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A new millennia ushered in novel experimental capabilities to investigate engineered quan-

tum systems. Gases consisting of charge neutral atoms are cooled to the ground state and

by exploiting the dipole interaction can be trapped by laser light. In ultracold atomic

systems the tunneling and interactions are controllable, and the system is absent of dis-

order. Disorder and interactions in solid-state systems inhibits a complete understanding

of transport phenomena. Theoretical investigations into non-equilibrium and equilibrium

dynamics of fermions in discretized potentials and in continuum are presented. The af-

fect of controllable, external system parameters is evaluated and exploited to reveal new

properties of fermion dynamics. My thesis will begin with an overview of the physics

associated with many-body fermion and the models used to obtain results, followed by my

thesis research on how matter-waves can be manipulated by lattice geometry and tunneling

strengths. Next, I present how dissipation affects current in a continuous ring, demonstrat-

ing rate-dependent hysteresis as the particles are driven by an artificial gauge field. After

presenting the continuous ring, I will then focus on persistent current and corresponding

quantum current fluctuations in a discretized ring. Lissajous curves are found in the sys-

tem whose area strongly depends on the presence and absence of interactions. Lastly, I

will discuss dynamical detection methods for one-dimensional topological insulators us-
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Chapter 1

Introduction

Revolutions in experimental techniques launched a new, innovative and exciting field

of ultra-cold atoms in optical trapping potentials [20]. Prior to the turn of the century,

atomic physics research involved optimizing known techniques for many body systems

rather than seeking to discover new physics and further the field. Experimental access to

dynamics of electrons in solid-state systems was an impossible task due to Fermi

velocities near relativistic speeds and collisions happening on the attosecond timescale.

Events on these timescales make it challenging to explore quantum behavior of many

body systems. Atoms are trapped via an optical-dipole interaction. An array of potentials

can be formed to construct periodic potentials, known as optical lattices, using counter

propagating lasers. Particles can tunnel through the optical potential barrier to adjacent

sites. The tunneling timescales in optical lattices are more tractable with tunneling times

on the millisecond time scale, and furthermore possess controllable collision rates [90]. It

is also an impossibility to tune interactions in conducting systems since interactions

caused by collisions are inherent, along with long-range Coulomb interaction between

electrons. Atoms used experimentally are charge neutral and the Feshbach resonance is

used to tune the scattering length of atoms from the non-interacting to the strongly

interacting limits [135, 125]. Furthermore the trapping potentials are perfect periodic

4
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structures and effects from disorder can be mitigated. The control permitted with cold

atoms in optical trapping potentials make them ideal for simulating many-body physics.

Advances in laser cooling and trapping elucidated amazing methods to manipulate,

control and detect quantum systems, allowing experimentalists to explore areas such as

entanglement, correlation and coherence. Atoms can be cooled to the nanoKelvin regime

at a fraction of the Fermi temperature. These cooling techniques permitted bosons to be

cooled below the critical temperature for condensation. The experimental observation of

the Bose Einstein Condensation (BEC) with laser and evaporation cooling techniques

marking the beginning of a new era to discover rich physics for many-body systems [41].

The ability to access the the ground state wave-function in a controlled environment

makes cold atoms ideal for engineering model Hamiltonians. Richard Feynman believed

quantum computing would be quantum simulators that could simulate quantum many

body systems unachievable by current computers. Cold atoms are used to simulate these

many-body systems, and have led to amazing new discoveries of condensed matter

physics unachievable with material systems. Thus, in the early stages of cold-atoms, the

ability to realize universal quantum computer with cold, neutral atoms motivate research

efforts[35, 144].Using an optical lattice the Hubbard tight-binding Hamiltonian can be

engineered for different lattice geometries [90], and additions like complex next-nearest

neighbor tunneling for topological states [77], Hubbard ladders [10, 26], spin-orbit

coupling [94, 49], long-range interactions[90, 109, 85], vector potentials [95] opens up

thrilling possibilities for theoretical exploration into phenomena of many-body systems

not necessarily realizable in traditional solid-state systems.

A complete theoretical understanding of fermionic dynamics is still lacking.

However, simulating quantum dynamics in isolated, controlled environments permits

theoretical focus on intrinsic transport properties since interactions with the environment

must be engineered. Transport can be inhibited by external factors, and disorder within

the system leads to localization. Engineering of optical lattices is advantageous for the

discovery of new transport behavior and the manipulation of particle transport. A distinct
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difference between transport in solid-state systems and cold atom systems is the driving

force. The Lorentzian force from a magnetic field drives a current in a conducting

system, but since the atoms are charge neutral the addition of an external magnetic field

has no effect on delocalization. It is necessary then to mimic the magnetic field using

different driving mechanisms. One method to drive the system is to create an energy

imbalance across the boundary, and it has been shown a chemical potential imbalance

between two halves of a lattice can drive a steady-state current [33]. Optically induced

Abelian synthetic magnetic fields formed by coupling of the atoms to Raman laser beams

have become a standard method to evaluate particles dynamics induced by a magnetic

field[94, 49, 55]. In this thesis work both methods of inducing particle transport are

employed for isolated quantum systems as well as systems coupled to the environment.

1.1 Thesis Outline

The second chapter of this thesis is devoted to the theory behind many-body physics

used in my PhD work, and subsequent chapters are devoted to the research conducted

throughout the graduate program. The entirety of the research focused on fermion

particles with unique behavior due to their inability to occupy the same energy state. The

antisymmetry of the wave-function and the resulting statistics are discussed. Theory

behind condensed matter systems is elucidated with crystals being constructed from

translationally invariant unit cells. The energy bands of the crystal structures can be

determined using the Bloch formalism, and calculations for the crystal structures in this

thesis can be found in the the Appendix. Lastly discussed in the introductory theoretical

chapter is the formulation for the Hubbard tight-binding model which is the Hamiltonian

used in all theoretical calculations conducted for lattices systems in this work.

In the third chapter work done on the manipulation of matter-wave propagation by

tuning lattice geometry and tunneling strengths is presented. Quantum transport of

fermionic atoms in optical lattices with various geometries is studied. Looking at the
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probability density of particles over time on the square, triangle and body centered lattice

we find an increase in particle velocity as diagonal links are added to the system. As the

longitudinal dimension is increased the velocities converge to the maximum group

velocity of the system predicted by band theory. Calculations elucidated a

phenomenological result in the body centered lattice where a flat band exists under

special cases. A controllable range of velocities when transitioning from the triangle

lattice to the zig-zag lattice is found. All theoretical results are experimentally realizable

in optical lattice systems with ultra-cold fermionic gases.

Rate-dependent hysteresis of current resulting from external dissipation on persistent

current in a continuous ring is discussed in the fourth chapter. In most systems exhibiting

hysteresis interactions are present, but hysteresis exists for a non-interacting Fermi gas in

an optical ring potential when driven by a time-dependent artificial gauge field and

subject to dissipation. Fermions in a ring potential threaded with flux can exhibit a

persistent current when the system is in thermal equilibrium, but cold-atoms in optical

potentials lack scattering mechanisms due to perfect periodicity and dissipation for

reaching thermal equilibrium can be introduced by an external, thermal bath. The

standard relaxation approximation is used to model the dynamics of cold-atoms driven

periodically by an artificial gauge field. A competition of the driven time and the

relaxation time leads to hysteresis of mass current, and work done on the system, as a

function of the relaxation time, exhibits similar behavior as Kramers transition rate in

chemical reaction and one-dimensional thermal transport. Therefore, noninteracting

systems with suitable dissipation are sufficient to support hysteresis behavior which can

be observed with current experimental techniques.

In the fifth chapter dynamical methods are presented to detect topological signatures

of a non-interacting and interacting one-dimensional topological insulator. Topological

edge states are difficult to detect in ultracold atoms because the background harmonic,

confining potential prevents direct detection of topological edge states arising at the

boundary because the additional potential fuses the edge states into the bulk. Protocols
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are proposed to probe localized edge states and dimerization of ultracold fermions that

are within current experimental capability. By confining atoms in a ring lattice and

change the boundary condition from periodic to open using an off-resonant laser sheet to

cut open the ring, topological edge states can be generated. A lattice in a topological

configuration can trap a single particle released at the edge as the system evolves in time.

Alternatively, depleting an initially filled system away from the boundary reveals the

occupied edge states. Signatures of dimerization in the presence of contact interactions

can be found in selected correlations as the system boundary suddenly changes from

periodic to open and exhibit memory effect of the initial state, which can distinguish

topological structures or different insulating phases.

A global property of persistent current and quantum current fluctuations in

mesoscopic systems, interaction induced Lissajous curves, is presented in the sixth

chapter. Measurement of quantum systems has remained one of the spooky features of

quantum mechanics due to the probability nature of particles. There exist fluctuations in

the measurement of quantum systems calculated as the standard deviation of an

operator’s expectation value. The fluctuation of current in a mesoscopic ring lattice has

unique features when interactions are considered. In a non-interacting system there exists

a fourth-order degeneracy point periodic in flux. At this point the current is null and the

fluctuations demonstrate a jump to compensate for the jump in current. The addition of

interactions lifts the degeneracy the current and fluctuations become continuous. In the

interacting cases the current and current fluctuations form Lissajous curves which

indicated the underlying periodic nature of the measurements. In the non-interacting

picture the curve has zero area and jumps to a finite value with any interaction, indicating

a topological change. Addition of next-nearest-neighbor tunneling is considered and the

Lissajous curves are robust against small tunneling strengths. The Lissajous curves were

see in both a periodic, closed quantum system and an open quantum system connected to

external reservoirs demonstrating this global property of quantum transport.

Publications in the PhD Work:
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• Chapter 3

M. Metcalf, G.W. Chern, M. Di Ventra, C.C. Chien (2016), ”Matter-wave

propagation in optical lattices: geometrical and flat-band effects”, Journal of

Physics B 49: 075301.

• Chapter 4

M. Metcalf, C.Y. Lai, C.C. Chien (2016), ”Hysteresis of non-interacting and spin-

orbit coupled atomic Fermi gases with dissipation”, Physical Review A 93: 053617.

• Chapter 5

M. Metcalf, C.Y. Lai, K. Wright, C.C. Chien (2017), ”Protocols for dynamically

probing topological edge states and dimerization with fermionic atoms in optical

potentials”, European Physics Letters 118: 56004.

• Chapter 6

M. Metcalf, C.Y. Lai, M.D. Ventra, C.C. Chien (2018), ”Interaction induced multi-

valueness of current fluctuations in closed and open quantum systems”



Chapter 2

Many-Body Physics of Fermions

2.1 Fermion Antisymmetry

Nature contains two types of particles with different spin quantum numbers: bosons

with spin 1 and fermions with spin 1/2. Fermions are the particles building up the atom

such as electrons, protons and neutrons. Single particle fermions have two spin states,

”spin up” |↑〉 and ”spin down” |↓〉, and the spin states are orthonormal

〈↑|↑〉 = 1 〈↓|↓〉 = 1 (2.1)

〈↑|↓〉 = 0 〈↓|↑〉 = 0. (2.2)

The two spin species are distinguishable from each other, but particles of the same spin

are indistinguishable (or identical). Indistinguishable fermions possess an antisymmetric

wave function

Ψ(x1, ...,xi,xj, ...,xN) = −Ψ(x1, ...,xj,xi, ...,xN), (2.3)

and under interchange of spatial coordinates of any two identical fermions the wave

function gains a negative sign. Antisymmetry of the wave function under particle

10
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exchange proves the Pauli exclusion principle, since with equal coordinates xi = xj the

wave function Ψ(x1, ...,xi,xj, ...,xN) = 0. Thus, no fermionic particle can occupy the

same quantum state. For example, a molecular or atomic orbital can only contain two

distinguishable fermions, one spin up and one spin down.

In most physical systems, there are more particles than a single fermion, requiring

construction of a many body wave function. The most general construction of the many

body wave function for particles is expanding it as a product of single particle wave

functions

Ψ(x1, ...,xi,xj, ...,xN) = φ(x1)...φ(xi)φ(xj)...φ(xN). (2.4)

This generalized formula, known has Hartree products, distinguishes between identical

particles and a linear combination of the Hartree products is needed to obtain the

complete wave function. The linear combination for the antisymmetric wave function can

be constructed as a Slater determinant

Ψ(x1, ...,xi,xj, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φν1(x1) . . . φν1(xn)

.

.

.

φνN (x1) . . . φνN (xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)

of the single particle eigenstates where νi is the single particle state. This notation of the

many body wave function is known as first quantization.

2.2 Fermi-Dirac Statistics

Consider non-interacting fermions of a chosen spin component in a gas as

indistinguishable particles in thermodynamic equilibrium. These particles can only

occupy a single state or energy level, so the N particles will fill up the energy to some εN .

The grand canonical ensemble is used with a fixed chemical potential µ which controls
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the rate of change of the energy with particle number. The energy can be determined by

summing over the states

E =
N∑
i

(εini − µini) (2.6)

with ni being the occupancy of the energy. The grand-canonical partition function summed

over all possible states ν

Z =
∑
ν

e−βEν (2.7)

provides a statistical outcome of all system possibilities. The coefficient β = 1/kbT where

kbis the Boltzmann’s constant and T is the temperature. In quantum mechanics the state

ν is specified by the occupancies (n1, ...ni, nj, ...nN) of the energy states. The partition

function for fermions with an occupancy of 0 or 1 due to the Pauli exclusion principle is

Z =
1∑

n1,...ni,nj ,...nN=0

e−β
∑
i(εini−µni) (2.8)

=
∏
i

1∑
ni=0

e−β
∑
i(εi−µ)ni (2.9)

=
∏
i

(1 + e−β(ε−µ)) (2.10)

The particle distribution is determined by

〈n〉 =
∂ ln(Z)

∂(−βε)
(2.11)

=
∂ ln(1 + e−β(ε−µ))

∂(−βε)
(2.12)

=
1

eβ(ε−µ) + 1
(2.13)

and F (ε) = 1/(eβ(ε−µ) + 1) is better known as the Ferm-Dirac distribution function.

The energy of a free fermion is related to the wave vector k = kxx̂ + kyŷ + kz ẑ by

ε(k = ~2k2/2m where m is the mass of the fermion. Density of states can be determine
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using the relationship 〈N〉 =
∑

i〈ni〉. Considering a cubic volume where V = L3 we find

that

〈N〉 =
2L3

(2π)3

∫
dkF (ε(k)). (2.14)

Density of state becomes much more tractable in the limit as T → 0 since the Fermi-Dirac

function becomes

F (ε) = 1 ε < µ0 (2.15)

= 0 ε > µ0 (2.16)

The chemical potential in the limit of zero temperature is referred to as the Fermi energy

Ef since particle occupancy is zero above this value. The Fermi momentum kF gives the

Fermi surface in which the density of states is zero in momementum space when k > kF .

2.3 Fock Space and Second Quantization

Determining distinguishability of particles is necessary to compose a many-body

basis. Particles of the same spin species are indistinguishable from one another, where

particles of different spin species are distinguishable. A Hilbert space must be

constructed for single particle systems for each set of indistinguishable particles. From

these single-particle Hilbert spaces a many-particle Hilbert space is constructed for the

distinguishable sets. This many-particle Hilbert space is better known as Fock space.

Fermions have two distinguishable types, spin up and spin down, that make up the Fock

space. The total Hilbert space for a many-particle fermion system is the tensor product of

the single particle Hilbert spaces for the two spin types

Htot = H↑ ⊗H↓. (2.17)

Before describing how to construct the single particle Hilbert spaces composed of Fock

states, it is worth introducing second quantization notation.
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A complete set of single particle states, describing the number of particles occupying

each state, are constructed from abstract state vectors |n1n2..ninj...nN〉 representing N

total states, and for fermions the occupancy nν = 0 or 1. The vector product of these

states for both spins is known as the Fock state

|F 〉 = |n1↑n2↑..ni↑nj↑...nN↑〉|n1↓n2↓..ni↓nj↓...nN↓〉. (2.18)

The many particle wave function is expanded in these Fock states

|Ψ〉 =
∑
i

ci|Fi〉 (2.19)

where ci is the expansion coefficient for the Fock basis.

Operators act on a Fock state to either create or remove a particle from an individual

state nν . These operators are known as the creation operator c†ν and annihilation operator

cν . The creation operator creates a particle on a state

c†ν |0〉 = |1〉, (2.20)

and to satisfy the Pauli exclusion principle c†νc
†
ν |0〉 = 0. The annihilation operator removes

a particle from a state

cν |1〉 = |0〉 cν |0〉 = 0. (2.21)

Statistics of these operators must account for the antisymmetry of the many-body fermion

wave function, so they anticommute {A,B} = AB+BA. The anticommutation relations

for the creation and annihilation operators are as follows:

{cν′ , c†ν} = δν′ν (2.22a)

{c†ν′ , c
†
ν} = {cν′ , cν} = 0. (2.22b)

By using anticommutation relations the negative sign obtained through the exchange of

two fermions on different states is accounted for. The number of particles on an individual

state nν is found by the number operator n̂ν = c†νcν which has eigenvalues of either 0 or 1.



15

Using the second quantization operators a Fock state can be constructed on the vacuum

|F 〉 =

Np∏
i

c†i |0〉, (2.23)

where Np is the number of particles in the system. For example, the Fock state |010011〉
, site indexing is right to left, with six states and three particles is constructed from the

vacuum as c†5c
†
2c
†
1|0〉. It is a combinatorics problem to determine the total number of Fock

states with six states and three particles. All the Fock states make up the Hilbert space

which scales

H =
N !

Np!(N −Np)!
(2.24)

for a single particle system. The size of the Fock space is found from multiplying the

Hilbert space for both fermion spin species.

2.4 Tight-Binding Model

Crystal structured materials possess translational symmetry with the atoms arranging

in a periodic structure. The periodicity can be quantified by Bravais lattice vector R =

n1~a1 + n2~a2 + n3~a3 where n1,2,3 is some integer and ~a1,2,3 are the unit vectors for a three

dimensional solid. A good approximation is to consider the entire Hamiltonian for the

crystal structure can be approximated by individual Hamiltonians for an atom at each

lattice site. The wave function of the electron is considered to be very small when the

distance r is greater than the order of a lattice constant. Electrons occupying a lattice site

are considered to be bound by the wave function.

2.4.1 Non-Interacting Fermions

The potential created by the atoms is a one-electron potential V (r) periodic under the

lattice vectors V (r) = V (r + R). A free-particle in a periodic potential is described by
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the Hamiltonian

H = − ~2

2m
∇2 + V (r). (2.25)

Since the potential and Hamiltonian are periodic in both real space and reciprocal space

the wave function can be written as a plane wave multiplied by a periodic function

ψnk(r) = eik·runk(r) (2.26)

where unk(r+R) = uk(r), k is the crystal momentum and n is the quantum number. This

theorem, better known as Bloch’s theorem, implies

ψnk(r + R) = eik·rψnk(r) (2.27)

which is the Bloch wave function in continuous models. Remembering fermions can’t

occupy the same state, a total of N particles will fill up N k values in the first Brillouin

zone. The largest occupied k state is the Fermi surface, and the energy corresponding to

this crystal momentum is the Fermi energy.

In the tight-binding approximation we consider the wave function restricted to lattice

sites, yet this wave function must satisfy Bloch’s theorem for periodic potentials. The

wave function that satisfies Bloch’s theorem is determined by summing over the lattice

vectors

ψnk(r) =
∑
R

eik·Rψn(r−R). (2.28)

Working in second-quantization this can be integrated into the operators such that

ci =
∑
k

eik·Rick (2.29)

c†i =
∑
k

e−ik·Ric†k (2.30)

Using second quantization, the tight-binding model and introducing a simplification of

atomic orbitals, the non-interacting Hamiltonian can be expressed

H =
∑
〈ij〉

(tijc
†
icj + h.c.) +

∑
i

Vic
†
ici (2.31)
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where tij is the coefficient for the kinetic term of the Hamiltonian describing atomic orbital

overlap and a particle tunneling from one site to it’s neighbor and Vi is the onsite potential.

