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University of California, Irvine–Edwards Lifesciences Foundation Cardiovascular Innovation and Research

Center, and Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United

States of America

* mjcolebank@gmail.com

Abstract

In-vivo studies of pulmonary vascular disease and pulmonary hypertension (PH) have pro-

vided key insight into the progression of right ventricular (RV) dysfunction. Additional in-sil-

ico experiments using multiscale computational models have provided further details into

biventricular mechanics and hemodynamic function in the presence of PH, yet few have

assessed whether model parameters are practically identifiable prior to data collection.

Moreover, none have used modeling to devise synergistic experimental designs. To

address this knowledge gap, we conduct a practical identifiability analysis of a multiscale

cardiovascular model across four simulated experimental designs. We determine a set of

parameters using a combination of Morris screening and local sensitivity analysis, and test

for practical identifiability using profile likelihood-based confidence intervals. We employ

Markov chain Monte Carlo (MCMC) techniques to quantify parameter and model forecast

uncertainty in the presence of noise corrupted data. Our results show that model calibration

to only RV pressure suffers from practical identifiability issues and suffers from large fore-

cast uncertainty in output space. In contrast, parameter and model forecast uncertainty is

substantially reduced once additional left ventricular (LV) pressure and volume data is

included. A comparison between single point systolic and diastolic LV data and continuous,

time-dependent LV pressure-volume data reveals that at least some quantitative data from

both ventricles should be included for future experimental studies.

Author summary

Computational models of cardiac dynamics are becoming increasingly useful in under-

standing the underlying mechanisms of disease. In-silico analyses are especially insightful

in understanding pulmonary vascular disease and eventual RV dysfunction, as these con-

ditions are diagnosed months to years after disease onset. Many researchers couple

computational models with in-vivo experimental models of PH, yet few ever assess what

data might be necessary or sufficient for parameter inference prior to designing their

experiments. Here, we considered a multiscale computational model including sarcomere
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dynamics, biventricular interactions, and vascular hemodynamics, and assessed whether

parameters could be inferred accurately given limited cardiac data. We utilized sensitivity

analyses, profile likelihood confidence intervals, and MCMC to quantify parameter influ-

ence and uncertainty. We observed that RV pressure alone is not sufficient to infer the

influential parameters in the model, whereas combined pressure and volume data in both

the RV and LV reduced uncertainty in model parameters and in model forecasts. We con-

clude that synergistic PH studies utilizing computational modeling include these data to

reduce issues with practical parameter identifiability and minimize uncertainty.

Introduction

Computational modeling, combined with invasive or non-invasive measurements, can forecast

both the onset and worsening of cardiovascular disease [1–3]. More recently, multiscale mod-

els that account for cardiovascular physiology across multiple spatial scales have been devel-

oped [4,5]. The synergistic combination of in-vivo and in-silico methods have had notable

success in understanding the progression of right ventricular (RV) failure in pulmonary hyper-

tension (PH) [6–9]. The left ventricle (LV) and septal wall (S) are highly coupled to RV func-

tion [10]; hence, an impaired RV reduces biventricular energy efficiency and overall LV

function [11]. The use of mechanistic models and their physiologically based parameters can

reveal additional details of PH progression, especially when combined with highly informative

in-vivo data. However, these computational models suffer from numerous parameters and lim-

ited, noisy data available for parameter inference and model calibration [12].

In these situations, a formal identifiability analysis can reveal which parameters to infer,

and which data collection protocols are most informative for the model. There are two main

types of identifiability. Parameters are considered structurally identifiable if the model output

is unique for every unique parameter set. In addition to structural identifiability, parameters

can also be practically identifiable if they can be uniquely determined from limited and/or

noisy data. Structural identifiability assesses the model’s structure, and is determined using

algebraic manipulations of the model [13–15] or by inferring parameters using noise-free,

model generated data [1,16]. Parameters that are deemed structurally identifiable can be

assessed for practical identifiability in the presence of noisy and limited data. This type of anal-

ysis is imperative to inform in-vivo experimental designs for the frequency or quality of

measurements.

Several authors have considered parameter identifiability in the context of cardiovascular

modeling [1,15,17,18]. Pironet et al. [15] pursued a structural identifiability analysis on a six-

compartment model of the cardiovascular system. The study concluded that a combination of

pressure and volume data was necessary to eliminate structural non-identifiability for the 13

parameters in their model. A follow up investigation by Pironet et al. used local sensitivity and

profile likelihood analyses to conclude that only subset of parameters were practically identifi-

able from swine data in the vena cava, aorta, and LV [17]. The studies by Colunga et al. [18]

and Harrod et al. [1] used models including the LV, RV, and both the systemic and the pulmo-

nary circulations. The former [18] used local sensitivity analysis and Markov chain Monte

Carlo (MCMC) methods to deduce identifiable parameter subsets given limited data from

heart transplant patients. The latter study [1] utilized similar sensitivity and MCMC tech-

niques, and tested for structural identifiability by examining the marginal posterior distribu-

tions for each parameter after fitting the model to noise-free, model generated data from

patients with PH due to left heart failure. Both studies found practical identifiability issues in
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the full parameter set, and instead deduced a smaller subset of model parameters that were

both identifiable and physiologically meaningful.

These prior studies did not consider a multiscale model with biventricular interaction. This

latter component is especially important during the progression of PH and during chronic RV

pressure overload [6,10]. The cutting edge reduced order model of biventricular interaction is

the three-segment (“TriSeg”) model developed by Lumens et al. [8]. Two recent studies by van

Osta [5,19] applied sensitivity analysis and uncertainty quantification methods to the TriSeg

model, and identified which parameters were influential on model forecasts of RV, LV, and S

wall strain. These investigations utilized non-invasive clinical data, whereas only a few studies

have used the TriSeg model with in-vivo animal data [4,9,20,21]. Animal models of PH provide

novel insight into PH progression [22,23], yet it is unclear how informative in-vivo data from

these experiments are for calibrating computational models.

To address these gaps in knowledge, this study investigates practical parameter identifiabil-

ity for a multiscale model of biventricular interaction and cardiovascular dynamics. We utilize

sensitivity analyses, the profile likelihood, and MCMC techniques to deduce practical identifia-

bility of the model. We focus on data obtained from four experimental designs; three that are

common for monitoring animal models of PH and focus on the RV [23–25], and an additional

design that utilizes dynamic pressure-volume data in both the LV and RV [26]. We generate

both noise-free and noisy data from the model to test for practical parameter identifiability

and analyze the output uncertainty in model simulations and several biomarkers of PH

progression.

Materials and methods

Mathematical model

We consider a multiscale cardiovascular model describing sarcomere-level dynamics, biventri-

cular interaction, and zero-dimensional (0D) hemodynamics. We summarize the mathemati-

cal model here and relegate individual component details to S1 Text.

The model consists of nine compartments: the systemic and pulmonary arteries and veins,

the left and right atria, and a model accounting for interactions between the LV, RV, and S. A

model schematic is provided in Fig 1.

