false clouds decreasing the estimated GHI. In the outer region the 

negative bias is mostly caused by the cloudy bias noted above and cloud enhancement 

effects whereby the solar disk is not obscured but forward scattering of radiation by 

clouds located near the solar disk increases the diffuse radiation component and thus 

the overall GHI. Since the TSI estimate assumes a clear sky index of unity when the sun 

is not obscured it underestimates the clear sky GHI as well. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

 

Figure 6.8.  Combined TSI forecasts results for all stations on (a) September 14, 2009, 
(b) October 4, 2009, (c) March 4, 2010, and (d) March 10, 2010, (e) all four days. 
Correct forecasts are indicated in green and incorrect forecasts are indicated in maroon. 

6.4 Cloud Optical Depth Estimation 

With a sky imager and a ceilometer (or two sky imagers) we can obtain position 

and velocity information about clouds, but we do not know how much of the solar power 

is attenuated as it passes through the atmosphere. In order to obtain this information, we 
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use local observations of irradiance or power output to characterize the cloud 

transmissivity for use in future estimates. 

Transmissivity, also known as clear sky index   , is a ratio of the actual 

irradiance   to the irradiance observed in a cloudless sky (or clear sky, subscript    ): 

             

The clear sky index gives a normalized measurement wherein time-of-day effects are 

(nominally) removed, isolating the effects of clouds. The irradiance of interest in this 

work is the global irradiance   , frequently defined with a horizontal reference plane 

(thus    ). The clear sky index for a horizontal surface is thus               . An 

analogous expression to    can be devised for power output   by normalizing the power 

output by the expected clear sky power     : 

                 

Assuming standard testing conditions (STC) for rating the panels (ASTM E1036 - 08), 

     can be estimated 

                         

where      is the nameplate capacity of the set of panels,       is the STC irradiance 

taken as 1000 [W/m2], and       is the clear sky plane-of-array irradiance. 

The clear sky irradiance on a horizontal plane can be modeled using any clear 

sky model. Here, the Kasten clear sky model (modified by Ineichen and Perez, 2002) is 

used: 
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where         W/m2 is the solar constant,     is the altitude above mean sea level,   

is relative optical airmass (Kasten and Young 1989),    is the Linke turbidity coefficient, 

                  , and                   . The Linke turbidity is a measure of 

the aerosol content of the atmosphere and is defined as the number of clean, dry 

atmospheres required to produce the extinction observed in a real atmosphere 

containing aerosols (Linke 1922). To convert from     to    (i.e. the irradiance on a 

horizontal plane to that on a plane of arbitrary orientation, the Muneer transposition 

model is used (Page 2003). The diffuse fraction, which is a required input into the 

Muneer model, is obtained following Boland et al. (2008).  

The cloudmap is binary (or trinary) with a clear and cloudy state (or clear/thin 

cloud/thick cloud states), so the surface projected shadowmap of the clouds is also 

binary (or trinary). Characteristic values of clear sky index    or normalized power       

are determined using the probability density function (PDF) generated from recent 

observations (usually 2 hours). The characteristic values of    or       are extracted 

from the peaks of the respective PDF. The distribution of       for an entire day at the 

Copper Mountain Solar 1 power plant is shown in Figure 6.9 , where the peak near 

           corresponds to clear sky and the peak near            is the modal 

cloud transmissivity. The bimodal shape exhibited by       (and also   ) is common, but 

does not always occur. Clouds are very complex in nature which is reflected in daily 

distributions of normalized power and irradiance. It is interesting to note that the small 

peak near        corresponds to cloud enhancement effects Luoma et al. 2011. 
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Normalized Power       [ ] 

Figure 6.9.  Normalized power distribution for November 3, 2011 at the Copper 
Mountain Solar 1 power plant. The ordinate values were normalized such that the 
integral of the unfiltered probability density is one. 

6.5 Case Study: 48 MW of Photovoltaics at Copper Mountain Solar 1 

6.5.1 Experimental Setup 

Two TSIs were installed at Sempra Generation’s Copper Mountain Solar 1 power 

plant to validate the sky-imager forecast methodology in a utility-scale environment. The 

cadmium telluride thin-film panels for the 96 inverters covered approximately 1.3 km2 

and were tilted at 25° with a due south azimuth. The TSIs were spaced 1.8 km apart 

using the configuration shown in Figure 6.1. Fifteen calibrated reference cells provided 

plane-of-array (POA) global irradiance (  ) at 1 s, and five weather stations provided 

standard meteorological measurements at 1 s, including POA    and     from Kipp & 

Zonen CMP11 broadband pyranometers. The forecast intervals selected matched the 

image-capture frequency; forecasts were issued every 30 s out to 15 min. The forecast 

domain was defined by a 4 × 4 km grid overlaying the plant with a resolution of 2.5 m per 



160 

 

forecast cell (1,600 × 1,600 cells), where each cell is resolved to a latitude, longitude, 

and altitude (altitude is obtained from a digital elevation model). 

 

Figure 6.10.  Outline of the 48 MW section of Copper Mountain, with sky-imager 
locations indicated. Each inverter’s panel footprint is shaded with a different gray level. 

6.5.2 Forecast Results 

6.5.2.1 Forecast Error Metrics 

To evaluate the forecast, mean bias error (MBE), mean absolute error (MAE), 

and root mean square error (RMSE) were computed over the given period during 

daylight hours (   < 80°): 

    
 

   

 

 
    

 
   

  
 

 
   

    
 

   

 

 
    

 
   

  
 

 
   

     
 

   
 
 

 
    

 
   

  
  

 
 

   

   

where the   
 
 is the     forecast power,   

  is the     power measurement, and     is the 

average power production over the given period (i.e.    < 80°). Normalizing by     

produces higher relative errors than normalizing by capacity, and in general will give 
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lower errors on days with extended clear periods, and higher errors on mostly cloudy 

days. The sky imager generates a forecast every 30 s, whereas the plant reports power 

output every 1 s, so to compare the forecast to actual power production, a 30 s average 

of power output data centered on the image capture time was used. Error metrics were 

computed for each of the 31 forecast intervals out to a 15 min forecast horizon. While 

the metrics used provide a numerical evaluation of forecast accuracy, they are difficult to 

assess without a baseline comparison. The use of persistence as a baseline forecast is 

especially useful for short term forecasts. To generate a persistence forecast for 

comparison, the plant’s aggregate normalized power was averaged for 1 min prior to 

forecast issue and was then applied to the remainder of the 15 min forecast window. 

Adjustments were made for changing solar geometry throughout the 15 min forecast 

window by computing the clear sky    for each of the 30 s intervals. 

6.5.2.2 Forecast Performance 

The results presented here are for the week of November 9–15, 2011, which 

provided a variety of conditions with clear, partly cloudy, and overcast days. Forecast 

performance as a function of forecast horizon is shown in Figure 6.11. The forecast error 

of persistence steadily increases, whereas the forecast error of the sky imager starts off 

at a larger value because of shadowband issues and cloud decision errors near the Sun, 

and then levels off after about 3–4 min. The shadowband can block the entire sky region 

over the plant that contains the clouds, actually causing the irradiance impact, and as a 

result minimal or no data to generate an immediate-term forecast is available. As the 

shadowband (or circumsolar cloud decision error) is advected away, valid data from 

another part of the image moves to the region of sky over the plant in the path of the 

Sun, and thus a more accurate forecast can be generated. 
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Looking at individual days provides performance information for different cloud 

regimes (Table 6.3). On clear days the error is small but nonzero, largely because of the 

offset in absolute power predicted using the normalized power histogram to extract the 

modal clear value. Persistence uses a recent average of normalized power, which is 

more accurate than the most frequent daily value (i.e., the mode; see Figure 6.9) when 

the input solar signal is not affected by clouds. When there are clouds, the sky imager 

adds value because it can forecast when a ramp will occur and it can provide a 

reasonable approximation of the magnitude. Partly cloudy days with significant ramping 

occurred on the 10th, 12th, and 13th. The error on the 13th is shown as a function of 

forecast horizon in Figure 6.11b. Because of frequent ramping, the persistence forecast 

error increases significantly after a few minutes and the sky imager performs better. 

  

Figure 6.11.  Forecast performance as a function of horizon for a sky-imager forecast 
(solid) and persistence forecast (dashed) shown for (a) November 9–15, 2011, and (b) 
November 13, 2011. 
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Table 6.3.  Sky Imager (SI) and persistence (P) forecast error at selected time horizons 
of 5, 10 and 15 minutes. Error is given as mean absolute error. Error is reported for 
individual days and the aggregate set of days as a percentage of average power 
generated during daylight hours. Superscript 'c' indicates the day was clear. The large 
errors on November 11th are due to cloud decision errors. 

