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Sequential Logistic Principal Component Analysis

(SLPCA): Dimensional Reduction in Streaming

Multivariate Binary-State System

Zhaoyi Kang, Costas J. Spanos

Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, CA 94709

{kangzy, spanos}@berkeley.edu,

Abstract—Sequential or online dimensional reduction1 is of
interests due to the explosion of streaming data based applica-
tions and the requirement of adaptive statistical modeling, in
many emerging fields, such as the modeling of energy end-use
profile. Principal Component Analysis (PCA), is the classical way
of dimensional reduction. However, traditional PCA coincides
with maximum likelihood interpretation only when data follows
Gaussian distribution. The Bregman Divergence was introduced
to extend PCA with maximum likelihood in exponential family
distribution. In this work, we study this generalized form PCA
for Bernoulli variables, which is called Logistic PCA (LPCA).
We extend the batch-mode LPCA [1] to a sequential version
(SLPCA). The convergence property of this algorithm is dis-
cussed compared to the batch version (BLPCA), as well as its
performance in reducing the dimension for multivariate binary-
state systems. Its application in building energy end-use profile
modeling is also investigated.

I. INTRODUCTION

Sequential data mining has received considerable atten-

tion recently as the development in wireless-sensor informa-

tion technology facilitates the collection of huge amount of

streaming data – This brings about several challenges on the

efficiency in computation, storage and the performance of

statistical learning algorithms [2]. Dimensional reduction in

the streaming environment is one of the techniques that can

help to overcome those issues [3].

Among the dimensional reduction techniques, Principal

Component Analysis (PCA) is most widely-known. PCA

finds the linear projection of the original data matrix which

explains the largest portion of the variance. From proba-

bility perspective, PCA coincides with maximum likelihood

reconstruction only when the data are consistently2 Gaus-

sian distributed. Therefore, it is natural to consider alter-

natives of traditional PCA when data largely deviates from

Gaussian distribution [4]. Recently, Bregman Divergence is

introduced to achieve a generalized PCA framework for a

family of exponential distributed data (i.e. ePCA) [4]. As

a generalization over the Frobenious norm, KL-divergence,

Mahalanobis distance etc., Bregman Divergence is believed

to better quantify the distance of variables coming from non-

Gaussian distributions [5] [6]. In the case of Bernoulli random

1Dimesionality reduction, dimension reduction, dimensional reduction refer
to the same thing, in this work.

2By consistency the streaming data are following same distribution.

variables, which we are interested in, the generalized PCA can

be viewed as Logistic PCA (LPCA).

In this work, we extend the LPCA to the sequential version,

based on the sequential convex optimization theory [7] [8].

The convergence property of this algorithm is discussed with

respect to the batch optimization algorithm. An application in

building energy end-use profile modeling is investigated as an

experiment of this method, which demonstrates its capability

in reducing dimension in multivariate binary-state systems.

This paper is organized as follows: In Section II, the back-

ground and the detail of the algorithm is given, including PCA,

exponential family, the Bregman Divergence and eventually

the sequential LPCA (i.e. SLPCA) which we propose. In

Section III, the convergence property of the algorithm is

discussed, followed by the simulation results as well as the

application in energy end-use modeling in Section IV. In

Section V, conclusion is drawn.

II. ALGORITHM FRAMEWORK

A. Principal Component Analysis

PCA is a well-known technique for dimensional reduction

for high dimension data. It is of importance in high dimen-

sional model, and in a variety of applications, ranging from

face recognition to generalized machine learning [2].

There are two perspectives of PCA [9]. The first is the

matrix factorization perspective. For a matrix X ∈ R
N×P ,

we find a lower rank matrix Θ to minimize the error:

min
Θ

‖X−Θ‖2F (1)

in which ‖ · ‖F is the Frobenious norm. This problem can be

solved by Singular Vector Decomposition (SVD).

However, there is another perspective of PCA that is less

widely-known, which is called the probabilistic interpretation.

Here, the columns of X ∈ R
N×P can be viewed as N samples

drawn from a Gaussian distribution with dimension lower than

P . This idea can be used in larger family of distributions, for

example, the exponential family distributions.

