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Abstract—There are many potential issues associated with
deploying the Intel Xeon Phi™ (code named Knights Landing
(KNL)) manycore processor in a large-scale supercomputer.
One in particular is the ability to fully utilize the high-speed
communications network, given the serial performance of a
Xeon Phi™ core is a fraction of a Xeon® core. In this paper we
take a look at the tradeoffs associated with allocating enough
cores to fully utilize the Aries high-speed network versus cores
dedicated to computation, e.g. the tradeoff between MPI and
OpenMP. In addition, we evaluate new features of Cray MPI in
support of KNL, such as inter-node optimizations and support
for KNL’s high-speed memory (MCDRAM). We also evaluate
one-sided programming models such as Unified Parallel C. We
quantify the impact of the above tradeoffs and features using
a suite of NERSC applications.

I. INTRODUCTION

With the introduction of the Intel Knights Landing (KNL)
as a standalone processor for a supercomputer compute
node, application developers have been refactoring their code
in order to make best use of KNL’s manycore architecture.
In many cases this has been taking an MPI-only code and
introducing threads, most commonly with OpenMP. Codes
that thread well can potentially dedicate only a few cores
per node for MPI processes and dedicate the remaining
cores to threads. The advantage of reducing the number of
MPI processes per node can translate into higher compu-
tational efficiencies. For example, it can lead to decreasing
surface to volume ratios, which minimizes communication
to computation time in boundary exchanges. This in turn
leads to increased message sizes with potentially higher
network bandwidth and efficiency. In addition, reducing the
number of MPI ranks can lead to a reduction of the number
of iterations required for convergence in some solvers, for
example an algebraic multilevel preconditioner. [1] However,
there is also a need to have a sufficient number of processes
doing communications in order to fully utilize the resources
of the high-speed network interface (NIC). Historically, the
later has not been an issue with multicore architectures and
MPI-only codes as there is a one-to-one mapping of MPI
processes to processor cores. And for MPI+threads hybrid
codes the traditional ”heavy-weight” core, such as the Intel
x86-64 Xeon® , are sufficiently high performant to fully

utilize the NIC. However, the Xeon Phi™ core used in KNL
is a fraction of the performance of a current generation
Xeon® core.

The purpose of this paper is to gain a better understanding
of how to fully utilize the high-speed interconnect on a KNL
based node and compare that to a traditional Xeon® based
node. In addition, we will investigate features of Cray MPI
that have been developed to improve performance on KNL
such as optimizations for inter-node communication and
support for high-speed memory (MCDRAM). We will also
look at one-sided programming models, as we believe these
will become more prevalent and indicative of the types of
networking features of future programming models.

In our analysis we will use microbenchmarks to investi-
gate performance of specific communication primitives and
then use real applications to demonstrate the impact at scale
on the Cray XC based Cori and Edison supercomputers at
NERSC.

II. RELATED WORK

Barrett et al. compared the MPI message rate performance
on a variety of simple and complex cores and found sub-
stantial benefit from out of order processing. [2] Barrett’s
paper focuses on MPI benchmark performance to illuminate
the architectural features that contribute to message rate
performance. In contrast, we examine the scaling behavior
of real applications with complex communication patterns
and (possibly threaded) phases of computational work inter-
leaved with communication.

Shan et al. modified the communication functions in the
MILC and IMPACT-T applications to use UPC in place
of MPI and measured substantial speedups due to the use
of lightweight one-sided messaging. [3] Their work was
performance on a Cray XE-6 and did not compare the
communication performance of different processor cores.

III. TARGET PLATFORMS

The Edison and Cori supercomputers are both sited at the
U.S. Department of Energy’s Office of Science National En-
ergy Research Scientific Computing Center (NERSC). [4],



[5] Edison, deployed in 2013, is based on the Cray XC-
30 architecture featuring the Aries high-speed interconnect
and uses Intel Ivy Bridge processors. Cori is NERSC’s latest
platform and is based on the Cray XC-40 architecture, again
featuring Aries. Although Cori contains both Intel Haswell
and KNL nodes, for this study we only look at the KNL
based partition.

