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Abstract

Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years 

to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used 

by researchers and industrials to design, optimize, understand and create innovative emission 

tomography systems. In this paper, we reviewed the recent developments that have been proposed 

to simulate modern detectors and provide a comprehensive report on imaging systems that have 

been simulated and evaluated in GATE. Additionally, some methodological developments that are 

not specific for imaging but that can improve detector modelling and provide computation time 

gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described 

and discussed.

1. Introduction

GATE is an open-source, community-based software effort relying on the Geant4 toolkit [4] 

dedicated to Monte Carlo simulation in medical physics. GATE is about 15 years old and 

evolves a lot through users’ contributions. It was initially focused on nuclear imaging [18; 

66; 159; 182], then expanded to external and internal radiotherapy [68], dosimetry [162] and 

hadrontherapy [56]. The simulated physics is managed by the Geant4 Monte Carlo kernel 

in charge of tracking particles in matter and processing physical interactions. On top of 

Geant4, GATE gathers multiple developments that facilitate medical physics simulations. 

Indeed, numerous clinical, preclinical, and prototype positron emission tomography (PET) 

and single photon emission compute tomography (SPECT) scanners were simulated and 

confronted with experimental data.

Since the initial 2004 OpenGATE collaboration article, emission tomography systems have 

changed dramatically [199] with improved time-of-flight (TOF) methods, better detection 

systems based on silicon photomultipliers (SiPMs), long axial field of views (FOV), multi-

headed systems, etc. At the same time, Monte Carlo simulation also had to evolve to 

support those developments. This type of simulation remains the gold standard for design, 

optimization and assessment of imaging systems, and serves to estimate their performance, 

to optimize acquisition parameters, and to design reconstruction algorithms.
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Since then, no synthesis of emission tomography (SPECT, PET, Compton camera) 

capabilities of GATE has been published. The goal of this paper is to review the current 

gate capabilities and limitations for simulating emission tomography imaging systems. The 

article is organized in the following way: section 2 describes the recent developments 

for detector simulations, section 3 gives more details about validated simulated imaging 

systems, and finally section 4 reports on additional developments not specific to emission 

tomography yet helpful to the field.

2. Detector developments

In the following, we describe the main modules recently developed or updated for 

simulation of modern emission tomography systems. the first subsection summarizes the 

two main modes of simulation, then, we describe optical photon tracking, cerenkov-based 

TOF and Compton camera modules.

2.1. Principal simulation modes

In nuclear imaging, events are usually detected by collecting scintillation photons emitted 

after energy deposition of high-energy gamma photons in inorganic crystals (LYSO‡, 

LSO§, BGO∥, etc) using photodetectors such as photomultiplier tubes (PMT), avalanche 

photodiodes (APDs) or SiPMs [150]. There are two modes that can be used in GATE to 

simulate this detection stage.

The first mode consists in full Monte Carlo tracking of the emitted optical photons. In such 

simulations, precise definition of the crystal optical surfaces is crucial to obtain a realistic 

light distribution. While it is useful to design and to better understand the in-depth behavior 

of a given detection system, simulating all optical photons leads to long computation times 

due to the very large number of tracked particles [26]. This first mode will be presented in 

section 2.2.

In the second simulation mode in GATE, the response of the photodetection components is 

simulated by a specific module called a digitizer. In that case, an analytical model is used 

to generate detection events from the list of interaction events within the crystal, assuming 

the number of generated digital pulses is proportional to the number of scintillation photons 

in the crystal. This digitizer converts photon interactions in the crystal into digital counts 

and assigns time stamps to every event. Numerous parameters are provided to the user who 

can apply successive signal processing operations to generate a final response adapted to the 

hardware: pixelated or monolithic scintillator detectors, depth-of-interaction (doi) modelling, 

dead time, etc. Moreover, various stochastic uncertainties can be added to reproduce the 

intrinsic resolution of components such as the intrinsic radioactivity of 176Lu in LSO [108], 

or the intrinsic resolution of a particular scintillator [66].

A specific vocabulary is used: hits, singles, coincidences. Individual particle interactions 

within a detector element (e.g. crystal) are called hits, each hit containing information about 

‡lutetium-yttrium oxyorthosilicate
§lutetium oxyorthosilicate
∥bismuth germanium oxide
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the interaction process type, the position, deposited energy, time, the volume where the 

interaction occurs, etc. The hits within the same readout volume are gathered into singles. 

Singles are sorted by time-stamp and associated in coincidences according to several rules, 

in particular to handle multiple coincidences where more than two singles are detected 

within the same coincidence window. In PET imaging, it is common to consider several 

types of coincidences: the scatters (coincidence events resulting from scattered photons 

inside the subject), the randoms (accidental coincidences), the trues (coincident detection of 

the two 511 keV photons coming from the same annihilation event). The sum of those three 

types are called the prompts (total detected coincidences). In reality, the number of randoms 
is not known from experimental data and is estimated by the delay coincidences obtained 

from delayed time coincidence windows [183]. GATE generates all types of coincidences 

for detailed analysis.

The digitizers processes are common to PET, SPECT and Compton camera modules and 

may be used either online, during the Monte Carlo particle tracking, or offline, after the 

end of the simulation. In this latter case, the simulation output requires hits, singles, and/or 

coincidences data to be saved in root (or python) files that can be post-processed. More 

details can be found in [39; 183].

2.2. Optical photon tracking and sipm

The precise definition of crystal optical surfaces can be modeled with the davis look-up 
table (LUT) surface reflection model, introduced in GATE since version 8.0 [180]. This 

model is based on measured surface data obtained by atomic force microscopy. Users can 

choose between two surfaces, a polished and a rough one. For each surface, four LUTs are 

available: LSO crystal with no reflector, coupled to teflon through an air interface, esr-air 

and esr-grease. the models consider optical photon reflection probabilities and directions 

depending on the incidence angle of the photon on the crystal surface. The models were 

validated against experimental data. Next step towards finer detector modelling lies in the 

use of completely customized LUTs. For this reason, a standalone user interface has been 

developed to allow users to generate LUTs for any surface obtained with a 3D scanning 

method with a sub-micron resolution with the personalized definition of the intrinsic 

properties of the scintillator and the coupling medium and a specific reflector attached to the 

crystal. The LUTDavis model has been validated for several configurations by comparing 

the experimental and simulated light output of single crystals, with an error of less than 10% 

[151].

With the LUTDavis model, a large monolithic scintillation detector for clinical PET systems 

was simulated using optical photon tracking. The detector consisted of 50 × 50 × 16 mm3 

LYSO coupled with optical grease to an array of SiPMs (see figure 1). The gamma entrance 

face was defined with the polished ESR LUT. The crystal sides were defined with an 

adapted LUT modelling a rough surface with black paint leading to absorption of photons 

transmitted by the crystal surface. The SiPM readout side was simulated by LUTs that 

model polished surfaces and take into account the index of refraction of optical grease. 

