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ORIGINAL RESEARCH

Cardiac MRI is the clinical reference standard for nonin-
vasive evaluation of cardiac function because of its util-

ity for completely visualizing the heart without ionizing 
radiation or dependence on sonographic windows (1–3). 
Ventricular volumetry and ejection fraction provide an as-
sessment of global ventricular function but do not provide 
regional granularity. Clinical assessment of regional myo-
cardial function largely remains a subjective visual task 
by expert readers (4–8). Though the degree of agreement 
among expert cardiac MRI readers has not been estab-
lished, assessment for regional wall motion abnormalities 
is widely practiced clinically because it provides important 
cues for the diagnosis of multiple diseases (9–11), includ-
ing ischemic heart disease.

Strain imaging techniques, first described in the 1980s 
(12), have the potential to provide granular measure-
ments of regional myocardial function. Multiple meth-
ods have been developed, including myocardial tagging 
(12), displacement encoding with stimulated echoes (13), 

strain-encoded MRI (14), and harmonic phase (15) and 
phase-contrast velocity mapping (16,17). Each, however, 
requires acquisition of a dedicated imaging sequence and 
considerable postprocessing analysis. More recently, feature 
tracking strain methods have emerged as an approach for 
retrospective analysis of strain from cine steady-state free 
precession (SSFP) images (18–20), with multiple studies 
showing potential value in measurements of global strain. 
However, while echocardiographic studies have confirmed 
the relationship between regional speckle tracking strain 
and visual grades of myocardial function (21) or myocar-
dial scar (22,23), feature tracking methods lack this evi-
dence base. This may be the result of the limited reliability 
of feature tracking methods for assessing regional wall mo-
tion (23); these methods have shown widely varying ranges 
in healthy individuals (24) and poor agreement with estab-
lished strain imaging techniques (25,26).

Deep learning methods, specifically convolutional 
neural networks (CNNs), have emerged as a powerful 
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Purpose: To assess the feasibility of a newly developed algorithm, called deep learning synthetic strain (DLSS), to infer myocardial veloc-
ity from cine steady-state free precession (SSFP) images and detect wall motion abnormalities in patients with ischemic heart disease.

Materials and Methods: In this retrospective study, DLSS was developed by using a data set of 223 cardiac MRI examinations including 
cine SSFP images and four-dimensional flow velocity data (November 2017 to May 2021). To establish normal ranges, segmental 
strain was measured in 40 individuals (mean age, 41 years ± 17 [SD]; 30 men) without cardiac disease. Then, DLSS performance in 
the detection of wall motion abnormalities was assessed in a separate group of patients with coronary artery disease, and these findings 
were compared with consensus results of four independent cardiothoracic radiologists (ground truth). Algorithm performance was 
evaluated by using receiver operating characteristic curve analysis.

Results: Median peak segmental radial strain in individuals with normal cardiac MRI findings was 38% (IQR: 30%–48%). Among 
patients with ischemic heart disease (846 segments in 53 patients; mean age, 61 years ± 12; 41 men), the Cohen κ among four cardio-
thoracic readers for detecting wall motion abnormalities was 0.60–0.78. DLSS achieved an area under the receiver operating charac-
teristic curve of 0.90. Using a fixed 30% threshold for abnormal peak radial strain, the algorithm achieved a sensitivity, specificity, and 
accuracy of 86%, 85%, and 86%, respectively.

Conclusion: The deep learning algorithm had comparable performance with subspecialty radiologists in inferring myocardial velocity 
from cine SSFP images and identifying myocardial wall motion abnormalities at rest in patients with ischemic heart disease.

Supplemental material is available for this article.
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Algorithm Development and Training Data
DLSS was developed by training a CNN architecture to infer 
pixelwise myocardial velocity fields from short-axis cine SSFP 
image series. Details are provided in Appendix S1. These ve-
locity fields were then used to calculate pixelwise myocardial 
strain rate and strain. To train this CNN, myocardial velocity 
fields from four-dimensional (4D) flow MRI were coregistered 
to cine SSFP images by using in-house custom software to pro-
vide ground truth for velocity field inference. We emphasize 
that this algorithm requires only short-axis cine SSFP images 
for execution, and 4D flow velocity fields were required only 
for algorithm training.

To establish data for deep learning algorithm development, 
we retrospectively collected a convenience sample of 223 cardiac 
MRI examinations in 219 patients, which included short-axis 
cine SSFP and 4D flow as part of routine clinical examinations 
at our institution between November 2017 and May 2021 (Ta-
ble S1). Four-dimensional flow and short-axis cine SSFP images 
were acquired during the same examination for each patient with 
full left ventricle coverage, allowing for coregistration of images. 
Four-dimensional flow MRI sections were corrected for phase 
error (Cardio AI, version 29.4.0; Arterys). Four-dimensional 
flow velocities were then linearly resampled and coregistered 
with cine SSFP images by the lead author (E.M.M.), a 6th-year 
MD-PhD student, using custom in-house software developed 
in Python. Left ventricular myocardial segmentations were per-
formed using commercial software (Cardio AI, version 29.4.0; 
Arterys) (37) and incorporated into algorithm training.