The KNL has many different internal cluster modes
and NUMA configurations for its MCDRAM high-speed
memory. Currently, Cori is configured primarily in the quad
mode, and the MCDRAM is configured as a cache for the
DDR memory. Unless otherwise stated, the results of this
study use the quad, cache configuration.

We use Edison as a comparison platform because it is
larger (in node count) than the Cori Haswell partition and
allows for large scale comparisons. It is also the platform in
which many of the NERSC applications will be transitioning
from. Detailed platform information can be found at the
respective NERSC web sites. [5]

IV. MICROBENCHMARKS

A. MPI Microbenchmarks

1) Point-to-Point, single rank pair: We first look at the
fundamental MPI characteristics of latency, bandwidth and
message rate. We use OSU Micro-Benchmarks from The
Ohio State University [6] to measure ping-pong latency and
bandwidth, in addition to multi-pair ”streaming” bandwidth
between two nodes.

Ping-pong latency (osu latency) for small message sizes
for Cori was observed to be ∼2.6x that of Edison, 3.1 vs.
1.2 µseconds. This ratio is maintained till the message size
reaches 8 KiB, when a protocol change is observed for larger
message sizes. We tested quad, flat mode on Cori but found
no difference in latency when compared quad, cache.

Bandwidth results are shown in Figure 1 for a ping-
pong test (derived from osu latency, and labeled pp), a
streaming uni-directional test (osu bw, bw), and a streaming
bi-directional test (osu bibw, bibw). The Edison results are
consistent with that reported by Cray for Aries [7], with
a maximum sustained bandwidth of 9.8 GB/s for ping-
pong, 9.9 GB/s for uni-directional, and 15.6 GB/s for bi-
directional. At a message size of 1 MiB, the observed
bandwidth of Edison is ∼1.3x higher for all three tests.
It’s an interesting observation that on Cori peak sustained
bandwidth of the interconnect is never achieved using a
single core per node. We found no difference in bandwidth
when comparing quad, cache and quad, flat KNL modes.

2) Point-to-Point, multi-rank pair: To better understand
how many KNL cores it takes to fully saturate bandwidth
between two nodes, we used the multi-pair bandwidth test
(osu mbw mr) and increased the number of pairs until we
are fully utilizing the cores on the respective node types.
These results are shown in Figure 2. Using this method, in
addition to being able to observe the respective bandwidth

Figure 1. Ping-pong (pp), Uni-directional (bw) and bi-directional (bibw)
bandwidth for Edison and Cori

characteristics, we can also observe the effect of increasing
message rates achieved for a given message size. As rank-
pairs per node (RPN) increases, the bandwidth curve shifts
to the left because the interconnect is being better utilized
with a higher message rate for a given message size and
hence achieving a higher effective bandwidth.

For a single rank-pair (core-pair), Cori achieves 1/2 of the
maximum sustained bandwidth with a message size between
16 KiB and 32 KiB. As rank-pairs are added 1/2 bandwidth
is achieved with a message size of 128 B using 64 rank-
pairs. For Edison, the required message sizes are 8 KiB using
one rank-pair and 256 B using 24 rank-pairs. Although Cori
achieves 1/2 bandwidth at approximately the same message
size as Edison when both use all available cores, at low rank-
pair counts Cori needs 2 to 4 times the number of cores to
achieve a similar bandwidth as Edison. For example, using
a message size of 4 KiB Edison reaches 1/2 bandwidth at
4 RPN while Cori requires at least 8 RPN. Again, We found
no difference in bandwidth when comparing quad, cache and
quad, flat KNL modes.

We also observed that Cori was unable to achieve full
bandwidth using large messages below 16 RPN. Cray
analysis concludes that the latency from the PCIe inter-
face to memory on KNL is higher than it is on Intel
Xeon® processors. More MPI processes on a node are
required on KNL to hide the higher latency and obtain
peak bandwidth, as shown in Figure 2. It is possible
to improve observed bandwidth for rank pair-based tests
with 16 or fewer ranks per node by lowering the value
of the MPICH GNI NDREG MAXSIZE environment vari-
able (we set it to 65536, where the default is 4 MB),
which is the threshold for switching to the PUT-based
RDMA protocol. This may improve performance for some
applications running on KNL, but can lead to performance
reductions as well. Users can experiment with this setting to
see if a lower threshold is beneficial for their application.



