
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Incentivizing Efficiency in Societal-Scale Cyber-Physical Systems

Permalink
https://escholarship.org/uc/item/6ck1z3x3

Author
Ratliff, Lillian Jane

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ck1z3x3
https://escholarship.org
http://www.cdlib.org/


Incentivizing Efficiency in Societal-Scale Cyber-Physical Systems

by

Lillian Jane Ratliff

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering—Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Pravin Varaiya

Professor Lawrence C. Evans

Summer 2015



Incentivizing Efficiency in Societal-Scale Cyber-Physical Systems

Copyright 2015
by

Lillian Jane Ratliff



1

Abstract

Incentivizing Efficiency in Societal-Scale Cyber-Physical Systems

by

Lillian Jane Ratliff

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

In the modernization of infrastructure systems such as energy, transportation, and health-
care systems we are seeing the convergence of three research domains: Cyber–Physical Sys-
tems (CPS), Big Data, and the Internet of Things (IoT). Indeed, new CPS technologies are
are being deployed to create large sensor–actuator networks which produce massive quantities
of data often in real–time which is, in turn, being used to inform everyday decision–making
of the entities that engage with these large–scale infrastructure systems. As a consequence,
such systems are quickly evolving into societal–scale cyber–physical systems.

The result of this increasing connectivity and interdependence is two–fold: more and more
data is being collected, transmitted, and stored, and more and more actuation modalities
are available, allowing new ways to influence the behavior of infrastructure systems. These
new and pervasive sensing/actuation modalities present new opportunities for improving
efficiency, yet they expose novel vulnerabilities. In energy CPS, for instance, smart metering
technologies increase the availability of streaming data thereby enabling monetization of
energy savings. Such savings can be realized by employing novel machine learning algorithms
to customize offerings to consumers. On the other hand, the availability of this fine–grained
consumer/system data and the increased number of access points to the broader system
expose new privacy and security risks. Hence, there is a inherent efficiency–vulnerability
tradeoff. This tradeoff is becoming more pronounced due to greater dependence on CPS
technologies and the push towards more human–centric operations, i.e. integration of human
decision–making and preferences into the closed–loop behavior of the system.

Beginning with the problem of modeling the non–cooperative agents that interact with
these large–scale sociotechnical systems and thus, compete over scarce resources, we analyze
the of the outcome of their strategic interactions. In particular, we create a characterization
of Nash equilibria—termed differential Nash equilibria—in games on non–convex strategy
spaces that is amenable to computation. We show that such non–degenerate differential Nash
equilibria are structurally stable and generic thereby robust to small modeling errors and
measurement noise. Introducing a planner tasked with coordinating these decision–makers,
we leverage this characterization in the construction of a utility learning and incentive design
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algorithm. We provide convergence results in both the case where agents play according to
Nash and where they play using a myopic update rule.

Narrowing our focus to the demand–side of the smart grid, we consider that the planner
will capitalize on new sensing/actuation modalities in the design incentives thereby exposing
the efficiency–vulnerability tradeoff. We consider privacy risks introduced by smart metering
technologies that produce streaming energy consumption data. On one hand the data has
utility in the sense that it can help improve operations, yet on the other it exposes the
consumer and the power company to greater privacy risk. We propose a solution that
combines economic and statistics tools, i.e. privacy–aware service contracts in which service
is differentiated according to privacy and consumers select based on their needs and wallet.
We argue that the power company has an incentive to invest in security or purchase insurance
because of inefficiencies that arise due to information asymmetries and we design insurance
contracts accordingly. We provide a number of qualitative insights that have the potential to
be useful for informing policy and regulations in the energy ecosystem. Finally, we conclude
with an overview of the contributions and a discussion of future research directions for the
near and far terms.

The contributions are the first steps towards an emerging systems theory of societal–
scale cyber–physical systems in which there are many tightly coupled human–CPS decision–
making loops and socioeconomic factors intricately woven into the fabric.
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“At any street corner the feeling of absurdity
can strike any man in the face.”
— Albert Camus
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Chapter 1

Introduction

Spurred on by economic and technological changes, traditional infrastructure systems are
evolving into societal–scale cyber–physical systems (S-CPS) in which accessible, easily de-
ployable sensing/actuation devices are being integrated into everything from operations and
management to everyday decision–making of the users of these systems. S-CPS are the
backbone of modern society; our economy and daily lives depend on access to the services
and products offered by these systems. Further, in the modernization of infrastructure sys-
tems such as energy, transportation, and healthcare systems we are seeing the convergence
of three research domains: Cyber–Physical Systems (CPS), Big Data, and the Internet of
Things (IoT). Indeed, societal–scale infrastructures are at an important inflection point in
their operations due to increased interdependence on new CPS technologies such as wireless
sensor/actuator networks, data–driven real–time learning techniques being implemented in
the cloud, and ubiquitous mobile computing devices for intermediating between networks of
wireless sensors and the cloud.

The result of this increasing connectivity and interdependence is two–fold: more and more
data is being collected, transmitted, and stored, and more and more actuation modalities
are available, allowing new ways to influence the behavior of our infrastructures. Both the
information and the actuation commands are being transmitted across networks, such as
the Internet, and these infrastructures are being operated in an increasingly decentralized
manner yet are becoming more human–centric.

1.1 Societal–Scale Cyber–Physical Systems

In viewing infrastructure systems as S-CPS we must consider the various entities and decision
makers as well as their roles, information exchanges, and motivations. At an abstract level,
there is a population of users (e.g. vehicle drivers or electricity consumers), providers that
offer goods or services to the user population (e.g. local Department of Transportation or
power company) facilitated through a cyber–physical network often managed by the provider,
a regulation entity (e.g. Department of Transportation, government, or utility commission)
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that issues regulations and policies, and third–party solution providers (e.g. data aggregators,
insurance companies, etc.) that offers goods and services to either some subset of the user
population or providers.

Regulation Entity
(e.g. DOT, Government, Utility Commission)

Provider
(e.g. local DOT’s, utility company)

Cyber–Physical Network
(e.g. power grid,road network)

User
Population
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Figure 1.1: An ontological view of S-CPS. There are many agents in S-CPS having different
capacities and interests in their interactions. At a granular level, we characterize these agents
based on their roles in S-CPS. This includes regulation entities, service providers, users, and
third–party solution providers.

Figure 1.1 provides an abstracted view of infrastructure systems as S-CPS. With this
ontology in place, we can consider how these different agents interact, and the informa-
tion and control authority given to each agent. It is necessary to understand and consider
the information flows and information asymmetries of the different actors when trying to
characterize even a subset of the larger S-CPS and, in particular, when designing new eco-
nomic mechanisms or physical controls for the system. Such information asymmetries may
come in the form of what is referred to as adverse selection (hidden information such as
an agent’s preference over a particular good) or moral hazard (hidden actions such as an
agent’s choice/decision that is unobserved) or both [LM02]. These information asymmetries
lead naturally to inefficiencies in the way the system operates.

Within this framework, we can analyze the structure of the market these agents inhabit
and identify whether or not these agents have an incentive to compromise the system. Fur-
thermore, with these interconnections explicitly modeled, we can also consider where and
what an outside adversary will attack. It is important to remark that malicious parties can
be any one of the different actors/entities described or could be external to the system.
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One way to categorize adversaries is based on their end goal. For instance, we can cate-
gorize adversaries as eavesdroppers, rational attackers, or anarchists. Eavesdroppers seek to
collect information without affecting any part of the physical infrastructure. Eavesdroppers
generally only present privacy risks, but this information can be used to compromise the
security of systems other than just the infrastructure. Rational attackers seek to profit in a
fashion which affects the physical dynamics. Although the intent of these attackers is not
necessarily to damage the system, their actions may cause inefficiencies and instabilities.
Rational attackers exist because of misaligned incentives. Finally, anarchists are adversaries
who use all their available resources to maximize damage to the infrastructure. To model
these adversaries, we must consider realistic models of what resources are available to them.
In any of these categories their motivations could be political or financial.

Briefly connecting back to the types of information asymmetries, privacy issues relate
nicely at a conceptual level to the class of information asymmetries known as adverse selection
in which some information is hidden from another party whereas security problems relate
nicely at a conceptual level to moral hazard in which some action is hidden or unobserved. For
instance, in the former, consider a patient who wants to keep private that they smoke because
their insurance may go up; however, their doctor could potentially use this information for
diagnostics. Concerning the latter, consider a energy consumer who is stealing energy by
spoofing their consumption; this can be viewed as their action being hidden from the power
company.

This ontological view of S-CPS provides us with a framework and a set of conceptual
models in which we can not only consider the traditional components such as the physical
system and communication infrastructure, but also the many decision makers and their
motivations and information they have access to in the context of the design, operation, and
management of large–scale systems such as the power grid, transportation systems, and the
interconnections between them. Moreover, we can utilize such a framework to develop tools
which can lead to qualitative insights that will have the power to shape and inform policy
development and regulation design.

1.2 Efficiency–Vulnerability Tradeoff in S-CPS

The advent of S-CPS brings with it new opportunities for improving efficiency while simul-
taneously exposing novel vulnerabilities. In transportation S-CPS, for instance, there is a
heterogeneous set of users on the road network: bicyclists, pedestrians, and a whole contin-
uum from traditional drivers to fully autonomous vehicles. Due to information asymmetries,
user preferences and scarce resources such as the limited capacity of our road network, nat-
ural inefficiencies arise. There is a common goal perhaps of safety yet each individual wants
to get to their destination as quickly as possible. Perhaps a planner is tasked with coor-
dinating the users. This planner can take many forms from government agencies such as
the department of transportation or local authority who implements new policies that affect
operation to industry who introduces new service models and products such as shared car
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models. Both government and industry are incorporating new CPS technologies such as
embedded flow sensors into their operations and decision making. While at the same time
this use of CPS technologies allow expanded services and potentially more efficient opera-
tions, they also expose security and privacy vulnerabilities. For example, recently we have
seen hacks on such systems as Sensys Networks flow sensors—a wireless, embedded CPS
technology—showing that through manipulation of the sensor data changes in traffic light
control are possible [Zet14]. In addition, recent concerns over privacy around the Uber car
sharing platform have been raised [BW14; WG14; TK14].

Transportation systems are not the only infrastructure system to see such changes. In en-
ergy S-CPS, smart metering technologies increase the availability of streaming data thereby
enabling monetization of energy savings. Such savings can be realized by employing novel
machine learning algorithms to customize offerings to consumers. On the other hand, the
availability of this fine-grained consumer/system data and the increased number of access
points to the broader system expose new privacy and security risks. Recently the US De-
partment of Energy [Ene] and NIST [Ell14] have issued voluntary best practices for ensuring
privacy and security of the smart grid. However, these policies are often not actionable,
particularly when it comes to privacy. The reason for this is that privacy is subjective in
its nature; it is interpreted by the individual. The emergence of such policies makes clear
the fact that the integration of new CPS technologies, and ultimately the shift in the way
large–scale infrastructure systems operate, is causing a shift in the needed types of regula-
tion and policy. Furthermore, the existence of these best practices reinforces the need for a
holistic, systems-theoretic understanding of vulnerabilities such as privacy and security risks
in S-CPS.

In general, S-CPS often need to address two related problems concerning vulnerabilities.
CPS technologies used for sensing/actuation may need to operate in exposed locations where
tampering—sometimes by a user, e.g., electricity theft—may occur. On the other hand,
sensor/actuator networks often collect data that is considered private by a user, or has
the potential to reveal something private about a user, but is required to reach aggregate
conclusions. This results in the user being exposed to privacy loss risk. Security investments
may help protect against the former and the latter; however, they may not be the only
solution. For instance, economic mechanisms such as fines, incentives, even insurance, can
be used to augment security mechanisms that are in place.

One major concern of this modernization is that these security and privacy attacks can
now occur on a larger scale. For example, in the past, electricity theft—viewed as a financial
attack on the power company—usually required physically tampering with meters or power
lines. Now, a hacker—or even a slightly sophisticated consumer [Law10a; Law10b]—can
exploit software vulnerabilities and manipulate several smart meters at once. Furthermore,
the large–scale, decentralized nature of these systems means that securing every node is not
economically feasible. For this reason, recent research has investigated ways to make CPS
more resilient. The aim is to design systems that recover from faults, failures, or attacks.
If recovery is not possible, then the system is designed so that the performance degrades
slowly, perhaps even gracefully, as an adversary attacks larger portions of the system. It
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is also desirable that systems are able to detect attacks, even when the adversary is trying
to intelligently design its attack to be discreet, for instance, by hiding behind the system
dynamics. While there is a large body of literature addressing security attacks in various
infrastructure systems (see, e.g., [Faw+14; Pas+12a; Pas+12b; Ami+13; Cár+09]), much of
this work ignores the socioeconomic aspects that are often the driving force for attacks and
the market structure that creates misaligned incentives.

As the above examples in the transportation and energy contexts show, there is an
inherent efficiency–vulnerability tradeoff in S-CPS. Managing this tradeoff is key in the
design, management, and operation of large–scale infrastructure systems. The efficiency–
vulnerability tradeoff is becoming more pronounced due not only to greater interdependence
on CPS technologies but also due to the fact that infrastructure systems are becoming more
human–centric in that the user is being actively integrated into the system.

1.3 Transitioning to Human–Centric Systems

S-CPS models that incorporate customers into solutions in a dynamic, bidirectional way
are becoming commonplace. For example, this phenomena can be seen in the rise of new
car–sharing models, third–party energy demand response aggregators, and the proliferation
of personal health–monitoring devices. Companies are beginning to capitalize on access to
consumer and system data. It is necessary to have a systematic understanding of the impact
of these service models on standard operations as well as the resilience and sustainability of
infrastructure systems.

It is important to consider not only human–CPS coupling at the individual level but also
at the societal level. At the societal level we must consider many tightly coupled decision–
making loops. What is the right way of understanding the interdependencies between these
various closed–loop systems and what sorts of behaviors might emerge at the global level
which are not readily observable at the local level? As the number of decision makers
increases yet decisions are determined based on local information (or connections) we observe
different emergent global behaviors. For example, in energy S-CPS, as we move towards a
Distributed Energy Resource (DER) based system, i.e. microgrids and virtual power plants,
operational decisions are being made based on local information but have an impact on the
overall system behavior, e.g. frequency and voltage.

The same is true for transportation systems in which local decisions about what road
to take, or even what lane to drive in, impact the global flow on the network. While this
has always been the case in transportation systems, now these local decisions are being
supported by CPS technologies such as cellphones which provide information about the
aggregate system behavior to the individual thereby shaping the decisions they make. Con-
versely, observations of individual decision making are often used to inform decision making
at the aggregate level (e.g. loop detectors that count individual cars are used to determine
traffic light control policies which, in turn, affect traffic flow).
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Figure 1.2: Human–Enabled Cyber–Physical Systems Societal–scale cyber–physical systems
are becoming more distributed and even decentralized while at the same time becoming
more human–centric. It is not enough to consider only individual (microscopic) or societal–
scale (macroscopic) decision making in isolation. The coupling between the microscopic
and macroscopic decision making presents unique and challenging problems in S-CPS for
addressing system vulnerabilities and implementing policy and regulations.

Moreover, macroscopic data or aggregated data is often used to inform laws, regulations,
and policies which then shape the way individuals interface with CPS infrastructure. Privacy
and security laws and regulations are a prime example of this phenomena. Hence, there is
a tight coupling between local decision making and global behavior (see Figure 1.2). A key
observation in the move from traditional infrastructure systems and modern infrastructure
systems as S-CPS is that as constituents of S-CPS, particularly consumers, become more
aware of the value of their data and vulnerabilities, they need to be compensated more to
participate.

1.4 Systems Theory for S-CPS

Realizing a systems theory for S-CPS in light of the ontological view we have constructed
thus far is a broad agenda that will require contributions from a multi–disciplinary team of
researchers over many years. In this dissertation, we focus on some fundamental problems
that will likely contribute to this broader agenda. In particular, we develop a set of game–
theoretic tools for addressing problems of adverse selection that arise in S-CPS. Referring
back to Figure 1.1, we focus mainly on the interaction between the provider and its user
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population. However, one can imagine the tools generalizing to other parts of the extended
picture. While this is a small piece of this much larger S-CPS framework that needs to be
developed, it is a foundational one and has the potential to inform the way we think about
problems in the broader S-CPS context.

1.4.1 A Motivating Vignette

Consider a scenario in which there is a number of non–cooperative, self–interested agents that
make up a society. They are all interested in sharing the consumption of some scarce resource.
Imagine, for instance, that these agents are electricity consumers and the scarce resource is
power or that these agents are drivers on a road network where capacity limits constrain
the system. These agents strategically interact in competing over the scarce resource. The
outcome may, for instance, be a Nash equilibrium. It is well known that Nash equilibria
are not socially optimal (see, e.g. [Var04]) meaning that often the natural solution to which
competing agents arrive is not efficient from a societal point of view.

Consider now a central planner who is tasked with coordinating these individuals around
a more efficient outcome that is perhaps more desirable or even socially optimal in the sense
that it maximizes social welfare. For instance, the central planner could be the power com-
pany or a local transportation authority. However, this planner does not know the underlying
preferences of the agents (resulting in a problem of adverse selection). These preferences are
what drive the agents’ interactions to a particular outcome. Hence, in knowing them, the
central planner can then shape them, resulting in changed behavior.

Often, in S-CPS, the central planner will lean on the underlying CPS infrastructure
which may enable the efficiency gains that the central planner seeks. For instance, in energy
systems the power provider utilizes streaming data from the smart meter to generate energy
analytics which are in turn used to customize offerings to the consumer. In transportation
systems, perhaps this CPS technology provides global positioning system (GPS) data from
cellphones or flow data from embedded sensors in the road network. However, the reliance
on this streaming data increases the potential for a privacy breach both on the part of the
consumer and the system as well as increases security risk—the smart meter or flow sensor
platform acts as an access point to the broader system.

Figure 1.3 is an abstraction of this vignette and it summarizes the contributions of this
thesis. Keep this picture in mind as we walk through these contributions and as we move
through the remainder of this thesis.

1.4.2 Contributions

Beginning with a class of games of perfect information on non–convex strategy spaces, in
Chapter 2, we characterize the outcome of the players’ strategic interaction by defining
the differential Nash equilibrium concept. We show that this characterization is amenable to
computation and that as such it has utility as a tool for analysis and synthesis in engineering
problems with competitive agents. In Chapter 3, we consider a class of problems in which a
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Figure 1.3: Vignette and Contributions—Addressing the Efficiency–Vulnerability Tradeoff.
We depict the three main contributions of this dissertation numbered by the respective
chapters and an abstraction of the motivating vignette.

central planner is tasked with coordinating possibly many non–cooperative agents but lacks
knowledge of their preferences. We utilize the differential Nash equilibrium concept to define
a utility learning and incentive design algorithm. Narrowing our focus to the demand–side
of the smart grid in Chapter 4, we analyze consumer privacy, derive inference based privacy
metrics, and design privacy–based service contracts.

Characterization and Computation of Local Nash Equilibria

Verifying that a strategy constitutes a Nash equilibrium in games with continuous strategy
spaces requires testing that a non–convex inequality is satisfied on an open set, a gener-
ally intractable task. Further, it is often the case that strategy spaces are non–convex and
agents are of bounded rationality both of which result in myopic play. We define a represen-
tation of local Nash equilibria—differential Nash equilibria—that is characterized by first–
and second–order conditions on the players’ objective functions thereby allowing for the re-
placement of arguably computationally intractable inequalities defining Nash equilibria with
conditions that only need to be checked at a single point. Additionally, we show that such
equilibria are generic and structurally stable which implies that local Nash equilibria in an
open–dense set of continuous games are non–degenerate—hence, isolated—differential Nash
equilibria, and furthermore these equilibria persist under perturbations to player costs. As a
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consequence, small modeling errors or environmental disturbances generally do not result in
games with drastically different equilibrium behavior—a desirable property when considering
a planner trying to induce such an equilibrium.

Utility Learning and Incentive Design Algorithm

Given that the Nash equilibrium agents reach playing according to their own selfish objectives
is generally inefficient from a societal point of view, we consider a central planner who is
tasked with coordinating the agents yet does not know their preferences. In this setting,
we assume parameterized objective functions where the parameters are unknown to the
planner. We design an algorithm for iteratively estimating these parameters and designing
incentives. We consider both the case where the agents play according to a Nash equilibrium
strategy and the case where the agents play according to a myopic update rule such as
approximate best response. Both cases are cast in a unified framework and we formulate
an online learning algorithm for estimating the parameters. Under reasonable assumptions
we provide convergence results for the algorithm. The techniques used have strong ties to
adaptive control and online learning or convex optimization.

Privacy–Aware Incentive Design

Finally, we focus on the demand–side of the smart grid in order to examine the kinds of vul-
nerabilities that arise when utilizing CPS infrastructure to support incentive design and phys-
ical control in S-CPS. In particular, we design privacy contracts and insurance for demand–
side management. This work was in part motivated by our previous work on the fundamental
limits of non–intrusive load monitoring in which we derived a bound on the ability of an
adversary to successfully distinguish between hypotheses on consumer behavior [Don+13b;
Don+13a]. This bound was then reinterpreted as an inferential metric for privacy. This
led to work on quantification of the efficiency–privacy tradeoff [Don+14]. Given this funda-
mental tradeoff between efficiency and privacy, we design privacy–aware contracts to help
manage it. The power company faces a problem of adverse selection; it does not know how
consumers value privacy, but desires to have high-fidelity data for operations, e.g. to design
incentives for energy efficient behavior or demand response programs. As a result, electricity
service is offered as a product line differentiated according to privacy where consumers can
self–select the level of privacy that fits their needs and wallet. We show the impact of viewing
privacy as a good on the smart grid by studying fundamental issues such as the effects of risk
and the distribution of types—the former has implications for security/insurance investment
and the latter impacts privacy—on social welfare, and efficiency.
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Chapter 2

Characterization and Computation of
Local Nash Equilibria

Many engineering systems are complex networks in which intelligent actors make decisions
regarding usage of shared, yet scarce, resources. Thinking back to the vignette we introduced
in Section 1.4.1, in the transportation example, the drivers on a road network are vying over
space as they navigate to their destination as quickly as possible while remaining safe. In
the energy example, consumers are deciding when to use energy or even when to sell energy
back to the grid and these decisions depend on the available energy supply which is naturally
constrained and the price.

Game theory provides established techniques for modeling competitive interactions that
have emerged as tools for analysis and synthesis of systems comprised of dynamically–coupled
decision–making agents possessing diverse and oft–opposing interests (see, e.g. [Fri+12;
SA05]). We focus on games with a finite number of agents where their strategy spaces
are continuous, either a finite–dimensional differentiable manifold or an infinite–dimensional
Banach manifold.

Previous work on continuous games with convex strategy spaces and player costs led to
global characterization and computation of Nash equilibria [Baş87; Con+04; LB87]. Adding
constraints led to extensions of nonlinear programming concepts, such as constraint qual-
ification conditions, to games with generalized Nash equilibria [Dor+13; Fac+07; Ros65].
Imposing a differentiable structure on the strategy spaces yielded other global conditions
ensuring existence and uniqueness of Nash equilibria and Pareto optima [Eke74; Sma75;
Tho74]. In contrast, we aim to analytically characterize and numerically compute local
Nash equilibria in continuous games on non–convex strategy spaces.

Bounding the rationality of agents can result in myopic behavior [Fl̊a98; Fl̊a99; Fl̊a02],
meaning that agents seek strategies that are optimal locally but not necessarily globally.
Further, it is common in engineering applications for strategy spaces or player costs to
be non–convex, for example when an agent’s configuration space is a constrained set or a
differentiable manifold [KK02; ME05]. These observations suggest that techniques for char-
acterization and computation of local Nash equilibria have important practical applications.
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Motivated by systems with myopic agents and non–convex strategy spaces, we seek an
intrinsic characterization for local Nash equilibria that is structurally stable and amenable to
computation. By generalizing derivative–based conditions for local optimality in nonlinear
programming [Ber99] and optimal control [Pol97], we provide necessary first– and second–
order conditions that local Nash equilibria must satisfy, and further develop a second–order
sufficient–condition ensuring player strategies constitute a local Nash equilibrium. We term
points satisfying this sufficient–condition differential Nash equilibria. In contrast to a pure
optimization problem, this second–order condition is insufficient to guarantee a differential
Nash equilibrium is isolated; in fact, games may possess a continuum of differential Nash
equilibria. Hence, we introduce an additional second–order condition ensuring a differential
Nash equilibrium is isolated.

Verifying that a strategy constitutes a Nash equilibrium in non–trivial strategy spaces
requires testing that a non–convex inequality constraint is satisfied on an open set, a task we
regard as generally intractable. In contrast, our sufficient conditions for local Nash equilibria
require only the evaluation of player costs and their derivatives at single points. Further, our
framework allows for numerical computations to be carried out when players’ strategy spaces
and cost functions are non–convex. Hence, we provide tractable tools for characterization
and computation of differential Nash equilibria in continuous games.

We show that non–degenerate differential Nash equilibria are structurally stable. Con-
sequently, model uncertainty or error that gives rise to a nearby game does not result in
drastically different equilibrium behavior. This structural stability property is desirable in
both the design of games as well as inverse modeling of agent behavior in competitive en-
vironments which will be discussed in detail in Chapter 3. We provide sufficient conditions
ensuring that the flow generated by the gradient of each player’s cost (gradient play [SA05]
or myopic tâtonnement [Wal26]) converges locally to a differential Nash equilibrium. Struc-
tural stability ensures that following the flow generated by the gradient of each player’s cost
converges locally to a stable, non–degenerate differential Nash equilibrium.

Further, we show that non–degenerate differential Nash equilibria are generic among local
Nash equilibria for games on finite–dimensional manifolds meaning that there is an open–
dense set of games for which its local Nash equilibria are, in fact, non–degenerate differential
Nash equilibria and therefore structurally stable and computable. Informally speaking, the
fact that this set of games is open gives us a sense of stability and the fact that it is dense
gives us a sense of for-almost-all.

The general game formulation is presented in Section 2.1. We follow with the charac-
terization of local Nash equilibria in Section 2.2. In Section 2.3, we show that the charac-
terization we provide—non–degenerate differential Nash equilibrium—is structurally stable.
We show that non–degenerate differential Nash equilibria in finite–dimensional games are
generic in Section 2.4 and we define potential games on non–convex strategy spaces as well as
explore an interesting example of coupled oscillators—which is the preferred mathematical
abstraction in many engineering applications—in Section 2.5. In Section 2.6, by taking a dy-
namical systems point of view, we show that non–degenerate differential Nash are amenable
to computation using approximate myopic best response (gradient play). Further, we ex-
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plore computation of non–degenerate differential Nash equilibria through several examples.
Throughout the chapter we carry running examples that provide insight into the importance
of the results and in Section 2.7 we return to the examples and highlight the importance
of the results on incentive design. We remark that the results of this chapter provide the
foundational tools and support for the incentive design and utility learning problem as pre-
sented in the sequel. Finally, we conclude with discussion in Section 2.8. The standard
mathematical objects used throughout can be found in Appendix 2.A at the end of this
chapter.

2.1 Game Formulation

The theory of games we consider concerns interaction between a finite number of rational
agents that we refer to as players.

Consider a complete information game in which we have n selfish players with competing
interests. The strategy spaces are topological spaces Mi for each i ∈ {1, . . . , n}. Note
these can be finite–dimensional smooth manifolds or infinite–dimensional Banach manifolds.
We denote the joint strategy space by M =

∏n
i=1Mi. The players are each interested in

minimizing a cost function representing their interests by choosing an element from their
strategy space. We define player i’s cost to be a twice–differentiable function fi ∈ C2(M,R).

The following definition describes the equilibrium behavior we are interested in:

Definition 2.1.1. A strategy (u1, . . . , un) ∈M is a local Nash equilibrium if there exist
open sets Wi ⊂Mi such that ui ∈ Wi and for each i ∈ {1, . . . , n},

fi(u1, . . . , ui, . . . , un) ≤ fi(u1, . . . , u
′
i, . . . , un), ∀ u′i ∈ Wi\{ui}. (2.1.1)

If the above inequalities are strict, then we say (u1, . . . , un) is a strict local Nash equi-
librium. If Wi = Mi for each i, then (u1, . . . , un) is a global Nash equilibrium.

Simply put, the above definition says that no player can unilaterally deviate from the
Nash strategy and decrease her cost.

Prior to moving on to the characterization of local Nash equilibria, we describe the types
of games the results apply to and why they are important in engineering applications.

Continuous games with finite–dimensional strategy spaces are described by the player
strategy spaces M1, . . . ,Mn and their cost functions (f1, . . . , fn). They arise in a number of
engineering and economic applications, for instance, in modeling one–shot decision making
problems arising in transportation, communication and power networks [Kri+14; Can+10;
Par+01], or mixed strategies over discrete strategy spaces [SA05]. On the other hand, the
consideration of mixed strategies in games with continuous finite–dimensional strategy spaces
lead to games on infinite–dimensional strategy spaces. In particular, the mixed strategies
are probability measures over the pure strategies [Gli52].

Continuous games with infinite–dimensional strategy spaces, regarded as open–loop dif-
ferential games, are used in engineering applications in which there are agents coupled



CHAPTER 2. CHARACTERIZATION AND COMPUATION OF LOCAL NASH 13

through dynamics [Ba95]. They arise in problems such as energy management in build-
ings [Coo+13], travel–time optimization in transportation networks [BH12], and integration
of renewables into energy systems [Zhu+12a].

Open–loop differential games often come in the following form. Let L2[0, T ] denote the
space of square integrable functions from [0, T ] ⊂ R into Rm. For an n–player game, strategy
spaces are Banach manifolds, Mi for i ∈ {1, . . . , n}, modeled on L2[0, T ]. For each t ∈ [0, T ],
let x(t) ∈ Rn denote the state of the game. The state evolves according to the dynamics

ẋ(t) = h(x(t), u1(t), . . . , un(t)) ∀ t ∈ [0, T ] (2.1.2)

where ui ∈ Mi is player i’s strategy. We assume that h(x, u1, . . . , un) is continuously dif-
ferentiable, globally Lipschitz continuous and all the derivatives in all its arguments are
globally Lipschitz continuous. We denote by fi(u1, . . . , un) = f̂i(x

(x(0),u1,...,un)(T )) player i’s
cost function. The superscript notation on the state x indicates the dependence of the state
on the initial state and the strategies of the players. Each f̂i is assumed twice continuously
differentiable so that each fi is C2–Fréchet-differentiable [Pol97, Thm. 5.6.10]. We pose each
player’s optimization problem as

min
ui

f̂i(x
(x(0),u1,...,ui,...,un)(T )). (2.1.3)

The co–state for player i evolves according to

ṗi(t) = −pi(t)
∂h

∂x
(x(t), u1(t), . . . , ui(t), . . . , un(t)) (2.1.4)

with final time condition

pi(T ) = Dxfi(x
(x(0),u1,...,ui,...,un)(T )). (2.1.5)

The derivative of the i–th player’s cost function is given by

(Difi)(t) = pi(t)
∂h

∂ui
(x(t), u1, . . . , ui(t), . . . , un(t)). (2.1.6)

Remark 2.1.1. We have formulated the open–loop differential game in terms of final–time
cost optimization problems for each player. However, there is a transformation from running
cost problems into final–time cost problems [Pol97, Chapter 4, §1].

Before we dive into the details, let us consider a couple of simple examples that exhibit
very interesting behavior. We return to these examples throughout the chapter as they
highlight different aspects and the importance of our characterization of Nash equilibria.

Example 2.1 (Betty–Sue: Thermodynamic Coupling). Consider a two player game between
Betty and Sue. Let Betty’s strategy space be M1 = R and Sue’s strategy space be M2 = R.
Furthermore, let Betty’s cost function be defined by

f1(u1, u2) =
u2

1

2
− u1u2
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and let Sue’s cost function be defined by

f2(u1, u2) =
u2

2

2
− u1u2.

This game can be thought of as an abstraction of two agents in a building occupying adjoining
rooms. The first term in each of their costs represents an energy cost and the second term
is a cost from thermodynamic coupling. The agents try to maintain the temperature at a
desired set–point in thermodynamic equilibrium.

Definition 2.1.1 specifies that a point (µ1, µ2) is a Nash equilibrium if no player can
unilaterally deviate and decrease their cost, i.e. f1(µ1, µ2) < f1(u1, µ2) for all u1 ∈ R and
f2(µ1, µ2) < f2(µ1, u2) for all u2 ∈ R.

Fix Sue’s strategy u2 = µ2, and calculate

D1f1 =
∂f1

∂u1

= u1 − µ2 (2.1.7)

Then, Betty’s optimal response to Sue playing u2 = µ2 is u1 = µ2. Similarly, if we fix u1 =
µ1, then Sue’s optimal response to Betty playing u1 = µ1 is u2 = µ1. For all u1 ∈ R\{µ2}

− µ2
2

2
<
u2

1

2
− u1µ2 (2.1.8)

so that f1(µ2, µ2) < f1(u1, µ2) for all u1 ∈ R\{µ2}. Again, similarly, for all u2 ∈ R\{µ1}

− µ2
1

2
<
u2

2

2
− u2µ1 (2.1.9)

so that f2(µ1, µ1) < f2(µ1, u2) for all u2 ∈ R\{µ1}. Hence, all the points on the line u1 = u2

in M1×M2 = R2 are strict local Nash equilibria—in fact, they are strict global Nash equilibria.

As the above example shows, continuous games can exhibit a continuum of equilibria.
The following example will show this pathology is not limited to trivial strategy spaces.

The next example we consider is of coupled oscillators viewed as a game. Not only is the
following an example of a game on non–trivial strategy spaces, as we will show, it exhibits
a cadre of interesting characteristics including a continuum of global Nash equilibria. It
is an important example because coupled oscillator models are the preferred mathematical
abstraction for many engineering applications.