B. Exponential Family

Definition 1 (Exponential Family). In the exponential family

of distributions the conditional probability of a value X given



parameter value Θ takes the following form:

logP (X |Θ) = logP0(X) +XΘ−G(Θ) (2)

In which, Θ is called the natural parameter of the distribution.

Then we have E[X ] = ∇G(Θ) = g(Θ) is the inverse

canonical link function, and Var[X ] = ∇∇TG(Θ).

C. Exponential Family PCA

The squared distance in Equation (1) is inappropriate when

the data is not Gaussian, which happens a lot in real world. The

Bregman Divergence is introduced to generalize the distance

between X and Θ in Equation (1) [6] [5] [4].

Definition 2 (Bregman Divergence). The Bregman divergence

between two variable p, q ∈ R
d w.r.t. F is defined as:

BF (p‖q) = F (p)− F (q)−∇F (q)T (p− q) (3)

For an exponential family distribution in (2), we are interested

to define the distance between the data X and its expectation

E[X ] = g(Θ), i.e. BF (X‖g(Θ)).

We choose F (g(θ)) + G(θ) = g(θ)θ, in which g(x) =
∇G(x) [4]. Then the canonical Bregman divergence3 is:

B(X‖g(Θ)) = F (X) + logP0(X)− logP (X |Θ) (4)

In this case, in terms of Θ, Bregman divergence is negative

log likelihood function. Minimize Bregman divergence is

equivalent to maximizing log likelihood function, which is

statistically well-defined. Note that if X,Θ ∈ R
N×P form,

the Bregman divergence is decomposed into item-wise as:

B(X‖Θ) =
∑

i,j

B(Xij‖Θij) (5)

Example 1. In the case of Gaussian distribution, the Bregman

Divergence equals to squared loss B(x‖g(θ)) = 1
2 (x− θ)2.

Example 2. In the case of Bernoulli distribution, Bregman

Divergence is the logit function B(x‖g(θ)) = log(1 +
exp(−x∗θ)), where x∗ = 2x − 1 ∈ {−1, 1}. In this case,

Bregman Divergence is a convex function of θ.

Therefore, similar to Equation (1), we can construct an

optimization problem based on the Bregman Divergence. For

data matrix X = {xij〉 and Θ = {θij〉. Then we have:

min
Θ

B(X‖g(Θ)) (6)

D. Batch Logistic PCA (BLPCA)

In this work, we will only work on Bernoulli variable, as

in Example 2, we replace Bregman divergence in (6) by the

logit function. Moreover, to achieve a rank-r Θ, we write

Θ = AV
T where A ∈ R

N×r and V ∈ R
P×r, both rank-r.

Thus the Bregmand divergence becomes:

B(X‖g(AVT )) =
∑

i,j

log(1 + e−x∗

ij(AV
T )ij ) (7)

3We simply use B(X‖g(Θ)) to refer to this canonical form Bregman
divergence in the rest of this paper

The optimization problem in (7) in not jointly convex

because of the AV
T term, but is marginally convex for A and

V when the other matrix is fixed. Empirically, we can solve it

in an alternating minimization algorithm to each locally best

solution [4] [10] by solving A and V iteratively. However,

even marginally (7) is not strongly convex, so that we can

put a regularizer to avoid an infinity. Hence, we solve (7) for

each t = 1, · · · , N , and we call this the Batch Logistic PCA

(BLPCA) algorithm:




A
t = arg min

A∈RN×r
B(X‖g(A(Vt−1)T )) + γ

2‖A‖2F
V

t = arg min
V∈RP×r

B(X‖g(At
V

T )) + λ
2 ‖V‖2F

(8)

The resulted solution of BLPCA locates in local minimum

of (6). However, interestingly, from [11] [12] [13], all the

local minimum are global minimum, which is partially because

of the interchangeability between A and V. Without loss

of generality, we mark all the local minimum obtained from

BLPCA as A
∗ and V

∗.