Table I
NERSC CORI AND EDISON HIGH-LEVEL ARCHITECTURAL FEATURES

Architecture Interconnect Node Processor Number of Nodes Compile Environment
Edison Cray XC30 Cray Aries 2x IVB, 12-core, E5-2695V2 5,200 Intel 17.0.1.132

Cori Cray XC40 Cray Aries 1x KNL, 68 core, 7250 9,304 Intel 17.0.2.174

(a) Edison

(b) Cori

(c) Cori with MPICH GNI NDREG MAXSIZE=65536

Figure 2. Multiple rank-pair bandwidth, as ranks pairs are added, message
rate increases and as does effective bandwidth

3) Multi-node, multi-rank pair: We also analyzed the
more complex messaging patterns found in the Sandia MPI
Micro-Benchmark (SMB) message rate benchmark [8]. This
benchmark differs from OSU benchmark in that it com-
munications between multiple node-pairs simultaneously,
modeling the pattern found in many stencil based codes. We
chose to use the nominal number of 6 peers per rank and
varied the message size similar to the OSU tests. The SMB
benchmark also runs several tests, but we chose to focus on
the pair-based test as we feel it most nearly resembles what
happens in production codes. Results are shown in Figure 3.

What we found was a significant drop in performance
with message sizes above 8 KiB. We identified that when
using SMB the message injection rate is sufficient to trigger
translation lookaside buffer (TLB) thrashing in the Aries
interconnect. Cray’s recommendation in this situation is to
use huge pages. Using the craype-hugepages2M module,
which defaults the use of 2 MiB pages for the application,
we reran the test and found that this indeed did improve
performance substantially. Although we only show results
for Cori, we also observed similar performance with Edison.
But the effect of the many-core architecture of a KNL node
is more dramatic. In addition, as was observed with the
OSU multi-rank benchmark, Cori requires ∼2x the number
of cores to reach the same effective bandwidth as Edison.

We will refer back to the observations from this section
when we do an analogous study with applications and
observe how many MPI ranks it takes to achieve the best
performance.

B. UPC Microbenchmarks

1) Point-to-Point, multi-rank pair: The OSU microbench-
marks were used to measure the UPC latency for multiple
pairs of threads distributed evenly across two nodes. We
modified the osu upc memput and osu upc memget bench-
marks so that their communication patterns matched the MPI
multi-latency tests. Specifically, each thread on node−0 puts
to (or gets from) its peer on node− 1.

On Cori, the small message latency for a single pair of
threads was 2.17 µs (put) and 2.46 µs (get). Consistent with
its more performant cores, the UPC latency on Edison was
faster than Cori: 1.10 µs (put) and 1.43 µs (get). For the same
reason, lightweight communication protocols have greater
benefit on Cori: Edison’s MPI latency is only 1.1× faster
than its UPC-put latency, but there is a difference of 1.4×
on Cori.

UPC uni-directional bandwidth results were inferred from
the latency measurements reported by the osu upc memput



(a) Without huge pages

(b) With huge pages

Figure 3. Sandia MPI Micro-benchmark msgrate results on Cori. Us-
ing 2 MiB pages improves performance substantially for message sizes
> 8 KiB.

benchmark and are shown in Figure 4. The maximum
sustained bandwidth on Cori and Edison is 9.9 GB/s. On
Edison, this limit can be reached using only one UPC thread
per node, but a single Cori thread can put only 7.9 GB/s and
two or more threads must be used to attain peak bandwidth.
To acheive half-bandwidth using only one thread-pair, UPC
messages must be at least 32 KiB (Cori) or 16 KiB (Edison).
The half-bandwidth threshold generally shifts to smaller
messages as more threads are used on each node.