Coupled oscillator models—in particular, the Kuramoto oscillator model [Kur75]—are
used widely for modeling attitude control and coordination (satellites, aircraft, etc.) [Cha+11;
WKD91; Zou+12], generators synchronizing with the energy grid (microgrids) [Dör+13;
DB12], traffic light control [Coo+15; AE05], robotics [Moi+10], biological networks [Wan+15;
Wan+08], healthcare (pacemakers) [Pes75; DB78], and in a general engineering context [DB11;
Jad+04; Sep+05a; Sep+07; Ge+08; Pal+07]. Coupled oscillator models are often viewed in
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a game theoretic context in order to gain further insight into the system properties [CB13;
Lee+08; Yin+12; Got+10; ZS01; Yin+10]. For example, both the problem of multiple
satellites trying to synchronize and the problem of generators trying to synchronize their fre-
quency with the larger power grid lend themselves naturally to a game theoretic framework.
Indeed, consider each player to be a satellite (generator) that chooses its relative phase in an
effort to synchronize but does so selfishly. Modeling the players as selfish may arise because
they in fact have a desire to minimize their own effort regardless of other participants. On
the other hand, it may arise through abstraction of information constraints or the myopic
nature of the players.

We will consider two coupled oscillators and return to the general n–coupled oscillator
problem in Section 2.5.

Example 2.2 (Jean–Paul: Coupled Oscillators). Consider two coupled oscillators managed
by Jean and Paul respectively. We denote the phase of oscillator i by θi ∈ S1. Let Jean’s
oscillator have phase θ1 and his cost by given by

f1(θ1, θ2) = −1

2
cos(θ1 − θ2). (2.1.10)

Similarly, let Paul’s oscillator have phase θ2 and his cost be given by

f2(θ1, θ2) = −1

2
cos(θ2 − θ1). (2.1.11)

We show that this game has a continuum of global Nash equilibria. In particular, all points
in the set

{(θ1, θ2) ∈ S1 × S1| θ1 = θ2}
are global Nash equilibria. Indeed, consider the points θ1 − θ2 = 0. First, since

D1f1(θ1, θ2) =
1

2
sin(θ1 − θ2) = 0,

θ1 = θ2 is a best-response to θ2. Similarly, since

D2f2(θ1, θ2) =
1

2
sin(θ2 − θ1) = 0,

θ2 = θ1 is a best-response to θ1. Let θ2 = β be fixed. For θ1 = β we have

− 1

2
cos(θ1 − β) = −1

2
≤ −1

2
cos(θ′1 − β), ∀ θ′1 ∈ S1\{β} (2.1.12)

Similarly, let θ1 = α be fixed. For θ2 = α, we have

− 1

2
cos(α− θ2) = −1

2
≤ −1

2
cos(α− θ′2), ∀ θ′2 ∈ S1\{α} (2.1.13)
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Hence, the Nash equilibria of the game are exactly the points for which the coupled oscillators
are synchronized in equilibrium.

On the other hand, if players are utility maximizers in the game (f1, f2) on T2 = S1× S1

where f1 and f2 are defined in (2.1.10) and (2.1.11), then it is straightforward to show (in a
similar manner as above) that all points in the set

{(θ1, θ2) ∈ S1 × S1| θ1 − θ2 = π}

are global Nash equilibria. In other words, the set of Nash equilibria contains exactly the
points for which the coupled oscillators are balanced in equilibrium.

We remark that this is quite a simple game; since cosine is an even function, f1 = f2.
However, in the general n–coupled oscillator model, as we will see in Section 2.5, exhibits
a continuum of Nash equilibria as well. We choose to carry this two–player example—as
opposed to the n–player example—throughout the chapter because it is not only illustrative
but simple enough for the reader to process while reading the text.

2.2 Characterization of Local Nash Equilibria

In this section, we characterize local Nash equilibria by paralleling results in nonlinear pro-
gramming and optimal control that provide first– and second–order necessary and sufficient
conditions for local optima.

The following definition of a differential game form is due to Stein [Ste10].

Definition 2.2.1. A differential game form is a differential 1–form ω : M1×· · ·×Mn →
T ∗(M1 × · · · ×Mn) defined by

ω =
n∑
i=1

ψMi
◦ dfi. (2.2.1)

where ψMi
are the natural bundle maps defined in (2.A.3) that annihilate those components

of the covector field dfi not corresponding to Mi.

Remark 2.2.1. If each Mi is a finite-dimensional manifold of dimension mi, then the dif-
ferential game form has the following coordinate representation:

ωϕ =
n∑
i=1

mi∑
j=1

∂(fi ◦ ϕ−1)

∂yji
dyji (2.2.2)

where (U,ϕ) is a product chart on M at u = (u1, . . . , un) with local coordinates given by
(v1

1, . . . , v
m1
1 , . . . , v1

n, . . . , v
mn
n ) and where U =

∏n
i=1 Ui and ϕ = ×ni=1ϕi. In addition, fi ◦ ϕ−1

is the coordinate representation of fi for i ∈ {1, . . . , n}. In particular, ϕi(ui) = (v1
i , . . . , v

mi
i )

where each vji : Ui → R is a coordinate function so that dvji is its derivative.
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The differential game form captures a differential view of the strategic interaction between
the players. Indeed, ω indicates the direction in which the players can change their strategies
to decrease their individual cost functions most rapidly. In particular, each player’s cost
function depends on its own choice variable as well as all the other players’ choice variables.
However, each player can only affect their payoff by adjusting their own strategy.

Definition 2.2.2. A strategy u = (u1, . . . , un) ∈ M1 × · · · ×Mn is a differential Nash
equilibrium if ω(u) = 0 and D2

iifi(u) is positive–definite for each i ∈ {1, . . . , n}.

The second–order conditions used to define differential Nash equilibria are motivated
by results in nonlinear programming that use first– and second–order conditions to assess
whether a critical point is a local optima [Pol97], [Ber99].

The following proposition provides first– and second–order necessary conditions for local
Nash equilibria. We remark that these conditions are reminiscent of those seen in nonlinear
programming for optimality of critical points.

Proposition 2.2.1 ([Rat+13; Rat+14d]). If u = (u1, . . . , un) is a local Nash equilibrium,
then ω(u) = 0 and D2

iifi(u) is positive semi–definite for each i ∈ {1, . . . , n}.

Proof. Suppose that u = (u1, . . . , un) ∈M is a local Nash equilibrium. Then,

fi(u) ≤ fi(u1, . . . , u
′
i, . . . , un), ∀ u′i ∈ Wi\{ui} (2.2.3)

for open Wi ⊂ Mi, i ∈ {1, . . . , n}. Suppose that we have a product chart (U,ϕ), where
U =

∏n
i=1 Ui and ϕ = ×ni=1ϕi, such that u ∈ U .

Let ϕi(ui) = vi for each i. Then, since ϕ is continuous, for each i ∈ {1, . . . , n}, we have
that for all v′i ∈ ϕi(Wi ∩ Ui)\{ϕi(ui)},

fi ◦ ϕ−1(v1, . . . , vi, . . . , vn) ≤ fi ◦ ϕ−1(v1, . . . , v
′
i, . . . , vn). (2.2.4)

Now, we apply Proposition 1.1.1 from [Ber99], if Mi is finite–dimensional, or Theorem
4.2.3(1) and Theorem 4.2.4(a) from [Pol97], if Mi is infinite–dimensional, to fi ◦ ϕ−1. We
conclude that for each i ∈ {1, . . . , n}, Di(fi ◦ϕ−1)(v1, . . . , vn) = 0 and for all ν ∈ ϕi(Ui∩Wi),

D2
ii(fi ◦ ϕ−1)(v1, . . . , vn)(ν, ν) ≥ α‖ν‖2, (2.2.5)

i.e. it is a positive semi–definite bilinear form on ϕi(Ui ∩Wi).
Invariance of the stationarity of critical points and the index of the Hessian with respect

to coordinate change gives us ω(u) = 0 and D2
iifi(u) is a positive semi–definite for each

i ∈ {1, . . . , n}.
We now show that the conditions defining a differential Nash equilibrium are sufficient

to guarantee a strict local Nash equilibrium.

Theorem 2.2.1 ([Rat+13; Rat+14d]). A differential Nash equilibrium is a strict local Nash
equilibrium, i.e. if ω(u) = 0 and D2

iifi(u) > 0, then u is a strict local Nash equilibrium.
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Proof. Suppose that u = (u1, . . . , un) ∈ M is a differential Nash equilibrium. Then, by the
definition of differential Nash equilibrium, ω(u) = 0 and D2

iifi(u) is positive definite for each
i ∈ {1, . . . , n}. The second–derivative conditions imply that D2

ii(fi◦ϕ−1)(v1, . . . , vn) is a pos-
itive definite bilinear form where vi = ϕi(ui) for any coordinate chart (U,ϕ), with ϕ = ×iϕi,
U =

∏
i Ui, and ui ∈ Ui for each i ∈ {1, . . . , n}. Using the isomorphism introduced in the ap-

pendix in (2.A.2), ω(u) = 0 implies that for each i ∈ {1, . . . , n}, Di(fi ◦ϕ−1)(v1, . . . , vn) = 0.
Let Ei be the model space, i.e. the underlying Banach space, in either the finite–dimensional
or infinite–dimensional case. Applying either Proposition 1.1.3 from [Ber99] or Theorem 4.2.6
(a) from [Pol97] to to each fi ◦ ϕ−1 with

(ϕ1(u1), . . . , ϕi−1(ui−1), ϕi+1(ui+1), . . . , ϕn(un))

fixed yields a neighborhood Wi ⊂ Ei such that for all v′ ∈ Wi,

fi ◦ ϕ−1(v1, . . . , vi, . . . , vn) < fi ◦ ϕ−1(v1, . . . , v
′, . . . , vn). (2.2.6)

Since ϕ is continuous, there exists a neighborhood Vi ⊂Mi of ui such that for Vi = ϕ−1
i (Wi)

and all u′i ∈ Vi\{ui},

fi(u1, . . . , ui, . . . , un) < fi(u1, . . . , u
′
i, . . . , un). (2.2.7)

Therefore, differential Nash equilibria are strict local Nash equilibria. Due to the fact that
both ω(u) = 0 and definiteness of the Hessian are coordinate invariant, this is independent
of choice of coordinate chart.

We remark that the conditions for differential Nash equilibria are not sufficient to guar-
antee that an equilibrium is isolated.

Example 2.1 (Betty–Sue: Continuum of Differential Nash). Returning to the Betty–Sue ex-
ample, we can check that at all the points such that u1 = u2, ω(u1, u2) = 0 and D2

iifi(u1, u2) =
1 > 0 for each i ∈ {1, 2}. Hence, there is a continuum of differential Nash equilibria in this
game.

Example 2.2 (Jean–Paul: Continuum of Differential Nash). Just as above, returning to the
coupled oscillator example, we can check that at all the points in the set

{(θ1, θ2) ∈ S1 × S1| θ1 − θ2 = π},

ω(θ1, θ2) = 0 and D2
iifi(θ1, θ2) = 1 > 0 for each i ∈ {1, 2}. Hence, there is a continuum of

differential Nash equilibria in this game.

We propose a sufficient condition to guarantee that differential Nash equilibria are iso-
lated. We do so by combining ideas introduced by Rosen [Ros65] for convex games with con-
cepts from Morse theory [Mil63], in particular second–order conditions on non–degenerate
critical points of real–valued functions on manifolds.
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At a differential Nash equilibrium u = (u1, . . . , un), consider the derivative of the differ-
ential game form

dω =
n∑
i=1

d(ψMi
◦ dfi). (2.2.8)

Intrinsically, this derivative is a tensor field dω ∈ T 0
2 (M); at a point u ∈M where ω(u) = 0 it

is a bilinear form constructed from the uniquely determined continuous, symmetric, bilinear
forms {d2fi(u)}ni=1. We will refer to its local representation as the Hessian of the differential
game form. Moreover, we want to emphasize that the derivative of the differential game form
as defined above is distinct from the exterior derivative (see Appendix 2.A) of a differential
form.

Theorem 2.2.2 ([Rat+13; Rat+14d]). If u = (u1, . . . , un) is a differential Nash equilibrium
and dω(u) is non–degenerate, then u is an isolated strict local Nash equilibrium.

Proof. Since u is a differential Nash equilibrium, Theorem 2.2.1 gives us that it is a strict
local Nash equilibrium. The following argument shows that it is isolated. Non–degeneracy
of dω(u) at a critical point is invariant with respect to the choice of coordinates. It suffices
to choose a coordinate chart (U,ϕ) with ϕ = ×ni=1ϕi and U =

∏n
i=1 Ui and show the result

with respect to ϕ. Let E denote the underlying model space of the manifold M1× · · ·×Mn.
Define the map g : E → E by

g(ϕ(u)) =
n∑
i=1

Di(fi ◦ ϕ−1)(ϕ(u)) (2.2.9)

Note that g is the coordinate representation of the differential game form ω. Zeros of the
function g define critical points of the game and its derivative at critical points is dωϕ. Since
u is a differential Nash equilibrium, ω(u) = 0. Further, since dωϕ(u) is non–degenerate—the
map A(v)(w) = dωϕ(u)(v, w) is a linear isomorphism—we can apply the Inverse Function
Theorem [Abr+88, Thm. 2.5.2] to get that g is a local diffeomorphism at u, i.e. there exists
an open neighborhood V of u such that the restriction of g to V establishes a diffeomorphism
between V and an open subset of E. Thus, only ϕ(u) could be mapped to zero near ϕ(u).
Non–degeneracy of dω(u) is invariant with respect to choice of coordinates. Therefore,
indepdent of the choice of ϕ, u is isolated.

Definition 2.2.3. Differential Nash equilibria u = (u1, . . . , un) such that dω(u) is non–
degenerate are termed non–degenerate differential Nash equilibria.

Example 2.1 (Betty–Sue: Degeneracy and Breaking Symmetry). Return again to the Betty–
Sue example in which we showed that there is a continuum of Nash equilibria; in fact, all
the points on the line u1 = u2 are differential Nash equilibria and at each of these points we
have

dω(u1, u2) =

[
1 −1
−1 1

]
(2.2.10)
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so that det(dω(u1, u2)) = 0. Hence, all of the equilibria are degenerate. By breaking the
symmetry in the game, we can make (0, 0) a non–degenerate differential Nash equilibrium;
i.e. we can remove all but one of the equilibria. Indeed, let Betty’s cost be given by

f̃1(u1, u2) =
u21
2
− au1u2 and let Sue’s cost remain unchanged. Then the local representa-

tion of the derivative of the differential game form ω̃ of the game (f̃1, f2) is

dω̃(u1, u2) =

[
1 −a
−1 1

]
(2.2.11)

Thus for any value of a 6= 1, (0, 0) is a non–degenerate differential Nash equilibrium. This
shows that small modeling errors can remove degenerate differential Nash equilibria.

Example 2.2 (Jean–Paul: Degeneracy and Breaking Symmetry). Returning to the coupled
oscillator example, recall that we showed there was a continuum of differential Nash equilibria.
However, they are not non-degenerate since det(dω(θ1, θ1)) = 0. Just as in the Betty–
Sue example, by breaking the symmetry in the game, we can make (0, 0) a non–degenerate
differential Nash equilibrium. Indeed, consider the game (f̃1, f2) where f̃1 = 1

2
cos(bθ1 − θ2).

Then the local representation of the differential game form ω̃ of the game (f̃1, f2) is[
−1

2
b2 cos(bθ1 − θ2) 1

2
b cos(bθ1 − θ2)

1
2

cos(θ1 − θ2) −1
2

cos(θ1 − θ2)

]
(2.2.12)

Hence, for any value of b /∈ {0, 1}, (0, 0) is a non–degenerate differential Nash equilibrium.
We remark that if players are utility maximizers in the same game, it is straightforward to
show that (0, π) is a non–degenerate differential Nash using the same perturbation. Why we
make this distinction between utility maximization and cost minimization in this example
will become clear when we return to this example and show that minimizing (maximizing)
corresponds to synchronizing (balancing) the phases of the coupled oscillators.

In a neighborhood of a non–degenerate differential Nash equilibrium there are no other
Nash equilibria. This property is desirable particularly in applications where a central plan-
ner is designing incentives to induce a socially optimal or otherwise desirable equilibrium
that optimizes the central planner’s cost; if the desired equilibrium resides on a continuum of
equilibria, then due to measurement noise or myopic play, agents may be induced to play a
nearby equilibrium that is suboptimal for the central planner. In Section 2.7, we extend Ex-
ample 2.1 and 2.2 by introducing a central planner. But first, we show that non–degenerate
differential Nash equilibria are structurally stable.

2.3 Structural Stability

Examples demonstrate that global Nash equilibria may fail to persist under arbitrarily small
changes in player costs [Eke74]. A natural question arises: do local Nash equilibria persist
under perturbations? Applying structural stability analysis from dynamical systems theory,
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we answer this question affirmatively for non–degenerate differential Nash equilibria subject
to smooth perturbations in player costs.

Let M = M1 × · · · ×Mn and f1, . . . , fn : M → R be C2 player cost functions, ω : M →
T ∗M the associated differential game form (2.2.1), and suppose u ∈M is a non–degenerate
differential Nash equilibrium, i.e. ω(u) = 0 and dω(u) is non–degenerate. We show that for

all f̃i ∈ C∞(M,R) sufficiently close to fi there exists a unique non–degenerate differential

Nash equilibrium ũ ∈M for (f̃1, . . . , f̃n) near u.

Proposition 2.3.1 (Parameterized Structural Stability [Rat+14b]). Non–degenerate differ-
ential Nash equilibria are parametrically structurally stable: given f1, . . . , fn ∈ C2(M,R),
ζ1, . . . , ζn ∈ C2(M,R), and a non–degenerate differential Nash equilibrium u ∈ M for
(f1, . . . , fn), there exist neighborhoods U ⊂ R of 0 and W ⊂ M of u such that for all
s ∈ U there exists a unique non–degenerate differential Nash equilibrium ũ(s) ∈ W for
(f1 + sζ1, . . . , fn + sζn).

Proof. Define f̃j : M1 × · · · ×Mn × R→ R by

f̃j(u, s) = fj(u) + sζj(u)

and ω̃ : M1 × · · · ×Mn × R→ T ∗(M1 × · · · ×Mn) by

ω̃(u, s) =
n∑
i=1

ψ̃Mi
◦ df̃i(u, s)

for all s ∈ R and u ∈ M1 × · · · × Mn and where ψ̃Mi
: T ∗(M1 × · · · × Mn × R) →

T ∗(M1 × · · · ×Mn × R). Observe that D1ω̃((u1, . . . , un), 0) is invertible since u is a non–
degenerate differential Nash equilibrium for (f1, . . . , fn). Therefore by the Implicit Function
Theorem [Abr+88, Prop. 3.3.13 (iii)], there exist neighborhoods V ⊂ R of 0 and W ⊂M of
u and a smooth function σ ∈ C∞(V,W ) such that

∀s ∈ V, u ∈ W : ω̃(u, s) = 0 ⇐⇒ u = σ(s).

Furthermore, since ω̃ is continuously differentiable, there exists a neighborhood U ⊂ V of
0 such that dω̃(σ(s), s) is invertible for all s ∈ U . We conclude for all s ∈ U that σ(s) ∈ M
is the unique Nash equilibrium for ((f1 + sζ1) |W , . . . , (fn + sζn) |W ), and furthermore that
σ(s) is a non–degenerate differential Nash equilibrium.

We remark that the preceding analysis extends directly to any finitely-parameterized
perturbation. For an arbitrary perturbation, we have the following.

Theorem 2.3.1 (Structural Stability [Rat+14b; Rat+14d]). Non–degenerate differential
Nash equilibria are structurally stable: let u ∈ M be a non–degenerate differential Nash
equilibrium for (f1, . . . , fn) ∈ C2(M,Rn). Then there exist neighborhoods U ⊂ C2(M,Rn) of
(f1, . . . , fn) and W ⊂ M of u and a C2 Fréchet–differentiable function σ ∈ C2(U,W ) such

that for all (f̃1, . . . , f̃n) ∈ U the point σ(f̃1, . . . , f̃n) is the unique non–degenerate differential

Nash equilibrium for (f̃1, . . . , f̃2) in W .
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Proof. Consider the operator Ω ∈ C1(C1(M,Rn)×M,Rn) defined by

Ω((f̃1, . . . , f̃n), (u1, . . . , un)) =
n∑
i=1

ψMi
◦ df̃i(u1, . . . , un). (2.3.1)

Note that the right–hand side is the differential game form ω̃(u1, . . . , un) for the game

(f̃1, . . . , f̃n). Suppose that u = (u1, . . . , un) is a non–degenerate differential Nash equilibrium.
A straightforward application of Proposition 2.4.20 [Abr+88] implies that the operator Ω is
C1 Fréchet–differentiable. In addition,

D2Ω((f1, . . . , fn), (u1, . . . , un)) = dω(u1, . . . , un). (2.3.2)

Since dω(u) is an isomorphism by assumption, we can apply the Implicit Function Theorem
[Abr+88, Prop. 3.3.13 (iii)] to Ω to get an open neighborhood W ⊂ M of u and V ⊂
C2(M,Rn) of (f1, . . . , fn) and a smooth function σ ∈ C2(V,W ) such that

∀f̃ ∈ V, v ∈ W : Ω(f̃ , v) = 0⇐⇒ v = σ(f̃)

where f̃ = (f̃1, . . . , f̃n). Furthermore, since Ω is continuously differentiable, there exists a
neighborhood U ⊂ V of (f1, . . . , fn) such that dΩ(f̃ , σ(f̃)) is invertible for all f̃ ∈ U . Thus,
for all f̃ ∈ U , σ(f̃) ∈ M is the unique non–degenerate differential Nash equilibrium in
W .

Let us return to Example 2.1 and examine what can happen in the degenerate case.

Example 2.1 (Betty–Sue: Structural Instability). Let us recall again the Betty–Sue example
in which we have a game admitting a continuum of differential Nash equilibria. An arbitrarily
small perturbation can make all the equilibria disappear. Ineed, let ε 6= 0 be arbitrarily small
and consider Betty’s perturbed cost function

f̃1(u1, u2) =
u2

1

2
− u1u2 + εu1. (2.3.3)

Let Sue’s cost function remain unchanged. A necessary condition that a Nash equilibrium
(u1, u2) ∈ M1 ×M2 must satisfy is ω(u1, u2) = 0 (see Proposition 2.2.1) thereby implying
D1f̃1(u1, u2) = u1 − u2 + ε = 0 and D2f2(u1, u2) = u2 − u1 = 0. This can only happen for
ε = 0. Hence, any perturbation εu1 with ε 6= 0 will remove all the Nash equilibria.

Example 2.2 (Jean–Paul: Structural Instability). Just as in the Betty–Sue example, we can
show that an arbitrary smooth perturbation to the game can remove all the Nash equilibria.
Consider the game (f̃1, f2) where f̃1 = 1

2
cos(θ1−θ2)+εθ1 for ε 6= 0. Then, since ω(θ1, θ2) = 0

is a necessary condition for Nash, it is easy to see that for any point (θ1, θ2) to be a Nash
equilibrium, ε = 0.
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2.4 Genericity

In this section, we show local Nash equilibria are generically non-degenerate differential
Nash equilibria in games on finite–dimensional manifolds; there is an open–dense set of games
whose local Nash equilibria are non–degenerate differential Nash equilibria. Throughout this
section we will assume the strategy spaces of players are finite–dimensional unless otherwise
stated.

As we showed in the previous section, non–degenerate differential Nash equilibria are
amenable to computation since they satisfy first– and second–order conditions reminiscent
of those from nonlinear programming. Continuing with the dynamical systems theory per-
spective, the following result is analogous to the fact that non–degenerate singularities are
generic [BT10].

Theorem 2.4.1 (Genericity [Rat+14b]). Non–degenerate differential Nash equilibria are
generic among local Nash equilibria: for any smooth boundaryless manifolds M1, . . . ,Mn there
exists an open–dense subset G ⊂ C∞(M1 × · · · ×Mn,Rn) such that for all (f1, . . . , fn) ∈ G,
if (u1, . . . , un) ∈M1× · · · ×Mn is a local Nash equilibrium for (f1, . . . , fn), then (u1, . . . , un)
is a non–degenerate differential Nash equilibrium for (f1, . . . , fn).

Proof. For the sake of ease of presentation, we present the proof only for the two player case
and remark that extended it is straightforward after several algebraic manipulations.

Consider a two–player game where player i’s cost function is fi ∈ C∞(M1 × M2,R).
Let J2(M1 × M2,R2) denote the second order jet bundle containing 2–jets j2f such that
f = (f1, f2) : M2×M2 → R2. Let (U,ϕ) be a product chart on M1×M2 that contains (µ1, µ2).
The dimensions of M1 and M2 are m1 and m2 respectively and we define m = m1 +m2. We
define S(m) to be the symmetric m×m matrices as follows

S(m) = {A ∈ Rm×m| A = AT}. (2.4.1)

For (A1, A2) ∈ S(m)2, we can partition each Ai as follows:

Ai =

[
A11
i A12

i

A21
i A22

i

]
(2.4.2)

where Akji ∈ Rmk×mj for j, k ∈ {1, 2}. The non–degeneracy of a differential Nash equilibrium
is determined by the determinant of Dω. Recall that Dω is constructed from components of
the symmetric matrices D2f1 and D2f2, i.e. the Hessians of f1 and f2. Hence, we partition
the space S(m)2 into two subsets S1(m) and S2(m) defined as follows:

S1(m) =

{[
A11

1 A21
1

A12
2 A22

2

]
∈ Rm×m

∣∣∣∣ A1, A2 ∈ S(m)

}
(2.4.3)

and

S2(m) =

{[
A11

2 A21
2

A12
1 A22

1

]
∈ Rm×m

∣∣∣∣ A1, A2 ∈ S(m)

}
(2.4.4)
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where S1(m) is the space corresponding to Dω and S2(m) is the space in which matrices con-
structed from the other pieces of the player Hessians that were excluded in the construction
of Dω. Then J2(M1 ×M2,R2) is locally diffeomorphic to

Rm × R2 × Rm1+m2 × Rm1+m2 × R
m(m+1)

2 × R
m(m+1)

2 (2.4.5)

and the 2–jet extension of f = (f1, f2) at a point (µ1, µ2) ∈M1×M2, namely j2f(µ1, µ2), in
coordinates is given by

(ϕ(µ1, µ2), ((f1 ◦ ϕ−1)(ϕ(µ1, µ2)), (f2 ◦ ϕ−1)(ϕ(µ1, µ2))), Df1(µ1, µ2),

Df2(µ1, µ2), D2f1(µ1, µ2), D2f2(µ1, µ2)). (2.4.6)

Define
Z(m) = {A ∈ S1(m)| det(A) = 0}. (2.4.7)

The set Z(m) is algebraic and hence, admits a canonical Whitney stratification having
finitely many algebraic strata (see [Gib+76, Chapter 1, Theorem 2.7]), i.e. it is the finite
union of submanifolds. By its construction, Z(m) has no interior points. Hence, it has
co–dimension at least one. Now, we consider the subset of the jet bundle J2(M1 ×M2,R2)
defined by

G1 =Rm × R2 × {0Rm1} × Rm2 × Rm1 × {0Rm2} × Z(m)× S2(m) (2.4.8)

where 0Rmi is the zero vector in Rmi . Note that {0Rmi} has co–dimension mi. Hence, G1 is
the union of submanifolds of co–dimension at least m1 +m2 + 1. By the Jet Transversality
Theorem (see Section 2.A.2, Theorem 2.A.3 or [Hir76, Theorem 2.8]) and Proposition 2.A.1,
since m1 + m2 + 1 > m1 + m2, for generic f = (f1, f2), the image of the 2–jet extension
j2f is disjoint from G1. Hence, there is an open–dense set of functions f = (f1, f2) such
that for each (µ1, µ2) ∈ M1 × M2, whenever D1f1(µ1, µ2) = 0 and D2f2(µ1, µ2) = 0 (i.e.
ω(µ1, µ2) = 0), the derivative of the differential game form has non–zero determinant (i.e.
det dω(µ1, µ2) 6= 0). Note that the conditions ω(µ1, µ2) = 0 and det(dω(µ1, µ2)) 6= 0 are
coordinate–invariant. Hence, this result is independent of the choice of chart.

Similarly, consider another subset of J2(M1 ×M2,R2) defined by

G2 =Rm × R2 × {0Rm1} × Rm2 × Rm1 × {0Rm2} × Z(m1)

× Rm1×m2 × S(m2)× S(m1)× Rm1×m2 × Z(m2) (2.4.9)

where Z(mi) is the subset of symmetric matrices S(mi) such that for A ∈ Z(mi), det(A) =
0. Since Z(mi) are algebraic and have no interior points, we may again use the Whitney
stratification theorem [Gib+76, Chapter 1, Theorem 2.7] to get that each Z(mi) is the union
of submanifolds of co–dimension at least 1. Hence, G2 is the union of submanifolds and has
co–dimension at least m1 + m2 + 2. Application of the Jet Transversality Theorem 2.A.3
and Proposition 2.A.1 yields an open–dense set of functions f = (f1, f2) such that when
ω(µ1, µ2) = 0 we have det(D2

iifi(µ1, µ2)) 6= 0 for each i ∈ {1, 2}.
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Since the intersection of two open–dense sets is open–dense, we have an open–dense set
of functions f = (f1, f2) such that for each (µ1, µ2) ∈ M1 ×M2 whenever ω(µ1, µ2) = 0,
det(D2

iifi(µ1, µ2)) 6= 0 for each i ∈ {1, 2} and det(dω(µ1, µ2)) 6= 0 independent of the choice
of chart.

Thus, there exists an open–dense setG ⊂ C∞(M1×M2,R2) such that for all f = (f1, f1) ∈
G, if (µ1, µ2) ∈ M1 × M2 is a local Nash equilibrium, then (µ1, µ2) is a non–degenerate
differential Nash equilibrium. Indeed, suppose (f1, f2) ∈ G and (µ1, µ2) ∈M1×M2 is a local
Nash equilibrium. Then, by Proposition 2.2.1, (µ1, µ2) necessarily satisfies ω(µ1, µ2) = 0 and
D2
iifi(µ1, µ2) ≥ 0 for each i ∈ {1, 2}. However, since (f1, f2) ∈ G, det(D2

iifi(µ1, µ2)) 6= 0 so
that D2

iifi(µ1, µ2) > 0. Hence, (µ1, µ2) is a differential Nash equilibrium. Further, (f1, f2) ∈
G implies that det(dω(µ1, µ2)) 6= 0; hence, (µ1, µ2) is non–degenerate.

Again, let M = M1 × · · · ×Mn and denote the set of players I = {1, . . . , n}. Given
f1, . . . , fn ∈ C∞(M,R), we define the set of local Nash equilibria as

LN(f1, . . . , fn) ={u ∈M |for each i ∈ I,Wi ⊂Mi,

fi(u) ≤ fi(u1, . . . , ui−1, u
′
i, ui+1, . . . , un) ∀u′i ∈ Wi\{ui}} (2.4.10)

and the set of non–degenerate differential Nash equilibria as

DN(f1, . . . , fn) = {u ∈M |ω(u) = 0, D2
iifi(u) > 0 ∀ i ∈ I, det(dω(u)) 6= 0}. (2.4.11)

Remark 2.4.1. As remarked in the proof of Theorem 2.4.1, we only show the details for the
two player case as the proof readily generalizes and its derivation would merely obfuscate the
core tools needed for the proof.

In Section 2.2, we showed that DN(f1, . . . , f2) ⊂ LN(f1, . . . , fn) for all f1, . . . , fn ∈
C∞(M1 × · · · × Mn,R). Theorem 2.4.1 shows that LN(f1, . . . , fn) = DN(f1, . . . , fn) for
all (f1, . . . , fn) in an open–dense subset G ⊂ C∞(M1 × · · · ×Mn,Rn). In other words, the
set of local Nash equilibria is generically equivalent to the set of non–degenerate differential
Nash equilibria.

Another interpretation of Theorem 2.4.1 is that degenerate local Nash equilibria can
become non–degenerate differential Nash equilibria under an arbitrarily small perturbation
to the game. In Section 2.3, we showed the converse is not true: non–degenerate differential
Nash equilibria persist under small smooth perturbations to player costs.

The results of Theorem 2.4.1 specialize to the case of zero–sum games.

Corollary 2.4.1 (Genericity for Zero–Sum Games). Non–degenerate differential Nash equi-
libria are generic amoung local Nash equilibria in zero–sum games: for any smooth bound-
aryless manifolds M1,M2 there exists an open dense subset G ⊂ C∞(M1×M2,R2) such that
for all (f,−f) ∈ G, if (p, q) ∈ M1 ×M2 is a local Nash equilibrium for (f,−f), then (p, q)
is a non–degenerate differential Nash equlibrium for (f,−f).

The proof of the above corollary is omitted since it follows the exact reasoning of the
proof for Theorem 2.4.1.
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2.5 Potential Games

In this section, we extend the notion of potential game as introduced by in [MS96] to games
on manifolds with the goal of building the proper tools needed for expounding upon the
coupled–oscillator game introduced in Example 2.2. It is an example on a non–trivial strategy
space which is based on a fundamental model that is used in a wide variety of engineering
applications.

First, let us define a potential game. We will recall the results for continuous games
defined by functions (f1, . . . , fn) on strategy spaces E1 × · · · × En where each Ei is an
interval of real numbers. We use the notation E = E1 × · · · × En and E−i = E1 × · · · ×
Ei−1 × Ei+1 × · · · × En.

Definition 2.5.1 (Potential Game [MS96]). A function Φ : E → R is an exact potential
for the game (f1, . . . , fn) on E if for each i ∈ {1, . . . , n} and for every u−i ∈ E−i we have

fi(v, u−i)− fi(w, u−i) = Φ(v, u−i)− Φ(w, u−i), for every v, w ∈ Ei. (2.5.1)

The game (f1, . . . , fn) on E is an exact potential game (or just potential game) if it
admits an exact potential.