Sarcomere model

The sarcomeres in the atrial, ventricular, and septal walls are modeled as two passive elastic

elements in parallel with an elastic and contractile element in series [27]. The contractile

Fig 1. Model schematic. The computational model here consists of a lower order simulator of sarcomere dynamics

within the left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV), and septum (S). The LV, RV,

and S are simulated using the TriSeg model [8], and account for biventricular interaction. Lastly, a circuit model is

used to describe the systemic arteries (SA) and veins (SV), as well as the pulmonary arteries (PA) and veins (PV).

https://doi.org/10.1371/journal.pcbi.1010017.g001
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sarcomere length, Lsc (μm), and contractility, Γ (dimensionless), are dictated by ordinary dif-

ferential equations [28]. As described by Lumens et al. [8], changes in sarcomere length, Ls
(μm), are dependent on myocardial strain, εf (dimensionless), while changes in Γ depend on

Lsc and time t (s). Cardiac contractility is modeled as the sum of a rise and decay function,

describing the binding of crossbridges, calcium fluctuations, and detachment of crossbridges

during diastole. Active stress, Gact (KPa), is determined as a function of Lsc and Γ, whereas pas-

sive stress due to structural properties of the extracellular matrix, GECM (KPa), and the giant

protein Titin, GTinin (KPa), are strictly a function of sarcomere length. The total stress gener-

ated from the sarcomere is then the sum of the active and passive stresses

GTot ¼ GactðLs; Lsc;GÞ þ GECMðLsÞ þ GTitinðLsÞ ð1Þ

This subcomponent of the model constitutes a total of 27 parameters: 13 shared between

the two atria, 13 shared between the LV, RV, and S, and a parameter describing the time delay

of atrial contraction (see S1 Text).

TriSeg Model

The sarcomere model is embedded within a cardiac tissue model of atrial dynamics and biven-

tricular interaction (the “TriSeg” model [8]), and relates changes in blood volume V(t) (μl) to

myocardial strain εf, using

εf ¼
1

2
ln

Am

Am;ref

 !

�
1

12
z2 � 0:019z4; z ¼

3CmVwall

2Am
ð2Þ

Here, Am (mm2) is the current mid-wall area of the chamber, Am,ref (mm2) is the reference

mid-wall area, and z (dimensionless) is a curvature variable related to the ratio of wall volume,

Vwall (mm2), and radius of mid-wall curvature Cm (mm-1) [8]. Once εf has been calculated and

the corresponding GTot is obtained from the sarcomere model, the mid-wall tension can be cal-

culated as

Tm ¼
VwallGTot

2Am
1þ

z2

3
þ

z4

5

� �

: ð3Þ

A balance in axial and radial tensions, Tx and Ty (see S1 Text), is enforced
X

i¼LV;RV;S

Tx;i ¼
X

i¼LV;RV;S

Ty;i¼0 ð4Þ

providing two differential algebraic equations [29]. The cavity tensions are used to calculate

the cavity pressures (see S1 Text). In total, the cardiac chambers and TriSeg model contribute

two algebraic constraints in Eq (4), five wall volume parameters (Vwall), and five reference area

parameters (Am,ref).

Hemodynamics model

The systemic and pulmonary arteries and veins are modeled as compliant compartments, with

resistance elements between each compartment or cardiac chamber [18,30]. In brief, changes

in V, flow q, μl/s, and pressure p (KPa) are related via an electric circuit analogy

dV
dt
¼ qin � qout; ð5Þ
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p ¼
ðV � VunÞ

C
; ð6Þ

q ¼
pin � pout

R
; ð7Þ

where the subscripts in and out denote the compartments before and after a model compo-

nent, Vun (μl) is the unstressed volume assumed at zero pressure (see S1 Text), C (μl KPa-1) is

the vascular compliance, and R (KPa s μl-1) is the resistance between compartments. Finally,

we model the two atrioventricular valves (mitral and tricuspid), the two semilunar valves (aor-

tic and pulmonic), and the resistor between the systemic veins and right atrium as diodes

qval ¼

pin � pout

R
; pin > pout

0; else:
ð8Þ

8
<

:

The hemodynamics model consists of eight differential equations for Vi(t), eight resistance

parameters, and four compliance parameters.

Summary

The multiscale model consists of 18 differential equations (describing Lsc, Γ, and V), two alge-

braic constraints (Eq (4)), and a total of 49 parameters. Due to the algebraic constraints, the

model constitutes a system of differential algebraic equations (DAEs) and is solved using the

variable-step, variable-order ode15s solver available in MATLAB (Mathworks; Natick, MA).

Fig 2 shows nominal model predictions as well as the noise-corrupted data used in Bayesian

parameter inference, discussed later.

Model sensitivity

Sensitivity analysis is an a posteriori identifiability method for determining which parameters

are influential on a model output [15]. Local sensitivity analysis perturbs parameters one at a

Fig 2. Nominal simulations and noise corrupted data. The nominal simulations are generated to match the data range reported by Philip et al. [23] in sham

mice. Noise corrupted data is generated by adding additive, Gaussian errors with mean zero and a variance of 1.

https://doi.org/10.1371/journal.pcbi.1010017.g002
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time, and typically utilizes finite-difference approximations [30,31]. In contrast, global sensitiv-

ity analysis samples parameters throughout the feasible parameter space, and includes variance

based methods and screening methods [31,32]. We utilize a Morris screening analysis [33] in

combination with a local, derivative based sensitivity analysis to determine parameter iden-

tifiability. We utilize Morris screening over variance based methods since the model parameter

space is large (θ2R49). Prior studies have shown agreement between Morris’ indices and the

total Sobol’ index [34], hence screening can be used to fix non-influential parameters.

The local sensitivity of a model output f with respect to a parameter, θi, is approximated by

the centered difference

Si;f ¼
df
dyi
�

f ðt; θ þ eiDyiÞ � f ðt; θ � eiDyiÞ
2Dyi

ð9Þ

where i = 1,2,. . .49 is the parameter index, f(t; θ) is the quantity of interest from the model, Δθi
is the step change in parameter value, and ei is the i-th unit vector. For time-dependent out-

puts, we consider the 2-norm of the model output, i.e. �Si;f ¼ jSi;f j
2

2
. We account for differences

in parameter magnitude by computing the log-scaled parameter sensitivity [31,35]

~S i;f ¼
df

dlogyi
�

df
dyi

yi ð10Þ

The Morris’ screening approach computes the “elementary effects”

EEi;f ¼
f ðt; θ þ eidÞ � f ðt; θÞ

d
; d ¼

‘

2ð‘ � 1Þ
ð11Þ

where δ(ℓ) is the parameter step size describing the “levels” of effects. Choosing ℓ to be even

provides a more symmetric sampling distribution [33], hence we choose ℓ = 60 giving δ�0.51.

Note that EEi,f is a coarser approximation of model sensitivity than Si,f, but is qntified over a

larger parameter space. We scale parameters from their original value to the interval [0,1] as

done previously [34], and utilize the algorithm provided by Smith [12] to construct our sam-

pling methodology. The indices from the Morris method are determined from K random ini-

tializations of the parameter vectors and are defined by

mi;f ¼
1

K

XK

j¼1

EEj
i;f ; m

�

i;f ¼
1

K

XK

j¼1

jEEj
i;f j; s

2

i;f ¼
1

K � 1

XK

j¼1

ðEEj
i;f � mi;f Þ

2
: ð12Þ

Here, μi,f is the average of EEi,f, m
�
i;f is an improved metric for average model sensitivity [34],

and s2
i;f is the variance of EEi,f. We use the combined index, Mi;f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�i;f

2 þ s2
i;f

q
, to measure a

parameter’s influence [36].