E. Sequential Logistic PCA (SLPCA)

For a sequential LPCA, we want to solve (6) with streaming

data, which means A ∈ R
N×r changes in size as N increases,

though luckily the dimension of A is still fixed. For simplicity,

in sequential case we only consider rank-1 approximation,

which means A ∈ R
N and V ∈ R

P . Let at as the tth element

of A, t = 1, · · · , N . As discussed in Equation (5), we can

decompose the full Bregman divergence w.r.t. each at, and

the x-th data xt:

B(xt‖g(AVT )) =
∑

t

B(xt‖g(atVT )) =
∑

t

ht(at,V)

in which we note:

ht(at,V) = B(xt‖g(atVT )) =
∑

j

log(1 + e−x∗

tj(AV
T )tj )

(9)

Then, similar to [14], at each time t, instead of working on

the full A up to step t, we only solve for the current element

at (i.e. solution is ãt); whereas update V with the ãt’s up to t

(i.e. solution is Ṽ
t). We call this Sequential LPCA (SLPCA)

algorithm. For t = 1, · · · , N :




ãt = argmin
a∈R

ht(a, Ṽ
t−1) + γ

2‖a‖2F
Ṽ

t = arg min
V∈RP

∑t
s=1 hs(ãs,V) + λ

2 ‖V‖2F
(10)

The one for ãt in (10) is easy to solve with a Newton

method. The one for Ṽ
t in (10) deal with a target function

increasing in size. [14] suggested to solve it sequentially

based on the past value Ṽ
t−1 based on a surrogate function.

Another benefit of this iterative method is that it is essentially

a stochastic gradient descent method [15], so we don’t need a

strong regularization term. To see how this works, we define

the surrogate function h̃t(at,V) to approximate ht(at,V):

h̃t(ãt,V) = ht(ãt, Ṽ
t−1) +∇Vht(ãt, Ṽ

t−1)T (V − Ṽ
t−1)

+
αt

2
‖V − Ṽ

t−1‖2F , αt ≥ ‖∇2
V
ht‖opt (11)



where ‖ · ‖opt is the operator norm.

From the above it follows that h̃t(ãt,V) ≥ ht(ãt, Ṽ
t−1),

and moreover, as we solve Equation (10) under h̃t instead of

ht, we get:

Ṽ
t = Ṽ

t−1 − ηt∇Vht(ãt, Ṽ
t−1) (12)

where ηt ∝ (
∑t

τ=1 ατ )
−1 is the step size. The choice of

step size ηt deserves some discussions. We will investigate

in Section III on the convergence of this algorithm. The full

SLPCA algorithms is shown below.

begin

Input: data X ∈ R
N×P , X∗ = 2X− 1 ∈ {−1, 1};

Initialize: Ṽt ≈ 0, C, γ, ǫ, β ∈ (0, 1), α;

for t = 1, . . . , N , lt(ãt)
.
= ht(ãt, Ṽ

t−1) + λ
‖ãt‖2

F

2 do

Set ãt = 0, ∆ = ∇lt(ãt)
(
∇2lt(ãt)

)−1 ∇lt(ãt);
while λ > ǫ do

Let ∆ = −
(
∇2lt(ãt)

)−1 ∇lt(ãt), d = d0;

while lt(ãt + d∆) > lt(ãt) + αd∇lTt ∆ do

Update d = βd;

end

Update ãt = ãt + d∆;

Update ∆ = ∇lt(ãt)
(
∇2lt(ãt)

)−1 ∇lt(ãt);
end

Set ηt;

Update Ṽ
t = Ṽ

t−1 − ηt∇Vht(ãt, Ṽ
t−1)

end

end

Algorithm 1: Sequential LPCA (SLPCA) Pseudo-Code

III. CONVERGENCE ANALYSIS

In this section, we will study the convergence of SLPCA

with respect to BLPCA algorithm in terms of some widely-

used settings from online statistical learning society.