Data were divided into training and validation data sets by 
examination. Ninety percent of examinations (602 short-axis 
sections from 201 examinations) were allocated to the training 
set, and 10% of examinations (65 sections from 22 examina-
tions) were allocated to the validation set for CNN optimization. 
Training data were augmented by in-plane rotation at 15° in-
crements and variable adjustments of image contrast, including 
intensity thresholding and normalization.

Neural Network Architecture
The lead author designed and trained a CNN architecture, 
based on a modified three-dimensional U-Net architecture 
(34), to infer spatiotemporal myocardial segmentations and 
velocity fields from short-axis cine SSFP images (Fig 1, Movie 
1). The CNN was trained on an NVIDIA DGX-A100 graph-
ics processing unit server comprising A100 graphics processing 
units. The CNN takes images from the entire cardiac cycle and 
returns the in-plane myocardial velocity field and myocardial 
segmentations for each time frame, which are postprocessed to 
yield strain rate and strain fields. These are further decomposed 
into radial and circumferential components. Additional details 
regarding CNN architecture and data postprocessing can be 
found in Figure S1. The code for our CNN is available on 
request via GitHub (https://github.com/AiDALabUCSD/DLSS).

Data Acquisition
MRI examinations were performed with either a 1.5-T MRI 
scanner (Signa HDxt; GE Healthcare) or a 3.0-T MRI scan-

technology for the analysis of biomedical image data and are ca-
pable of rapidly performing computational tasks. Applications of 
this technology in cardiac MRI include image classification (27), 
localization (28,29), segmentation (30–32), and image enhance-
ment (33,34). Recent groups have proposed the application 
of deep learning methods to simplify the analysis of dedicated 
strain imaging techniques (35,36). However, a rate-limiting fac-
tor for such techniques requires a separate acquisition of strain 
image data.

We thus sought to develop an alternative strategy, which we 
call deep learning synthetic strain (DLSS), to enable the mea-
surement of myocardial wall motion from cine SSFP images 
routinely acquired at clinical cardiac MRI. We applied this 
approach to first identify normal ranges for strain and strain 
rate in a sample of individuals without cardiac disease and used 
these data to establish thresholds for abnormal myocardial con-
traction. Finally, we evaluated the ability of DLSS to detect 
abnormalities in regional myocardial contraction in a sample 
of patients enriched for wall motion abnormalities, specifi-
cally those with catheter angiography–proven coronary artery 
disease.

Materials and Methods
Our Health Insurance Portability and Accountability Act–
compliant study was performed with institutional review 
board approval, including waiver of informed consent, for the 
development of the algorithm and assessment of retrospective 
patient groups. We obtained written informed consent from 
healthy volunteers according to a separate institutional review 
board protocol for MRI examinations of the volunteers.

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN 
= convolutional neural network, DLSS = deep learning synthetic 
strain, 4D = four-dimensional, ICC = intraclass correlation coef-
ficient, SSFP = steady-state free procession

Summary
A deep learning algorithm was able to infer myocardial velocities and 
quantify strain from cine steady-state free precession images to detect 
wall motion abnormalities in patients with ischemic heart disease, 
performing comparably with subspecialty radiologists.

Key Points
 ■ Normal ranges for segmental myocardial strain and strain rate for 

the deep learning algorithm were measured in 40 individuals with-
out known cardiac disease.

 ■ Subspecialty radiologists showed moderate-to-substantial agree-
ment for the detection of wall motion abnormalities across 846 
myocardial segments in 53 patients with ischemic heart disease 
(Cohen κ, 0.60–0.78).

 ■ Relative to the consensus of four subspecialty radiologists, the 
algorithm detected wall motion abnormalities in patients with 
ischemic heart disease at rest, with an area under the receiver oper-
ating characteristic curve of 0.90 and an accuracy, sensitivity, and 
specificity of 86%, 85%, and 86%, respectively.

Keywords
Neural Networks, Cardiac, MR Imaging, Ischemia/Infarction
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were included in this analysis. We assessed agreement between 
software programs by using the Pearson correlation coefficient.

Assessment of Wall Motion Abnormalities in Patients with 
Ischemic Heart Disease
To assess the utility of DLSS for identifying segmental wall 
motion abnormalities, short-axis cine SSFP images in a sepa-
rate sample of 53 patients with catheter angiography–proven 
ischemic heart disease were curated from those who underwent 
MRI examinations performed between September 2014 and 
December 2020 (Table S4), based on retrospective chart re-
view of patients who also underwent coronary catheterization. 
Only patients with greater than 70% stenosis in at least one of 
the left main, left anterior descending, left circumflex, or right 
coronary arteries were included. None of these overlapped with 
patients used in algorithm development. We calculated strain 
by using DLSS and partitioned it into 16 American Heart As-
sociation segments, excluding the apical segment, for a total of 
848 segments.