Optical simulations were used to optimise the performance of the detector by testing various 

setups and their influence on the desired performance parameter. It was thus possible to gain 
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insight into physical processes that are difficult or impossible to measure experimentally, 

notably ground-truth interaction positions, especially depth-of-interaction. Each influencing 

factor can be analysed separately as for example the influence of Compton scattered events, 

the influence of intrinsic 176Lu radiation of the scintillator, the influence of test-equipment, 

e.g. collimators or housing.

In [181], the focus was set on the spatial resolution influenced by the size of the 

photodetector pixels, the photon detection efficiency and the number of channels used to 

read out the sensor array. The outcome of this simulation study demonstrated the high spatial 

resolution of 0.4 to 0.66 mm full width at half maximum (FWHM) that can be obtained 

by a monolithic detector under idealized configurations. High Photon Detection Efficiency 

(PDE) and small pixel sizes improved the resolution, while the number of electronic readout 

channels could be decreased drastically by summing rows and columns with only a small 

or no degradation on the spatial resolution. In Decuyper et al. [32; 33] the performance of 

the detector could further be improved by using artificial neural networks (ANNs) to train 

the positioning algorithm. The simulation was used to identify and address potential pitfalls 

related to ANNs which could then be translated to the experimental results.

The simulation of single detector modules does not only require a dedicated surface 

modelling, but also has to account for the detection of scintillation photons and the 

subsequent pulse processing inside the photodetector. The increasing use of SiPMs (see 

section 3) in the context of PET imaging [19; 29; 98] motivated the implementation of 

specific digitizer modules for analogue and digital SiPMs, so that both the complete scanner 

system and the single detector modules can be simulated.

First, a digitizer module for analog SiPMs (aSiPMs) was implemented, allowing to 

reproduce signals originating from aSiPMs. For each optical photon impinging onto the 

surface of detection, a pulse has a non-null probability to be generated at a time t + Δt 
considering the PDE, where t corresponds to the time of the detection and Δt accounts for 

the Single Photon Time Resolution (SPTR). The digitizer also takes into account aSiPM 

saturation and various sources of noise such as dark counts, crosstalks, afterpulses, after-

crosstalks and signal white noise [109].

A second digitizer module was implemented for digital SiPMs (dSiPMs), referring to the 

Philips Digital Photon Counter (DPC). A DPC sensor tile is subdivided into 16 so-called 

dies, which comprise four pixels each and are read out independently. In contrast to aSiPMs, 

this device stores the number of counted photons on the four pixels of a die and a die 

timestamp for each event. It therefore delivers a completely digital signal. Furthermore, it 

makes use of a trigger and validation logic in order to reduce the recording of dark counts 

[34; 46]. This dedicated digitizer currently allows for consideration of the most relevant 

noise sources (dark noise and optical crosstalk), the PDE of the sensor, and the specific 

trigger and validation logic. For validation of the model, the probabilities for trigger and 

validation, determined by [186], have been successfully reproduced [97].
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2.3. Cerenkov-based Time-Of-Flight

The use of ultra-fast (10 ps) Cerenkov emission for TOF PET detectors has been 

investigated extensively as an alternative to traditional time triggering on scintillation 

photons emitted within tens to hundreds of ns [16; 24; 83; 88; 173]. The potential of 

Cerenkov light has become the foundation of a paradigm shift in TOF PET, with initiatives 

such as the 10 ps TOF challenge [89; 90; 163]. The very low number of Cerenkov 

photons produced by each gamma interaction in the Cerenkov radiator (around 15-20 per 

photoelectric interaction for BGO) is the main limitation in fully exploiting these photons 

and warrants thorough studies to better understand their production, transport, collection and 

conversion into an electric signal. This can only be achieved through detailed simulation, as 

it is not possible to separate these components experimentally.

GATE has been increasingly used to study Cerenkov emission for its ability to model all 

aspects of the optical detection chain including the effect of optical surfaces. However, it 

requires modifications to tag the Cerenkov photons in the hits tree and associate them to 

their parent gamma event [5; 84; 152] and does not include tools for a complete optical 

analysis. Studies have been reported in two materials: the well-known scintillator BGO, and 

the novel semi-conductors thallium bromide (TlBr) and thallium chloride (TlCl). In BGO, 

GATE simulations of the Cerenkov production and transport in the crystal described the 

direction of the initial Cerenkov photons, as well as the contribution of Cerenkov photons 

to the detector timing resolution. These simulation studies, in excellent agreement with 

experimental results, provided a new explanation of the long tails in the timing spectrum 

observed experimentally in BGO by several groups. GATE simulations in a dual-ended 

readout BGO detector also elucidated the nature of the time difference between the two 

crystal ends by identifying the type of photon first detected by the photodetector (Cerenkov 

or scintillation). In TlBr and TlCl, GATE simulations were used to generate and track 

Cerenkov photons from the emission point to the photodetector [5]. The number of photons 

produced and detected per photoelectric interaction was estimated from the simulations, 

indicating the potential of TlCl as a Cerenkov radiator thanks to its optical properties. Using 

the simulated photon time stamps, the timing spectrum for different trigger thresholds was 

computed and confirmed the advantage of TlCl. Good agreement was obtained between 

simulations and experiments, with an overestimation of the number of detected photons of 

12% [5].

2.4. Compton camera modules

The recent GATE Compton camera module (CCMod) [39] provides a framework where 

different Compton camera configurations can be simulated and facilitates comparison 

between the performance of different prototypes in medical experimental settings such 

as hadron therapy monitoring or nuclear medicine. CCMod is designed to reproduce the 

response of most common configurations in medical applications composed of a scatterer 
and an absorber detectors working in time coincidence [41]. However, it can be adapted to 

accommodate other designs such as one single detector layer system that acts as scatterer 

and absorber at the same time [96; 105; 113; 116] frequently employed in homeland security 

applications.
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In CCMod, volumes defined as detector layers act as Geant4 sensitive detectors. The 

detector response (the list of singles) is simulated by applying sequentially a chain of 

digitizer modules to the stored information of particle interactions. The same data structure 

as in SPECT and PET systems is employed so that digitizer modules may be applied 

interchangeably to all three types of imaging devices. Since in Compton cameras different 

detector layers have usually different roles and characteristics, digitizer modules that can 

be applied independently to each detector layer have been included. Singles are sorted 

into coincidences using the sorter developed for PET systems [183]. Additional options 

have been included for CCMod such as allowing only singles in a specific detector 

layer (absorber) to open its own time coincidence window. Besides, different criteria for 

coincidence acceptance are available such as requiring at least one single in each detector 

type. Since, in a Compton camera system, the order of the singles within each coincidence 

determines the estimated cone surface where the source is located, a dedicated coincidence 

processor has been included for coincidence sequence reconstruction. At each step of this 

processing, from interactions to cone information, corresponding data output is available. 

This recent extension of GATE [39] has been successfully validated against experimental 

data and employed to predict the performance of prototypes under construction (see section 

3).

3. Simulation of imaging systems and applications

This section reviews the emission tomography imaging systems that were simulated and, 

at least partially, validated against experimental data in GATE. In addition to detector 

development, and since the very first version, GATE has been used to simulate complete 

clinical and preclinical imaging systems. Efforts have been made to provide comparison 

against experimental data and improve the simulation when discrepancies have been found. 