  5 min. [%] 10 min. [%] 15 min. [%]  

  SI P SI P SI P  

 9
c
 4.5 0.9 5 1.3 5.1 1.7  

 10 42.6 14.9 39 18.5 42 22.1  

 11 152.7 8 161.8 13.9 157.7 18.6  

 12 33.9 23.2 33.6 30.7 38.8 35.6  

 13 32 17.5 26.5 24.7 26.4 29.3  

 14
c
 4.9 1.5 4.2 1.9 4.1 2.2  

 15
c
 6.7 1.3 6.7 1.8 6.7 2  

 1 week 24.9 7.8 24.3 10.6 25 12.6  

 

The ability of a sky imager to capture ramps is illustrated in Figure 9.21 for the 10 

min forecast horizon slice. Constant values in the sky-imager forecast indicate periods 

when the plant is forecast to be entirely clear or entirely cloudy. Much temporal shifting 

of when a ramp is forecast to occur can be seen, in both the early and late temporal 

directions. Ramps are also missed and falsely predicted. The ramp forecast is directly 

related to how well the shadows predicted by the sky imager match plant observations. 

Errors in ramp timing are caused by any combination of inaccuracies in cloud decision, 

cloud height, camera resolution, geometric calibration, and cloud advection, as well as 

by differences in cloud morphology due to viewing angle. Because of the novelty of the 

system, each error source listed can be markedly improved, and overall ramp-forecast 

performance is expected to improve as well. 
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Figure 6.12.  Midday 10 min forecast performance on November 12, 2011, showing how 
well (or, if your glass is half empty, how poorly) the sky imager captures ramps at 10 min 
in the future. A perfect forecast would have both curves matching exactly. 

6.5.3 Conclusions 

The results presented here represent the first attempt at a power forecast at a 

large solar plant using sky-imager forecasting. The MBE, MAE, and RMSE are larger 

than persistence in general. Error values reported (MAE, etc.) are gross metrics and do 

not focus on ramp-forecasting,which is a key value of the sky imager. In the future, 

stochastic-learning techniques (Coimbra et al. 2013) will be added and ramp-forecasting 

metrics will be developed to improve forecast accuracy and to better quantify skill. 

Improvement in techniques is still needed for construction of short-term forecasts 

of high spatial and temporal resolution. Skill is demonstrated at longer horizons where 

the gross error metrics of MAE and so forth are comparable to persistence, and when 

the prediction of ramp timing is reviewed. This skill, however, is not currently sufficient 

for industry needs, and more work needs to be done. Many of these errors stem from 

inaccurate cloud detection or cloud-height determination because each impacts the 
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accuracy of determining whether or not a cloud is obstructing a given ground location. 

As described in Chapter 5, the next targeted improvement will be better geometric 

determination of clouds. Improvements here will reduce errors in ray traced shadow 

position. 
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Contributing Authors: 

S. M. I. Gohari, B. Urquhart, H. Yang, B. Kurtz, D. Nguyen, C.W. Chow, M. Ghonima and 

J. Kleissl 

7.1 Summary 

The performance of the Total Sky Imager (TSI) and University of California, San 

Diego Sky Imager (USI) instruments has been evaluated using correlation and 

dispersion metrics applied to clear sky index. The TSI was located at a 48MW PV plant 

in Nevada, USA, and the USI was located at the UCSD campus in San Diego, USA. 

Distributed pyranometer measurements over several square kilometers were available at 

both locations to provide spatial averages of irradiance. Clear sky index was forecast for 

a 15 minute horizon at 30 sec. intervals, and the correlation and Euclidean dispersion 

were evaluated. A persistence forecast was generated for each location to provide a 

reference for comparison. For the aggregate dataset, the forecast performance of the 

USI exceeded that of persistence beyond the 10 minute forecast horizon, whereas the 

TSI did not show skill over persistence. For the period of study, the USI gave 

correlations of clear sky index between 0.70 and 0.82, whereas the TSI provided 

correlations between 0.55 and 0.69. Overall, the mean value and the trend of the 

correlation results were more consistent for the USI than the TSI on the days evaluated. 

It is concluded that the USI is a more reliable solar resource assessment instrument for 

the wide range of atmospheric conditions evaluated. 
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7.2 Introduction 

As nations around the world push for cleaner sources of energy, the need for 

technologies that facilitate the integration of renewable energy into the electricity grid is 

growing. Forecasting is a grid integration tool that can help the scheduling of power 

generation and dispatch. Rules and regulations for the energy industry differ by region, 

but all electric grids have multiple relevant time scales at which planners, operators, 

power generators, and utilities need advanced information about how much power will 

be produced. Solar power is one of the most scalable choices for renewable energy 

generation, and so forecasting of this resource is vital to reliably integrate it into the 

electricity grid. 

Short term power output forecasting, on the scale of 1 to 30 minutes, can help to 

enable the economic dispatch of solar power. Sky imaging systems have a history of 

providing atmospheric observation and monitoring, and have the potential to be effective 

monitoring systems for solar plant operations by providing both situational awareness 

and estimates of power output over a large spatial extent. Because of their ability to 

continuously monitor cloud conditions, the University of California, San Diego (UCSD) 

has developed a short term power output forecasting capability based on visible 

wavelength sky imagery (Chow et al. 2011). A related forecasting procedure was 

developed in Marquez and Coimbra (2013). Initial results on power output forecasting for 

48MW of photovoltaic generation using the UCSD method were reported in Urquhart et 

al. (2013). Experience with their use at large solar power plants, however, has 

highlighted shortcomings in common imaging hardware Urquhart et al. (2012). The Total 

Sky Imager (TSI) is the most common device used for sky imaging applications, but no 

significant improvements have been made in the last 15 years. One of the key 

conclusions in Urquhart et al. (2012, 2013) is that the Total Sky Imager (TSI) instrument 
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had shortcomings for the purposes of solar forecasting. The University of California San 

Diego (UCSD), leveraging expertise in sky imaging technology (Shields et al. 2013), has 

designed a system specifically for solar resource assessment work (Urquhart et al. 2013, 

2014). This system, called the USI, exceeds the TSI in both spatial and intensity 

resolution (i.e. number of pixels and bit depth, respectively). Here, a comparison of the 

two instruments is made to quantify the forecasting performance in both a relative and 

absolute sense. 

7.3 Experimental Methods 

7.3.1 TSI Site: Copper Moutnain Solar 1, 48MW 

To assess forecast performance, 1 sec real AC power data from a 48MW section 

of Sempra Generation's Copper Mountain Solar 1 was used (Figure 7.1a). This 1.3 km2 

plant section had 96 inverters receiving power from cadmium telluride thin film panels 

tilted at 25° with a due south azimuth. This section of the plant contained fifteen 

calibrated reference cells providing plane-of-array global irradiance (  ) at 1 sec and five 

weather stations providing standard meteorological measurements including plane-of-

array    and Global Horizontal Irradiance (   ) from Kipp & Zonen CMP11 broadband 

pyranometers at 1 sec. Two TSIs were installed at 35.7849° N, 115.0012° W, 572 m 

MSL, and 35.7791° N, 114.9825° W, 580 m MSL, which are at the northwest and 

southeast corners, respectively. The imagery for the northwest unit was used to 

generate forecasts. The forecast intervals selected match the 30 sec image capture 

frequency; forecasts were issued every 30 seconds out to 15 minutes. Forecasts were 

generated for November 1st to the 21st, 2011, and July 12th to the 17th, 2012 (27 days 

total). Measured power output data is compared to the forecast by applying a 30 sec 

moving averaging to plant measurements. 



169 

 

a) 

 

b) 

 

Figure 7.1.  (a) Footprint of the 48MW section of the Sempra Generation Copper 
Mountain Solar power plant. TSI locations are indicated with circle icons. The spatial 
resolution of the power data is indicated by the gray level shading. (b) University of 
California, San Diego campus with USI and weather stations indicated by teardrop icons. 

7.3.2 USI Site: UCSD solar energy testbed 

The forecast domain for UCSD was defined as a 2.6 × 3.6 km grid at a resolution 

of 2.5 m per grid point. Each grid point was mapped to a latitude and longitude, as well 

as an altitude obtained from the SRTM1 dataset (Farr et al. 2007). Six Li-COR 200SZ 

pyranometers, sampling at 1 sec, are located within this forecast domain (Figure 7.1b), 

with positions given in Table 7.1. The USI was located on a rooftop at 32.8722°N, 

117.2410° W, 145 m MSL. The USI captures high dynamic range images (Urquhart et al. 