Small values of either the local sensitivity index �Si;f or the screening index Mi,f indicate that

a parameter is non-influential, i.e. it has minimal effect on f. As discussed next, these indices

assess whether a model parameter is practically identifiable.

Practical parameter identifiability

In this work, we assess practical parameter identifiability using three techniques. The first is

through the local and global sensitivity metrics discussed above. Next, we consider the profile

likelihood, which provides information about whether each θi is identifiable from a given set

of data. Lastly, we use MCMC methods for Bayesian inference, and utilize the marginal poste-

rior distributions to assess parameter identifiability.
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Sensitivity based identifiability

Parameters that have little effect on the model output are considered practically non-identifi-

able, since they do not affect the quantity of interest [12], and should be fixed before conduct-

ing inference. We employ a two-part parameter fixing methodology using the results from

Morris screening and local sensitivity analysis.

A parameter is deemed non-influential for all outputs f if its index Mi,f is less than the aver-

age �Mf for all parameters i = 1,2,. . .,P

Mi;f <
�Mf ¼

1

P

XP

j¼1

Mj;f ; 8f ; ð13Þ

where f is one of the model outputs [5,32]. Parameters that are less than this threshold for all

outputs are considered non-influential for inference and are fixed.

After using the Morris screening approach, the subset is analyzed by conducting a local sen-

sitivity analysis around the nominal parameter values. The Fisher information matrix,

F ¼ S>f Sf , must be non-singular for gradient based parameter estimation, hence its utility in

parameter identifiability [37]. If F is invertible but has a large condition number (e.g., on the

order of 1e8), then some of the sensitivities are nearly linearly dependent and the subset

requires further reduction. We use an eigenvalue-eigenvector analysis method via the singular

value decomposition (SVD) to determine which parameters cause the ill-conditioning of F
[14,38], and fix these parameters at their nominal value.

Profile likelihood

The most common and robust technique for assessing practical identifiability is the profile

likelihood [13,15]. This technique increments a fixed parameter, θi, while minimizing the neg-

ative log-likelihood for all other parameters in the subset, i.e.

PLðyiÞ ¼ min
y6¼i
� LLðy j yÞ; LLðy j yÞ ¼ �

1

2

XK

K¼1

XN

n¼1

� ðykn � fkðtn; yÞÞ
2

s2
k

ð14Þ

Where yk is the k-th data source, fk is the corresponding model output, LL(y|θ) is the log-likeli-

hood, s2
k is the noise variance for the data source, and N is the number of data points. The cor-

responding profile likelihood confidence intervals for θi are [13]

CIðyiÞ ¼ fyij2PLðyjÞ � � 2LLðyjθÞ þ icdf ðw2

1
; aÞg: ð15Þ

Each CI(θi) is constructed around the optimal estimate, θ�, and depends on the inverse

cumulative distribution function of the chi-squared distribution, icdf ðw2
1
; aÞ, with one-degree

of freedom and confidence level α [13]. If PL(θi) is completely flat (e.g., CI(θi) is infinite), then

θi is deemed structurally non-identifiable and cannot be uniquely determined due to model

structure. If only one side of PL(θi) is flat, then θi is considered practically non-identifiable, and

could become identifiable if more data was available for inference [16].

Bayesian inference

We assess the parameter identifiability in the presence of noise using Bayesian parameter infer-

ence. Using MCMC for Bayesian inference is more computationally expensive than gradient

based optimization, but provides detailed insight into parameter relationships and avoids local

minima in the likelihood [39–41]. We use the DRAM algorithm [42], which is described in

depth elsewhere [31,43]. In short, the goal of MCMC is to approximate the posterior
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distribution

θjyð Þ ¼
LðyjθÞ ðθÞ

R

O
LðyjθÞ ðθÞdθ

ð16Þ

where ðθÞ is the prior distribution, L(y|θ) is the likelihood, and the denominator of Eq (16)

is a normalization factor. Model parameters are sampled from a proposal distribution to com-

pute the likelihood L(θ�|y), where θ� is the proposed parameter values. The proposed parame-

ter vector is accepted if the ratio of the likelihood values between θ� and the previous value of θ
are greater than some random realization from a unit normal distribution. To reduce parame-

ter stagnation or random-walk behavior, a second proposal parameter set is generated from a

narrower distribution if θ� is rejected [43]. The DRAM algorithm updates the covariance

matrix of the proposal after sequential adaption intervals, improving the proposed values of θ�

[43].

We utilize DRAM on a set of noisy data, generated by the model at the nominal parameter

values and corrupted with noise. To ensure adequate parameter space coverage and test the

robustness of the MCMC, we first generate twelve random samples of our parameter subset

and initialize a gradient based optimization that minimizes the residual sum of squared errors

for the given experimental conditions (defined in the next section). Each optimal parameter

vector, θSSE, is used as a starting value for an instance of DRAM, and the Hessian matrix

obtained from the optimization is used as the initial covariance matrix to preserve possible

sampling asymmetry [12]. We implement this using the freely available DRAM package devel-

oped Haario et al. [42] in MATLAB. In situations where the model is unstable or crashes, we

return a large value for the residual sum of squares [39]. We assess parameter identifiability by

visualizing the marginal posterior densities ðyijyÞ); longer, unbounded tails in the posterior

suggest issues with parameter identifiability. We assess MCMC convergence by looking at the

median acceptance rate across chains as well as the potential scale reduction factor (PSRF) and

multivariate PSRF (MPSRF). As suggested by Roy [44] we use a PSRF and MPSRF cutoff of 1.1

as an indicator of MCMC convergence.

Simulated experiments and additional outputs

Several experimental designs are commonly used for in-vivo PH studies [23,24]. We are inter-

ested in using the computational model to infer parameters indicative of heart function;

hence, we consider different assortments of ventricular pressure and volume data. Our experi-

mental designs are:

1. Dynamic measurements of RV pressure (f
1
¼ ½pRVðtÞ�);

2. Dynamic measurements of RV pressure and volume (f
2
¼ ½pRVðtÞ;VRVðtÞ�);

3. RV pressure and volume measurements, as well as systolic and diastolic pressure and vol-

ume in the LV (f
3
¼ ½pRVðtÞ;VRVðtÞ; pLV;sys; pLV;dias;VLV;sys;VLV;dias�); and

4. Dynamic measurements in both the RV and LV (f
4
¼ ½pRVðtÞ;VRVðtÞ; pLVðtÞ;VLVðtÞ�).

The first two scenarios correspond to in-vivo recordings from pressure [24] or pressure-vol-

ume catheters [3,23]. The third includes additional information on the LV obtained by echocar-

diography [23]. Finally, the fourth experimental design represents a realistic, but underutilized,

scenario that includes pressure-volume measurements in both the RV and LV [11,26].