The tables 1 and 2 list some studies and the associated clinical and preclinical imaging 

systems (some are illustrated figure 2). Most systems were PET scanners and, to a lesser 

extend, SPECT devices. CCMod in GATE is very recent [39] and only one validation against 

experimental data has been reported to date. Most of the evaluation methodologies were 

based on NEMA protocols and compared Noise Equivalent Count Rate (NECR), sensitivity, 

resolution, etc between simulated and experimental data. In the following we described 

some more recent studies, focusing on recent developments such as the use of SiPMs or 

TOF.

Philips Vereos Digital PET/CT.

In [158], a detailed model of the Vereos DPC-PET was proposed. This PET device, 

introduced in 2013, is one of the first PET/CT using SiPM detectors, together with, the GE 

Dicovery MI PET/CT in 2016 and the Siemens Biograph Vision in 2018. On such systems, 

the location of β+ annihilation is improved by the use of increase TOF resolution due to 

the use of SiPMs (210-378 ps). Moreover, the DPC system provides 1:1 coupling between 

the crystal array and the SiPM array, contributing to decreases uncertainty in the interaction 

position and to improve the image resolution.
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The GATE model of the Vereos described the hierarchical structure of all the detection 

modules, for a total of 23,040 LYSO scintillator crystals (4 × 4 × 19 mm3). The complete 

digitization chain was simulated including background noise (natural radioactivity of 176Lu 

in the crystals), dead time and pile-up, temporal resolution and detector quantum efficiency. 

The model has been evaluated following NEMA NU 2-2018 guidelines, including NECR, 

scatter fraction, TOF and energy resolution, sensitivity and spatial resolution. The authors 

reported very good agreement between experiments and simulations for clinical activity 

concentrations, with differences at maximum lower than 10%, concluding that the proposed 

GATE model can be used to very accurately reproduce PET images from Vereos system.

PET2020 long axial FOV PET.

In [1; 198] a long axial FOV PET scanner was simulated in GATE. Each ring consists of 

36 detector modules made up of 50 × 50 × 16 mm3 monolithic LYSO crystals. The system 

has an inner diameter of 65 cm. GATE was used to study the effect and advantage of axial 

lengths between standard 20 cm, 1 m and 2 m long systems, covering the whole human 

body versus a coverage of only head-to-hip. A 104 cm long system was 16 times more 

sensitive than a system with 20 cm axial length (1 m long uniform phantom). The effect 

of axial splitting of the detector rings to increase the FOV was also studied, in turn for 

sensitivity as well as an adaptive system bore that allows a sensitivity gain and advantages 

in spatial resolution due to the reduced acolinearity effect. The study showed that for objects 

shorter than 1 m the sensitivity gain of a 2 m scanner is limited while the detector cost is 

doubled compared to the 1 m system. Axial spreading is possible (at the expense of a loss in 

sensitivity) and an adaptive system bore can be realized by the camera aperture principle.

CaLIPSO brain PET.

The CaLIPSO PET scanner [80] is a detector concept dedicated to human brain studies 

aiming at providing high detection efficiency with 1 mm3 spatial resolution and Coincidence 

Time Resolution (CTR) of about 150 ps. First, the prototype uses a liquid Time Projection 

Chamber (TPC, see figure 4), where an elementary cell of the PET imager is filled with 

trimethyl bismuth (TMBi). Electrons and Cerenkov light are produced in the TMBi by γ 
interactions. Then, Micro-Channel Plate PMTs (MCP-PMT) are used to detect the Cerenkov 

light with an excellent time resolution (85 ps FWHM). The electrons produced during the 

γ interactions drift along an electric field and are collected by a pixelated detector of mm2. 

Ionization drift time allows to estimate depth of interaction with 1 mm precision [22; 139; 

207]. Due to fast Cerenkov light emission, time resolution of CTR close to 150 ps (FWHM) 

is expected. This makes possible to use TOF technique to improve signal to noise ratio in 

final images.

Simulation of this full size PET scanner was performed. As illustrated in figure 5, a cubic 

shape was used to minimize dead zones and to simplify the manufacturing process. The 

CaLIPSO is composed of 4 sectors of 5 × 6 elementary modules. The acquisition FOV 

are 354 mm (axial) and 307 mm (radial). TMBi is encapsulated within a transparent 

sapphire window coupled to the MCP-PMT with optical gel. The read-out ionization pad 

structure is also integrated. The GATE digital detection model used dedicated parameterized 

modules to simulate the detector response for the ionization and light signal readout. These 
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semi-analytic models were calibrated using detector prototypes. The first estimation of the 

non-paralyzable dead time was 3.5 μs, corresponding to mean drift time and the shaping 

time for electronics readout. Estimated spatial resolution of reconstructed images was 1.1 

mm in the complete scanner FOV and sensitivity was 17 kcps/MBq.

J-PET long axial FOV PET with plastic scintillators.

J-PET is a PET system based on plastic scintillators allowing for a cost-effective total body 

solution [118-120; 199]. The J-PET prototype scanner with a long axial FOV built of axially 

arranged plastic scintillator strips was simulated in GATE [82]. Three diameters of the 

scanner (75, 85 and 95 cm), three lengths (20, 50 and 100 cm) and two thicknesses T (4 and 

7 mm) of scintillators were simulated for both single- and double-layer geometries. Spatial 

resolution was simulated for three readout solutions: (1) vacuum PMT, (2) SiPM matrices 

and (3) SiPM readout with an additional layer of Wavelength Shifting (WLS) strips. The 

WLS were arranged perpendicularly to the scintillator strips, allowing for the determination 

of the photon interaction point along the tomograph axis, based on the distribution of 

amplitudes of light signals in WLS strips. The spatial resolution, sensitivity, scatter fraction 

and NECR were estimated according to the NEMA-NU-2 protocol, as a function of the 

length of the tomograph, the number of detection layers, the diameter of the tomographic 

chamber and for various types of applied readout. For the single-layer geometry with a 

diameter of 85 cm, a strip length of 100 cm, a cross-section of 4 mm × 20 mm and SiPM 

with an additional layer of WLS strips as the readout, the spatial resolution FWHM in the 

centre of the scanner was estimated to 3 mm (radial, tangential) and 6 mm (axial). For the 

analogous double-layer geometry with the same readout, diameter and scintillator length, 

with a strip cross-section of 7 mm × 20 mm, a NECR peak of 300 kcps was reached at 40 

kBq/cc activity concentration, the scatter fraction was estimated to be about 35% and the 

sensitivity at the centre amounts to 14.9 cps/kBq.

TRIMAGE: trimodality imaging for schizophrenia.