2014) every 30 seconds during times when the sun is above an elevation of -3°. 

Forecasts were generated from November 1st to the 29th, 2012, excluding November 12th 

(28 days total). A single domain average irradiance measurement is obtained by 

averaging irradiance measurements from the six stations. Measured irradiance data is 

compared to the forecast by applying a 30 sec moving averaging to the domain-

averaged time series. 
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Table 7.1. Locations of the pyranometers in the UCSD network and their distance to the 
USI. 

 Station 

Identifier 

Longitude 

[deg] 

Latitude 

[deg] 

Altitude 

[m] 

Distance to USI 

[m] 

 

 BMSB -117.2362  32.8758  111  603   

 CMRR  -117.2353  32.8806  111  1074   

 EBU2  -117.2330  32.8813  101  1257   

 HUBB  -117.2534  32.8672  24  1288   

 MOCC  -117.2225  32.8784  103  1857   

 POSL  -117.2350  32.8807  110  1103   

7.3.3 Forecast methodology 

For brevity, this work focuses on the comparison of TSI and USI forecast 

performance. Only an overview of the forecast procedure is provided here. Chapters 4 

and 6 contain detailed information on the forecast procedure. The basic principle of the 

forecast is to locate clouds in the sky using a geometrically calibrated camera system, to 

track the motions over a few images, and then to advect the clouds forward in time. Ray 

tracing is performed over the forecast domain to estimate the positions of the shadows 

for every advection. A shadow fraction for relevant forecast domain gridpoints (i.e. those 

with solar collectors) is then computed. Power and/or irradiance is then parameterized 

using the shadow fraction. The compliment to the shadow fraction is the clear fraction, 

which is simply one minus shadow fraction. 

The parameterization of power or irradiance requires simultaneous 

measurements from the PV array or an irradiance sensor, where the former will provide 

a power output forecast and the latter will provide an irradiance forecast. The power   or 

irradiance   parameterization is based on the construction of a histogram of clear sky 

normalized measurements (section 6.4). The clear sky normalized power      or 

irradiance      can be computed as 

              or               7.1a, b 
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where the subscript     indicates a clear sky modeled value appropriate for the time, 

location, and orientation of the solar collectors or irradiance sensor. The following text 

will omit the   or   from   , and refer to it as the clear sky index. In this work, the clear 

sky index for the TSI is computed using Eq. 7.1a and computed for the USI using Eq. 

7.1b. It should be noted that in this work, only global irradiance is considered. The 

method of using the clear sky index histogram to physically constrain power output 

between lower and upper bounds can instead use direct normal irradiance (DNI) as 

input. The fractional cloud cover method developed in Urquhart et al. 2012, 2013 and 

Yang et al. 2014, which is similar to that applied in Marquez and Coimbra (2013) for DNI 

forecasting, can then be used to determine the forecast DNI between these two bounds. 

There is an important difference between the deployment configurations of the 

TSI (section 7.3.1) and the USI (section 7.3.2): to generate forecast performance results, 

the USI uses only six 6.25 m2 forecast gridpoints, whereas the TSI uses over 190,000 

forecast grid points (also 6.25 m2). Spatial errors in cloud and shadow positions are 

averaged over the entire plant for the TSI whereas for the USI, it is averaged over the six 

point measurements. To provide a reference for comparing instrument performance, a 

persistence forecast is used. 

7.3.4 Persistence Forecast 

Any forecast technique must outperform persistence (i.e. using the current value 

as the future estimate) to be considered to have forecast skill. For comparison, a 

persistence forecast is generated for each forecast issue by averaging the previous 60 

seconds of ground-measured clear sky index. 
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7.3.5 Comparison Metrics 

This section provides definitions of the statistical metrics used to compare the 

forecast performance of the TSI and USI. The utility of each metric for assessing 

forecast performance will be discussed. The three different metrics used for comparison 

are the Pearson correlation coefficient, the Spearman correlation coefficient and 

Euclidean dispersion. 

7.3.6 Pearson correlation coefficient 

Pearson Correlation Coefficient (PCC;   ) is a measure of the linear dependence 

between a set of two variables   and  , giving an value between −1 and +1. PCC is 

formulated for   samples by using the variance and covariance of two vectors   and   

as 

   
                

   

           
              

   

   
7.2 

where the overbar indicates the mean of the set. PCC is a normalized assessment of the 

covariance of the forecast and measured   , and indicates how well the two signals 

match, irrespective of magnitude. 

7.3.7 Spearman correlation coefficient 

Spearman correlation coefficient (SCC;   ) assesses the monotonicity of the 

relationship between two variables. When each variable is a perfect monotone function 

of the other, SCC has a value of +1 or −1. SCC, when applied to a set of two vectors is 

defined as the PCC between the ranked vectors. For   samples, the vectors   and   are 

converted to ranked vectors   and  , respectively, and    is computed 

http://en.wikipedia.org/wiki/Ranking
http://en.wikipedia.org/wiki/Raw_score
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   7.3 

where the overbar indicates the mean of the set, which here is a set of ranks. In this 

work, fractional ranking is used because repeated values for    or shadow fraction are 

common. SCC evaluates the overall trend of the forecast    signal compared to the 

measured   . The SCC value is not affected by the linearity of the relationship between 

  and   like the PCC value. 

The equation of a line in two dimensions is          , where the line is 

defined by the vector          . The Euclidean distance vector    assesses how far 

each ordered pair is located from the line defined by  : 

   
           

      
   7.4 

The Euclidean distance vector can be condensed to a scalar metric, which we call 

Euclidean dispersion, by looking at the mean absolute distance (MAD) or root mean 

square distance (RMSD). For evaluating the measured versus forecast clear sky index, 

a one-to-one line is used for   because the relation between both clear sky index sets 

should have unity scaling and zero bias. For comparing forecast clear fraction (section 

7.3.3) and measured clear sky index, a reference line defined by the points            

and             is used, where        and         represent the 5th and 95th percentile of 

the measured clear sky index set. These points were selected because the working 

hypothesis of the sky imager forecast is that clear sky index is linearly proportional to 

clear fraction through the range measured clear sky values for a given day. Euclidean 

dispersion assesses the validity of this hypothesis. 
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7.4 Results 

Forecast performance for each instrument was characterized for one month of 

data. The aggregate dataset is useful in assessing the overall forecast skill of the 

forecast method applied to both instruments, but a deeper understanding of performance 

is obtained only when analyzing individual days. This section is divided into two sections: 

one which presents results for a single day, and one which presents results for the 

aggregate dataset. 

7.4.1 Forecast performance on a single day 

To evaluate single day forecast performance, July 12, 2012 was selected for the 

TSI, and November 8, 2012 was selected for the USI. These days were chosen because 

they had high variability, which is the most interesting condition in which to evaluate 

forecast skill. 

Scatter plots of measured versus forecast clear sky index for the 0-min (nowcast) 

and 10-min horizon for both instruments are shown in 7.2. The scatter for both 

instruments at each time scale which indicates that there is significant error in the 

forecast. In Figure 7.2c, the TSI nowcast is particularly poor. This is due to the 

shadowband on the TSI mirror that blocks the view of the sky dome near the sun. 

Because the TSI is collocated with the solar collectors, this region of sky is where clouds 

causing current shading exist (e.g. a cloud between an observer and the sun casts a 

shadow on the observer). Even for a plant of 1.3 km2 in area, the shadowband can 

eliminate all (or nearly all) sky image data needed for a 0 to 5 minute forecast. The size 

of the plant area impacted by the shadowband scales linearly with cloud height (in the 

positive sense). The average cloud height on July 12, 2012 was 4.6 km. When the 

ground projection of the shadowband advects away from the plant, valid image data can 
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be used to generate a forecast (Chow et al. 2011, Urquhart et al. 2012), such as that in 

Figure 7.2d which shows a much better result than Figure 7.2c. The USI, with no 

occultor blocking the sun, does not have this problem as is evidenced in Figure 7.2a and 

7.2b. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.2.  Scatter plots of measured vs. forecast clear sky index for (a, c) nowcast and 
(b, d) 10-min horizon for (a, b) the USI on November 8, 2012 and (c, d) the TSI on July 
12, 2012. 