The following results on characterizing continuous potential games were introduced by
Monderer and Shapley.

Lemma 2.5.1 ([MS96]). Consider a game (f1, . . . , fn) where for each i ∈ {1, . . . , n}, player
i has strategy space Ei which is an interval of real numbers. Suppose each fi is continuously
differentiable with respect to the choice variable ui and let φ : E1 × · · · × En → R. Then φ
is a potential for the game if and only if φ is continuously differentiable and

∂fi
∂ui

=
∂φ

∂ui
, for each i, j ∈ {1, . . . , n}. (2.5.2)

The next theorem is a classical result from physics and it boils down to an application
of de Rham cohomology [Lee12].

Theorem 2.5.1 ([MS96]). Suppose we have a game defined by cost functions (f1, . . . , fn)
which are continuously differentiable where player i has strategy space Ei ⊂ R which is an
interval of real numbers. The game is a potential game if and only if

∂2fi
∂ui∂uj

=
∂2fj
∂ui∂uj

, for every i, j ∈ {1, . . . , n}. (2.5.3)

Further, if the payoff functions satisfy (2.5.3) and v = (v1, . . . , vn) ∈ E1 × · · · × EN is an
arbitrary, fixed strategy profile, then a potential function for the game is given by

φ(u1, . . . , un) =
n∑
i=1

∫ 1

0

∂fi
∂ui

(u(t))
dui
dt

(t) dt (2.5.4)
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Potential games are an interesting class of games because they possess nice properties.
Indeed, if the strategy spaces are compact, then every potential game possess at least one pure
strategy Nash equilibrium [MS96]. Further, if the potential function for the game is (jointly)
convex, then natural dynamics such as gradient descent converge (see, e.g., [Kri+15]).

It is interesting to note that Monderer and Shapley provide a local condition—in both
Lemma 2.5.1 and Theorem 2.5.1—that can be checked to determine if a game is a potential
game. We will see that, while not directly obvious, this result can be extended to continuous
games on non–trivial strategy spaces by employing tools from differential geometry.

Let πM−i
: M1 × · · · ×Mn → M−i where M−i = M1 × · · · ×Mi−1 ×Mi+1 × · · · ×Mn

for each i ∈ {1, . . . , n} be natural projection maps. Let π∗M−i
denote its pullback, i.e. for a

function g : M−i → R, π∗M−i
g(u) = g(πM−i

(u)).

Definition 2.5.2 (Potential Game on Manifold). A game (f1, . . . , fn) on M1 × · · · ×Mn

where each Mi is a smooth, connected manifold (without boundary) is a potential game if
there exists a potential function φ ∈ C∞(M1×· · ·×Mn) such that fi−φ ∈ im π∗M−i

for each
i ∈ {1, . . . , n}.

This definition says that fi and φ differ by a function of u−i only and u−i are the decision
variables that selected by players in −i, i.e. they are not controlled or determined by
player i. The following two propositions, due to Stein, appeared in an unpublished technical
report [Ste10] and hence, we provide the statements and the proofs here with some minor
modifications.

Proposition 2.5.1 ([Ste10]). A game is a potential game if and only if its differential game
form is exact.

Proof. Suppose the game is a potential game so that there exists a potential function φ such
that fi − φ ∈ im π∗M−i

for each i ∈ {1, . . . , n}. Note that this is to say that fi and φ differ
by a function of u−i only. Then it is straightfoward to show that

n∑
i=1

∂(fi − φ)

∂ui
dui = 0 (2.5.5)

so that we have

ω =
n∑
i=1

∂fi
∂ui

dui =
n∑
i=1

∂φ

∂ui
dui = dφ. (2.5.6)

Hence, ω is exact. On the other hand, if the differential game form ω is exact, then there
exists some function φ ∈ C∞(M1×· · ·×Mn) such that ω = dφ. Since ψMi

◦ψMi
= id (where

id is identity) and ψMi
◦ ψMj

= 0, we have

ψMi
(dfi) = ψMi

(ω) = ψMi
(dφ).

Since d is linear, ψMi
◦ d(fi − φ) = 0. Furthermore, since Mi is connected, ker(ψM ◦ d) =

im π∗M−i
. Thus, fi − φ ∈ im π∗M−i

.
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Proposition 2.5.2 ([Ste10]). Suppose we have a game (f1, . . . , fn) on M = M1 × · · · ×Mn

where each Mi is a smooth, connected, compact manifold without boundary. The differential
game form ω associated with (f1, . . . , fn) is exact if and only if it is closed.

Proof. If the differential game form ω is exact, then it is closed since all exact forms are
closed (since d ◦ d = 0 by Theorem 2.A.1). Hence, we only need to prove that if dω = 0,
then it is exact.

From de Rham’s Theorem [Lee12, Theorem 18.14], we know that if
∫
c
ω = 0 for all

smooth 1-cycles c, then ω is exact. Hence, we need to show that
∫
c
ω = 0. First, fix

(v1, . . . , vn) ∈ M . Let ιv−i
: Mi → M be the natural inclusion map such that ιv−i

(v) =
(v1, . . . , vi−1, v, vi+1, . . . , vn). Then the map H∞1 (M1)× · · · ×H∞1 (Mn)→ H∞1 (M) given by

([α1], . . . , [αn]) 7→
[

n∑
i=1

ιv−i∗αi

]

is an isomorphism. Indeed, by Künneth’s formula (see, e.g. [Spa81, Chapter 5, §3], [Hat02,
Chapter 3]), the map H1(M1) × · · · × H1(Mn) → H1(M), i.e. for singular homology, is
an isomorphism. Furthermore, for any smooth manifold M , the map from smooth singular
homology to singular homology ι∗ : H∞p (M) → Hp(M) induced by inclusion is an isomor-
phism(see [Lee12, Theorem 18.7] and also Appendix 2.A). Thus, without loss of generality,
we can write the smooth 1-cycle c as c =

∑n
i=1 ιv−i∗αi where each αi is a smooth singular

1-cycle on Mi.
Now, we can compute the following for arbitrary smooth 1-cycle c:∫

c

ω =

∫
∑n

i=1 ιv−i∗αi

ω =
n∑
i=1

∫
ιv−i∗αi

ω =
n∑
i=1

∫
αi

ι∗v−i
ω =

n∑
i=1

∫
αi

dfi,v−i
= 0 (2.5.7)

where we use the notation dfi,v−i
for the derivative of fi given that v−i is fixed. The pullback

of the form ω by ιv−i
is equal to dfi,v−i

, i.e. ι∗v−i
ω = dfi,v−i

, thereby justifying the second to
last equality. The last equality holds by Stokes’ theorem [Lee12, Theorem 16.10].

Corollary 2.5.1. Suppose we have a game (f1, . . . , fn) on M = M1 × · · · ×Mn where each
Mi is a smooth, connected, compact manifold without boundary and let ω be its differential
game form. The game is a potential game if and only if its differential game form is closed
and a potential function for the game is given by

φ(u1, . . . , un) =

∫
γ

ω (2.5.8)

where γ is any piecewise differentiable path such that (v1, . . . , vn) 7→ (u1, . . . , un) where we
have fixed (v1, . . . , vn).

The proof is straightforward and thus, it is ommitted.
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Essentially Proposition 2.5.2 is a generalization of Theorem 2.5.1 and it allows us to
extend the local conditions (Equations (2.5.2) and (2.5.3)) to continuous games on manifolds
that are smooth, compact, and connected. To make the connection between (2.5.3) and the
differential game form more clear, let us consider a two player game (f1, f2) on M1 ×M2.
The condition that dω = 0, which by Corollary 2.5.1 ensures the game is a potential game,
can be expressed in local coordinates as

dω = d

(
∂f1

∂u1

du1 +
∂f2

∂u2

du2

)
=

(
∂2f2

∂u2∂u1

− ∂2f1

∂u2∂u1

)
du1 ∧ du2 (2.5.9)

Hence, dω = 0 is equivalent to
∂2f2

∂u2∂u1

=
∂2f1

∂u2∂u1

. (2.5.10)

Note that d is the exterior derivative and not the usual differential (see Appendix 2.A).

Remark 2.5.1. Recall the definition of dω; for this two–player game, in coordinates we can
express dω as [

∂f21
∂u21

∂2f1
∂u2∂u1

∂2f2
∂u1∂u2

∂f2
∂u22

]
(2.5.11)

If the local represetation of dω was symmetric, then the condition in (2.5.10) would be sat-
isfied. This exposes some interesting questions regarding computing the potential piece of
the an arbitrary game. We can write any matrix as the sum of a symmetric matrix and an
anti–symmetric matrix. Suppose we decompose dω in to its symmetric and anti–symmetric
parts and then, reconstruct the game corresponding to the symmetric piece, i.e. the potential
part of the original game. Then, can we say anything about the relationship between the
constructed potential game and the original game? Furthermore, will such insights lead to
better methods for computing equilibria? Similar ideas have been explored for finite games,
i.e. where the strategy spaces of the players are finite [Can+11; Can+13].

We remark that in the case the the strategy spaces are not compact and connected, we
can no longer rely on this local condition to check if our game is a potential game. However,
we can state the following.

Definition 2.5.3. For a game (f1, . . . , fn) on a smooth manifold without boundary M =
M1 × · · · × Mn, we say it is a local potential game if for point in M there exists a
coordinate neighborhood U such that ω|U = dφ for a function φ ∈ C∞(U) where ω is the
differential game form.

The above definition leads naturally to the following proposition.

Proposition 2.5.3. Suppose we have a game (f1, . . . , fn) on a smooth manifold without
boundary M = M1 × · · · ×Mn. Then if dω = 0, the game is a local potential game.
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The proof of the proposition is a direct application of the Poincaré Lemma [Lee12, The-
orem 15.11].

We now return to Example 2.2 and show that it is in fact a potential game and futhermore,
it admits a continuum of differential Nash equilibria. We remark that by restricting the
strategy spaces to be finite subsets of S1 for each player, the coupled oscillator game was
shown to be a potential game [Got+10]. Here we will extend this to the entire strategy space
S1 using the notion of a potential game on a manifold. We will show that the n–coupled
oscillator model admits a continuum of differential Nash equilibria and that a perturbed
version of the two–player games has multiple non–degenerate differential Nash equilibria.

Before we dive into the example, let us recall the basic model for n coupled oscillators (see
[Pal+07; Sep+07] and references therein for a more thorough presentation). Each oscillator
will have a position rk = xk + iyk ∈ C and a phase θk ∈ S1. We will denote the collection of
positions by r = (r1, . . . , rn) and the collection of phases by θ = (θ1, . . . , θn). The collection
of all the phases θ evolves on the n–torus, denoted

Tn = S1 × · · · × S1︸ ︷︷ ︸
n–times

.

The coupled oscillator model is given by

ṙj = eiθj (2.5.12)

θ̇j = uj(r, θ), j = 1, . . . , n (2.5.13)

where uj(r, θ) is some control input.
We can split the control input uj into three terms,

uj = θ0 + uspac
j (r, θ) + uori

j (θ), j = 1, . . . , n (2.5.14)

where θ0 ∈ R is a constant, uspac
j (r, θ) is the spacing control, and uori

j (θ) is the orientation
control. If we ignore the spacing control, i.e. uspac

j = 0, the we obtain what is referred to as
the phase model :

θ̇j = θ0 + uori
j (θ), j = 1, . . . , N (2.5.15)

which is a system of coupled-phase oscillators with identical natural frequency θ0.
We say the phases θk and θj are phase locked if θ̇kj = 0 where we use the abbreviated

notation θkj = θk − θj. A synchronized phase arrangement θ is a phase-locked arrangement
for which θk = θj for all pairs j and k.

Let us consider n coupled oscillators whose coupling is prescribed by a complete graph
G = (E, V ) where E is the set of edges and V is the set of vertices, i.e. if oscillator vk ∈ V
is connected to oscillator vj ∈ V then there is an edge ekj ∈ E. We denote the phase of
oscillator vj by θj. Let L be the Laplacian matrix of the graph G (see, e.g., [GR01, Chpater
13]) which is defined to have entries

Lk,j =


bk, if k = j
−1, if ekj ∈ E
0, otherwise

(2.5.16)
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where bk is the degree of vertex vk. We can define the Laplacian phase potential by

φ(θ) =
1

2n
〈 eiθ, Leiθ 〉 =

1

2n

n∑
k=1

〈 eiθk , Lkeiθ 〉 =
1

2n

n∑
i=1

(
bk −

∑
j∈Nk

〈 eiθk , eiθj 〉
)

(2.5.17)

where Lk is the k-th row of L and Nk is the index set of verticies connected to vk. Assuming
G is undirected, the gradient of φ(θ) is ∂φ

∂θk
= 1

N
〈 ieiθk , Lkeiθ 〉. In the phase model, if we

choose the gradient-based control

uori
j =

K1

n
〈 ieiθj , Ljeiθ 〉, j ∈ {1, . . . , n} (2.5.18)

with K1 6= 0, then the potential Φ(θ) evolves monotonically since

φ̇(θ) =
∂φ

∂θ

T

θ̇ =
K1

n2

n∑
j=1

〈 ieiθj , Ljeiθ 〉2 . (2.5.19)

Furthermore, the phase model with gradient-based orientation control is given by

θ̇j = θ0 +
K1

n

∑
l∈Nj

sin θjl. (2.5.20)

If K1 < 0, then the phases are synchronized under the feedback law; conversely, if K1 > 0,
then the phases are balanced under the feedback law. Details of these results are given
in [Sep+05b]. As shown in [Pal+07], maximizing the potential function φ leads to balanced
phases and minimizing the potential function φ leads to phase synchronization.

The interesting thing to note here is that the above system is a simplified Kuramoto
model of identical coupled–phase oscillators with limited interaction as specified through the
graph structure. As we have pointed out in Section 2.1, coupled oscillator models of this
type are commonly used in many engineering application domains.

Example 2.3 (Coupled Oscillators is a Potential Game). Consider n–coupled oscillators with
an interaction structure specified by a undirected, complete graph where the nodes represent
the oscillators and the edges indicate a connection between oscillators. As before, we denote
the phase of the j-th oscillator by θj and we use the notation θ = (θ1, . . . , θn) for the collection
of phases of all the oscillators. Each phase θj represents a point on the unit circle S1.

Recall the Laplacian phase potential φ defined in (2.5.17). We claim the game (f1, . . . , fn)
on Tn where

fj(θ) = − 1

n

∑
l∈Nj

cos θjl (2.5.21)

is a potential game in which the potential function it admits is φ. This is straightforward to
check. By Proposition 2.5.1, we need only verify that the differential game form ω is exact
and satisfies ω = dφ. Indeed,

dφ =
1

n

n∑
k=1

(∑
j∈Nk

sin θkj

)
dθk (2.5.22)
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which is exactly the differential game form ω for the game (f1, . . . , fn) in which the players
are cost minimizers. On the other hand, if each player is a utility maximizer with

f̃j(θ) = −fj(θ) =
1

n

∑
l∈Nj

cos θjl, (2.5.23)

then it is straightforward to show that the game is a postential game with potential function
−φ.

Example 2.4 (Coupled Oscillator Game Admits a Continuum of Nash). Again, consider
n–coupled oscillators with an interaction structure specified by a undirected, complete graph
where the nodes represent the oscillators and the edges indicate a connection between oscil-
lators. Let the phase of oscillator j be denoted by θj ∈ S1 and let its cost be given by

fj = − 1

n

∑
l∈Nj

cos(θj − θl) (2.5.24)

where Nj is the index set of oscillators that are coupled to oscillator j. Consider the potential
function

φ(θ1, . . . , θn) = − 1

2n

n∑
i=1

(∑
j∈Ni

cos(θi − θj)
)
. (2.5.25)

Just as in the previous example, the differential game form for the oscillator game satisfies
ω = dφ. Note that this indicates that the potential function for a game is not necessarily
unique—in particular, here we just dropped the constants bk from the potential function in
(2.5.17).

We claim that all points in the set{
(θ1, . . . , θn) ∈ S1 × · · · × S1

∣∣ θl = θj, ∀l, j ∈ {1, . . . , n}
}

(2.5.26)

are global Nash equilibria of the game. Indeed, consider player l and fix θj = β for all j 6= l.
Then θl = β is a best response—i.e. in the set of optimizers—by oscillator l to all other
oscillators playing θj = β. In particular,

fl(β, . . . , β) = −|Nl|
n

< − 1

n

∑
j∈Nl

cos(θ′l − β), ∀θ′l ∈ S1\{β}, (2.5.27)

where | · | is the cardinality. Thus there is a continuum of Nash equilibria for which the
oscillators are synchronized. In fact there is a continuum of differential Nash equilibria; this
is easily seen by checking that D2

llfl(θ1, . . . , θn) > 0 when θl = θj for all l, j.

It is interesting to note that if we considered the same game with the modification that
(f1, . . . , fn) are now utility functions and the oscillators are utility maximizers, then there is
a continuum of Nash equilibria now at all (θ1, . . . , θn) such that the oscillators are balanced.
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Connecting the above example back to Example 2.2, we have shown that for games on
non–trivial strategy spaces—even potential games which have inherently nice properties in
terms of existence and uniqueness of Nash equilibria and computation—pathologies and
undesirable properties can arise. Further, the example demonstrates the results in the pre-
vious section for an example on a non–trivial strategy space that is common mathematical
abstraction in many engineering applications.

While one may notice the symmetry in the game described in Example 2.2, breaking that
symmetry may still result in multiple Nash equilibria.

Example 2.2 (Jean–Paul: Preferred Phase). Return again to the Jean–Paul oscillator ex-
ample, i.e. n = 2. We will perturb Jean’s cost and leave Paul’s unchanged. Let Jean’s cost
be

f̃1 = −1

2
cos(γθ1 − θ2) (2.5.28)

and Paul’s cost be

f2 = −1

2
cos(θ2 − θ1) (2.5.29)

where in this example Jean and Paul have different preferences for their phase. Allowing γ
to take values in N\{1}, there are at least γ − 1 non–degenerate differential Nash equilibria:{

(θ1, θ2) ∈ S1 × S1| θ1 = θ2 =
2(k − 1)π

γ − 1
, k ∈ {1, . . . , γ − 1}

}
. (2.5.30)

The above set contains only stable, non–degenerate differential Nash equilibria of the game
(f1, f2) since points in this set satisfy ω(θ1, θ2) = 0, D2

iifi(θ1, θ2) > 0, and det(dω(θ1, θ2)) 6= 0.
In fact, they are (non–strict) global Nash equilibria. �

In our framework, stable equilibria attract nearby trajectories under the gradient flow
of the game, a fact which can be leveraged by a central planner. Indeed, the n–coupled
oscillator game can be thought of as an abstraction of generators or inverters—perhaps even
microgrids—coupling to the grid [DB12; Dör+13] where each of them is individually man-
aged. Due to the existence of a continuum of Nash equilibria, it is possible that the players
will equilibrate on a socially undesirable outcome. A central planner vying to coordinate
the individuals would therefore benefit from considering these second–order conditions when
designing incentives.

2.6 Computation of Local Nash Equilibria

Our sufficient conditions for local Nash equilibria based on first– and second–order properties
of player costs closely parallel theoretical developments in nonlinear programming [Ber99]
and optimal control [Pol97]. In this section we further exploit this analogy by proposing an
iterative steepest descent algorithm for computation of differential Nash equilibria.
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We adopt a dynamical systems perspective of an n–player game over the strategy space
U =

∏n
i=1 Ui with player costs fi : U → R. Specifically, we consider the continuous–time

dynamical system generated by the negative of the player’s individual gradients:

u̇ = −ω(u). (2.6.1)

Gradient play may be viewed as a better response strategy instead of a best response
strategy; in particular, this is a myopic tâtonnement process in which players adjust their
current strategy in a gradient direction [SA05]. If µ ∈ U is a differential Nash equilibrium,
then ω(µ) = 0. These dynamics are uncoupled in the sense the dynamics u̇i for each player
do not depend on the cost function of the other player. It is known that such uncoupled
dynamics need not converge to local Nash equilibria [HMC03]. However, we provide the
following result on convergence of these dynamics.

Proposition 2.6.1 ([Rat+13; Rat+14d]). If µ is a differential Nash equilibrium and the
spectrum of dω is strictly in the right–half plane, then µ is an exponentially stable stationary
point of the continuous–time dynamical system (2.6.1).

The above result was stated for the finite–dimensional case in [Rat+13, Prop. 4] and the
proof of the stated result is an application of [Abr+88, Thm. 4.3.4].

We say a non–degenerate differential Nash equilibrium is stable if the spectrum of dω is
strictly in the right–half plane. Equilibria that are stable—thereby attracting using decou-
pled myopic approximate best response—persist under small perturbations [Rat+13, Sec-
tion IV]. Furthermore, Theorem 2.3.1 shows that convergence of uncoupled gradient play to
such stable non–degenerate differential Nash equilibria persists under small smooth pertur-
bations to player costs since the spectrum varies continuously [DS67, Lemma 6.3].

Remark 2.6.1. Theorem 2.3.1 shows that convergence of uncoupled gradient play to such
stable non–degenerate differential Nash equilibria persists under small smooth perturbations
to player costs.

Toward developing a numerical algorithm that approximates Nash equilibria, we study
the forward–Euler approximation to (2.6.1). If each Ui is finite–dimensional, then by fixing
a step size h > 0, we obtain the discrete–time dynamical system

uk+1 = uk − hω(uk). (2.6.2)

Note that a differential Nash equilibrium is a fixed point of (2.6.2). Linearizing around
such an equilibrium, we obtain the following sufficient condition ensuring nearby strategies
converge to the Nash equilibrium under iteration of (2.6.2).

Proposition 2.6.2. For each i ∈ {1, . . . , n}, let Ui be finite–dimensional. If µ is a differ-
ential Nash equilibrium and all eigenvalues of −dω(µ) are in the open left–half plane, then
there exists η > 0 such that for all h ∈ (0, η), µ is an exponentially stable fixed point of the
discrete–time dynamical system (2.6.2).
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We interpret iteration of (2.6.2) as a steepest–descent algorithm analogous to techniques
in nonlinear programming [Ber99], and terminate the iteration when

∥∥ω(uk)
∥∥ becomes suffi-

ciently small. In fact, if the players are identical so that f1 = f2 = f , the algorithm exactly
reduces to gradient descent on f with constant stepsize. A less trivial case where (2.6.2)
reduces to gradient descent arises when f1 6= f2 yet ω is an exact 1–form, i.e. it is a potential
game. In this case, there exists a smooth function φ such that ω = dφ, and hence (2.6.2) is
again equivalent to gradient descent on φ.

The analogy between gradient descent algorithms for nonlinear programming and the
formula in (2.6.2) suggests a technique to numerically approximate differential Nash equilib-
ria in the class of open–loop differential games described in 2.1. In particular, the derivative
(2.1.4) can be approximated using techniques from numerical optimal control [Pol97], and
hence the formula in (2.6.2) may be iterated to approximate differential Nash equilibria in
the game.

Note that Proposition 2.6.2 only ensures local convergence of iterates of (2.6.2) to stable,
non–degenerate differential Nash equilibria. However, we have observed empirically in the
examples described in the next section that our proposed algorithm converges to a stationary
point of (2.6.2) when initialized from almost every randomly–sampled initial condition.

Existing methods for iterative approximation of Nash equilibria generally employ the
relaxation technique, where players alternately update their strategies by averaging their
current strategy with the best response to the other player’s current strategy,

uk+1
i = αuki + (1− α) arg min

µi∈Ui

fi(µi, u
k
−i), (2.6.3)

where α ∈ (0, 1) is a parameter and we again use the notation u−i to denote the strategies
of all players other than i. Assuming convexity in the strategy space and cost functions to
ensure there exists a unique Nash equilibrium, it is known that iterating (2.6.3) converges to
the Nash equilibrium [Baş87; Con+04; UR94]. Each iteration of (2.6.3) requires the solution
of a (generally non–convex) optimization problem at every iteration; in contrast, our scheme
requires only the evaluation of derivatives of the player costs at a single point.

2.6.1 Examples

In this section we demonstrate the preceding theoretical and algorithmic developments in
examples with (i) nonlinear and (ii) infinite–dimensional strategy spaces. Our proposed
method applies broadly, but we present examples where Nash equilibria are known explicitly
so that we may evaluate the scalability and accuracy of our algorithm.

Location Game

Here we consider two–player game on the unit circle, S1. The player costs fi : S1 × S1 → R
are given by

f1(θ1, θ2) = − cos θ1 + α1 cos (θ1 − θ2)

f2(θ1, θ2) = − cos θ2 + α2 cos (θ2 − θ1)
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Figure 2.1: Visualization of a two–player game played on a nonlinear strategy space (the
torus, S1×S1) as described in Section 2.6.1. Curves indicate the set of points where difi = 0
for each i ∈ {1, 2}; we have ω = 0 wherever the curves intersect. There are two differential
Nash equilibria, indicated by a dark circle; most initial conditions converge to one of these
via the steepest descent algorithm of Section 2.6. The empirical basin of attraction for each
Nash equilibria is illustrated by the filled region containing the point.

where α1, α2 ∈ R are parameters. An interpretation of these costs is that both players wish
to be near zero but far from each other. This game is a location game that is an abstraction
of a game that has many applications. In coordinates, the game form ω(θ1, θ2) is[

sin θ1 − α1 cos (θ1 − θ2) sin θ2 − α2 cos (θ2 − θ1)
]

and the Hessian dω(θ1, θ2) is[
cos θ1 − α1 cos(θ1 − θ2) α1 cos(θ1 − θ2)

α2 cos(θ2 − θ1) cos θ2 − α2 cos(θ2 − θ1)

]
.

Theorem 2.2.2 implies that any point (θ1, θ2) for which ω(θ1, θ2) = 0 and dω(θ1, θ2) > 0 is
an isolated local Nash equilibrium. Numerically, with α1 = 1, α2 = 1.05 we find two such
equilibria situated symmetrically around the zero angle: one near (1,−1.1) and the other
near (−1, 1.1). Points where ω = 0 but dω is not positive–definite are located at (0, π) and
(π, π). Applying the steepest descent algorithm of Section 2.6 with constant step–size 0.1
and termination tolerance 1×10−3, we find empirically that most initial conditions converge
to one of the two stable Nash equilibria within a few hundred iterations. See Figure 2.1 for
a visualization of this example.
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Open–loop Linear Quadratic Differential Game

As an illustration of the generality and scalability of our proposed algorithm, we numeri-
cally determine open–loop Nash equilibrium inputs in a linear–quadratic (LQ) game played
between m players. We consider the linear time–invariant differential equation

ẋ = Ax+
m∑
j=1

Bjuj, x(0) = x0

with player costs

fi =

∫ T

0

xT (t)Qix(t) +
m∑
j=1

uTj (t)Rijuj(t)dt

for each i ∈ {1, . . . ,m}. It is known that, under non–degeneracy conditions on the game
parameters [Eis82], the unique open–loop Nash equilibria strategy is given by the linear
state feedback ui(t) = −R−1

ii B
T
i Pi(t)x(t) for each i ∈ {1, . . . ,m} where Pi ∈ Rn×n satisfies

Pi(T ) = 0 and

−Ṗi = PiA+ ATPi +Qi − Pi
m∑
j=1

BjR
−1
jj B

T
j Pj.

Using the discretization scheme for optimal control problems described in Chapter 4 of [Pol97],
we numerically approximate differential Nash equilibria for this game using the steepest de-
scent algorithm of Section 2.6 and compare the result with the corresponding time–discretized
approximation of this closed–form expression. By considering randomly generated examples
where the entries of A, Bi, Qi, and Rij are chosen from a standard normal distribution (and
subsequently positive semi–definiteness is enforced for Qi and Rij) for each i, j ∈ {1, . . . ,m},
we find empirically that the limit point of our algorithm is insensitive to initialization and
yields strategies that are quantitatively similar to the time–discretized analytical formula.
Figure 2.2 shows how the relative error between the two solutions decreases as the number
N of time samples increases in a typical randomly generated example; specifically,

A =

[
−2.28 0.96
0.69 0.23

]
, B1 =

[
−0.53
0.39

]
, B2 =

[
−0.04
−0.49

]
,

Q1 =

[
1.69 −0.64
−0.64 3.02

]
, Q2 =

[
1.36 −0.08
−0.08 4.39

]
,

R11 = 1.85, R12 = 0.06, R21 = 1.1, R22 = 1.38.

We use a stepsize of 1 and a termination tolerance of 10−4.
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Figure 2.2: Relative error between open–loop Nash equilibria obtained from discretized
analytical formula, uLQN , and from steepest descent algorithm of Section 2.6, uN , in the
infinite–dimensional (linear–quadratic) game described in Section 2.6.1, with N samples in
the time discretization. The relative error between the two solutions decreases as N increases.

2.7 Inducing a Nash Equilibrium

The problem of inducing Nash equilibria through incentive mechanisms appears in engi-
neering applications including energy management [Coo+13] and network security [Rat+12;
Zhu+12b]. The central planner aims to shift the Nash equilibrium of the agents’ game to one
that is desirable from its perspective. Thus the central planner optimizes its cost subject to
constraints given by the inequalities that define a Nash equilibrium. This requires verifying
non–convex inequalities on an open set—a generally intractable task. A natural solution is
to replace these inequalities with first– and second–order sufficient conditions on each agent’s
optimization problem. As the Betty–Sue and Jean–Paul examples show (Example 2.1 and
2.2 respectively), these necessary conditions are not enough to guarantee the desired Nash
is isolated; the additional constraint that dω be non–degenerate must be enforced.

Example 2.1 (Betty–Sue: Inducing Nash). Consider a central planner who desires to opti-
mize the cost of deviating from the temperature τ ,

fp(u1, u2) = (u1 − τ)2 + (u2 − τ)2,

by inducing the agents to play (u1, u2) = (τ, τ). The planner does so by selecting a ∈ R and
augmenting Betty’s and Sue’s costs:

f̃a1 (u1, u2) = f1(u2, u2) +
a

2
(u1 − τ)2,
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f̃a2 (u1, u2) = f2(u1, u2) +
a

2
(u2 − τ)2.

Recall that Betty’s nominal cost is

f1(u1, u2) =
u2

1

2
− u1u2

and Sue’s nominal cost is

f2(u1, u2) =
u2

2

2
− u1u2.

The differential game form of the augmented game (f̃a1 , f̃
a
2 ) is

ω̃(u1, u2) = (u1 − u2 + a(u1 − τ))du1 + (u2 − u1 + a(u2 − τ))du2

and the Hessian of the differential game form at the differential Nash equilibrium is

dω̃(u1, u2) =

[
1 + a −1
−1 1 + a

]
.

For any a ∈ (−1,∞), (τ, τ) is a differential Nash equilibrium of (f̃a1 , f̃
a
2 ) since ω̃(τ, τ) = 0

and d2
iif̃

a
i (τ, τ) > 0. For any a ∈ (−1, 0], the game (f̃a1 , f̃

a
2 ) undesirable behavior. Indeed,

recall Section 2.6 in which we consider the gradient dynamics for a two player game. For
values of a ∈ (−1, 0), dω̃ is indefinite so that the equilibrium of the gradient system is a
saddle point. Hence, if agents perform gradient play and happen to initialize on the unstable
manifold, then they will not converge to any equilibrium. Further, while a = 0 seems like a
natural choice since it means not augmenting the players costs at all, it in fact gives rise to
a continuum of equilibria. However, for a > 0, dω̃ is positive definite so that, as the results
of Section 2.6 points out, (τ, τ) is a stable, non–degenerate differential Nash equilibrium and
as such, the gradient dynamics will converge and the value of a determines the contraction
rate.

We can consider a similar scenario for Jean and Paul.

Example 2.2 (Jean–Paul: Inducing Nash). Consider a central planner who desires to opti-
mize the cost of deviating from the phase τ :

fp(u1, u2) = (u1 − τ)2 + (u2 − τ)2.

Perhaps Jean and Paul are managers of generators or inverters and they need to connect
back to the grid in order to transfer power. Let the planner be the manager of the larger
power grid and suppose it can induce Jean and Paul to adjust their phases to (θ1, θ2) = (τ, τ)
by selecting b ∈ R and augmenting Jean’s and Pauls costs:

f̃ b1(θ1, θ2) = f1(θ1, θ2) +
b

2
cos(θ1 − τ)
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f̃ b2(θ1, θ2) = f2(θ1, θ2) +
b

2
cos(θ2 − τ).

Recall that Jean’s nominal cost is

f1(θ1, θ2) = −1

2
cos(θ1 − θ2)

and Paul’s nominal cost is

f2(θ1, θ2) = −1

2
cos(θ2 − θ2).

The differential game form of the augmented game (f̃ b1 , f̃
b
2) is

ω̃(θ1, θ2) =
1

2
(sin(θ1 − θ2)− b sin(τ − θ1)) dθ1 +

1

2
(sin(θ2 − θ2)− b sin(τ − θ2)) dθ2

and the Hessian of the differential game form at the differential Nash equilibrium is

dω̃(θ1, θ2) =

[
1
2

(cos(θ1 − θ2) + b cos(τ − θ1)) −1
2

cos(θ1 − θ2)
−1

2
cos(θ1 − θ2) 1

2
(cos(θ1 − θ2) + b cos(τ − θ2))

]
.

For any b ∈ (−1,∞), (τ, τ) is a differential Nash equilibrium of (f̃ b1 , f̃
b
2) since ω̃(τ, τ) = 0

and d2
iif̃

b
i (τ, τ) > 0. For any b ∈ (−1, 0], the game (f̃ b1 , f̃

b
2) undesirable behavior. Indeed,

just as we described for the above example, for values of b ∈ (−1, 0), dω̃ is indefinite so that
the equilibrium of the gradient system is a saddle point. Further, while b = 0 seems like a
natural choice since it means not augmenting the players costs at all, it in fact gives rise
to a continuum of equilibria. However, for b > 0, dω̃ is positive definite so that (τ, τ) is a
stable, non–degenerate differential Nash equilibrium and as such, the gradient dynamics will
converge and the value of b determines the contraction rate.