A novel dedicated trimodality (PET/MR/EEG) imaging prototype for schizophrenia was 

developed within the TRIMAGE project. The brainPET insert was modelled and extensively 

evaluated with GATE. In [35], several geometrical phantoms were implemented, covering 

realistic imaging situations. The simulated PET model was evaluated for its performance 

(spatial resolution, sensitivity and count rate) according to the NEMA standards. Figure 

6 depicts the modelled scanner alongside with the NU 2-2001 sensitivity phantom [188] 

and the PRESTO reconstructions of the NU2-1994 Image Quality (IQ) phantom. Spatial 

resolution varied between 2.34 mm and 3.66 mm (FWHM) axially moving radially 10 

to 100 mm from the center of the FOV. The simulated coincidence efficiency (i.e. the 

sensitivity) for a point source positioned at the center of the FOV was 61 cps/kBq. To assess 

the count rates, a solid, cylindrical phantom made of polyethylene (density 0.96 ± 0.1 g/cm3) 

with dimensions of 70 mm in length and 25 mm in diameter was used. The phantom was 

placed at the center of the axial and transaxial FOV of the modelled scanner. A cylindrical 

hole of 3.2 mm diameter was drilled parallel to the central axis of the cylinder, at a radial 

distance of 10 mm from the center. The line source insert was a clear polyethylene plastic 

tube 60 mm in length, filled with 5 to 11 kBq/mL of 18F and threaded through the hole in the 
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phantom for 1000 s measurement time. The NECR showed a peak above 1.8 Mcps at 250 

MBq.

The γ-eye SPECT camera.

In [145], the γ-eye, a small FOV preclinical scintigraphic camera was extensively validated. 

The γ-eye is produced by BIOEMTECH and is suitable for in-vivo molecular imaging 

of radiolabeled biomolecules providing a screening tool for dynamic pharmacokinetics 

studies [49]. The γ-eye detector was simulated with GATE and evaluated for its spatial 

resolution and sensitivity properties comparing experimental and simulated data. All of 

the appropriate electromagnetic and physical processes were included, while no cuts or 

variance reduction techniques (VRT) were applied. A maximum difference, equal to ≈ 16%, 

on spatial resolution observed, at 7.5 mm distance (5.85 mm experimental value versus 

4.9 mm simulation value). In the case of sensitivity, the difference recorded in zero mm 

source-to-collimator distance (57 cps/MBq versus 63 cps/MBq) was ≈ 10.5%. For all the 

other distances the difference in sensitivity was lower and very close to the mean value of 56 

cps/MBq.

THIDOS compact mobile γ-camera for absorbed radiation dose control in molecular 
radiotherapy

The THIDOS project aims to the optimization of the individualized patient dosimetry 

in radioiodine therapy of thyroid diseases by the development of new instrumental and 

methodological approaches to strengthen the control of the absorbed dose by reducing 

the uncertainties associated to dose calculation. In that framework we are developing a 

high-resolution compact and mobile planar γ-camera with a 10 × 10 cm2 field of view for 

use at the patient bedside. The goal is to improve the individual quantitative assessment of 

the distribution and biokinetics of radioiodine in target regions and organs-at-risk before and 

after treatment administration. In [190], the design of the high-energy parallel-hole tungsten 

collimator was optimized using GATE and an XCAT 3D voxelized phantom with realistic 

background and thyroid gland 131I distributions in order to improve quantification of small 

targets (nodules or tumor remnants) as shown in fig. 7. The camera was fully modelled 

and a specific study was carried out on the energy and spatial distributions of scattered 

and penetration events inside the collimator. The best compromise in terms of contrast and 

signal-to-noise ratio on nodules of various sizes was achieved with a 5.5 cm thick collimator 

with 1.1 mm hexagonal holes and 0.75 mm thick septa, which allows to minimize the 

partial volume effect, while reducing both scattered and penetration events (effective septal 

penetration less than 7.5%). The expected spatial resolution (2 mm FWHM) and efficiency 

(1.24×10−5) for a 131I source set a 5 cm from the collimator were found to be in good 

agreement with the experimental results.

MACACO Compton Camera prototype.

In [39], the first version of MACACO (Medical Applications CompAct COmpton camera) 

prototype [125] built at IFIC-Valencia, was employed for the validation of GATE CCMod 

against experimental data. This prototype is based on multiple (2-3) layers of LaBr3 

monolithic crystals coupled to SiPMs. A system configuration of two layers separated by 

50 mm was considered. The crystal sizes were 27.2 × 26.8 × 5 mm3 and 32 × 36 × 10 
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mm3 for the first and second layer respectively both coupled to SiPM arrays with active area 

pixels of 3 × 3 mm2. The first layer was based on four Hamamatsu MPPC S11830-3340MF 

monolithic arrays whereas the second one was based on an older version S11064-050P(X1) 

with larger gaps between the pixels. Passive material of the prototype (boards, holders, etc.) 

was also included in the simulations. The performance of the system was characterized 

and compared to simulated data in terms of energy spectra, efficiency, angular resolution 

and back-projection image onto the plane of the source with good agreement. Hence, the 

angular resolution measure for 1275 keV incident photons was 13.4 ± 0.2° (simulation) 

versus 13.5±0.2° (experimental). Relative detection efficiency was slightly overestimated 2.6 

× 10−3 (simulated) versus 1.9 × 10−3 (experimental) and consistent results within a 3-sigma 

interval were obtained for energy spectra except for low energies where small differences 

were observed. These discrepancies were partially caused by the approximations made in the 

simulation of the experimental discriminator threshold at SiPM pixel level in the digitization 

process which allow us to avoid the generation and transport of optical photons.

Other applications in interventional nuclear medicine

As nuclear medicine techniques make rapid advancement in surgery and in interventional 

radiology, we briefly summarize the current uses of GATE in support of these applications. 

They include simulations of tomography units and 1D and 2D detectors with the goal either 

to enhance the extracted diagnostic information or to maximize the therapeutic effect of 

the procedures. Following is a list of GATE uses in radio-guided surgery, in trans-arterial 

radioembolization and in real-time PET/CT guided biopsies.

In radio-guided surgery, GATE is used to simulate gamma and beta detection probes [175] 

and optimize the imaging process. Vetter et al [201] used GATE to evaluate the limits 

of accuracy of an analytical approach to register a previous 3D SPECT image to the 

readings from an optically tracked hand-held 1D gamma probe an approach known as 

freehand (fh) SPECT. Since in fh-SPECT the detector positions are arbitrary and the system 

matrix is not defined, Hartl et al [60] used GATE to simulate a look-up table (LUT) of 

detector readings at a predefined grid of probe positions around a 99mTc source in order 

to obtain the contribution of each source voxel to the detector readings. A LUT created 

with GATE was used for the fh-SPECT part of a novel hybrid probe combining fh-SPECT 

with fh-Fluorescence [194]. The authors used a measured LUT for the optical probe. They 

commented, that while fluorescence simulations are possible with GATE, the optical LUT 

computation would be challenging since the opto-nuclear probe is not in direct tissue 

contact which leads to a dynamic ratio of air and skin contributions [194]. In an another 

development, the design of a PET-like limited angle tomography system for intraoperative 

radio-guided imaging was explored using GATE by Sajedi et al [156].