A. Evaluation Settings

• Batch Bregman Divergence (BBD), use {A∗} {V∗}:

CN (V∗) =
1

N

N∑

t=1

ht(a
∗
t ,V

∗) (13)

• Online Bregman Divergence (OBD), use {ãt} {ṼN}:

ĈN (ṼN ) =
1

N

N∑

t=1

ht(ãt, Ṽ
N ) (14)

• Regret Bregman Divergence (RBD), use {ãt} {Ṽt}:

R̂eN =
1

N

N∑

t=1

ht(ãt, Ṽ
t) (15)

It is important to note that, the three settings coincide with

the BLPCA and SLPCA problem in Equation (8) (10), except

the regularization term. However, because of the term 1
N ,

the regularization term will be diminishing as N increases.

Therefore, the three settings can be used as the evaluation of

the LPCA algorithm.

Moreover, RBD is of more interests since it can sequentially

accumulate the Bregman divergence without waiting til we

calculate the last update V
N .

B. Convergence Analysis

Lemma 1. For t = 1, · · · , N and ht(·) defined in (9),

‖∇Vht‖F ≤ ‖a‖F , and ‖∇2
V
ht‖opt ≤ 1

4‖a‖2F .

Proof. W.l.o.g., let rank(Θ) = 1, we have:

[∇Vht]j = −
x∗
tjat

1 + exp(x∗
tjatv

T
j )

[
∇2

V
ht

]
ij
=

(
x∗
tjatδij

2 cosh(12x
∗
tjatv

T
j )

)2

where δij = 1 only when i = j means matrix ∇2
V
ht

is diagonal. Since cosh(x) ≥ 1, hence the norms satisfy

‖∇Vht‖F ≤ ‖a‖F , and ‖∇2
V
ht‖opt ≤ 1

4‖a‖2F .

Lemma 2. Let ãt be bounded by Ω, for ∀t = 1, · · · , N . Based

on (13) we have ‖Ṽt − Ṽ
t−1‖F ≤ ηtΩ.

Proof. From Equation (12), we have ‖Ṽt − Ṽ
t−1‖F =

ηt‖∇Vht‖F . Since ãt result from a regularized problem in

(10), so ãt is bounded by Ω. Thus we have ‖Ṽt− Ṽ
t−1‖F ≤

ηt‖ãt‖F ≤ ηtΩ.

Lemma 3. For ht(·) in (9), 〈a,∇aht〉 = 〈V,∇Vht〉. Hence,

for t = 1, · · · , N , ηtγ‖ãt‖2F = 〈Ṽt−1,−ηt∇Vht〉 =

〈Ṽt−1, Ṽt − Ṽ
t−1〉.

This follows directly from (10) and (12).

Lemma 4. ht(·) and surrogate function h̃t(·), as well as their

first derivative ∇ht(·) and ∇h̃t(·) are all Lipschitz continuous.

This is indicated directly from Lemma 1 & Lemma 2 and

the definition of Lipschitz continuous [16].

Theorem 1 (Proposition 2, [14]). Under the regularity con-

dition of Lemma 4, and ht(·) a marginally convex function,

ĈN (ṼN ) converges a.s. to CN (V∗).

The Proof has been implemented in [17] and [14], following

a quasi-martingale theory, and use the Bregman divergence

under surrogate function as a bridge h̃t(·).
Theorem 2. Given step size as ηt = C × t−1/2 or ηt = C,

the Regret R̂eN converges to within a constant of ĈN (ṼN ),
and thus converges to within a constant of CN (V∗).

A sketch of proof is given in Appendix A. The results

basically show that limN→∞ |R̂eN − ĈN (ṼN )| ≤ γΩ2

2 if

ηt = Ct−1/2 and limN→∞ |R̂eN − ĈN (ṼN )| ≤ γΩ2 + CΩ2

if ηt = C, Ω as a constant. From Theorem 1 & Theorem

2, we recognize that both the average sequential function and

Regret function converge to within a constant from the average

batch optimum. However, it should be noted here that a better

convergence result could be possible, probably by re-design

the algorithms, which is one of our future tasks.



IV. EXPERIMENTAL RESULTS

A. Simulated Binary-State System

Firstly, we use simulated binary data to test the performance

of our SLPCA algorithm in binary-state system. The genera-

tion of correlated Bernoulli sequences is illustrated in [18].