To establish a reference standard for the presence of wall mo-
tion abnormalities, four board-certified cardiothoracic radiolo-
gists with 14 (S.K.), 2 (M.H.), 2 (L.D.H.), and 3 (K.J.) years 
of postfellowship experience independently graded each seg-
ment on a 1–4 scale as follows: 1 = normal, 2 = hypokinetic, 3 
= akinetic, and 4 = dyskinetic. Radiologists were provided solely 
short-axis cine SSFP images and were blinded to all other clinical 
and demographic information. Because few dyskinetic segments 
were identified in this group, we pooled dyskinetic and akinetic 
segments for analysis. Segmental wall motion scores for all four 
radiologists were averaged (mean) to serve as consensus ground 
truth for DLSS assessment. Two of 848 segments were excluded 
by readers because off-resonance artifact precluded interpreta-
tion of wall motion. To further analyze the ability of DLSS to 
identify segments with ischemic disease, two board-certified 
cardiothoracic radiologists with 8 (A.H.) and 3 (K.J.) years of 

ner (Discovery MR750 DV26; GE Healthcare). All exami-
nations employed a standard 32-channel phased-array coil. 
Four-dimensional flow MRI was performed at 3.0 T follow-
ing administration of intravenous gadolinium-based contrast 
agent (gadobenate dimeglumine, 0.15 mmol per kilogram of 
body weight) and employed respiratory self-navigation, com-
pressed sensing, and parallel imaging reconstruction (38). 
Additional scanning parameters for algorithm development 
and independent testing data sets are listed in Tables S2 and 
S3, respectively.

Segmental and Global Strain in Individuals with Normal 
Cardiac MRI Findings
To identify normal segmental and global strain ranges for the 
DLSS technique, short-axis cine SSFP series were obtained in 
a separate sample of 40 individuals not included in algorithm 
training or validation sets, composed of 21 healthy volunteers 
and 19 patients with normal cardiac MRI findings (referred 
for iron deposition screening or arrhythmogenic right ven-
tricular cardiomyopathy) from February 2015 and October 
2021. Normal cardiac MRI findings were defined as normal 
ventricular volume and function and an absence of delayed en-
hancement. Additionally, three board-certified cardiothoracic 
radiologists (M.H., L.D.H., K.J.) independently reviewed all 
MRI studies and confirmed the absence of any wall motion 
abnormalities in this group. Images were processed with DLSS 
to yield segmental and global strain measurements. To pro-
vide additional reference points, we measured per-section peak 
radial and circumferential strain by using two commercially 
available feature tracking software programs, Medis (version 
4.0.56.4; Medis Medical Imaging Systems) and suiteHEART 
(version 5.0.3; NeoSOFT) (19). Image file incompatibility er-
rors occurred with Medis in seven of the 40 individuals, ex-
cluding those individuals from this analysis. All 40 individuals 
were successfully analyzed using the suiteHEART software and 

Figure 1: Images show overview of the deep learning synthetic strain (DLSS) approach. A convolutional neural network (CNN) was trained to infer myocardial ve-
locities from a series of cine steady-state free precession (SSFP) images. Training data included coregistered myocardial velocities from cardiac MRI examinations in 219 
patients who underwent four-dimensional flow as part of their clinical examination. The inferred myocardial velocities were then used to calculate myocardial strain rate and 
strain maps, which are superimposed on the source SSFP images for quantification and visual interpretation. This example shows short-axis SSFP images in a 58-year-old 
male patient with normal cardiac MRI findings. LV = left ventricle, RV = right ventricle, 3D = three-dimensional.

http://radiology-cti.rsna.org
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Ranges of Segmental Strain in Individuals with Normal 
Cardiac MRI Findings
Normal DLSS peak radial and circumferential strains for each 
segment are listed in Table 2. Peak radial strain for each seg-
ment is shown in Figure 2. Broadly, we note lower median 
peak radial strain in the anterior, anteroseptal, and inferoseptal 
segments. Peak radial strain was greater in apical segments. In 
contrast, we observed less variability in segmental peak circum-
ferential strain across segments.

In the 21 healthy volunteers, the median peak radial strain 
averaged over all 16 American Heart Association segments was 
35% (IQR: 27%–45%). Median peak global radial strain was 
38% (IQR: 34%–40%). We observed similar values in an in-
dependent group of 19 patients with normal cardiac MRI find-
ings, with median peak radial strain of 41% (IQR: 33%–49%) 
and median global radial strain of 40% (IQR: 38%–47%). 
Pooled median peak radial strain was 38% (IQR: 30%–48%), 
and median global radial strain was 39% (IQR: 36%–44%). 
We observed similar trends for peak circumferential strain 
(Table 2).

Statistical comparisons between peak radial and peak circum-
ferential strain for both groups are provided in Table S5.