Working with this Hamiltonian and formula can be derived using the operators derived

with Bloch’s theorem to determine the Bloch energies for non-interacting fermions. The

Hamiltonian in momentum space is written as

H(k) =
∑
k

ε(k)c†kck (2.32)

and ε(k) is the Bloch energy. Transforming the Hamiltonian in real space to momentum

space using the relationship for the second-quantization operators above we can obtain the

Bloch energies for any Bravais lattice. Using the non-interacting tight-binding model we

find where the tunneling between sites in reciprocal space is tkk′ the Bloch energy can be

obtained

H =
∑
〈ij〉

(tijc
†
icj + h.c.) +

∑
i

Vic
†
ici (2.33)

=
∑
〈ij〉

∑
kk′

(tije
−i(k·Ri)ei(k

′·Rj)c†kck + h.c.) + V
∑
k

c†kck (2.34)

=
∑
〈ij〉

∑
kk′

(tije
i(k′·Rj−k·Ri)c†kck) + h.c.) + V

∑
k

c†kck (2.35)

(2.36)

ε(k) =
∑
〈ij〉

∑
kk′

(tije
i(k′·Rj−k·Ri) + h.c.) + V (2.37)

=
∑
〈ij〉

∑
kk′

(tije
ik′·(Rj−Ri)ei(k

′−k)·Rj + h.c.) + V (2.38)

=
∑
kk′

(tije
ik′·(Rj−Ri)δ(k′ − k) + h.c.) + V (2.39)

=
∑
〈ij〉

∑
k

(tije
ik·(Rj−Ri) + h.c.) + V (2.40)

It can be seen from this equation that the addition of an onsite potential only shifts

the energy by a constant value V . For a one-dimensional lattice with a lattice vector
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R = ax̂ and hopping between nearest neighbors t̄, the Bloch energy can be determined

with nearest-neighbor hopping i = j + 1 by

ε(k) = t̄(ei(kja−kja−ka) + t̄e−i(kja−kja−ka)) + V (2.41)

= t̄(e−ika + eika) + V (2.42)

= 2t̄ cos(ka) + V (2.43)

The total energy is found by taking the summation in momentum space until the Fermi

surface

E =

kf∑
k

ε(k), (2.44)

providing an analytical description of the energy of a free particle in a crystalline lattice.

However, this method breaks down with the addition of fermion-fermion interactions.

2.4.2 Hubbard Onsite Interaction

Charged particles are subjected to the Coulomb interactions. Accounting for

interactions in many-body physics and physical chemistry is a difficult challenge

analytically and computationally. In the tight-binding model the interactions are local and

limited to onsite Pauli repulsive interactions with strength U; therefore, an energy cost is

associated with doubly occupied sites. This interaction known as the Hubbard interaction

can be expressed in second quantization as a quartic operator

HU = U
∑
i

c†i↑ci↑c
†
i↓ci↓. (2.45)

The Hubbard model, with diagonal elements U and off-diagonal tunneling terms t̄, is a

gross over simplification of interactions in real materials, but it has successfully predicted

observable phenomena [92]. The utility of the Hubbard model renders it ubiquitous in the

study of phenomenological behavior of material systems. This being said, cold atoms were

designed to realize the Hubbard model and the Hamiltonian coefficients are tunable. The
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ability for cold atoms to realize these toy models demonstrates the value. Exotic features

resulting from interactions can be easily quantified and accessed.

Though the Hubbard model is simplified compared to a full Hamiltonian which

quantifies atomic and molecular orbitals, it is still difficult to solve. When interactions are

added the basis can no longer be expanded in the onsite single particle basis. The

many-particle wave-function is required and the Hilbert space is exponentially large. The

single-particle Hamiltonian with two spin species scales as 2N where is N is the number

of lattice sites. To calculate an exact solution of the ground state energy and wave

function the size of the system is limited. Using the Hartree-Fock method the interaction

term can be reduced to a single particle potential that arises from an average interaction

of all other particle. The Hartree Fock method is useful in the small U limit, U ≤ t̄, for a

large system size. The density-density terms for the spin species in the interacting

Hamiltonian term can be decoupled, and the interaction Hamiltonian becomes a sum of

the spin up and spin down Hamiltonian with the addition of a constant term

HU = U
∑
i

ni↑〈ni↓〉+ U
∑
i

〈ni↑〉ni↓ − U
∑
i

〈ni↑〉〈ni↓〉. (2.46)

If the system has an equal population of particles N↑ = N↓, the Hamiltonian is

approximated in a reduced form

〈HU〉 = U
∑
i

〈ni↑〉〈ni↓〉. (2.47)

However many interesting effects occur with strong interactions, and the Hartree-Fock

approximation will provide inaccurate quantifications of the energy. An exact

diagonalization computational technique is used to obtain solutions for the Hubbard

model with interactions in the following work.



Chapter 3

Matter Wave Propagation of Fermions

in 2D Optical Lattices: Geometry and

Flat Band Effects

The work on how lattice geometry affects ballistic particle transport has been published

in a peer-reviewed journal see Ref [106] Copyright 2017 IOP Publishing. Below is a more

detailed description of my work.

3.1 Motivation

Variational calculus led to the conclusion the shortest distance to move between two

points is a straight line. Is the same true in quantum mechanics? Studying the dynamics

of ultra-cold atomic gases in optical lattices provides a tool for quantum simulation, and

understanding the effects of many body systems. Fermions moving in an optical lattice

can produce a quasi-steady state current as fermions tunnel through the optical potential

of the lattice [33]. Optimizing particle travel can enhance the usefulness of the observed

current which will be of importance in the developing field of atomtronics [129, 115]. The

20
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fermi velocity in a typical copper conductor is on the order of 106m/s where the vF in a

cold atom system is one the order of 10−3m/s [22]. It is therefore imperative to find a way

to increase particle velocity through a lattice.

By measuring the probability density over time for three different geometries we

observe an increase in particle velocity through the lattice as more diagonal links are

added. Our numerical calculations demonstrate that as the longitudinal dimension is

increased particles move at the maximum group velocity predicted by energy band

theory. It is apparent that the increase in group velocity comes from the mixing of the

wave vectors when diagonal links are added.

Calculations of the square lattice with next-nearest-neigbor hopping (SNNN) revealed

an interesting phenomenological result preventing particle transport through the lattice. A

flat band appears in the 1D SNNN lattice resulting from overlapping energy bands [40].

This result is dependent on the equivalence of hopping coefficients along all links in the

lattice and the longitudinal dimension of the lattice. With an increased interest in flat

band systems in the cold atom community our results provide a mechanism to study the

transition between a system with and without a flat band [76].

The spin frustrated zig-zag lattice also provides an opportunity to explore rich physics

in optical lattice systems[57]. We explore the ability to tune the velocity of the matter

wave by changing the ratio of hopping coefficients along the diagonal and horizontal links.

Transition from the zig-zag lattice to the triangle lattice increases the range of wavefront

velocity and allows for experimental control of particle movement.

3.2 Theoretical Description of the Tight-Binding Model

and Time Evolution of the Correlation Matrix

Initially the system is prepared with non-interacting fermions in their ground state on

the left half of the lattice, and the particles move to the right half of the lattice by tunneling
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Figure 3.1: Lattice geometries for the (a) square, (b) triangle, and (c) SNNN lattice
respectively. The left half of the lattice is filled with particles (solid red circles), and the
right half is absent of particles (red rings). The particles propagate ballistically from the
left half to the right half of the lattice as the system evolves in time, indicated by velocity
vector. (d) Potential experimental realization of BCL using bi-layered optical lattices

through the optical potential V (r) which is proportional to the intensity of the laser beam.

We use the tight-binding hopping Hamiltonian without the interaction term.

H = −
∑
i

∑
∆

t̄ijc
†
icj

where t̄ is the hopping coefficient and determines the unit of time t0 = ~/t̄ as the particle

move from site j = x̄ȳ to the nearest neighbor i = x̄ȳ + ∆. Nearest neighbor to a specific

site are denoted by ∆.The creation c†i and annihilation cj operators make up the correlation

matrix we use to analyze particle travel. Elements of the correlation matrix determine the

probability density of hopping from site j to site i, and is used to determine the probability

density 〈n̂i〉 = 〈c†ici〉 of being on the far right of the lattice [32]. The lattice constant, a,

connecting unit cells serves as the unit of length and is set to one. We incorporate two

dimensional inter-site travel for three lattices: the square lattice, the triangular lattice and

the SNNN lattice Figure 3.1.
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Time-evolving the correlation matrix operator using the Heisenberg equation of

motion, with ~ = 1 with the Hamiltonian, we can measure the probability density of a

particle on the ith site over time. The equation of motion can be solved using the

anti-commutation relations of fermions [48]. The generic form of the equation of motion

− i∂〈c
†
icj〉
∂t

= 〈[c†icj, H]〉, (3.1)

can be evolved using the expression for the tight binding Hamiltonian,

− i∂〈c
†
icj〉
∂t

= −t̄
∑

∆

(〈c†icj+∆〉 − 〈c†i−∆cj〉) (3.2)

The equation of motion was evaluated numerically using the Runge-Kutta method

Appendix A.2.5 since it has improved accuracy to the simple Euler method [118]. The

initial correlation matrix was set up with a particle located at each site on the left hand

site of the lattice. It is then necessary to determine the nearest neighbors of site i in order

to evolve the matrix with time.

In the thermodynamic limit of infinitely large lattices, the results should agree with

band theory [9]. The correlation matrix is converted into momentum space

cj =
∑
k

cke
ik·xj (3.3)

c†i =
∑
k

c†ke
−ik·xi (3.4)

xj → xi + ∆ (3.5)

where ∆is the nearest neighbor to site i, and is determined from the lattice vectors. The

energy bands are determined by taking the Fourier transform of the tightbinding

Hamiltonian for a given lattice configuration

H =
∑
k

εkc
†
kck (3.6)
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to obtain the energy dispersion

εk = −t̄
∑

∆

eik·∆ (3.7)

Here ck (c†k) is the annihilation (creation) operator in momentum space. The dispersion

εk can be exactly solved for noninteracting fermions. Importantly, the semiclassical group

velocity in the transverse direction is given by [9]

vkx =
∂

∂kx
εkx,ky . (3.8)

This semiclassical prediction in the thermodynamic limit will be compared to the fully

quantum mechanical results of matter-wave propagation.

To determine the effects of mean field interactions we consider two fermionic species

with opposite spin. The system was modeled using the Hubbard interaction Hamiltonian.

Hint = H + U
∑
i

n̂i↑n̂i↓

Where

n̂i↑ = c†i↑ci↑

is the number operator and U is the onsite repulsive coupling constant. The interaction

Hamiltonian is evaluated in the same manner as before by solving the for the equation of

motion in the Heisenberg picture. The Hartree-Fock approximation defined in Chapter 2

is needed to obtain a closed-form solution of the equation of motion. The two fermionic

species are considered to be symmetric such that 〈c†i↑ci↑〉 = 〈c†i↓ci↓〉 and the Hamiltonian

takes the form of Equation 2.47. Using this approximation, the equation of motion

becomes [30].

−i∂〈c
†
icj〉
∂t

= −t̄
∑

∆

(〈c†icj+∆〉 − 〈c†i−∆cj〉
)
−

−U(〈c†icj〉〈c
†
ici〉 − 〈c

†
icj〉〈c

†
jcj〉). (3.9)
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Figure 3.2: Evolution of the particle density. Here the brighter regions correspond to
higher density. (a) Square lattice. (b) Triangular lattice. (c) Two-leg SNNN lattice. Here
Lx = 200 and Ly = 2. In (c) there is a density discontinuity at Lx/2 caused by the flat
band. (d) The SNNN lattice with Lx = 200 and Ly = 3 shows no density discontinuity.
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3.3 Expansion Dynamics and Maximized Group Velocity

We first consider uniform lattices where all hopping coefficients are equal: t̄ij = t̄. The

time it takes for a particle to tunnel through an isolated double-well potential is πt0/2 [36],

and in a 1D multi-site lattice it asymptotically takes t0/2 to tunnel through one link [32,

30] because of the modification of the dispersion. Since quantum matter wave is sensitive

to how each site is connected to its neighbors, with suitably chosen lattice geometry the

propagation speed can be altered.

Figure 3.2 shows the evolution of the y-direction averaged density,

n̄(ix) ≡ (

Ly∑
iy=1

nix,iy)/Ly,

for the square, triangular, and SNNN lattices with (Lx, Ly) = (200, 2) Figure 3.2 ((a)-(c))

and for the SNNN lattice with (Lx, Ly) = (200, 3)Figure 3.2 (d). At t = 0 the left half is

filled and the right half is empty. The spreading of the density clearly shows a light-cone

structure [32, 123] with the outermost wavefront showing a constant maximal propagating

speed. For different geometries the maximal speeds are different, and there are equivalent

ways for measuring them. For instance, the expansion rate of the perturbed region of the

cloud given by ∆w/∆t Figure 3.2 (e) will be twice of the propagating speed [123]. Since

the propagating speed is constant as one can observe from Fig. 3.2, measuring the time

tx it takes for the outermost wavefront to reach a point ix can also be used to evaluate

the maximal speed vm = (ix − iL/2)/tx. Measurement of the expansion velocity of non-

interacting fermions will yield the same results since fermions expand ballistically with

a constant, radial expansion velocity vr =
√

2(ix − iL/2)/(tx) [123]. In our simulations

the initial transport is ballistic, and the latter method determines the maximal propagating

speed.

It can be observed that the wavefront speed increases as more diagonal links are added

to the lattice. The full quantum dynamics thus claims that altering the lattice geometry

may boost matter-wave propagation, which can be very difficult to explain using classical
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Figure 3.3: (a) Matter-wave propagation velocities for the square (circular symbols),
triangular (square symbols), and SNNN (diamond symbols) lattices for Lx = 200 and
selectedLy. The horizontal lines show the maximal velocities calculated from band theory.
The evolutions of the y-direction averaged density n̄ for two selected cases indicated as
b.1 (for the SNNN lattice) and b.2 (for the square lattice) are shown in panels b.1 and b.2.
The wavefront arrival time at Lx (denoted by t∗) is determined by the time when n̄ rises
above a selected threshold. In this work we choose the threshold to be 0.05 as shown by
the dashed lines in panels b.1 and b.2.
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physics. Even more puzzling is that for the case of the SNNN lattice with Lx = 200

and Ly = 2, about half of the particles stay on the left half, and this causes a density

discontinuity at Lx/2, which is visible on Figure 3.2(c). In contrast, for the SNNN lattice

with Lx = 200 and Ly = 3 no density discontinuity can be observed. This indicates that

Ly = 2 is special for the SNNN lattice.

By analyzing n̄ as a function of t as shown in Fig. 3.2, one can estimate the time it

takes for the wavefront to first arrive at a point ix. For convenience, we take ix = Lx and

measure t∗ as the time when n̄ reaches a threshold and extract the velocity v = (Lx/2)/t∗

for the three types of lattices shown in Fig. 3.1 as a function of Ly with Lx = 200 and

present the data in Figure 3.3 (a). The details of n̄ as a function of t for selected cases are

shown in Figure 3.3 (b1) and (b2). The threshold is set to be 0.05 and the results do not

change qualitatively with the choice. We remark that by measuring the spreading rate of

the density profile shown in Fig. 3.2 and use the same threshold to determine the boundary

of the density spreading, the same maximal propagating speed would be determined. The

agreement is guaranteed by the light-cone spreading of noninteracting fermions shown in

Fig. 3.2.

The geometry-dependent propagation velocity can be accounted for by the standard

band theory for fermions [9]. For an infinitely large 2D uniform square lattice following

the illustration of Fig. 3.1 (a), the energy band is (k = (kx, ky))

εS(k) = −2t̄[cos(kx) + cos(ky)]. (3.10)

The semiclassical velocity in the x-direction is

vSx = 2t̄ sin(kx). (3.11)

Thus the maximal velocity in the x-direction is 2t̄, which is consistent with the numerical

simulations for the square lattice. A complete derivation of dispersions can be found in

Appendix A.3. Since kx and ky are decoupled, the result is independent of ky so the

maximal velocity already reaches the band-theory prediction when Ly = 2, as shown in

Fig. 3.3 (a).
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For the triangular lattice, the energy band is

εT (k) = −2t̄

[
cos(kx) + 2 cos(

kx
2

) cos(

√
3ky
2

)

]
. (3.12)

The corresponding velocity is

vTx = 2t̄

[
sin(kx) + sin(

kx
2

) cos(

√
3ky
2

)

]
. (3.13)

Unlike the square lattice, however, an important feature for this case is that kx and ky are

mixed in the expressions. The maximal velocity is 2t̄(1 +
√

2/2), which is larger than

that in the square lattice. This ky dependence also suggests that the Ly dependence will

be more significant. Indeed, Fig. 3.3 (a) shows a stronger Ly dependence of the wavefront

propagation velocity for the triangular lattice.

For the SNNN lattice, we first consider the infinite 2D lattice and defer the discussion

of the special case of Ly = 2 to later. Since there are two intercalated sublattices (A and

B), the energy band will split into two bands while the size of the first Brillouin zone is

only half when compared to the previous two cases. The energy dispersion is

εSNNN(k) = −4t̄ cos(kx)± t̄g(k). (3.14)

Here g(k) =
√

1 + 4 cos(kx) cos(ky) + 4 cos2(kx). The group velocity is

vSNNNx = 4t̄ sin(kx) cos(ky)∓

t̄[2 sin(kx) cos(ky) + 4 cos(kx) sin(kx)]/g(k).

(3.15)

A plot of the two bands at ky = π/a is shown in Figure 3.5. The two bands touch at four

points in the first Brillouin zone so the system remains conducting for any filling less than

the band insulator. The maximal velocity for the SNNN lattice is 6t̄.

As shown in Fig. 3.3, the wavefront velocity of the SNNN lattice approaches the

maximal velocity as Ly increases, but the convergence is slower when compared to the
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previous two cases. Fig. 3.2(d) shows many trailing wakes behind the first wavefront in

the SNNN lattice case and they are the byproducts of the more complex dispersion (3.14).

As a consequence, the averaged density n̄ of the SNNN lattice rises less abruptly when

compared to the other cases as shown in Fig. 3.3 (b.1) and (b.2). By estimating the

velocity from the time when n̄ rises above the selected threshold 0.05, an underestimation

is in place. This can be improved by choosing a lower threshold of n̄, although it would

require more precise experiments to locate the lower-density threshold. The same issue

persists if one measures the spreading rate of the cloud [123] because a threshold

specifying the spreading front (separating the cloud and the vacuum or undisturbed

regions) is needed.

The initial condition corresponds to a band insulator on the left half lattice. It has

been shown that reducing the initial filling only reduces the magnitude of the current and

the dynamics remains similar [33, 29]. One may use an initial configuration with finite

total momentum, which may be realizable by filling up fermions in selected momentum

states or imposing a momentum transfer. Since the spectral weight of the states are

determined by the initial condition, the propagation will be biased towards the selected

initial momentum. The maximal propagating speed, however, is determined by the lattice

geometry and will not be changed by different initial states. Here we focus on fermionic

transport because it has been shown that noninteracting bosons in the ground state will

form a macroscopically coherent condensate and the transport is highly oscillatory [33].

In addition, at low temperature bosons stay in the bottom of energy bands, so they are

insensitive to flat-bands which are at higher energies. For the purpose of probing the

maximal propagating speed and flat-band physics, fermions are a better choice.

The honeycomb lattice, when the zig-zag side is placed along the horizontal direction,

can be viewed as a deformed square lattice with alternating missing vertical links. In this

case, the wavefront propagation velocity from the band theory and simulations are both

identical to that of the square lattice when geometrical factors are properly considered.

It is known the low-energy dispersion in the honeycomb lattice around the Dirac points
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Figure 3.4: Evolution of the particle density with interaction U/t̄ = 1. Here the brighter
regions correspond to higher density. (a) Square lattice. (b) Triangular lattice. (c) Two-leg
SNNN lattice. Here Lx = 200 and Ly = 2.

resembles relativistic fermions [97]. For global transport studied here, the low-energy

effects are not observable.

Band theory is no longer a good calculation of group velocity when interactions are

added to the system. We provide numerical results in the small U limit, where the

mean-field approximation applies, to determine interaction effects on the propagating

wave front Figure 3.4. It is evident the presence of small interactions has minimal effect

on the results with only a small increase in the time it takes to reach the boundary. The

boost in wave propagation with the addition of diagonal links due to the mixing of

transverse and longitudinal wave vectors is evident. Furthermore, the density

discontinuity in the two-legged SNNN lattice remains present

3.4 Particle Localization and Flat band Effects

We now turn to the reason behind the density discontinuity of the two-leg SNNN lattice

observed in Fig. 3.2. When Ly = 2, the Hamiltonian can also be diagonalized and the

energy bands are

ε(kx) = −2t̄ cos(kx)± t̄|1 + 2 cos(kx)|. (3.16)
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Figure 3.5: Energy bands of the (a) 2D SNNN lattice ky = π/a and (b) 1D SNNN lattice.
The flat band appears from the overlapping of the bands and is intrinsic to the 1D lattice
with equivalent tunneling coefficients on the diagonal, horizontal and vertical links.