These examples indicates how undesirable behavior can arise when the operator dω is de-
generate. Further, if the goal is to induce a particular Nash equilibrium amongst competitive
agents, then it is not enough to consider only necessary and sufficient conditions for Nash
equilibria; inducing stable, non–degenerate differential Nash equilibria leads to desirable and
structurally stable behavior. We will utilize dω to enforce desirable convergence properties
in the construction of utility learning and incentive design algorithms in the sequel.

2.8 Discussion

By paralleling results in non–linear programming and optimal control, we developed first–
and second–order necessary and sufficient conditions that characterize local Nash equilibria
in continuous games on both finite– and infinite–dimensional strategy spaces. We further
provided a second–order sufficient condition guaranteeing differential Nash equilibria are
non–degenerate and, hence, isolated. We showed that non–degenerate differential Nash
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equilibria are structurally stable and thus small modeling errors or environmental distur-
bances generally will not result in games with drastically different equilibrium behavior.
Further, as a result of structural stability, our characterization of non–degenerate differen-
tial Nash equilibria is amenable to computation—in particular, gradient play converges to
stable, non–degenerate differential Nash equilibria. We illustrated that such a characteriza-
tion has value for the design of incentives to induce a desired equilibria. By enforcing not
only non–degeneracy but also stability of a differential Nash equilibrium, the central plan-
ner can ensure that the desired equilibrium is isolated and that gradient play will converge
locally. We will expound upon this concept in greater detail in the sequel.

There are a number of interesting directions for future research, some of which we touched
upon throughout the chapter. For instance, we mentioned decomposing the differential game
form in such a way that we extract the piece of the game that corresponds to a potential
game. In particular, an application of Hodge’s Decomposition [Abr+88, Chapter 8, §5] to the
differential game form ω tells us that it is the sum of an exact form, a co–exact form, and a
harmonic form. Using tools such as this from differential geometry, we can recover the poten-
tial piece of a game which, in a sense, is the cooperative piece of the game since it corresponds
to the part of each player’s objective function which is common across players. One inter-
esting direction for future research is in trying to utilize this information to inform methods
of computing Nash equilibria. We are actively pursuing generalizations of sufficient descent
techniques from nonlinear programming [Ber99] to develop algorithms which provably con-
verge to differential Nash equilibria over larger regions of attraction. We are investigating
using the potential piece to select sufficient descent directions. Moreover, another natural
extension could be in the consideration of strategy spaces that are manifolds with bound-
ary including regular constraint sets and manifolds with generalized boundaries [Jon+01].
Nash equilibria in games with constraints are typically called generalized Nash equilibria and
there has been extensive research in the class of convex games going all the way back to the
classical paper by Rosen [Ros65]. What has received little attention is non–convex games,
where either the objective functions are non–convex or even strategy spaces themselves are
non–convex. These are difficult problems, yet many tools from non–linear programming have
the potential to extend to non–cooperative programming. The contributions in this chapter
are certainly first steps toward this end.

Appendix 2.A Preliminaries

This appendix contains the standard mathematical objects used throughout this section in
particular and document in general (see [Lee12; Abr+88] for a more detailed introduction).

Suppose that M is second–countable and a Hausdorff topological space. Then a chart
on M is a homeomorphism ϕ from an open subset U of M to an open subset of a Banach
space. We sometimes denote a chart by the pair (U,ϕ). Two charts (U1, ϕ1) and (U2, ϕ2) are
Cr–compatible if and only if the composition ϕ2 ◦ ϕ−1

1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2) is a Cr–
diffeomorphism. A Cr–atlas on M is a collection of charts {(Uα, ϕα)}α∈A any two of which
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are Cr–compatible and such that the Uα’s cover M . A smooth manifold is a topological
manifold with a smooth atlas. We use the term manifold generally; we specify whether it is
a finite– or infinite–dimensional manifold only when it is not clear from context. If a covering
by charts takes their values in a Banach space E, then E is called the model space and we
say that M is a Cr–Banach manifold. We remark that one can form a manifold modeled on
any linear space in which one has theory of differential calculus; we use Banach manifolds
so that we can utilize the inverse function theorem.

Suppose that f : M → N where M,N are Ck–manifolds. We say f is of class Cr with
0 ≤ r ≤ k, and we write f ∈ Cr(M,N), if for each u ∈ M and a chart (V, ψ) of N with
f(u) ∈ V , there is a chart (U,ϕ) of M satisfying u ∈ U , f(U) ⊂ V , and such that the local
representation of f , namely ψ ◦ f ◦ ϕ−1, is of class Cr. If N = R, then ψ can be taken to be
the identity map so that the local representation is given by f ◦ ϕ−1.

Each u ∈M has an associated tangent space TuM , and the disjoint union of the tangent
spaces is the tangent bundle TM =

∐
u∈M TuM . The co-tangent space to M at u ∈ M ,

denoted T ∗uM , is the set of all real-valued linear functionals—or, simply, the dual—on the
tangent space TuM , and the disjoint union of the co–tangent spaces is the co–tangent bun-
dle T ∗M =

∐
u∈M T ∗uM . Both TM and T ∗M are naturally smooth manifolds [Abr+88,

Thm. 3.3.10 and Ch. 5.2 resp.].
For a vector space E we define the vector space of continuous (r + s)–multilinear maps

T rs (E) = Lr+s(E∗, . . . , E∗, E, . . . , E;R) with s copies of E and r copes of E∗ and where E∗

denotes the dual. We say elements of T rs (E) are tensors on E, contravariant of order r
and covariant of order s. Further, we use the notation T rs (M) to denote the vector bundle
of tensors contravariant of order r and covariant of order s [Abr+88, Def. 5.2.9]. In this
notation, T 1

0 (M) is identified with the tangent bundle TM and T 0
1 (M) with the cotangent

bundle T ∗M .
Suppose f : M → N is a mapping of one manifold into another, and u ∈ M , then

by means of charts we can interpret the derivative of f on each chart at u as a linear
mapping df(u) : TuM → Tf(u)N. When N = R, the collection of such maps defines a 1–form
df : M → T ∗M . More generally, a 1–form is a continuous map ω : M → T ∗M satisfying
π ◦ω = IdM where π : T ∗M →M is the natural projection mapping ω(p) ∈ T ∗pM to p ∈M .

We use the notation Ωk(M) to denote the k–forms on M (for more details, please
see [Abr+88, Chapter 7, §3]). In particular, Ω1(M) = T 0

1 (M). We define the exterior
derivative d : Ω(M)→ Ωk+1(M) as for finite dimensional manifolds as follows:

Theorem 2.A.1 ([Abr+88, Theorem 7.4.1]). For every smooth manifold M of dimension
n, there is unique family of linear maps dk(U) : Ωk(U) → Ωk+1(U) where U is open in M
and that we merely denote by d, called the exterior derivative, such that

1. d is R–linear and for α ∈ Ωk(U) and β ∈ Ω`(U), d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

2. If f : U → R is a real-valued function, then df is just the differential of f , df ,

3. d2 = d ◦ d = 0,
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4. d is natural with respect to restrictions, i.e. if U ⊂ V ⊂ M are open and α ∈ Ωk(V ),
then d(α|U) = (dα)|U .

We remark that the extension of the definition of exterior derivative for infinite dimen-
sional manifolds can be found in [Abr+88, Supplement 7.4A]. We will say a 1–form ω is
closed if its exterior derivative is zero, i.e. dω = 0.

A point u ∈ M is said to be a critical point of a map f ∈ Cr(M,R), r ≥ 2 if df(u) = 0.
At a critical point u ∈ M , there is a uniquely determined continuous, symmetric, bilinear
form (termed the Hessian) d2f(u) ∈ T 0

2 (M) such that d2f(u) is defined for all v, w ∈ TuM
by d2(f ◦ ϕ−1)(ϕ(u))(vϕ, wϕ) where ϕ is any product chart at u and vϕ, wϕ are the local
representations of v, w respectively [Pal63, Prop. in §7]. We say d2f(u) is positive semi–
definite if there exists α ≥ 0 such that for any chart ϕ,

d2(f ◦ ϕ−1)(ϕ(u))(v, v) ≥ α‖v‖2, ∀ v ∈ Tϕ(u)E. (2.A.1)

If α > 0, then we say d2f(u) is positive–definite. Both ω(u) = 0 and positive definiteness are
invariant with respect to the choice of coordinate chart.

Given a Banach space E and a bounded, symmetric bilinear form B on E, we say that
B is non–degenerate if the linear map A : E → E∗ defined by A(v)(w) = B(v, w) is a
linear isomorphism of E onto E∗, otherwise B is degenerate. A critical point u of f is called
non–degenerate if the Hessian of f at u is non–degenerate [Pal63, Def. in §7]. Degeneracy
is independent of the choice of coordinate chart.

Consider smooth manifolds M1, . . . ,Mn. The product space
∏n

i=1 Mi = M1 × · · · ×Mn

is naturally a smooth manifold [Abr+88, Def. 3.2.4]. In particular, there is an atlas on
M1 × · · · × Mn composed of product charts (U1 × · · · × Un, ϕ1 × · · · × ϕn) where (Ui, ϕi)
is a chart on Mi for i ∈ {1, . . . , n}. We use the notation ×ni=1ϕi = ϕ1 × · · · × ϕn and∏n

i=1 Ui = U1 × · · · × Un.
There is a canonical isomorphism at each point such that the cotangent bundle of the

product manifold splits:

T ∗(u1,...,un)(M1 × · · · ×Mn) ∼= T ∗u1M1 ⊕ · · · ⊕ T ∗unMn (2.A.2)

where ⊕ denotes the direct sum of vector spaces. There are natural bundle maps

ψMi
: T ∗(M1 × · · · ×Mn)→ T ∗(M1 × · · · ×Mn) (2.A.3)

annihilating the all the components other than those corresponding to Mi of an element in
the cotangent bundle for each i ∈ {1, . . . , n}. In particular,

ψMi
(ω1, . . . , ωn) = (0, . . . , 0, ωi, 0, . . . , 0)

where ω = (ω1, . . . , ωn) ∈ T ∗u (M1 × · · · ×Mn) and 0 is the zero functional in T ∗ujMj for each
j 6= i.



CHAPTER 2. CHARACTERIZATION AND COMPUATION OF LOCAL NASH 44

Let M = M1 × · · · ×Mn. Given a point u = (u1, . . . , un) ∈ M , then ιju : Mj → M is the
natural inclusion map where ιju(µ) = (u1, . . . , uj−1, µ, uj+1, . . . , un). Suppose we have a func-
tion f : M → R. Then the derivativesDif(u) of the map µi 7→ f(u1, . . . , ui−1, µi, ui+1, . . . , un)
where µi ∈ Mi for each i ∈ {1, . . . , n} are called the partial derivatives of f at u ∈
M [Abr+88, Prop. 2.4.12]. They are given by Dif(u)(vi) = df(u)(v̄i) where vi ∈ TuiMi

and v̄i = (0, . . . , 0, vi, 0, . . . , 0) ∈ TuM . Indeed, dιiu : TuiM → TuM is a map such that
dιiu(ui)(vi) = v̄i. Hence, by the chain rule, we have Dif(u) = d(f ◦ ιiu)(ui) = df(u) ◦ dιiu.
Further, we have that for v = (v1, . . . , vn), df(u)(v) =

∑n
i=1Dif(u)(vi). For second–order

partial derivatives, we use the notation D2
ijf(u) = Di(Djf)(u).

Let φ : M → N be a smooth map between smooth manifolds M and N and suppose
f : N → R is a smooth function on N . Then the pullback of f by φ is the smooth function
φ∗f = f ◦ φ on M . Suppose that α is a 1–form on N . Then the pullback of α by φ is the
1–form φ∗α on M defined by (φ∗α)p(X) = αφ(p)(dφp(X)) for p ∈ M and X ∈ TpM . The
pushfoward of a vector v ∈ TpM is a vector φ∗v ∈ TqN defined by φ∗v(f) = v(f ◦ φ) for all
smooth functions f : N → R.

2.A.1 Algebraic Topology

In this section, we briefly review some concepts and notation from algebraic topology as
needed for the main body of this chapter. A more detailed introduction can be found
in [Lee12, Chapter 18].

We first introduce singular homology. The standard p–simplex is the simplex ∆p =
[e0, . . . , ep] ⊂ Rp where e0 = 0 and ei is the i–th standard basis vector. Let M be a
topological space. A continuous map σ : ∆p →M is called a singular p–simplex in M . The
singular chain group of M in degree p, denoted Cp(M), is the free abelian group generated
by all singular p-simplices in M . An element of this group, called a singular p–chain, is a
finite formal linear combination of singular p–simplices in M with integer coefficients. The
boundary of a singular p–simplex σ : ∆p →M is the singular (p− 1)–chain ∂σ defined by

∂σ =

p∑
i=0

(−1)iσ ◦ Fi,p

where Fi,p : ∆p−1 → ∆p maps ∆p−1 homeomorphically onto the boundary face ∂i∆p by
sending

e0 7→ e0, . . . , ei−1 7→ ei−1, ei 7→ ei+1, . . . , ep−1 7→ ep.

The map ∂ : Cp(M)→ Cp−1(M) is called the singular boundary operator. A singular p–chain
c is called a cycle if ∂c = 0 and a boundary if c = ∂b for some singular (p+ 1)–chain b. Let
Zp(M) denote the set of singular p–cycles in M and Bp(M) the set of singular p–boundaries.
Note that since ∂ is a homomorphism, Zp(M) and Bp(M) are subgroups of Cp(M), and
because ∂ ◦ ∂ = 0, they satisfy Bp(M) ⊆ Zp(M). The p–th singular homology group of M is
the quotient group

Hp(M) =
Zp(M)

Bp(M)
.
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The sequence of abelian groups and homomorphisms

· · · → Cp+1(M)
∂−→ Cp(M)

∂−→ Cp−1(M)→ · · ·
is the singular chain complex and Hp(M) is the p–th homology group of this complex. The
equivalence class in Hp(M) of a singular p–cycle c is called its homology class and we denote
it by [c]. We say two p–cycles are homologous if they differ by a boundary.

Now, we introduce smooth singular homology and we will state the connection between
the two in a theorem. First, if M is now a smooth manifold, we call a map σ : ∆p → M
a smooth p–simplex in M where σ is smooth in the sense that it has a smooth extension
to a neighborhood of each point. The subgroup of Cp(M) generated by smooth simplices is
denoted by C∞p (M) and called the smooth chain group in degree p. We call elements in this
group which are formal linear combinations of smooth simplices smooth chains. Hence, we
define the p–th smooth singular homology group of M to be

H∞p (M) =
Ker(∂ : C∞p (M)→ C∞p−1(M))

Im(∂ : C∞p+1(M)→ C∞p (M))
.

The inclusion map ι : C∞p (M) ↪→ Cp(M) commutes with the boundary operator and hence,
induces a map on homology ι∗ : H∞p (M)→ Hp(M) defined by ι∗[c] = [ι[c]].

Theorem 2.A.2 ([Lee12, Theorem 18.7]). For any smooth manifold M , the map ι∗ :
H∞p (M)→ Hp(M) induced by inclusion is an isomorphism.

2.A.2 Differential Topology

Consider smooth manifolds M and N of dimension m and n respectively. An k–jet from
M to N is an equivalence class [x, f, U ]k of triples (x, f, U) where U ⊂ M is an open set,
x ∈ U , and f : U → N is a Ck map. The equivalence relation satisfies [x, f, U ]k = [y, g, V ]k
if x = y and in some (and hence any) pair of charts adapted to f at x, f and g have the same
derivatives up to order k. We use the notation [x, f, U ]k = jkf(x) to denote the k–jet of f at
x. The set of all k–jets from M to N is denoted by Jk(M,N). The jet bundle Jk(M,N) is a
smooth manifold (see [Hir76, Chapter 2] for the construction). For each Ck map f : M → N
we define a map jkf : M → Jk(M,N) by x 7→ jkf(x) and refer to it as the k–jet extension.

Definition 2.A.1. Let M , N be smooth manifolds and f : M → N be a smooth mapping.
Let Z be a smooth submanifold of N and p a point in M . Then f intersects Z transversally
at p (denoted f t Z at p) if either f(p) /∈ Z or f(p) ∈ Z and Tf(p)N = Tf(p)Z+ (f∗)p(TpM).

For 1 ≤ k < s ≤ ∞ consider the jet map

jk : Cs(M,N)→ Cs−k(M,Jk(M,N)) (2.A.4)

and let Z ⊂ Jk(M,N) be a submanifold. Define⋂| s(M,N ; jk, Z) = {h ∈ Cs(M,N)| jkh t Z}. (2.A.5)
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A subset of a topological space X is residual if it contains the intersection of countably many
open–dense sets. We say a property is generic if the set of all points of X which possess this
property is residual [BT10].

The following results will be used to prove genericity of non–degenerate differential Nash
equilibria.

Theorem 2.A.3 (Jet Transversality Theorem [Hir76, Theorem 2.8]). Let M , N be C∞

manifolds without boundary, and let Z ⊂ Jk(M,N) be a C∞ submanifold. Suppose that
1 ≤ k < s ≤ ∞. Then,

⋂| s(M,N ; jk, Z) is residual and thus dense in Cs(M,N) endowed
with the strong topology, and open if Z is closed.

Proposition 2.A.1 ([GG73, Chapter II.4, Proposition 4.2]). Let M,N be smooth manifolds
and Z ⊂ N a submanifold. Suppose that dimM < codimZ. Let f : M → N be smooth and
suppose that f t Z. Then, f(M) ∩ Z = ∅.

The Jet Transversality Theorem and Proposition 2.A.1 can be used to show a subset of
a jet bundle having a particular set of desired properties is generic. Indeed, consider the jet
bundle Jk(M,N) and recall that it is a manifold that contains jets jkf : M → Jk(M,N)
as its elements where f ∈ Ck(M,N). Let Z ⊂ Jk(M,N) be the submanifold of the jet
bundle that does not possess the desired properties. If dimM < codim Z, then for a generic
function f ∈ Ck(M,N) the image of the k–jet extension is disjoint from Z implying that
there is an open–dense set of functions having the desired properties.
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Chapter 3

Utility Learning and Incentive Design

We will pick up right where we left off in the last chapter: designing incentives to induce
more desirable outcomes. Recall the vignette introduced in Section 1.4.1. Imagine now that
not only do we have our drivers or energy consumers that make up society in our S-CPS,
but we also have a planner who is tasked with coordinating these individuals. This can be
the local transportation authority or the power company. It could also be a third–party
solution provider such as a traffic–routing cellphone application (e.g. Waze, Google Maps)
or a demand–response aggregation company (e.g. Ohmconnect).

We will consider a class incentive design problems in which the planner or coordinator,
terms which we will use interchangeably, does not know the underlying preferences of the
agents that it is trying to coordinate. In the economics literature these types of problems are
known as problems of asymmetric information—meaning that the involved parties do not
possess the same information sets and, as is often the case, one party posses some information
to which the other party is not privy. The particular type of information asymmetry which
we consider, i.e. where the preferences of the agents are unknown to the planner, results in
a problem of adverse selection. The classic example of adverse selection is the market for
lemons [Ake70] in which the seller of a used car knows more about the car than the buyer.
There are a number of components that are hidden from the buyer such as the maintenance
upkeep history, engine health, etc. Hence, the buyer could end up with a lemon instead of
a cherry.

We assume that agents, including the planner, are cost minimizers or alternatively, utility
maximizers—while in this chapter we will formulate the entire problem given all agents are
cost minimizers, the utility maximization formulation is completely analogous. When we say
the planner does not know the underlying preferences of the agents, we are assuming that it
does not know the value of the parameters of the agents’ cost functions. In the following sec-
tions, by taking a non–Bayesian approach, we will formulate a utility learning and incentive
design problems for both the case when the agents play according to a Nash equilibrium as
well as the case when the agents play myopically—e.g. the agents play according to a myopic
update rule. We formulate an algorithm for iteratively estimating preferences and designing
incentives. By adopting tools from adaptive control and online learning, we show that the
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algorithm converges under reasonable assumptions.
We remark that, in contrast, in Chapter 4 we will consider a similar incentive design

problem, where we take a Bayesian approach to the estimation problem. In particular, we
will assume the planner has a prior over the preferences of the agents.

The results in this chapter have strong ties to both the adaptive control literature [GS84;
KV86; SB89] and the online learning literature [CBL06; Nem+09; Rag+10]. The former
gives us tools to do tracking of both the observed output (agents’ strategies) and the control
input (incentive mechanism). It also allows us to go one step further and prove parameter
convergence under some additional assumptions—persistence of excitation—on the problem
formulation and, in particular, the utility learning and incentive design algorithm. The latter
provides tools that allow us to generalize the algorithm and get faster convergence of the
observed actions of the agents to a more desirable or even socially optimal outcome.

The remainder of this chapter is organized as follows. We first introduce the problem
formulation in Section 3.1. We follow that with the utility learning problem for both the
case when the agents play according to a Nash strategy and when they play myopically in
Section 3.2. We formulate the incentive design problem in Section 3.3 again for both the
case when agents play Nash and when they play myopically. In Section 3.4, we present the
utility learning and incentive design algorithm and study its convergence in the case without
noise in Section 3.5 and with noise in Section 3.6. Finally, we wrap up with discussion and
future directions in Section 3.7.

3.1 Problem Formulation

Consider a scenario in which there are n non–cooperative, self–interested agents competing
over some scarce resource. Let Ui ⊂ Rpi denote the strategy space of agent i. We will
use the notation U = U1 × · · · × Un to denote the joint strategy space of all the agents
and U−i = U1 × · · ·Ui−1 × Ui+1 × · · · × Un to denote the joint strategy space of all the
agents excluding the i–th agent. We denote the i–th agent’s cost function by fi(ui, u−i)
where ui ∈ Ui is its choice variable and u−i = (u1, . . . , ui−1, ui+1, . . . , un) ∈ U−i are the
choice variables of all the agents excluding the i–th agent. We use the notation fi(u) with
u = (u1, . . . , un) when more convenient.

Suppose there is planner tasked with inducing agents to play according to a more efficient
or desirable equilibrium. In particular, this more desirable equilibrium is the minimizer of
the planner’s cost fc(u, v) where v ∈ Rn is the choice variable of the planner and we recall
that u denotes the choice variables of the competitive agents. The planner’s cost function
could, in fact, be the social cost. That is, the sum of the costs of all the agents. Let (ud, vd)
denote the minimizer of the planner’s cost (which we assume is unique, otherwise the planner
must choose amongst the set of minimizers).

The planner is tasked with finding mappings γi ∈ Γ ⊂ C2(U,R) for each i ∈ {1, . . . , n}
such that γi(u

d) = vdi and ud = (ud1, . . . , u
d
n) is the collective response of the agents. For

instance, if the agents are assumed to play according to a Nash equilibrium, then ud must
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be a Nash equilibrium in the game induced by γ = (γ1, . . . , γn), i.e.

udi ∈ arg min
ui
{fi(ui, ud−i) + γi(ui, u

d
−i)}. (3.1.1)

so that udi is a best response to ud−i for each i ∈ {1, . . . , n}. Formally, we define a Nash
equilibrium as follows.

Definition 3.1.1 (Nash Equilibrium of the Incentivized Game). A point u ∈ U is a Nash
equilibrium of the incentivized game (f1(u) + γ1(u), . . . , fn(u) + γn(u)) if

fi(u) + γi(u) ≤ fi(u
′
i, u−i) + γi(u

′
i, u−i), ∀ u′i ∈ Ui. (3.1.2)

We remark that if for each i, the inequality in (3.1.2) holds only for a neighborhood
Wi ⊂ Ui of ui, then u is a local Nash equilibrium .

On the other hand, the agents may play myopically according to some update rule—e.g.
myopic approximate best response (see Section 2.6 in which we show convergence of gradient
play to stable, non–degenerate differential Nash equilibria), approximate fictitious play, or
one of many other update rules [FL98]. In this case, the agents’ collective response under
these dynamics must coincide with the desired response ud.

We assume that the planner knows the parametric structure of the agents’ cost functions
and receives observations of the agents’ choices over time; however, it does not know the
parameters of the agents’ cost functions. In particular, for each i ∈ {1, . . . , n}, we assume
that the cost function of agent i has the parametric form given by

fi(u) =

mi∑
j=1

φi,j(u)θ∗i,j (3.1.3)

where each φi,j ∈ C2(U,R) and {φi,1, . . . , φi,mi
} is the set of basis functions for player i. These

basis functions are known to the planner; however, the parameters θ∗i,j are unknown. Let
Φi(u) = [φi,1(u) · · · φi,mi

(u)]T and θ∗i = [θ∗i,1 · · · θ∗i,mi
]T . The admissible set of parameters

for player i is Θi, a compact subset of Rmi .

Assumption 3.1.1. For each i ∈ {1, . . . , n}, θ∗i ∈ Θi, i.e. each agent’s true parameters are
in the admissible set.

In addition, we define the admissible set of incentive mappings Γ ⊂ C2(U,R) to be all
such mappings

γi(u) =

si∑
j=1

ψi,j(u)αi,j (3.1.4)

for a set of basis functions {ψi,1, . . . , ψi,si} where each ψi,j ∈ C2(U,R) and αTi = [αi,1 · · · αi,si ]
are parameters. We use the notation Ψi(u) = [ψi,1(u) · · · ψi,si(u)]T and we denote the
collection of all parameters by αT = (αT1 , . . . , α

T
n ).
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Non–Cooperative Game

Planner, fc(u, v)

Agentn

Agent1

Agent2

fn(u, γn(u); θ
∗
n)

f1(u, γ1(u); θ
∗
1)

f2(u, γ2(u); θ
∗
2)

Utility Learning
(Estimation)

{ui}ni=1

response
agent

Incentive Design
(Control)

{γi(u)}ni=1

{θ∗i}ni=1

parameters

mechanism

Figure 3.1: Utility Learning and Incentive Design Algorithm Abstraction—The agents play
in a non–cooperative game induced by the incentive mechanisms {γi}ni=1. Their responses
{ui}ni=1 are observed by the planner who first formulates an estimate of the parameters
{θ∗i }ni=1 of the agents’ cost functions. Given the estimated parameters, the planner designs
the incentives {γi}ni=1 for the next round that induce the agents to play the desired ud while
satisfying γi(u

d) = vdi for each i ∈ {1, . . . , n}. The goal is to derive an algorithm so that
as the planner iterates through these steps, for each i ∈ {1, . . . , n}, the observed response
ui converges to the desired response udi and the incentive mapping γi(u) evaluates to the
desired value vdi .

We remark that this framework encompases the case where the basis functions of all
the agents’ cost functions are identical (φi,j ≡ φj, ∀ i ∈ {1, . . . , n}), the basis functions
of the incentive mappings for all the agents are identical (ψi,j ≡ ψj, ∀ i ∈ {1, . . . , n}), or
even the case when the parameters of the incentive mappings are constrained to be identical
(αi,j = αj, ∀ i ∈ {1, . . . , n}).

The planner receives observations u(k+1) at each time k and uses past observations
{u(t)}k+1

t=0 and past incentives {γ(t)}kt=0 to formulate an estimate of θ
(k+1)
i for each i ∈

{1, . . . , n}. Given these estimates, the planner then finds the parameters α(k+1) that in-
duce the agents to play the desired response ud. Figure 3.1 shows an abstraction of the
multi–level game and depicts each step in the process. Our goal is to design an algorithm—
in particular, the utility learning (estimation) and incentive design (control) steps—so that
as the planner iterates through the process perscribed by the algorithm, each agent’s ob-
served response ui converge to the desired response udi and the incentive mappings evaluate
to the desired values vdi .

We will formulate a solution to the utility learning and incentive design problems first,
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when the agents are rational and therefore play Nash at each iteration and second, when
the agents are myopic and play according to some update rule whose structure is known to
the planner. We refer to the former as the Nash–play case and the latter as the myopic–play
case. The latter allows us to consider more realistic versions of the incentive design problem
since the update rule may not require the agents to know the cost functions of all the other
agents but instead only have information on their choices at each iteration. For both cases
we consider the problem with and without noise.

3.2 Utility Learning Formulation

We begin by formulating the utility learning problem for both the Nash–play and myopic–
play cases with the goal of placing both cases into a unified framework that we can then use
to define an online algorithm for updating the estimate of θ∗ = (θ∗1, . . . , θ

∗
n) at each iteration.

3.2.1 Utility Learning Under Nash–Play

Let us introduce the following compact notation: fγii ≡ fi + γi. We will use the notation
fγii (u; θ) when we need to make the dependence on the parameter θ explicit. At iteration

k, given {u(t)}k+1
t=1 and {α(t)}kt=0, the planner forms an estimate θ

(k)
i for each i ∈ {1, . . . , n}.

Our goal is to formulate an online algorithm to estimate θ∗i for each i ∈ {1, . . . , n} as each
new observation u(t) is received. The observations u(t) are assumed to be Nash equilibria.
To this end, we write the problem in a more generic form.

Recall that by Proposition 2.2.1, we know that for the incentivized game (fγi1 , . . . , f
γn
n ),

ω(u) = 0 and D2
iif

γi
i (u) ≥ 0 for each i ∈ {1, . . . , n} are necessary conditions for a Nash

equilibrium u. Hence, we expect that for each t ∈ {0, . . . , k},

0pi×1 = Dif
γi
i (u(t+1)) = DiΦi(u

(t+1))T θ∗i +DiΨi(u
(t+1))Tα

(t)
i (3.2.1)

where

DiΦi(u
(t+1))T =

Di1Φi(u
(t+1))T

...
Dipi

Φi(u
(t+1))T

 .
In addition, for each i ∈ {1, . . . , n}, we have

0 ≤ D2
iif

γi
i (u(t+1)) = D2

iiΦi(u
(t+1), θ∗i ) +D2

iiΨi(u
(t+1), α

(t)
i ) (3.2.2)

where

D2
iiΦi(u

(t+1), θ∗i ) =

D
2
i1i1

Φi(u
(t+1))T θ∗i · · · D2

ipi i1
Φi(u

(t+1))T θ∗i
...

. . .
...

D2
i1ipi

Φi(u
(t+1))T θ∗i · · · D2

ipi ipi
Φi(u

(t+1))T θ∗i

 (3.2.3)
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and

D2
iiΨi(u

(t+1), α
(t)
i ) =


D2
i1i1

Ψi(u
(t+1))Tα

(t)
i · · · D2

ipi i1
Ψi(u

(t+1))Tα
(t)
i

...
. . .

...

D2
i1ipi

Ψi(u
(t+1))Tα

(t)
i · · · D2

ipi ipi
Ψi(u

(t+1))Tα
(t)
i

 . (3.2.4)

In an effort to unify notation across this subsection on agents playing Nash and the sequel
on agents playing myopically, we define

yt+1
i = −DiΨi(u

(t+1))Tα
(t)
i (3.2.5)

and
Ξt
i = DiΦi(u

(t+1)) (3.2.6)

so that
yt+1
i = (Ξt

i)
T θ∗i . (3.2.7)

Let the admissible set of θi’s at iteration k be denoted by Θk
i . They are defined by adding the

second–order conditions from the assumption that the observations at times t ∈ {1, . . . , k}
are Nash equilibria. These sets are nested, i.e.

Θk
i ⊆ Θk−1

i ⊆ · · · ⊆ Θ0
i ⊆ Θi,

since at each iteration an additional constraint is added to the previous set. To make this
more concrete, consider the case where each pi = 1, i ∈ {1, . . . , n}. Then we can define

Ai(u
(1,k)) =

D
2
iiΦi(u

(1))T

...
D2
iiΦi(u

(k))T

 and bi(u
(1,k), α

(0,k−1)
i ) =

 D2
iiΨi(u

(1))Tα
(0)
i

...

D2
iiΨi(u

(k))Tα
(k−1)
i


where we use the fact that D2

iiΦi(u
(t), θ∗i ) = D2

i1i1
Φi(u

(t))T θ∗i = D2
iiΦi(u

(t))T θ∗i and we use the

notation u(1,k) = (u(1), . . . , u(k)) and similarly for α
(0,k−1)
i . Then using the above notation,

the set of admissible θi’s are defined by

Θk
i = {θi ∈ Θi| Ai(u(1,k))θi + bi(u

(1,k), α
(0,k−1)
i ) ≥ 0} ⊆ Θi. (3.2.8)

Thus it is clear that the sets are nested. Similarly, for higher dimensional strategy spaces,
i.e. pi > 1, the nested sets are given by

Θk
i = {θi ∈ Θi| D2

iiΦi(u
(t), θi) +D2

iiΨi(u
(t), α

(t−1)
i ) ≥ 0, t ∈ {1, . . . , k}} ⊆ Θi. (3.2.9)

Note, in this case, the sets are defined by semi–definite constraints which are still con-
vex [BV04]. We remark that θ∗i ∈ Θk

i for all k since, by assumption, each observation u(k) is
a local Nash equilibrium (again, see Proposition 2.2.1).
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3.2.2 Utility Learning Under Myopic–Play

We now consider that the agents may not play exactly according to a Nash equilibrium
strategy and instead, play according to some mypoic update rule. For example, they may
play according to approximate myopic best response (gradient play) [Rat+13; FL98; CBL06]
where agents may update their strategies according to (2.6.2) or even a modified version in
which they have their own learning rates :

u
(k+1)
i = u

(k)
i − hiDif

γ
(k)
i

i (u(k)) (3.2.10)

where hi represents player i’s learning rate. There are many other possible update rules
including approximate fictitious play under which players play an approximate best response
to the historical frequency of play and partial approximate best response under which a fixed
portion of the population switches each period from their current action to an approximate
best response to the aggregate statistic from the previous period (see, e.g., [FL98] for a more
detailed description of both fictitious play and partial approximate best response as well as
other learning dynamics).