After trans-arterial radioembolization of liver tumours with 90Y microspheres, verification 

of the correct delivery of the microspheres and voxel-based dosimetry can be achieved 

by performing 90Y SPECT or 90Y PET scans [9]. Since 90Y is a pure β -emitter, the 

bremsstrahlung radiation used for SPECT imposes the use of broad energy windows which 

contain large amounts of scattered radiation. In that case, a different Monte Carlo code 

(SIMIND) was used to optimize the collimators and the energy window for 90Y SPECT 
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[154]. 90Y PET is challenging due to the very low positron yield (3.186 × 10−5) and 

Strydhorst et al performed a detailed analysis of the sources of quantification error in 90Y 

PET by separating true coincidences from random and true events caused by the 176Lu LSO 

crystal activity and by bremsstrahlung radiation in phantom simulations with GATE [184]. 

The point-spread function (PSF) of a cone beam SPECT collimator and the projections of a 

NEMA phantom model for SPECT parallel hole, cone beam and multifocal collimators 

were simulated with GATE to validate the performance of the Utrecht Monte Carlo 

System (UMCS) iterative SPECT reconstruction package for fast pre-radioembolization 

imaging with 99mTc macroaggregated albumin (99mTc-MAA) [37]. GATE was also used for 

investigating various dosimetry aspects of radioembolization [122; 131; 153].

The specimens from real-time PET/CT guided biopsies are radioactive, allowing 

measurement of the amount and the distribution of the PET tracer contained in them by 

radioactivity measurements. This concept has been explored to show that autoradiography 

(ARG) images of the specimens are quantifiable and can aid evaluating adequacy of the 

specimens for diagnosis and for genomic profiling as well as investigating the specificity 

of beta emitting radiopharmaceuticals with high resolution [42; 43; 79; 107]. GATE 

simulations of the positron transport through liver specimens and gelatin-based specimen 

models which were used for calibrating the ARG detectors were performed to obtain a gel-

to-liver correction factor [42; 79]. Further, an ARG image of the tumour cells in a colorectal 

cancer liver specimen was simulated from the distribution of tumor cells as established in the 

pathology slices into which the specimen was sectioned [169], see figure 8.

4. Methodological developments within GATE

In addition to developments dedicated to improve detector modelling, which are detailed in 

section 2, we briefly review in the following sections recent features added in GATE that 

help to design emission tomography simulation but are not specific to imaging.

4.1. Towards simpler analysis via Python

Historically, Geant4 and High Energy Physics community are linked to the ROOT CERN 

framework [15] that allows to efficiently manage and analyse physics data. Since the 

beginning, GATE also allows to write ROOT files, e.g. detector events or phase space, or 

use them as input, e.g. use phase space file as a source of particles. Python has become the 

tool of choice for data analysis with modules such as NumPy [59] or Matplotlib [64]. Since 

version 9.0, GATE now includes additional options to read/write data in NPY file format 

[59] that can be processed with Python. Also, ROOT files can be processed in Python with 

the uproot module [136]. Details about the NPY file format can be found in the GATE user 

guide ¶ and examples of Python analysis are available on the GateContrib repository+.

Finally, the GATE community recently started a new repository, called GateTools*, that 

gather Python functions that can be useful for simulation setup and analysis. As example, 

¶ https://opengate.readthedocs.io 
+ https://github.com/OpenGATE/GateContrib 
* https://github.com/OpenGATE/GateTools 
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it contains tools to convert or resize images in various file formats, to convert DICOM 

RT structures, to manage phase-space files or analyse dose map, with DVH (Dose Volume 

Histogram) or gamma-index for example. All tools are available as Python function and 

as command-line independent scripts. At the time of writing, there are more than twenty 

different tools. The installation is very easy thanks to conventional Python pip install. Like 

GATE itself, the code is open-source and community driven. It should evolve in the future 

thanks to users’ contributions.

4.2. Variance Reduction Techniques

Several Variance Reduction Techniques were developed in GATE. Among those useful 

for emission tomography, we can describe the following: For particles with relatively 

large mean free path lengths comparatively to voxels size, Woodcock tracking [143] using 

fictitious interactions can be used to speed up tracking; for SPECT simulation, angular 

response function (ARF) [36; 160; 174] replaces the detector response by an analytical (or 

neural network) model providing probabilities of detection in all energy channels; ARF can 

be combined with fixed forced detection (FFD) that forces the detection of a photon in each 

detector pixel weighted by the probability of emission (or scattering) and transmission to 

this pixel [20]. The acceleration of all those approaches can reach one order of magnitude, 

although it depends on many parameters and on the simulation configurations.

4.3. Positronium source

Positronium is a metastable electron-positron bound state, which is formed approximately 

up to 40% of the cases in a patient’s body before the annihilation. It appears in two quantum 

modes: ortho- and para-positronium, which have different physical properties, in particular 

the ortho-positronium lives three orders of magnitude longer than para-positronium, around: 

142 ns versus 0.125 ns, respectively. In the tissue, ortho-positronium mean lifetime strongly 

depends on the size of intramolecular voids (free volumes between atoms), whereas its 

formation probability depends on the voids concentration [120]. In a patient’s body the 

formation probability and the mean lifetime are in function of the bio-fluids and bio-active 

molecules concentration [121]. As it was shown in [120], one can reach the mean lifetime 

precision of about 20 ps. To measure the positronium lifetime, one needs to use non-pure 

isotopes emitting prompt gammas.

A set of helper classes was added in GATE for the simulations of the positronium decays. 

Positronium mean lifetime tomography is one of the examples of a novel PET multiphoton 

imaging technique proposed recently [119]. The available positronium decay models are: 

para-positronium two-photon decay, ortho-positronium three-photon decay and the mixed 

model decay where users can adjust a relative frequency of two possible positronium 

decays. The implemented model of ortho-positronium decay products angular distribution is 

described in [71]. All the model parameters are configurable by user with a simple GATE 

macro. In addition, an emission of prompt gamma with a predefined emission energy can 

be added. Photon polarization settings are also supported at the macro level. This source 

enables advanced PET imaging applications such as oxygen sensing for tumor hypoxia 

[171].
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4.4. STL geometry

Thanks to the Geant4 G4TessellatedSolid class, tessellated mesh geometries composed 

of triangle primitives are now available in GATE. Users can import STL (stereolithography) 

files containing the coordinates of vertices and faces of the meshed surface, and GATE 

generates the corresponding volume in the geometry. One application of this new kind of 

geometry has been the modeling of the body contouring limited to cubic shapes allows the 

gamma camera head to move as close as possible to the phantom/patient model thereby 

preventing their collision in the GATE environment [74; 75]. Meshes for each segmented 

volume of interest from the phantom/patient model were generated individually using 

Python scripts and imported in GATE where individual volumes could be assigned with 

their respective materials from CT [76; 77]. Figure 9 displays the patient mesh model 

with the auto-contouring gamma camera motion. Total counts in modeled phantom SPECT 

images obtained with circular and body contouring gamma camera motion with same 

acquisition parameters revealed a relative difference of around 2.5% and 12% for 177Lu and 
131I respectively thereby emphasizing the importance of modeling auto-contouring SPECT 

gamma camera motion (with the use of STL volumes) especially for radionuclides with high 

septal penetration (for e.g. 131I). There could be potential activity underestimation caused by 

the use of circular motion acquisition thereby impacting the absorbed dose in the dosimetry 

chain.