The two bands are shown in Fig. 3.5(b). One important feature is that there is a flat band,

i.e., a collection of dispersionless states. The particles on the flat band have localized

spatial patterns so they do not participate in transport directly. For the two-leg SNNN

lattice, the flat-band state corresponds to the wavefunction 1√
2

(
1

−1

)
localized on a

vertical link. The tunneling from the two sites on a vertical link to any site to the left or to

the right leads to a total destructive interference, which explains the localization. This also

contrasts why Ny = 2 is special for the SNNN lattice because no such total destructive

interference can be found in other values of Ny. In the presence of a chemical potential

difference caused by the initial density difference, mobile atoms on the curved part of the

dispersions are driven to the initial vacuum region.

The atoms on the flat-band, in contrast, remain in the initially filled region because

their wave functions tend to localize. Since each momentum state can accommodate one

fermion, on Fig. 3.5(b) the flat-band contains exactly Lx states. Thus, the flat-band states

account for half of the total states (i.e., Lx out of the total 2Lx states). Therefore, the

static property of the localized flat-band states is the reason for the density discontinuity.
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By inspecting the particle density profiles at different time slots, we have verified that the

density discontinuity does not decrease significantly as the wavefront propagates to the

right. We also remark that, because fermions pile up from the lowest energy to the Fermi

energy, the lower part of the dispersive band will be populated first. There are (2/3)Lx

states on the dispersive band below the energy of the flat-band as shown in Fig. 3.5(b).

Thus, to observe the density discontinuity the initial filling on the left half lattice should

exceed 1/3 for the flat-band to be filled.

Such a flat-band induced dynamical density discontinuity may be generic in cold-atom

systems. For instance, the kagome lattice has one flat band in its lowest three bands and

quantum dynamics show that a density discontinuity of magnitude 1/3 emerges as particles

flow from an initially filled region into an initially empty region [29]. There is, however,

a subtle difference between the flat band of the kagome lattice and that of the two-leg

SNNN lattice. The kagome flat-band is on top of the other two dispersive bands while

that in the two-leg SNNN intersects the other dispersive band. Nevertheless, their roles

in transport are identical. While demonstrating such a dynamical density discontinuity is

straightforward in cold-atoms systems, in conventional condensed matter depleting mobile

electrons completely can be very challenging and observing this phenomenon can be a

daunting task.

A few remarks on the two-leg SNNN lattice are worth mentioning. First, the existence

of the flat band depends crucially on the condition of uniform tunneling coefficients. If the

diagonal (A-A and B-B) links have a different tunneling coefficient t̄′, the bands start to

curve and there is no longer a flat band. We have tested the case for t̄′ < t̄ and confirmed

that the density discontinuity vanishes. However, when t̄′/t̄ is close to 1, the flat-band

is bent only slightly and there is a transient time where an observable density difference

(but not a discontinuity) gradually decays. The results look very similar to Fig. 3.2 (d).

Secondly, in the presence of magnetic flux penetrating the ladder, the dispersion exhibits

additional interesting features and the system is known as the Creutz ladder [40, 136] and

transport in the square lattice with effective magnetic flux has been recently studied in
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Figure 3.6: Adjustments to the tunneling coefficient ratio t̄/t̄′, where t̄′ = 1 and t̄ is
adjusted from 0 to 1(circles) increases the range of velocity when making the transition
from the triangle lattice to the zig-zag lattice (inset). The range is decreased if t̄ = 1 and
t̄′ is adjusted from 0 to 1 (triangles).

cold-atom systems [10]. Here, we focus only on geometrical effects on transport.

3.5 Manipulating Matter-Wave Propagation by

Controlling Nearest-Neighbor Tunneling

We end our discussion of geometrical effects on matter-wave propagation by

presenting a possible application in the zig-zag lattice optical lattice [57, 150], which is

basically a two-leg ladder of the triangular lattice as shown in the inset of Figure 3.6. The

hopping coefficient along the horizontal direction is t̄ and that along the diagonal is t̄′,

and the ratio between them are assumed to be continuously tunable. The initial condition

is identical to the previous cases with the left half of the lattice being a band insulator and

the right half being empty, as illustrated in Fig. 3.6.

When t̄′ = 0 and t̄ gives the time scale t0, the two legs decouple and it takes Lxt0/4
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for the matter wave to reach the far right boundary. In the opposite limit when t̄ = 0 and

t̄′ gives the same time scale t0, it takes Lxt0/2 because the particle has to traverse twice

the distance to reach the far right boundary. The velocities are thus 2a/t0 and a/t0 for the

two limits. Figure 3.6 shows the velocity for selected values of t̄/t̄′ and t̄′/t̄. We chose

the quantity in the denominator to give the same tunneling time scale t0 to guarantee a fair

comparison. Importantly, a maximal velocity appears when t̄ = t̄′ when each site has the

most available number of neighbors to tunnel into.

By tuning the ratio of the tunneling coefficients, a zig-zag optical lattice may serve as

an atomic “gas pedal” for changing the speed of atoms passing through it. One possible

scenario is to control the nearest-neighbor tunneling t̄ while keep the

next-nearest-neighbor tunneling t̄′ fixed. When t̄ = 0, the velocity is slowed down to

a/t0. To accelerate the matter wave, one can tune to t̄ = t̄′ and the velocity will be

increased by 270%, according to Fig. 3.6. An experimental set up proposed for the zig

zag lattice by superpositioning a triangular lattice and a strong optical superlattice [46,

14] could make such a gearing device feasible. Alternatively, the zig-zag lattice can be

constructed by using both real and synthetic dimension [7] We emphasize that the zig-zag

lattice tunes matter-wave propagating speed by the relative hopping strength of the two

types of links (horizontal and diagonal) while the total current through the lattice is

roughly maintained around a selected value because the total bandwidth does not change

drastically. One may consider an alternative way of simply reducing the hopping

coefficient of a uniform lattice to decrease the overall propagating speed, but this will

reduce the total current due to the reduced bandwidth as well.

Similar applications may be relevant to quantum information transfer by controlling

the group velocity of information carriers played by massive quantum particles. There

have been experiments demonstrating information exchanges between photons and cold-

atom matter-waves [52], where the propogation speed of the matter wave affects the overall

transfer of the information. Our investigations into geometrical control of matter-wave

propagation could provide additional manipulations of quantum systems.
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3.6 Conclusion

It is apparent the geometry of the lattice affects the velocity of particles through the

system. By adding diagonal links we increase the mixing of the wave vectors kx and ky
which increases the maximum group velocity of the lattice. The SNNN lattice exhibited

the fastest velocity of the wavefront due to it’s maximum group velocity being a

multiplicity of 3 higher than the square lattice. Control of the group velocity through an

atomic system is of great relevance to quantum information transfer.

A flat band was observed in the 1D SNNN lattice when the hopping parameters are

equivalent along the horizontal and diagonal links due to the overlap of energy bands.

There is great interest in the study of flat bands and the SNNN lattice provides a way to

discover physical properties resulting from a transition between a flat band system and a

system without constant energy bands.

The tunability of the zig-zag lattice also provides an avenue for interesting physical

phenomena. One can control the particle speed over a large range by merely tuning the

hopping parameters. All predictions can be confirmed with aforementioned experimental

setups.

I would like to acknowledge my co-authors Prof. Chih-Chun Chien, Prof. Gia-Wie

Chern and Prof. Massimiliano Di Ventra for having this idea that sparked my interest in

fermion transport.



Chapter 4

Dissipative Effects on Persistent

Current in Continuum Model

Results on the hysteresis of dissipative current were published by the author in

Ref [104] with permission to reproduce from Copyright (2016) American Physics

Society.. Below a more detailed description is provided on the research results.

4.1 Motivation

Experimental advancements of cold atoms in optical potentials have renewed interest

in the study of persistent current in mesoscopic rings. A 1D ring of particles can support

a non-vanishing current in thermal equilibrium, known as persistent current, and is

identical to magnetization [89, 3]. Recent work has focused on persistent current

measurement of superfluid bosons, but studies of fermion persistent current in cold atoms

remains theoretically and experimentally unexplored [120, 45, 37]. Past experiments

studying persistent current in mesoscopic rings came across difficulties with interaction

effects, but cold atoms provide a technique to measure the persistent current of

non-interacting fermions in a ring[89, 28]. However, a lack of scattering mechanisms for

37
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non-interacting fermions in optical potentials will be detrimental to the experimental

measurement of a true, persistent current. Dissipation must be added to the system for it

to settle into thermal equilibrium. Exchange of energy with a thermal bath relaxes the

system and allows for a true, persistent current to be observed.

We shall demonstrate, not only is dissipation necessary for the observation of

persistent current, but when the magnetic flux is periodically modulated hysteretic

behavior can be observed. Hysteresis is a ubiquitous phenomena well studied in magnetic

systems. Well known forms of hysteresis include ferromagnetic materials,

superconductors, and superfluids, and it is known to be a significant mechanism in the

advancement of modern electronics because it provides memory to a system and can

cancel systematic effects[110, 71, 139]. Hysteresis arising from thermal relaxation occurs

in two forms: rate-dependent hysteresis and rate-independent hysteresis[16]. The

aforementioned systems are cases of rate-independent, where two or more metastable

energy states are separated by an energy barrier and the free energy takes a non-linear

form. Rate-independent hysteresis of persistent current in a rotating, superfluid

Bose-Einstein Condensate (BEC) was observed and has been considered a milestone in

the advancement of atomtronic circuitry [45]. Two local minima are dependent on the

quantized angular momentum of the superfluid and the energy barrier is controlled by the

potential of a weak link. After reaching a critical rotation the angular winding number

changed between 0 and 1 leading to hysteresis loops of angular momentum.

Our study of persistent current in non-interacting fermions illustrates rate-dependent

hysteresis of current, and cold atoms provide a means to explore this phenomena outside of

magnetic systems. The competition between equilibrium and non-dissipative current leads

to hysteresis of mass current when a periodically modulated artificial, magnetic flux and

dissipation are added. Our results support a general approach to memory effects when the

system responds to an external driving force and strengthen the case for the universality

of hysteresis occurring in nature. Non-equilibrium memory effects of persistent current

can be observed in cold atoms where exchange of energy with the environment can be
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precisely tuned and dissipative techniques will be discussed.

Another interesting phenomenological result is the dependence of hysteresis loop area

on relaxation time and which is connected to an overdamped harmonic oscillator. The

area of a hysteresis loop determines how much energy is lost as heat from the system.

Rate-independent hysteresis of ferromagnetic materials provides a common illustration of

energy loss from a hysteretic process, and knowledge of the loss is highly important when

ferromagnetic and ferroelectric materials are used in electronic systems [74]. The ability

to form and magnetize domains depends on the material and determines how much

energy is lost when the system undergoes a change in direction of the magnetic field.

Hard magnets lose more energy during thermal relaxation processes thus requiring more

energy to align with the magnetic field explaining why hard magnets make efficient

memory systems. Energy loss from soft magnets is much less, which is why soft magnets

are used in electronic systems. Behavior similar to hard and soft magnets is observable

when calculating the areas for short and long dissipation times. It must be stated the

illustration given is a different class of hysteresis, and the phenomena we observed is

unique to rate-dependent systems. Rate-dependent behavior of energy loss is analogous

to a particle overcoming viscous forces with relaxation time being inversely proportional

to the friction coefficient. Examples of this behavior can be seen in Kramer’s transition

rate problem, and similar behavior has been predicted for thermal transport of atoms in a

1-D lattice coupled to a hot and cold bath on opposite boundaries.

Effects on hysteresis arising from interactions depends on whether the interaction

affects the eigenstate. The formalism used to describe rate-dependent hysteresis only

holds if the system does not redistribute with added flux and the eigenstate doesn’t

change as well. Two distinct cases of this type will also be discussed. Spin orbit coupling

is of great interest since the use of artificial magnetic fields for cold, neutral atoms induce

this interaction [94]. We demonstrate spin-orbit coupling doesn’t lead to a superpostition

of states, so the energies and currents are uniquely represented for each spin state. This is

an important feature which allows us to use the rate-independent picture to describe the



40

Figure 4.1: Hysteresis loops of total magnetization, m, over the normalized magnetic field,
B/B0. (a) The equilibrium (black) and non-dissipative (red) currents for the two-state spin
system. Hysteresis of magnetization as flux is periodically modulated with a dissipation
time (b) τ/tp = 0.1, (c) τ/tp = 1, (d) and τ/tp = 10.

system, and we show hysteresis arises in the presence of spin-orbit coupling.

4.2 Hysteresis by Thermal Relaxation

The principle behind memory effects, arising from thermal relaxation, can be

demonstrated with a single spin subjected to a periodic magnetic field. Using this more

simple, single body method the principle behind the many particle hysteresis mechanism

can be elucidated. Extension to an n-state system follows the same formalism and can be

calculated for an ultra-cold, fermionic persistent current by incorporating Fermi-Dirac

statistics.
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4.2.1 Two-State System

Two observable energy states are present as the spin aligns with the magnetic field

in the ẑ direction, E = µBzσz, where σz is the Pauli matrix in the ẑ direction, E is the

energy, and µ is the magnetic moment. Probability of being either in the spin-up or spin-

down state can be calculated by using the partition function with β = 1/kBT where kB
and T are Boltzmann’s constant and temperature respectively.

Pσ =
e−βεσ

Z

Z =
∑
i

e−βεi

= 2cosh(βµBB)

P↑ =
e−βµBB

2cosh(βµBB)

P↓ =
eβµBB

2cosh(βµBB)

The total equilibrium magnetization can be found by taking the difference of the

probabilities.

meq = µB(P↑ − P↓)

= µBtanh(βµB(t)) (4.1)

Magnetization follows the black curve in Figure 4.1(a) in thermal equilibrium, but as the

system is continually exposed to the periodic magnetic field B = B0sin(ωt) energy is

lost with relaxation. The period of the oscillating magnetic field tp = 1 since we set the

angular frequency ω = 2π. The period of magnetic field oscillation sets the time unit for

relaxation. The magnetization changes as energy is released to the environment as heat

and can be determined over time with the relaxation approximation.

dm

dt
=
−(m(t)−meq(t))

τ
(4.2)
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where τ is the relaxation time. Relaxation time is the amount of time between scattering

events and governs the rate of relaxation for the system. Relaxation of nuclear moments

[18] and electron properties in metals [9] have been determined with the relaxation

approximation and it proves to be robust when determining gross properties of the

system.

Time-evolution of the magnetization is calculated from the solution of the first-order

differential equation above (see next section for a full derivation).

m(t) =
1

τ

∫ t

0

e−(t−t′)/τµBtanh(βµB(t′))dt′ (4.3)

tf is the amount of time energy is being dissipated. The relaxed distribution function and

the corresponding time-dependent magnetization can be numerically calculated for both

spin states Figure 4.1.

Evaluating the magnetization of the two state system in the presence of an oscillating

magnetic field leads to clear memory effects if the relaxation time is on the order of the

oscillating period. Three relaxation times are examined τ/tp = 0.1, 1, 10, and

magnetization is plotted against the sinusoidal magnetic field over 10 periods

Figure 4.1(b-d). Near close-loop hysteresis curves appear if the number of cycles is on

the same order as the relaxation time, since the leading term in the time-evolution of

probability is diminished when the final time tf ∼ τ .

Memory effects arise from the periodicity of the distribution function in the dissipative

integral. The exponential in the integral has a small value as t → tf , and the weight

of the equilibrium distribution function becomes most dominant. A simple coordinate

transformation t′ = t+2tp and t′f = tf+2tp demonstrates the integrals over each period are

equal since Peq(t′) = Peq(t). The leading exponential term carries more weight over the

first period, but as time evolves the integral washes out contribution from the exponential,

leading to the necessity of training cycles to close the loop. The effect is best illustrated

when τ/tp = .1. Training cycles have been seen in the micro-states of artificial spin

ice when subjected to a periodic magnetic field and self organization of nanoparticles
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undergoing periodic shearing [70, 38].

4.2.2 Atomic Persistent Current in Ring Potential

Non-interacting fermion atoms in a ring trap are threaded with artificial magnetic flux

along perimeter of the ring. In cold atom systems, a weak background interaction exists.

However, the effect is small, and feedback only changes the effective mass and chemical

potential. Memory effects arising in the derived current are not dependent on long range

interactions and appear in the non-interacting regime. This contrasts previous work where

memory effects appear due to long-range order [45].

The wave function of the non-interacting fermions can be described in the single

particle picture due to the periodicity of the trap [21]. Fermions in the ring can be

described in the single particle picture and the wave function is coherent in thermal

equilibrium, allowing analytical solutions for the energy eigenvalues. Current will also be

calculated with the Hamiltonian and single particle wave function.

The Hamiltonian describing the system is

H =
1

2m
(px + A)2 (4.4)

Momentum px = −i~ ∂
∂x

and the quantized magnetic flux φ is derived from the vector

potential Φ = AL = 2π~φ where L is the perimeter of the ring and m is atomic mass. The

energy spectrum is obtained using the Schrödinger picture with a plane wave basis. An

exact periodic wave function can be defined as

ψn =

√
1

L
eikx =

√
1

L
ei2πnx/L

Crystal momentum k = 2πn/L because of periodic boundary conditions implicit in the

ring shape of the conducting structure. This wave function is exact for any vector potential,

meaning the system need not redistribute as flux is added. Using the Hamiltonian and the

plane wave function we can determine the energy eigenvalues:

−
√

1

L

~2

2m
(
∂

∂x
+

2πi

L
Φ)2ei2πnx/L = E

√
1

L
ei2πnx/L (4.5)
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− ~2

2m
(
∂

∂x
+

2πi

L
Φ)(

∂

∂x
+

2πi

L
Φ)ei2πnx/L = Eei2πnx/L (4.6)

After factoring the expression and operating the derivatives on the wave function, the

energy eigenvalues

En =
~2

2m
(
2π

L
)2(n+ φ)2 (4.7)

are found to be periodic in −0.5 < φ < 0.5, and are degenerate when φ = 0. The added

flux has no terms which support energy level crossing and if φ = 0 Bohm’s theorem states

no equilibrium current will be present [147].

We will use the standard quantum mechanical definition of current

∂ρ

∂t
= −∇ · j (4.8)

ρ = ψ∗ψ (4.9)

∂ψ∗ψ

∂t
= ψ̇∗ψ + ψ̇ψ∗ (4.10)

Equating this with the time dependent hamiltonian yields the quantum current

(
∂ψ

∂t
=

1

i~
Hψ)ψ∗ + (

∂ψ∗

∂t
=

1

−i~
H∗ψ∗)ψ (4.11)

H∗ = − ~2

2m
(
∂

∂x
− 2πi

L
Φ)2 (4.12)

∂ψ∗ψ

∂t
=
i

~
H∗ψ∗ψ − i

~
Hψψ∗ (4.13)

This stems from the fact that the conjugate momentum operator acts on the conjugate wave

function leading to a change in sign for the Hamiltonian. Below the normalization constant

is pulled out of the wave function.

1.

H∗ψ∗ψ = − ~2

2mL
(
∂

∂x
− 2πi

L
Φ)(

∂

∂x
− 2πi

L
Φ)ψ∗ψ

= − ~2

2mL
(
∂2

∂x2
− 2(

2πi

L
)φ

∂

∂x
+ (

2πi

L
)2φ2)ψ∗ψ

(4.14)
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2.

Hψψ∗ = − ~2

2mL
(
∂

∂x
+

2πi

L
Φ)(

∂

∂x
+

2πi

L
Φ)ψψ∗

= − ~2

2mL
(
∂2

∂x2
+ 2(

2πi

L
)φ

∂

∂x
+ (

2πi

L
)2φ2)ψ∗ψ

(4.15)

Putting these both together, I - II, we will find

∂ρ

∂t
= − ~2

2mL
((
∂2

∂x2
ψ∗ψ − ∂2

∂x2
ψψ∗)− 2(

2πi

L
φ)(

∂

∂x
ψ∗ψ +

∂

∂x
ψψ∗))

= − i~
2mL

(
∂

∂x
(
∂

∂x
ψ∗ψ − ∂

∂x
ψψ∗)− 2(

2πi

L
φ)(

∂

∂x
(ψ∗ψ)))

= − i~
2mL

∂

∂x
((
∂

∂x
ψ∗ψ − ∂

∂x
ψψ∗)− 4πi

L
φψ∗ψ)

(4.16)

jn =
i~

2mL
(
∂

∂x
ψ∗ψ − ∂

∂x
ψψ∗)− 4πi

L
φψ∗ψ (4.17)

We can now insert our wave equation and work it through. Again the normalization

constant was pulled out before hand.

jn =
i~

2mL
((
∂

∂x
e−i2πnx/L)ei2πnx/L − (

∂

∂x
ei2πnx/L)e−i2πnx/L − 4πi

L
φ)

=
i~

2mL
(−i2πn

L
− i2πn

L
− 4πi

L
φ)

=
−i2~
2m

2π

L2
(2n+ 2φ)

=
2π~
mL2

(n+ φ)

(4.18)

The total current can be found by summing the current multiplied by the distribution

function over all the energy states.