We perform all sensitivity and identifiability analyses with respect to the pressure and vol-

ume forecasts considered in the four experimental designs above. Noisy pressure and volume
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data are generated by adding zero mean, white Gaussian noise, with a variance of 1 mmHg

and 1 μl, respectively. Parameter subsets for each experimental design are contrasted, with a

common subset determined across all designs. To better understand the consequences of lim-

ited data, we construct profile likelihood confidence intervals and analyze the parameter poste-

rior distributions for each design. In the latter case, we compare the maximum a posteriori
estimates with the known, data generating parameters. Lastly, we propagate uncertainties in

the model parameters to simulated outputs via the posterior distributions. This includes LV,

RV, and S engineering strain [19] as well as mean pulmonary artery pressure, RV stroke vol-

ume (the difference between end-diastolic and end-systolic volumes), pulmonary arterial ela-

stance (the difference in mean pulmonary artery and left atrial pressure over stroke volume),

RV end-systolic elastance, and RV ventricular-vascular coupling [23]. A graphical summary of

the proposed parameter reduction workflow using sensitivity analyses, profile likelihood, and

MCMC is provided in Fig 3. The source code of the mathematical model and relevant analyses

can be found at https://github.com/mjcolebank/Colebank_Identifiability_2022.

Results

Before beginning the sensitivity analysis, several parameters were excluded for physiological

reasons. For instance, the reference length of the sarcomeres, Ls,ref were excluded from analysis

since these values are consistent across experimental designs. Table 1 summarizes the model

parameters that are considered in our analyses. A detailed description of how parameter values

are calculated can be found in the S1 Text. The ODE solver error tolerance is set to 10−12 to

ensure smooth solutions, and the model is run for 60 cardiac cycles establish convergence to

steady state. Simulation time ranges from 7–9 seconds depending on the parameters specified.

We ran the Morris screening algorithm using 100 randomized initializations. Fig 4 shows

the parameter ranking Mi,f using the mean effect μ� and corresponding variance s2 for the RV

and LV pressures and volumes. See S1 Text for individual results from the Morris screening

analysis as well as parameter bounds for sampling. Sensitivity results were analyzed by com-

paring the parameter ranking Mi,f to the mean effect �Mf for each ventricular pressure and vol-

ume. All four compliances were consistently ranked within the most influential parameters,

Fig 3. Workflow schematic. The initial set of 49 parameters is reduced to 38 due to apriori parameter fixing. Morris

screening is used to confirm which parameters are on average the most influential on the four model outputs. This

reduces the parameter set from 38 to 17 parameters. A local sensitivity analysis using the different experimental

designs as the quantities of interest is used to determine if any parameters show local interdependence in their

sensitivities, which suggests possible practical non-identifiability. If the Fisher information matrix constructed from

the model sensitivity is ill-condition, the least influential parameters of the subset are fixed. This reduces the parameter

subset from 17 parameters to a set of 13 parameters. Lastly, the parameters and experimental designs are subjected to

profile likelihood analysis and MCMC to test for practical identifiability.

https://doi.org/10.1371/journal.pcbi.1010017.g003
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while other parameters describing cardiac chamber dynamics (e.g., Am,ref) varied with the out-

put. We fixed parameters that were less influential than �Mf for all four outputs (i.e., pressure

and volume in the RV and LV). This reduced our parameter subset from 38 to 17 parameters,

shown in Table 2.

We conducted a local sensitivity analysis on the reduced subset of 17 parameters using the

designs f1, f2, f3, and f4 as the quantity of interest. The local sensitivity of these designs with

respect to the 17 parameters are used to construct the Fisher information matrix, F. Using the

SVD decomposition, we reduced the parameter subset until cond(F)�108 for each design, pro-

viding a subset of 13 parameters deemed practically identifiable for all four designs. Parameters

fixed by the SVD method included mitral valve resistance, Rm,val, and compliance in the sys-

temic arteries, systemic veins, and pulmonary veins (Csa, Csv, and Cpv, respectively). This final

subset, shown in Table 2, was used in the profile likelihood and MCMC analysis.

Profile likelihood-based confidence intervals are constructed using the noise-free, model

generated data. We construct the confidence intervals ±50% away from the true parameter

value, with the confidence level cutoff for each design calculated using Eq (15) with an α = 0.95

confidence level. The profile likelihood results, displayed in Fig 5, show that only the last

experimental designs, f4, provided finite confidence bounds for all 13 parameters. Sharp edges

in the profile likelihood correspond to local minima and/or incompatible parameter sets corre-

sponding to a failure in the DAE solver. For example, large values of Vwall in combination with

small values of Am,ref can lead to negative chamber volumes because of inadequate filling, mak-

ing the parameter choice non-physiological. The parameters Am,ref,RV, τrise,V, τdecay,V, τsys,V,

Rsys, and Cpa were identifiable for all four experimental designs. The remaining seven parame-

ters (Vwall,LV, Vwall,RV, Vwall,S, Am,ref,LA, Am,ref,LV, σact,V, and Rpulm) varied in their identifiability

with each experimental design.

Table 1. Parameters, their description, and information regarding the sensitivity analyses. Parameters with the subscript j have atrial and ventricular components.

Parameter Description Used in sensitivity

analyses

Parameter Description Used in sensitivity

analyses

VLA,wall LA wall volume X τoffset,A Offset of atrial systole

VLV,wall LV wall volume X �sact;j Active stress scaling X

VRA,wall RA wall volume X �spas;j Passive stress scaling X

VRV,wall RV wall volume X Ls,pas,ref,j Reference length for passive wall

constituents

VS,wall S wall volume X βpas,j Stiffness of passive element X

Am,ref,LA LA reference area X k1,j Nonlinear scaling of Titin stiffness X

Am,ref,LV LV reference area X Ra,val Aortic valve resistance X

Am,ref,RA RA reference area X Rm,val Mitral valve resistance X

Am,ref,RV RV reference area X Rp,val Pulmonic valve resistance X

Am,ref,S S reference area X Rt,val Tricuspid valve resistance X

Ls,ref,j Reference sarcomere length at zero strain Rvc Vena Cava resistance X

Ls,iso,j Elastic series element length in isometric

state

Rpv Pulmonary venous resistance X

v0,j Velocity of sarcomere shortening X Rsys Systemic circulation resistance X

Lsc,0,j Contractile element length Rpulm Pulmonary circulation resistance X

Γrest,j Resting contractility Csa Compliance of systemic arteries X

τrise,j Rise in contractility scaling X Csv Compliance of systemic veins X

τdecay,j Decay in contractility scaling X Cpa Compliance of pulmonary arteries X

τsys,j Length of systole X Cpv Compliance of pulmonary veins X

https://doi.org/10.1371/journal.pcbi.1010017.t001
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Fig 4. Sensitivity results from the Morris screening algorithm. Parameter ranking is based on the index Mi;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�i;f

2 þ s2
i;f

q
. The dotted

line in each plot denotes the average model sensitivity for each output.

https://doi.org/10.1371/journal.pcbi.1010017.g004
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Noise corrupted data generated by the model is used in the likelihood defined in Eq (14).