2) Meraculous microbenchmarks: We also examine the
behavior of three microbenchmarks which correspond to
kernels in Meraculous. Each kernel is iterated 20,000 times
and the total time to complete 20,000 iterations is used to
compute the average latency and bandwidth of the UPC
thread. The min, max and average of all threads in a
given run is reported. The benchmarks were all run with
a fixed total memory footprint of 4GB and using 1 UPC
thread/process per physical core. Measurements were done
with the bupc-GB2.24.2 and bupc-GB 4K2.24.2 which uti-
lize Cray Aries remote atomics instead of the usual Active
Messages implementation. The bupc-GB2.24.2 module uses
2M pages for the UPC shared-heap data and 4K pages
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Figure 4. UPC uni-directional “put” bandwidth.“Get” bandwidths (not
shown) are similar, but are 10% lower for all message sizes and pair counts.

for application data and bupc-GB 4K2.24.2 uses 4K pages
everywhere.

The first benchmark (“construct”) is a proxy for the
construction of the distributed hash table representation
of the de Bruijn graph. Each UPC thread does an
atomic fetch and add operation to reserve space in a ran-
dom other thread’s heap, followed by a upc memput op-
eration, Figure 5. In this test the size of the data sent
by the upc memput is varied. The second microbenchmark
is a proxy for retrieving elements from the table, where
an iteration for a given size consists of a upc memget
operation from a random location in a random thread’s
shared buffer, Figure 6. The final benchmark is a proxy for
the traversal of the graph with a upc memget operation of
a random entry from a random thread is followed by an
atomic compare and swap operation, Figure 7.

Within a single node all benchmarks quickly reach peak
bandwidth with 2048 byte messages with upc memput
operations showing better performance than upc memget
operations. Further increases in message size result in con-
sistent high sustained throughput. This behavior is largely a
function of local shared memory characteristics and is not
the focus of this work. The probability that a upc memget is



of an element from a UPC thread which is on the same node
is P = 1/N where N is the number of nodes independent
of the number of cores per node. This means that with
more cores per node the effects of local interference on
Cori are higher than Edison at low node counts. At higher
node counts the birthday paradox plays a role since the total
footprint of the shared memory locations is constant the
probability of two UPC threads selecting the same target
increases as the node count increases. In the case of small
gets this can be a benefit since the footprint is smaller
and element will likely be already in cache, however with
atomic operations the possibility of conflicts is increased. In
particular for the construct benchmark as the message size is
increased this means more UPC threads will be competing
for bandwidth, another problem which is enhanced by higher
core counts. For the traversal benchmark this is less of an
effect due to the small message size.

(a) Edison

(b) Cori

Figure 5. 64 byte upc memget into 4GB random data distributed evenly
among nodes

V. APPLICATIONS

In this section we look at the trade off between MPI
and OpenMP at the node level and the strong scaling
characteristics of each application. The number of cores
utilized per node is fixed (64 for Cori, 24 for Edison), but

(a) Edison

(b) Cori

Figure 6. remote atomic fetch and add followed by upc memput into 4GB
random data distributed evenly among nodes

the cores are appropriated between MPI tasks / OpenMP
threads in decreasing / increasing order such that the left
most data point in the following figures is MPI-only across
all cores, and the right most data point is one MPI rank per
socket with the remaining cores dedicated to OpenMP. This
method also provides a view of how well an application
scales in MPI and OpenMP. The left side of the curve is
MPI dominant, and the right side is OpenMP dominant, so
at the extremes we can get an indications of how well each
scales by looking at the respective trends.

We do not take advantage of the available core hyper-
threads, primarily so as not to introduce another variable
to consider in the OpenMP scaling analysis. This may be
a slight disadvantage in absolute performance for the KNL
architecture, as many codes do benefit from an additional
one or two hyper-thread per core.

We also look at strong scaling. In general, as you strong
scale out the computation / communication ratio decreases
and the interconnect performance becomes more dominant.
Viewing the strong scaling differences between Edison and
Cori will give us another indication of the impact of a the
KNL many-core architecture.

To better understand the messaging characteristics of each



(a) Edison

(b) Cori

Figure 7. 64 bytes upc memget from 4GB random data distributed evenly
among nodes followed by remote atomic compare and swap

application, we also use the Integrated Performance Moni-
toring (IPM) tool [9] to do some basic MPI profiling to better
understand the amount of time spent in communication and
the message sizes.