Scatter plots of measured clear sky index versus clear fraction are shown in 

Figure 7.3. From a single day of measurements, it is not apparent that this relation is 

exhibited by either instrument. The results for the TSI (7.3c) are counter intuitive in that it 

appears that the more shading the plant receives, the higher the irradiance. This is not a 

real result, but rather an artifact of the image quality, the shadowband, and the 

processing algorithms applied. It should be noted that the vertical lines in Figure 7.3a 

and 7.3b (USI) are due to the six stations used for generating a clear fraction which 

nominally has seven possible clear fraction values unless data is missing or the clouds 

advect too far from a measurement station to determine if it is shaded. For the TSI 
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(Figure 7.3c and 7.3d), the grid points are 6.25 m2 squares covering a 1.3km2 plant, 

giving many possible values for clear fraction. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.3.  Scatter plots of measured clear sky index vs. clear fraction for (a, c) 
nowcast and (b, d) 10-min forecast for (a, b) the USI on November 8, 2012 and (c, d) the 
TSI on July 12, 2012. 

The correlation (PCC and SCC) between the forecast and measured clear sky 

index is shown in Figure 7.4a for the USI and Figure 7.4c for the TSI. The correlation of 

the persistence forecast with the measurements is also given for comparison. 

Persistence is better correlated with the measurements than the USI forecast until about 

5 minutes. After this time, the USI and persistence are comparable until about 10 

minutes where the USI begins outperforming persistence. The TSI forecast performance 

is poor (even anti-correlated) until the projection of the shadowband advects away from 

the plant, after which the forecast performance improves, but is still not as high as 

persistence. Both sky imager forecasts and persistence show the expected decrease in 

accuracy with forecast horizon. The correlation (PCC and SCC) of clear fraction and 

measured clear sky index is shown in Figure 7.4b for the USI and Figure 7.4d for the 
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TSI. For the USI, clear fraction is positively correlated with clear sky index, but it shows a 

marked reduction in correlation with forecast horizon. In Figure 7.4d the effect of the 

shadowband can again be seen until approximately the 6 minute forecast horizon. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.4.  Pearson (PCC) and Spearman (SCC) correlation coefficients for forecasts 
with (a, b) the USI on November 8, 2012 and (c, d) TSI on July 12, 2012. Forecast vs. 
measured clear sky index is shown in (a, c), and clear fraction vs. measured clear sky 
index in (b, d). Performance of the persistence forecast is shown in (a, c) as a dashed 
line (subscript p in legend). 

The persistence forecast for UCSD and for Copper Mountain (the USI and TSI, 

respectively) decay at much different rates, with UCSD experiencing much poorer 

performance when using persistence than for Copper Mountain. The conditions at 

Copper Mountain are no less variable than for UCSD on the day selected, but quite 

apparently, the measurements made within the last 15 minutes have a higher correlation 

with current measurements at Copper Mountain. There is a spatial smoothing factor at 

Copper Mountain that does not exist at UCSD; as the area increases, the timescale of 

correlation also increases (i.e. the time it takes for correlation to decay to a given value 

increases; Lave et al. 2012, 2013). This results in longer time scales having higher 
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correlations, the converse of which is that point sensors such as those at UCSD have 

the same level of correlation on shorter timescales. This is clearly exhibited by the 

persistence forecasts in Figure 7.4 and 7.8. 

The Euclidean dispersion for the USI (Figure 7.5a) is consistent throughout the 

15 minute forecast horizon, whereas for persistence it increases sharply, and after 7-min 

is higher than for the USI. The dispersion for the TSI (Figure 7.5c) is actually lower than 

for the USI, which occurs because of the smaller range of clear sky index for the TSI on 

the day selected (0.2 to 1.6 for the USI vs. 0.1 to 1.1 for the TSI). The Euclidean 

dispersion between clear fraction and measured clear sky index for the USI (Figure 7.5b) 

is lower than that of the TSI (Figure 7.5d), even with the range disparity of measured 

clear sky index, indicating it performs better when viewing this metric. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.5.  Euclidean dispersion of (a, c) measured vs. forecast clear sky index and (b, 
d) clear fraction vs. measured clear sky index for (a, b) the USI on November 8, 2012 
and (c, d) the TSI on July 12, 2012. Performance of the persistence forecast is shown in 
(a, c) as a dashed line (subscript p in legend). 
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7.4.2 Forecast performance for one month 

Reviewing forecast results for a single day highlights performance in particular 

conditions, but to view the overall performance assessment, a longer dataset is required. 

Scatter plots of measured versus forecast clear sky index during the one month study 

period is shown in Figure 7.6. For both the nowcast (left column) and the 10-min forecast 

horizon (right column), the USI (top row) shows less (but still considerable) scatter than 

the TSI (bottom row). For the USI, there appear to be less frequent occurrences of 

inverted forecasts (points in the top left or bottom right). 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.6.  Scatter plots of measured vs. forecast clear sky index during the one month 
study period for (a, c) nowcast and (b, d) 10-min horizon for (a, b) the USI and (c, d) the 
TSI. 

Scatter plots of measured clear sky index versus clear fraction for the one month 

study period are shown in Figure 7.7. There is again no clear relation between the clear 

fraction and the clear sky index for either the USI (top row) or the TSI (bottom row). It is 

also not apparent from the scatter plots that the nowcast clear fraction (left column) 
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produces better results than the 10-min forecast clear fraction (right column). The TSI 

has the inherent advantage of the large spatial average over the power plant, but still 

does not show significant improvement. The higher density of points above the reference 

line in the bottom row of Figure 7.7 indicates that the TSI biases forecasts to contain 

cloud when the clear sky index indicates power output is near 100% of clear sky levels. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.7.  Scatter plots of measured clear sky index vs. clear fraction during the one 
month study period for (a, c) nowcast and (b, d) 10-min forecast for (a, b) the USI and (c, 
d) the TSI. 

The correlation results for the one month data set are shown in Figure 7.8. 

Reviewing the measured versus forecast clear sky index, the average PCC was 0.78 

and the SCC was 0.72 for the USI, whereas for the TSI, the respective values were 0.58 

and 0.67. The SCC for the USI and TSI are similar, which indicates both systems are 

capturing the trends of the irradiance or power fluctuations. The significantly higher PCC 

value for the USI indicates that the relation between forecast and measured clear sky 

index is much more linear than for the TSI, which is positive result for the USI because 
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the relationship should be one-to-one. The effects of the shadowband on the TSI can 

clearly be seen in Figure 7.8d, where correlation increases nearly monotonically with 

time. The TSI actually exceeds performance of the USI with the SCC value for clear 

fraction versus measured clear sky index at the longest forecast horizons. 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 7.8.  Pearson (PCC) and Spearman (SCC) correlation coefficients during the one 
month study period for (a, b) the USI and (c, d) the TSI forecasts. Forecast vs. measured 
clear sky index is shown in (a, c), and clear fraction vs. measured clear sky index in (b, 
d). Performance of the persistence forecast is shown in (a, c) as a dashed line (subscript 
p in legend). 

Comparing the performance of both the USI and TSI to persistence at their 

respective locations shows that the USI performed significantly better for the period of 

study. As noted in section 7.4.1, forecasting at a large plant like Copper Mountain should 

produce higher correlations for the 15 minute forecast window because of the increased 

correlation time scale, yet the TSI shows correlation results that are consistently below 

persistence by 0.15 to 0.30, even for longer forecast horizons. The USI, however, 

outperforms persistence at longer time scales. The number of clear days at Copper 
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Mountain may be a suspect cause for higher correlations of persistence, but both the 

UCSD and Copper Mountain data sets contained 8 clear days. 

7.5 Conclusions 

The overall forecast results for both instruments indicates that there is much error 

in the deterministic forecasting process. The working hypothesis that clear fraction is 

proportional to clear sky index was not conclusively validated in this work. The 

correlation was positive between these two parameters, but the low correlation values 

and scatter in the data suggests this hypothesis is only partially valid. The clear fraction 

estimated for the solar collectors or irradiance sensors is dependent primarily upon cloud 

detection, cloud speed and advection assumptions, and the geometric calibration of the 

instrument. If cloud is not correctly detected, and if the positional information of each 

pixel is not accurate, then the ray traced clear fraction will be incorrect. Similarly, if the 

cloud advection is erroneous, due to either an error in cloud speed or in the assumption 

that clouds can be advected forward in time without accounting for 

condensation/evaporation, errors in clear fraction will result. These results also indicate 

that more investigation into the cloud coverage (i.e. clear fraction) to power output 

parameterization is required. 

Comparing the USI performance to that of the TSI indicates that the USI 

outperforms the TSI overall, particularly for the first 10 minutes of the forecast window. 