JTot =
∑
n

jnfn (4.19)

It is readily apparent the distribution function plays a critical role in determining the

current, and a relaxation process is necessary to obtain dissipative current.

Persistent current is a thermal equilibrium phenomena, and if the system is not in

equilibrium a current will be observed which is not ”persistent.” For instance, current
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Figure 4.2: Hysteresis loops of total dissipative current Jtot over the flux φ at T/T0 = 10.
(a) The equilibrium (black) and no dissipative (red) currents for anNtot = 100, left column
(b) and Ntot = 101, right column, of particles. (b.inset) System setup. Dissipated current
as flux is periodically modulated with a dissipation time (c,d) τ = 0.1t0, (e,f) τ = t0, (g,h)
and τ = 10t0.
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dependence on particle number is diminished as the system deviates from equilibrium

which we quantify for an even, N = 100, and odd, N = 101, number of particles

Figure 4.2(a,b). When the quantized flux is absent, φ = 0, there will be no genuine,

persistent current in the system and the particles reside in degenerate eigenstates.

Energy levels are smoothly distorted with added flux, and the particles don’t

redistribute for any value of φ. As flux is added the eigenvectors remain the same and

only the eigenvalues change allowing the distribution function to provide an analytic

description. Lack of particle redistribution can be problematic for direct observation of

persistent current in cold atoms. First, the system is not in thermal equilibrium and a

non-equilibrium current will be observed. Second, the particle at the Fermi surface highly

contributes to the persistent current. As jn is summed over all levels the current cancels if

n and −n are both occupied. Realizing a fermionic persistent current in a cold atom

system requires some form of a relaxation process described theoretically by the

relaxation approximation.

In metallic systems, at cold temperatures dissipation, is inherent because collisions

occur from crystal defects and impurities in the crystal structure. A great characteristic

about optical lattices is perfect periodicity, and scattering events must be added

externally. The relaxation approximation is highly informative when seeking to

understand gross properties of the system. It is a good tool to determine current as a

function of time, J(t), when energy is being removed by some scattering process. Useful

methods for dissipating energy will be discussed in section IV.

To calculate the total current in thermal equilibrium we utilize the Fermi-Dirac

distribution function with equation 10.

fn,eq =
1

e
(En−µ)
kT + 1

(4.20)

The relaxation approximation for an n-level system governed by Fermi Dirac statistics

will be appropriate for calculating dissipative current.

∂fn
∂t

=
−(fn − fn,eq)

τ
(4.21)
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where fn,eq is the equilibrium distribution function for the nth state and we assume the

relaxation time τ is the same for all states [9]. The relaxation time determines the time

an electron will experience a collision and in metals is roughly 10−14s [17, 126, 122].

Incredibly fast collision processes for metals is a property of the material allowing for

direct measurement of persistent current. The introduction of a collision process in a

cold atoms system, though not on the same time scale, will permit measurement of the

current as well. The method for collisions in cold atoms is tunable, and the investigation

of multiple relaxation times leads to novel effects only observable with cold atoms.

We solve the differential equation to obtain the new relaxed distribution function

∂f

∂t
=
−(f − feq)

τ
(4.22)

∂f

∂t
+

1

τ
f =

1

τ
feq (4.23)

Equation 4.23 is a linear first order differential equation dy
dx

+ p(x)y = q(x) The solution

for this equation can be determined by multiplying the full expression by an integrating

factor ρ(x) = exp(
∫
p(x)dx), yielding the solution

y(x)e
∫
p(x)dx =

∫
(Q(x)e

∫
p(x)dx)dx+ C. (4.24)

In the relaxation expression y → f , x→ t, p(x) = 1/τ , q(x) = feq/τ , so

ρ(t) = e
∫

1
τ
dt = et/τ . (4.25)

The solution for the relaxation approximation is as follows:

et/τ
∂f

∂t
+ et/τ

f

t
= et/τ

feq
τ

(4.26)

h
∂g

∂x
+ g

∂h

∂x
=

d

dx
(gh) (4.27)

d

dx
(et/τf) = et/τ

feq
τ

(4.28)∫ Tf

0

d

dt
et/τfdt =

∫ Tf

0

et/τ
feq(t)

τ
dt (4.29)
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eTf/τf(Tf )− f(t = 0) =

∫ Tf

0

et/τ
feq(t)

τ
dt (4.30)

fn(tf ) = e−tf/τfn(t = 0) +

∫ tf

0

e−(tf−t)/τ fn,eq(t)

τ
dt. (4.31)

where tf is the amount of time energy is being dissipated.

Since the energy changes with φ a different chemical potential is needed for each φ.

We model the system as number conserving and by using the following relationship

Ntot =
∑
n

1

eβ(En−µ) + 1

a root finding method Appendix A.2.6 can be used to determine the chemical potential at

equilibrium as the flux changes. In our simulation we exploit magnetic flux, φ, has a linear

relationship with time φ = t
2t0

, and 2t0 is the period of oscillation. Here t0 is the ramping

time of the flux over a half period, 0 ≤ φ ≤ 0.5. The number of time steps is given by

Nφ = t0
dt

The root finding method is then embedded within a for loop running from 0 toNφ

and the resulting µ is placed in a one dimensional array to be called during computation of

the distribution function over each time step. The Fermi distribution function was stored

in a two dimensional array with the dimensions: Nφ ×Nlevel.

Ramping time of the flux, t0, is the fundamental time unit for calculations, and we

are able to map how the dissipation function will change with flux as it oscillates between

−0.25 and 0.25 with period 2t0. Time unit t0 also sets the timescale for the relaxation time,

τ/t0, allowing analyzation of dissipative dependence on the ramping of the gauge field.

Numeric integral calculations determine the new distribution function for each energy state

as a function of time. The dissipated current, J(t) can be determined as described in

equation 6, and time easily is mapped back to flux as shown above.

Dissipative mechanisms are necessary to observe persistent effects in a cold atom

system, or else a non-equilibrium current will be observed Figure 4.2(a,b). The added

dissipation won’t permit the observation of the true persistent current if the system is

consistently, periodically modulated, and the current observed will lie somewhere
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between the equilibrium and non-equilibrium current. If t0 >> τ the system can settle

into equilibrium and the true persistent current for fermions can be mapped out.

However, more interesting effects can be explored with a periodic, driving flux.

The relaxed distribution function is evolved over 3 periods in the presence of

dissipation, and the resulting current exhibits prominent hysteresis loops Figure 4.2. The

dissipation time plays a strong role in the size of the loops and the number of cycles

needed to close them. This is readily apparent in Figure 4.2.c and Figure 4.2.e where the

dissipation times of 0.1t0 and t0 differ by an order of magnitude, and the dissipated

current tends to the non-equilibrium values with longer dissipation time.

4.2.3 Experimental Realization of Atomic Current Using Ultracold

Fermions

Measurement of persistent current is achievable with current technology, and has

already been facilitated for bosons in the superfluid phase using a rotating barrier as an

artificial gauge[45]. The ring trap can be constructed by using LG beams for azimuthal

confinement and a horizontal sheet beam for vertical confinement. Atoms are enabled to

travel along the perimeter of the ring trap.

There have been a variety of methods to induce artificial gauge fields, which is done by

finding methods mimicking the momentum shift due to the Lorentzian force [55]. In cold

atoms, atom-light coupling from an external laser field causes an effective vector potential

and corresponding magnetic field. Use of gauge fields from the coupling of the atoms

and laser field is an advantageous tool, and has lead to measurements of new topological

phases not realizable in condensed matter systems [134, 64].

For our purposes, an Abelian gauge field, where all the Cartesian components

commute, will induce the effective magnetic flux in the ring trap. The direction of the

gauge field is along the direction of lightwave momentum vector, so the light must

propagate along the direction of the ring for a circular flux to be present. The LG beam
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will serve as an appropriate tool to obtain a circular flux [69]. Modes of the beam can be

selected from the angular momentum, l, and the value of l determines the accumulated

phase as the atoms traverse the ring. If l = 0, no phase is accumulated which is

equivalent to having no effective magnetic field. A momentum, l = 1, acts as an Abelian

gauge field, which is the type needed to drive the current, because the system

accumulates a phase of π. A non-Abelian gauge field can be selected when l = 2, but

such a complicated field is not needed for the system in question.

The above methods address how to trap the atoms and create a synthetic flux, but the

key component is the added dissipation. To bring the system to thermal equilibrium the

fermions need to interact with the environment. In condensed matter systems, scattering

of particles with impurities occurs on a fast timescale, allowing for persistent current to

be observed. It is necessary to add a form of scattering to the particles trapped in the ring

potential.

Introducing dissipation through Hamiltonian engineering has been highly useful for

creating pure entangled states, and a variety of methods to couple the system to it’s

environment have been explore using electron beams and Bogoliubov excitations [12, 44,

43]. However, a more simple method, a Fermi-Bose mixture, will be most appropriate to

realize the theoretical results. By immersing the fermions trapped in a ring potential into

a Bose-Einstein Condensate (BEC), collisions between the two species can facilitate the

dissipative processes caused by impurities in metals. The relaxation time τ(s) can be

easily controlled by adjusting the number of bosons in the atom cloud and collisions

occur on the millisecond timescale [113].

Particle loss is an apparent concern when artificially invoking collisions because the

collision process can excite a fermion out of the potential barrier and can affect the direct

observation of the number sensitive system. However it has been experimentally observed

fermions experience very little loss while depletion of bosons is prominent [58]. The

dynamics with a Bose-Fermi mixture are also in favor of experimental realization. It

has been shown theoretically and experimentally the dissipative mechanism can induce a
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Figure 4.3: Hysteresis curve of the non-equilibrium current assuming one atom loss per
driving cycle. Initially, there are N = 103 fermions and τ = 0.4tp with a driving period of
2t0. We assume atom loss occurs are every 5τ increment. Here T/T0 = 10. When atom
loss occures randomly, the curve traverses both the even number and odd number structure
after a couple cycles without closing.

current of non-interacting fermions in a periodic potential by acting as a driving force for

an initially insulating phase [113, 116]. In direct contrast localization is observed in the

boson cloud when interacting with fermionic impurities [112]. Measured current should

be a pure, fermion current with the bosons merely interacting with the system as impurities

in the perfect, periodic potential. Atom loss in the system results from inelastic collisions.

Elastic and inelastic collision ration determines if the system can reach thermal equilibrium

before atom loss is observable. Critical temperature range of measurements of trapped

bosons is limited by the ratio [133], where a threshold of at least five elastic collisions per

one inelastic collision is imposed. This threshold is expected to limit hysteresis of atom

current observation in the strongly dissipative regime with small τ = tp. where tp is the

driving period. The system will experience atom loss in a few cycles if 1/τ is an estimate

of the elastic collision rate. Intermediate and weak dissipative regimes are less sensitive
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Figure 4.4: Maximal persistent current as a function of the normalized temperature T/T0

for N = 101 fermions.

to atom loss since the hysteresis loops form before atom loss occurs. If we take the ration

of 5 between elastic and inelastic collisions as an estimation of how soon atom loss will

occur, curves are likely to be distorted is τ ≤ 0.2tp. One atom lost per driving cycle

is illustrated in Figure 4.3 with τ = 0.2tp. With a small relaxation time, current quickly

relaxes to the case with one less particle after a fermion is lost. Atom loss occurs randomly

in experiments, the nonequilibrium current is expected to switch between the even number

and odd number curves when a fermion is lost, resulting in the current tracing both even

and odd number cases after a few cycles. Atom loss will prevent hysteresis curves from

forming closed loops. Atom loss will become a hindrance in mapping out the strongly

dissipative regime.

Persistent current is highly sensitive to temperature, and the value decreases

exponentially as heat is added Figure 4.4. The normalized Fermi temperature for
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Ntot = 101 when φ = 0 is
Tf
T0

= 2500

In order to observe current the system will need to be cooled to 1% of the Fermi energy

to see the effects of persistent current. A previous experiment using mesoscopic, copper

rings also reported an exponential decrease, but were able to measure current when the

system was cooled to 80 mK since copper has a Fermi temperature of 8610K [89, 9].

4.3 Energy Dissipated by Relaxation and Connection to

Classical Oscillator

Energy is released as heat during the relaxation process and this dissipated energy is

the area of the hysteresis curve. By calculating the area how much energy is used for the

relaxation process can be determined. For the two state system the energy isE =
∮
m ·dB

and for the atomic current is E =
∮
J · dφ. A narrow curve means the cycle over the flux

requires less energy, and intuitively appears when τ is small because the system relaxes

into thermal equilibrium easily. When τ is large the system tends to non-equilibrium

values because the relaxation time is too long, leading to less work done in the dissipative

process and a smaller hysteresis loop. For atomic current, energy loss has a dependence

on the number of particles. More work is required for an even number of atoms because

the difference of the non-equilibrium and equilibrium current is large, leading to areas an

order of magnitude larger than the areas of odd numbers of particles.

The area of the hysteresis curve has a strong dependence on the rate of relaxation.

The work done increases with a linear dependence on dissipation time, E ∝ τ , but after

reaching a critical value the work done decreases inversely, E ∝ 1/τ Figure 4.5. When

fitted the two curves meet at the critical τ value, where the maximum amount of work can

be done on the system and the largest loop is observed. Naively, this behavior can be

explained through evaluation of the integral in equation 2, but closer evaluation
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Figure 4.5: Energy loss as a function of the dissipation time τ for (a) magnetization of the
two-state system, (b) dissipated current of N = 100 (c) and N = 101 fermions with T/T0 =
10. Linear relationship E ∝ τ (red) is apparent with small τ , and inverse relationship
E ∝ 1/τ (blue) with large τ .
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demonstrates deep connections with the overdamped harmonic oscillator.

Energy dependence on the rate of relaxation arises from the relaxation approximation

differential solution. Since, after several training cycles, the leading term is diminished

only the relaxation time from the integral plays a role.

g(t) =
1

τ

∫ t

0

e−(t−t′)/τgeq(t
′)dt′ (4.32)

Evaluation of the above equation in the small and large τ limits elucidates the behavior of

dissipated energy. When τ >> Tp the value of the exponential is big allowing focus on

the last cycle,

g(t) =
1

τ

∫ t

t−Tp
1geq(t

′)dt′ ∝ 1

τ

leading the area to decrease inversely with relaxation time. To evaluate τ << Tp we

declare a small change ε(τ) in time where limτ→0ε(τ) = 0 since the exponential drops

rapidly. The integral is then evaluated over this small change and the equilibrium

distribution function can be considered constant over the infinitesimal change in time.

g(t) =
geq(t)

τ

∫ t

t−ε(τ)

e−(t−t′)/τdt′

By setting t̃ = t− t′ the integral becomes

g(t) =
geq(t)

τ

∫ ε(τ)

0

e−t̃/τdt̃

= geq(t)(1− e−ε(τ)/τ )

Expanding the infinitesimal change so ε(τ) = aτ + bτ 2 + ... and the exponential becomes

1 − e−(a+bτ) = 1 − e−ae−bτ = 1 − e−a(1 − bτ). Only first-order terms are considered

with small τ and g(t) = geq(t)(1 − e−a + e−abτ). The limτ→0 g(t) = 0 which means the

constant term a = 0 leaving the linear dependence on the relaxation time bτ .

Hysteresis due to a driving force in magnetism is dynamic hysteresis, and the

dependence on relaxation time τ can be calculated explicitly in the high temperature limit
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for the two-state system. The time dependent magnetization

dm

dt
=
−(m(t)−meq(t))

τ
(4.33)

Magnetization of a system of particles, m, in equilibrium can be calculated from the

difference of the two probabilities of being either in the up or down spin state depending

on the direction of the magnetic field.

meq(t) = m0tanh(βµB(t))

m(t) =
1

τ

∫ t

−∞
e−(t−t′)/τm0tanh(βµB(t′))dt′

In the high temperature limit the small angle approximation can be used andmeq = χ0B(t)

where χ0 = m0βµ is a constant.

m(t) =
χ0

τ

∫ t

−∞
e−(t−t′)/τB(t′)dt′ (4.34)

m(t) is magnetization responding to the field B(t). The magnetic field acts as a driving

force and by taking the Fourier transform of magnetization a susceptibility and frequency

dependent magnetic field can be defined. The susceptibility χ(ω) is the response function

connecting magnetization with magnetic field, and generic analytical description can be

found in reference [16].

m(ω) = χ(ω)B(ω) (4.35)

=

∫ ∞
−∞

m(t)eiωtdt (4.36)

Letting eiωt = eiωt
′
eiω(t−t′) and substituting in equation 12 we find the solution for the

frequency dependent magnetization

m(ω) =
χ0

τ

∫ ∞
0

d(t− t′)eiω(t−t′)e−(t−t′)/τ
∫ ∞
−∞

dt′eiωt
′
B(t′) (4.37)

Evaluation of the susceptibility enlightens how dissipated energy depends on relaxation

time.

χ(ω) =
χ0

τ

1

1− iωτ
(4.38)
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χ′′(ω) = χ0
ωτ

1 + ω2τ 2
(4.39)

Taking the high and low τ limits of the imaginary component of the susceptibility, χ′′(ω),

the linear increase and inverse decrease of dissipated energy apparent.

A damped harmonic oscillator has a viscous damping force due to friction fγ = −mγv
, a driving force f and spring constant k yielding the equation of motion mẍ + kx +

mγẋ = f [27]. Friction coefficient γ = 1/τ irreversibly depletes energy from the system

into incoherent degrees of freedom, breaking the time-reversal symmetry of the simple

harmonic oscillator. When the oscillator is overdamped, τ << 1, the inertial term in the

equation of motion can be ignored. In the case where τ >> 1 the system can be mapped to

the massless region of Brownian motion. The response function χ(ω) of the overdamped

oscillator yields the same solution as the two-state system.

∆E = tpP (4.40)

= πf 2
0χ
′′(ω)

= πU2
0

ωτ

1 + ω2τ 2
(4.41)

where tp is the period of oscillation, P is the power, and f0 is the amplitude of the driving

force. The rate of energy dissipation depends on χ′′(ω) implying Figure 4.5 is a universal

phenomena for damped oscillators when the inertial term can be ignored.

The results above have been demonstrated in chemistry and thermal physics. The

curve is most famously known in Kramer’s transition rate theory when observing friction

dependence for the transition rate of a particle moving out of a metastable well [61].

When friction is small most of the energy is used by particles transitioning out of the

well, and the transition rate increases linearly. After the crossover point, where friction

becomes large, more energy is lost to heat and the transition rate decreases hyperbolically.

Similar effects are also observable when two heat reservoirs are connected by a 1D lattice

[138]. Thermal conductance behaves similarly as friction forces are increased. Effects of

friction are readily seen in the dynamics of the latter system because particles propagate

ballistically with small friction and non-ballistically after the crossover point.
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4.4 Interaction Effects on Hysteresis

Whether interactions effect the presence of hysteresis loops is relevant to the

discussion. In order for hysteresis loops to appear with a periodic driving flux the

eigenstates of the system can’t change as flux is added to the system.

H(φ = 0) |ψ〉 = E(φ = 0) |ψ〉 (4.42)

H(φ > 0) |ψ〉 = E(φ > 0) |ψ〉 (4.43)

Interactions correlate the eigenstates with flux 〈ψ(φ = 0)|ψ(φ > 0)〉 6= 1. The system

with dissipation can’t be evolved using the relaxation approximation and hysteresis won’t

be observed. This is evident in a two particle system with an elementary delta interaction.

However, this does not encompass all types of interactions. The presence of spin-orbit

coupling only effects the eigenvalues as flux is added to the system and hysteresis is still

apparent.