STL geometries moreover allow for an easy description of complex phantoms, as an 

alternative to voxelized phantoms. For instance, a STL-based model of a zebrafish was 

created from ex-vivo high-resolution micro-CT scans [210]. This phantom has been 

designed for the MERMAID project, which is aimed to small-fish PET imaging [211]. 

Figure 10 displays 3D renderings of a PET scanner design and the zebrafish phantom 

including exemplary photon emissions. Separate STL files were used for different structures 

(e.g. bones, heart, swim bladder, gills, etc.). These meshes were used as both attenuation 

and emission phantom. As GATE does not support the distribution of activity within a mesh, 

Geant4 volumes enclosing the tessellated volumes of interest were created. The activity 

is distributed within the volume by an acceptance-rejection method. Then, GATE confines 

the emission of radiation to the respective volume with the confine method of its General 

Particle Source. It should be noted that the acceptance-rejection method can significantly 

slow down the simulation when the surrounding volumes are much larger than the organs 

or structures of interest to which the activity should be confined. Care should be thus put in 

selecting the appropriate size and position of the enclosing volumes.

4.5. Link to third-party reconstruction software

Output from PET, SPECT or Compton camera simulation, either as list mode data or 

projections images can then be used as input for reconstruction software [52]. Among 

others, we can cite the following software used to reconstruct 3D images from GATE 

simulations. STIR (Software for Tomographic Image Reconstruction) [72; 78; 189] was 

among the first to propose dedicated modules allowing to reconstruction GATE simulated 

data, both for PET and SPECT, with MLEM and OSEM methods. More recently, 

the CASToR project [111] (Customizable and Advanced Software for Tomographic 

Reconstruction) also proposed various reconstruction algorithms for PET and SPECT, with 

Sarrut et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dedicated tools to use GATE generated data. For SPECT images, the QSPECT software 

[101; 102; 176] was also employed, in particular to investigate the effect of attenuation 

correction. Recently in [147; 148], the Reconstruction Toolkit (RTK) [146] was used 

to provide 4D whole body SPECT reconstruction using image-based breathing signal 

extraction [148]. The PRESTO toolkit (PET Reconstruction Software Toolkit) [164-166] 

can also be used with GATE output, such as in [204]. Finally, several Compton Camera 

reconstruction approaches have been used with GATE data, such as in [81; 126] (MLEM or 

Origin Ensemble) or in [44; 106] (with conical Radon transform modelling).

4.6. Artificial Intelligence integration

There are several potential interactions between artificial intelligence, deep learning in 

particular, and Monte Carlo simulations. Within the context of medical imaging, these 

synergies can be classified in two categories. First, Monte Carlo simulations can produce 

highly accurate imaging device and patient training datasets for neural networks applied 

to various signal and image processing tasks. At the detector level, multiple works have 

been carried out to better determine DOI and/or events positioning within pixelated and 

continuous monolithic scintillators by using trained neural networks [11; 28; 65; 123; 124; 

130; 134; 206; 209]. Training data may be obtained from experimental data acquired with 

a specific setup or from simulation such as in [206]. In the case of image processing, 

one can identify tasks specific to the reconstruction and/or the post-processing phase. 

For example, GATE simulations have been used to provide the input to a U-NET in 

sinogram space for the derivation of scatter contributions during PET imaging [203]. Deep 

learning-based scatter correction has been favorably compared with state-of-the art single 

scatter simulation approaches, independently of the imaging device or anatomical location 

(tested on lung or pelvis). Similarly, Monte Carlo simulation can generate raw sinograms to 

training deep-learning networks for PET attenuation correction using MR images [91], or for 

direct deep learning-based image reconstruction in PET imaging [141]. In terms of image 

processing, images generated with GATE have been used as part of the training dataset 

for a functional tumor volume segmentation challenge. Deep learning-based segmentation 

approaches trained using this dataset showed improved performance compared to state-of-

the-art methods [61].

Second, deep learning approaches can be applied to improve Monte Carlo simulation 

performance, mostly computational efficiency. One example is the simulation-trained neural 

networks to model detector response. In [160], the authors determined the Angular Response 

Function (ARF) of a SPECT collimator-detector system with simulation output. The 

resulting net modelled the probability that a photon is detected, using variance reduction to 

speed up the simulation. Recently, the concept of Generative Adversarial Networks (GAN) 

[54] that allow modelling of multidimensional data distributions was proposed to learn a 

phase space [161] generated by Monte Carlo simulation. Once trained, the generator neural 

network of the GAN can be used as a very compact source of particles. Similarly, GANs or 

other more recent variants such as Wasserstein GAN or Deep Convolutional GAN can be 

applied to generate realistic anthropomorphic models from a few examples of Monte Carlo 

simulated images with sufficient variability (necessary for training).
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Since version 9.0, GATE can be linked to the PyTorch library [133] and methods to interact 

with the C++ version of this library have been integrated. Trained neural networks can 

be loaded and used during particle tracking. This integration opens the door to multiple 

extensions. Indeed, Monte Carlo can generate data ultimately used to train a net or feed 

the input layer of a net in order to improve the simulation. Note also that deep learning 

integration is not limited to emission tomography simulation and can be used for dose 

estimation [55; 92; 100; 128], denoising dose from Monte Carlo simulation both for photon 

[45; 127; 135] or proton [70; 104], scatter modelling [85; 192], etc. Those studies are still in 

early stages and further work is needed to better understand the advantages and limitations 

of mixing deep learning with Monte Carlo approaches. It is a promising field and GATE is 

ready for it.

5. Conclusion

This article presents an overview of the current status of GATE for emission tomography 

imaging system simulation, including a large list of systems that have been simulated 

and, at least partially, validated against experimental data. Recent developments have been 

described as well and give insight on future improvements in GATE. This comprehensive 

summary aims at providing an evaluation of the current capabilities and limitations of GATE 

for imaging systems simulation.

The GATE software has some limitations, partly rooted in the general nature of the Monte 

Carlo approach, domain-specific problems, and code complexity. First, simulations are 

generally considered slow, in particular, compared to analytical or semi-analytical methods. 

Attempts have been made to provide GPU-based acceleration within GATE [12; 13] with 

acceleration factors from 20 to 400 depending on the simulation type. However, GPU 

integration in GATE was discontinued due to difficulty to support generic enough graphic 

card types. Part of this work has been ported to the GGEMS Monte Carlo code [48]. One 

common alternative solution is to apply parallelization techniques by using multiple CPUs 

[21]. Users need, however, to pay attention to the time management in the simulation when 

splitting into parallel jobs, e.g. dead-time or coincidences sorting. Typically, when splitting 

a PET simulation into several jobs, each job should keep the same activity rate and the 

whole simulation should be split according to the total simulated acquisition time. Moreover, 

true coincidences estimation relies on the particle’s ID (identification number) provided by 

the Geant4 kernel in order to ensure the gamma came from the same events. With parallel 

independent jobs, each job manage his own set of ID. Events ID from one job cannot be 

mixed with the ones of another job. Tools are provided to adequately split simulations and to 

merge job’s files such as the events IDs are modified and can be compared.