In this work, we focus on the case where rank(Θ) = 1
since this usually demonstrates the best dimension reduction

capability. It should be noted here that the extension to

multiple Principal Components is straight-forward following

the iterative updating rules in [4].
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(t))

Fig. 1: The three functions Ct(V
∗), Ĉt(Ṽ

t) and R̂et as

function of t. Top: ηt = Ct−1/2, with C = 0.2, γ = 0.1.

Bottom: ηt = C, with C = 0.05, γ = 0.1.

We tried the above on data with P = 8 dimension and length

of N = 1000 data points. We initialize Ṽ0 such that its norm is

close but not equal to zero, for computation and convergence

purposes. Fig 1 shows the three functions defined in (15);

whereas Fig 2 shows the key parameters in the sequential

steps. There are some interesting findings.

Firstly, though both ĈN (ṼN ) and R̂eN converges at least

within a constant to CN (V∗), the stochastic learning can be

clearly divided into three Phases, as shown in Fig 1. Phase

I stands for the period when the norm of Ṽ
0 is close to
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‖ã
t
‖2 F

Step of data points

200 400 600 800 1000

10

20

30

40

‖Ṽ
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Ṽ
t−1‖F . Top: ηt = Ct−1/2, with C = 0.2, γ = 0.1. Bottom:
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zero right after the initialization, when ht(at,V) approaches

P log 2 as in Equation (14). Phase II characterizes the decay

of error versus N , whereas Phase III stands for when the error

converges to within a constant independent of N .

Secondly, ‖Ṽt‖2F increases versus t, which means that

‖Ṽt‖2F behaves differently from the coefficient in sequential

learning of linear model [17] [14]. Matrix factorization places

no constraints for Ṽ
t, hence cannot guarantee the bound of

Ṽ
t. From another perspective, ãt is bounded since Equation

(10) has fixed in size, while Ṽt not since there is a summation

of loss functions. It should be noted that, in Fig 2, ãt decreases



versus t, which could result from (9) and is an interesting topic

in the future.

Thirdly, due to the unbounded Ṽ
t, the term ‖Ṽt− Ṽ

t−1‖F
is not ∝ t−1 as in [17] and [14]. It should be noted that

the theoretical bound for ‖Ṽt − Ṽ
t−1‖F under constant step

size could be as low as t−1/2, which could be a result of the

convergence behavior of ãt under constant step size.

Last but not least, it is important to mention that the bounds

obtained in Theorem 2 assume N large enough. However, in

many cases the decay of N is not that fast. Therefore, the

effect of N cannot be completely ignored in the analysis.

B. Building End-Use Energy Modeling

Here, we introduce an application of SLPCA in Building

Energy End-Use Modeling. Building End-Uses corresponds to

the energy sectors that are occupant-driven. This subject has

attracted significant interest in recent years because building

energy shows strong dependence on end-user behavior, e.g.

plug-in loads, user-controlled lighting, user-adjusted HVAC,

etc. [19] [20].

Energy end-use modeling has been attempted from either

a top-down or a bottom-up approach. In this work, since

we are more interested in modeling occupant behavior, we

adopt the bottom-up approach. This approach is usually based

on stochastic simulations of the energy usage pattern for

each individual appliance. Dimensional reduction can help to

generate one or more Principal Appliances, and can more

efficiently characterize the whole space energy consumption.
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Fig. 3: The three functions Ct(V
∗), Ĉt(Ṽ

t) and R̂et as

function of t for energy end-use simulation with constant step

size ηt = C as C = 0.05, γ = 0.1.

Here, we want to study the modeling of all the computer

monitors in a small, shared work space. We collect the

data of 6 monitors in 10 minutes interval, and use BLPCA

and SLPCA to obtain the Principal Monitor profile of the

building. Considering that the pattern could be non-stationary,

we choose the constant step size that is short enough to track

the changes as they appear4. We also only consider the first

4one could presumably also leverage the likely periodic behavior of the
data by appropriate aggregation

Principal Monitor to achieve the best dimensional reduction.

The convergence of the algorithm is shown in Fig 3. We

observe a good convergence for both ĈN (ṼN ) and R̂eN .