Comparison with Feature Tracking
To assess the relationship between strain measurements 
from DLSS and feature tracking, we computed per-section 
radial and circumferential strain by using each method in 
the same cohort of 40 individuals. For DLSS, median per-
section radial and circumferential strains were 40% (IQR: 
35%–45%) and −39% (IQR: −44% to −35%), respectively 
(Fig S2). For Medis, median radial, myocardial circumfer-
ential, and endocardial circumferential strains were 93% 
(IQR: 78%–107%), −21% (IQR: −23% to −18%), and 
−31% (IQR: −35 to −27%), respectively. For suiteHEART, 
median radial and circumferential strain were 65% (IQR: 
54%–78%) and −16% (IQR: −18% to −15%), respec-
tively. There was very weak–to-moderate correlation among 
methods for radial strain (r = 0.18 to 0.49), with the high-
est correlation between suiteHEART and DLSS for radial 

postfellowship experience, also blinded to DLSS algorithm re-
sults, classified the presence or absence of myocardial scar ex-
ceeding 50% of wall thickness in each myocardial segment.

Statistical Analysis
To assess interrater agreement among subspecialty cardiotho-
racic radiologists for grading of wall motion abnormalities, we 
calculated the Cohen κ coefficient and intraclass correlation 
coefficient (ICC) (39). κ values of 0.41–0.60 and 0.61–0.80 
denoted moderate and substantial agreement, respectively 
(40). ICC values above 0.75 were considered excellent (41). To 
evaluate DLSS algorithm performance for detecting wall mo-
tion abnormalities, we generated receiver operating character-
istic curves and reported the area under the receiver operating 
characteristic curve (AUC). The thresholds for discriminating 
normal from abnormal myocardial wall motion were set to the 
25th and 75th percentiles of radial and circumferential strain, 
respectively, of the individuals with normal cardiac MRI find-
ings. Thresholds for akinesis and dyskinesis were defined as 
50% of this threshold. We also reported the mean and SD of 
DLSS-derived strain in segments with and without myocardial 
scar and determined statistical significance using the Student t 
test with a type I error threshold of 0.05 (P < .05).

Statistical analysis was performed using Python (version 
3.7; Python Software Foundation), NumPy 1.21.5, SciPy 
1.7.3, scikit-learn 0.23.2, pingouin 0.5.0, and Excel (version 
2301; Microsoft).

Results

Study Sample Characteristics
Characteristics for the 21 healthy volunteers (mean age, 29 
years ± 5 [SD]; 18 men) and 19 patients (mean age, 55 years 
± 15; 12 men) with normal cardiac MRI findings are sum-
marized in Table 1 and Appendix S1. The mean age of patients 
was higher than that of healthy volunteers (P < .001), with a 
greater number of men than women (P = .001). Fifty-three 
patients (mean age, 61 years ± 12; 41 men) with ischemic heart 
disease were included (Tables 1 and S4).

Table 1: Study Sample Characteristics

Parameter

Normal Volunteer  
MRI Findings 
(n = 21)

Normal Clinical  
MRI Findings
(n = 19)

Ischemic Heart Disease
(n = 53)

Male-to-female ratio 18:3 12:7 41:12
Age (y) 29 ± 5 55 ± 15 61 ± 12

BMI (kg/m2) 24.1 ± 2.9 28.1 ± 6.4 27.2 ± 4.9
BSA (m2) 1.87 ± 0.18 1.89 ± 0.30 1.94 ± 0.23
Heart rate (beats/min) 66 ± 12 66 ± 10 75 ± 21
1.5-T/3.0-T field strength ratio 0:21 3:16 38:15

Note.—Continuous data presented as sample means ± SDs, categorical data as numbers of individuals. BMI = 
body mass index, BSA = body surface area.

http://radiology-cti.rsna.org
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sus abnormal segments, Cohen κ ranged from 0.60 to 0.78, 
indicating moderate-to-substantial interobserver agreement. 
ICC(2,k) was 0.96 (95% CI: 0.93, 0.98). For classification of 
normal versus hypokinetic versus akinetic or dyskinetic seg-
ments, Cohen κ ranged from 0.52 to 0.64, indicating moder-
ate-to-substantial interobserver agreement. ICC(2,k) was 0.97 
(95% CI: 0.95, 0.98). Notably, the maximum difference be-
tween any two readers at any segment was one grade.

strain (Table S6). There was moderate-to-strong correla-
tion among methods for circumferential strain (r = 0.48 to 
0.76), which was highest between suiteHEART and Medis 
for circumferential strain (Table S6).

Reader Agreement for Ischemic Wall Motion Abnormalities
Table 3 shows the interobserver agreement among the four 
cardiothoracic radiologists. For classification of normal ver-

Table 2: DLSS Peak Strain in Volunteers and Patients without Known Cardiac Disease

AHA Segment

Peak Radial Strain (%) Peak Circumferential Strain (%)

Volunteers
(n = 21)

Patients
(n = 19)

Combined
(n = 40)

Volunteers
(n = 21)

Patients
(n = 19)

Combined
(n = 40)

1. Basal anterior 31 (27–38) 37 (32–41) 34 (28–41) −28 (−35 to −22) −41 (−48 to −34) −34 (−42 to −26)
2. Basal anteroseptal 30 (25–35) 34 (29–43) 31 (27–38) −33 (−38 to −26) −36 (−47 to −31) −34 (−41 to −30)