4.4.1 Time-Dependent Ground State

For the two-state system and ring current we construct the formalisms with magnetic

field Bz ẑ. What if the magnetic field was not one dimensional and took the form Bxx̂ +

Bz ẑ? The corresponding Hamiltonian

H = Bxσ̂x +Bz(t)σ̂z (4.44)

yields orthogonal eigenstates for the energies

E± = ±
√
Bz(t)2 +B2

x

|n, t〉+ =
1

N−

(
−Bx

Bz(t)−
√
Bz(t)2 +B2

x

)
(4.45)

|n, t〉− =
1

N+

(
−Bz(t) +

√
Bz(t)2 +B2

x

−Bx

)
(4.46)



60

with N being a normalization factor. As time evolves the magnetic field Bz(t) changes the

eigenstate of the system since 〈n, t1|n, t2〉 6= 1. With each incriment of time not only the

eigenvalues but the eigenstates must be reevaluated. This implies the system redistributes

throughout the energy states with the changing driving field. This not only negates the

usage of the distribution function to describe the system, but the current formalism, which

depends on the energy states, also evolves with the driving field.

Interactions correlate Eigen energy states, demonstrable with a simple delta

interaction between two particles. Use of a Beth Ansatz to match the boundary conditions

of the wave function results in the wave vectors of the particles correlating [137].

Adjustment of one particle’s momentum state leads to an inverse effect in the other, so the

wave functions can’t be treated separately. Relaxation processes for a system with wave

functions dependent on each other is best not described by the distribution function and

relaxation approximation since particle distribution will be effected by change in the

momentum state. It is evident strong interactions between particles inhibit the formation

of hysteresis loops in a periodically driven system.

4.4.2 Hysteresis with Rashba Spin Orbit Coupling

It is worthwhile to explore whether hysteresis loops of charge current are maintained

in the presence of Rashba spin-orbit coupling (RSOC). Coupling of electron spin to

momentum in a single atom arises from an effective field produced by the moving

electron cloud in the inertial reference frame of a single electron. Spin-orbit interactions

in cold atoms are engineered with the same experimental technique as artificial gauge

fields [94]. Coupling is induced in dressed atomic states by a pair of Raman lasers and

the coupling strength is dependent on the momentum kL of the laser. Experimentally,

spin-orbit coupling is inherent in systems which use artificial gauge techniques. We

demonstrate the memory effects occur in the presence of SOC and observation of

hysteresis is readily accessible in ultra-cold atoms.
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Figure 4.6: The total current, J/J0, over the flux, φ with SOC at T/T0 = 3 and α/E0 =
0.75. (a) The equilibrium (black) and non-equilibrium (red) currents for N↑ = N↓ = 100
particles. Dissipated current as flux is periodically modulated with relaxation times (b)
τ/t0 = 0.1, (c) τ/t0 = 1, (d) and τ/t0 = 10.

The Hamiltonian of electrons traversing a 1D ring on the xy-plane acquires an extra

coupling term dependent on a perpendicular external field Eẑ. Vector potential is in the

azimuthal direction Aθ̂. The Zeeman term arising from an external magnetic field is

ignored since it’s merely constant addition to the energy and demonstrates little effect on

the persistent charge current.

H =
1

2m
(p− eA)2 + ασ̂ · (E × (p− eA)) + V (r) (4.47)

The spin, given by the Pauli matrix σ̂, couples to the momentum with coupling strength α.

In order for the Hamiltonian to be Hermitian a harmonic confining potential V (r) ∝ x2

is added, where x = (r − a) is the width of the confining potential with a being the ring

radius [101]. Once the Hamiltonian has been formulated the confining potential can be

taken in the 1D limit r → a and V (r) → 0. Moving into cylindrical coordinates where
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σ̂r = σ̂xcos(θ) + θ̂ysin(φ) and σ̂θ = σ̂ycos(θ)− σ̂xsin(θ)and using the previously defined

relationship between A and φ the Hamiltonian becomes

H = − ~2

2m

[ ∂2

∂r2
+

1

r

∂

∂r
− 1

r2
(i
∂

∂θ
+

φ

φ0

)2
]

−α
r
σ̂r(i

∂

∂θ
+

φ

φ0

) + iασ̂θ
∂

∂r
+ V (r) (4.48)

Separating the radial and azimuthal variables H = Hr + Hθ allows for the lowest radial

mode, R0(r) ∝ e(r−a)2 to be determined from the solution to the simple harmonic

oscillator. The hermitian Hamiltonian H1D = 〈R0|Hφ|R0〉 is found to be

H1D = − ~2

2ma2
(i
∂

∂θ
+

φ

φ0

)2 − α

a
σ̂r(i

∂

∂θ
+

φ

φ0

)− i α
2a
σ̂θ (4.49)

Completing the square the Hamiltonian can be simplified to

H1D = ~E0(i
∂

∂θ
+

φ

φ0

+
α

2E0

σ̂r)
2

with E0 = ~/2ma2. Using the relationship
√
Hψ =

√
Eψ and the following spinor

formulation

ψ±n = einθ

(
a±n

eiθb±n

)
(4.50)

we can obtain the energy eigenvalues

En,− = ~E0

(
(n− φ) +

1

2
(1−

√
(α/E0)2 + 1)

)2

(4.51)

En,+ = ~E0

(
(n− φ) +

1

2
(1 +

√
(α/E0)2 + 1)

)2

(4.52)

Using the following relationship for the eigenfunction coefficients

E0

α
(1±

√
(α/E0)2 + 1)a±n = b±n (4.53)

the eigenstates can be composed into trigonometric relationship with 1/cos(θ)

=
√

(α/E0)2 + 1

ψ+
n = einθ

(
cos( θ

2
)

eiθsin( θ
2
)

)
(4.54)
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ψ−n = einθ

(
sin( θ

2
)

−eiθcos( θ
2
)

)
(4.55)

No dependence on changing flux is present in the eigenstates, meaning only the energy

eigenvalues change as flux is added. This allows the system to be treated with the

relaxation approximation, and current with changing flux can be determined.

The current can be found by taking the full derivative of the energy with respect to

flux, jn = −dEn/dφ, and for the two spin states becomes

jn,− = j0

(
(n− φ) +

1

2
(1−

√
(α/E0)2 + 1)

)
(4.56)

jn,+ = j0

(
(n− φ) +

1

2
(1 +

√
(α/E0)2 + 1)

)
(4.57)

when j0 = 2~E0. Dissipated current in the presence of RSOC interactions can be

evaluated using the relaxation approximation in same fashion as non-interacting

fermions. We again implement the Fermi-Dirac statistics for the En,+ and En,− energy

states.

fn,+ =
1

e
(En,+−µ)

kT + 1
(4.58)

fn,− =
1

e
(En,−−µ)

kT + 1
(4.59)

Chemical potential can be determined with a root finding method when evaluating Ntot =

N↑ +N↓ from the distribution functions

Ntot =
∑
n

(fn,+ + fn,−)

The total equilibrium and dissipated current for each state can be found by summing the

current multiplied by the distribution function over all levels JTot,± =
∑

n fn,±jn,±.

Adding these two currents together we find JTot = JTot,− + JTot,+. To determine the

dissipated current we relax the distribution function using the relaxation approximation

for fn,+ and fn,− separately.

∂fn,±
∂t

=
−(fn,± − fn,±,eq)

τ
(4.60)
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Figure 4.7: Area of hysteresis loop with SOC at T/T0 = 3 and α/E0 = 0.75 as relaxation
time τ is increased.

The total current is then plotted against the periodic, driving flux with α/E0 = 0.75.

Persistent current in the presence of RSOC is highly sensitive to temperature, so we set

T/T0 = 3 for current calculations. As flux is added the eigenstates do not change where in

the previous interaction cases the system energy would have to be reevaluated with each

additional increment of flux. Hysteresis loops are observable for N↑ = N↓ = 100 with

spin-orbit interactions Figure 4.6(a-d), and loops for N↑ = N↓ = 101 are observable with

parameter adjustment .

We focus on an even number of particles when evaluating the dependence of energy

lost on dissipation time. Since the memory effects with RSOC can still be described in

the framework of rate-dependent hysteresis the linear increase and hyperbolic decrease of

energy with dissipation time holds true Figure 4.7. Therefore RSOC interactions induced

by the artificial gauge field should not inhibit the ability for experimental measurement

and observation of hysteresis due to relaxation towards the persistent current.
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4.5 Conclusion

Hysteresis loops of current have been demonstrated to exist for non-interacting

fermions confined in a 1D ring potential with added dissipation. The memory of the

current is a direct result of the periodicity of the distribution function with time, and after

a few training cycles memory effect are apparent. Energy loss strongly depends on the

rate of relaxation and exhibits characteristics of an overdamped oscillator. If τ is small

compared to the ramping of flux the area of the curve increases linearly with τ . As τ

becomes greater than the period of oscillation the area of the curve decreases inversly

with τ . The observed phenomena is analogous to effects observed in Kramer’s transition

rate problem, thermal transport, and is a general property of rate-dependent hysteresis.

Cold atom hysteresis is a milestone in for the development of atomtronics along with

rapid loading of atoms [88], portable cold atom systems [124], and entropy reduction

[143]. Experimental implementation and observation is feasible in cold atoms with

current technology. Hysteresis loops will still be observable with spin-orbit coupling

interactions, arising in the system due to the use of gauge field techniques. Cooling is the

limiting factor for observation of persistent current since persistent current decays

exponentially with temperature. Usage of rate-independent systems will be more robust

for atomtronic memory applications, but we prove the system need not be in a superfluid

state for observation of closed loop hysteresis. The need for added dissipation in cold

atom systems motivates these results, which will not be observable in metal systems, and

is and exciting phenomena readily awaiting experimental observation. In future work it

would be of interest to explore whether hysteretic behavior can be observed in other

non-equilibrium, cold atom systems where a periodic distribution function appears.

I would like to acknowledge my co-authors Prof. Chih-Chun Chien and Dr. Chen-Yen

Lai in publication of this research.



Chapter 5

Current Fluctuations and Resulting

Lissajous Curves

A mesoscopic lattice with closed boundaries supports an equilibrium current periodic

in magnetic flux, and as an equilibrium current the corresponding current fluctuations are

purely quantum. These fluctuations form continuous peaks with the addition of contact

interactions in the lattice; this is a stark contrast from the non-interacting system where

the current and fluctuations possess a discontinuity. Current and current fluctuations are

both periodic nature, revealed as Lissajous curves when plotted together. In the

non-interacting system the Lissajous curve is single-valued, but the curve becomes

multivalued with the addition of contact interactions, revealing a topological distinction

between the two systems. Magnetic systems also show Lissajous curves arising from

memory effects in the magnetization, and the existence of similar curves spurs curiosity

to whether equilibrium current and current fluctuations play a similar role.

66
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Figure 5.1: (a) Schematic plot of a benzene-like lattice encircling a magnetic field
perpendicular to the plane. The hopping coefficient from site i to site j is hij . The
onsite coupling constant is U . (b) Ground-state persistent currents (top row) and current
fluctuations (bottom row) as functions of the Peierls phase φ. The left (right) column
corresponds to the noninteracting (interacting, U/t̄ = 1) case. Here N↑ = N↓ = 3, t̄ = is
the hopping energy scale, and T0 = ~/t̄.
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Figure 5.2: Energies of the lowest four states as functions of the Peierls phase φ of a half-
filled 6-site lattice loaded with (a) non-interacting and (b) weakly interacting (U/t̄ = 0.1)
fermions. The insets show magnified views around the degeneracy point.
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5.1 Current and Current Fluctuations in Quantum

Lattice Ring Threaded With Magnetic Flux

Consider a one-dimensional discretized ring with a total of six sites and half-filled with

N↑ = N↓ = 3, like a benzene ring. Here σ =↑, ↓ denote the spin. When the system is

in the ground state, particles generate a persistent current in the ring when subjected to a

perpendicular magnetic field Fig 5.1(a) [149, 4, 140, 79]. Employing the Hubbard tight-

binding model the magnetic field induces a Peierls phase [114, 75] φ as they tunnel from

an occupied site to an adjacent site

H =
∑
i 6=j,σ

hijc
†
iσcjσ + U

∑
i

ni↑ni↓. (5.1)

The creation(annihilation) operator c†i (cj) accounts for a fermion moving from site j to

site i. The off-diagonal matrix element hij = h∗ij represents the hopping coefficient

between site i and site j. In the case of nearest-neighbor tunneling hi,i+1 = t̄eiφ where φ

is proportional to the magnetic field strength and t̄ is the hopping strength. The energy

unit is t̄ and the time unit is T0 = ~/t̄. Onsite contact interactions with strength U

between particles of opposite spin account for the dominant interaction in the ring lattice.

Using the exact diagonalization numerical technique the ground state energy and wave

function can be calculated exactly for a half-filled, six sited lattice. No approximations

were used in diagonalization of the Hamiltonian. Plotting the ground-state and

first-excited state energy as a function of the magnetic flux φ, it is apparent the system is

periodic in flux with a period Tφ = π/3 and a degeneracy point at the end of each period

Fig 5.2(a).

A non-interacting ring with next-nearest neighbor hopping has degeneracy points

periodic in magnetic flux Fig 5.2. Particles in occupying a degenerate point have the

same energy while occupying different states. In the hexagonal ring there is a fourth

ordered degenerate point where the current is zero, causing the discontinuity in current

and fluctuations. Interactions between particles lifts the degeneracy and can be simply
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demonstrated using perturbation theory. The degeneracies from the hopping Hamiltonian

between the four states can be described as diagonal elements on a four-by-four

Hamiltonian matrix. Off-diagonal terms mixing the states are introduced by interactions

acting on all Fock states, and the corresponding eigenvalues are no longer degenerate.

Even in a very weakly interacting system the degeneracy is lifted Fig 5.2(b) enabling the

current and fluctuations to be continuous in flux.

Starting from the time evolution of the density matrix, the local current operator

between sites can be described in second quantization as

Jij = i(hijc
†
icj − h∗ijc

†
jci) (5.2)

where hij is the Hamiltonian off-diagonal element corresponding to the connection

between site i and j. In quantum measurement theory the probabilistic nature of the wave

function leads to fluctuations in measurement. Statistically, these fluctuations are

quantified as a variance (∆A)2 and standard deviation ∆A from the mean. Fluctuations

of the local current for a single spin component are

〈δJ2
ij〉 = 〈J2

ij〉 − 〈Jij〉2 (5.3)

〈J2
ij〉 =

∣∣hij∣∣2[〈ni〉+ 〈nj〉 − 2〈ninj〉
]
. (5.4)

However, it is worth considering the contributions of the total current and corresponding

fluctuations from both spin components. The total current is a sum of the contributions for

both species

〈J 〉 = 〈J↑〉+ 〈J↓〉, (5.5)

and the fluctuations have a more complicated structure than single component

〈δ(J )2〉 = 2〈J2
↑ 〉+ 2〈J↑J↓〉 − 4〈J↑〉2. (5.6)

With an equal population of both species J↑ = J↓ and working in the non-interacting limit,

Wick decomposition can be used to show

〈δ(J )2〉 = 2(〈J2
↑ 〉 − 〈J↑〉2) (5.7)
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since all the cross-component terms cancel. With the addition of interactions the full

expression for the expectation of cross-component current correlations

〈J↑J↓〉 = −(〈hij↑hij↓c†i↑cj↑c
†
i↓cj↓〉 − 〈hij↑h

∗
ij↓c
†
i↑cj↑c

†
j↓ci↓〉−

− 〈h∗ij↑hij↓c
†
j↑ci↑c

†
i↓cj↓〉+ 〈h∗ij↑h∗ij↓c

†
j↑ci↑c

†
j↓ci↓〉)

needs to be calculated.

The current for a non-interacting ring with an odd number of particles experiences a

jump at the degeneracy point. Persistent current is defined as J = −dE/dΦ, and the

inability to differentiate the energy at the degeneracy point results in a discontinuity in

the current. Since the energy is non-differentiable at that point the exact value of current

corresponding to the degeneracy point is fairly uncertain. each degenerate state was given

equal statistical weight, the zero-value for current agrees with the zero-temperature limit.

However, a zero valued current implies a zero-valued slope on the energy function at the

point, and the fluctuations obtained corresponding to J = 0 arises from the 〈J2
↑ 〉 and

〈J↑J↓〉 term. In the absence of current, current fluctuations remain finite.

The level crossings become avoided crossing with interactions the current becomes

continuous as seen in the right column of Fig 5.1. The consequence of the interactions in

the quantum current fluctuations is a broadening of the spike into a peak.

Cross-componant current fluctuations play a crucial role in the size of the peak. Near the

avoided crossings 〈J↑J↓〉 spikes with weak interactions. As interactions increase, the

effect of 〈J↑J↓〉 diminishes. The current-current correlations 〈JijJij〉 have a different

behavior being lesser in value for the weakest interactions, increasing in value as U ≈ t̄

and again decreasing in value for strong interactions.
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Figure 5.3: Ground-state Lissajous curve of δJ vs. J in the range π/2 ≤ φ ≤ 5π/6 for
(a) U/t̄ = 0, (b) U/t̄ = 0.1, (c) and U/t̄ = 2. The red rhombus in (a) indicate the value
of the degenerate point. (d) Area of the loop over one period. The area is undefined at
U/t̄ = 0 and is denoted by an open circle at zero. The area jumps to a non-zero value
abruptly when the interaction becomes finite.
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5.2 Lissajous Curves of Current and Current

Fluctuation: Interaction Effects

Choosing a single value for current, how will the fluctuations for that value of current

be affected by interactions? As the interactions are increased the fluctuations

corresponding to the current value also increase. Adding interactions, a single value of

current will appear twice in a single period. The left side of the current maximum

corresponds to increasing current, and the right side corresponds to decreasing current.

These two currents, though possessing the same value, have different fluctuations. The

fluctuations of the left current are observably lower than the right. Thus, adding

interactions causes multivalued fluctuations for a single value of current.

Since one value of current has two possible fluctuation values, it is worth investigating

how the relationship will appear over an entire period. Plotting parametric equations result

in Lissajous curves [1, 5, 53]. Fluctuations and current are both periodic functions in flux,

parametric equations with equal frequency of oscillation. In a non-interacting system the

fluctuations plotted against the current yields a single valued Lissajous curve Fig 5.3(a).

Tracing this curve in one-dimensional space you find there is a discontinuity corresponding

to the degeneracy. As one reaches the maximum or minimum value of current they would

not be able to trace the path back to zero current, and a jump must occur. Perturbing the

particles with interactions, Lissajous curves become multivalued and a path can be traced

from one point back to itself without any discontinuities Fig 5.3(b-c).

There is a topological distinction between the non-interacting and interacting

Lissajous curves. In general topology, the topology depends on the number of open sets

and neighborhoods [81, 102]. A set is continuous if all subsets possess a neighborhood

within that set, no matter how small the subset becomes. It is more simple to analyze the

interacting Lissajous curves primarily. If a single point was removed from the curve, it

would become a continuous arc possessing a single open set, and all points within this

set, excluding the boundaries, have neighbors. The interacting Lissajous curve is a
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continuous set. This system with a single set falls into a distinct topological class and is

homeomorphic with all other single set curves. In contrast the non-interacting case has

two open sets. The first set is on the interval π/2 < φ < 5π/6, and all points within this

set have neighbors. The second set consists of a single point φ = nπ/6 with n being an

odd integer, and this point has no neighbors, particularly within the first open set. The

non-interacting curve can only be connected by the union of the two sets, and is therefore

in a disconnected topological space. Adding any interaction changes the topology of the

Lissajous curves by connecting the two open sets.

All of the Lissajous curves with interactions are homeomorphic, yet the curve area is

affected by the interaction strength. In the limit as U → 0 the area approaches a constant

value, signifying the addition of any interaction will make the Lissajous curve continuous.

We have tested U/t̄ = 0.01 observing a curve agreeing with this conclusion. Increasing

interactions broadens the loop, but the maximum and minimum value of current begins

to decrease with increasing interactions. As repulsive interactions are increased the half-

filled ring is Mott insulating, resulting in decreased particle conductivity due to particle

localization. The Mott insulating phase causes the area of the loops to decrease with

increased interactions Fig 5.3(d).