We consider any update rule that can be written in the form

u
(k+1)
i = Φ̃i(u

(k))T θ∗i + Ψ̃i(u
(k))Tα

(k)
i (3.2.11)

for each i ∈ {1, . . . , n} where Φ̃i(u
(k))T ∈ Rpi×mi and Ψ̃i(u

(k))T ∈ Rpi×ni . Note that Φ̃i and

Ψ̃i could on the entire past response which we denote by u(0,k) or some subset of the past
responses u(j,l) for some j, l ∈ {0, . . . , k} such that j ≤ l. This would certainly be the case
for an update rule determine by approximate fictitious play, for instance. In the remainder,
we will simply show the dependence on u(k) and just remind the reader that the framework
is flexible enough to encompass dependence on any subset of the past responses.

Let us consider an example. Suppose the agents are playing according to gradient play.
Then, for a given player’s incentivized cost fγii (u) = Φi(u)T θ∗i +Ψi(u)Tαi, it is straightforward
to write

u
(k+1)
i = u

(k)
i − hi(DiΦi(u

(k))T θ∗i +DiΨi(u
(k))Tα

(k)
i )

for each i ∈ {1, . . . , n} in the form of (3.2.11) by either augmenting the parameter θ∗i to

contain the observation u
(k)
i at each iteration and modifying the constraint set for θ appro-

priately or by allowing the left–hand side of (3.2.11) to be ∆u
(k+1)
i = (u

(k+1)
i −u(k)

i ) and then

defining Φ̃i and Ψ̃i appropriately. We remark that the formulation of the update rule from
the particular myopic–play details determines the relationship between γi(u) = Ψi(u)Tαi
and Ψ̃i(u). For that matter, it also determines the relationship between fi and Φ̃i.

As before, we denote the set of admissible parameters for player i by Θi which we assume
to be a compact subset of Rmi . Again, we assume that θ∗i ∈ Θi for each i ∈ {1, . . . , n}. In
contrast to the Nash–play case, our admissible set of parameters is no long time varying;
however, it could be time–varying in the event there are additional constraints that need to
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be enforced as long as the true parameter θ∗i remains in the admissible set at each iteration
and the sets remain closed.

Keeping consistent with the notation of the previous sections, we let

yk+1
i = u

(k+1)
i − Ψ̃i(u

(k))Tα
(k)
i (3.2.12)

and
Ξk
i = Φ̃i(u

(k)) (3.2.13)

so that (3.2.11) is rewritten as
yk+1
i = (Ξk

i )
T θ∗i . (3.2.14)

At iteration k, the planner uses data {u(t)}k+1
t=0 and {α(t)}kt=0 to estimate θ(k) which is used

to design α(k). Notice that we assume the planner observes u(0)—this was not needed in the
Nash–play case. The reason we need it in the myopic–play case is so we can determine Ξ0

i

and y1
i .

Now we have massaged both the Nash–play and myopic–play cases in to the same basic
form, i.e. for each case, at iteration k, the planner receives an observation

yk+1
i = (Ξk

i )
T θ∗i (3.2.15)

for each i ∈ {1, . . . , n} and the planner’s goal is to estimate θ∗i given the past observations
and the past incentives.

3.3 Incentive Design Formulation

In this section, we formulate the incentive design problem for both the Nash–play and
myopic–play cases. In both cases, at iteration k, the planner has past observations and
incentives and has an estimate of each θ

(k+1)
i for i ∈ {1, . . . , n}. The data the planner has for

the Nash–play case includes the choices of the players {u(t)}k+1
t=1 and the parameters of the

incentives that have been issued {α(t)}kt=0. The data the planner has in the myopic–play case
includes the choices of the players {u(t)}k+1

t=0 and the parameters of the incentives that have
been issued {α(t)}kt=0. The planner will use the past data along with the parameter estimates

to find an α(k+1) = (α
(k+1)
1 , . . . , α

(k+1)
n ) such that γi(u

d) = vdi and for each i ∈ {1, . . . , n}, udi
is the response of player i at iteration k + 1. In the Nash–play case, this means ud is the
induced Nash equilibrium in the game

(fγ11 (u; θ
(k+1)
1 ), . . . , fγnn (u; θ(k+1)

n ))

where fγii (u; θ
(k+1)
i ) denotes the incentivized cost of player i parameterized by θ

(k+1)
i . In the

myopic–play case, this means for each i ∈ {1, . . . , n},

udi = Φ̃i(u
(k))T θ

(k+1)
i + Ψ̃i(u

(k))Tα
(k+1)
i .

Let us flesh out the details for each case.
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3.3.1 Incentive Design Under Nash–Play

Given an estimate of θ
(k+1)
i for each i ∈ {1, . . . , n}, the planner seeks an incentive map-

ping γ(k+1) = (γ
(k+1)
1 , . . . , γ

(k+1)
n ) such that it induces the desired Nash equilibrium ud and

γ
(k+1)
i (ud) = vdi for each i ∈ {1, . . . , n}. Given that γi has been parameterized, this amounts

to finding α
(k+1)
i for each i ∈ {1, . . . , n} such that ud is a Nash equilibrium of the game

(Φ1(u)T θ
(k+1)
1 + Ψ1(u)Tα

(k+1)
1 , . . . ,Φn(u)T θ(k+1)

n + Ψn(u)Tα(k+1)
n )

and such that Ψi(u
d)Tα

(k+1)
i = vdi for each i ∈ {1, . . . , n}.

Recall the conditions defining a differential Nash equilibrium (see Definition 2.2.2): ω(u) =
0 and D2

iif
γi
i (u) > 0. By Theorem 2.2.1, these are also sufficient conditions for a local Nash

equilibrium.

Assumption 3.3.1. For every {θi}ni=1 where θi ∈ Θi, there exist αi ∈ Rsi for each i ∈
{1, . . . , n} such that ud is the induced differential Nash equilibrium in the game

(fγ11 (u; θ1), . . . , fγnn (u; θn))

and γi(u
d) = vdi where γi(u) = Ψi(u)Tαi.

We remark that the above assumption is not restrictive in the following sense. Finding αi
that induces the desired Nash equilibrium and results in γi evaluating to the desired incentive
value amounts to finding α

(k+1)
i such that the first– and second–order sufficient conditions

for a local Nash equilibrium are satisfied given our estimate of the player cost functions.
Recall that for each i ∈ {1, . . . , n} the first–order conditions are[

DiΦi(u
d)T θ

(k+1)
i

−vdi

]
︸ ︷︷ ︸

ζk+1
i

+

[
DiΨi(u

d)T

Ψi(u
d)T

]
︸ ︷︷ ︸

Λi

α
(k+1)
i =

[
0
0

]
︸︷︷︸

0(pi+1)×1

. (3.3.1)

and the second–order conditions are

0 < D2
ii(f

γi
i (ud)) = D2

iiΦi(u
d, θ

(k)
i ) +D2

iiΨi(u
d, α

(k+1)
i ) (3.3.2)

where we use the same notation as introduced in the previous section.
If Λi is full rank, i.e. has rank pi + 1, then there exists a α

(k+1)
i that solves (3.3.1). If the

number of basis function si satisfies si > pi + 1, then the rank condition is not unreasonable
and in fact, there are multiple solutions. In essence, by selecting si to be large enough, the
planner is allowing for enough degrees of freedom to ensure there exists a set of parameters
α that induce the desired result. Moreover, the problem of finding α

(k+1)
i reduces to a convex

feasibility problem.
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We remark on the case where γi ≡ γ for each i—in particular, Ψi,j ≡ Ψj and si = s for
each i. Let p =

∑n
i=1 pi. In this case, α ∈ Rs and the planner needs to find α(k+1) such that

γ(ud) = vd which amounts to finding α(k+1) such that
D1Φ1(ud)T θ

(k+1)
1

...

DnΦn(ud)T θ
(k+1)
n

−vd


︸ ︷︷ ︸

ζk+1

+


D1Ψ(ud)T

...
DnΨ(ud)T

Ψ(ud)T


︸ ︷︷ ︸

Λ

α(k+1) =


0
...
0
0


︸︷︷︸
0(p×1)

(3.3.3)

and (3.3.2) both hold for each i ∈ {1, . . . , n}. Note that Λ ∈ R(p+1)×s and ζk ∈ R(p+1)×1.
If Λ is full rank, i.e. has rank p + 1, then there exists a α(k+1) that solves (3.3.3). Just as
above, if the number of basis function s to satisfies s > p+ 1, then the rank condition is not
unreasonable. Hence, even in this more constrained scenario, Assumption 3.3.1 is arguably
not restrictive.

The convex feasibility problem defined by (3.3.1) and (3.3.2) (similarly, (3.3.3) and
(3.3.2)) can be formulated as a least–squares type optimization problem:

min
αk+1
i ∈Rsi

‖ζk+1
i + Λiα

(k+1)
i ‖2

2

s.t. D2
iiΦi(u

d, θ
(k+1)
i ) +D2

iiΨi(u
d, α

(k+1)
i ) > 0, ∀i ∈ {1, . . . , n}

(3.3.4)

A regularizer could be added to the problem in order to ensure a sparse αk+1
i is found by

adding the term λ‖α(k+1)
i ‖1 to the cost in (3.3.4) where λ is the regularization coefficient

which is a well studied problem (see, e.g., [BV04, Chapter 4]).
If it is desirable that the induced Nash equilibrium is a stable, non-degenerate differential

Nash equilibrium (i.e. a stable, isolated Nash), then the planner must add additional con-
straints to the feasibility problem defined by (3.3.1) and (3.3.2). In particular, second–order
conditions on player cost functions must be satisfied, i.e. that the Hessian of the differential
game form dω is positive–definite. This reduces to ensuring

D2Φ(u, θ(k+1)) +D2Ψ(u, α(k+1)) > 0 (3.3.5)

where

D2Φ(u, θ(k+1)) =


D2

11Φ1(u, θ
(k+1)
1 ) D2

21Φ1(u, θ
(k+1)
1 ) · · · D2

n1Φ1(u, θ
(k+1)
1 )

D2
12Φ1(u, θ

(k+1)
2 ) D2

22Φ2(u, θ
(k+1)
2 ) · · · D2

n2Φ2(u, θ
(k+1)
2 )

... · · · . . .
...

D2
1nΦn(u, θ

(k+1)
n ) D2

2nΦn(u, θ
(k+1)
n ) · · · D2

nnΦn(u, θ
(k+1)
n )

 , (3.3.6)

D2Ψ(u, α(k+1)) =


D2

11Ψ1(u, α
(k+1)
1 ) D2

21Ψ1(u, α
(k+1)
1 ) · · · D2

n1Ψ1(u, α
(k+1)
1 )

D2
12Ψ1(u, α

(k+1)
2 ) D2

22Ψ2(u, α
(k+1)
2 ) · · · D2

n2Ψ2(u, α
(k+1)
2 )

... · · · . . .
...

D2
1nΨn(u, α

(k+1)
n ) D2

2nΨn(u, α
(k+1)
n ) · · · D2

nnΨn(u, α
(k+1)
n )

 . (3.3.7)
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The notation is consistent with (3.2.3) and (3.2.4). Notice that this constraint is a semi–
definite constraint [BV04]. Just as above, finding α(k+1) that induces ud to be a stable, non–
degenerate differential Nash equilibrium can be formulated as a constrained least–squares
type optimization problem:

min
αk+1
i ∈Rsi

‖ζk+1
i + Λiα

(k+1)
i ‖2

2

s.t. D2Φ(u, θ(k+1)) +D2Ψ(u, α(k+1)) > 0
(3.3.8)

By Assumption 3.3.1, for each i ∈ {1, . . . , n}, there is an α
(k+1)
i such that the cost is exactly

minimized. The optimization problem (3.3.8) can be written as a semi–definite program and

again a regularization term can be incorporated in order to find sparse parameters α
(k+1)
i .

Ensuring the desired Nash equilibrium is a stable, non–degenerate differential Nash equi-
librium means that, first and foremost, the desired Nash equilibrium is isolated. Thus, there
is no nearby Nash equilibria to which the agents will converge. As we saw in Chapter 2, non–
degenerate differential Nash equilibria are generic and structurally stable so that they are
robust to small modeling errors and environmental noise. Further, stability ensures that if at
each iteration players play according to a myopic approximate best response strategy (gra-
dient play), then they will converge to the desired Nash equilibrium (see Proposition 2.6.1).

If a stable equilibrium is desired by the planner, we can consider a modified version of
Assumption 3.3.1:

Assumption 3.3.1’ (Modified—Stable Differential Nash). For every {θi}ni=1 where θi ∈ Θi,
there exist αi ∈ Rsi for each i ∈ {1, . . . , n} such that ud is the induced stable, non–degenerate
differential Nash equilibrium in the game

(fγ11 (u; θ1), . . . , fγnn (u; θn))

and γi(u
d) = vdi where γi(u) = Ψi(u)Tαi.

3.3.2 Incentive Design Under Myopic Play

Given an estimate θ
(k+1)
i for each i ∈ {1, . . . , n}, the planner seeks an incentive mapping

γ(k+1) = (γ
(k+1)
1 , . . . , γ

(k+1)
n ) that induces the desired response ud and such that γ

(k+1)
i (ud) =

vdi for each i ∈ {1, . . . , n}. As before, given that γi has been parameterized, this amounts to

finding α
(k+1)
i such that

udi = Φ̃i(u
(k))T θ

(k+1)
i + Ψ̃i(u

(k))Tα
(k+1)
i (3.3.9)

and such that Ψi(u
d)Tα

(k+1)
i = vdi for each i ∈ {1, . . . , n}.

Assumption 3.3.2. For every {θi}ni=1 where θi ∈ Θi, there exist αi ∈ Rsi for each i ∈
{1, . . . , n} such that ud is the estimated collective response—that is, (3.3.9) is satisfied for

each i ∈ {1, . . . , n}—and such that Ψi(u
d)Tα

(k+1)
i = vdi .
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Finding the parameters α at each iteration that induce the desired response amounts to
solving a set of linear equations for each player. That is, for each i ∈ {1, . . . , n}, the planner
must solve [

udi − Φ̃i(u
(k))T θ

(k+1)
i

vdi

]
︸ ︷︷ ︸

ζ̃k+1
i

=

[
Ψ̃i(u

(k))T

Ψi(u
d)T

]
︸ ︷︷ ︸

Λ̃k
i

α
(k+1)
i (3.3.10)

for α
(k+1)
i . The above set of equations will have a solution if the matrix Λ̃k

i has rank pi + 1.
Choosing the set of basis functions {ψi,j}sij=1 such that si > pi + 1 makes this rank condition
not unreasonable. One unfortunate difference between the Nash–play case and the present
case of myopic–play is that in the former the planner could check the rank condition a priori
given that it does not depend on the observations. On the other hand, Λ̃k

i depends on the
observation at each iteration.

As before, the problem can be cast as a least–squares type optimization problem:

max
α
(k+1)
i ∈Rsi

‖ζ̃k+1
i − Λ̃k

i α
(k+1)
i ‖2

2 (3.3.11)

Again, by Assumption 3.3.2, for each i ∈ {1, . . . , n}, there is an α
(k+1)
i such that the cost is

exactly minimized. In addition, a regularization term λ‖α(k+1)
i ‖1 can be added to enforce a

sparse solution if so desired.

3.4 Algorithm

Now that we have formulated the utility learning problem and the incentive design problem
at each iteration, we formulate the algorithm for estimating the parameters and designing
the incentive mechanism.

At each iteration, the algorithm will have two main steps: update the estimate of θi and
choose parameters αi. For each i ∈ {1, . . . , n}, consider the loss function

`(θ
(k)
i ) =

1

2
(yk+1
i − (Ξk

i )
T θ

(k)
i )2

that evaluates the error in the predicted observation and the true observation at time k for
each player.

At iteration k, the parameter estimates of the θi’s are updated according to

θ
(k+1)
i = P

θ
(k)
i

(
ηk∇`(θ(k)

i )
)

(3.4.1)

where P
θ
(k)
i

is a prox–mapping associated with a distance generating function β(θ) (see

Appendix 3.A). In the Nash–play case, the time–varying prox–mapping P k+1

θ
(k)
i

is used in
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place of P
θ
(k)
i

. Note that if the prox–mapping that is used is associated with the distance

generating function β(θ) = 1
2
‖θ‖2

2, then the prox–mapping is the usual Euclidean projection,
Pθ(θ

′) = ΠΘi
(θ − θ′), so that

θ
(k+1)
i = ΠΘk

i

(
θ

(k)
i − ηk∇`(θ(k)

i )
)
. (3.4.2)

Given θ(k) = (θ
(k)
1 , . . . , θ

(k)
n ), define the set A(θ(k), u, v) to be the set of α(k) = (α

(k)
1 , . . . , α

(k)
n )

such that u is a differential Nash equilibrium of (fγ11 (u), . . . , fγnn (u)) and γi(u) = vi where

γi(u) = Ψi(u)Tα
(k)
i . Similarly, define As(θ(k), u, v) to be the set of α(k) that induce u

to be a stable, non–degenerate differential Nash equilibrium where γi(u) = vi. By As-
sumption 3.3.1 (respectively, Assumption 3.3.1’), A(θ(k), u, v) (respectively, As(θ(k), u, v)) is
non–empty. Further, it is straightforward to find an α(k) belonging to A(θ(k), u, v) (respec-
tively As(θ(k), u, v)) by solving the convex problem stated in (3.3.4) (resp. (3.3.8)). Define

Am(θ(k+1), u(k), ud, vd) to be the set of α
(k+1)
i that satisfy (3.3.10). Again, it is straightforward

to find an α
(k+1)
i by solving the optimization problem posed in (3.3.11).

Suppose central planner has optimized its cost fc(u, v) to determine ud and vd. If
the agents are playing according to Nash, then suppose that Assumption 3.3.1 (Assump-
tion 3.3.1’, respectively) holds. On the other hand, if the agents are playing myopically, then
suppose that Assumption 3.3.2 holds. Then, following Algorithm 1, the planner has a pro-
cedure for updating the parameter estimates for each agent’s cost function and for choosing
the incentive mechanism given the estimated parameters. In the Nash–play case, the plan-
ner must use the time varying prox–mapping P k+1

θ
(k)
i

where in the myopic–play case they use

P
θ
(k)
i

. Note that by replacing A(θ(k+1), ud, vd) in line 17 of Algorithm 1 with As(θ(k+1), ud, vd),

allows the planner to choose an incentive such that the estimated response is a stable, non–
degenerate differential Nash equilibrium.

3.5 Convergence Results

Let the set of basis functions for the agents’ cost functions be denoted by Fφ, that is φi,j ∈ Fφ
where φi,j : U → R for each j ∈ {1, . . . ,mi} for all i ∈ {1, . . . , n}.

Assumption 3.5.1. All the functions in Fφ are C2–Lipschitz continuous, i.e. for all φ ∈ Fφ,
φ ∈ C2 and there exists a real constant K ≥ 0 such that, for all x, y ∈ U , ‖(φ(x)−φ(y)‖R ≤
K‖x− y‖U where ‖ · ‖R and ‖ · ‖U are norms on R and U respectively.

Note that Assumption 3.5.1 implies that the derivative of any function in Fφ is uniformly
bounded.

Definition 3.5.1. If, for each i ∈ {1, . . . , n}, there exists a constant 0 < ci,1 <∞ such that
Ξt
i(Ξ

t
i)
T ≤ ci,1I for all t, then we say the algorithm is stable.
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Algorithm 1: Online Utility Learning and Incentive Design

1: If myopic–play then
2: Receive u(0)

3: Choose arbitrary θ
(0)
i ∈ Θi for each i ∈ {1, . . . , n}

4: Choose α
(0)
i ∈ Rmi for each i ∈ {1, . . . , n}

5: Issue incentive mapping γi(u) = Ψi(u)Tα
(0)
i

6: k ← 0
7: do
8: for i = 1, . . . , n do
9: Receive observation yk+1

i and incur loss `(θ
(k)
i )

10: utility learning:
11: If Nash–play then

12: θ
(k+1)
i = P k+1

θ
(k)
i

(
ηk∇`(θ(k)

i )
)

13: If myopic–play then

14: θ
(k+1)
i = P

θ
(k)
i

(
ηk∇`(θ(k)

i )
)

15: incentive design:
16: If Nash–play then
17: Choose α

(k+1)
i ∈ A(θ(k+1), ud, vd)

18: If myopic–play then
19: Choose α

(k+1)
i ∈ Am(θ(k+1), u(k), ud, vd)

20: Issue incentive mapping γi(u) = Ψi(u)Tα
(k+1)
i

21: end for
22: k ← k + 1
23: end do

In the Nash–play case, since Ξt
i = DiΦi(u

(t+1)), it is straightforward to see that such a
constant exists for each player. In the myopic–play case, we will assume that the stability
condition holds.

Definition 3.5.2. If for each i ∈ {1, . . . , n}, there exists a constant 0 < ci,2 < ∞ such
that ci,2I ≤ Ξt

i(Ξ
t
i)
T for all t, we will say the algorithm is persistently exciting. Define

c1 = maxi∈{1,...,n} ci,1 and c2 = mini∈{1,...,n} ci,1.

Note that we borrow these concepts of persistence of excitation and stability from the
adaptive control literature [GS84; KV86; SB89]. We make remarks after we present the
results on the connections to these concepts.

From Lemma 3.A.2, we know that for a time–varying prox–mapping P t+1
θ associated with

a distance generating function β(θ) (modulus ν) and a function

V (θ1, θ2) = β(θ2)−
(
β(θ1) +∇β(θ1)T (θ2 − θ1)

)
,
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for every θ1 ∈ (Θt)◦, θ2 ∈ Θt+1, and g ∈ Rm,

V (P t+1
θ1

(g), θ2) ≤ V (θ1, θ2) + gT (θ2 − θ1) +
1

2ν
‖g‖2

∗

where ‖ · ‖∗ denotes the dual norm to ‖ · ‖. For each i ∈ {1, . . . , n}, if we consider θ1 = θ
(t)
i ,

g = ηt∇`(θ(t)
i ), and θ2 = θ∗i , then we have

V (θ
(t+1)
i , θ∗i ) ≤ V (θ

(t)
i , θ

∗
i ) + ηt(θ

∗
i − θ(t)

i )T∇`(θ(t)
i ) +

η2
t

2ν
‖∇`(θ(t)

i )‖2
∗. (3.5.1)

Note that the time–varying prox–mapping is only needed for the Nash–play case; in the
myopic–play case, the standard prox–mapping that projects onto Θi for each i ∈ {1, . . . , n}
at each iteration can be used. To make the notation a little more compact, we will define
Vt(θi) ≡ V (θ

(t)
i , θi).

Theorem 3.5.1. Suppose that a central planner follows Algorithm 1 for utility learning
and incentive design with prox–mapping defined by the distance generating function β(θi) =
1
2
‖θi‖2

2 (modulus ν = 1). Further, suppose that the algorithm is persistently exciting, stable,

and that the step–size η is chosen such that η− η2

2
c1 > ε for some ε > 0 such that 0 < ε < 1

2c2
and where c1 and c2 are the stability and persistence of excitation bound respectively. Then
for each i ∈ {1, . . . , n}, the θ

(t)
i converges exponentially fast to θ∗i .

Proof. Let β(θi) = 1
2
‖θi‖2

2 so that ν = 1 and Vt(θ
∗
i ) = V (θ

(t)
i , θ

∗
i ) = 1

2
‖θ∗i − θ

(t)
i ‖2

2. From
Lemma 3.A.2, we have that

Vt+1(θ∗i ) ≤ Vt(θ
∗
i )− η(θ∗i − θ(t)

i )T∇`(θ(t)
i ) +

η2

2
‖∇`(θ(t)

i )‖2
2. (3.5.2)

Hence,

Vt+1(θ∗i ) ≤ Vt(θ
∗
i )− η(θ∗i − θ(t)

i )TΞt
i(Ξ

t
i)
T (θ∗i − θ(t)

i ) +
η2

2
(θ∗i − θ(t)

i )TΞt
i(Ξ

t
i)
TΞt

i(Ξ
t
i)
T (θ∗i − θ(t)

i )

(3.5.3)

≤ Vt(θ
∗
i ) + (θ∗i − θ(t)

i )T
(
η2

2
Ξt
i(Ξ

t
i)
T − ηI

)
Ξt
i(Ξ

t
i)
T (θ∗i − θ(t)

i ) (3.5.4)

≤ Vt(θ
∗
i ) + (θ∗i − θ(t)

i )T
(
η2

2
c1 − η

)
Ξt
i(Ξ

t
i)
T (θ∗i − θ(t)

i ) (3.5.5)

≤ Vt(θ
∗
i )− ε(θ∗i − θ(t)

i )TΞt
i(Ξ

t
i)
T (θ∗i − θ(t)

i ) (3.5.6)

≤ Vt(θ
∗
i )− εc2(θ∗i − θ(t)

i )T (θ∗i − θ(t)
i ) (3.5.7)

≤ Vt(θ
∗
i )(1− 2c2ε) (3.5.8)
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where we used that Ξt
i(Ξ

t
i)
T ≤ c1I (consequence of Assumption 3.5.1), η − η2

2
c1 > ε by

construction, and c2I ≥ Ξt
i(Ξ

t
i)
T (persistence of excitation). Since 0 < ε < 1

2c2
, we have that

1− 2c2ε < e−2c2ε. Hence,
Vt+1(θ∗i ) < e−2c2εVt(θ

∗
i ) (3.5.9)

so that
VT (θ∗i ) < e−2c2TεV0(θ∗i ) (3.5.10)

Therefore we have that θ
(t)
i → θ∗i exponentially fast. The same argument holds for each

i ∈ {1, . . . , n}.

We now relax the choice of β(θ) = 1
2
‖θ‖2

2 and consider more general distance generating
functions.

Remark 3.5.1. In choosing other distance generating functions β—besides β(θ) = 1
2
‖θ‖2

2—
that are informed by the geometry of Θ, we can greatly improve the dimension dependence
of the algorithm’s convergence rates. To provide some context, in [Nem+09], Nemirovski, et
al. show precisely how the choice of distance generating function, informed by the geometry
of the problem, can improve the convergence rate in a nice example. In particular, they
consider the problem of estimating x∗ which lives in X = {x ∈ Rn|∑n

i=1 xi = 1, x ≥ 0}, a
standard simplex. They update their estimates of each x∗i according to the standard Euclidean
projection algorithm (‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2 and β(x) = 1

2
‖x‖2

2) and according to an `1–norm
prox–mapping update where β(x) =

∑n
i=1 xi lnxi is the entropy function, ‖ · ‖ = ‖ · ‖1 and

‖·‖∗ = ‖·‖∞. In the standard Euclidean projection algorithm requires O(n lnn) operations to
compute the prox–mapping whereas the `1–norm requires only O(n) operations. Furthermore,
they show that better bounds on the expected loss can be acheived in the `1–norm case.

Theorem 3.5.2. Suppose that a central planner follows Algorithm 1 for utility learning and
incentive design using the prox–mapping associated with β (modulus ν). Further, suppose
the algorithm it is persistently exciting and stable. Let the step–size η be chosen such that
η− η2

2ν
c̃1 > ε for some ε such that 0 < ε < 1

2c2
with c2 = mini∈{1,...,n} ci,2 and where 0 < c̃1 <∞

is such that ‖Ξt
i‖2
∗ ≤ c̃1. Then, for each i ∈ {1, . . . , n},

lim
t→∞
‖(Ξt

i)
T (θ

(t)
i − θ∗i )‖2 = 0. (3.5.11)

Moreover, Vt(θ
∗
i ) converges for each i ∈ {1, . . . , n}.

Proof. Since Ξt
i(Ξ

t
i)
T ≤ c1I (consequence of Assumption 3.5.1), there exists a c̃1 > 0 such

that for all t, ‖Ξt
i‖2
∗ ≤ c̃1. From Lemma 3.A.2, we have that

Vt+1(θ∗i ) ≤ Vt(θ
∗
i )− η(θ∗i − θ(t)

i )T∇`(θ(t)
i ) +

η2

2ν
‖∇`(θ(t)

i )‖2
∗ (3.5.12)
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Hence,

Vt+1(θ∗i ) ≤ Vt(θ
∗
i )− η‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 +
η2

2ν
‖Ξt

i‖2
∗‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 (3.5.13)

≤ Vt(θ
∗
i )−

(
η − η2

2ν
‖Ξt

i‖2
∗

)
‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 (3.5.14)

≤ Vt(θ
∗
i )−

(
η − η2

2ν
c̃1

)
‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 (3.5.15)

≤ Vt(θ
∗
i )− ε‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 (3.5.16)

Thus,

‖(Ξt
i)
T (θ∗i − θ(t)

i )‖2 ≤ Vt(θ
∗
i )− Vt+1(θ∗i )

ε
(3.5.17)

Summing from t = 0 to t = T , we get

T∑
t=0

‖(Ξt
i)
T (θ∗i − θ(t)

i )‖2 ≤ V0(θ∗i )− VT+1(θ∗i )

ε
≤ V0(θ∗i )

ε
(3.5.18)

so that

lim
T→∞

T∑
t=0

‖(Ξt
i)
T (θ∗i − θ(t)

i )‖2 ≤ V0(θ∗i )

ε
<∞ (3.5.19)

which implies that
lim
t→∞
‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2 = 0 (3.5.20)

From (3.5.16) and the fact that Vt(θ
∗
i ) is always postive, we see that Vt(θ

∗
i ) is a decreasing

sequence and hence, it converges. The analysis holds for each i ∈ {1, . . . , n}.
Remark 3.5.2. Under the assumptions of Theorem 3.5.2, we can only show that observa-
tions converge to zero and that the prox–function Vt(θi) converges. Knowning the parameter
values—a consequence of Theorem 3.5.1—allows for the opportunity to gain qualitative in-
sights into how agents’ preferences affect the outcome of their strategic interaction. On the
other hand, as we have already remarked, the benefit in this case is that the distance gen-
erating function β can be chosen so that it is informed by the geometry Θ and this has the
potential to improve convergence rates.

In the myopic–play case, for Theorem 3.5.2 where we have used an arbitrary distance
generating function β and Ξt

i = Φ̃i(u
(t)), it is automatic that the observed response converges

to the desired response since the observed response is

u
(t+1)
i = Φ̃i(u

(t))T θ∗i + Ψ̃i(u
(t))Tα

(t)
i

and the predicted induced response is

udi = Φ̃i(u
(t))T θ

(t)
i + Ψ̃i(u

(t))Tα
(t)
i .
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so that ‖u(t+1)
i − udi ‖2 = ‖(Ξt

i)
T (θ∗i − θ(t)

i )‖2.

On the other hand, the result of Theorem 3.5.1 is that θ
(t)
i conveges to θi. This suggests

that u
(t+1)
i converges to udi . Indeed,

‖u(t+1)
i − udi ‖2

2 ≤ ‖Φ̃i(u
(t))T θ∗i − Φ̃T

i (u(t))θ
(t)
i ‖2

2 ≤ ‖Φ̃i(u
(t))T‖2

2,op‖θ∗i − θ(t)
i ‖2

2 (3.5.21)

Then, since Φ̃i(u
(t)) is a bounded linear operator (by Assumption 3.5.1), we have that

‖u(t+1)
i − udi ‖2

2 converges to zero. This implies that that ‖u(t+1) − ud‖2
2 converges to zero

where u = (u1, . . . , un).

Moreover, because of Assumption 3.3.2, we know that each α
(t+1)
i satisfies Ψi(u

d)Tα
(t+1)
i =

vdi . Let the set of basis functions for the incentive mapping be denoted by Fψ. That is,
ψi,j ∈ Fψ where ψi,j : U → R for each j ∈ {1, . . . , si} for all i ∈ {1, . . . , n}.

Assumption 3.5.2. All the functions in Fψ are C2–Lipschitz continuous, i.e. for all ψ ∈
Fψ, ψ ∈ C2 and there exists a real constant K ≥ 0 such that, for all x, y ∈ U , ‖(ψ(x) −
ψ(y)‖R ≤ K‖x− y‖U where ‖ · ‖R and ‖ · ‖U are norms on R and U respectively.

Let v
(t+1)
i = Ψi(u

(t+1))Tα(t+1). Then,

|v(t+1)
i − vdi |2 = |(Ψi(u

(t+1))−Ψi(u
d))Tα

(t+1)
i |2 ≤ ‖Ψi(u

(t+1))−Ψi(u
d)‖2‖α(t+1)

i ‖2
∗

By Assumption 3.5.2, we know that

‖Ψi(u
(t+1))−Ψi(u

d)‖ ≤ Ki‖u(t+1) − ud‖

for some constant Ki. Hence,

|v(t+1)
i − vdi |2 ≤ K2

i ‖α(t+1)
i ‖2

∗‖u(t+1) − ud‖2.

Therefore, as a consequence of the fact that ‖u(t+1)− ud‖2 converging to zero, we know that

|v(t+1)
i − vd|2 converges to zero since ‖α(t+1)

i ‖2
∗ <∞.

We summarize the above in the following result.

Corollary 3.5.1. Suppose the agents play according to the myopic update rule (3.2.11). Un-
der the assumptions of Theorem 3.5.1 (respectively, Theorem 3.5.2), for each i ∈ {1, . . . , n},
‖u(t+1)

i − udi ‖2 converges to zero. Furthermore, if Assumption 3.5.2 holds, then for each

i ∈ {1, . . . , n}, |v(t+1)
i − vd|2 converges to zero.

In the Nash–play case, we can use the fact that non–degenerate differential Nash equilibria
are structurally stable (see Theorem 2.3.1 in Chapter 2) to determine a bound on how close
an equilibrium of the incentived game

(fγ11 (u; θ∗1), . . . , fγnn (u; θ∗n)) (3.5.22)
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with γi(u) = Ψi(u)Tα
(t)
i for each i ∈ {1, . . . , n} is to the desired Nash equilibrium ud given

that we use the Algorithm 1 to estimate θ(t) = (θ
(t)
1 , . . . , θ

(t)
n ) and design α(t) = (α

(t)
1 , . . . , α

(t)
n ).

Note that the observed Nash equilibrium u(t+1) is in the set of Nash equilirbia of the
game (3.5.22).