This is an expected result because the USI does not have missing data due to the 

shadowband, it does not lose information to image compression, and has both a higher 

spatial and intensity resolution (i.e. it has more horizontal and vertical pixels, and 

provides 48-bit images as opposed to 24-bit images). In the experimental configuration 

used here, the TSI had the advantage of a significantly larger spatial average (35,500:1; 
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TSI:USI) because it was placed at a power plant. It is reasonable to expect some of the 

spatial errors in clear fraction to average out in this scenario, however this result was not 

realized and the USI still showed better performance. 

Moving forward with this forecast work, emphasis will be placed on improving 

results with the USI. It has been shown here to be a superior instrument for short term 

forecasting, and will provide higher quality image data for this computer vision-based 

forecasting work. 
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8 Conclusions and Future Work 

A novel solar power forecasting procedure using ground-based sky imagery to 

geometrically locate clouds and estimate the future positions of their shadows was 

presented. This use of sky imagery for solar power forecast was one of the first of its 

kind, with only one prior study reported (which did not see future development). The 

initial forecasts developed in this work using a TSI instrument were shown to have 

limited skill over persistence at a solar power plant, however using the new USI sky 

camera system described here, the forecast approach has consistently outperformed 

persistence after the first few minutes. This computer vision solar power forecast system 

is still being actively developed, and as the performance improves in accuracy and 

reliability, it will serve to facilitate the control and automation of power systems which 

rely on solar energy as a power source. Depending on the application, it can serve 

purely to save money, or it can provide critical functionality as a controls input to fast 

acting devices (e.g. battery charge/discharge optimization). 

The USI, along with associated remote sensing applications provides a lower 

cost solution than the high quality WSI, while providing intermediate quality imaging 

performance with more features than are currently available from lower cost solutions. 

The remote sensing algorithms presented here are fast, automated and reasonably 

accurate. Taken as a package, the system can currently detect cloud, determine cloud 

velocity, and determine cloud position. The determination of cloud optical depth is a topic 

of current work within our research group. A 3D radiative transfer model is being used to 

construct synthetic USI images which can be used to create a lookup table or functional 

relation between the cloud optical depth and the observed brightness on the red, green 

and blue channels. The measurement of GHI and DNI directly from images is also being 

investigated. To accomplish this, the brightness of the charge overflow from smear is 
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being correlated with DNI measurements, and the DNI estimates along with the radiance 

distribution over the sky dome will be used to estimate GHI. Taken together, these 

algorithms will yield a potent cloud remote sensing device. Other potential future work is 

radiometrically calibrating the system so that it can measure sky radiance distribution. 

For clear sky analysis, the determination of aerosol optical depth has been shown 

possible, and could be added to the remote sensing suite of capabilities of the USI. 

For the cloud position and velocity estimates, an accurate photogrammetric 

calibration is required. In this work a generic camera model and a fully automated solar-

position-based calibration algorithm was developed for the USI. This method provides an 

accurate photogrammetric calibration with no user input (only "factory settings" must be 

input to indicate the type of lens). The calibration algorithm was shown to have sub pixel 

uncertainty, even when the calibration input has an RMS uncertainty of 10 pixels. Given 

the specific format of the calibration input, which is a single arc of solar position 

throughout a day that covers a very limited portion of the field, this low level of 

uncertainty is quite good. Future work on this topic will involve the use of a checkerboard 

or other patterns to calibrate the intrinsic and distortion parameters of the general model. 

Similar calibration work using a checkerboard has been reported in the literature, and 

the implementation for the USI is expected to be an extension of this work where 

possibly additional developments must be made to account for the specifics of the 

camera model. 

The cloud stereo photogrammetry described here is the first dense cloud position 

estimation with automatic feature registration and correspondence. The work was also 

the first reported use of dynamic programming for determining correspondence in cloud 

images. Results for several cloud types, heights, and relative projective distortions was 

presented. The method does require manual input of zenith view direction and field of 
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view (azimuth is set automatically), and thus future work on this topic will pursue the full 

automation of this parameter selection. Preprocessing the image for select, high quality 

features is expected to yield a path forward for determining the appropriate zenith angle 

and field of view for optimal matching performance.  
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Appendix A. Optimal Geographic Allotment of Distributed PV 

Contributing Authors: 

B.Urquhart, M. Sengupta, and J. Keller 

A.1 Summary 

A multi-objective optimization was performed to allocate 2MW of photovoltaic 

(PV) among four candidate sites on the island of Lanai, Hawaii, such that energy was 

maximized and variability in the form of ramp rates was minimized. This resulted in the 

Pareto-optimal set, an optimal solution set that provides a range of geographic allotment 

alternatives for fixed PV capacity. Within the Pareto-optimal set, a trade-off was found 

between energy produced and variability experienced, whereby a decrease in variability 

always necessitates a simultaneous decrease in energy. With this development, system 

designers have a method to select the preferred combination of energy generation and 

variability within the set of optimal alternatives to meet their needs. A design point within 

the optimal set was selected for study that decreased extreme ramp rates by more than 

50% while decreasing annual energy generation by only 3% above the maximum 

generation allocation. To quantify the allotment mix selected, a new metric called the 

“ramp ratio” was developed. It compares ramping magnitude when all capacity is allotted 

to a single location to the aggregate ramping magnitude in a distributed scenario. The 

ramp ratio quantifies simultaneously how much more smoothing a distributed scenario 

would experience than single-site allotment and how much a single site is being 

underutilized for its ability to reduce aggregate variability. This paper creates a 

framework for use by cities and municipal utilities to reduce variability impacts while 

planning for high penetration of PV on the distribution grid, thereby maximizing the value 

of investments. 
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A.2 Introduction 

Variability of solar power provides integration challenges as a primary power 

source on the transmission system and poses potential power quality issues for 

distribution networks. A known level of fluctuation in solar power output will always exist 

because of natural variations in the solar position. Superimposed on the known 

fluctuations will exist additional variability in production from installed photovoltaic (PV) 

that depends primarily on weather conditions influencing clouds and solar radiation at 

the location. It is well studied that aggregation of sites produces asmoother output of 

power on a per-capacity basis (Murata and Otani 1997, Otani et al. 1997, Wiemken et al. 

2001, Roy 2006, Curtright and Apt 2008, Collins and Crowther 2011, Lave et al. 2011). 

These studies primarily address smoothing through geographic dispersion, and attempts 

have been made to mathematically model this phenomenon. On the other hand, there 

has been an apparent dearth of work on how to select the best geographic allocation of 

PV among candidate sites. This study looks at the trade-off between energy 

maximization and variability minimization while selecting and allocating PV generation 

among multiple candidate sites. In this paper, the geographic separation of the sites is 

small enough that we can assume that the problem we address is limited to the 

distribution grid. A related study looking at minimizing the levelized cost of energy of a 

set of 12 PV generators using daily energy as input was performed by Roy (2006). 

Collins and Crowther (2011) performed a multiobjective optimization that maximizes 

daily energy while minimizing generation shortfall using hourly input data and sites 

distributed across the state of Virginia. The latter is similar to this study in that it 

evaluated the trade-off between energy maximization and variability minimization; 

however, in the latter, the sites were separated far enough apart to be considered a 

transmission level problem. As previously mentioned, the scope of this study is restricted 
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to geographic dispersion that can be assumed to not have the constraints imposed by 

balancing area coordination, line congestion, and other transmission-related issues. 

The Maui Electric Company (MECO) owns and operates the island of Lanai’s 

electric power system. Compared with mainland grids, the electric power system is 

small. System energy is produced by a set of diesel generators located at the main 

power plant, one or two of which (depending on system load requirements) provide 

system frequency regulation using isochronous frequency control. Currently there are 

two large distributed generation systems in addition to the main power plant. La Ola 

(LO), a large central station (1.2MW) PV installation owned by Castle & Cooke, Inc., 

installed near the main diesel power plant, provides power to the grid through a power 

purchase agreement. Recently, the LO PV system began to generate power at full 

capacity because the power purchase agreement required that the system incorporate a 

battery energy storage system to help mitigate ramping issues. A combined heat and 

power generator is located near the end of the distribution circuit as well. 

A team led by the US Department of Energy’s National Renewable Energy 

Laboratory (NREL) and MECO are working with local developers on the island of Lanai 

to assess the economic and technical feasibility of increasing the contribution of 

renewable energy sources on Lanai with a stated goal of reaching 100% renewable 

energy as part of the Hawaii Clean Energy Initiative. For MECO, enabling reliable 

installation—and determining the associated technical requirements—of additional 

renewable resources such as PV systems onto the electric power system is one way to 

increase renewable energy penetration on Lanai. 