A. MILC

The MILC code is a widely used, computationally intense
application designed to compute the interactions of quarks
and gluons as described by the theory of quantum chromody-
namics (QCD). The computational grid is a four-dimensional
space-time grid (x, y, z, t) with quark fields, defined as
three-dimensional complex vectors, at the grid points and
gluon variables, defined as 3x3 unitary matrices, defined at
the ‘links’ between grid points [10]. The most computa-
tionally intense part is the conjugate gradient solver which
determines how the motion of the quarks is affected by the
gluons [10]. The four dimensional lattice is decomposed so
that the sub-grid assigned to each MPI task has the minimum
possible surface-to-volume ratio. The code has fine-grain
parallelism implemented with OpenMP directives, mostly on
loops over all grid points in the lattice [11]. Communications
in the MILC code are largely dominated by point-to-point
transfers associated with the 4D halo exchanges and global

reductions associated with the conjugate gradient solver.
For this study, we primarily focus on the CG solver per-

formance and in particular the high-speed communications
characteristics. We use a ”warmed up” and equilibrated lat-
tice of size 1284 as supplied by the APEX benchmark suite
[12] to ensure a realistic and computationally challenging
input problem. We collected data using a strong scaling
methodology at 256, 512 and 1024 nodes. The MILC code
automatically decomposes the problem for the given node
count. At 256 nodes, this equates to a lattice size of 324

per node. Although this may be a somewhat smaller lattice
decomposition per node than would be used in production,
it’s desirable for this study in that the lower surface to
volume ratio stresses the network and lets us better study
the network effects. For 512 nodes, the lattice size per node
is 16x32x32x32 and at 1728 nodes it’s 16x16x32x32, these
two cases further stressing the network.

Results are shown in Figure 8. Although the Edison and
Cori curves show a similar trend, Edison’s performance
doesn’t degrade as quickly as OpenMP parallelism increases
(MPI parallelism decreases), which is an indication of its
higher per core performance on non-OpenMP regions and
its ability to fully drive the interconnect with fewer MPI
ranks (cores) as was shown in Section IV-A. For Edison,
the best performance is obtained using 16 RPN (MPI-only)
at all scales.

Cori also performs best using MPI-only at 256 and 512
nodes with performance dropping off when OpenMP is
employed. At 1024 nodes, time spent in MPI becomes more
dominant and the performance is relatively flat out to 8 MPI
ranks but then tails off when < 8 ranks (cores) are used.
Beyond 4 RPN the performance drops off dramatically. The
decrease in performance is due to either a lack of OpenMP
parallelism, or a lower effective MPI performance due to
fewer cores driving the interconnect. Although it’s difficult
to quantify the contribution of these two issues, one can
see that as scale increases, and hence the fraction of time
spent in communication increases, the relative performance
degradation seen at the right hand side of the curve is
less which allows us to imply that a lack of OpenMP
performance at the smaller scales is most likely the dominant
contributer.

IPM profiling showed that message sizes vary depending
on the scale of the the run and the number of ranks per node.
At 256 nodes and 64 RPN, message sizes for point-to-point
MPI calls were 8 KiB. Each doubling of the number of
MPI ranks per node increases the message size by an equal
amount such that at 1 RPN the message sizes are on the order
of 512 KiB. The SMB message rate benchmark analyzed
in Section IV-A is indicative of the communication pattern
used by MILC (i.e. a multi-dimensional stencil boundary
exchange) and in that analysis of Cori we need at least
4 MPI ranks to drive the interconnect at a reasonable
effective bandwidth using small message sizes. This same



characteristic can be seen in the MILC results.
As seen above, both machines scale very well using MPI-

only and remain relatively flat out 8 to 12 threads. Selecting
these particular combinations we plotted the strong scaling
characteristics in Figure 9. At 256 nodes, computation time
is dominant but as scale increases MILC becomes more
communication bound and we see the performance of both
platforms approach a similar performance. In addition, it
can be seen that Edison and Cori scale relatively the same,
showing that the many-core Cori/KNL architecture is able
to fully utilized the network, as long as a sufficient number
of MPI ranks per node are utilized.