First, we define some notation. We write the differential game form ω for the incentivized
game (fγ11 , . . . , fγnn ) (see Definition 2.2.1) now as a function of the parameter θ and the
decision variable u, i.e. ω(θ, u). By a slight abuse of notation, we will denote D1ω(θ, u)
and D2ω(θ, u) as the local representation of the differential of ω with respect to θ and u
respectively. If the parameters of the incentive mapping α(t) at each iteration t are C2

with respect to the players’ strategies u(t) = (u
(t)
1 , . . . , u

(t)
n ) and the cost function parameters

θ(t) = (θ
(t)
1 , . . . , θ

(t)
n ), then differential of ω is well–defined. We remark that we formulated the

optimization problem for finding the α’s as a constrainted least–squares problem and there
are well known results for determining when solutions to such problems are continuously
dependent on parameter perturbations [Löt83; BS00]. There is still some work in applying
such perturbation results to our setup. We leave this to future work and assume we have
sufficiently smooth α’s.

We use the notation p =
∑n

i=1 pi, m =
∑n

i=1mi, and s =
∑n

i=1 si.

Theorem 3.5.3. Suppose that for each t, α(t)(θ, u) ∈ C2(Rm × Rp,Rn) is chosen such that
ud is a non–degenerate differential Nash equilibrium. For ‖θ(t)− θ∗‖ sufficiently small, there
is a Nash equilibrium u∗ of the incentivized game (fγ11 (u; θ∗1), . . . , fγnn (u; θ∗n)) with γi(u) =

Ψi(u)Tα
(t)
i that is near the desired Nash equilibrium, i.e. there exists ε̄ > 0, such that for all

θ(t) ∈ Bε̄(θ
∗),

‖u∗ − ud‖ ≤
(

sup
0≤λ≤1

‖Dg((1− λ)θ∗ + λθ(t))‖
)
‖θ(t) − θ∗‖ (3.5.23)

where
Dg(θ) = −(D2ω)−1(θ, ud) ◦D1ω(θ, ud). (3.5.24)

Furthermore, if ‖Dg(θ)‖ is uniformly bounded by M > 0 on Bε̄(θ
∗), then

‖u∗ − ud‖ ≤M‖θ(t) − θ∗‖ (3.5.25)

Proof. Consider the differential game form ω(θ, u) which is given by

ω(θ, u) =
n∑
i=1

pi∑
l=1

(
mi∑
j=1

Dilφi,j(u)θi,j +

ni∑
k=1

Dilψi,k(u)αi,j

)
duli (3.5.26)

where Dilφ denotes the derivative of the φ with respect to the l–th coordinate of player i’s
strategy ui—similarly, for Dilψ—and {duli}pil=1 is a co–frame for Ui.
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Since ud is a non–degenerate differential Nash equilibrium, D2ω(θ∗, ud) is an isomor-
phism. Thus, by the Implicit Function Theorem [Abr+88, Theorem 2.5.7], there exists a
neighborhood W0 of θ∗ and a C1 function g : W0 → U such that for all θ ∈ W0,

ω(θ, g(θ)) = 0.

Furthermore,
Dg(θ) = −(D2ω)−1(θ, ud) ◦D1ω(θ, ud)

Let Bε̄(θ
∗) be the largest ε̄–ball inside of W0. Since Bε̄(θ

∗) is convex, by Proposition [Abr+88,
Proposition 2.4.7], we have that

g(θ(t))− g(θ∗) =

(∫ 1

0

Dg
(
(1− λ)θ∗ + λθ(t)

)
dλ

)
· (θ(t) − θ∗) (3.5.27)

Hence,

‖u∗ − ud‖ = ‖g(θ(t))− g(θ∗)‖ ≤
(

sup
0≤λ≤1

‖Dg
(
(1− λ)θ∗ + λθ(t)

)
‖
)
‖θ(t) − θ∗‖ (3.5.28)

Now, if ‖Dg(θ∗)‖ is uniformly bounded by M > 0 on Bε̄(θ
∗), then its straightforward to see

from (3.5.28) that
‖u∗ − ud‖ ≤M‖θ(t) − θ∗‖. (3.5.29)

As a consequence of Theorem 3.5.1 and Theorem 3.5.3, there exists a finite time t for
which ‖θ∗i −θ(t)

i ‖2
2 is sufficiently small for each i ∈ {1, . . . , n} so that a Nash equilibrium of the

incentivized game at time t is arbitrarily close to the desired Nash equilibrium ud. There may
be multiple Nash equilibria of the incentivized game; hence, if the agents converge to u∗ so
that u(t+1) = u∗, then the observed Nash equilibrium is near the desired Nash equilibria. We
know that for stable, non–degenerate differential Nash equilibria u(t+1), agents will converge
locally if following the gradient flow determined by the differential game form ω.

Corollary 3.5.2. Suppose the assumptions of Theorem 3.5.3 hold and that u∗ is stable.
If for each i ∈ {1, . . . , n}, agent i follows the gradient of their cost −Difi, then they will
converge locally to u∗ so that u(t+1) = u∗. Moreover, there exists an ε̄ > 0 such that for all
θ(t) ∈ Bε̄(θ

∗),

‖u∗ − ud‖ ≤
(

sup
0≤λ≤1

‖Dg((1− λ)θ∗ + λθ(t))‖
)
‖θ(t) − θ∗‖ (3.5.30)

The above corollary is a direct application of the Theorem 3.5.3 and Proposition 2.6.1.
The corollary essentially says that if the Nash equilibrium that the agents select is determined
by the gradient flow u̇ = −ω(θ∗, u) and they all intialize in a neighborhood of u∗, then u(t+1) =
u∗. The size of such a neighborhood can be approximated using techniques for computation
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of region of attraction via a Lyapunov function [Sas99, Chapter 5]. This is in part due to
the fact that in the case where α(t) is chosen so that ud is stable, i.e. dω(θ(t), ud) > 0, we
have that dω(θ∗, u∗) > 0 for θ(t) near θ∗ since the spectrum of dω varies continuously.

Remark 3.5.3. It is possible to explicitly construct the neighborhood W0 obtained via the Im-
plicit Function Theorem in Theorem 3.5.3 (see, e.g. [HH98, Theorem 2.9.10]. In particular,
the Implicit Function Theorem tells us that

L =

[
I 0

D1ω(θ, u) D2ω(θ, u)

]
is invertible. Then, we can choose R > 0 such that on B2R|L−1|(θ

∗, ud), the derivative Dω
(the local representation of the differential of ω with respect to (θ, u)) satisfies the Lipschitz
condition ∣∣Dω(θ′, u)−Dω(θ, v)

∣∣ ≤ 1

2R|L−1|2 |(θ
′, u)− (θ, v)|.

Then we know that our implicit map g : W0 → U is defined on W0 where we have constructed
W0 = BR(θ∗). This construction then allows us to explicitly determine the value of ε̄ which
in turn allows us to know how long to run Algorithm 1.

The result of Theorem 3.5.1 implies that the incentive value under u∗ from Theorem 3.5.3
is arbitrarily close to the desired incentive value.

Corollary 3.5.3. Under the assumptions of Theorem 3.5.1 and Theorem 3.5.3, there exists
a finite T such that for all t ≥ T ,

‖u∗ − ud‖2
2 ≤MCe−2c2tε, ∀ t ≥ T (3.5.31)

where C = nmaxi{2V0(θ∗i )} and u∗ is the Nash equilibrium of the incentivized game (3.5.22)
such that

‖u∗ − ud‖ ≤M‖θ(t) − θ∗‖ ∀ θ(t) ∈ Bε̄(θ
∗). (3.5.32)

Furthermore, if Assumption 3.5.2 holds, then for each i ∈ {1, . . . , n},

|v∗i − vdi |2 ≤MK2
i ‖α(t)

i ‖2
2Ce

−2c2tε, ∀ t ≥ T (3.5.33)

where Ki is the Lipschitz bound on Ψi and v∗i = Ψi(u
∗)Tα

(t)
i .

Proof. Choose T such that, for each i ∈ {1, . . . , n}, 2V0(θ∗i )e
−2εc2T < ε̄ so that we have

‖θ(t)
i − θi‖2

2 ≤ 2V0(θ∗i )e
−2εc2t, ∀ t ≥ T. (3.5.34)

Thus, ‖θ(t) − θ∗‖2
2 ≤ Ce−2εc2t, for all t ≥ T . By Theorem 3.5.3, we have that

‖u∗ − ud‖2
2 ≤MCe−2εc2t, ∀t ≥ T (3.5.35)
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where M is the uniform bound on ‖Dg(θ∗)‖. We know that vdi = Ψi(u
d)Tα

(t)
i and v∗i =

Ψi(u
∗)Tα

(t)
i . Hence, by Assumption 3.5.2, we have that

|v∗i − vdi |2 = |(Ψi(u
∗)−Ψi(u

d))Tα
(t)
i |2 (3.5.36)

≤ ‖Ψi(u
∗)−Ψi(u

d)‖‖α(t)
i ‖2

2 (3.5.37)

≤ K2
i ‖α(t)

i ‖2
2‖u∗ − ud‖2

2 (3.5.38)

≤MK2
i ‖α(t)

i ‖2
2Ce

−2εc2t, ∀t ≥ T. (3.5.39)

We have argued that following Algorithm 1 with a particular choice of prox–mapping,
the parameter estimates of each θ∗i converge to the true values and as a consequence we
can characterize the bound on how close the observed response and incentive value are to
their desired values. Knowing the true parameter values for θ∗ allows us to make qualitative
insights into the rationale behind the observed responses. Relaxing the assumptions and
choosing the prox–mapping to reflect the geometry of the feasible set, we can show more
conservatively that the observations converge. The planner no longer gains access to the
true parameter values, but has the opportunity to increase convergence rates of the utility
learning and incentive design procedure. An interesting direction for future research would
be to explore this tradeoff.

3.6 Uncertainty in Agent Play

In this section, we will use the unified framework that describes both the case where the
agents play according to Nash and where the agents play myopically.

We will again consider the case where the agents have multiple inputs, Ui ⊂ Rpi , pi ≥ 1
for each i ∈ {1, . . . , n}; however, we will make the simplifying assumption that there is a
different set of basis functions for each input. In particular, suppose each player’s input
is denoted by ui = (ui,1, . . . , ui,pi) and we assume that each input has its own set of basis
functions {φi,l,j}mi,l

j=1 , l ∈ {1, . . . , pi} and mi,l denotes the dimension of θ∗i,l,j. We can state
(3.2.7) as y

t+1
i,1
...

yt+1
i,pi

 =


(ξti,1)T 0 0 · · · 0

0 (ξti,2)T 0 · · · 0
...

. . . . . . · · · ...
0 0 · · · · · · (ξti,pi)

T


θ
∗
i,1
...

θ∗i,pi

 (3.6.1)

In this case, observations decouple and hence, the estimation for each set of parameters
decouples. In this case, each θ

(t)
i,l is updated according to Algorithm 1 independently from

the others. Since the notation is cumbersome and the details straightforward, we drop the
additional index for each input. That is, instead of considering the update of our estimate of
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θ∗i,l in Algorithm 1, we simply consider the update of θ∗i and note that due to the independence
of the parameters for each input, that we could apply the update to each θ∗i,l.

In addition, we will consider noisy updates given by

yt+1
i = (ξti)

T θ∗i + wt+1
i (3.6.2)

for each i ∈ {1, . . . , n} where wt+1
i is an indepdent, identically distributed (i.i.d) real stochas-

tic process defined on a probability space (Ω, F, P ) adapted to the sequence of increasing

sub-σ–algebras (Ft, t ∈ N), where Ft is the σ–algebra generated by the set {ysi , α(s)
i , wsi , s ≤ t}

and such that
E[wt+1

i |Ft] = 0, ∀t, (3.6.3)

and
E[(wt+1

i )2|Ft] = σ2 > 0 a.s., ∀t. (3.6.4)

Note that Ft is also the σ–algebra generated by {ysi , ξsi , s ≤ t} since wti can be deduced from
yti and ξt−1

i through the relationship wti = yti − (ξt−1
i )T θ∗i [KV86].

For simplicity, in this section we will assume that Ui ⊆ Rpi with pi > 1 and that there
is a different set of basis functions for each input as described in (3.6.1). We will also drop
the additional index corresponding to each input for each player since the same analysis
can be applied to each of the inputs seperately. That is, instead of considering pi different
observations

yt+1
i,l = (ξti,l)

T θ∗i,l + wt+1
i,l for l ∈ {1, . . . , pi}

we will perform the analysis for yt+1
i = (ξti)

T θ∗i +wt+1
i and simply note that the same analysis

holds for each input without carrying around the extra index l.

Theorem 3.6.1. Suppose that for each i ∈ {1, . . . , n}, {wti} satisfies (3.6.3), (3.6.4), and
(3.6.7). Furthermore, suppose that a central planner follows Algorithm 1 for utility learning
and incentive design using the prox–mapping Pθ associated with β (modulus ν) and that
the algorithm is persistently exciting and stable. Let the step–size ηt be selected such that∑∞

t=1 η
2
t < ∞ and ηt − η2t

2ν
c̃1 > 0 where 0 < c̃1 < ∞ is such that ‖ξti‖2

∗ ≤ c̃1. Then, for each
i ∈ {1, . . . , n}, Vt(θ∗i ) converges almost surely. Further, suppose that the sequence {rt} where

rt = (ηt − η2t
2ν
c̃1)−1 is a non-decreasing, non-negative sequence such that rt is Ft measurable.

If there exists constants 0 < K1, K2 <∞ and 0 < T̄ <∞ such that

1

T
rT−1 ≤ K1 +

K2

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2, ∀ T ≥ T̄ , (3.6.5)

then

lim
T→∞

1

T

T−1∑
t=0

E[(yt+1
i − (ξti)

T θ
(t)
i )2|Ft] = σ2 a.s. (3.6.6)
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If we make the additional assumption

sup
t

E[(wt+1
i )4|Ft] < +∞ a.s. (3.6.7)

then

lim
T→∞

1

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i )2 = σ2 a.s. (3.6.8)

Proof. The proof follows a similar technique to that presented in [KV86, Chapter 13.4].
Starting from Lemma 3.A.2, we have

E[Vt+1(θ∗i )|Ft] ≤ Vt(θ
∗
i )− ηt(θ∗i − θ(t)

i )T ξti(E[yt+1
i − (ξti)

T θ
(t)
i |Ft])

+
η2
t

2ν
‖ξti‖2

∗

(
(E[yt+1

i − (ξti)
T θ

(t)
i |Ft])2 + σ2

)
(3.6.9)

≤ Vt(θ
∗
i )− ηt

(
(θ∗i − θ(t)

i )T ξti −
ηt
2ν
‖ξti‖2

∗E[yt+1
i − (ξti)

T θ
(t)
i |Ft]

)
· E[yt+1

i − (ξti)
T θ

(t)
i |Ft] +

η2
t

2ν
‖ξti‖2

∗σ
2 (3.6.10)

≤ Vt(θ
∗
i )−

(
ηt −

η2
t ‖ξti‖2

∗
2ν

)(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

+
η2
t

2ν
‖ξti‖2

∗σ
2 (3.6.11)

≤ Vt(θ
∗
i )−

(
ηt −

η2
t

2ν
c̃1

)(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

+
η2
t

2ν
c̃1σ

2 (3.6.12)

By the assumptions that ηt − η2t
2ν
c̃1 > 0 and

∑∞
t=1 η

2
t < ∞, we can apply the almost super-

martingale convergence theorem (Theorem 3.A.1) to get that

∞∑
t=1

(
ηt −

η2
t

2ν
c̃1

)(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

<∞ a.s. (3.6.13)

and that Vt(θ
∗
i ) converges almost surely.

Now, we argue (3.6.6) (the argument follows that which is presented in [GS84, Chapter
8]). To do this, we first show that

lim
T→∞

1

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2 = 0 a.s. (3.6.14)

Note that (3.6.13) implies that

lim
T→∞

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2

rt
<∞ a.s. (3.6.15)
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Where rt = (ηt − η2t
2ν
c̃1)−1. Suppose that rt < K3 < ∞, i.e. that it is bounded. Hence, it is

immediate from (3.6.15) that

lim
T→∞

1

K3

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2 <∞ a.s. (3.6.16)

so that (3.6.14) follows trivially. On the other hand, suppose rt is unbounded. Then we can
apply Kronecker’s Lemma 3.A.3 to conclude that

lim
T→∞

1

rT

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2 = 0 a.s.

Hence, from (3.6.5), we have that

lim
T→∞

1
T

∑T−1
t=0 (yt+1

i − (ξti)
T θ

(t)
i − wt+1

i )2

K1 + K2

T

∑T−1
t=0 (yt+1

i − (ξti)
T θ

(t)
i − wt+1

i )2
= 0 a.s. (3.6.17)

so that (3.6.14) follows immediately. Note that

E[(yt+1
i − (ξti)

T θ
(t)
i )2|Ft] = E[(yt+1

i − (ξti)
T θ

(t)
i − wt+1

i + wt+1
i )2|Ft] (3.6.18)

= E[(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2 + (wt+1
i )2

+ 2(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )wt+1
i |Ft] (3.6.19)

Since yt+1
i −wt+1

i and (ξti)
T θ

(t)
i are Ft measurable and E[wt+1

i |Ft] = 0 almost surely, we have
that

E[(yt+1
i − (ξti)

T θ
(t)
i )2|Ft] = (yt+1

i − (ξti)
T θ

(t)
i − wt+1

i )2 + E[(wt+1
i )2|Ft]. (3.6.20)

Thus, (3.6.6) holds since E[(wt+1
i )2|Ft] = σ2 almost surely. Finally, if supt E[(wt+1

i )4|Ft] <
+∞ almost surely, then by Proposition 3.A.1, we have that

lim
T→∞

1

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i )2 = σ2 a.s. (3.6.21)

Let us state an alternative version of the above theorem after which we will make com-
ments on the differences between the assumptions.

Theorem 3.6.2. Suppose that for each i ∈ {1, . . . , n}, {wti} satisfies (3.6.3), (3.6.4), and
(3.6.7). Furthermore, suppose that a central planner follows Algorithm 1 for utility learning
and incentive design using the prox–mapping Pθ associated with β (modulus ν) and that
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the algorithm is persistently exciting and stable. Let the step–size ηt be selected such that∑∞
t=1 η

2
t < ∞ and ηt > 0 where 0 < c̃1 < ∞ is such that ‖ξti‖2

∗ ≤ c̃1. Then, for each
i ∈ {1, . . . , n}, Vt(θ∗i ) converges almost surely. Further, suppose that each Θt

i is bounded and
that the sequence {rt} where rt = (ηt)

−1 is a non-decreasing, non-negative sequence such that
rt is Ft measurable. If there exists constants 0 < K1, K2 <∞ and 0 < T̄ <∞ such that

1

T
rT−1 ≤ K1 +

K2

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i − wt+1

i )2, ∀ T ≥ T̄ , (3.6.22)

then

lim
T→∞

1

T

T−1∑
t=0

E[(yt+1
i − (ξti)

T θ
(t)
i )2|Ft] = σ2 a.s. (3.6.23)

If we make the additional assumption

sup
t

E[(wt+1
i )4|Ft] < +∞ a.s. (3.6.24)

then

lim
T→∞

1

T

T−1∑
t=0

(yt+1
i − (ξti)

T θ
(t)
i )2 = σ2 a.s. (3.6.25)

Note that added the assumption that each Θt
i is bounded and the modified assumption

on the sequence rt.

Proof. The proof is essentially the same as above with some minor modifications. Starting
from Lemma 3.A.2, we have

E[Vt+1(θ∗i )|Ft] ≤ Vt(θ
∗
i )− ηt(θ∗i − θ(t)

i )T ξti(E[yt+1
i − (ξti)

T θ
(t)
i |Ft])

+
η2
t

2ν
‖ξti‖2

∗

(
(E[yt+1

i − (ξti)
T θ

(t)
i |Ft])2 + σ2

)
(3.6.26)

≤ Vt(θ
∗
i )− ηt

(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

+
η2
t

2ν
‖ξti‖2

∗

(
σ2 + (E[yt+1

i − (ξti)
T θ

(t)
i |Ft])2

)
(3.6.27)

Hence, since Θt
i is bounded along with the stability assumption, we have that there exists

some constant b such that E[yt+1
i − (ξti)

T θ
(t)
i |Ft] < b. This gives us that

E[Vt+1(θ∗i )|Ft] ≤ Vt(θ
∗
i )− ηt

(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

+
η2
t

2ν
‖ξti‖2

∗
(
σ2 + b2

)
(3.6.28)

By the assumptions that ηt > 0 and
∑∞

t=1 η
2
t <∞, we can apply the almost supermartin-

gale convergence theorem (Theorem 3.A.1) to get that

∞∑
t=1

ηt

(
E[yt+1

i − (ξti)
T θ

(t)
i |Ft]

)2

<∞ a.s. (3.6.29)
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and that Vt(θ
∗
i ) converges almost surely.

The remainder of the proof follows exactly what was shown for Theorem 3.6.1 only with
rt = η−1

t ; hence, we refer the reader to its proof.

Remark 3.6.1. Let us remark on the difference between Theorem 3.6.1 and Theorem 3.6.2.
The simplified assumptions on the step–size ηt allow for us to find choices for ηt for which it
is much easier to check if condition (3.6.22) is satisfied. For instance, the step–size ηt = t−1

trivially satisfies (3.6.22) and
∑

t η
2
t < ∞. Further, the rate at which rt increases is much

slower since rt = η−1
t instead of rt = (ηt − η2t

2ν
c̃1)−1. This is desirable and is, in part, the

purpose of (3.6.22), i.e. to ensure that the rate that rt grows is proportionally upper bounded
by the average error. The drawback to Theorem 3.6.2 is the additional assumption that Θt

i

is bounded.

Corollary 3.6.1. Suppose the assumptions of Theorem 3.6.1 (or Theorem 3.6.2) hold with
the exception that in Algorithm 1, we use the prox–mapping Pθ associated with β(θ) = 1

2
‖θ‖2

2

(modulus ν = 1). Then Vt(θ
∗
i ) = 1

2
‖θ∗i − θ(t)

i ‖2
2 converges almost surely.

In the myopic–play case—that is where u
(t+1)
i = Φ̃i(u

(t))T θ∗i + Ψ̃i(u
(t))Tα

(t)
i —as a con-

sequence of (3.6.6), we expect that the average mean square error between the desired
response ud and the actual response u(t) converges to σ2 almost surely. Indeed, (3.6.6) of
Theorem 3.6.1—or (3.6.23) of Theorem 3.6.2—imply that

lim
T→∞

1

T

T−1∑
t=0

E[(u
(t+1)
i + wt+1

i − udi )2|Ft] = σ2 a.s.

Furthermore, note that we have designed α
(t+1)
i to satisfy γi(u

d) = Ψ(u(t))Tα
(t+1)
i (or at the

very least approximately if we solve the optimization problem posed in (3.3.11) as opposed
to explicitly solving the linear system of equations).

On the other hand, in the Nash–play case, it is difficult to say much about the observed
Nash equilibrium except in expectation. In particular, we can consider a modified version of
Theorem 3.5.3 where we consider the differential game form in expectation, i.e. at iteration
t, we have the local representation of the differential game form for the induced game

ω̃(θ, u) =
n∑
i=1

E
[
DiΦi(u)T θi +DiΨi(u)Tα

(t)
i + wt+1

i |Ft−1

]
(3.6.30)

Before, we knew that D2ω(θ∗, ud) was an isomorphism since ud is a non–degenerate dif-
ferential Nash equilibrium. Here, in order to apply the Implicit Function Theorem as in
Theorem 3.5.3, we need that D2ω̃(θ∗, ud) is an isomorphism. Hence, we have the following
result.
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Proposition 3.6.1. Suppose that D2ω̃(θ, ud) is an isomorphism. There exists an ε > 0,
such that for all θ(t) ∈ Bε(θ

∗),

‖u∗ − ud‖ ≤
(

sup
0≤λ≤1

‖Dg((1− λ)θ∗ + λθ(t))‖
)
‖θ(t) − θ‖ (3.6.31)

where
Dg(θ∗) = −(D2ω̃)−1(θ∗, ud) ◦D1ω̃(θ∗, ud). (3.6.32)

and u∗ is a Nash equilibrium of the incentivized game (fγ11 (u; θ∗1), . . . , fγnn (u, θ∗n)) with γi(u) =

Ψi(u)Tα
(t)
i for each i ∈ {1, . . . , n}. Furthermore, if ‖Dg(θ∗)‖ is uniformly bounded by M > 0

on Bε(θ
∗), then

‖u∗ − ud‖ ≤M‖θ(t) − θ∗‖ (3.6.33)

To apply Proposition 3.6.1 we would need a result ensuring that the parameter estimate
θ(t) converges to the true parameter value θ∗. One of the consequences of Theorem 3.6.1
(respectively Theorem 3.6.2) is that Vt(θ

∗
i ) converges almost surely and as a consequence of

Corollary 3.6.1, ‖θ∗i − θ(t)
i ‖2

2 converges almost surely. If it is the case that it converges almost
surely to a value less than ε, then Proposition 3.6.1 would guarantee that a Nash equilibrium
of the incentivized game is near the desired non–degenerate differential Nash equilibrium in
expectation. We leave further exploration of the convergence of the parameter estimate θ(t)

as future work.
The results of Theorem 3.6.1 imply that the average mean square error between the

observations and the predictions converges to σ2 almost surely and if we recall, the observa-
tions are derived from noisy versions of the first–order conditions for Nash, i.e. we have the
observation

yt+1
i = (ξti)

T θ∗i + wt+1
i = DiΦi(u

(t+1))T θ∗i + wt+1
i

and its predicted value

(ξti)
T θ

(t)
i = DiΦi(u

(t+1))T θ
(t)
i = −DiΨi(u

(t+1))Tα
(t)
i .

Thus, we have shown that

lim
T→∞

1

T

T−1∑
t=0

E[(DiΦi(u
(t+1))T θ∗i + wt+1

i +DiΨi(u
(t+1))Tα

(t)
i )2|Ft] = σ2 a.s.

or, equivalently,

lim
T→∞

1

T

T−1∑
t=0

E[(DiΦi(u
(t+1))T (θ∗i − θ(t)

i ) + wt+1
i )2|Ft] = σ2 a.s.
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Remark 3.6.2 (Connections to Adaptive Control and Online Learning). There are some
not so subtle connections to the adaptive control literature. In particular, if in the myopic–
play case the entries of Φ̃i(u) and Ψ̃(u) are linear in ui, then the problem can easily as
a classical linear adaptive control problem [KV86, Chapter 10 & 13]. The Nash–play case
has some distinctions in that the actual response is defined implicitly through the first– and
second–order conditions for local Nash equilibria and is therefore new.

Similarly, if we consider only the problem of estimating θ, then both the Nash–play case
and the myopic–play case, even with nonlinearities in the observation updates, can be cast
as online estimation problem [GS84, Chapter 3 & 8] with the added difference that in the
present work we did not select specific step–sizes. For example, if we make specific choices
for the step–size ηt such as

ηt =
a

c+ ‖ξti‖2
2

,

the update scheme for θ
(t)
i reduces to the projection algorithm. Alternatively, if ηt = µ

rk
where

rk = 1+
∑k

t=0(ξti)
T ξti and µ > 0, then updates for θ follow the algorithm introduced in [KV86].

It is interesting to note that the persistence of excitation condition required to ensure
convergence is informed by the choice of step–size. This is explored extensively in [GS84,
Chapter 3.4]. However, because the conditions required for persistence of excitation depend
on the data received at each time step (and this is true of Definition 3.5.2 as well), it is
difficult to check when an algorithm is persistently exciting a priori. In [SB89] and [BS86],
necessary and sufficient conditions are provided for persistence of excitation for model refer-
ence adaptive control. We are exploring extensions for the problems described in this chapter.

Our approach here is to try to remove the dependence of the results on the choice of step–
size and to generalize to arbitrary choice of proximal mapping. This approach is similar to
that which is done in the online learning literature [Rag+10; Nem+09]. The perceived gain
is that this flexibility can allow for the proximal mapping to be informed by the geometry of
the constraint set (feasible parameter space) thereby resulting in improved convergence rates.

There are a number of open questions in this area. For instance, in order to ensure we
have estimated parameters that correspond to a game with stable, non–degenerate differential
Nash equilibria requires having a constraint set defined by semi–definite constraints, i.e.

Θk
i = {θi ∈ Θi| D2Φ(u(t), θi) +D2Ψ(u(t), α(t−1)) ≥ 0, t ∈ {1, . . . , k}} ⊂ Θi (3.6.34)

where D2Φ and D2Ψ are defined in (3.3.6) and (3.3.7) respectively. Given that proximal
maps informed by the geometry—as the example in Remark 3.5.1 indicates—one interesting
direction for future research is to investigate proximal maps that are informed by the geometry
of a the positive semi–definite cone of matrices.

3.7 Discussion

By utilizing tools from online learning and adaptive control, we developed an iterative al-
gorithm for learning the objective functions of competitive agents and designing incentives
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to elicit from them a desired response. We consider both competitive agents who play ac-
cording to a Nash equilibrium strategy and players that use a myopic update rule such as
approximate best response. We are able to show in both cases, under reasonable assump-
tions, that the parameter estimates converge resulting in an incentive that induces a desired
response. We provided convergence results for the algorithm in both the case with noise
and without. We are ensuring that we have approximate incentive compatibility in the sense
that the agent is acting rationally and the incentives we issue result in the players’ choices
converging asymptotically to the desired outcome.

There are a number of interesting directions for future research in this area. To highlight
a few, we have left open the question of whether we can derive a solution that is budget bal-
anced or individually rational—the latter meaning that players voluntarily participate. Such
properties can be formulated as additional objective functions or constraints. For instance,
if having a budget balanced solution is desired, the planner can add this as a constraint in
the optimization problem to find (ud, vd) or include it in its objective function directly. We
have explored some of these extensions in the context of designing incentives when there is
perfect information [Coo+13; Rat+12]. Voluntary participation can be enforced by ensuring
that each player’s incentivized cost remains less than the outside option—the alternative to
participating in the incentive program. Adding constraints enforcing voluntary participation
could be done at each step in the algorithm where we choose the incentive design parameters
α(k+1) in such a way that in addition to all the proposed constraints, we also enforce that
the estimated cost for each player under θ

(k+1)
i and α

(k+1)
i is less than the outside option.

These are classical questions that arise in the economic theory of incentives [LM02]. It is
well known that mechanisms that achieve a socially optimal, budget balanced, individually
rational, and incentive compatible solution generally do not exist [Arr50; MS83]. While we
will touch on these concepts in greater detail in the sequel, in the context of the present
chapter, an interesting direction for future research is not just in implementing each of these
ideas in the algorithm for utility learning and incentive design, but rather to understand the
classes of problems admitting solutions that satisfy a subset of these properties.

Furthermore, we have made preliminary efforts to test the proposed algorithm in practice.
We constructed an experimental platform for inducing building occupants to consume shared
resources more efficiently by involving them in a social game. Occupants vote on their desired
use of shared resources such as lighting and heating, ventilation and air conditioning. Some
function of their votes such as the average is implemented and occupants are rewarded
points based on how efficient their votes are in comparison to the other occupants. We use
a lottery mechanism to reward them. By implementing our utility learning scheme, we are
able to get reasonably accurate predictions of the occupants’ decision–making behavior and
in simulation, our incentive design mechanism proves successful at inducing more efficient
behavior [Rat+14e]. The number of occupants in the experiments is small (approximately
20); using tools from statistical learning, we created a scalable algorithm for estimating and
predicting agents behavior as well as determining the stopping time required to obtain a
prespecified accuracy bound [Jin+15]. However, there is much more to be done in terms of
experimental validation as well as creating methods that are ready to transition to practice.
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In particular, selecting the basis functions that accurately reflect how agents are making
decisions is a very difficult task in practice. In applications we have explored [Rat+14c]
and preliminary experiments [Rat+14e], we reasoned that agents were making decisions by
trading off their comfort and their desire to win. In this simplistic setting, we get reasonably
good predictions and, more importantly, due to the simple interpretation of each of the basis
functions, we are able to make qualitative assessments about the reasoning behind certain
decisions. Prediction and generalization could greatly improve with a more diverse set of
basis functions, but at the loss of such qualitative insights.

We are investigating techniques for factoring in categorical data such as automated survey
responses that perhaps occur prior to the incentive program or online. Such categorical data
can help inform the decision–making model. Furthermore, we are currently exploring non–
parametric methods for estimation as well as determining a set of basis functions that could
be used in the parametric setting. This is a two pronged approach. On the one hand, we
are using non–parametric methods on historical data to determine a set of basis functions
that will be used in a online parametric setting. This approach has the advantage of pushing
the computationally heavy work offline. On the other hand, we are developing a non–
parametric version of the utility learning and incentive design algorithm that can be used
directly online. We expect that employing non–parametric methods in either case will serve
to improve predictions and generalization.

Generalization techniques in settings where there is a strong human–CPS coupling are
difficult to obtain. In [Jin+15] we explored some methods in transfer learning [PY10]—
or learning to learn [Bax97; Bax98], as it is sometimes called. In the transfer learning
framework, learning can be done in one environment and be transferred to another. For
instance, one goal of the social game, as described above, is to learn behavioral models
and preferences of occupants in order to improve building automation. Learning the agents
preferences in the competitive environment we created will not necessarily be applicable
when the social game has ceased. Transfer learning is designed to address exactly this type
of problem; tools from transfer learning can be used to build predictive models of behavior
that are designed to have little generalization error.

Another interesting direction for future research is in balancing model–based approaches
with data–driven approaches. The model–based approach—much like the parametric meth-
ods here—allows the planner to make qualitative insights which are important for shaping
policy, regulations, and more broadly, system design. Data–driven approaches—much like
non–parametric methods—are evidence based in the sense that observations are used to form
an arguably more of an objective view of the system lacking some of the bias to which model–
based approaches are prone. In addition, they have the ability to scale. Striking the right
balance between model–based and data–driven methods is really key. We will return to this
issue in Chapter 5.
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Appendix 3.A Preliminaries

In this appendix, we introduce some of the mathematical preliminaries and results needed
for this chapter. The following notation is taken from [Nem+09].