Computation time also limits the use of optical tracking to the simulation of single or pairs 

of detectors, due to the need for tracking multiple interactions for each optical photon and 

the high volume of data recorded. As optical Monte Carlo simulation in radiation detectors 

is increasingly used to study TOF detectors and prompt photons, the complexity of the 

simulations expands and so do the requirements in terms of computational power. The 

latest developments in emission tomography are likely to utilize more and more optical 

tracking capabilities, making this shortcoming a high priority. Another difficulty lies in 
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the need to precisely know the material and geometrical information of all elements in an 

imaging system which is often private information that can only be obtained through NDA, 

preventing publicly share complete imaging models. Another limitation of GATE is that 

the code source is rather old, more than 15 years, and acknowledges the contributions of 

numerous volunteers (more than 70 on the current repository that only keeps track of all 

authors since 2015). Hence, the size and the diversity of the C++ code, more than 350,000 

lines of code, makes it relatively hard to maintain. Currently, an effort has been made to 

modernize the code and adapt a set of engineering techniques e.g. unit tests and continuous 

integration to improve the code quality. The GATE code typically quickly follows the 

Geant4 evolutions, thanks to the high responsiveness and support of the Geant4 community. 

Geant4 toolkit is at the core of simulation in almost every High Energy Physics experiment 

at CERN [3] and will evolve over the next decade towards various improvements, such as 

the vectorization technique.

GATE is also used for dosimetry purposes, from optimizing the dose of radiation-based 

imaging to evaluating absorbed dose distribution during radiation therapy for cancer 

treatment, in external beam photon and particle therapy, and in internal radionuclide 

therapy [56; 68; 153; 162]. For example, GATE is one of major contributors to the 

OpenDose collaboration that aims at providing the community with free resources for 

Nuclear Medicine dosimetry [25]#. Indeed, the possibility to perform in the same framework 

imaging and dosimetry studies is important, such as in hadrontherapy monitoring [58; 62; 

63; 69] or in the assessment of uncertainties associated with clinical molecular radiotherapy 

dosimetry [47]††.

Numerous collaborations with the major manufacturers in this field (Philips, GE, Siemens, 

Spectrum Dynamics, etc.) show that GATE is used not only in academia but also in industry. 

It might be difficult to make predictions about future GATE development directions because 

it is largely guided by users’ projects and emerging needs. However, we can mention an 

ongoing trend such as Python binding, which allows performing GATE data analysis using 

Python scripts, providing access to a large ecosystem of libraries and tools. Moreover, the 

integration of PyTorch is just at the beginning and may open the doors to developments 

exploiting Artificial Intelligence methods.

The range of PET and SPECT imaging biomarkers is rapidly expanding for both diagnostic 

and nuclear theranostic applications [31], and fast timing has now become a key issue for 

further improving TOF-PET image contrast and reducing radioactive doses injected to the 

patients [90]. Along the incentive proposed by the 10 ps challenge†, crossing the ambitious 

10 ps FWHM CTR frontier which would allow to image a volume virtually without 

tomographic inversion will necessitate effective, rapid and versatile optical simulation tools 

to model fast scintillation and prompt photons. In this context, new imaging systems 

and concepts are being developed to become more quantitative and more cost-effective 

[185]. The OpenGATE collaboration‡ is committed to follow this evolution providing an 

# https://opendose.org 
†† https://www.dositest.org 
† https://the10ps-challenge.org 
‡ https://www.opengatecollaboration.org 
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open-source simulation toolkit dedicated both to research and industry applications in the 

field of medical imaging, and perhaps numerous other domains utilizing ionizing radiation 

imaging, such as prompt gamma ray imaging for particle range monitoring in hadrontherapy, 

X-ray photon counting and neutron imaging for homeland security, or Compton imaging for 

nuclear decommissioning and nuclear waste management.
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Figure 1. 
Optical simulations of a calibration setup for monolithic scintillators. A 50 × 50 × 16 mm3 

LYSO crystal was modelled read out by a pixelated array of photo-detectors. The scintillator 

surfaces are defined by the LUT Davis reflection model based on measured data. The 

calibration beam is encapsulated in a tungsten collimator which is simulated by importing 

the 3D STL file into GATE. The source is a monoenergetic 511 keV gamma point source.
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Figure 2. 
Examples of some simulated imaging systems (clinical, pre-clinical, prototype). (a) NEMA 

IEC Body Phantom Set ready to be imaged on a PET/CT. (b) The Bioemtech γ-eye 

preclinical device. (c) Philips Vereos Digital PET/CT; (d) MACACO Compton Camera 

prototype with 2 layers of LaBr3 monolithic crystals coupled to SiPMs, developed by 

IFIC-Valencia.
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Figure 3. 
(Left) A long axial FOV scanner of 20 rings (104 cm axial length) based on monolithic 

scintillator blocks. (right) Long axial FOV systems of 2 m with full coverage, 1.5 m with 

33% gaps and a 2 m long system with 50% gaps.

Sarrut et al. Page 37

Phys Med Biol. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Illustration of unit detector module based on the ionisation chamber filled with trimethyl 

bismuth (TMBi).
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Figure 5. 
Design of the CaLIPSO PET scanner dedicated for high resolution brain imaging.
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Figure 6. 
Presentation of the a) modeled module of the system (1st layer in red and 2nd layer in 

blue), b) scheme of the full TRIMAGE scanner in GATE, c) view of the simulated phantom 

geometry for the sensitivity measurements (the several layers of the sleeves are presented 

with different colors) and d-f) transversal, coronal and sagittal slices of the 10 iterations of 

the simulated IQ phantom.
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Figure 7. 
Simulation set-up used for the choice of the collimator. Left - the complete camera and a 

3D XCAT voxelized phantom. Right - images of the thyroid with two hot nodules (0:6 cm 

and 1:2 cm diameter) simulated for five collimators. Given values are the collimator spatial 

resolutions. Example of ROIs defined around the nodules and on the background are shown 

on the 3 mm SR collimator image.
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Figure 8. 
Measured a) and simulated b) autoradiography (ARG) images of a liver specimen obtained 

from 18F-FDG PET/CT guided biopsy. The simulation was performed by building within 

GATE a 3D voxelized source model of the distribution of tumor cells in the biopsy specimen 

by registering and stacking 2D slices (c, only one slice shown) in which the location of 

tumor cells (red) was obtained by a machine learning tool (TMARKER [168]) applied to the 

58 pathology sections (d) into which the specimen was sectioned [169]. The images are not 

to scale and the uptake in normal liver cells (blue in c)) was set to zero for this simulation 

(b). Among the other factors causing a difference between the measured and simulated ARG 

images are deformation of the specimen during processing and inaccuracies in registration 

between the sections.
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Figure 9. 
a) Patient mesh model with all segmented volumes of interest: bones (red), lungs (blue), 

liver (pink), spleen (white) and left and right kidney (green and yellow). b) Snapshot 

of patient model with the remainder of the body (grey) from GATE. Few green lines 

represent photons emissions. c) Visualisation of the auto-contouring gamma camera motion 

in GATE. Unequal distances of each detector from the centre of rotation (in orange and blue 

respectively) shows that the camera moves in a non-circular orbit.
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Figure 10. 
3D rendering of a custom PET scanner and the MERMAID zebrafish phantom in GATE. 