3. Basal inferoseptal 27 (23–32) 34 (26–40) 29 (25–38) −43 (−49 to −26) −42 (−51 to −34) −42 (−50 to −34)
4. Basal inferior 48 (35–53) 49 (41–59) 48 (41–54) −39 (−55 to −28) −37 (−48 to −30) −28 (−54 to −29)
5. Basal inferolateral 46 (40–52) 46 (37–54) 46 (38–53) −38 (−48 to −31) −42 (−48 to −36) −40 (−47 to −34)
6. Basal anterolateral 40 (34–43) 40 (33–48) 40 (34–46) −35 (−39 to −32) −39 (−46 to −30) −36 (−44 to −31)
7. Midventricular anterior 25 (21–30) 32 (28–35) 29 (25–33) −28 (−36 to −21) −38 (−45 to −32) −36 (−39 to −27)
8. Midventricular anteroseptal 27 (20–30) 33 (28–40) 29 (25–38) −28 (−31 to −23) −32 (−43 to −27) −30 (−37 to −26)
9. Midventricular inferoseptal 28 (23–34) 38 (33–45) 34 (28–41) −36 (−42 to −28) −41 (−51 to −29) −40 (−46 to −29)
10. Midventricular inferior 50 (43–58) 51 (45–65) 51 (44–61) −43 (−49 to −34) −47 (−56 to −33) −45 (−54 to −33)
11. Midventricular inferolateral 46 (39–58) 49 (43–56) 48 (40–57) −48 (−54 to −37) −49 (−57 to −42) −49 (−55 to −39)
12. Midventricular anterolateral 33 (31–38) 42 (32–47) 36 (31–45) −29 (−37 to −23) −37 (−46 to −29) −34 (−41 to −26)
13. Apical anterior 25 (19–32) 38 (33–48) 32 (24–45) −30 (−37 to −26) −42 (−48 to −34) −36 (−46 to −27)
14. Apical septal 23 (20–32) 38 (29–46) 31 (22–39) −32 (−42 to −25) −42 (−47 to −37) −39 (−46 to −30)
15. Apical inferior 50 (45–69) 51 (46–61) 50 (45–67) −44 (−51 to −34) −47 (−63 to −42) −45 (−62 to −37)
16. Apical lateral 56 (40–64) 49 (43–57) 50 (41–62) −39 (−51 to −34) −44 (−52 to −39) −41 (−52 to −36)
 Pooled segments 35 (27–45) 41 (33–49) 38 (30–48) −35 (−44 to −27) −41 (−49 to −33) −38 (−30 to −47)

Note.—Data for all myocardial segments are presented as medians, with IQRs in parentheses. AHA = American Heart Association, DLSS 
= deep learning synthetic strain.

Figure 2: Graphs show the distribution of peak radial strain in healthy volunteers and in patients with normal clinical cardiac MRI findings. Deep 
learning synthetic strain (DLSS) algorithm estimates of radial strain were computed in 21 healthy volunteers and 19 patients with normal cardiac MRI 
findings who had been referred for iron deposition screening or for family history of arrhythmogenic right ventricular cardiomyopathy. Both groups 
showed a similar distribution of DLSS-estimated peak radial strain. Boxes represent the IQRs (25th–75th percentiles), and the horizontal lines inside 
the boxes represent the median values of each parameter. Whiskers indicate the 2.5th and 97.5th percentiles. ▪▪▪ indicates outliers. AHA = American 
Heart Association, GRS = global radial strain.

http://radiology-cti.rsna.org
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Deep Learning Detection of Wall Motion Abnormalities
In the DLSS schematic diagram (Fig 1), we show an example 
case of a 58-year-old man with normal cardiac MRI findings 
who initially presented with fatigue and dyspnea on exertion. 
The patient was subsequently found to have no obstructive 
coronary artery disease at coronary artery catheterization. 
DLSS radial strain rate curves were relatively uniform across all 
myocardial segments, with peak segmental strain rates ranging 
from 1.47 Hz to 2.27 Hz. DLSS radial strain curves were also 
relatively uniform across all myocardial segments, with peak 
segmental values ranging from 29% to 47%.

In contrast, a 66-year-old man with a history of coronary 
artery disease and ST-segment elevation myocardial infarction 
presented with intermittent chest pressure and underwent car-
diac MRI 3 days after acute presentation (Fig 3, Movie 2). Car-
diac MRI performed at 1.5 T showed reduced global function 
(left ventricular ejection fraction, 25%). DLSS showed mark-
edly reduced strain rate and strain in the basal anteroseptal and 
inferoseptal segments in addition to multiple midventricular 
and apical segments (not shown) corresponding to the left an-
terior descending territory. Peak radial strain of the anteroseptal 
and inferoseptal segments were 8.4% and −2.2%, respectively, 
far below the normal range. Peak radial strain of the remaining 
segments ranged from 32% to 42%, within the normal range. 
Following administration of intravenous contrast agent, we ob-
served a perfusion defect and transmural delayed enhancement 
in the septal wall. Findings at catheter angiography confirmed 
complete occlusion of the mid left anterior descending artery.