The NREL team, with input from interested PV system installers, has been 

working to create and evaluate viable scenarios to assess potential PV systems that can 

be cost effectively installed on Lanai. In support of this, NREL installed equipment to 
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measure variability of the solar resource at several locations on the island. For more 

than 1 year, NREL has been capturing 3-s time-synchronized solar radiation data at four 

locations on Lanai that represent some of the possible locations for additional PV 

systems. Figure A.2 shows the locations of the 3-s solar irradiance data collection 

points, as well as some of the existing generation and load centers. These data help us 

understand site resources and variability among sites; however, appropriate system 

simulation models and assumptions are still needed. 

This paper develops a design strategy for the placement of PV generation by 

maximizing energy produced and minimizing variability—quantified here as power ramp 

rates. To do this, the planned PV output was simulated from available solar 

measurements for one complete year, from June 2010 to May 2011. A predetermined 

amount of PV (e.g., 2MW) was geographically allocated among four locations, with 

 

Figure A.1.  Map of the island of Lanai, Hawaii, with four sensor locations indicated. The 
Lanai City and airport load centers are indicated, along with the La Ola PV system, the 
main island power plant, and a combined heat and power plant located near the coast. 
Lanai image courtesy of Forest and Kim Starr. 
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differing amounts at each site, and the impact on energy generation and variability was 

quantified. To formalize this process, a multi-objective optimization scheme was 

employed to generate Pareto1-optimality curves using several variability criteria. Pareto-

optimality curves provide information on the trade-off between energy production and 

variability experienced. These curves are presented as a method for utilities to assess 

the trade-offs of maximizing energy production while minimizing system variability. The 

method presented provides a tool for selecting an acceptable level of ramping for an 

individual system. 

A.3 Methodology 

A.3.1 Experimental Setup 

The island of Lanai is located at latitude of 20.8°N, where the Walker and Hadley 

circulations generate northeasterly trade winds. Trade wind cumulus clouds are 

dominant and cause large and frequent ramps in global horizontal irradiance (GHI) 

because of the highly variable nature of that cloud type (Figure A.2). GHI was measured 

at four prospective PV deployment locations (Figure A.2, Table A.1) using Licor LI 200 

silicon pyranometers (LI-COR Biosciences, Lincoln, NE, USA) capturing data at a rate of 

3 s. The LO station also had regular meteorological measurements of temperature and 

wind data. Data were collected from April 2010 to September 2011; however, to ensure 

the summer half year was not weighted more heavily in this study, only data from June 

2010 to May 2011 were used.  

 

 

 

 
1
 Named for the Italian economist Vilfredo Pareto. 
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Table A.1.  Measurement site geographic position and designation 

 Site designation lat. [°N] lon. [°W] alt. [m]  

 Castle & Cook CC 20.81782 156.92107 464  

 Waste Water WW 20.74844 156.89694 110  

 Challenge LP CL 20.74102 156.90509 60  

 La Ola LO 20.76685 156.92291 381  

 

 

Figure A.2.  Global horizontal irradiance on 20 June 2011, showing typical large, 
cumulus-induced fluctuations on the island of Lanai, Hawaii. 

The Castle & Cook (CC) site is located in the center of the island, close to the 

mountains; the other sites are located in the southern portion of the island surrounded by 

much flatter terrain. Terrain-induced orographic lifting at the CC site resulted in higher 

levels of cloud formation and thus a higher frequency of large ramp events. The Waste 

Water (WW) and Challenge LP (CL) sites are close to each other and thus exhibited 

stronger correlation than the other two sites. Hereinafter, the four sites are referred to by 

the designations indicated in Figure A.2 and Table A.1. 

A.3.2 Power output simulation 

Power output was simulated using irradiance-to-DC power and DC-to-AC power 

algorithms that are part of the PVForm performance model (version 3.3; Menicucci 1986, 
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Menicucci and Fernandez 1988). This model has been widely used since its 

development, including in the latest version of PVWatts (Marion et al. 2001), and has 

been shown to have a 5% positive bias and root mean square errors of less than 12% 

(Perez et al. 1994). The model incorporates a temperature correction for irradiance-to-

DC conversion as well as an efficiency reduction for low irradiance levels. 

The transposition model used in PVForm (based on that of Perez et al. 1987), to 

convert horizontal irradiance measurements to plane-of-array irradiance, was not used 

here. The goal of this study was to develop a methodology to optimize the benefits of 

geographic smoothing and did not aim to achieve high accuracy in the exact energy 

produced or ramp rates experienced. Both the energy output and ramp rates would 

increase if GHI was transposed to plane of array. Importantly, however, the trends would 

remain the same; that is the basis for the results presented here. An additional 

consideration is that the latitude is low; therefore, the tilt is close to horizontal, so there is 

less error in making the horizontal simplification than would occur at higher latitudes. 

It should be mentioned that direct performance model conversion of irradiance-

to-power output is somewhat misleading. Large PV plants exhibit intraplant smoothing 

similar to a low-pass filter (Marcos et al. 2011a,b). Both Marcos et al. (2011a) and Lave 

et al. (2011) developed Fourier-based and wavelet-based methods, respectively, to 

smooth modeled intraplant power output so that it better matches observed output. 

Intraplant smoothing was not considered here. The aggregate capacity of the four 

simulated sites was 2MW, which is relatively small in total area, and it was assumed that 

direct use of a PV performance model would not impact the utility of the results 

presented. 
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A.3.3 Multiobjective optimization: maximizing energy generation while minimizing 

ramp rate 

Using a predetermined installed capacity of PV to be allocated among the four 

candidate sites, an optimization was performed to determine which weighting (% of total) 

allocation at each site would provide the most energy with the least variability. To 

maximize only energy, one would simply place 100% of capacity in the sunniest location; 

however, this would not provide the smoothest output in general. If variability is a 

concern, utilities could take advantage of geographic dispersion and place some 

capacity in less sunny locations. This would result in a potential reduction in total energy 

produced, but would also lead to reduction in variability. To avoid defining a subjective 

cost penalty for each parameter being optimized, as is done in standard linear 

programming, the energy and variability criteria were treated as distinct objectives. This 

multiobjective optimization problem does not have a single unique solution; instead, it 

has a range of solutions—known as the Pareto-optimal set—that describe non-inferior 

alternatives for maximizing energy while minimizing variability. Arbitrarily selecting how 

to allocate capacity may reduce energy, but not significantly decrease variability; for the 

Pareto-optimal set, the maximum energy output is achieved for a given level of 

variability. 

Figure A.3 shows an example of the Pareto-optimal set for minimizing the 99th 

percentile of ramp rates while maximizing energy. Moving along this curve—also called 

the Pareto-optimal frontier—one must trade energy generated for a reduction in 

variability, characterized here by ramp rates. At any point in the interior, one can 

increase energy or decrease ramp rate without sacrificing the other. Therefore, any 

interior point corresponds to an inefficient selection of geographic allocation—denoted 

as the Pareto-inferior region in the figure. Points along the curve are Pareto-efficient—to 
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change one quantity, one must sacrifice the other. A system designer can select the 

maximum level of variability a given electrical system can handle; the corresponding 

point on the Pareto-optimal frontier will then yield the geographic allocation for maximum 

energy production. 

 

Figure A.3.  The Pareto-optimal set for maximizing energy while minimizing the 99th 
percentile of ramp rates. The curve is shown to divide two regions: an unattainable set of 
energy, ramp rate combinations; and an inferior set where individually either energy can 
be increased or ramp rates decreased without compromising the other. 

It should be noted that although in this work we use ramp rates exclusively to 

quantify variability, other metrics—such as ramp size, ramp frequency, or generation 

shortfall (if load information is available)—can be used and will be the subject of future 

studies. Ramp rate          at a time t for an interval    is defined as 

         
              

  
   A.1 

where       is the power output at site  . The probability density of ramp rates during the 

1 year studied (June 2010–May 2011) for LO is given in Figure A.4 for different   . This 

shows the usual result that ramp rates are largest for the smallest   ; thus, for 

optimization only, ramp rates at the 3-s data capture rate were used. Minimization of 3-s 
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ramp rates ensures that ramp rates for all other    will always be smaller. No ramp rates 

were excluded in any computation step, even if very small, to ensure illumination of the 

true probability of occurrence of large ramp events in all statistical results. The 

cumulative distribution function indicates that 99% of the 3-s ramp rates were below 4% 

of capacity, and 99.9% of ramp rates were below 10% of capacity for the LO site. 