In Section IV-A3 it was demonstrated that using huge
pages can have a significant impact on MPI performance
when using 8 or more RPN. Using 2 MiB pages with MILC
on Cori showed a performance improvement of 10% when
using 64 RPN at 16 nodes. We ran a test problem at 432
nodes and saw an improvement of 44% at 64 RPN and
continuing to 8% at 8 RPN, demonstrating the sensitivity
of MILC to message rate characteristics at large scale. For
this reason, all the tests in this study were run using the
Cray 2 MiB huge pages module (i.e. module load craype-
hugepages2M).

In summary, Cori shows a significant overall performance
improvement compared to Edison at the three scales eval-
uated when using at least 4 to 8 RPN. Comparing best
times for each platform at a given scale, Cori demonstrates
a speedup of 1.30×, 1.25× and 1.26× at 256, 512 and 1024
nodes respectively. It has also been observed that at least 4
RPN are necessary to get the best performance on Cori and
as scale decreases and problem size per node increases at
least 16 RPN is required due to the change in message sizes
and message rate (more ranks per node) and hence number
of RPN to achieve a high effective interconnect bandwidth.
MPI-only performance is very good on Cori, while perhaps
not surprising as MILC was initially developed as MPI-only,
it does show that MPI-only is an effective method on the
KNL many-core node architecture.

Figure 8. MILC MPI/OpenMP trade off

Figure 9. MILC strong scaling characteristics for selected MPI/OpenMP
combinations

B. Berkeley GW

BerkeleyGW [13] is a material science application that
is dominated by dense linear algebra (including distributed
matrix multiplication, inversion, diagonalization, and con-
traction) and fast fourier transforms (FFT). In this way, it
is an ideal proxy for a large number of material science
and chemistry applications used at NERSC including top
DFT applications like VASP and Quantum ESPRESSO.
BerkeleyGW itself is used on top of density functional
theory (DFT) applications like Quantum ESPRESSO and
PARATEC to compute excited state properties of materials
(e.g. band gaps, absorption spectroscopy etc.), though its
computational cost and scale typically greatly outstrips that
of the DFT codes.

We focus in this section on the scaling of the main
bottleneck in BerkeleyGW runs, the calculation of the the
electronic polarizability. It involves a distributed matrix-
matrix multiply of N2xN matrices. So, an O(N4) oper-
ation where N scales with the number of atoms in the
system. The parallel ZGEMM is hand coded because various
preprocessing steps need to be done on the matrices and
communication is done via an MPI REDUCE statement on
the final NxN matrix - distributed in block-cyclic form
for later BLACS/PBLAS/ScaLAPACK operations. In the
current implementation, there is a reduce done for each rank,
such that the number of reduce statements increases and the
size of the reduce decreases with increasing MPI ranks. The
total matrix size is 17GiB. So, the average message size is
17GiB / (number of MPI Ranks).

Figure 11 shows the strong scaling of the code on Edison
and Cori. Considering that the code is doing predominantly a
distributed ZGEMM, the performance on Cori significantly
outperforms Edison at low node-counts. At larger system
sizes, however, the gap is reduced as the network plays a
bigger role in the calculation, but Cori is still able to drive
the network and not give up its performance advantage.

It is additionally interesting to note that, like some of the



other applications discussed here, using fewer MPI ranks per
node than the number of cores gives optimal performance
- as illustrated in figure Figure 10. Additionally, on Cori,
one can see that as you go to larger node counts the optimal
ratio of MPI ranks to OpenMP threads decreases - meaning
more OpenMP threads and fewer MPI ranks is preferred.
This is related to to the reduced number of messages of
larger sizes generated when running with threads. It is also
possibly a feature in the MPI REDUCE implementation on
Aries. Doing the on-node reduce explicitly via OpenMP out-
performs the implicit on-node reduce in the MPI REDUCE
command.

Figure 10. BerkeleyGW MPI/OpenMP trade off

Figure 11. BerkeleyGW strong scaling charateristcs using the best
MPI/OpenMP combinations

C. GTC-P

The Gyrokinetic Toroidal Code of Princeton (GTC-P)
simulates Tokomak Fusion devices using a particle-in-cell
algorithm. The MPI decomposition of GTC-P first slices
the spatial domain (and associated grid points and particles)
into 64 toroidal slices, and futher subdivides these domains
into concentric radial domains. An additional level of on-
node parallelism is acheived by threading over particles.