We use minimally informative priors (i.e., with a large variance) for each parameter and ini-

tialize the DRAM algorithm using the optimal parameter vector θSSE and estimated covariance

matrix from twelve randomly selected initial guesses. MCMC is run for 50,000 iterations, with

the initial 10,000 being left out as a “burn-in” period. We separate the results from MCMC

into three groups: parameters representing the heart chambers’ geometry (Fig 6), parameters

Table 2. Parameters deemed influential by Morris screening and included in the final subset after using a local

sensitivity based practical identifiability analysis.

Deemed important by Morris Final subset

Parameter prv plv Vrv Vlv

Vla,wall

Vlv,wall X X X

Vra,wall

Vrv,wall X X

Vs,wall X X

Am,ref,la X X

Am,ref,lv X X X X

Am,ref,ra

Am,ref,rv X X X

Am,ref,s

vmax,A

τrise,A
τdecay,A

τsys,A
�sact;A

�spas;A

βpas,A
k1,A

vmax,V

τrise,V X X

τdecay,V X X X

τsys,V X X X X X

�sact;V X X X X

�spas;V

βpas,V
k1,V

Ra,val

Rm,val X X

Rp,val

Rt,val

Rvc

Rpv

Rsys X X X X X

Rpulm X X X

Csa X X X X

Csv X X X X

Cpa X X X X X

Cpv X X X X

https://doi.org/10.1371/journal.pcbi.1010017.t002
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within the sarcomere model (Fig 7), and hemodynamic parameters in the circulatory model

(Fig 8). Three of the twelve MCMC chains as well as the posterior distribution calculated using

kernel density estimation are shown. The posterior distributions are relatively wide when only

using RV pressure data (f1), but additional data in the subsequent experimental designs reduce

the posterior widths. All the marginal posterior distributions contain the true, data generating

parameters, though some of the posteriors’ modes are unaligned with the true parameters.

Additional pairwise plots, provided in S2 Text, suggest some correlation between variables.

One chain using f3 shows tight, narrow correlations, likely due to a poor initialization during

the optimization and inadequate exploration of the parameter space. However, the other

eleven instances suggest minimal correlations between variables for f3. In general, 50,000 itera-

tions appear sufficient for most of the MCMC results; however, the addition of static LV data

with f3 causes some suboptimal mixing for the parameter σact,v. The PSRF for each parameter

and the MPSRF for each design are provided in Table 3. These results suggest that 50,000 itera-

tions of MCMC do not satisfy the cutoff of 1.1 as commonly used. Running an additional

25,000 iterations for each chain (results not shown) reduced the MPSRF slightly, but not below

1.1. The MCMC chains appear to converge quicker when using the most detailed experimental

design, f4. The median acceptance rates for the twelve chains are 29.8%, 21.7%, 36.1%, and

49.0% for designs f1, f2, f3 and f4, respectively.

We propagate the uncertainties in model parameters to the outputs by subsampling from

the posterior distributions. To account for any across chain variation, we draw fifty samples

from the twelve different MCMC instances, giving 600 realizations from the posteriors. Fig 9

displays the noise-corrupted data, average response from the agglomerated samples, and one

standard deviation from the average response. The results from the initial design, f1, show little

uncertainty in RV pressure, but large uncertainty in forecasts of LV pressure and both cham-

ber volumes. In contrast, f2, f3, and f4 show reduced uncertainty once more data is added to

Fig 5. Profile likelihood confidence intervals. Confidence intervals are constructed by fixing one parameter and inferring all others over a range of values.

Each row corresponds to a different experimental design. Note that the minimally informative experimental designs (f1 and f2) have non-identifiable

parameters, indicated by infinite or one-sided confidence bounds. In contrast, inclusion of LV data (f3 and f4) remedy the issue of non-identifiable parameters

in the set. Large deviations in the profile likelihood correspond to local minima and parameter sets that are incompatible for the system of DAE’s.

https://doi.org/10.1371/journal.pcbi.1010017.g005
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the likelihood function. Note that the addition of dynamic LV pressure and volume in f4 had

relatively minimal effects on uncertainty when compared to only including systolic and dia-

stolic values with f3. We recast these results into pressure-volume loops in Fig 10 and provide

the 600 realizations in addition to the agglomerated average and the true model simulations.

Even in the absence of atrial pressure or volume data, additional volume measurements in
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Fig 6. Chain iterations and marginal posteriors after MCMC for the TriSeg parameters. The model parameters indicative of the TriSeg geometry (wall

volume, Vwall, and reference mid-wall area, Am,ref) are shown for each experimental design, corresponding to each column. The true, data generating

parameters corresponding to the outputs in Fig 2 are shown as red lines. Three of the twelve initializations of MCMC are shown in different shades of gray. The

marginal posterior distributions for the simplest experimental design (f1) are much wider than the subsequent more informed experimental designs, suggesting

an improvement in practical identifiability.

https://doi.org/10.1371/journal.pcbi.1010017.g006
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both the LV and RV reduce the uncertainty of atrial dynamics. LV data reduces the uncertainty

substantially in f3 and f4 as shown previously in Fig 9.

In addition to outputs that are linked to the collected data, we investigate the uncertainty in

ventricular wall strain and outcomes typically quantified during in-vivo PH studies.

Fig 7. Chain iterations and marginal posteriors after MCMC for the sarcomere parameters. Similar to Fig 6, three of the twelve MCMC instances are

provided for the sarcomere parameters important for the rise, decay, and length of fiber shortening (τrise,v, τdecay,v, and τsys,v, respectively), and maximal active

force generation (σact,v). Note that all four experimental designs (given by each column) provide sufficient information to the likelihood so that the true data

generating parameters (in red) are within the marginal posteriors.

https://doi.org/10.1371/journal.pcbi.1010017.g007
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Engineering strain for the LV, RV, and S walls are provided in Fig 11. Strains are bounded

between 5% and -20%, and there was a reduction in uncertainty when additional data was

included in the likelihood. Septal strain has only a minor reduction in uncertainty for the first

Fig 8. Chain iterations and marginal posteriors after MCMC for the hemodynamic compartment parameters. As in Figs 6 and 7, three of the twelve

MCMC instances are provided for systemic vascular resistance, Rsys, pulmonary vascular resistance, Rpul, and pulmonary arterial compliance, Cpa. Though the

marginal posteriors do contain the true parameters (in red) within the marginal posteriors for the simplest design (f1, first column), additional data in the other

designs substantially reduce posterior uncertainty.

https://doi.org/10.1371/journal.pcbi.1010017.g008
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three designs, yet using f4 for parameter inference reduces septal strain uncertainty signifi-

cantly. Moreover, using this final experimental design constrains S wall strain to have a similar

shape to that of the LV and RV. Lastly, we quantify changes in mean pulmonary artery pres-

sure, RV stroke volume, arterial and end-systolic ventricular elastance, and ventricular-vascu-

lar coupling for the different experimental designs. Histograms showing the frequency of these

variables using the 600 forward samples are shown in Fig 12. Mean pulmonary artery pressure

and arterial elastance have a comparable histogram width for all four experimental designs. In

contrast, RV stroke volume, RV end systolic elastance, and ventricular vascular coupling have

a larger variance in designs f1 and f3, which is reduced in designs f2 and f4.