5.3 Effects from Next-Nearest-Neighbor Tunneling on

Lissajous Curves

To further test the robustness of the Lissajous curve as a general phenomenological

effect of mesoscopic systems, we consider a more complicated lattice structure by adding

a next-nearest-neighbor tunneling term. Total flux from a magnetic field is defined as

Φ =

∫
S

B · dS = BS (5.8)
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Figure 5.4: Current and corresponding quantum current fluctuations for a) U/t̄ = 0 and b)
U/t̄ = 1 with next-nearest neighbor hopping t̄′ = t̄/5. Current fluctuations as a function
of current plotted from π/2 ≤ φ ≤ 5π/6 for c) U/t̄ = 0 and d) U/t̄ = 1.
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where B is the magnetic field perpendicular to the ring plane. Applying Stoke’s theorem∫
S

B · dS =

∫
S

(∇× A) · dS
∮
A · dL (5.9)

the flux can be determined from integrating the magnetic vector potential around a closed

loop

Φ =

∮
A · dL = AL. (5.10)

Light-induced vector potentials, and in turn flux, are defined along the direction of the

wave vector [95]. The Peierls phase φ can be calculated from the magnetic flux as φ =

Φ/N where N is the number of links enclosing the flux. An area S = 3
√

3l2/4 is enclosed

by the next-nearest-neighbor links with a lattice constant l = 1. The flux on each link

can be found by dividing the total flux by the number of links φ = Φ/3 =
√

3l2B/4. To

find a relation between the flux on the nearest-neighbor links we calculate the relation to

the magnetic field in the same way with S = 3
√

3l2/2 and φ = Φ/6 =
√

3l2B/4. In

cold atoms and materials, the next-nearest neighbor hopping strength is small compare

to the nearest-neighbor hopping. The flux generated by the perpendicular magnetic field

is equivalent on each of the links, and the off diagonal matrix element hi,i+2 = t̄′eiφ

for next-nearest-neighbor links. To model a realistic system we consider the strength of

nearest-neighbor hopping to be stronger than next-nearest-neighbor hopping t̄ > t̄′.

Contributions to the Hamiltonian from next-nearest-neighbor hopping with hopping

strength t̄′ are considered to test the robustness of the Lissajous curve. In material and

ultracold atomic system the effect of the next-nearest-neighbor hopping is minimal, so we

tested cases where t̄ > t̄′.Weak higher order hopping, t̄′ = t̄/5, does not affect the overall

results even with interactions since the level crossing are not present Fig 5.4. The resulting

Lissajous curves of δJ vs. J still exhibit the same structures as the case without the NNN

hopping.

Adding a stronger higher order hopping term, t̄′ = t̄/2 changes the energy spectrum

and energy periodicity. A level crossing is introduced in the energy with weak

interactions arising as a discontinuity in the current and current fluctuations and lifts with
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Figure 5.5: (a-c) Current and (d-f) corresponding quantum current fluctuations for U/t̄ =
0, U/t̄ = 1, and U/t̄ = 2 with next-nearest neighbor hopping t̄′ = t̄/2.
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Figure 5.6: Current fluctuations as a function of current in a ring with next-nearest-
neighbor hopping t̄′ = t̄/2 plotted from π/2 ≤ φ ≤ 3π/2 for a) U/t̄ = 0, b) U/t̄ = 1, c)
and U/t̄ = 2.
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strong interactions Fig 5.5. Levels crossing induced by interactions have been calculated

using the Bethe Ansatz solution for persistent current in a one dimensional Hubbard

model for strong interactions [149, 140], and have also been seen when considering

higher-order hopping terms. Appearance of interaction induced levels crossings, in

violation of the non-crossing rule, results from non-trivial symmetries and underlying

conservation laws. We refer the reader to Refs [66, 6] for a detailed mathematical

discussion. The Lissajous curves break at the level crossing with symmetry in the

periodicity of flux Fig 5.6. If the period in flux is restricted to 5π/6 ≤ φ ≤ 7π/6 there are

no degeneracies and the Lissajous curve without breaks can be observed.

5.4 Comment on Multi-Valueness in Open Quantum

Systems

Research done on open quantum system was conducted by our collaborator Dr.

Chen-Yen Lai. To demonstrate the Lissajous curves are a global property of transport in

mesoscopic system, I am including data calculated by our collaborator with brief

discussion on the results.

A one-dimensional lattice consisting of three sites is coupled to quantum reservoirs

at the boundary sites with coupling strength γL = γR = γ Fig 5.7(a). The left reservoir

provides particles to the system and the right depletes them. Dynamics of a system coupled

to the environment can be described using the Lindblad master equation

d

dT
ρ = i [ρ,HS] + γL

∑
σ

(
c†1σρc1σ −

1

2
{c1σc

†
1σ, ρ}

)
+γR

∑
σ

(
cLσρc

†
Lσ −

1

2
{c†LσcLσ, ρ}

)
, (5.11)

and the density matrix is time-evolved. After the time-evolved density matrix is obtained
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the current and fluctuations can be calculated as

〈Ô〉 = Tr(ρÔ) =
∑
mn

〈m|Ô|n〉ρnm, (5.12)

where Tr denotes the trace and {|m〉} is the set of the Fock-space basis kets from all

possible particle-number sectors. The current can be tuned by adjusting the ratio γ/t̄.

Unlike the closed system, where the current is periodic in flux, the open system is not

periodic and is driven by the two reservoirs. As the coupling strength is tuned from small

value to large value the current exhibits a dome shaped, making it possible to have the

same current in both small and large γ limit Fig 5.7(b). Currents in the small and large

gamma limits though possessing the same value have different current fluctuation. This

is similar to the closed system where multi-valueness of current fluctuation emerges with

interactions.

Plotting the current vs. current fluctuations a closed form loop is seen with the addition

of interactions Fig 5.7(d). Since the open system is not periodic, these loops are not

Lissajous curves. If the system is noninteracting, there is a one-to-one correspondence

between the current and fluctuations. Adding interactions fluctuations become multivalued

for the same current in a different coupling regime. This means the loops only open up

with the addition of interactions, suggesting the loops can serve as an order parameter

distinguishing between non-interacting and interacting systems.

There are differences between the closed an open systems. In the closed systems the

multi-valueness was demonstrated near a degeneracy point, but there are no degeneracies

in the open system. The open system loop possess a more complicated structure than the

closed system, and with strong interactions possess multiple nodes on the curves. The

dependence of loops area on interaction is also different. As you increases in the closed

system the area vanishes, but in the open system the area decreases gradually.
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5.5 Experimental Realization Using Ultracold Atoms

The phenomena discussed here may be measured in experiments using ultracold

atoms in engineered optical potentials. For example, the benzene-like lattice may be

realized by using atom-by-atom assembly with optical tweezers [13, 47, 121] or painting

potentials [67]. Open systems with a few lattice sites coupled to two reservoirs have

recently been realized by projecting a lattice using holographic beams onto a conductive

quantum wire coupled to atom reservoirs [86]. The magnetic field may be simulated by

artificial gauge fields from light-atom interactions, and the Peierls phase has been

demonstrated [75, 94, 56]. Importantly, the quantum coherence in ultracold atoms is

robust because the system is virtually decoupled from the outside environment. Direct

measurements of the current may be achieved by utilizing auxiliary light-atom

coupling [84], and the current fluctuation may be obtained by evaluating the variance of

the current from an ensemble.

Including finite-temperature effects will be a great challenge: Introducing temperature

in a closed system requires the micro-canonical ensemble formalism via the concept of

entropy [128]. In atom-by atom assembly the ability to laser-cool individual atoms prior

to tunneling experiments accounts for entropy increase during geometrical setup [80, 121].

It is known the persistent current in the continuum decreases with temperature [4, 104], so

it is expected the phenomena discussed here will also wane as temperature increases.

5.6 Conclusion

Quantum current correlations of persistent current in a mesoscopic ring lattice have

interesting features arising from the current-current and cross-current correlations when

interactions are present. The stark difference between non-interacting current and

fluctuations from the interacting picture is the presence of a degeneracy and

non-differentiable point in the energy leading to a discontinuity in the current. The



82

addition of interactions lifts this degeneracy point and the ground state energy is

differentiable for any value of flux. Consequently, correlations contribute to a broadening

of a peak in fluctuations in the vicinity of the maximum energy as the degeneracy is lifted

in the spectrum.

The periodicity of the energy give parametric equations between the current and the

fluctuations. Lissajous curves are generated when these parametric equations are plotted

and the frequency of both the current and fluctuations are the same. To parametric

equations with the same frequencies gives curves that are spherical/ellipsoidal. There is a

distinct topological difference between the non-interacting and interacting Lissajous

curves. The non-interacting Lissajous curve has two disconnected sets, and the

interacting Lissajous curve has one set. Non-interacting and interacting Lissajous curves

are not holomorphic of each other which means there is a topological distinction between

both. Adding an external perturbation, like contact interactions, connects the two subsets

and all Lissajous curves with interactions are holomorphic of each other.

Particle tunneling between next-nearest neighbors is likely to occur in a realistic

lattice with the tunneling being less in magnitude than nearest-neighbor. The addition of

long-range tunneling parameters is considered, and it is found with weak next-nearest

neighbor tunneling the qualitative behavior of the results is unaffected. With stronger

long range tunneling level crossing are induced by interactions. These level crossing

cause discontinuities in the current, fluctuations and the Lissajous curves, and they are

periodic in flux.

I would like to acknowledge my co-authors Prof. Chih-Chun Chien, Prof.

Massimiliano Di Ventra and Dr. Chen-Yen Lai in publication of this research.
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Figure 5.7: (a) Schematic plot of a three-site lattice connected to a source (left) and
drain (right). The hopping coefficient between the lattice sites is t̄, the system-reservoir
couplings are γL,R, and the onsite interaction has the coupling constant U . The open
system is described by the quantum master equation (5.11). (b) Currents and (c) current
fluctuations versus γ = γL = γR for selected values of U/t̄ in the three-site open system.
WhenU=0, the current and current fluctuation are symmetric about the yellow dashed line
(γ=2t). When U/t̄ > 0, only the currents remain symmetric while the current fluctuations
become asymmetric. (d) Current fluctuation versus current. When U = 0 (dashed line),
there is a one-to-one correspondence between the current and current fluctuation. In
contrast, a closed loop and multi-valueness are observable for all U > 0. The inset shows
a detailed comparison of δj vs. j for U/t̄ = 0 and U/t̄=0.1.



Chapter 6

Observing Topological Boundary

Effects in Cold Atoms

The following protocols for detecting edge states using cold atoms were published by

the author in Ref [105] Copyright 2017 IOP Publishing. Below a more detailed description

is provided on the research results.

6.1 Motivation

Emergent condensed matter phenomena arising from topological behavior has incited

increasing attention. For instance, topological insulators can host edge states within an

insulating energy gap and are characterized by topological invariants arising from their

band structures [8, 131, 34, 119, 62]. The versatility of ultracold atoms for simulating

many-body systems [31, 19] leads to realizations of important topological systems such

as the Su-Schrieffer-Heeger (SSH) model [10], Harper-Hofstadter Hamiltonian [107, 2],

and the elusive Haldane model [77]. Topological structures also support unique dynamical

features realizable with cold atoms such as quantized charge transport [111, 96].

The SSH model has been constructed with an optical superlattice in a confining

84
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potential to probe quantum phases [10]. It supports nontrivial band topology with

sublattice symmetry and localized edge states when the system is uniform. Direct

detection of edge states, however, has been hindered by the confining potential, which

distorts the density profile and prevents a sharp boundary. There have been proposals for

observing topological edge modes in 2D cold-atom systems [54]. Here, an alternate setup

in 1D with well defined boundaries, where edge states can be generated and

detected [65]. Rather than confining atoms in a harmonic trap, they can be confined in an

optical ring lattice [108, 39]. The ring can be cut open with an off resonant laser sheet,

resulting in a one dimensional lattice with open boundary conditions as illustrated in

Figure 6.1(a). Experimental techniques to develop atom circuitry have provided creative

means to engineer optical ring potentials with optical masking [39] or painted

potentials [24, 67].

Confining atoms in a ring lattice cut by a laser sheet generates localized edge states

in real space, but additional methods are needed to distinguish the occupied edge states

from the background. As shown in Figure 6.1(b) and 6.1(c), the density profiles of a half-

filled, open lattice are featureless for both noninteracting and interacting systems. This is

because the edge states are usually buried in a pile of other states, so extra processes for

extracting its structures are required. We present dynamical protocols resolving edge state

detection with an injection method and a depletion method. A single fermion injected at

the edge of an empty open lattice with nontrivial topology does not fully spread out as time

evolves because most of its weight is kept by the localized state at the edge. A similar idea

was behind recent experiments for bosons injected onto a boundary of a lattice constructed

in momentum space [100], and our proposal is the real-space counterpart. Another way

to probe the edge states is to dynamically remove atoms [29]. Removing atoms away

from the edge over time depletes most of the states except the edge states localized at the

boundary. We demonstrate feasible setups for both schemes.

Although the characterization of noninteracting topological systems is pretty

complete [34], identifying and characterizing topological properties in interacting
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Figure 6.1: (a) Trapping set up with optical ring lattice cut with an off resonant laser
sheet (yellow) to open boundaries. The lattice has unit cell with two sites A (red square)
and B (blue circle). Density profile for a half-filled lattice with L= 12 sites, half filling,
J1/J2 =0.5, and interaction strength (b) U/J1 =0 and (c) U/J1 =5.

systems has remained a great challenge. Topological invariants, calculated from the

single-particle wavefunction, are more difficult to evaluate for many-body states. While

some invariants can be calculated by Green’s functions in the thermodynamic limit [99,

141], cold-atom systems are usually of finite size and require more direct

characterization. A half-filled SSH model with an even number of sites has particle-hole

symmetry and is shown to remain topological in the presence of interactions [63, 60]. A

global topological number may also be determined by adding a phase twist to the

boundary and analyzing the phase change when interactions are present [60, 68, 59].

However, the structure of many-body topological edge states remains elusive.

Instead of mapping out the edge state in interacting systems, we propose analyzing

selected correlation functions for revealing the dimerized structures in the SSH model
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with interactions. Finite correlations will be shown to survive across a broken link after a

boundary is created by inserting a laser sheet to cut open a ring lattice. The evolution of

spin-spin correlations distinguishes between trivial and nontrivial topological

configurations with and without interactions. Previous investigations revealed there are

two types of insulators for the dimerized chain depending on whether interactions are

present [92, 99, 8, 131]. The time evolved density-density correlations are found to

differentiate between the noninteracting band insulating and interacting Mott insulating

phases of the one-dimensional SSH Hubbard model.

6.2 Topological Properties of the One-Dimensional

Su-Schrieffer-Heeger Model

The SSH model describes a one-dimensional (1D) dimerized lattice with alternating

hopping strengths [8, 131]. The 1D chain hosts two sites (A and B) in each unit cell. The

Hamiltonian of an N -site noninteracting system is

H = −
N∑
i=0

[
J1c
†
B,icA,i + J2c

†
A,i+1cB,i + h.c.

]
. (6.1)

Here c†i (ci) represents the creation (annihilation) operator on site i. The hopping

coefficients alternate with J1 and J2 as shown in Figure 6.1(a). Depending on the

boundary condition, the hopping between site N and site 1 is present (for periodic

boundary condition) or absent (for open boundary condition). The unit of time t0 = ~/J1

is set by the intracell hopping coefficient and ~ = 1. We first consider a periodic system

and by taking a Fourier transform of the creation (annhilation) operators,

ci,A =
∑

k ake
ik·xi and ci,B =

∑
k bke

ik·(xi+a/2), the Hamiltonian in momentum space is

H(k) =
∑

k

(
a†k b†k

)
h(k)

(
ak

bk

)
with
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h(k) =

(
0 J1e

ika/2 + J2e
−ika/2

J1e
−ika/2 + J2e

ika/2 0

)
. The lattice constant a serves as

the length unit and the momentum summation is over the first Brillouin zone. The matrix

h(k) can be diagonalized as

(
0 ε(k)eiθ

ε(k)e−iθ 0

)
. The energy dispersion is given by

ε(k) = ±
√
J2

1 + J2
2 + 2J1J2 cos(k). A gap opens between the upper and lower bands in

the bulk when J1 6=J2.

Topological insulators can be classified according to their symmetries [34, 131, 119].

The SSH model has chiral (sublattice) symmetry with an associated topological invariant

called the winding number ν defined for systems with periodic boundary condition. ν

takes values of ±1 depending on whether J1/J2 > 0 or J1/J2 < 0, revealing the

parameters of the Hamiltonian wrap around a point counterclockwise (clockwise) in the

parameter space. For systems with open boundary condition, zero-energy edge states

localized at the boundary can emerge depending on the configuration. The bulk-boundary

correspondence [8, 119, 62] states that the number of edge modes is determined by the

bulk topological invariant.

Here we propose measuring consequences of band topology by probing the

topological edge states. An open boundary introduces an interface between the

topological SSH chain and the topologically trivial vacuum, so edge modes can emerge if

the configuration is suitable. Location of the edge states on sublattice A (sublattice B)

depends on the condition J1/J2 < 1 (J1/J2 > 1) and sign of the associated winding

number. For instance, in a long chain with one end ending with a J1 link and J1/J2 < 1,

the probability amplitude of an edge state |φ〉 has the form

〈i|φ〉 = N
(

1, 0,−J1
J2
, 0,
(
− J1

J2

)2

, 0,
(
− J1

J2

)3

, ...
)

(6.2)

and it localizes on sublattice A at the boundary. N = [1 − (J1
J2

)2]1/2 is a normalization

factor. Similarly, an end with a J2 link with J1/J2 > 1 can support an edge state with

similar structures on the B sublattice (but with J2/J1 in the power series). Therefore, for a

chain with odd number of sites, one edge state is guaranteed and its location depends on the
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ratio of J1/J2. For a chain with even number of sites, there can be zero or two edge states.

For instance, an open chain ending with J1 links on both sides and J1/J2 < 1 supports

an edge state on both sublattices, and the two modes hybridize to give one symmetric and

one anti-symmetric edge mode. On the contrary, the same chain with J1/J2 > 1 yields

no zero-energy edge states. For a ring lattice, an even number of sites is a natural setting

before a laser sheet cuts it open, so we will refer to the case with two edge states after it is

cut open as the topologically nontrivial and the one with no edge state as the topologically

trivial. It is possible, however, to generate a ring with an odd number of lattices [87, 83].

In cold-atom experiments, usually accompanying the alternating hopping in

superlattices is the addition of alternating onsite energies, which adds a term∑
j(−1)j∆c†ici to the Hamiltonian [10]. The edge-state configuration is still maintained

in the presence of alternating onsite energies as one can verify directly, although the

edge-state energy is shifted by ∆. For quantized charge pumping of particles [131, 111,

96], this addition of alternating onsite energies is essential because the edge states will

fuse into the bulk [15] as the crossing J1 = J2 happens when they are tuned dynamically.

Furthermore, ∆ can be tuned to zero [10], so for simplicity we do not include the

alternating onsite energy in our discussion.

6.3 Experimental Detection Challenges of Ultracold

Atoms and Proposed Solutions

Alternating onsite energies do not destroy the edge states, but a confining harmonic

trap can be detrimental to them. A harmonic confining trap, V (r)∝ rγ with γ= 2, keeps

atoms in the optical setup, but it has been shown that if γ < 10, the energy gap of a

dimerized lattice closes due to distortion of the density profile and the edge states fuse into

the bulk of the lattice [10]. When γ is large the potential takes the form of a box potential

with well defined boundary. Three dimensional box potentials created by intersecting a
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hollow tube beam with two sheet beams provide sharp boundaries [50], but adding lattice

potential on top of the box potential can be more challenging.

6.4 Dynamical Signatures of Edge States in Topological

Noninteracting Systems

We propose a method for confining the atoms in a ring lattice cut with a laser sheet to

open the boundary Figure 6.1(a). The appearance of edge states depends on where the

link is cut. If J1/J2< 1 and the laser sheet cuts a strong link, J2, two edge states emerge

along with further correlation effects. The laser sheet may introduce an energy shift on

nearby sites. Assuming a shift of ε on the boundary site, the edge mode wavefunction

(6.2) starts acquiring values ε/J1, ε/J1(−J2/J1), · · · on those sites originally with zero

amplitude. The edge mode survives in a chain with length less than

(1/2)[ln(ε/J1)/ ln(J1/J2)]. Making the laser sheet sharper to reduce the shift of onsite

energy near the boundary will help the edge mode to be more prominent. Interestingly,

when ε = J1, the edge mode is completely destroyed, a result consistent with a direct

mathematical evaluation [82]. We will assume the collateral energy shift is negligible.