Left: full view. Right: Zoom to the phantom, placed into a water tube. Here the grey 

structure represents the tessellated zebrafish volume, and the green and red dots correspond 

to emission locations for the entire zebrafish and the heart, respectively. The green lines 

indicate several representative photon trajectories.
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Table 1.

Bibliography of simulated and evaluated against experimental data PET systems. LYSO: Lutetium-yttrium 

oxyorthosilicate, LSO: Lutetium oxyorthosilicate, BGO: Bismuth germanium oxide. The second column 

indicates if it is clinical (C) or preclinical (PC, for small animals) systems.

Bib. ref. C / PC PET system

2004 Assié et al. [7] PC ECAT EXACT HR+, BGO, by CPS Innovations

2004 Lazaro et al. [87] PC IASA prototype, CsI(Tl)

2004 Bataille et al. [10] C ECAT HRRT, LSO, brain

2004 Groiselle et al. [57] C prototype, CsI(NaI), by PhotoDetection Systems

2004 Rannou et al. [140] PC prototype OPET, LSO/GSO

2005 Chung et al. [27] PC prototype LSO and LuYAP

2005 Jan et al. [67] C ECAT EXACT HR+, BGO, by CTI

2006 Karakatsanis et al. [73] C ECAT EXACT HR+ and Biograph 2, by Siemens

2006 Lamare et al. [86] C Allegro/Gemini, GSO, by Philips

2006 Visvikis et al. [202] PC prototypes, CZT

2006 Michel et al. [112] C BioGraph HiRez, LSO, by Siemens

2006 Schmidtlein et al. [167] C Advance/Discovery Light Speed, BGO, by GE

2006 Merheb et al. [110] PC Mosaic, GO, by Philips

2006 Sakellios et al. [157] PC prototype, LSO

2006 Vandenberghe [195] C prototype, Univ. Penn., TOF, LaBr3

2006 Vandenberghe et al. [196] C Allegro/Gemini, GSO, by Philips

2007 Gonias et al. [53] C Biograph 6, LSO, by Siemens

2007 van der Laan et al. [193] PC prototype, LSO

2007 Bruyndonckx et al. [17] C prototype, LSO

2007 Yang et al. [205] PC eXplore Vista, LYSO/GSO, by GE

2007 Vandervoort et al. [200] PC microPET R4, Focus 120, LSO, by Siemens

2007 Rey et al. [144] PC protoype, Lausanne ClearPET

2009 Rechka et al. [142] PC LabPET, LYSO, LGSO, by Sherbrooke

2009 Geramifar et al. [51] C Discovery DLS/DST/DSTE/DRX, BGO/LYSO, by GE

2011 McIntosh et al. [108] PC Inveon, LSO, by Siemens

2011 Geramifar et al. [50] C Discovery RX, LYSO, by GE

2012 Poon et al. [137] C Biograph mCT, LSO, by Siemens

2012 Trindade et al. [191] C Gemini TF, TruFlight Select, LYSO, by Philips

2013 Lee et al. [93] PC Inveon trimodal, LSO, by Siemens

2013 Nikolopoulos et al. [129] PC Biograph DUO, LSO, by Siemens

2013 Zagni et al. [208] PC Argus, LYSO/GSO, DOI, by Sedecal

2013 Solevi et al. [172] C prototoype AX-PET, LYSO, SiPM, brain

2015 Moraes et al. [117] C Biograph mCT, LSO, by Siemens

2015 Poon et al. [138] C Biograph mCT, LSO, by Siemens

2015 Aklan et al. [2] C Biograph mMR hybrid, LSO, by Siemens

2015 Monnier et al. [115] C Biograph mMR hybrid, LSO, by Siemens

2016 Lu et al. [103] PC Inveon, LSO, by Siemens
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Bib. ref. C / PC PET system

2016 Etxebeste et al. [40] PC prototype, LYSO

2017 Sheikhzadeh et al. [170] C NeuroPET, LYSO, SiPM, brain, by PDS

2017 Li et al. [99] C Ray-Scan 64, BGO, by ARRAYS MIC

2018 Del Guerra et al. [35] C prototype TRIMAGE, LYSO

2018 Kowalski et al. [82] C prototype J-PET, plastic

2019 Akl et al. [1] C prototype PET2020, LYSO

2019 Kochebina et al. [80] C prototype CaLIPSO, TMBi

2020 Emami et al. [38] C Dual ring MAMMI breast, LYSO, by Oncovision

2020 Salvadori et al. [158] C Vereos, LYSO, SiPM, Philips
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Table 2.

Bibliography of simulated and evaluated against experimental data SPECT systems. Collimators types are: 

Low Energy All Purpose (LEAR), Medium Energy General Purpose (MEGP), Low Energy High Resolution 

(LEHR), High Energy (HE). The second column indicates if it is clinical (C) or preclinical (PC, for small 

animals) systems.

Bib. ref. C / PC SPECT system

2003 Staelens et al. [178] C AXIS, LEHR/MEGP, 99mTc, 22Na, 57Co, 67Ga, by Philips

2004 Assie et al. [6] C DST-Xli, MEHR, 111I, by GE

2004 Assié et al. [7] C AXIS, LEHR/MEGP, 99mTc, by Philips

2004 Lazaro et al. [87] PC IASA prototype, CsI(Tl), 99mTc

2005 Staelens et al. [177] C IRIX, LEHR/MEGP, 99mTc, by Philips

2005 Autret et al. [8] C DST-XLi, Millennium VG, 131I, by GE

2006 Staelens et al. [179] PC ECAM multi-pinhole, 123I, by Siemens

2006 Vandenberghe et al. [197] PC prototype SOLSITCE, solid-state, CZT, 99mTc

2006 Sakellios et al. [157] PC prototype, PSPMT, CsI(Tl), 99mTc

2008 Carlier et al. [23] C Symbia, 99mTc, 111I, 131I, by Siemens

2009 Park et al. [132] PC TRIAD XLT9, LEUHR, NaI(Tl), 99mTc, by Trionix

2010 Mok et al. [114] PC XSPECT, multi-pinhole, 99mTc, by Gamma Medica-Ideas

2011 Robert et al. [149] C prototype, HiSens, CZT, LEHR/H13, 99mTc, 57Co

2011 Boisson et al. [14] PC prototype, parallel slat, YAP:Ce, 99mTc, 57Co

2015 Lee et al. [95] PC Symbia T2, LEAP/LEHR/HE, 131I, 99mTc, by Siemens

2015 Lee et al. [94] PC Inveon, LSO, 123I, 125I, by Siemens

2015 Spirou et al. [176] C ECAM, NaI(Tl), 99mTc, by Siemens

2017 Georgiou et al. [49] PC γ-eye, CsI(Na), 99mTc, 111In, 177Lu, by Bioemtech

2017 Costa et al. [30] C Symbia T2, MEAP, 177Lu, by Siemens

2018 Taherparvar et al. [187] PC prototype, CsI(Na), 99mTc

2019 Sadremomtaz et al. [155] PC HiReSPECT, LEHR, CsI(Na), 99mTc, by PNP
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