Figure 4 shows receiver operating characteristic curves for 
DLSS detection of segmental wall motion abnormalities. Us-
ing fixed thresholds of peak radial strain to identify wall motion 
abnormalities yielded an AUC of 0.90 (Fig 4A). Similarly, us-
ing segment-specific percentile thresholds of peak radial strain 
yielded an AUC of 0.90. At peak radial strain threshold of 30%, 
DLSS had 86% (95% CI: 85%, 87%) sensitivity, 85% (95% CI: 
79%, 91%) specificity, and 86% (95% CI: 85%, 87%) accuracy 
(Table 4). In comparison, expert reader performance relative to 
the consensus of the remaining three readers ranged from 84% 
to 97% for sensitivity, 78% to 90% for specificity, and 85% to 

93% for accuracy (Fig 4B). For discrimination of hypokinetic 
versus akinetic or dyskinetic segments using a peak radial strain 
threshold of 15%, DLSS had 90% (95% CI: 87%, 93%) sensi-
tivity, 66% (95% CI: 65%, 67%) specificity, and 72% (95% CI: 
71%, 73%) accuracy. Peak circumferential strain was generally 
less reliable for detecting wall motion abnormalities than was 
peak radial strain and had an AUC of 0.87. For identification 
of any wall motion abnormalities, DLSS peak circumferential 
strain threshold of −30% had 83% (95% CI: 82%, 84%) sen-
sitivity, 77% (95% CI: 72%, 82%) specificity, and 82% (95% 
CI: 81%, 83%) accuracy. For discrimination of hypokinetic ver-
sus akinetic or dyskinetic segments, fixed circumferential strain 
cutoff of −15% yielded 73% (95% CI: 71%, 75%) sensitivity, 
72% (95% CI: 70%, 74%) specificity, and 72% (95% CI: 70%, 
74%) accuracy.

We additionally investigated the utility of DLSS for identify-
ing segments with myocardial scar. Of the 846 segments evalu-
ated in patients with ischemic heart disease, 43% (364 of 846 
segments) had delayed enhancement exceeding 50% of myocar-
dial wall thickness. Mean DLSS radial strain was significantly 
lower in segments with delayed enhancement involving greater 
than 50% of myocardial wall thickness (P < .001). DLSS radial 
strain in normal segments was 28% ± 18 and in segments with 
myocardial scar was 18% ± 12. DLSS radial strain was able to 
predict the presence of myocardial scar exceeding 50% of the 
myocardial wall thickness, with an AUC of 0.68.

Potential Applications of DLSS beyond Ischemic Heart 
Disease
To further assess the potential of DLSS in detecting abnormal 
wall motion beyond the group of patients with ischemic heart 
disease, we executed the algorithm on two additional patients.

The first was a 55-year-old man who presented with car-
diac arrest and who had been diagnosed with viral myocardi-
tis 4 months prior to undergoing cardiac MRI. The patient 
was referred to MRI to assess scar for potential implantable 
cardioverter defibrillator placement and was found to have 
normal cardiac MRI findings with no delayed enhancement 
or edema. However, DLSS detected global hypokinesis with 

Table 3: Interrater Cohen κ for Identification of Segmental Wall Motion Abnormalities

Cohen κ Normal vs Abnormal Segments

Reader Reader 1 Reader 2 Reader 3 Reader 4

1 0.75 0.72 0.60
2 0.78 0.62
3 0.60

Cohen κ Normal vs Hypokinetic vs Akinetic or Dyskinetic Segments

Reader Reader 1 Reader 2 Reader 3 Reader 4

1 0.64 0.61 0.52
2 0.62 0.54
3 0.52
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marked hypokinesis at the mid anteroseptal and anterior 
segments, with peak radial strains of 15% and 19%, respec-
tively (Fig 5, Movie 3). Subsequent review of the delayed 
enhancement images showed subtle mesocardial delayed 
enhancement at the mid anteroseptal wall. After requesting 
to perform a second review of short-axis cine SSFP images 
from this patient without clinical history, readers 1, 2, and 
3 interpreted the midventricular sections as globally hypo-
kinetic and did not perceive additional focal wall motion 

abnormality. Reader 4 noted additional focal hypokinesis of 
the mid anterior wall, corresponding with reduced strain de-
tected by DLSS.

The second patient, a 54-year-old man who presented with 
cardiac arrest, was referred for cardiac MRI to evaluate for myo-
cardial scar and viability. The cardiac MRI findings were initially 
interpreted with no wall motion abnormalities or delayed en-
hancement. Catheter angiography findings were also unremark-
able. However, DLSS detected marked dissociation between 

Figure 3:  Example case of a 66-year-old man with catheter angiography–proven left anterior descending coronary artery occlusion. The images show focal wall 
motion abnormality of the anteroseptal (blue arrow) and inferoseptal (purple arrow) walls with decreased peak radial strain and strain rate. Corresponding strain and strain 
rate curves show the severity of this abnormality relative to the other myocardial segments in the same section. Following intravenous contrast agent administration, the septal 
wall shows a matching perfusion defect and transmural delayed enhancement, indicating myocardial ischemia and infarction. LV = left ventricle, RV = right ventricle.