While edge-state contribution can be measured from transport in electronic

systems [62, 119], there is a need to develop methods to measure the edge states in

cold-atom systems [31]. Bosonic atoms revealed characteristic edge states in momentum

space using a single site injection method [100]. Here we found that real-space single site

injection also serves as a suitable method to probe edge states. The idea is to have an

empty lattice and inject a single atom onto the site at the open boundary, then the particle

propagates in time. The time-evolved density profile can be monitored by evolving the

correlation matrix 〈c†icj〉 according to the equation of motion

− id〈c
†
icj〉
dt

= 〈[c†icj, H]〉. (6.3)
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Figure 6.2: (a) Density of the left-most site for a 60-site lattice with one fermion initially
place on left boundary. The topologically nontrivial case (red, J1/J2 = 0.5) has an edge
mode on the edge retaining the injected particle while the injected fermion propagates
away in the topologically trivial case (black, J1/J2 =2). (b) - (e) Evolution of the density
profiles of a L= 60 lattice sites with a depletion beam removing particles near the center
of the system (i= 31). The density profiles at selected times (from top to bottom) t/t0 =
0,50,100,150 are shown. The elements 〈c†31ci〉 and 〈c†ic31〉 are wiped out every t0/2. (b)
and (c): The topologically nontrivial configuration (J1/J2 = 0.5, labeled ”NT”) displays
prominent localized edge-state structures with higher density at the two open ends as the
overall density is depleted. (d) and (e): No localized structures emerge in the topologically
trivial configuration (J1/J2 = 2, labeled ”T”). The insets of (b) and (d) show the density
profiles of the first five sites at the boundary.
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The initial condition is 〈c†1c1〉(t=0)=1 and all other elements are zero, where the first site

is at the open boundary. The density on site i is 〈c†ici〉 and can be extracted from the time-

evolved correlation matrix. A fourth-order Runge-Kutta algorithm is used to numerically

evaluate the time-evolution.

A single particle injected onto an end site not supporting an edge state propagates

away, while a significant fraction of the wavefunction will be retained if there is an edge

mode at the boundary. This can be understood by Eq. (6.2) because the edge mode has

weight N 2 = 1 − (J1/J2)2 at the boundary site, so the injected fermion will fill the

edge mode significantly. Figure 6.2(a) contrasts the remaining density on the injection

site with and without an edge mode. For the topologically nontrivial case, the edge mode

retains ≈ 0.6 of the weight, which is close to N 4 + (1 − N 2)2 = 0.63 estimated from

a direct calculation. In contrast, the density practically vanishes as time evolves in the

topologically trivial case. The remaining density thus distinguishes the trivial and non-

trivial topological configurations, providing measurable evidence of edge states in real

space.

The method of depletion provides another measurable evidence of topological edge

states, and a similar depletion method has been considered for an optical kagome

lattice [29]. By depleting the atoms away from the boundary over time, density of

localized particles on the edge become prominent because their weights are small in the

bulk. To deplete atoms, a focused laser can eject atoms from the optical trap [23].

Alternatively, an electronic beam has been used to deplete bosons since, excited through

collisions, atoms can escape the trap [12]. We consider a uniformly filled lattice with

open boundary condition as the initial state and approximate the depletion of atoms on

site m by removing all correlations 〈c†mci〉 = 〈c†icm〉 = 0 associated with the atom.

Interestingly, depleting with a finite removal rate is necessary, or else the depleting beam

will act as a barrier preventing particle transport. Here we use a removal rate of depleting

the selected correlations every t0/2, and the qualitative conclusion remains for other

reasonable removal rates. Examining the density profile of the topologically nontrivial
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configuration, occupancy at the boundary is prominent as the value predicted by N 2 is

approached Figure 6.2(b,c). The edge states are observable when the initial filling is

above half-filling. The topologically trivial configuration, in contrast, exhibits

diminishing edge density as shown in Figure 6.2(d,e). The comparison shows edge states

are revealed in noninteracting systems with atom depletion away from the edge.

6.5 Dynamical Signatures of Dimerization in Interacting

Systems

Determining topological classification of systems with interactions is difficult. A

periodic, dimerized lattice has nontrivial topological features in the presence of onsite

interactions when particle-hole symmetry is respected [63]. Therefore, distinguishing

topological features of a dimerized lattice with interactions experimentally using cold

atoms is desired. Rather than probing global topological number, specific short range

correlation functions will indicate nontrivial topology and dimerization structures.

Correlation function dynamics is observable as the boundary is changed from periodic to

open. Dynamics of some correlations have been evaluated for both trivial and nontrivial

topological configurations of the noninteracting SSH model and the Kitaev chain [65].

Importantly, correlations of density or spin can be experimentally measured using

phase-contrast imaging which can distinguish between populations of each

component [132, 51, 91].

To model the contact interaction of atoms, we use the two-component Hubbard model

with onsite repulsion described by HU = U
∑

i ni↑ni↓. Here U is the coupling constant

and ni↑ (ni↓) is the number operator for spin up (down) fermions. The hopping

Hamiltonian, Eq. (6.1), is generalized to two components as well. Here the two

components σ=↑, ↓ may be two different internal states of the same atomic species. The

one-dimensional Fermi Hubbard model can be solved analytically using the
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Figure 6.3: Spin-spin correlations of fermions across a suddenly broken link of a
dimerized, L=12 site lattice with J1/J2 =0.5. The topologically nontrivial configuration
(top row) supports two edge modes in the noninteracting case with open boundary
condition, and the cut is across a strong link J2 for U/J1 =0, 1, 5 (a,c,e). The correlations
remain finite after the boundary transformation. The topologically trivial configuration
(bottom row) has a cut at a weak link J1 for increasing interactions U/J1 = 0, 1, 5 (b,d,f).
The correlations fluctuates around zero. The triangular (square) symbols show the time-
independent correlation of a static configuration with periodic (open) boundary condition
for the corresponding case. In all cases the system is half-filled.
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Bethe-Ansatz revealing, in the thermodynamic limit, a half filled uniform lattice has a

charge gap for any finite interaction [92]. As discussed previously, a dimerized lattice is a

band insulator when U = 0 at half-filling or full-filling, and it is a topological Mott

insulating phase at half-filling when U > 0 [99]. By choosing suitable correlation

functions, it is possible to distinguish between the topologically nontrivial and trivial

configurations in conjunction with band insulating and Mott insulating phases.

We use exact diagonalization (ED) to determine the ground state [93, 130] up to

moderate system size and already observe prominent features in relatively small systems.

If larger systems are being considered, density matrix renormalization group (DMRG)

method may be used [146, 145, 127]. The results presented are from a lattice with L=12

sites, and the same behavior is already observable for systems as small as L = 8 sites.

Dynamics of the system can be simulated efficiently by applying a Krylov-space

approximation to the time evolution operator U(t) = e−iĤdt/~ to reduce the dimension of

matrix operations [98]. The approximation is limited by the Hamiltonian’s spectrum

width, and we compared the results against the full, exact solution of small size systems

to verify the accuracy. The time evolution of correlation functions across a selected link

can then be monitored.

To identify which correlation function can clearly reveal the dimerization, we

investigate the equal time spin-spin correlation between the sites across the broken link

(connecting sites i and i+ 1):

χss(t) = 〈ni+1,σ(t)ni,σ(t)〉 − 〈ni+1,σ(t)〉〈ni,σ(t)〉. (6.4)

It probes the correlations between the same spin component across the selected link. If

measured across a strong (weak) link with J2 (J1) and J1<J2, the correlation is intracell

(intercell). Figure 6.3 shows the correlation in static configurations with open or periodic

boundary condition (marked by the symbols). For the intra-dimer correlation, χss(t)

remains finite for both the noninteracting (U/J1 = 0) and interacting (U/J1>0) cases. In

contrast, the correlation decays to zero for the topologically trivial case. The finite
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spin-spin correlation results from the spin singlet on the link (| ↑↓〉 − | ↓↑〉) preferred

inside each dimer, but inter-dimer spin correlations should be weak because long-range

spin order is forbidden in 1D [103] and there is no spin gap for a uniform chain in the

exact solution [92]. Spin correlation within a dimer is dominated by the singlet behavior

and prefers anti-parallel spins, while the spin correlation between adjacent dimers is

practically random. Meaning, the spin-spin correlation function can distinguish whether

an intercell or intracell link has been broken, working for both noninteracting and

interacting cases.

The dynamics of correlation functions can be further explored by setting the lattice

configuration initially half-filled and periodic, then changing the boundary condition by

suddenly cutting and measuring correlation across a link. In isolated system like cold-

atoms trapped in optical potentials, there is no external energy dissipation. As shown in

Figure 6.3, the correlations oscillate around their average values, but the contrast between

the finite correlation of the intracell case and the vanishing correlation of the intercell case

persists in the time-evolution. The correlation can sometimes overshoot the equilibrium

values in its time-evolution. Morevoer, the intracell correlation does not decay to zero and

exhibits memory effects of its initial state. We mention that previous work has investigated

long-range correlations in dimerized lattices by analyzing entanglement entropy [72], and

the edges exhibit quantized Renyi entanglement entropy from an effective coupling of

sublattices with finite size [142].

The spin-spin correlations, however, do not distinguish between the (noninteracting)

band and (interacting) Mott insulating phases of the dimerized lattice, and we need another

correlation function to accomplish this. Since Mott insulating phase suppresses onsite

density fluctuations but the band insulating phase does not, one can differentiate the two

phases by checking the onsite density fluctuation 〈n2
i 〉 − 〈ni〉2 [42]. We further consider

the equal time density-density correlation function defined by

χdd(t) = 〈ni+1(t)ni(t)〉 − 〈ni+1(t)〉〈ni(t)〉. (6.5)
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Figure 6.4: Density-density correlations of fermions across a suddenly broken link of
a dimerized, L = 12 site lattice with J1/J2 = 0.5. The topologically non-trivial
configuration (top row) has a cut across a strong link J2 for U/J1 = 0, 1, 5 (a, c, e).
The noninteracting case exhibits finite density-density correlations after the boundary
transformation, while the correlations of the interacting cases diminish due to the
suppression of density fluctuations in the Mott insulating phase. The topologically trivial
configuration (bottom row) for U/J1 = 0, 1, 5 (b,d,f) is determined by cutting across a
weak link J1. The correlations all average around zero in this configuration. (Inset)
Fidelity metric as a function of interaction strength U/J1 shows a finite-width transition
from the noninteracting band-insulating phase to the interacting Mott insulating phase.
The correlations fluctuates around zero. The triangular (square) symbols show the time-
independent correlation of a static configuration with periodic (open) boundary condition
for the corresponding case. In all cases the system is half-filled.
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Here ni =
∑

σ niσ is the particle number operator on site i. As shown in Figure 6.4,

the static value of the density-density correlation always vanishes across an intercell link

regardless of the boundary condition. For the static correlation across an intracell link in

the open-boundary case, the correlation is finite in the noninteracting case and vanishes

if the interaction is strong. Therefore, the correlation may distinguish the two types of

insulating phases if measured across an intracell link.

The dynamics of the density-density correlation function reaches a similar conclusion

when the boundary condition is transformed from periodic to open by suddenly cutting

an intracell or intercell link. As shown in Figure 6.4(a, b), for noninteracting systems

χdd remains finite across the broken intracell link. In contrast, the similar correlation for

the strongly interacting case oscillates around zero. By comparing the eigenstates of the

periodic and open systems in the case with a broken intracell link (J1 <J2 and the cut is

on a J2 link), the major difference is the emergence of the edge modes, which should be

responsible for the density-density correlation at the boundary. For the case with a broken

intercell link (with a cut on a J1 link), the eigenstates are only perturbed after the boundary

change, and no significant correlation emerges. However, the density-density correlation

does not distinguish between the two configurations when U/J is large and the system is

in the Mott insulating phase as shown in Figure 6.4 (e, f) since density fluctuations are

suppressed as the interaction increases.

By comparing Figure 6.4(a) and (e) one can see the difference between the

band-insulating and Mott-insulating phases as the density-density correlation vanishes in

the interacting case. The transition between the band and Mott insulating phases of the

dimerized lattice, however, is not sharp due to finite-size effect. Figure 6.4(c) shows that

the correlation for U/J1 = 1 does not decay to zero compared to the U/J1 = 5 case. To

examine where the system departs from the noninteracting limit, we analyze the fidelity

metric for increasing interaction and show it in the inset of Figure 6.4. The fidelity metric

is obtained from the fidelity F(U, δU) = 〈ψ(U)|ψ(U + δU)〉 measuring the overlap of
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ground states as the interaction is changed by δU <<J1. The fidelity metric

g =
2

LδU2

[
1−F(U, δU)

]
(6.6)

indicates quantum critical behavior or crossover with the appearance of singularities as a

parameter is modified [25, 148, 73]. The fidelity metric shows that the transition regime

is relatively broad, and U/J1 = 1 in this case has not fully departed from the

noninteracting point. By increasing the system size, the transition regime will get

narrower and the contrast between the noninteracting and interacting cases will prevail

even in the weakly-interacting regime. Nevertheless, the density-density correlation

function and its dynamics provide additional evidence differentiating between the

band-insulating and Mott-insulating phases. We remark that the determination of the spin

or density correlations may need site-resolved spectroscopies, such as the quantum-gas

microscope [11].

6.6 Conclusion

While solid state systems can reveal the influence of topological edge modes on

transport, cold atoms can characterize topological properties directly associated with the

wavefunction [31]. Since cold-atoms need to be confined in experiments, the confining

potential distorts the density profile and hinders direct observation of topological edge

modes. We propose a geometry suitable for generating edge modes in 1D by cutting open

a ring lattice, and two dynamical probes for revealing the edge modes: One utilizes

single-particle injection in real space and the other depletes the particles away from the

boundary. Those methods exploit the localized nature of the edge modes and allow their

density profiles to be mapped out.

Identifying and classifying topological properties of the interacting SSH model

received theoretical progress for determining global behavior, but experimental

verification can be challenging. Evaluating the time-evolution of selected correlation
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functions provides a local probe of dimerization signatures and distinguishes interacting

and noninteracting systems in different configurations. The setup and probes are general

and should be useful for experimental verification of bulk-boundary correspondence and

explore dynamics in other topological systems.

I would like to acknowledge my co-authors Prof. Chih-Chun Chien, Prof. Kevin

Wright and Dr. Chen-Yen Lai in publication of these exciting ideas for edge state

detection.



Chapter 7

Conclusion

This thesis provides a comprehensive analysis of fermion transport in quantum

systems with theoretical studies done on non-equilibrium quantum dynamics and

dynamics of systems in equilibrium. Below, I will summarize what is considered to be

the paramount points of this work.

• Fermions in optical lattices can be used to study model Hamiltonians like the

Hubbard model, and the systems can be engineered to explore quantum dynamics

with controllable parameters in isolated environments.

• Lattice geometry can be used to manipulate the propagation of matter-waves. Speed

of the matter waves can be enhanced by adding diagonal links to a square lattice.

This is a pure quantum mechanical effect due to the wave nature of particles in the

quantum mechanical regime. Mixing of the wave vectors by adding diagonal links

contributes additional terms in the group velocity which provide a greater maximal

group velocity with increased diagonal links.

• It is not possible to achieve equilibrium persistent current of fermions in an optical

ring potential without the addition of an external dissipation since scattering

mechanisms are not present in optical trapping systems. When driven periodically

101



102

by a synthetic magnetic field, competition between the relaxation time and the

driving period leads to rate-dependent hysteresis of current. Area of the hysteresis

loop depends on the relaxation time and resembles overdamped harmonic oscillator

in the massless limit. Hysteresis of current is robust against interactions which do

not change the eigenstate of the system, we demonstrate hysteresis is present with

the addition of spin-orbit coupling.

• Detecting topological edge states in cold atom systems is a challenging task since

the harmonic confining potential distorts the energy spectrum and fuses the edge

states into the bulk. An optical ring potential cut by an off resonant laser beam

provides a suitable confining potential to resolve the edge states. In the

non-interacting limit, particle filling doesn’t have an underlying role in the systems

symmetry, and topological effects are observable with any particle filling. Two

methods are proposed to resolve the edge states dynamically: single-site injection

method and an atomic depletion method. Topology is poorly defined with

interactions, however, in the case of the SSH model the system is topology is

preserved by particle-hole symmetry at half-filling. Topological non-triviality can

be observed by the persistence of finite spin-spin correlations as the boundary

conditions are changed from periodic to open.

• Equilibrium current and corresponding quantum current correlations reveal

periodic nature as Lissajous curves. Non-interacting curves are single valued with

zero area and an isolated point resulting from the degeneracy. The addition of

interactions make the current and fluctuations continuous producing multivalued

Lissajous curves for any interaction, and the area decreases with increased

interaction strength for a system at half filling. These two cases are topologically

distinct. All points in the interacting case have a neighborhood, and the isolated

point in the non-interacting system lacks any neighbors. Lissajous curves were

calculated for an open quantum system connected to external reservoirs, indicating
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global transport behavior.

As my thesis work has progressed remarkable progress in ultracold atoms has been

made. For instance, the ability to realize synthetic dimensions, methods to detect Chern

numbers for topological insulators, phonon modes mediated by optical cavities, and the

ability to realize long-range interactions. The ability to realize long-range interactions

in a controllable way insights opportunity to understand elusive phase transitions and the

dynamics of particles whilst in a new phase.

Continuation of this work would be to further investigate the dynamics of fermions

in engineered Hubbard ladders created using synthetic dimensions. A 2D square ladder

with next-nearest-neighbor hopping accumulates a phase as a particle hops around a close

loop when subjected to a perpendicular magnetic field. This system, better known has the

Creutz’ ladder (body-centered ladder geometry of Chapter 3), offers an exciting avenue

for the investigation of topological insulators in the non-interacting, weakly interacting,

and strongly interacting limit because the topological phase survives in the presence of

interactions [78]. Investigations of the dynamics in this system could provide avenues to

detect the edge-states and chiral currents. This research will open up a new avenue for

transport studies in weakly and strongly interacting topological systems.

Theoretically limiting is the ability to simulate dynamics in of two-dimensional

lattices, and future theoretical research would be to identify computational methods to get

accurate results for these systems. A potential avenue would be to map the Hubbard

Hamiltonian to superconducting qubits using quantum computing technology, and that’s

what I will find out at my next employment opportunity.



Appendix A

Appendices

A.1 Basis of Many-Body Wave-Function

The single particle basis is used when are no interactions between the different spin

species of electrons. It works because no inter-particle correlations are necessary for

calculation. All that needs to be known is nearest neighbor hopping and onsite energy.

The basis extends over the sites, so the dimension of the Hamiltonian is determined by

the sites.

In order to determine the many body wave function from single particle eigenstates, a

Slater determinant is needed. The formalism is as follows,

|λi〉 = ã†i |0〉

ã†i =
∑
i

φi(l)a
†
l

|n1...nN〉 =

Np∏
i

ã†i |0〉

|Ψ〉 =
∑

0≤n1,...ni≤1

cn1,...ni |n1...ni〉
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cn1,...ni =
∑

1<l1...ln

∣∣∣∣∣∣∣∣
φ1(l1) ... φ1(lN)

. . .

φN(l1) ... φN(lN)

∣∣∣∣∣∣∣∣
where li is an eigenvector of the single particle Hamiltonian and Np is the number

of particles. In order to determine the full ground state wave function all the different

ways to arrange particles in the system have a coefficient. The ground state wave function

is expanded over the Fock basis and the expansion coefficients are determined by Slater

determinants from the single-particle basis eigenvectors. φi(li) represents the ith element

of the ith eigenvector in the single particle basis.

Example: Find coefficient for |011〉 state

c|110〉 =

∣∣∣∣∣ φ2(l2) φ2(l3)

φ3(l2) φ3(l3)

∣∣∣∣∣ = φ2(l2)φ3(l3)− φ2(l3)φ3(l2) (A.1)

A.1.1 Second Quantization for Bosons

Bosons have a symmetric wave function which permits multiple particle occupation on

a state. The creation and annihilation operators are different than fermions. The creation

operator creates a particle on a state

b†ν |nν〉 =
√
nν + 1|nν〉. (A.2)

The annihilation operator removes a particle from a state

bν |nν〉 =
√
nν |nν − 1〉. (A.3)

These operators commute due to the symmetry of the wave function [A,B] = AB −BA.

The commutation relations for the creation and annihilation operators are as follows:

[bν′ , b
†
ν ] = δν′ν (A.4a)

[b†ν′ , b
†
ν ] = [bν′ , bν ] = 0 (A.4b)
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The number operator b†νbν can be all positive integers or zero. It should also be noted that

the counting is different for bosons, since the wave function is symmetric and multiple

occupancy permitted. For a single spin species the Hilbert space dimension can be

calculate as

H =
(Np +N − 1)!

Np!(N − 1)!
. (A.5)

The Fock space for bosons is greater than the Fock space for fermions, however, if cooled

below a critical temperature they all occupy the ground state and can be modeled with a

single particle wave function.

A.2 Numerical Algorithms

A.2.1 Exact Diagonalization Computation

The most important aspect of exact diagonalization is determining the diagonal

elements for interaction. The full Fock basis is constructed from a tensor product of the

single particle sub-spaces, so the mixing between the states is essential. Example of

Fock state

|011〉 |001〉

In order to determine the mixing the basis needs to be constructed and indexed.