The computational profile of GTC-P is dominated by a
”charge” phase, that deposits charge from the particles to
the grid, and a ”push” phase, that interpolates the electric
field from the grid to the particles and updates the particle
positions based on that field. Both of these phases are
characterized by irregular memory access patterns that arise
from indirect access of the grid points. After the particles
have been pushed, the ”shift” phase moves particles to the
appropriate spatial domain (process) and is responsible for
most MPI communication. Figure Figure 12 shows the trade
off between MPI process and OpenMP threads. At 64 nodes,
Cori’s performance has a broad maximum between 4 and
8 MPI ranks per node and 32-16 OpenMP threads per
rank. With 128 threads per process, GTC-P performance is
only X% less than the optimal configuration, reflecting the
excellent thread scaling of GTC-P. The communication time
(not shown) decreases uniform ally as thread counts increase
because fewer particles cross the boundaries between spatial
domains when the domains are larger. For all of these
configurations, both Edison and Cori perform marginally
( 5%) better with 4k pages than with 2M pages.

(a) 64 Nodes

(b) 512 Nodes

Figure 12. GTC-P MPI/OpenMP trade off

Figure Figure 13 shows the strong scaling behavior of
GTC-P. Edison used 8 ranks per node and 6 threads per rank,



while Cori used 8 ranks per node and 16 threads per rank.
At lower concurrencies, Edison is approximately 75% faster
than Cori, but this advantage diminishes at larger scales and
the two systems are nearly on par at 512 nodes. In this
strong scaling study, 2M pages led to about ≈15% better
performance than 4k pages,.

Figure 13. GTC-P strong scaling charateristcs using the best
MPI/OpenMP combinations

D. Hipmer/Meraculous

The APEX application Meraculous represents a portion
of the de novo genome assembly pipeline in HipMer [14].
Fine-grained random access is a typical feature in this com-
munication heavy pipeline which implements a variety of
graph al Figure 14 shows strong scaling studies of the APEX
version of the Meraculous application run with the 107
GiB human.fastqs.ufx.bin.trim.min3 dataset. All runs were
conducted with Berkeley UPC 2.24.2 builds which utilized
the Aries hardware remote atomics instead of the default
Berkeley UPC Active Messages implementation. Cray UPC
was not used because the benchmark as written relies on
specific Berkeley UPC functionality. The curves labeled
as ”4K” use 4 KiB pages for both UPC shared segments
and application memory allocations. Curves labeled ”2M”
utilized 2 MiB pages for UPC shared segments and 4 KiB
pages for application buffers.

On both Edison and Cori the traversal of the UU graph
shows near ideal scaling with the number of nodes. The
traversal microbenchmark proxy for the operations per-
formed in this phase shows that the latency of the fixed
size get followed by a remote atomic operation is nearly
independent of the number of nodes in the calculation. On
Cori KNL the effect of huge pages is very strong on this
latency sensitive kernel due to the increased number of
UPC threads per node putting additional pressure on the
translation lookaside buffer (TLB) resources of both the
CPU and the Aries network interface. As the application
is scaled and the memory footprint per node is reduced the
TLB pressure is reduced and the probability of a last level

cache (LLC) hit is increased. However, the latency increases
due to the potential for more network hops in the Dragonfly
topology (potentially outside of a single Aries group) and
the greater potential for interference from a busy production
system.

The use of huge pages also increases the performance
of the construction of the UFX hash table kernel on both
Edison and Cori. However, the scalability of this kernel
shows strong degradation on Cori vs. Edison. The reason for
this is the default setting for the APEX application is 100
for the number of aggregate k-mers before reserving remote
space and copying them over. With a fixed number of k-mers
and nodes but more nodes per core, more memory operations
are required and stride of those arrays is distributed further
with some data structures proportional to the number of UPC
threads which is 68/24 ≈ 2.8× higher on Cori. The higher
UPC thread count also results in increased contention for
reservation of space in destination buffers on Cori relative
to Edison. Additionally as the concurrency is increased the
probability of multiple UPC threads accessing the same
location in a fixed size table increases. This increased
probability combined with larger message sizes leads to an
increased contention for bandwidth.

(a) Edison

(b) Cori

Figure 14. Strong scaling with 24 UPC threads (Edison) and 64 UPC
threads (Cori) per node using the human.fastqs dataset.