Discussion

The present study investigates parameter identifiability for a multiscale model of cardiovascu-

lar dynamics. This work examines four different in-vivo experimental designs using in-silico
modeling, and subsequently compares the reduction in parameter and output uncertainty

under these different designs. In-vivo experimental designs are typically determined before

using in-silico methods to analyze the data [9,30]; however, some studies have considered

using the latter to plan optimal designs a-priori [45].

Sensitivity analyses

Sensitivity analyses are commonly used to reduce parameter sets to a smaller, more influential

group [1,5,18]. We use these techniques to reduce the original set of 49 parameters in the

model to a set of 13 influential parameters. These 13 include those attributed to the TriSeg

geometry, those describing the timing, duration, and active force of sarcomere shortening, and

parameters describing the systemic and pulmonary vasculature. Similar to our analysis, the

study by van Osta et al. [5] used Morris screening and concluded that LV, RV, and S geometry

parameters were most influential on simulations of chamber strain. While chamber strain was

not considered in our experimental design, our results suggest that these same parameters are

Table 3. Potential scale reduction factor (PSRF) and multivariate PSRF (MPSRF) values calculated for each

parameter and the 12 initializations of MCMC, respectively.

Parameter PSRF f1 PSRF f2 PSRF f3 PSRF f4
Vwall,LV 1.07 1.32 1.27 1.39

Vwall,RV 1.28 1.22 1.41 1.22

Vwall,S 1.13 1.08 1.07 1.04

Am,ref,LA 1.26 1.14 1.83 1.01

Am,ref,LV 1.16 1.14 1.08 1.19

Am,ref,RV 1.15 1.09 1.17 1.03

τrise,V 1.10 1.05 1.05 1.22

τdecay,V 1.13 1.06 1.05 1.09

τsys,V 1.07 1.11 1.13 1.23

σact,V 1.12 1.18 1.87 1.35

Rsys 1.10 1.17 2.71 1.05

Rpulm 1.16 1.05 1.52 1.02

Cpa 1.02 1.04 1.10 1.02

MPSRF 1.46 1.43 4.25 1.34

https://doi.org/10.1371/journal.pcbi.1010017.t003
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influential on ventricular pressure and volume simulations. Similar to our results, vas Osta

et al. found a single parameter from the left atrium was influential [5].

We consider pressure and volume in the RV and LV as our outputs of interest, contributing

to the addition of three influential circulatory parameters (Rpul, Cpa, and Rsys). These three

parameters were also influential in the analysis by Harrod et al. [1], who investigated PH due

to LV diastolic dysfunction. The four experimental designs considered in this work focus on

PH and RV function, hence more pulmonary parameters are influential than systemic. An

explanation for the importance of Rsys on RV forecasts is linked to the simplicity of the model.

The total stressed volume throughout the model is held constant, hence changes in resistance

or compliance will alter both pressure and volume distributions. Thus, Rsys can have system

wide effects (e.g., on RV pressure), whereas in-vivo there are mechanisms, such as the barore-

flex, that can regulate system level changes in blood volume due to resistance and compliance

changes. A majority of the influential parameters identified here are common in 0D models

[1,18,30] and models incorporating the TriSeg framework [4,5,21], making the present analysis

pertinent to future modeling studies utilizing either of these approaches.

The Morris screening methodology traditionally uses the average EE as a measure of

parameter influence (5,12,35,36). While this captures which parameters are on average most
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Fig 9. Output uncertainty in RV and LV pressures and volumes for each experimental design. The average model response (red) as well

as ± one standard deviation (Std., gray) are provided along with the data (black circles) for each experimental design, corresponding to each

column. In the first design, f1, only RV pressure is used in the likelihood, hence the uncertainty in RV volume and LV forecasts are substantially

larger than that of the RV pressure. As more data is included, uncertainty in model forecasts is reduced. Note that differences between f3 and f4
are less pronounced.

https://doi.org/10.1371/journal.pcbi.1010017.g009
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influential, there may be circumstances where a parameter is highly influential in a small vol-

ume of parameter space and may require additional analyses using the maximum or median

elementary effect. Previous studies have considered using the average EE for parameter fixing

[5,32], yet a consistent method for parameter fixing and subset selection is warranted.

The sensitivity-based Fisher information matrix provides insight about local parameter

interdependence as well as quadratic approximations of parameter confidence intervals. This

method helped reduce the set of 17 influential parameters to a set of 13 locally identifiable

parameters, as has been done in previous work [35]. These asymptotic analyses work well

when models behave linearly within a neighborhood of the parameter value, but, as shown

here with profile likelihood and MCMC, can fail in detecting practical identifiability issues.

Profile-likelihood analyses

Though local and global sensitivity analyses can identify influential parameters, they do not

guarantee that parameters are identifiable [16]. The local sensitivity analysis did not reveal

identifiability issues, yet the profile likelihood analysis illustrates practically non-identifiable

parameters using the less detailed experimental designs. This confounding result is

Fig 10. Output uncertainty in cardiac pressure-volume loops. Realizations in forecasts of chamber pressure-volume loops in the LA (first

row), LV (second row), RA (third row), and RV (fourth row). The simplest design (f1) has the largest uncertainty in simulated pressure-

volume loops, except for RV pressure, which is accounted for in the likelihood. Subsequent experimental designs substantially reduce

uncertainty bounds in the RV and RA (f2) and eventually in the LV and LA (f3 and f4).

https://doi.org/10.1371/journal.pcbi.1010017.g010
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documented in the review by Wieland et al. [16], suggesting again that profile likelihood analy-

ses are superior in deducing practical identifiability for nonlinear models. To the authors’

knowledge, the work by Pironet et al. [17] is the only other cardiovascular modeling study to

consider this methodology. Their study [17] integrated static pressure and volume data over

multiple cycles, concluding that several parameters, including total stressed volume and vena

cava compliance, were practically non-identifiable. Moreover, Pironet et al. [17] reduced their

initial parameter subset using sensitivity methods, but ultimately found more practically non-

identifiable parameters using profile likelihood analysis. The results in Fig 5 show that six of

the parameters were identifiable across all four experimental designs. Of these, five describe

the structure and function of the RV and pulmonary circuit, and the last describes systemic

artery resistance. Interestingly, it appears that Rpul is practically non-identifiable using f1, but
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the direction of strain (i.e., leftward or rightward). Designs including LV data (f3 and f4) reduce the range of S strains, with the design f4 ensuring that S strain is

in the same direction as the LV. LV and RV strain have substantially less uncertainty than that of S, which shrinks with more informative designs.

https://doi.org/10.1371/journal.pcbi.1010017.g011
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should become identifiable for larger parameter bounds. This parameter describes the state of

the pulmonary vasculature, highlighting the need for additional data in the experimental

design to identify its value. Parameters describing the chamber wall volumes were consistently

difficult to infer, especially in the LV and S when no LV data was available. This again suggests

that a true understanding of heart function requires sufficient data from both ventricles.