Creating Basis

The individual Fock states can be represented with binary numbers. For instance, |011〉
corresponds to the number 3. Quick on binary: each bit represents an integer to the power

of two, so the Nth bit is 2N . The binary sequence for three 20 + 21 = 3

First, a given number of sites and particles are needed, we will continue the example

with M=3 and N=2. All the fock states are:

• |011〉 = 3 = 1
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• |101〉 = 5 = 2

• |110〉 = 6 = 3

It is apparent the smallest integer allowed is when N particles are on the right, and the

most is when N particles are on the left. This sets the bound for the integer representation

of the Fock basis, and is computed by

Imin =
N∑
i=1

2i−1

Imax =
N∑
i=1

2M−i

Once the min and max ranges have been determined the basis can be created. A loop runs

over all the possible integers in between min and max. An algorithm checks whether the

ith bit is set corresponding to the site. If the number of bits set is equal to the number of

particles it is a Fock state. For example, 4 = |100〉 which only has one bit set, therefore

not a Fock state for a two particle system.

The states are indexed from lowest to highest value, see Table 1, and the total index is

the size of the Fock basis. It is important to know that the index integer is unique to each

Fock state

Total Index

It is important that each Fock state has its own unique integer associated to it so the

computer can reference the state. Each up spin has to be matched with all possible down

spin combinations. Once way to do this is to put them in front of each other.

Example of Index for Fock state

|011〉 |001〉

I = 001− 011 = 3 + 8 = 11
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Up Basis↑ Index↑ Down Basis↓ Index↓ Total Index
011 3 1 001 1 1 1
101 5 2 001 1 1 2
110 6 3 001 1 1 3
011 3 1 010 2 2 4
101 5 2 010 2 2 5
110 6 3 010 2 2 6
011 3 1 100 4 3 7
101 5 2 100 4 3 8
110 6 3 100 4 3 9

Table A.1: Basis states and Index number for a system with L = 3 sites, N↑ = 2 and
N↓ = 1. Each basis state has an individual index and the Fock state referenced by the
Total Index. These values are stored into vectors.

This will give a unique integer and can be shown mathematically from Lin’s two table

method as

I =
M∑
i=1

[n↑(i)2
i−1 + n↓(i)2

M+i−1]

However this is not what is done is our algorithm. The indexing is ordered so the product

of the two Fock states with the smallest integers are 1 and the two Fock states with the

largest integers give Itot = νσνσ̄ = count↑count↓ This can be done if

Index = (Index↓ − 1)count↑ + Index↑

If more spin states are added it can be modified as

I =
Nσ∑
i=1

(Ii − 1)(
Nσ−1∏
j=1

countj)

where Nσ is the number of spin states in the system.

A.2.2 Hopping Matrix and Binary Functions

The creation and annihilation operators can be realized computationally by using

bitwise functions to operate on the Fock states. First a little bit about bitwise operators:
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• shift operator <<moves a digit a certain number of places 1 << 2 = 2 or 001←
100

• AND operator, &, evaluates two integers and returns a 1 when both are set to 1

1001010

0101010

= 0001010

• OR operator, | , is one when either of the bits is 1. You get a nonzero number if the

bit you are interested in is 1

1001010

0101010

= 1101010

• Complement operator, ˜, flips all the bits. 1 becomes 0 and 0 becomes 1

The annihilation operator can be realized with a bit clear function, which will clear the nth

bit on some integer m It is written as

Clrbit = m& ∼ (1 << n)

This shifts the number 001 n bits to the left. It is then flipped so the nth bit is 0. When

evaluated with & the nth bit is 1-0=0.

The creation operator is realized with the bitset function. Where the nth bit was cleared,

the n+1 bit is set to 1. If it is already 1 the or function will set it to 0, and it will be

discarded.

NewState = m|(1 << (n))

Once the new state is found after hopping the integer is matched with it’s index. The index

is used, as shown above, to determine the correct element of the hopping hamiltonian
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Hopping between next-nearest negihbors has to account for the antisymmetry of the

wave function. The matrix element c†ici + 2 is calculated in the same way as nearest

neighbor elements using the Clrbit and bitset functions. An additional Bittest function,

Bittest = m&(1 << n) ,is used to check occupancy on the site i + 1. If the bit is set

to 1, meaning the site is occupied than the matrix element gains a negative sign. If the bit

is 0, than no changes are made to the matrix element. Working with periodic boundary

condtions antisymmetry needs to be accounted for as the boundary is crossed. This is

done using the same Bittest function, but all site occupancies between the first and last are

tested. An odd number of particles requires a negative sign on the matrix element, and an

even number of particles leaves the element unchanged.

Building Interactions

The first step is to have some map to tell you which state have a particle on which site.

This is done by building an interaction index matrix L×point where point are the number

of occupied (unoccupied) sites in a given basis state. What this matrix is depends on the

number of particles. If N↑ +N↓ > L then the number of unoccupied sites over each basis

is counted. If N↑+N↓ ≤ L the the number of occupied site is counted. This index will let

the computer know when a Fock state has double occupation on a site.

Example of Index matrix: counting occupied

• |011〉 = 1 The numbers refer to index

• |101〉 = 2

• |110〉 = 3

IndexU =


1 2

1 3

2 3
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This matrix says on index 1 there are particles on site 1 and 2, on index 2 there are

particle on site 1 and 3 and on index 3 there are particles on site 2 and 3. By referencing

the interaction index all of the diagonal elements are generated for the doubly occupied

sites in a given Fock state.

A.2.3 Lanczos Diagonalization

The Lanczos diagonalization technique is efficient in obtaining ground state

eigenvalues for Hamiltonians with large Hilbert spaces [117]. It takes a very large matrix

and converts it into a tridiagonal dense matrix. This is done by a matrix built in Krylov

space. The transformation will satisfy the equation

HN×NKN×M = KN×MTM×M (A.6)

The space has an orthogonal basis and with Hamiltonians we call them Lanczos vectors

{φ0, φ1, ..., φM} and they have the dimension of the total Fock basis. The first Lanczos

vector, φ0, is all you need to begin with, and it is a completely random vector. This vector

then needs to be normalized, which is easy with built in Eigen functions. The rest of the

process will be listed as steps.

1. Create r-vector |r〉 = H |φ0〉

2. Next this r-vector needs to be orthonormal with the first Lanczos vector and this

gives the α coefficient which is on the diagonal part of the T-matrix α0 = 〈φ0|r〉

3. Now we determine the |r′〉 vector which will make sure the |φ1〉 is orthogonal. |r′〉 =

|r〉 − α0 |φ0〉

4. The off diagonal elements are obtained by normalizing |r′〉 we get the off-diagonal

elements, β = | 〈r′|r′〉 |
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5. The new |φ1〉 will be used to find the next |r〉.

|r〉 = H |φj〉 − βj |φj−1〉

6. Repeat process until β = 0. When β = 0 the above transformation of the

Hamiltonian to the tridiagonal matrix is satisfied. However in our algorithm we

diagonalize the T-matrix on every iteration, and when the difference between the

eigenvalues is 0 the transformation is satisfied.

Once the eigenvalues of the T-matrix have been obtained, the smallest eigenvalue

corresponds to the ground state. Multiplying the corresponding eigenvector by the

K-matrix will give the ground state of the Hamiltonian.

Tms
m
i = νmi s

m
i

HKms
m
i = KmTms

m
i = νmi Kms

m
i

|G〉 = Kms
m
i

Once the ground state has been found it needs to be converted to the ground state wave

function

|Ψ〉 =
N∑
i=1

ci |F 〉

where the ci’s are the coefficients from |G〉. The on-site expectation values of number are

found the following way

〈n(x)〉 = 〈G|n(x)|G〉

=
N∑
i=1

|ci|2 〈F |n(x)|F 〉

It is important to note that the number operator acts on one spin, so the operations need to

be applied on both spin up and spin down. The expectation value can simply be found by

using the bittest function to determine the expectation of finding a particle on site x.
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A.2.4 Time-Evolution with Lanczos Algorithm

To calculate the ground state over time we continue to work in Krylov-space using the

Lanczos algorithm. The main purpose it to evaluate the time evolution operator using the

tridiagonal matrix and the associated Lanczos vectors. The ground state from the previous

iteration is the first Lanczos vector in the matrix K. The time evolution operator is for time

step t→ t+ dt is

Ûdt = e−iHdt/~ (A.7)

Referring back to equation A.6 we can write the Hamiltonian in terms of the tridiagonal

matrix and the matrix of Lanczos vectors.

H = KTK†

Ûdt = e−iKTK
†dt/~

= 1−
(idt

~
KTK†

)
+

1

2

(
− idt

~
KTK†

)2

+O(n)

= 1−
(idt

~
KTK†

)
+

1

2

(
− idt

~

)2

KTK†KTK†

= 1−
(idt

~
KTK†

)
+

1

2

(
− idt

~

)2

KT 2K†

= K
[
1−

(idt
~
KTK†

)
+

1

2

(
− idt

~

)2

T 2
]
K†

= Ke−iTdt/~K† (A.8)

We can then easily evolve the ground state using the time-evolution operator as above and

breaking down T even further with T = UDU † were D is the diagonal matrix containing

the eigenvalues we obtain the time-evolved ground state.

|ψ(t+ dt)〉 = Ke−iTdt/~K† |ψ(t)〉

= KUe−iDdt/~U †K† |ψ(t)〉 (A.9)

Error arises from the truncation of the Krylov space, and the number of Lanczos

vectors, n, used. Typically n is no larger than 20, and in the time-evolved calculations we

use n = 9.
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A.2.5 Runge Kutta

The equation of motion derived from the time-evolution of the correlation matrix is a

first-ordered differential equation. A fourth-ordered Runge-Kutta algorithm was

implemented to determine time-dependent observables in a non-interacting system.

Runge-Kutta is a more symmetric version of the Euler method

yn+1 = yn + hf(xn, yn), (A.10)

and the solution progresses from xn → xn+1 = xn+h. Essentially what the Euler method

gives is a crude solution to a first-order differential equation

yn+1 − yn
h

=
dy

dx
= f(xn, yn). (A.11)

In time evolution the discritized step h = ∆t. The Runge-Kutta method breaks the interval

between steps h into pieces using a mid-point method. The fourth-order method is broken

into four pieces with more weight coming from the mid-points in the total solution

k1 = hf(xn, yn) (A.12a)

k2 = hf(xn +
1

2
h, yn +

1

2
k1) (A.12b)

k3 = hf(xn +
1

2
h, yn +

1

2
k2) (A.12c)

k4 = hf(xn + h, yn + k3) (A.12d)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5). (A.12e)

Evolving the correlation matrix yn → (c†icj)n, xn → tn.The subscript n denotes the time

step, so the initial value for the function of a previous step is used to obtain the value of

the next step. The error scales as hm+1, where m is the order of the method implemented.
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A.2.6 Root Finding with GSL

In order to determine the chemical potential of the Fermi-Dirac distribution a root

finding method was implemented with GSL. In the initial conditions the total number of

atoms is given, and the equation is:

Ntot =
∑
n

1

e−β(εn−µ) + 1

Since the energy changes with φ a different chemical potential is needed for each value of

flux. Flux has a linear relationship with time, which is used to determine the loop used to

evaluate all values of φ. Here To is the time to reach φ = 0.5.

φ =
t

2T0

Tφ =
T0

dt

The root finding method is then embedded within a for loop running from 0 to Tφ and the

resulting µ is placed in a one dimensional array to be called later.

A false positive algorithm is the most accurate root finding method used and is defined:

Two endpoints (a,f(a)) and (b,f(b)) are connected by a line, and the point where this

line crosses the x-axis taken as a midpoint. The function value at the midpoint is calculated

and its sign, be it positive or negative, is used to determine which side of the interval does

not contain a root. By discarding the side without a root a smaller interval containing the

root is determined. This procedure is continued until a root is found in a small enough

interval.

Once the roots have been found it is necessary to determine the fermi-function for all

values of n as t goes from 0 to T0.

A.2.7 Numerical Integration

Start with dy/dx = f(x) and y =
∫ x1
x0
f(x)dx where xi = x0 + ih. Elementary

calculus may lead one to think numerical integration can be done using Riemann sums,
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however, this method will lead to large amounts of error. The most simple form of

numerical integration is to use the trapezoidal rule:∫ x1

x0

f(x)dx = h
[1

2
f0 +

1

2
f1

]
+O(h3f ′′). (A.13)

Essentially with the trapezoidal rule their is a line connecting the points, and the equation

becomes similar to calculating the area of a trapezoid. This two-point method is exact for

polynomials of degree 1 (i.e. a line). For more higher ordered polynomials, functions with

larger curvature, this method can lead to large error as well, and methods have been devised

to take a greater number of points. In the calculation of the relaxed Fermi-distribution

function, a five-point formula was used called Bode’s rule:∫ x4

x0

f(x)dx = h
[14

45
f0 +

64

45
f1 +

24

45
f2 +

64

45
f3 +

14

45
f4

]
+O(h7f (6)). (A.14)

For more functions with greater curvature higher-order formulas can be used, if necessary.

A.3 Band Calculations

When calculating the dispersion one must have the primitive lattice vectors to translate

the primitive cell and the Bravais lattice vector R = n1~a1 + n2~a2 where n is some integer.

Determining the dispersion for a 2D with only a single site per unit cell I start with the

tight binding Hamiltonian in real space

H =
∑
〈ij〉

−t̄(c†icj + c†jci) (A.15)

Using the Fourier transform, operators are converted into momentum space

ci =
∑

k ck exp(ik · R) and c†i =
∑

p

∑
R cp exp(−ip · R). The Hamiltonian can be

written as

Hk = −t̄
∑
kp

∑
R

(c†kcpe
i(p−k)·xieip·R + c†kcpe

i(p−k)·xje−ik·R). (A.16)
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The series representation for the Dirac Delta function is δ(k− k′) =
∑

k e
i(k−k′)x, and this

relationship is implemented on the above Hamiltonian where the Hamiltonian has value

only when p = k

Hk = −t̄
∑
k

∑
R

(c†kcke
ik·R + c†kcke

−ik·R). (A.17)

Energy dispersion obtained from the Hamiltonian above is εk = −t̄
∑

R(eik·R + e−ik·R)

Below are the analytic derivations of the band structure for the lattices studied in this work.

A.3.1 Square Lattice

The square lattice is connected to neighbors by the primitive vector ~a1 = lx̂ and ~a2 =

lŷ where l = 1 is the lattice constant connecting sites. Using the relationship above for the

dispersion we find

ε(k) = −t̄
[
eik·a1 + e−ik·a1 + eik·a2 + e−ik·a2

]
= −t̄

[
eikxl + e−ikxl + eikyl + e−ikyl

]
= −2t̄ cos(kxl)− 2t̄ cos(kyl)

(A.18)

where the Euler’s formula was used to obtain the cosine function.

A.3.2 Triangle Lattice

Three vectors connect the triangle lattice’s unit cell to its neighbors: ~a1 = lx̂, ~a2 =

l/2x̂ +
√

3l/2ŷ, ~a3 = l/2x̂ −
√

3l/2ŷ. The first two of these is are the primitive vectors

while the third is a Bravais lattice vector R = 2~a1−~a2. We use these vectors to obtain the

dispersion for the triangle lattice

ε(k) = −t̄
[
eik·a1 + e−ik·a1 + eik·a2 + e−ik·a2 + eik·a3 + e−ik·a3

]
= −t̄

[
2 cos(kxl) + 2 cos(

kxl

2
+

√
3kyl

2
) + 2 cos(

kxl

2
−
√

3kyl

2
)
]

= −2t̄
[

cos(kxl) + 2 cos(
kxl

2
) cos(

√
3kyl

2
)
] (A.19)
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where the trigonometric identity cos(u± v) = cos(u) cos(v)∓ sin(u) sin(v) was used.

A.3.3 Cross-Linked Lattice

The cross-linked lattice has two sites (A,B) in the primitive cell with the lattice constant

l being the distance between sites A and B. To calculate the dispersion the transitions

within the primitive cell and between primitive cell we need a 2× 2 matrix with the form(
AA BA

AB BB

)
. (A.20)

There are two lattice vectors as the unit cell is translated to create the lattice: ~a1 = lx̂+ lŷ,

~a2 = lx̂ − lŷ. I will use three matrices to describe the lattice which I will combine to get

the energy. The first describes the hopping within the primitive cell

Hintra =

(
0 −t̄
−t̄ 0

)
. (A.21)

The second is the matrix associated with the first vector translated to the upper right

Ha1 =

(
−t̄ −t̄
0 −t̄

)
eik·~a1 . (A.22)

We then take the vector as the cell is translate to the lower left

H−a1 =

(
−t̄ 0

−t̄ −t̄

)
e−ik·~a1 . (A.23)

Next considered is the translation to the lower right using the second lattice vector

Ha2 =

(
−t̄ −t̄
0 −t̄

)
eik·~a2 , (A.24)

and also it’s conjugate partner the upper left

H−a2 =

(
−t̄ 0

−t̄ −t̄

)
e−ik·~a2 . (A.25)
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Summing these together we get the total Hamiltonian in momentum space

H(k) = Hintra +Ha1 +H−a1 +Ha2 +H−a2

=

(
−2t̄(cos(kxl + kyl) + cos(kxl − kyl)) −t̄(1 + 2eikyl cos kxl)

−t̄(1 + 2e−ikyl cos kxl) −2t̄(cos(kxl + kyl) + cos(kxl − kyl))

)

=

(
−4t̄ cos(kxl) cos(kyl) −t̄(1 + 2eikyl cos kxl)

−t̄(1 + 2e−ikyl cos kxl) −4t̄ cos(kxl) cos(kyl)

)
(A.26)

We can obtain the dispersion ε(k) from the eigenvalues of this Hamiltonian. A Hermitian

Hamiltonian (
A B

B∗ A

)
(A.27)

possessing the same diagonal elements can be easily diagonalized giving the energy

E = A ± |B|. Thus we have

ε(k) = −4t̄ cos(kxl) cos(kyl)± t̄
√

1 + 4 cos(kxl) cos(kyl) + 4 cos2(kxl).

A.3.4 SSH Lattice

The SSH model is a 1D topological lattice structure with alternating hopping

strengths has 2 sites per unit cell and a lattice constant l between unit cells. Constructing

the Hamiltonian using Hubbard model with alternating hopping strengths we have

H =
N∑
n=0

J1c
†
A,ncB,n + J2c

†
a,n+1cb,n + h.c. (A.28)

where N is the number of unit cells and J1 and J2 represent the alternating hopping

strengths. To determine the band structure of the system we take a Fourier transform of

the creation (annihilation) operator such that

ca =
∑
k∈BZ

ake
ik·xi
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ci,B =
∑
k∈BZ

bke
ik·(xi+a/2)

with xi = i · a and a is the unit vector. In a spinor basis we construct our Hamiltonian in

the form

∣∣∣∣∣ c
†
AcA c†AcB

c†BcA c†BcB

∣∣∣∣∣
This is equivalent to

(
c†A,i c†B,i

) ∣∣∣∣∣ 0 J1

J1 0

∣∣∣∣∣
(
cA,i

cB,i

)
+
(
c†A,i+1 c†B,i+1

) ∣∣∣∣∣ 0 J2

J2 0

∣∣∣∣∣
(
cA,i

cB,i

)

Taking the Fourier transform we can compose the Hamiltonian in energy space to get

the dispersion with

H(k) |ψ〉 = E(k) |ψ〉

H(k) =
(
a†k b†k

)
h(k)

(
ak

bk

)

h(k) =

∣∣∣∣∣ 0 J1eika/2 + J2e
−ika/2

J1e
−ika/2 + J2e

ik/2 0

∣∣∣∣∣
Looking at out H(k) we can use Euler’s Theorem and let eik = cos(k) + i sin(k) our

Hamiltonian can be written as

h(k) =

(
0 J1 cos(kl

2
) + J1 sin(kl

2
) + J2 cos(kl

2
)− J2 sin(kl

2
)

J1 cos(kl
2

)− J1 sin(kl
2

) + J2 cos(kl
2

) + J2 sin(kl
2

) 0

)

=

(
0 reiθ

re−iθ 0

) (A.29)

On the complex plane we can define the real axis as a = (J1 + J2) cos(kl
2

) and the

imaginary access as b = (J1 − J2) sin(kl
2

). The radius and angle of the Euler formula is
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give as

r =
√
a2 + b2 (A.30)

θ = arctan(
a

b
) (A.31)

Diagonalizing this one will find the dispersion ε(k) = r =
√
a2 + b2 yielding

ε(k) = ±
√
J2

1 + J2
2 + 2J1J2cos(k). (A.32)
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