  

Figure A.4.  (a) Probability distribution (PDF) and (b) cumulative probability distribution 
(CDF) of ramp rates for several time steps at the La Ola site. Ramp rates are shown as 
a percentage of total power output capacity. Small or negligible ramp rates were 
included; thus, the curves indicate true probability of events. The CDF considers ramp 
rate magnitudes; the PDF considers the sign of the ramp rates. 

The multiobjective optimization employs a genetic algorithm using a tournament 

selection scheme described in (Deb 2011). The genetic algorithm tries many successive 

combinations of weights, pushing the Pareto frontier outward until no other variation of 

weight allocation can extend the curve farther into the optimal territory. During this 

process, the solution sets in successive iterations are combined (crossover) and 

“mutated,” and less fit alternatives are removed in an emulation of genetic evolution. The 

objective functions to be minimized are 

                 
 

   A.2 
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                            A.3 

where    is the component of weight vector w corresponding to the geographic 

allocation for site  , and       is the nth percentile of the argument. Summation on   is 

implied for both Eqs. A.2 and A.3. Equation A.2 is the negative of total energy output by 

the aggregate system for configuration  , and Eq. A.3 is  th percentile of system 

aggregate ramp rate computed for the entire set of i ramp rates (i.e., ramp rates from the 

entire year data set). In Eq. A.3, only the magnitude of the elements in the set is 

considered, denoted by the vertical bars. The constraints on the optimization are 

   
 

                

which requires that all weights sum to unity, and that any given site can be weighted 

from only 0% to 100%. The notation used earlier contains a subtlety for computational 

purposes: both power and ramp rates used in Eqs. A.2 and A.3 for individual sites are 

scaled so that each site is initially at 2MW of capacity (8MW total); when multiplied by 

the weights  , the aggregate capacity is the desired 2MW. This implementation and 

notation must be changed if intraplant smoothing is considered. Power output and thus 

ramp rates are no longer independent of assigned capacity, and the power time series 

and thus ramp rates must be adjusted by means of a smoothing filter (Marcos et al. 

2011, Lave et al. 2011). 

A.4 Results 

To assess the trade-off between ramp rates and energy production, multiple 

ramp rate percentiles were used as minimization criteria. Figure A.5a shows the 97th, 

98th, 99th, and 99.5th percentile Pareto-optimal curves, along with an interpolated color 

swath to indicate the spread in site weighting. The darker color indicates that the 
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standard deviation of the four weight values was low. The upper bound of 8.26MWh was 

the maximum production possible for a 2-MW plant during the 1 year studied; thus, the 

allocation was 100% at the CL site with corresponding high standard deviation of the 

four weights. The near verticality of the 97th percentile shows that by changing the 

weights, not much improvement was made in reducing the ramp rates. At higher 

percentiles, such as 99.5%, significant gains were seen by adjusting the weights, and 

ramp rates dropped by nearly 40% for a 3% reduction in energy generated. 

Table A.2.  Site allocation weight values on the Pareto-optimality curves for 
minimization of the 99th, 99.9th and 99.99th percentile (pct) of ramp rates, shown as a 
function of aggregate daily energy produced. Aggregate system ramp rates are also 
shown. 

 99
th

 pct 99.9
th

 pct 99.99
th

 pct 

energy 

[MWh/day] 

weights 

[%] 

ramp 

rate 

[kW/s] 

weights 

[%] 

ramp 

rate 

[kW/s] 

weights 

[%] 

ramp 

rate 

[kW/s] CC WW CL LO CC WW CL LO CC WW CL LO 

7.55 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 22 23 29 26 93 

7.60 ‒ ‒ ‒ ‒ ‒ 21 27 30 22 64 20 24 32 24 96 

7.70 17 26 36 21 35 20 28 34 18 67 18 25 37 20 103 

7.80 13 27 43 17 36 16 27 42 15 73 14 29 41 16 112 

7.90 11 27 49 13 38 21 34 41 4 77 12 32 44 12 121 

8.00 8 23 60 9 42 16 33 50 1 86 8 34 50 8 135 

8.10 5 23 67 5 46 8 29 60 3 98 5 35 55 5 146 

8.20 2 19 78 1 52 3 15 81 1 128 2 32 65 1 168 

8.26 0 0 100 0 66 0 0 100 0 158 0 0 100 0 253 

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), La Ola (LO) 
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Figure A.5.  Pareto-optimal sets for the (a) 97th, 98th, 99th, and 99.5th percentiles and 
(b) 99th, 99.5th, 99.9th, 99.99th, and 99.999th percentiles. The standard deviation of the 
geographic allocation (as a fraction of the total) is shown as a color swathwhere darker 
color indicates low deviation and lighter color indicates a single site has a majority 
allocation. 

 
Taking a more expanded view of the high end of ramp rate space, Figure A.5b 

shows ramp rate percentiles up to the 99.999th percentile. The space between this 

percentile and the 100th percentile is spanned by only 43 data points. More than 1 year 

of data is needed to provide statistical context for percentiles beyond the “five nines” 
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level; this was the maximum percentile considered here. At the 99.999th percentile, a 

more than 50% reduction in the magnitude of extreme ramps can be achieved with only 

a 3% drop in energy produced when site allocations are properly selected. In Figure 

A.5b, the color shading indicates that for lower ramp rates, geographic allocation was 

more evenly distributed. As shown, for each energy level, the site weightings appeared 

somewhat independent of ramp rate percentile. This was a positive result, because it 

implied that geographic dispersion lowers ramp rates at every level. The multi-objective 

optimization was run to simultaneously minimize two ramp rate percentiles (99th and 

99.99th) while maximizing energy. The result indicated that the geographic allocation 

used to reduce ramp rates in one percentile was beneficial to the other. This means that 

optimal solutions at low ramp rates have similar site allocations, a fact not clear from 

looking at the standard deviation of weights alone. The three-dimensional plot is not 

shown because perspective effects make it difficult to interpret on the written page. The 

site weighting and ramp rates for a selection of points in Figure A.5b are given in Table 

A.2 as a function of energy and ramp rate percentile. 

A system designer is bound by economic constraints and cannot simply minimize 

ramp rate while disregarding a potentially significant drop in energy output. The exact 

requirements are system dependent, but an example case was selected where energy 

was decreased from only the 8.26-MWh maximum to an 8-MWh design point (optimum 

allocation, OPT). The site weights for this case are given in Table A.3; the resulting ramp 

rate percentiles are given in Table A.4. For comparison, Table A.4 also includes the 

ramp rates at different percentiles when all 2MW was allocated to each site separately. 

As expected, the ramp rates of OPT were smaller at all percentiles, but the important 

result was that energy was not significantly reduced from the maximum achievable level. 

In fact, it was significantly higher than could be achieved with 100% allocation at either 
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CC or LO. Comparing OPT to the equal allocation (EQ) case shows that one can reduce 

ramps above OPT, but energy drops by nearly 9% below the maximum and 6% below 

OPT. In the limit of zero correlation of ramp rates between sites, the EQ scenario would 

be the best geographic allocation for ramp rate minimization. Because there is a small 

degree of correlation, even at short time scales, a multi-objective optimization minimizing 

the 99th and 99.99th percentile and ignoring energy output yielded the lowest overall 

ramp rates (minimum ramp allocation, MIN; Table A.4). The MIN results marginally 

improved both ramp rate reduction and energy production above EQ. 

 

Table A.3.  Site geographic allocation percentage for 7 difference scenarios: CC, WW, 
CL, and LO allocate all capacity at a single site; OPT uses weighting for the 8MWh 
design point; EQ equally weights each site; MIN weighting mix shows results from 
minimization of the 99th and 99.99th percentile ramp rates; and LAN is a lanai case 
study. 

  Site geographic allocation [%]  

 Site CC WW CL LO  

 CC 100 0 0 0  

 WW 0 100 0 0  

 CL 0 0 100 0  

 LO 0 0 0 100  

 OPT 9 30 53 8  

 EQ 25 25 25 25  

 MIN 22 26 26 26  

 LAN 13 13 13 61  

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), La Ola (LO), Optimum Allocation (OPT), Equal 

Allocation (EQ), Minimum Ramp Allocation (MIN), Lanai case study (LAN) 
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Table A.4.  Energy production and ramp rates at the 99th, 99.9th, 99.99th, and 99.999th 
percentiles (pct) for 7 different weighting scenarios: CC, WW, CL, and LO show results 
for single site allocation at each respective site; OPT shows results for the 8MWh design 
point; the EQ case uses 25% weight at each site; MIN uses a site mix to minimize ramp 
rates irrespective of energy generation; and LAN is a lanai case study scenario.  