This study is the first to compare multiple experimental designs using a multiscale model

with biventricular interaction. As expected, increasing the amount of data available reduced

the confidence interval width, i.e., more data decreases the uncertainty in the estimates. In

contrast to prior studies utilizing the profile likelihood [15], our results show deviations in the

likelihood values for small changes in parameters. We accredit this non-smoothness to possi-

ble incompatibilities in the DAE system, which can frequently occur with this model [5,19],

returning large values in the residual sum of squares. However, we are primarily interested in

using the profile likelihood method to test for whether the confidence intervals have finite

Fig 12. Simulated output quantities that are typically recorded when studying PH. Histogram plots of outputs typically recorded during in-vivo studies of

PH progression are generated using the same 600 samples from the posterior that were used in Figs 9, 10 and 11. These include mean pulmonary artery

pressure (�psa), RV stroke volume (SVRV, defined as difference between maximum and minimum RV volumes), pulmonary arterial elastance (Eapa, defined the

difference between �psa and mean LA pressure divided by SVRV), RV end systolic elastance (EesRV, defined as the end systolic ratio of RV pressure and RV

volume), and ventricular-vascular coupling (VVC, defined as the ratio EesRV/Eapa). Differences in the experimental design had little effect on �ppa. As expected,

SVRV was more accurately captured with additional RV volume data. The wide variability in values of Eapa, EesRV, and VVC using the design f1 is remedied

once additional volume data is included in the design. Note that output values of VVC are made substantially more precise with additional LV data in f3 and f4.

https://doi.org/10.1371/journal.pcbi.1010017.g012
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bounds; hence, smooth profile likelihoods are not necessary to determine if the parameter sub-

sets are identifiable. Overall, the most complete experimental design, f4, led to the tightest con-

fidence intervals and reduced numerical instabilities, though perturbations in Vwall,LV, Vwall,

RV, and Vwall,S still cause some sharp jumps in the likelihood.

Markov chain Monte Carlo

MCMC can also assess parameter uncertainty and practical identifiability [1,18,19,39]. The

posterior densities in Figs 6, 7 and 8 suggest that most of the parameters are practically identifi-

able in the presence of measurement noise. The wall volumes, Vwall, have wider posteriors

across the first two experimental designs, but tend to shrink with additional LV data, consis-

tent with the profile likelihood results. Vwall,LV has a nearly uniform posterior when only using

RV pressure data (f1), suggesting practical identifiability issues. This is expected, as this param-

eter has its largest effects on LV dynamics, which are only present in designs f3, and f4. The

active stress parameter, σact,v, is not practically identifiable with measurement noise when

using f1, and has a long posterior tail. This parameter shows noticeable changes in mixing

properties when using the systolic and diastolic LV outputs in f3, and may be due to sampling

in higher rejection regions to obtain appropriate LV values. All twelve pairwise plots in S2

Text using the design f4 show somewhat strong correlations between Vwall,LV and σact,v, as well

Am,ref,LA and Cpa. This may suggest that these parameters are not practically identifiable with

measurement noise. The posteriors using f3 and f4 in Figs 6, 7 and 8 are nearly all unimodal,

with the true data generating parameters located near the modes. As noted by Paun et al. [39],

flat, uniform posteriors suggest that parameters are not practically identifiable, supporting our

claim of improved identifiability with more detailed experimental designs. The study by Har-

rod et al. [1] also used MCMC to test for identifiability; however, their results show a deviation

between the true value of Rsys and the posterior distribution, whereas our results (for f2, f3, and

f4) show an overlap in the true and estimated values. Discrepancies between Harrod et al. and

our results are attributed to the separation of systemic resistance into an arterial and venous

component, whereas our model has a single systemic vascular resistance parameter corre-

sponding to their sum. van Osta et al. [19] constructed parameter posteriors for Am,ref and the

equivalent of our σact,v and τsys,v using MCMC. Their study also showed that repeated con-

struction of the posteriors from different initial guesses had reasonable overlap, suggesting all

parameters were identifiable. Colunga et al. [18] contrasted two parameter subsets using

MCMC and heart-transplant data. The non-identifiable set had posteriors with long,

unbounded tails, whereas, like the results here, the identifiable set has tighter posterior distri-

butions with finite tails. A comparison of the hemodynamic posteriors in Fig 8 reveals that

both Rpul and Rsys have larger uncertainty when using the design f1. As noted previously in the

text, pulmonary vascular resistance is a pertinent biomarker of PH progression and severity

[23,46]. Our results suggest that, at a minimum, RV volumes are included in the experimental

design to obtain reasonable estimates of hemodynamic parameters and better constrain poste-

rior widths for Vwall parameters. Interestingly, both the profile likelihood analysis and the

MCMC results suggest that Cpa is identifiable but without an improvement with more complex

designs. This may be attributed to the simplicity of the pulmonary artery compartment, and

may vary more if using a more complex model of the proximal pulmonary arteries [2].

By running multiple MCMC instances in parallel, we are able to construct individual PSRF

values for each parameter and the MPSRF for each experimental design. Our results in Table 3

suggest that 50,000 iterations (with 10,000 used as burn-in) do not guarantee convergence of

the MCMC process, as all of the MPSRF values are greater than 1.1. However, as detailed by

Roy [44], MPSRF can be misleading in some instances. Nevertheless, we expect that
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substantially more iterations of MCMC (e.g., 500,000) will reduce PSRF and MPSRF values

below 1.1. Our results still show that a majority of the posteriors overlap with increasing data

availability in the experimental design, supporting the profile likelihood results.

Forecast uncertainty

Sampling from the parameter posteriors describes uncertainty in the model output. The first

design, f1, provides information about RV pressure, and corresponding model simulations

shown in Fig 9 have little uncertainty. In contrast, VRV(t), pLV(t), and VLV(t) exhibit larger

uncertainty, with the mean response often deviating from the true signal. The more data-rich

experimental designs lead to a better agreement between the model and the simulated data as

well as a reduction in uncertainty. Interestingly, differences in uncertainty bounds between f3
and f4 are not evident in the isolated pressure and volume signals in Fig 9, yet pressure-volume

loop uncertainty in the LV is reduced substantially in Fig 10. The difference in these two plots

is linked to the timing of ventricular dynamics, which become more apparent when plotting

pressure versus volume. The reduction in uncertainty when the design f3 is used suggests that

including static systolic and diastolic measures of LV function are sufficient for model calibra-

tion and are necessary to reduce output uncertainty. This experimental design was utilized by

Philip et al. [23] in a mouse model of PH due to left heart failure. Their results highlighted that

impaired LV function can ultimately raise pulmonary vascular resistance and contribute to RV

dysfunction. Assessing the LV via echocardiography is easier than the RV due to anatomic

shape and location [47], hence adding this assessment to dynamic RV pressure-volume loop

protocols is reasonable and provides insight into LV impairment during PH [11]. Recent stud-

ies have also found significant changes in both left and right atrial function in heart failure and

PH [23,48,49]. We found only one atrial parameter, Am,ref,LA, was influential and identifiable

on RV and LV outputs. Allowing this parameter to vary explains the greater variability in left

atrial pressure-volume loops than the corresponding right atrial simulations in the first three

designs. However, it seems that dynamic data in the LV reduces the variability in left atrial

forecasts, suggesting that f4 is the most optimal design for studying left atrial function in the

absence of left atrial data. We did not consider atrial data in our possible designs, yet future

work may reveal its significance in understanding disease progression, especially PH due to

left heart failure [1,23].