Figure 4: Performance of deep learning synthetic strain (DLSS) in detecting segmental wall motion abnormalities. (A) Receiver operat-
ing characteristic (ROC) curves for discrimination of normal from abnormal (hypokinetic, akinetic, dyskinetic) wall motion, relative to the 
consensus of four subspecialty readers. Orange line shows classification performance of DLSS when using fixed peak radial strain values as 
cutoffs (area under the ROC curve [AUC] = 0.90). Black diamond marks the location of the fixed peak radial strain threshold of 30% on the 
ROC curve. Dashed blue line shows classification performance of DLSS when using peak radial strain percentiles as cutoffs (AUC = 0.90). 
The performances of each reader relative to the average of the other readers are shown in the colored dots. (B) Confusion matrix for the 
performance of DLSS in discriminating wall motion abnormalities, relative to the average of four readers.
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contraction of the septal and lateral walls (Fig 6, Movie 4). While 
the lateral wall contracted, the septal wall showed dyssynchronous 
relaxation with negative radial strain rate; while the lateral wall 
relaxed, the septal wall showed dyssynchronous contraction with 
positive radial strain rate. Electrocardiography helped confirm the 
presence of a complete left bundle branch block, which explains 
the pattern of dyssynchronous myocardial wall motion.

Discussion
In this study, we showed the potential of a deep learning al-
gorithm to quantify strain and strain rate from routine short-
axis cine SSFP MR images. To establish normal ranges for 
segmental radial and circumferential strain, we analyzed seg-
mental strain in 16 American Heart Association segments in 
40 individuals without known cardiac disease. We showed the 
potential of the deep learning algorithm to estimate myocar-
dial strain and specifically showed the relationship between the 
visual detection of wall motion abnormalities and defects in 
segmental myocardial strain. These wall motion abnormalities 

may be evident even at rest in patients with ischemic heart dis-
ease but can be accentuated and more evident with pharmaco-
logic or exercise stress. We observed high agreement (Cohen κ, 
0.60–0.78) between the algorithm and four expert subspecialty 
radiologists. While expert visual assessment is already the clini-
cal reference standard for detecting wall motion abnormalities, 
this high level of agreement provides additional support. These 
values are comparable with or slightly higher than those re-
ported in previous studies (42,43). DLSS identified wall mo-
tion abnormalities with performance comparable to a ground 
truth defined by the consensus average of four expert readers, 
with an AUC of 0.90 and accuracy of 86%. We further dem-
onstrated additional clinical potential of DLSS beyond isch-
emic heart disease in exemplar patients with viral myocarditis 
and left bundle branch block.

Our ranges of globally averaged radial and circumferential 
strain in individuals without cardiac disease are comparable to 
those of previous studies, though it is important to note that 
meta-analyses have illustrated considerable variability among 

Table 4: DLSS Performance Using Fixed Peak Strain Cutoffs

Task Metric Cutoff (%) Sensitivity (%) Specificity (%) Accuracy (%)

Normal vs abnormal segments Fixed peak radial strain 30 86 (85, 87) 85 (79, 91) 86 (85, 87)
Fixed peak circumferential strain −30 83 (82, 84) 77 (72, 82) 82 (81, 83)

Hypokinetic vs akinetic or 
dyskinetic segments

Fixed peak radial strain 15 90 (87, 93) 66 (65, 67) 72 (71, 73)
Fixed peak circumferential strain −15 73 (71, 75) 72 (70, 74) 72 (70, 74)

Note.—Values in parentheses are 95% CIs. A 30% peak radial strain corresponds to the 25th percentile of peak radial strain measurements 
in individuals without known cardiac disease. A −30% peak circumferential strain corresponds to the 75th percentile of peak circumferen-
tial strain measurements in these individuals. DLSS = deep learning synthetic strain.

Figure 5: Images in a 55-year-old man with cardiac arrest 4 months prior with viral prodrome and presumed myocarditis with negative findings from myocardial bi-
opsy. MR images show hypokinesis of the mid anteroseptal (blue arrow) and anterior (green arrow) wall evident on deep learning synthetic strain (DLSS)–derived peak ra-
dial strain rate and strain maps. Image after administration of intravenous contrast agent (image on right) shows only subtle mesocardial enhancement of the mid anterosep-
tal wall. Without DLSS strain maps, this case was initially interpreted clinically as having normal cardiac MRI findings. Peak segmental radial strain is shown in bull’s-eye plot.
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methods and samples of healthy individuals used in each study. 
A large meta-analysis comparing displacement encoding with 
stimulated echoes, feature tracking, and speckle tracking echo-
cardiography found mean global radial strain in healthy indi-
viduals to be 24.3% (95% CI: 16.2%, 32.3%), 34.1% (95% CI: 
28.5%, 39.7%), and 47.3% (95% CI: 43.6%, 51.0%), respec-
tively (24). There is also wide variation of global circumferential 
strain in healthy participants between methods with values rang-
ing from −17.8% (IQR: −16.4% to −19.5%) for tagging (25) to 
−23.4% (wide reported range of normal, up to −30%) (44) and 
−31.9% (95% CI: −23.1% to −40.6%) (45) for strain-encoded 
MRI and speckle tracking echocardiography, respectively. In 
our comparative analysis, DLSS and feature tracking methods 
showed considerable differences in strain values in individuals 
with normal cardiac MRI findings. However, DLSS radial strain 
showed greater similarity to the published literature using echo-
cardiographic and MRI strain techniques. Moreover, reliable 
feature tracking for regional strain requires expert manual cor-
rection of myocardial fiducials beyond segmentation of the en-
docardium and epicardium for global strain (46) and is known 
to have considerable intervendor variability (19). Given that our 
deep learning method directly infers myocardial velocity from 
images rather than tracking individual points on the myocardial 
boundaries, the method requires no segmentations or manual 
interventions for measurement of regional strain, permitting 
rapid and user-independent measurements. While feature track-
ing has shown good reproducibility and interobserver agreement 
for global strain, it is less reliable for regional strain (47,48). It 
is important to note that DLSS was implemented with a single 