Let for any function f : U → R, for u ∈ U , let ∂f(u) denote the set of subgradients of f ,
i.e. g ∈ ∂f(u) at u ∈ U if for all u′ ∈ U ,

f(u′) ≥ f(u) + gT (u′ − u).

Suppose that Θ is a compact subset of Rm. We will say that a function β : Θ → R is a
distance generating function modulus ν > 0 with respect to ‖·‖, if β is convex and continuous
on Θi, the set

Θ◦ = {θ ∈ Θ|∂β(θ) 6= ∅}
is convex (Θ◦ always contains the relative interior of Θ) and restricted to Θ◦, β is continuously
differentiable and strongly convex with parameter ν with respect to ‖ · ‖, i.e.,

(θ′ − θ)T (∇β(θ′)−∇β(θ)) ≥ ν‖θ′ − θ‖2, ∀ θ′, θ ∈ Θ◦.

As an example, consider β(θ) = 1
2
‖θ‖2

2 (modulus ν = 1 with respect to ‖ · ‖2, Θ◦ = Θ).
We define a function V : Θ◦ ×Θ→ R+ as follows:

V (θ1, θ2) = β(θ2)−
(
β(θ1) +∇β(θ1)T (θ2 − θ1)

)
(3.A.1)

We shall call functions V of the above form prox–functions—or Bregman divergence [Bre67]—
associated with distance generating function β(θ). The function V (θ1, ·) is nonnegative and
is a strongly convex modulus ν with respect to ‖ · ‖.

We define a prox–mapping Pθ : Rm → Θ◦ associated with β and a point θ ∈ Θ◦, viewed
as a parameter, by

Pθ(g) = arg min
θ′∈Θ

{
gT (θ′ − θ) + V (θ, θ′)

}
(3.A.2)

We remark that the minimum in the right–hand side is obtained since β is continuous on Θ
and Θ is compact, and all the minimizers belong to Θ◦ so that the minimizer is unique since
V (θ, ·) is strongly convex on Θ◦. Thus the prox–mapping is well–defined. Furthermore, it is
a contraction [Mor65, Proposition 5.b].

We define the time varying prox–mapping P k
θ : Rm → (Θk)◦ associated with β and a

point θ ∈ (Θk)◦, viewed as a parameter, by

P k
θ (g) = arg min

θ′∈Θk

{
gT (θ′ − θ) + V (θ, θ′)

}
(3.A.3)

Let ΠΘi
be the metric projection operator onto the set Θ, that is,

ΠΘ(θ) = arg min
θ′∈Θ
‖θ − θ′‖2. (3.A.4)

Note that ΠΘi
is a non–expanding operator, i.e.

‖ΠΘi
(θ′)− ΠΘi

(θ)‖2 ≤ ‖θ′ − θ‖2, ∀ θ, θ′ ∈ Rmi

Then for β(θ) = 1
2
‖θ‖2

2, we have that Pθ = ΠΘ(θ − θ′).
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Lemma 3.A.1 ([Nem+09, Lemma 2.1]). For every θ′ ∈ Θ, θ ∈ Θ◦, and g ∈ Rm, we have

V (Pθ(g), θ′) ≤ V (θ, θ′) + gT (θ′ − θ) +
1

2ν
‖g‖2

∗ (3.A.5)

where ‖ · ‖∗ is the dual norm to ‖ · ‖.
Note that for β(θ) = 1

2
‖θ‖2

2, we have V (θ, θ′) = 1
2
‖θ − θ′‖2

2, ν = 1, ‖ · ‖∗ = ‖ · ‖2.
We can extend the above lemma to the case of time–varying prox–mappings when the

sets Θk contain the true value of the parameter θ∗ we are trying to estimate. We will need
Young’s inequality which says that for any v1, v2 ∈ Rm, we have that

vT1 v2 ≤ ‖v1‖∗‖v2‖ ≤
1

2

(‖v1‖2
∗

ν
+ ν‖v2‖2

)
. (3.A.6)

Lemma 3.A.2. For every θ∗ ∈ Θk+1, θ(k) ∈ (Θk)◦, and g ∈ Rm, we have

V (P k+1
θ(k)

(g), θ∗) ≤ V (θ(k), θ∗) + gT (θ∗ − θ(k)) +
1

2ν
‖g‖2

∗ (3.A.7)

Proof. The proof is the essentially the same as the proof of Lemma 3.A.1 as presented
in [Nem+09] with a few modifications.

Let θ(k) ∈ (Θk)◦ and θ(k+1) = P k+1
θ(k)

(g). Note that

θ(k+1) ∈ arg min
θ′∈Θk+1

{
gT (θ′ − θ(k)) + V (θ(k), θ′)

}
(3.A.8)

or equivalently,
θ(k+1) ∈ arg min

θ′∈Θk+1

{
β(θ′)− (∇β(θ(k))− g)T θ′

}
(3.A.9)

where the latter form tells us that β is differentiable at θ(k+1) and θ(k+1) ∈ (Θk+1)◦. Since
∇2V (θ(k), θ(k+1)) = ∇β(θ(k+1))−∇β(θ(k)), the optimality conditions for (3.A.8) imply that

(∇β(θ(k+1))−∇β(θ(k)) + g)T (θ(k+1) − θ) ≤ 0, ∀θ ∈ Θk+1 (3.A.10)

Note that this is where the proof of Lemma 3.A.1 and the current proof are different. The
above inequality holds here for all θ ∈ Θk+1 whereas in the proof of Lemma 3.A.1—using the
notation of the current Lemma—the inequality would have held for all θ ∈ Θk. In particular,
we need the inequality to hold for θ∗ and it does since by assumption θ∗ ∈ Θk+1 for each k.

Hence, for θ∗ ∈ Θk+1, we have

V (θ(k+1), θ∗)− V (θ(k), θ∗) = (β(θ∗)−∇β(θ(k+1))T (θ∗ − θ(k+1))− β(θ(k+1)))

− (β(θ∗)−∇β(θ(k))T (θ∗ − θ(k))− β(θ(k)))

= (∇β(θ(k+1))−∇β(θ(k)) + g)T (θ(k+1) − θ∗) + gT (θ∗ − θ(k+1))

≤ gT (θ∗ − θ(k+1))− V (θ(k), θ(k+1))
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where the last inequality holds due to (3.A.10). By (3.A.6), we have that

gT (θ(k) − θ(k+1)) ≤ ‖g‖
2
∗

2ν
+
ν

2
‖θ(k) − θ(k+1)‖2. (3.A.11)

Further, ν
2
‖θ(k) − θ(k+1)‖2 ≤ V (θ(k), θ(k+1)) since V (θ(k), ·) is strongly convex. Thus,

V (θ(k+1), θ∗)− V (θ(k), θ∗) ≤ gT (θ∗ − θ(k+1))− V (θ(k), θ(k+1))

= gT (θ∗ − θ(k)) + gT (θ(k) − θ(k+1))− V (θ(k), θ(k+1))

≤ gT (θ∗ − θ(k)) +
1

2ν
‖g‖2

∗

so that

V (P k+1
θ(k)

(g), θ∗) ≤ V (θ(k), θ∗) + gT (θ∗ − θ(k)) +
1

2ν
‖g‖2

∗. (3.A.12)

The following classical results are needed for the proofs in Section 3.6.

Theorem 3.A.1 (Almost supermartingale convergence [RS85]). For each n = 1, 2, . . ., let
zn, µn, ζn, and τn be non–negative Fn–measurable random variables such that

E[zn+1|Fn] ≤ zn(1 + µn) + ζn − τn.

If
∑∞

n=1 µn < ∞ and
∑∞

n=1 ζn < ∞, then limn→∞ zn exists and is finite and
∑∞

n=1 τn < ∞
almost surely.

Lemma 3.A.3 (Kronecker’s Lemma [KV86]). Let {xk} and {rk} be two real valued sequences
such that rk > 0, limk→∞ rk =∞, and

∑∞
k=1

xk
rk
<∞. Then, limN→∞

1
rN

∑N
k=1 xk = 0.

Theorem 3.A.2 (Martingale Stability [KV86, Theorem 8.5.26]). Suppose {xk, Fk} is a
martingale difference sequence, (i.e. Fk ⊂ Fk+1 is an increasing sequence of σ–algebras, xk
is Fk–measurable, and E[xk+1|Fk] = 0 a.s.). In addition, suppose that for some 0 < p ≤ 2,

∞∑
k=1

1

kp
E[|xk|p|Fk−1] <∞ a.s.

Then,

lim
T→∞

1

T

T∑
k=1

xk = 0 a.s.
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Proposition 3.A.1 ([Nev75]). Let {xt} be a zero conditional mean sequence of random
variables adapted to {Ft}. If

∞∑
t=0

1

t2
E[x2

t |Ft−1] <∞ a.s. (3.A.13)

then

lim
N→∞

1

N

N∑
t=1

xt = 0 a.s. (3.A.14)
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Chapter 4

Privacy–Aware Incentive Design

We now consider the fact that in S-CPS, the planner often leans on the underlying CPS
infrastructure to support its efforts to design mechanisms, both economic and physical, that
aim to make the system more efficient. To reiterate the energy S-CPS vignette presented
in Section 1.4.1, consider the set of non–cooperative, selfish agents that make up society to
be consumers who are interested in consuming energy to maximize their own satisfaction.
The planner we will consider will be the power company who has some objective such as
implementing a direct load control (DLC) scheme to, for instance, correct for improper load
forecasting. In order to do so, the power company takes advantage of access to high fidelity
data from smart meters at the consumers’ homes thereby leading to increased exposure both
to privacy and security risks.

Increasingly advanced metering infrastructure (AMI) is replacing older technology in the
electricity grid. Smart meters measure detailed information about consumer electricity usage
every half–hour, quarter–hour, or in some cases, every five minutes. This high–granularity
data is needed to support energy efficiency efforts as well as demand–side management. In
particular, high–granularity data is useful for customer segmentation [AR13], customizing
offering to consumers in the form of pricing structure [Mot+12], detecting non–technical
loss [Ami+15], and efficient operations management, e.g. peak load reduction, load shaping,
direct load control [Don+14]. However, improper handling of this information could also
lead to unprecedented invasions of consumer privacy [Sal+12; WT11; Har89; McK+12].

It has been shown that energy consumption data reveals a considerable amount of infor-
mation about consumer activities. Furthermore, energy consumption data in combination
with readily available sources of information can be used to discover even more about the
consumer. Authors in [Lis+10] show that a privacy breach can be broadly implemented in
two steps. First, energy usage data in combination with other sensors in the home—e.g.
water and gas usage—can be used to track a person’s location, their appliance usage, and
match individuals to observed events. In the second step, this learned information can be
combined with demographic data—e.g. number, age, sex of individuals in the residence—to
identify activities, behaviors, etc.

Given that smart grid operations inherently have privacy and security risks [Sal+12], it
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would benefit the power company, to know the answer to the following questions: How do
consumers in the population value privacy? How can we quantify privacy? How do privacy–
aware policies impact smart grid operations? There have been a number of works making
efforts to address these questions [Don+13b; Don+14; San+13; Raj+11]. In particular, it
has been shown that there is a fundamental efficiency–privacy tradeoff in data collection
policies in smart grid operations [Don+14; San+13].

Privacy is fundamentally subjective; it depends on the underlying preferences of the
individual whose privacy is potentially being violated. To capture this fact, we propose
an economic solution that allows for the power company to combine inference metrics with
privacy–based service contracts to balance the efficiency–privacy tradeoff in the smart grid.

In general, contracts are essential for realizing the benefits of economic exchanges, such
as the procurement of electric power from a strategic seller [TT14] and the design of demand
response programs [FA00], among others [Ged94]. However, in the context of S-CPS opera-
tions and management, it is not enough to consider only the economic aspects of procuring
power. Outside of contract design, there are a number of other methods to solicit hidden
information for another party [CL14]. In addition, there are techniques that combine no-
tions of privacy and mechanism design where privacy is considered a constraint or enforced
through aggregation across players [Kea+12; PR13].

We consider privacy to be the good on which we design contracts, thereby allowing us
to capture the fact that privacy is intrinsic to the consumer. We are seeing the rise of this
phenomena in new consumer models for internet services provided by such companies as
AT&T [Aue15; Luc15]. We formulate an optimization problem that allows for selection of a
data collection policy and an amount to charge the consumer in order to maximize the utility
of deploying smart grid technologies, while at the same time giving consumers—who have a
variety of subjective preferences for their privacy—the option of selecting the privacy setting
that fits their needs. This economic solution embeds in it the fact that the quality of service
depends on how CPS technologies are being utilized by incorporating a detection theory
framework that provides the means to quantify privacy, the good over which we propose to
contract.

The optimal contracts—privacy setting and price—are incentive compatible and individ-
ually rational, meaning that consumers truthfully reveal their preferences and voluntarily
participate. However, we show that the solution is not socially optimal in that consumers
having a high valuation of privacy free–ride on the rest of society. Further, we assess loss
risks due to privacy breaches given the optimally designed contracts. We design new con-
tracts when these risks are explicitly considered by the power company. We show that there
are inefficiencies when we consider privacy risk losses and thus, the power company has an
incentive to offer compensation to the consumer, invest in security measures, and purchase
insurance.

In this chapter we provide a theoretical framework in which economic tools can be com-
bined with inference metrics in order to assess the potential impact of privacy breaches and,
further, to provide qualitative insights within this framework. In Section 4.1, we design
privacy–based service contracts when the privacy preferences of the consumer are unknown
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to the power company and we introduce a DLC example to help concretize the formula-
tion. In Section 4.2, we characterize the contract solution when the consumer is risk–averse
and the risk of a privacy breach is explicitly modeled in the contract design. We return to
the DLC example and show the affects of risk on performance. We argue that the power
company has an incentive to invest in insurance or security and, in Section 4.3, we design in-
surance contracts offered by a third–party. Finally, in Section 4.4, we provide discussion. We
remark that the results in this chapter extend those results appearing in our work [Rat+14f;
Rat+14a].

4.1 Privacy Contracts

Our goal is to characterize the interactions between energy consumers and a power company
that wants to obtain more data from consumers in order to improve the efficiency of their
operations, while respecting the different privacy preferences of consumers. The status quo
for most smart meter deployments does not provide fine–grained privacy options to con-
sumers: consumers either have to accept the collection of data at predefined intervals (e.g.,
every 15 minutes) or opt-out (when available) from the installation of a smart meter on their
premises.

In this section we propose a more fine–grained approach where power companies explore
options for obtaining something they want (consumer data), while respecting the privacy
preferences of individuals. For example, a consumer that does not feel comfortable allowing
the power company to collect more than one sample per month of her electricity consumption
might be charged the regular electricity cost in her monthly bill. On the other hand, another
consumer may be willing to accept a significantly reduced electricity bill in exchange for
allowing the power company greater data access. For instance, for a DLC program to work
efficiently, high fidelity data is needed; perhaps the incentive to participate in the DLC
program—which includes access to the needed data—is the reduction in energy bill the
consumer experiences in practice.

We design privacy–based service contracts utilizing the theory of screening [Web11;
BD05]. Specifically, a set of possible privacy settings are offered to consumers having pri-
vacy preferences that are unknown to the power company. The problem we consider is a
classical principle–agent problem [BD05] with adverse selection in which a principle (the
power company) desires that the agent (the consumer) perform a particular action but does
not have access to the complete decision making process used by that agent to arrive at
its chosen action. It is well known—by the Myerson–Satterthwaite Theorem [MS83] which
is an extension in some sense of Arrow’s Impossibility Theorem [Arr50]—that there is no
efficient way for two parties to trade a good when they have a secret and probabilistically
varying valuations for it without forcing one party to trade at a loss. In particular, for a
principle–agent problem, there is no mechanism that is socially optimal, budget balanced,
incentive compatible and individually rational (voluntary participation). There are other re-
lated results including the Gibbard–Satterthwaite [All73; Sat75] and Green–Laffont [GL77]
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results. As we mentioned above, we will design contracts that satisfy incentive compatibility
and are individually rational.

We assume that a consumer’s privacy preferences are characterized by the parameter θ—
referred to as the consumer’s type—that belongs to the set Θ = {θ1, . . . , θn} where θi < θi+1

and θi ∈ R for each i ∈ {1, . . . , n}. Note that the type is distinct from the private information
that is subject to a privacy breach.

We model privacy as an economic good whose quality is the privacy–setting on the smart
meter (e.g., sampling rate, noise injection). The privacy setting is a mapping x : Θ → R.
Since Θ is a finite set, we can denote the set of privacy settings by X = {x1, . . . , xn} where
xi = x(θi) and x(·) is selected by the power company.

Remark 4.1.1. While we present the results for the case where the type space Θ is finite,
there is an analogous framework for a continuum of types [BD05] and the same insights hold.

We denote the consumer’s utility by f̂(x, θ) and make the following assumption:

Assumption 4.1.1. The utility function f̂ : R × Θ → R is strictly increasing in (x, θ) ∈
R×Θ, concave and differentiable with respect to x.

It is reasonable that the utility function of the consumer is increasing in (x, θ) since,
for some privacy setting x, consumers with a high valuation of privacy experience greater
satisfaction at a higher privacy setting than those with a lower valuation of privacy.

The consumer’s type θ is unknown to the power company. However, we assume that the
power company has a prior distribution over Θ. In particular, the power company faces type
θi with probability pi. Given this prior over Θ, the power company must design a menu of
contracts Y = {yi}ni=1 where yi = (xi, ti) with xi the privacy setting being offered at the
price ti, i.e the price for preserving privacy. The menu of contracts is chosen to maximize
the power company’s profit which is given by

fc(Y ) =
∑n

i=1
pi (ti − g(xi)) (4.1.1)

where g : x 7→ g(x) ∈ R is the unit cost of privacy setting x.

Assumption 4.1.2. The cost function g : R → R is a strictly increasing, convex, and
differentiable function.

This assumption is reasonable since a low–privacy setting provides the power com-
pany with the high-granularity data necessary for efficient smart grid operations [Don+14;
San+13; Raj+11]. For example, in [Don+14], the error in the DLC scheme as a function
of sampling period increases approximately quadratically. We will use this fact in the DLC
example later in this section. Furthermore, in [Raj+11] a framework for smart grid utility–
privacy is presented and the measure of utility they propose is differentiable and convex.
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Note that the contract mechanism will be successful only if consumers choose contracts
designed for their types, i.e., consumers truthfully report their privacy preferences. In ad-
dition, consumers must choose to opt–in to a contract. Formally, voluntary participation is
guaranteed by

f̂(xi, θi)− ti ≥ 0, (IR-i)

for each i ∈ {1, . . . , n} and (IR-i) is referred to as the individual rationality constraint.
Roughly speaking, a consumer selects a contract only if she gets more profit by participating
than otherwise. We assume that a consumer gets zero profit by not participating in the
program (outside option). The framework is general enough to consider non–zero outside
options. For the sake of clarity, we do not flesh out those details here.

In order to guarantee the consumer reports its type truthfully, the power company must
enforce incentive–compatibility constraints:

f̂(xi, θi)− ti ≥ f̂(xj, θi)− tj, ∀ j 6= i (IC-i,j)

for each i ∈ {1, . . . , n}. Simply put, these inequalities ensure that a consumer of type θi will
prefer the contract yi = (xi, ti) over all others.

We now formulate an optimization problem to determine the optimal menu of contracts:

max
Y

fc(Y )

s.t. f̂(xi, θi)− ti ≥ 0 (IR-i)

f̂(xi, θi)− ti ≥ f̂(xj, θi)− tj (IC-i,j)
∀j 6= i, ∀i ∈ {1, . . . , n}

 (P-1)

This maximization problem can be simplified by removing redundant constraints. First,
all the individual rationality constraints, except (IR-1), are redundant. From constraints
(IC-i,j) for all i ∈ {2, . . . , n},

f̂(xi, θi)− ti ≥ f̂(xi−1, θi)− ti−1 ≥ f̂(xi−1, θi−1)− ti−1. (4.1.2)

Moreover, (IR-1) binds. Indeed, suppose not. Then

f̂(x2, θ2)− t2 ≥ f̂(x1, θ2)− t1 ≥ f̂(x1, θ1)− t1 > 0 (4.1.3)

where the middle inequality holds since f̂(x, θ) is increasing in θ by Assumption 4.1.1. Hence,
increasing t1 and t2 by a small ε > 0 would preserve (IR-1), not affect any of the incentive
compatibility constraints, and raise profits thereby leading us to a contradiction.

We make the following assumption in order to reduce the n(n−1) incentive compatibility
constraints:

Assumption 4.1.3 (Spence-Mirrlees single-crossing condition). For each i ∈ {1, . . . , n−1},
the marginal gain from increasing the privacy setting x is greater for type θi+1 than type θi,
i.e. f̂(x, θi+1)− f̂(x, θi) is increasing in x.
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It is reasonable that the above assumption holds since consumers with a high–type value
privacy much more than those with a low–type and hence, a small increase in their privacy
setting value should provide them more utility as compared to a lower type consumer.

We define local incentive compatibility constraints as follows. For each i ∈ {2, . . . , n}, we
define the local downward incentive compatibility constraints,

f̂(xi, θi)− ti ≥ f̂(xi−1, θi)− ti−1, (LDIC-i)

and for each i ∈ {1, . . . , n−1}, we define the local upward incentive compatibility constraints,

f̂(xi, θi)− ti ≥ f̂(xi+1, θi)− ti+1. (LUIC-i)

Proposition 4.1.1. Given Assumption 4.1.3, monotonicity holds, i.e. xi+1 ≥ xi, and the
local incentive compatibility constraints are necessary and sufficient for global incentive com-
patibility.

Proof. Suppose the local constraints hold. Then

f̂(xi, θi)− ti − f̂(xi−1, θi) + ti−1 ≥ 0 (4.1.4)

and
0 ≥ f̂(xi, θi−1)− ti − f̂(xi−1, θi−1) + ti−1 (4.1.5)

so that
f̂(xi, θi)− f̂(xi, θi−1) ≥ f̂(xi−1, θi)− f̂(xi−1, θi−1). (4.1.6)

Thus, by Assumption 4.1.3, xi ≥ xi−1 for each i (monotonicity).
Now, consider (LDIC-i) and (LDIC-(i-1)):

f̂(xi, θi)− f̂(xi−1, θi) ≥ ti − ti−1 (4.1.7)

f̂(xi−1, θi−1)− f̂(xi−2, θi−1) ≥ ti−1 − ti−2. (4.1.8)

Summing the above inequalities gives us

f̂(xi, θi)− f̂(xi−1, θi) + f̂(xi−1, θi−1)− f̂(xi−2, θi−1) ≥ ti − ti−2. (4.1.9)

This inequality along with monotonicity and Assumption 4.1.3, i.e.

f̂(xi−1, θi)− f̂(xi−2, θi) ≥ f̂(xi−1, θi−1)− f̂(xi−2, θi−1), (4.1.10)

imply that
f̂(xi, θi)− f̂(xi−2, θi) ≥ ti − ti−2. (4.1.11)

This is exactly (IC-i,i-2). We have shown that (LDIC-i) and (LDIC-(i-1)) imply (IC-i,i-
2). In addition, we can show that (IC-i,i-1) and (LDIC-(i-2)) imply (IC-i,i-3) and so on.
Thus inductively, the local downward incentive compatibility constraints imply the incentive
compatibility constraints for all i ≥ j. Similarly, we can argue that the local upward incentive
compatibility constraints imply the incentive compatibility constraints for all i ≤ j. Finally,
necessity is straightforward.
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We have reduced the constraint set of (P-1) to the local downward incentive compatibility
contraints, local upward incentive compatibility contraints, and the individual rationality
constraint for type θ1, (IR-1). We make the following claim:

Proposition 4.1.2. The local downward incentive compatibility contraints bind at optimum.

Proof. Suppose that the local downward incentive compatibility contraints is not binding at
optimum for some type θi, i.e. for some ε > 0,

f̂(xi, θi)− ti − (f̂(xi−1, θi)− ti−1) > ε. (4.1.12)

Then, for all j ≥ i, we can increase tj by ε without affecting any of the incentive compatibility
constraints but increasing the profit by (1−∑i−1

k=1 pk)ε. This leads to a contradiction.

Since xi ≥ xi−1 and the local downward incentive compatibility contraints are binding
at optimum, the local upward incentive compatibility contraints are automatically satisfied,
i.e.

f̂(xi, θi−1)− ti ≤ f̂(xi−1, θi−1)− ti−1. (4.1.13)

Hence, we have reduced the problem to the following:

max
Y

fc(Y )

s.t. f̂(x1, θ1)− t1 = 0 (IR-1)

f̂(xi, θi)− ti = f̂(xi−1, θi)− ti−1, ∀i ∈ {2, . . . , n} (LDIC-i)
xi ≥ xj whenever θi ≥ θj

 (P-2)

We refer to the optimal solution of (P-2) as the second–best solution and we use the notation
Y sb = {(x̂sb

i , t̂
sb
i )}ni=1. Before we proceed, we will define the first–best solution. If the power

company knows the type θ that it faces, then it solves

max
(x,t)
{t− g(x)| f̂(x, θ)− t ≥ 0} (4.1.14)

The solution to the above problem is denoted by (x̂fb(θ), t̂fb(θ)) where

x̂fb(θ) = arg max
x
{f̂(x, θ)− g(x)} (4.1.15)

and t̂fb(θ) = f̂(x̂fb(θ), θ). We denote the collection of solutions for the different types Y fb =
{(x̂fb

i , t̂
fb
i )}ni=1.

Writing down the Krush–Khun–Tucker (KKT) conditions to (P-2), we can formulate a
system of equations to determine the optimal (second–best) solution Y sb. There are a number
of properties that arise from general contracting problems of this kind that we outline here
and the details of which can be found in [BD05, Chapter 2].

First, the type that values privacy the highest, θn, gets the socially optimal contract
(efficient allocation); this can be easily seen from (4.1.14) with θ = θn and by examining the
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first–order KKT conditions of (P-2). On the other hand, all other types get an inefficient
allocation, i.e. x̂sb

i ≤ x̂fb
i for i ∈ {1, . . . , n − 1}. The type which values privacy the lowest,

θ1, gets zero–surplus ; this is easily seen from (IR-1), i.e. f̂(x̂sb
1 , θ1) = t̂sb1 . All other types

θi, i ∈ {2, . . . , n} enjoy some information rent meaning they pay less than is socially opti-
mal, and hence, free–ride on the rest of society; This can be easily seen by examining the
local downward incentive compatibility contraints and (IR-1). Indeed, define the following
function for the information rent of type θi as a function of x = (x1, . . . , xn):

f̂ir(x, θi) =
∑i−1

j=1

(
f̂(xj, θj+1)− f̂(xj, θj)

)
. (4.1.16)

Since information rent is positive by Assumption 4.1.3 and f̂(x̂sb
i , θi) ≤ f̂(x̂fb

i , θi) = t̂fbi where
t̂fbi is the socially optimal price, we have that

t̂sbi = f̂(x̂sb
i , θi)− f̂ir(x̂sb, θi) ≤ t̂fbi − f̂ir(x̂sb, θi). (4.1.17)

An interesting phenomena emerges when there are more than two types called bunching.
Depending on the distribution of types, two or more adjacent types get the same second–
best contract. Separating two adjacent types may give too much information rent to all
higher types thereby resulting in a solution with greater inefficiencies from the point of view
of society.

Remark 4.1.2. It is fairly straightforward to extend to the case where the power company
faces multiple consumers simultaneously. Suppose there are m consumers where consumer
j’s type is θj taking its value in the finite set Θj = {θj1, . . . , θjn}. Again, we say that the power
company faces type θji with probability pji . Thus, (P-2) becomes the following problem:

max
{Y j}mj=1

∑m
j=1

∑n
i=1 p

j
i (t

j
i − g(xji ))

s.t. f̂(xj1, θ
j
1)− tj1 = 0 (IR-1,j)

f̂(xji , θ
j
i )− tji = f̂(xji−1, θ

j
i )− tji−1, ∀i ∈ {2, . . . , n} (LDIC-i,j)

xji ≥ xjk whenever θji ≥ θjk
∀ j ∈ {1, . . . ,m}


(P-3)

where Y j = {(xji , tji )}ni=1. The problem decomposes into a single problem per consumer since
an individual consumer’s privacy valuation θ and their utility are not dependent on any
other consumer. This is a result of the fact that in this particular framework we assume that
the privacy metric does not experience any of the network effects of information. We leave
exploring these network effects to future work.

We now introduce an example to help the reader contextualize some of the concepts
introduced. In previous work, we characterized the efficiency–privacy tradeoff for a DLC
problem of thermostatically controlled loads (TCLs) [Don+14]. We showed that the `1–
norm of the error of the DLC (measured in terms of the `1 distance between the actual power



CHAPTER 4. PRIVACY–AWARE INCENTIVE DESIGN 90

consumed by the TCLs and the desired power consumption) increases as a function of the
sampling period, i.e. distance between samples, where a larger sampling period corresponds
to a higher privacy-setting. Empirically the relationship between sampling period and `1–
norm error is approximately quadratic.

Example 4.1 (Direct Load Control). Define the unit cost for implementing a privacy setting
x to be given by

g(x) =
1

2
ζx2 (4.1.18)

where 0 < ζ <∞ so that it is proportional to the error of the DLC scheme.
Consider that there are two types of consumer: θ ∈ {θL, θH} where 0 < θL < θH . Let the

consumers’ utility be given by
f̂(x, θ) = xθ (4.1.19)

where x ∈ [0, 1], i.e. their utility is proportional to both the type and the privacy setting.
Using (4.1.14), we determine the first–best contracts are given by

(x̂fbH , x̂
fb
H) =

(
θH
ζ
,
θL
ζ

)
, (t̂fbL , t̂

fb
H) =

(
θ2
H

ζ
,
θ2
L

ζ

)
. (4.1.20)

Suppose the power company has the prior

P(θ = θH) = p, P(θ = θL) = 1− p. (4.1.21)

For the two-type case, (P-2) reduces to the following two optimization problems:

maxxL{f̂(xL, θL)− (1− p)g(xL)− pf̂(xL, θH)}
maxxH{f̂(xH , θH)− g(xH)}

}
(P-2-redux)

The solutions to the above problems are

(x̂sbH , x̂
sb
L ) =

(
θH
ζ
,

1

ζ

[
θL − (θH − θL)

p

(1− p)

]
+

)
(4.1.22)

where [·]+ = max{·, 0}.
We remark that for p ≥ θL

θH
= p̂∗, the low–type receives zero allocation x̂sb

L = 0. This
is referred to as the shutdown solution in which case the power company no longer offers a
non-trivial contract to the low–type. The significance being that the probability of facing
a high–type is above some critical threshold beyond which it is no longer beneficial to the
power company to design non–trivial contracts for the low–type. This phenomenon is a
direct result of the information asymmetry at the core of the problem.

In the above example, we can see the core properties of contracts under asymmetric
information. Fist, the low–type gets zero surplus ; indeed, the optimal price for the low–type
is

t̂sbL = f̂(x̂sb
L , θL) =

θL
ζ

[
θL − (θH − θL)

p

(1− p)

]
+

. (4.1.23)
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In addition, the high–type gets some positive information rent due to the positive externality
coming from the mere existence of the low–type:

t̂sbH =
θ2
H

ζ
− (θH − θL)

ζ

[
θL − (θH − θL)

p

(1− p)

]
+

(4.1.24)

= t̂fbH − f̂ir(x̂sb, θH) (4.1.25)

where f̂ir(x̂
sb, θH) ≥ 0. This is desirable from the point of view of the high–type since it

allows them to free–ride on society. However, it is undesirable from the point of view of
society who bears the burden of this free–riding. Finally, the high–type gets the socially
optimal allocation—see (4.1.20) and (4.1.22). We will return to this DLC example in the
sequel, by introducing risk–averse consumers.

4.2 Effects of Privacy Loss Risk on Contracts

We are interested in analyzing the effect of loss risk (due to privacy breaches) in contracts.
Let us consider that an energy consumer of type θ suffers privacy breaches of cost `(θ),

with probability 1 − η(x) where the probability of a privacy breach can be derived from a
variety of inference metrics [Don+14; San+13].

4.2.1 Inferential Privacy Metrics

To give a concrete example, we construct a privacy metric—referred to as inferential pri-
vacy—by considering a detection theory framework [Don+14]. Suppose the consumer has
some state ξ that they want to keep private. We assume that ξ ∈ E where E is some
finite set. This state ξ influences their device usage patterns x, which, in turn, determine
their total energy consumption y. This is modeled in the following hierarchical Bayesian
framework:

ξ ∼ pξ (4.2.1)

u|ξ ∼ pu|ξ(·|ξ) (4.2.2)

y|u, ξ ∼ py|u(·|x) (4.2.3)

where pξ is a multinomial distribution, pu|ξ is the density of the distribution of device use
patterns for consumers with private state ξ and py|u is the density of a probability distribution
that models the devices inside the household. Further, we let py|ξ(y|ξ) =

∫
py|upu|ξ(u|ξ) du.

Assumption 4.2.1. Our adversary is able to observe the AMI signal y, and has knowledge
of pξ, pu|ξ, py|u. Additionally, the adversary has an arbitrary amount of computational power.

This adversary has access to the measured data signal, and also holds priors on the
consumer’s private information ξ. He also knows how different consumer types use devices,
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pu|ξ, and also has access to models of the device’s power consumption py|u. Although this
adversary has quite a bit of knowledge about the consumers, he does not hold arbitrary side
information.

Our privacy metric is the probability of error if an adversary tries to infer the private
variable ξ.