The TriSeg model is an efficient simulator of biventricular interaction. Prior work has used

this model to quantify changes in biventricular interaction under diseases such as PH [21,50],

arrhythmogenic cardiomyopathy [19], and mechanical desynchrony [51]. Our results in Fig 11

show that the uncertainty in LV, RV, and S wall strain tend to decrease with more informed

experimental designs. Though the model employed van Osta et al. [19] has fundamental differ-

ences from our model, both have comparable uncertainty in wall strains. Their study cali-

brated model predictions to measurements of wall strain by echocardiography, yet our work

shows that calibration to pressure and volume data is sufficient in reducing simulated wall

strain uncertainty. Strain forecasts also elucidate the state of LV-RV interaction, which is com-

promised in the presence of PH [11].

We use the model to simulate other hemodynamic quantities typically recorded in PH stud-

ies [23]. The distribution of simulated mean pulmonary arterial pressure in Fig 11 are similar

in width across the experimental designs. Both Rpul and Cpa play a role in this output, yet Fig 7

shows that Rpul has a noticeably smaller posterior when informed by f4. Though Rpul will ulti-

mately dictate the pressure magnitude, the unchanged posterior in Cpa suggests that this

parameter is largely attributed to mean pulmonary artery pressure. The study by Colunga et al.

[18] found that including Rpul and Cpa in parameter inference led to close agreement between
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model predictions of pulmonary artery pressure and measured data. The uncertainty in mean

pulmonary artery pressure described by Harrod et al. [1] are similar to our results as well. As

expected, forecasts of RV stroke volume and pulmonary artery elastance (defined as the differ-

ence between mean pulmonary artery pressure and mean left atrial pressure divided by the RV

stroke volume) have small variability with any designs including RV volume, i.e., f2, f3, and f4.

Hence, the relatively wide probability densities for RV end-systolic elastance and RV ventricu-

lar-vascular coupling are directly tied to uncertain model predictions of RV volume. A zoom

of the model forecasts shown in Fig 12 shows that additional volume constraints narrow the

output uncertainty in these indices. All five indices examined here can be indicative of PH pro-

gression and RV function and suggest that RV pressure alone is not informative enough to

constrain the model forecasts. Therefore, future experiments into PH and RV function should

strive to have both RV pressure and volume data collected, along with static or dynamic mea-

sures of LV function.

Comparison between methods

Our results show that local and global sensitivity analyses provide insight into which parame-

ters are influential. These two methods were the least computationally intensive; Morris’s

screening with 39 variable parameters and 100 trajectories took approximately 8.7 hours, while

the local sensitivity with respect to the 17 remaining parameters required 4.5 minutes of com-

putation time. These methods only reveal whether parameters are influential and, in the case

of local sensitivity, practically identifiable in the asymptotic sense via the Fisher information

matrix. These methods do not guarantee that parameters are truly practically identifiable,

which is where profile likelihood and MCMC analyses can be useful. However, these latter two

methods are computationally expensive. Profile likelihood requires profiling a single parame-

ter over a sufficient range with gradient based optimizations and MCMC requires numerous

samples to construct the posterior. Here, profile likelihood analyses took between 30 and 50

hours depending on the experimental design, and MCMC required 110–220 hours. Neither

method can be run independently in parallel, whereas sensitivity methods can be run in paral-

lel. Nevertheless, profile likelihood analyses and MCMC uncover model and design features

that cannot be identified through sensitivity analyses.

Limitations

There are several limitations in this study. The TriSeg model has been utilized by several

authors to understand biventricular interaction [5,8,50]. However, this model is less detailed

in handling the complex interactions between the ventricles, especially in comparison to

higher fidelity finite element models. Moreover, we use diodes to represent the heart valves,

which will not capture more complex dynamics seen in the tricuspid and pulmonary valve

during PH [48]. A more physiological valve model could encourage echocardiographic veloc-

ity data into the experimental design. We generate synthetic data from our mathematical

model to test for identifiability, hence our noise model correctly matches the true added noise.

When using physiological data, this may not hold true, and may require additional compo-

nents to the statistical model (e.g., model discrepancy [39]). In addition, measurement uncer-

tainty is surely different between pressure-volume catheters and ultrasound probes and should

be accounted for when using true in-vivo data for model calibration. The profile likelihood

results presented here exhibit non-smoothness, whereas prior studies [17,52] typically show

smooth profiles. This could be obtained by considering more sophisticated parameter mesh

refinement. Our system of DAEs is stiff and can lead to model failure if parameters are not

compatible. This may be overcome with more detailed information about the TriSeg geometric
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parameters’ covariance, which could be used to construct a non-independent prior for sam-

pling their values during sensitivity analyses and MCMC. The posterior densities across the 12

instances of MCMC revealed that 50,000 iterations are not sufficient by PSRF and MPSRF cri-

teria. More informative designs promoted posterior modes closer to the true parameters, yet

MCMC results must be interpreted carefully if stopping criteria are not satisfied. Research into

efficient MCMC and robust stopping criteria, especially in the presence of high dimensional

parameter vectors, is warranted.

We consider four experimental designs that expose the coupled mechanics of the LV and

RV, yet other designs could provide more insight into RV function and model calibration. A

more encompassing analysis of experimental designs including additional combinations of

MRI, echocardiogram, and catheter measurements in the heart chambers and vasculature is

warranted. Studies using only static data will require more investigations into which parame-

ters are most influential during systole or diastole. Our analysis is applied to data simulated for

a normotensive mouse as opposed to simulating PH data. However, we believe the present

analysis will be consistent even when parameters are adjusted to the PH range. This also

applies to parameters dictating atrial function; our nominal model simulations do not capture

the biphasic flow patterns seen in-vivo in the left and right atrium and could be included in the

experimental designs in future studies. We did not consider uncertainties in volume distribu-

tions throughout the vasculature, which should be investigated further. Lastly, several parame-

ters that require measurements at the microscale (e.g., reference sarcomere length) were fixed

for our analyses. Future studies collecting data across spatial scales would require including

these parameters in the above analyses and may reveal new influential parameters in the

system.

Conclusion

The present study investigates parameter identifiability of a cardiovascular model with biven-

tricular interaction, specifically calibrated for mouse hemodynamics. In summary, this study

has found that:

1. Morris screening and local sensitivity analysis can identify influential parameters, but does

not guarantee that parameters are practically identifiable;

2. Profile likelihood and MCMC can be utilized to identify benefits in experimental designs

and deduce practical identifiability;

3. Model parameters describing biventricular interaction and RV function are best informed

with pressure and volume data from both ventricles; and

4. Uncertainty in model forecasts, including cardiac pressure-volume loops and ventricular

wall strain, can be substantially reduced when data from both ventricles are included.

The present analyses are conducted on model outputs corresponding to four experimental

designs used to study PH and RV failure in-vivo. Profile likelihood analysis shows that model

parameters are not uniquely identifiable when only RV pressure data is available, and that

more informed designs are necessary to recapture the true parameter values. Our study also

shows that sensitivity-based methods do not guarantee practically identifiable parameter sub-

sets, hence profile likelihood analysis should be employed. We conclude that future, synergistic

studies using both in-vivo and in-silico methods should incorporate functional LV data to

improve model forecasts of cardiac function and biventricular dynamics. We hypothesize that

this will be especially important when studying the progression of RV failure due to PH.
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