multitask CNN that fully addressed the inference of pixelwise 
myocardial motion and its quantification as a complete end-to-
end solution. This multitasking strategy allowed us to train this 
algorithm with only a few hundred MRI examinations span-
ning a variety of clinical indications. A few other studies have 
explored the potential of deep learning to estimate myocardial 
motion from cine SSFP images (49–53), but they required mul-
tiple CNNs to accomplish multiple component tasks.

Several study limitations should be considered. First, all train-
ing data were acquired at 3.0 T using an MRI scanner from a 
single vendor at our institution. However, we established normal 
ranges for the DLSS algorithm and evaluated its performance in a 
relatively broad sample of healthy volunteers and clinical patients 
scanned with multiple 3.0-T and 1.5-T MRI scanners, which pro-
vides evidence of broader generalizability than might be expected 
considering the differences in blood pool–myocardial contrast and 
increased off-resonance band artifacts at different field strengths. 
Prior works have similarly observed broader generalizability of im-
age segmentation (32) and image enhancement (33) algorithms. 
Further work may be necessary to show generalizability to MRI 
studies from multiple vendors and across multiple institutions and 
to assess the test-retest reproducibility and the effect of scan param-
eters such as field strength. To further establish normal reference 
ranges of strain for the DLSS algorithm, future studies may involve 
tabulation of strain from broader populations that span a range 
of age, sex, and other demographic variables. Second, we did not 
directly compare DLSS performance against prospective methods 
of assessing regional myocardial strain, though global averages of 
DLSS strain measurements largely agreed with prior studies using 

Figure 6: Images in a 54-year-old man with ventricular dyssynchrony with dissociation of contraction of the septal and lateral walls caused by left bundle branch block, 
visualized and quantified with deep learning synthetic strain (DLSS). Top row, left two images: MR images early in the cardiac cycle show that while the anterolateral wall 
(yellow arrow) contracts, the inferoseptal wall (purple arrow) relaxes. Bottom row, left two images: MR images show that the inferoseptal wall (purple arrow) then contracts 
while the anterolateral wall (yellow arrow) relaxes. Strain rate curves highlight the dissociation between these segments. Electrocardiogram (right) shows a left bundle 
branch block. BPM = beats per minute.
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other methods. Direct comparisons of this and future iterations of 
this approach may nevertheless be helpful to explore in future in-
vestigations. Third, in our current study, we specifically sought to 
correlate visible wall motion abnormalities with DLSS-computed 
strain. With respect to coronary artery disease, future work may 
assess whether DLSS can also identify regions of ischemia-induced 
wall motion abnormalities following the application of exercise or 
pharmacologic stress. It is possible that deep learning algorithms 
trained from other sources of myocardial velocity or strain data 
could provide similar results. This may be another avenue of fu-
ture investigation. Finally, we have shown only results for DLSS 
to compute in-plane strain in short-axis cine SSFP images. Fu-
ture work may include extension of the deep learning approach 
to long-axis images for automated measurement of regional lon-
gitudinal strain and extension to the right ventricle, permitting 
rigorous analysis of strain using multiple imaging planes and direct 
comparison against echocardiographic strain.

In conclusion, computation of regional myocardial strain 
from cardiac MRI has traditionally required either dedicated 
acquisitions of strain imaging pulse sequences or substantial 
manual postprocessing. We show that a newly developed deep 
learning algorithm, trained with 4D flow MRI velocity data, 
can estimate regional myocardial strain and that thresholding 
strain measurements is comparable to subspecialty radiologists 
for detecting focal wall motion abnormalities. To our knowl-
edge, this is the first automated cardiac MRI analysis algorithm 
that has shown utility for detecting regional wall motion ab-
normalities, particularly abnormalities of regional radial strain 
and regional circumferential strain. DLSS is distinct from pre-
vious approaches in that no fiducial markers or manual seg-
mentations are required—instead, it performs the complex vi-
sual tasks of inferring myocardial velocity solely from anatomic 
image data for each frame over an entire cardiac cycle. Given 
its utility for fully automating the analysis of myocardial strain 
from historical imaging data, DLSS and similar algorithms 
may enable larger-scale studies to study regional myocardial 
strain, including disease states beyond ischemic heart disease.
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