 

Site 
energy 

[MWh/day] 

ramp rate 

[kW/s] 

 

 99
th

 

pct 

99.9
th

 

pct 

99.99
th

 

pct 

99.999
th 

pct 

 

 CC 6.93 86 198 314 401  

 WW 8.19 71 166 266 362  

 CL 8.27 66 158 253 339  

 LO 6.72 78 177 276 358  

 OPT 8.00 41 89 140 189  

 EQ 7.53 35 65 94 127  

 MIN 7.55 35 64 93 126  

 LAN 7.13 49 111 173 225  

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), La Ola (LO), Optimum Allocation (OPT), Equal 

Allocation (EQ), Minimum Ramp Allocation (MIN) , Lanai case study (LAN) 

 

To quantify the level of geographic smoothing of ramp rates, a new metric termed 

“ramp ratio” was introduced. The ramp ratio    
  for the  th site at the  th percentile is 

defined as 

   
  

               

                 
 A.4 

where summation over   is implied by repeated indices. Effectively, ramp ratio compares 

ramping magnitude when all capacity is allotted to a single location to the aggregate 

ramping magnitude in a distributed scenario with allocation weights   . For a time period 

with no variability, such as on a clear day, and assuming all sites are proximal enough 

that the solar resource is nearly the same, the ramp rates of an individual site are a 

result of changes in solar geometry. In this case, the ramp ratio has a value close to 1. 

This corresponds to a high correlation between sites because they increase and 

decrease in unison with the movement of the sun. When there is variability because of 



204 

 

the presence of clouds, the correlation between sites begins to decrease at short time 

scales. This results in compensating ramps and ultimately smoothing when the plants 

are distributed. This characteristic is exhibited as ramp ratios that are greater than 1, 

indicating that the total system output is smoother on a per capacity basis than the  th 

constituent site. The value of the ramp ratio quantifies the level of increased geographic 

smoothing—e.g.,    
     indicates that the aggregate system output is two times 

smoother than site   at the 99th percentile of ramp rates. It may happen that the ramp 

ratio is less than 1. This implies that a particular site is actually less variable than the 

aggregate. In this case, the weights allotted to the sites are obviously not optimal, with 

greater weights allotted to sites with high variability at the expense of low-variability 

sites. In such a scenario, reallocation of capacity would be beneficial.  

Several examples of the ramp ratio    
   are given in Figure A.6 for different 

allocation scenarios across different months. The EQ case (Figure A.6a) shows that 

smoothing is not uniform for all months and tends to be higher during the summer. 

Figure A.6b shows the OPT case. The island of Lanai currently has 1.2MW of PV 

installed at the LO site, so it is of practical interest to look into the scenario where the 

remainder of the 2MW is distributed equally among other sites. Figure A.6c shows the 

Lanai case study scenario (LAN, Table A.3). Overall, compared with Figure A.6b and c, 

EQ has the highest and most consistent    
   , which is to be expected for nearly 

uncorrelated signals. During the winter half-year, WW and CL, the sites near each other, 

have lower    
   in EQ and thus are less variable than CC and LO. This is one reason 

why the OPT case weighted WW and CL more heavily than the other sites. Figure A.6 b 

reflects this increase in weighting because the ramp ratios of WW and CL are more 

uniform throughout the year. These two sites also produce more energy on average and 



205 

 

therefore have a higher weighting in the optimization. The energy generation and ramp 

rates of the LAN scenario are well within the Pareto-inferior region (Table A.4). Figure 

A.6c shows the ramp ratio is lower than OPT or EQ, and in fact dips below 1 in 

November. Ramp ratios below 1 mean that these sites are underutilized in this scenario 

for their ability to decrease ramping during the winter. The previous discussion for ramp 

ratio used the 99th percentile as the baseline for comparison of monthly and inter-site 

variability. Use of a different percentile, specifically higher percentiles, provides a 

different quantification for understanding variability. Extremely large ramp rates—caused 

by the passage of an individual cumulus cloud where the solar collectors transition to 

and from the direct solar beam, along with greater than average cloud enhancement just 

beyond the leading or trailing edge—are infrequent and typically affect only a single site. 

These extreme ramp events at one site will generally not have any correlation to other 

locations. Aggregation of sites under these conditions will therefore invariably result in 

smoothing, which is reflected by higher ramp ratios. The larger the ramp event (and thus 

higher percentile), the larger the inter-site de-correlation; therefore, the ramp ratio tends 

to increase as percentile considered increases. 

The probability distributions (PDFs) of large ramp events are shown in Figure 

A.7. Reviewing the design point case OPT, the ramp rates were reduced significantly 

throughout all four single-site allocation scenarios. The EQ case had the lowest extreme 

ramp rates by a significant margin. The LAN case reduced variability over the single-site 

cases, but ramping was larger than OPT by almost an order ofmagnitude toward the 

upper tail of the distribution, and it generated more than 10% less energy per annum. 

The juxtaposition of the OPT case to that of LAN underscores the benefit of designing a 

system for optimal use of the available solar resource while taking maximum advantage 

of its spatial de-correlation at the time scale considered. 
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Figure A.6.  Monthly ramp ratios for (a) the equal allocation scenario, (b) the 8-MWh 
design point scenario optimum allocation, and (c) a Lanai, Hawaii, case study reflecting 
currently installed capacity at La Ola. 

A.5 Conclusions 

It is well known that geographic dispersion provides a smoother overall output on 

a per capacity basis than centralized generation, but the optimal allocation to generate 

the most energy output while minimizing variability is not widely studied. A multi-

objective optimization scheme was employed to investigate if variability can be 

significantly minimized while maintaining high levels of energy production. It was shown 

that an optimal set of alternative geographic allocation exists to maximize energy 

production and minimize variability. With proper geographic allotment of generation, 
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ramp rates were reduced by 50% whereas energy was reduced by only 3% above the 

maximum production case. A useful result for system designers is that variability can be 

tuned to an acceptable level, with the understanding that if the solution is optimal, then 

energy generation must be compromised, as indicated by the shape of the Pareto-

optimal set. 

 

Figure A.7.  Probability distribution of ramp rates above the 99th percentile. The sign of 
the ramp was not considered. The distribution was scaled such that the probability of all 
ramps above the 99th percentile summed to unity. Allocating all capacity to four sites 
separately is shown (thin lines), along with three multi-site allocation cases (thick lines). 

In addition to showing that there exists a clear energy-variability trade-off, a new 

metric termed the ramp ratio was introduced, which can be used to assess multisite 

geographic allocations and their effect on variability. This ratio shows simultaneously 

how much more smoothing the aggregate system experiences than any individual site, 

and also if any particular site has significantly less variability per unit capacity than the 

other sites in the mix. It is important to note that the ramp ratio was developed to assess 
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optimality of capacity allocation among multiple sites and therefore looking at a single 

site’s ramp ratio in isolation does not provide a complete set of information. The ramp 

ratio can be extended into a curve in the temporal dimension by segmenting the input 

data set (as done in this work), or into the magnitude dimension by looking at different 

percentiles of variability. 

The methods applied here will be extended to other variability criteria beyond 

ramp rates in future work. The metrics of energy and ramp rate are directly derived from 

resource data, but for power systems application at the distribution level, voltage 

fluctuations and cost will be the key metrics optimized in the kind of analysis presented 

here. Additional future work will involve implementing this multi-objective optimization 

with a feeder simulation where economic benefit is maximized and voltage variations are 

minimized. In this study, no restriction was placed on the quanta of generation installed 

at any given site and no site was given a minimum threshold to be considered active. 

For a realistic feeder simulation, generation siting will be practically limited by space 

constraints, and by operations and maintenance constraints. These elements need to be 

included so their impact on the Pareto-optimal set of alternatives can be quantified. 

In effect, this paper creates a framework that can be used by cities and municipal 

utilities that would like to see a high penetration of PV and would be interested in 

reducing variability impacts on the distribution grid. The development that energy and 

variability have a clear tradeoff, and that this trade-off can be optimized for unique 

scenarios, offers an opportunity to communities and utilities to leverage this to their 

advantage. The methods presented can be incorporated into power system design and 

simulation tools so that designers of future PV systems can assess the geographical 

allocations that provide the maximum benefit. This work offers only a glimpse of what 
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can be achieved in maximizing the utility of the solar resource through optimized 

geographic allotment. 

It is important to note that such studies are valuable before deployment of PV. To 

conduct such studies, there is a need to collect high-resolution time-synchronized solar 

radiation data sets for a reasonably extended period of time. Such deployments are 

relatively inexpensive, but can provide a significant level of benefit when planning high 

level penetrations of PV on the distribution grid. 
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