VI. CONCLUSION

The primary premise of the paper was to investigate and
quantify the use of the Intel Xeon Phi™ Knights Landing
processor based node on the Cray XC-40 Cori supercom-
puter at NERSC. The method involved comparing Cori’s
KNL based partition to NERSC’s Edison supercomputer
which uses Intel Xeon® Ivy Bridge processors, and the
same Cray XC-40 architecture, in particular the Aries high-
speed interconnect. Thus, the difference in performance
traits between the two platforms can for the most part
be attributed to the different processor architectures. We
looked at micro-benchmarks and real applications used at
NERSC. NERSC applications primarily use the MPI with
OpenMP programming paradigm, and hence we looked at
the trade off of partitioning a node’s cores between MPI
ranks and OpenMP threads. In addition, we also investigated
the performance of one-sided communications by looking at
several UPC benchmarks and one application.

It was expected that in order to get maximum performance
with Cori, we would need to use multiple MPI ranks in
order to fully utilize the Aries high speed interconnect.
But we didn’t know to what degree. Using MPI micro-
benchmarks, it was shown that with Cori you need anywhere
from 2× to 4× the number of MPI ranks (cores) per node
in order to achieve the same performance, i.e. effective
bandwidth at a given message size, as Edison. We also
identified some deficiencies in performance when using the
default Cray MPICH configuration parameters. For example,
when using a large number of MPI ranks on a node in a
stencil based communication pattern, there is the chance you
can run into an issue with the Aries interconnect thrashing
its TLB when moving data from the network to/from on-
node memory. This was mitigated by using 2 MiB huge
pages. We demonstrated that using huge pages with the
MILC application showed anywhere from a 10% to 40%
improvement in performance. In addition, we found that you
need to use 32 or more cores of Cori in order to fully drive
the high-speed interconnect, but a change in a Cray MPICH
environment variable allows lower core counts to get full
bandwidth. But changing environment variables to improve
upon a micro-benchmark may not necessarily translate into
improved real application performance, and in many cases
can hurt. Although in our analysis, it neither helped nor hurt
performance our applications.

The MPI application performance analysis shadowed what
we observed with the micro-benchmarks. Once you have a
sufficient number of MPI ranks per node to adequately drive
the interconnect, the overall performance of the application
depends on its MPI and OpenMP scalability. If a code
threads well, e.g. GTC-P, then we found a sweet spot in
the MPI vs. OpenMP trade off that gave best performance.
For codes that don’t thread scale well, e.g. MILC, the best
performance was found to be MPI-only. However, it should

be noted that without huge pages MPI-only performance can
be limited.

In our strong scaling study, we found that at the lower
node counts Cori provided the best overall performance,
but as the applications were scaled out to a larger node
count communication becomes dominant and that advan-
tage was narrowed. Which is actually a positive finding
for Cori, as we showed that at extreme scales the Xeon
Phi™ architecture doesn’t give up performance.

Our investigation of UPC performance was solely evalu-
ating the Berkeley UPC implementation, because it contains
certain non-standard features required by the application
Meraculous. With micro-benchmarks, we again demon-
strated the advantage of using 2 MiB pages, for both
the application and with Berkeley UPC internally. Latency
micro-benchmarks showed that Cori does show a 2 − 3×
disadvantage to Edison. However due to excelent scaling
of the primary traversal stage the overall performance of
Meraculous is roughly equal at intermediate concurrancies
due to having ∼ 2.8 more cores. Achieved bandwidths were
similar, but again Edison did demonstrate a little advantage
for large message sizes. With Meraculous, at low node
counts Edison achieves substantially higher performance, but
as the problem scales out to more nodes, the performance
is similar.

VII. FUTURE WORK

This study is a summary of investigations and findings of
a small subset of the NERSC application base. The NERSC
exascale readiness program (NESAP) is actively working
with over 20 code teams to ensure they have success on the
Cori platform. [15] The lessons learned in this study will
form a basis of knowledge that will be used by the broader
NESAP applications in ensuring high performance for Cori,
and more importantly, as an on ramp for the set of next-
generation platforms that will be encountered in the near
future.
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