Periodic fluctuation is observed, due to the transition between

day and night energy consumption, which results in periodical

changing of the data model. Moreover, the online algorithm

demonstrate less fluctuations because they adaptively update

the model of the data.

The reconstruct of the original data is done by three sets

of variables: the BBD setting A
∗, V

∗; the OBD setting

{ãt}, ṼN ; and the RBD setting {ãt}, {Ṽt}. The results are

compared with the original data in Fig 4 (sum of states of

all appliances, 1 as ON and 0 as OFF). Interestingly, OBD

setting gives better approximation to BBD setting since it is

more adaptive in terms of Ṽt and can better catch the periodic

pattern of the original data. On the other hand, BBD setting

uses the Ṽ
N , which could give unpromising result if data is

non-stationary.
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Fig. 4: Reconstruction of the aggregated state (sum of states

of 6 monitors) under the three sets of variables.

V. CONCLUSION

Sequential or online dimension reduction addresses more

and more attentions due to the explosion of streaming data

based application and the requirement of adaptive statistical

modeling in many emerging fields. In this work, we extend the

theory of ePCA or LPCA to sequential version based on online



convex optimization theory, which can maintain the capability

to model large families of distributions, at the same time

achieve the computation and storage efficiency. In our work,

we define two functions to evaluate the SLPCA algorithm, the

average sequential target function ĈN (ṼN ) and the Regret

function R̂eN , and show that both of them converge at least

within a constant to BLPCA results. We also demonstrate

an application of this algorithm in building energy end-use

modeling.

APPENDIX

Lemma 5. For t = 1, · · · , N , if Ω is the upper bound

of ‖a‖2opt as in Lemma 2, ‖Ṽt‖2F ≤ Ω2
∑t

s=1 η
2
s +

2γΩ2
∑t

s=1 ηs.

Proof. We start from the relationship:

‖Ṽt − Ṽ
t−1‖2F = ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2〈Ṽt − Ṽ

t−1, Ṽt−1〉
= ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2ηtγ‖ãt‖2F

We sum over the LHS and RHS and get:

t∑

s=1

‖Ṽs − Ṽ
s−1‖2F + 2γ

t∑

s=1

ηs‖ãs‖2F = ‖Ṽt‖2F − ‖Ṽ0‖2F

For simplicity, assume ‖Ṽ0‖2F ≈ 0, we prove the lemma.

Now turn to proof of Theorem 2. Based on (13) we have:

‖Ṽt − Ṽ
N‖2F = ‖Ṽt−1 − Ṽ

N‖2F + η2t ‖∇Vht‖2F
− 2ηt〈∇Vht, Ṽ

t−1 − Ṽ
N 〉

From Lemma 1, Lemma 5, and ‖∇Vht‖2F ≤ Ω2, thus:

N{R̂eN − ĈN (ṼN )} ≤
N∑

t=1

〈∇Vht, Ṽ
t−1 − Ṽ

N 〉

≤ ‖ṼN‖2F
2η0

+

N∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖ṼN − Ṽ

t−1‖2F +
Ω2

2
ηt

≤ ‖ṼN‖2F
2η0

+

N∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖ṼN‖2F +

Ω2

2
ηt

• diminishing step size ηt = Ct−1/2. From Lemma 5, we

have:

|R̂eN − ĈN (ṼN )| ≤ Ω2C

2

logN

N
+

Ω2C

4

logN√
N

+
Ω2(2γ + C)

2
√
N

+
γΩ2

2

Then limN→∞ |R̂eN − ĈN (ṼN )| ≤ γΩ2

2 . But with

reasonable N , the term Ω2C logN√
N

will also be significant.

Usually, small C and γ can force a lower error bound.

However, small γ can result in more steps in optimizing

for ãt, whereas small C would make the step size too

small, which may not be a good choice if we want a fast

decaying of the error bound.

• constant step size ηt = C: For constant step, we have:

|R̂eN − ĈN (ṼN )| ≤ γΩ2 +Ω2C

Similarly, we prefer small small C and γ. The challenge

of using small C and γ have already been discussed.
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