Definition 4.2.1 (Inferential Privacy [Don+14]). Under the hierarchical Bayesian model
outlined in (4.2.1)-(4.2.3), an AMI protocol is α–inferentially private if, for any estimator
ξ̂ : Y → E, we have P (ξ̂(y) 6= ξ) ≥ α. This estimator is based on information in pξ, pu|ξ,
and py|u.

We can definite the maximum a posteriori (MAP) estimator ξ̂MAP , which maximizes
P (ξ̂(y) = ξ).

Proposition 4.2.1 ([Don+14]). Under the hierarchical Bayesian model outlined in (4.2.1)-
(4.2.3), P (ξ̂(y) = ξ) is maximized by

ξ̂MAP (y) = arg max
i∈E

(
pξ(i) · py|ξ(y|i)

)
(4.2.4)

The optimality of the MAP estimator with respect to the prior pξ immediately leads to
a guarantee of privacy.

Proposition 4.2.2 ([Don+14]). Under the hierarchical Bayesian model outlined in (4.2.1)-
(4.2.3), the AMI protocol is α–inferentially private, where

α = P (ξ̂MAP (y) 6= ξ). (4.2.5)

Furthermore, the AMI protocol is not α′–inferentially private for any α′ > α.

In general, the optimal estimator is difficult to compute in practice. We can provide
approximations using tools from statistics.

Definition 4.2.2 (Total Variation Distance). The total variation distance between two den-
sities p and q on a measure space (X,A, µ) is given by

‖p− q‖TV =
∑
A∈A

∣∣∣∣∫
A

(p(x)− q(x))µ(dx)

∣∣∣∣ =
1

2

∫
X

|p(x)− q(x)|µ(dx). (4.2.6)

Definition 4.2.3 (Kullback-Leibler Divergence). The Kullback-Leibler (KL) divergence be-
tween two densities p and q on a measure space (X,A, µ) is given by

Dkl(p||q)
∫
p(x) log

p(x)

q(x)
µ(dx). (4.2.7)

Similarly, we will define the KL-divergence between two random variable X and Y to be the
KL-divergence between their densities, and it will be denoted Dkl(X||Y ).
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We can use Le Cam’s method [LeC73] to provide the first approximation to the optimal
privacy bound defined in Proposition 4.2.2. First, we state Le Cam’s lemma.

Lemma 4.2.1 ([LeC73][Tsy09, Lemma 2.3]). Assume the hierarchical Bayesian model out-
lined in (4.2.1)-(4.2.3). Then for any estimator ξ̂ : Y → E and any distinct i, j ∈ E, we
have

P (ξ̂(y) 6= ξ|ξ = i) + P (ξ̂(y) 6= ξ|ξ = j) ≥ 1− ‖py|ξ(·|i)− py|ξ(·|j)‖TV . (4.2.8)

Our approximation directly follows from Le Cam’s lemma.

Proposition 4.2.3 (Le Cam Approximation [Don+14]). Suppose the assumptions of Lemma 4.2.1
hold. Then P (ξ̂(y) 6= ξ) is bounded below:

P (ξ̂(y) 6= ξ) ≥ min(pξ(i), xξ(j))(1− ‖py|ξ(·|i)− py|ξ(·|j)‖TV ). (4.2.9)

Thus the AMI protocol is α–inferentially private where

α = max
i 6=j

[
min(pξ(i), pξ(j))(1− ‖py|ξ(·|i)− py|ξ(·|j)‖TV

]
. (4.2.10)

We remark that it will suffice to find an over approximation of the total variation distance,
i.e. consider Pisker’s inequality [Tsy09, Lemma 2.5]

‖p− q‖TV ≤
√

1

2
Dkl(p||q). (4.2.11)

An alternative to Le Cam’s method is Fano’s inequality [Tsy09, Lemma 2.10].

Proposition 4.2.4 (Fano Approximation [Don+14]). Provided the hierarchical Bayesian
model outlined in (4.2.1)-(4.2.3), for any estimator ξ̂ : Y → Ξ, the probability of error
P (ξ̂(y) 6= ξ) is bounded below:

P (ξ̂(y) 6= ξ) ≥ 1

log(r − 1)

(
log r − 1

r2

∑
i,j

Dkl

(
py|ξ(·|i)||py|ξ(·|j)

)
− log 2

)
. (4.2.12)

Hence, the AMI protocol is α–inferentially private where α is given by the right-hand side of
(4.2.12).

We have shown in [Don+14] that income level can be inferred from energy consumption
data. Further, we characterize in an example informed by real data how inferential privacy
varies as a function of sample time.

In [San+13], an information theoretic approach is taken in order to create a metric for pri-
vacy and they investigate how the utility of consumption data decreases as privacy increases.
On the other hand, differential privacy—originally introduced by Dwork in [Dwo11]—has
been applied as a metric of privacy in the smart grid context where aggregation of consump-
tion data across users is performed (see, e.g., [BM14; JB14]).
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4.2.2 Contracts with Risk-Averse Consumers

Returning to the problem at hand, the consumer’s expected utility is given by

f(x, θ) = f̂(x, θ)− (1− η(x))`(θ). (4.2.13)

The characteristics of the privacy breach are summarized in the following assumption.

Assumption 4.2.2. η : R → [0, 1] (probability of avoiding a privacy breach) is strictly
increasing with respect to the privacy setting x. The perceived loss ` : Θ → R≥0 due to a
privacy breach is increasing with respect to the type of each consumer.

Intuitively, the higher the privacy setting, the less likely a privacy breach will occur.
Furthermore, a consumer with a high privacy valuation might experience a greater loss as
compared to a consumer with a low privacy valuation.

The individual rationality constraint for the case where consumers are exposed to privacy
risks is expressed as

f̂(x, θ)− t ≥ (1− η(x))`(θ). (4.2.14)

Recall that the optimal contract without risk for a consumer with the lowest valuation of
privacy, (x̂sb

1 , t̂
sb
1 ), satisfies (IR-1) with strict equality, i.e. f̂(x̂sb

1 , θ1) = t̂sb1 . Thus, the optimal
contract of the previous section violates (4.2.14) unless either `(θ1) = 0 or η(x̂sb

1 ) = 1.
Consequently, consumers with the lowest privacy preferences θ1 might get more profit by
opting out.

On the other hand, when there are privacy risks, the local upward incentive compatibility
constraint (LUIC-i) is expressed as

f̂(xi, θi)− ti ≥ f̂(xi+1, θi)− ti+1 + (η(xi+1)− η(xi))`(θi). (4.2.15)

Since x̂sb
i ≤ x̂sb

i+1, η(x̂sb
i+1)− η(x̂sb

i ) ≥ 0. Hence, the inequality (4.2.15) might not be satisfied
by the optimal contract that does not consider risk. Thus consumers with the privacy
preferences θi for i ∈ {1, . . . , n − 1} may choose a contract designed for a higher type.
Consequently, the power company will need to decrease the cost ti or increase the privacy
setting xi in order to promote participation thereby decreasing the benefit and fees collected
and thus, the social welfare. Hence, there is an incentive for the power company to purchase
insurance or invest in security. Furthermore, security is inherently tied to privacy in this
scenario since the security measures taken will impact the ability of an adversary to make
inferences and hence the privacy metric.

4.2.3 Characterizing the Effects of Privacy Loss Risk

Suppose that f defined in (4.2.13) satisfies Assumption 4.1.1 and 4.1.3. Then the analysis
in Section 4.1 holds when we replace f̂ with f .
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From (4.2.13), we get the marginal utility with privacy loss risk:

∂f

∂x
(x, θ) =

∂f̂

∂x
(x, θ) +

∂η

∂x
(x)`(θ). (4.2.16)

Since f is strictly increasing by Assumption 4.1.1, we have

∂f

∂x
(x, θ) > 0. (4.2.17)

Since the probability of a successful attack decreases with higher privacy settings, we have

∂η

∂x
(x) > 0. (4.2.18)

Hence, from (4.2.16) and the fact that `(θ) ≥ 0, we have that

∂f

∂x
(x, θ) ≥ ∂f̂

∂x
(x, θ). (4.2.19)

The following two propositions characterize the second-best contracts with and without
privacy loss risk.

Proposition 4.2.5. The privacy setting of all types i ∈ {1, . . . , n− 1} in contracts with and
without privacy loss risk (xsbi and x̂sbi resp.) satisfy the following. If Pi+1`(θi+1) < Pi`(θi),
then xsbi ≥ x̂sbi where Pi =

∑n
j=i pj. Otherwise, xsbi < x̂sbi .

Proof. Substituting the constraints of (P-2) into the profit function fc(Y ), we get that

fc(Y ) = p1(f̂(x1, θ1)− g(x1)) +
n∑
i=2

pi

(
f̂(xi, θi)− g(xi) +

i−1∑
j=1

(f̂(xj, θj+1)− f̂(xj, θj))

)
.

(4.2.20)

For each i ∈ {1, . . . , n − 1}, the following is the part of the profit function (4.2.20) that
depends on xi:

pi(f̂(xi, θi)− g(xi))− Pi+1(f̂(xi, θi+1)− f̂(xi, θi)). (4.2.21)

Taking the derivative with respect to xi, we get the first–order conditions in the case without
risk,

pi

( ∂f̂
∂xi

(x̂sb
i , θi)−

∂g

∂xi
(x̂sb

i )
)
− Pi+1

( ∂f̂
∂xi

(x̂sb
i , θi+1)− ∂f̂

∂xi
(x̂sb

i , θi)
)

= 0. (4.2.22)

Replacing f̂ with f in (4.2.21) and taking the derivative with respect to xi, we get the
first–order conditions in the case with risk,

pi

( ∂f̂
∂xi

(xsb
i , θi)−

∂g

∂xi
(xsb

i )
)
− Pi+1

( ∂f̂
∂xi

(xsb
i , θi+1)− ∂f̂

∂xi
(xsb

i , θi)
)

+
∂η

∂xi
(xsb

i )
(
pi`(θi)− Pi+1

(
`(θi+1)− `(θi)

))
= 0. (4.2.23)
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We now consider three cases. First, if pi`(θi) − Pi+1

(
`(θi+1) − `(θi)

)
= 0, then x̂sb

i = xsb
i .

Suppose now that pi`(θi) − Pi+1

(
`(θi+1) − `(θi)

)
> 0. This condition is equivalent to

Pi+1`(θi+1) < Pi`(θi). Then, we have that

pi

( ∂f
∂xi

(xi, θi)−
∂g

∂xi
(xi)

)
− Pi+1

( ∂f
∂xi

(xi, θi+1)− ∂f

∂xi
(xi, θi)

)
>

pi

( ∂f̂
∂xi

(xi, θi)−
∂g

∂xi
(xi)

)
− Pi+1

( ∂f̂
∂xi

(xi, θi+1)− ∂f̂

∂xi
(xi, θi)

)
(4.2.24)

so that the first–order conditions with risk (4.2.23) imply

0 > pi

( ∂f̂
∂xi

(xsb
i , θi)−

∂g

∂xi
(xsb

i )
)
− Pi+1

( ∂f̂
∂xi

(xsb
i , θi+1)− ∂f̂

∂xi
(xsb

i , θi)
)
. (4.2.25)

Hence, by (4.2.22) and the fact that the profit is concave, we have xsb
i > x̂sb

i . On the other
hand, if pi`(θi)− Pi+1

(
`(θi+1)− `(θi)

)
< 0, then the inequality in (4.2.24) is reversed. Thus,

by (4.2.22) and (4.2.23), xsb
i < x̂sb

i .

Proposition 4.2.6. The privacy setting of an agent with type θn is higher with privacy loss
risk, that is, xsbn ≥ x̂sbn .

Proof. The piece of the profit that depends on xn is pn(f̂(xn, θn)− g(xn)) so that the first–
order condition for xn in the case without risk is given by

∂f̂

∂xn
(x̂sb

n , θn)− ∂g

∂xn
(x̂sb

n ) = 0. (4.2.26)

Similarly, by replacing f̂ in (4.2.20) with f , the first–order condition for the case with risk
is given by

∂f

∂xn
(xsb

n , θn)− ∂g

∂xn
(xsb

n ) = 0. (4.2.27)

Thus (4.2.19) implies that

0 ≥ ∂f̂

∂xn
(xsb

n , θn)− ∂g

∂xn
(xsb

n ). (4.2.28)

Since f(x, θn) − g(x) is a concave function, its derivative with respect to x is a decreasing
function of x. Hence, the optimal privacy setting without risk x̂sb

n , which satisfies (4.2.26),
must be smaller than the privacy setting with risk, i.e. xsb

n ≥ x̂sb
n . This result is independent

of the population distribution and the other types θi, i ∈ {1, . . . , n− 1}.

Recall (4.1.16); in a similar way, we use the notation fir(x, θi) to denote the information
rent using the utility functions with risk f . The following result states that the optimal
privacy setting for all consumer types excluding those with the highest valuation of privacy
is decreasing with respect to the prior on types.
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Proposition 4.2.7. For each i ∈ {1, . . . , n−1}, suppose pi is decreased by an amount ε > 0
and this probability mass is redistributed in any way to the types θj, j ∈ {i+ 1, . . . , n}, then
xsbi and the information rent fir(x

sb, θi) both decrease.

Proof. Fix i in {1, . . . , n− 1}. Consider two priors over the type space Θ: p = {p1, . . . , pn}
and p′ = {p′1, . . . , p′n} where p′i = pi − ε and the probability mass ε > 0 is redistributed
amongst p′j for j ∈ {i+ 1, . . . , n}. We use the notation xsb

i (p) to denote the optimal privacy
setting as a function of p. The piece of the profit function dependent on xi is given by

fp,i(xi,p
′) = p′i(f(xi, θi)− g(xi))− P ′i+1(f(xi, θi+1)− f(xi, θi))

so that the first–order conditions are

∂fp,i
∂xi

(xi,p
′) = pi

( ∂f
∂xi

(xi, θi)−
∂g

∂xi
(xi)

)
− Pi+1

( ∂f
∂xi

(xi, θi+1)− ∂f

∂xi
(xi, θi)

)
− ε
(
∂f

∂xi
(xi, θi)−

∂g

∂xi
(xi) +

∂f

∂xi
(xi, θi+1)− ∂f

∂xi
(xi, θi)

)
. (4.2.29)

Hence,
∂fp,i
∂xi

(xsb
i (p),p′) = −ε

( ∂f
∂xi

(xsb
i (p), θi+1)− ∂g

∂xi
(xsb

i (p))
)
. (4.2.30)

Since xsb
i+1(p) ≥ xsb

i (p) and f(x, θi+1)− g(x) is concave,

∂f

∂xi
(xsb

i (p), θi+1)− ∂g

∂xi
(xsb

i (p)) >
∂f

∂xi
(xsb

i+1(p), θi+1)− ∂g

∂xi
(xsb

i+1(p)). (4.2.31)

Further, by Assumption 4.1.3 and the first–order conditions for xsb
i+1(p), the right–hand side

of the above inequality is greater than zero. Hence,

∂fp,i
∂xi

(xsb
i (p),p′) < 0 (4.2.32)

thereby indicating that xsb
i (p) > xsb

i (p′). Note that this result holds for the contracts
without risk as well, x̂sb

i (p) > x̂sb
i (p′), by replacing f with f̂ in the above argument. The

fact that the information rent decreases is straightforward. Indeed, Assumption 4.1.3 implies
if x̂sb

i (p) > x̂sb
i (p′), then fir((x̂

sb)′, θi) ≥ fir(x̂
sb, θi).

As a consequence of the above proposition, tsbi is decreasing with respect to the prior.
Furthermore, xsb

n does not depend on the prior since the highest type always gets an efficient
allocation. This applies regardless of the risk of privacy loss.

Results in Propositions 4.2.5 and 4.2.6 let us determine the impact of risk on the price t
paid by the lowest and highest types.



CHAPTER 4. PRIVACY–AWARE INCENTIVE DESIGN 98

Proposition 4.2.8. The price for consumers with privacy valuation θn satisfies tsbn > t̂sbn −
(1− η(x̂sbn−1))`(θn−1), if pn`(θn) > (pn−1 + pn)`(θn−1). The price for consumers with privacy
valuation θ1 satisfies {

tsb1 ≥ t̂sb1 − (1− η(x̂sb1 ))`(θ1), if P2 ≤ `(θ1)
`(θ2)

tsb1 < t̂sb1 − (1− η(x̂sb1 ))`(θ1), otherwise
(4.2.33)

where P2 =
∑n

j=2 pj.

Proof. Suppose pn`(θn) > (pn−1+pn)`(θn−1). Then, from Proposition 4.2.5 and 4.2.6, xsb
n−1 <

x̂sb
n−1 and xsb

n ≥ x̂sb
n . Hence, by Assumption 4.1.1 and Assumption 4.1.3, we have

tsbn = f(xsb
n , θn)− (f(xsb

n−1, θn)− f(xsb
n−1, θn−1))

≥ f(x̂sb
n , θn)− (f(x̂sb

n−1, θn)− f(x̂sb
n−1, θn−1))

≥ t̂sbn + (η(x̂sb
n )− η(x̂sb

n−1))`(θn)− (1− η(x̂sb
n−1))`(θn−1)

≥ t̂sbn − (1− η(x̂sb
n−1))`(θn−1)

where the last inequality holds since the probability of a privacy breach 1−η(x) is decreasing
in x.

Now, suppose `(θ2)P2 ≤ `(θ1) and note P1 = 1. Then by Proposition 4.2.5, x̂sb
1 ≤ xsb

1 .
Since tsb1 = f(xsb

1 , θ1), we have that

tsb1 ≥ f(x̂sb
1 , θ1) ≥ t̂sb1 − (1− η(x̂sb

1 ))`(θ1). (4.2.34)

On the other hand, if `(θ2)P2 > `(θ1), then x̂sb
1 > xsb

1 so that

tsb1 ≤ t̂sb1 − (1− η(x̂sb
1 ))`(θ1). (4.2.35)

Remark 4.2.1. In general, for contract design problems, it is difficult to make any qualitative
statements about price [BD05]. The above proposition gives conditions—as a function of the
prior on types and the value of loss—such that the highest and lowest types pay more under
the contracts with risk than they pay under the contract without risk less the expected loss.
Further, it shows the alternate case for the lowest type; however, for type θn the reverse
inequality cannot be achieved since x̂sbn ≤ xsbn irrespective of the prior.

Proposition 4.2.9. For each i ∈ {2, . . . , n}, if Pj+1`(θj+1) ≥ Pj`(θj) for all j ∈ {1, . . . , i−
1}, then information rent under the contract with privacy loss risk is less than without, i.e.

fir(x
sb, θi) ≤ f̂ir(x̂

sb, θi) (4.2.36)

where xsb = (xsb1 , . . . , x
sb
n ) and similarly for x̂sb. Further, if Pi+1`(θi+1) < Pi`(θi), then the

price a consumer of type θi pays under the contract with privacy loss risk is higher than
without, i.e. tsbi ≥ t̂sbi .
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Proof. Fix i ∈ {2, . . . , n}. Suppose for all j ∈ {1, . . . , i − 1}, Pj+1`(θj+1) ≥ Pj`(θj) so that
Proposition 4.2.5 gives us x̂sb

j ≥ xsb
j . Thus, by Assumption 4.1.3, we have that fir(x

sb, θi) ≤
fir(x̂

sb, θi) ≤ f̂ir(x̂
sb, θi) since

fir(x̂
sb, θi) = f̂ir(x̂

sb, θi) +
i−1∑
j=1

(1− η(x̂sb
j ))(`(θj)− `(θj+1)).

Now, in addition, suppose that Pi+1`(θi+1) < Pi`(θi) so that (by Proposition 4.2.5) xsb
i > x̂sb

i .
Then we have the following:

tsbi = f(xsb
i , θi)− fir(xsb, θi) ≥ f(x̂sb

i , θi)− f̂ir(x̂sb, θi) ≥ t̂sbi . (4.2.37)

Information rent characterizes how much the power company has to give up in profits in
order to persuade consumers to report truthfully. The above shows that it decreases as we
introduce risk into the model when the likelihood of the power company facing higher types
is greater than the ratio of losses of lower types compared to higher types.

Example 4.1 (Direct Load Control—Continued). Recall the DLC example that was intro-
duced in Section 4.1. In addition to studying the effects of subsampling on DLC performance,
we show that the probability of detecting a device is consuming power decreases with respect
to sampling period by using the inferential privacy metric defined in (4.2.5) (see [Don+14]).
Here, we take a linear approximation of the error. In particular, a higher privacy set-
ting is less likely to be successfully attacked; hence, for the sake of the example, we take
1− η(x) = m(1− x) where m > 0 is a constant.

As in the previous section, we model the consumer’s risk aversion using the utility function
in (4.2.13). When we consider risk–averse consumers, the first–best solution is given by

(tfbH , x
fb
H) =

(
θ2
H −mθH`(θH)

ζ
,
θH −m`(θH)

ζ

)
(4.2.38)

and

(tfbL , x
fb
L) =

(
θ2
L −mθL`(θL)

ζ
,
θL −m`(θL)

ζ

)
. (4.2.39)

The second-best optimal contracts are given by

(tsbL , x
sb
L ) =

(
θL
ζ

[(m`(θL)− pm`(θH)− pθH + θL)

(1− p)
]

+
,

1

ζ

[(m`(θL)− pm`(θH)− pθH + θL)

(1− p)
]

+

)
(4.2.40)

and

(tsbH , x
sb
H) =

(
tsbL + xsbHθH − xsbL θH +m(xsbH − xsbL )`(θH),

1

ζ
(θH +m`(θH))

)
. (4.2.41)
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Figure 4.1: (a) Comparison between the first-best and second-best solutions as a function of p for the case
with (gray) and without (black) risk. The general shape of the curves is the same for different values of m;
changing m from 0 to 1 has the effect of shifting p∗ closer to the origin as well as causing xsb

H to decrease.
(b) Optimal prices as a function of p for both the case with risk (gray) and without (black) as well as the
information rent (? with risk, ? without risk) as a function of p.

In Figure 4.1a, we show that as the probability of the high–type being drawn from the
population increases, the privacy setting for the low–type decreases away from the first–best
and socially optimal solution xfbL (resp. x̂fbL). This occurs until the critical point

p∗ =
θL +m`(θL)

θH +m`(θH)
.

As we discussed before, this critical point determines when the shut–down solution occurs.
In Figure 4.1b, we show the optimal prices for the first– and second–best solutions in

both the case with risk and without. We see that for p ≤ p∗ (resp. p ≤ p̂∗) we have positive
information rent for the high–type. Essentially, when the probability of the existence of a low–
type is large relative to that of a high–type, there is a positive externality—positive from the
perspective of the high-type—on the high-type thereby allowing them to free–ride on society.
People who value high privacy need to be compensated more to participate. Further, the low–
type continues to get zero surplus since the individual rationality constraint of the low–type
is always binding.

In Figure 4.2a and 4.2b respectively, we show the power company’s expected profit and
the social welfare

W (p, tL, xL, tH , xH) =fc(tL, xL, tH , xH) + p(f(xH , θH)− tH) + (1− p)(f(xL, θL)− tL),
(4.2.42)

which is the sum of expected profit of the power company and the consumer. Note we replace f
with f̂ in the above equation for social welfare when considering a consumer’s utility function
without privacy loss risk. In this case we define the social welfare by Ŵ .
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Figure 4.2: (a) Profit of the power company as a function of p for both the case with risk fc(p) (gray)

and without f̂c(p) (black). (b) Social Welfare as a function of p for both the case with risk W sb (gray) and
without risk Ŵ sb (black).

Notice the slope of the linear pieces of Ŵ sb and W sb; in particular, Ŵ sb(p) for p ≥ p̂∗ is
increasing at a slower rate than W sb(p) for p ≥ p∗. Similarly, f sb

c (p) for p ≥ p∗ increases at

a faster rate than f̂c
sb

(p) for p ≥ p̂∗. This is in part due to the fact that tsbH(p) − tsbL (p) >
t̂sbH(p) − t̂sbL (p) as is shown in Figure 4.1b. Note that there are some values of p for which
the power company’s profit and the social welfare are lower with privacy loss risks thereby
motivating compensation/insurance as a function of the population distribution or regulation
in the form of subsidies or a privacy tax.

4.3 Insurance Contracts

In this section, we will design insurance contracts to be offered by a third–party insurance
company to either the consumer or the power company which we will refer to more generally
as the agent . In particular, we design insurance contracts that allow agents to purchase
protection against attacks given they know the probability of a successful attack occurring.
If the agent is the power company, then they may be purchasing insurance to account for
compensation they offer to consumers in the event of a privacy breach or they may be
purchasing insurance to account for privacy breaches the company itself experiences. On
the other hand, if the agent is an electricity consumer, they may be purchasing insurance
to protect against losses due to adversarial inferences made from their energy consumption
data.

Using the theory of insurance contracts when there is asymmetric information and the
probability that an adversary can gain access to the agent’s private information, we analyze
both the agent’s choice on how much insurance to invest in as well as the insurer’s decision
about which contracts to offer to a population with both high–risk and low–risk agents. The
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abstract analysis that follows is well known in the economics literature (see, e.g., [RS76;
Jay78; MR78]). We borrow these tools to understand qualitatively how insurance invest-
ments will be made in a smart grid context and, as before, we take the novel view of privacy
as a good.

4.3.1 Analysis of the Agent’s Decision

We first analyze the decision the agent makes regarding selecting an amount of insurance
given knowledge of the probability of a privacy breach 1− η. Let the agent’s utility function
be denoted by f : R → R and assume that f is increasing, twice differentiable and strictly
concave. Let us suppose that the agent is risk–averse which means that the agent makes
a decision under uncertainty and will try to minimize the impact of the uncertainty on its
decision.

In addition, suppose the agent has initial wealth y, runs the risk of loss ` with probability
1−η. In the context of our problem, wealth represents private information that can be gained
through analysis of energy consumption data or energy system data. A loss represents
exposure of this private information.

The agent must decide how much insurance to buy. Let the cost of one unit of insurance
be c and suppose that the insurer pays the agent β in the event that an adversary implements
a successful attack resulting in an exposure of private information where β is the amount of
insurance the agent agrees to buy. Then the agent wants to solve the following optimization
problem:

max
β≥0
{ηf(y − βc) + (1− η)f(y + (1− c)β − `)}. (4.3.1)

Let us consider the KKT necessary conditions for the optimization problem in (4.3.1).
Suppose that β∗ is a local optimum to the problem (4.3.1), then there exists a Lagrange
multiplier λ such that

0 = −λ− ηcf ′(y − β∗c) + (1− η)(1− c)f ′(y + (1− c)β∗ − `)
0 = λβ∗

0 ≥ β∗

0 ≥ λ

 (4.3.2)

Combining the first and the last condition, we have

0 ≥ −ηcf ′(y − β∗c) + (1− η)(1− c)f ′(y + (1− c)β∗ − `) (4.3.3)

We analyze the agent’s decision by considering two cases and we present the results in the
following propositions.

Proposition 4.3.1. Suppose that the agent is offered privacy insurance at the rate c = 1−η,
i.e. at a rate equal to the probability of a successful attack. Then the agent will choose to
purchase an amount of insurance equal to the loss, i.e. β∗ = `.
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Proof. Since c = 1− η, (4.3.3) reduces to

0 ≥ η(1− η)
(
f ′(y + ηβ∗ − `)− f ′(y − β∗(1− η))

)
(4.3.4)

and since (1− η)η ≥ 0 this again reduces to

0 ≥ f ′(y + ηβ∗ − `)− f ′(y − β∗(1− η)) (4.3.5)

Recall that we assumed f to a be a concave function and that a function is strictly concave
if and only if its derivative f ′ is decreasing. Since ` > 0,

f ′(z) < f ′(z − `). (4.3.6)

The above inequality along with (4.3.5) implies that β∗ > 0.
Now, we claim that β∗ = `. Indeed, suppose that 0 < β∗ < `, then from (4.3.5) we have

f ′(y + ηβ∗ − `) ≤ f ′(y + ηβ∗ − β∗). (4.3.7)

This inequality violates (4.3.6). On the other hand, suppose that 0 ≤ ` ≤ β∗, then from
(4.3.6) we have that

f ′(y + ηβ∗ − β∗) > f ′(y + ηβ∗ − `). (4.3.8)

This violates the inequality (4.3.5). Hence, β∗ = ` which is to say that the agent will purchase
an amount of insurance equal to the loss of privacy she would endure under an attack.

Proposition 4.3.2. Suppose that the agent is offered insurance at the rate c > 1 − η, i.e.
at a rate higher than the probability of a successful attack. Then the agent will not purchase
the full insurance, i.e. β∗ < `.

Proof. Suppose that the agent is offered privacy insurance at a rate c > 1− η and that the
optimal choice for the agent is β∗ = ` ≥ 0. Then, first-order optimality conditions imply
that

− ηf ′(y − `c)c+ (1− η)f ′(y − `c)(1− c) = 0 (4.3.9)

However, since c > 1− η and f is increasing, from (4.3.3) we have that

(−ηc+ (1− η)(1− c))f ′(y − `c) < 0. (4.3.10)

Thus the optimal amount of insurance β has to be less than the loss experienced, i.e. β∗ <
`.
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4.3.2 Analysis of the Insurer’s Decision

Let us now consider the design of privacy insurance contracts offered by a third–party in-
surance company. Insurance allows the consumer (when it is the agent in consideration) to
hedge their bet against selecting a privacy–based service contract with a low–privacy setting
which they may be incentivized by the power company to purchase. On the other hand,
insurance allows the power company (when it is the agent in consideration) to hedge its bet
against having a large number of consumers who have low valuations of privacy and there-
fore contribute to the level of riskiness of the power company. In addition, for the power
company, there is a tradeoff between how much insurance they purchase versus how much
security they invest in.

We assume the agent’s utility function f is strictly concave, increasing and twice differ-
entiable and for the sake of analysis we assume that f(0) = 0. We consider a scenario in
which the insurer faces two types, i.e. either a high–risk agent θh or a low–risk agent θl.
That is to say we are assuming that there is a portion of the population that is more likely
to be attacked, i.e. the risky agents, possibly because they engage in high–risk behavior.
For example, if the agent is the consumer, perhaps they selected a low–privacy setting on
their smart meter, or if the agent is the power company, perhaps they have not invested in
an appropriate level of security measures or they are not following the best practices rec-
ommendations, e.g. NIST–IR 7628 [Ell14]. In addition, there is a portion of the population
that is less likely to be attacked, i.e. the low–risk agents. Just as in the previous sections,
we can consider any finite number of types and make the same qualitative insights; however,
we choose to present the results for only two types to make the presentation easier to follow.

The agent has an initial amount of wealth y and with probability 1 − ηj some of her
private information is exposed resulting in a loss ` where j = h, l indicates the agent’s
type. We assume that 1 − ηl < 1 − ηh which is to say that the likelihood a low–risk agent
will experience a privacy loss is lower than the likelihood a high–risk agent will experience
a loss, ceteris paribus. Furthermore, we will assume that the insurer has a prior over the
distribution of types. In particular, we assume that the risky type θh occurs in the population
with probability p and that p > 0.

Suppose we are given an insurance contract (αa, αn) where αa is the compensation to the
agent given that a successful attack occurred and αn is the neutral case (no attack). Let
X be a random variable representing the agent’s wealth such that with probability 1 − ηi
it takes value y − ` + αa and with probability ηi it takes value y − αn. Then, the agent’s
expected utility is given by

E[f(X)] = (1− ηi)f(y − `+ αa) + ηif(y − αn). (4.3.11)

Note that in the previous subsection we analyzed the agent’s decision given a insurance
contract of the form

(αa, αn) = ((1− c)β, βc). (4.3.12)
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The insurer is a monopolist whose expected cost is given by

fc(α
h
a, α

h
n, α

l
a, α

l
n) =p

(
−(1− ηh)αha + ηhα

h
n

)
+ (1− p)

(
−(1− ηl)αla + ηlα

l
n

)
(4.3.13)

In the case of asymmetric information, i.e. the insurer does not know the agent’s type, the
optimization problem the insurer must solve is given by

max
{(αj

a,α
j
n)}j=h,l

fc(α
h
a, α

h
n, α

l
a, α

l
n) (P-5)

s.t. (1− ηi)f(y − `+ αia) + ηif(y − αin) ≥ (1− ηi)f(y − `+ αja) + ηif(y − αjn),
(IC-i,j)

for each i, j ∈ {h, l}, i 6= j

(1− ηi)f(y − `+ αia) + ηif(y − αin) ≥ (1− ηi)f(y − `) + ηif(y), (IR-i)

for each i ∈ {h, l}

Constraints labeled (IC-i,j) are the incentive compatibility constraints and constraints (IR-i)
are the individual rationality constraints. Both are similar to those presented in Section
4.1. Incentive compatibility ensures that the agent will report their type truthfully and the
individual rationality constraint ensures that the agent will participate.

We can reduce the optimization problem (P-5) by reasoning about the constraint set
defined by (IC-i,j) and (IR-i). Since 1 − ηl < 1 − ηh, the incentive compatibility constraint
for the risky type is active and the individual rationality constraint for the safe type is active,
i.e. the constraint set for (P-5) reduces to the following two constraints:

(1− ηh)f(y − `+ αha) + ηhf(y − αhn) = (1− ηh)f(y − `+ αla) + ηhf(y − αln) (IC-h)

and
(1− ηl)f(y − `+ αla) + ηlf(y − αln) = (1− ηl)f(y − `) + ηlf(y). (IR-l)

Let us try to restate the problem in a way which allows us to characterize the solutions.
Since we have assumed that f is strictly concave, increasing and twice differentiable, we can
define F be its inverse, where F ′ > 0 and F ′′ > 0. Further, define

f ia = f(y − `+ αia) (4.3.14)

and
f in = f(y − αin). (4.3.15)

The transformed utility is given by

f̃c(f
h
a , f

h
n , f

l
a, f

l
n) = p

(
− ηhF (fhn )− (1− ηh)F (fha ) + y − (1− ηh)`

)
+ (1− p)

(
− ηlF (f ln)− (1− ηl)F (f la) + y − (1− ηl)`

)
. (4.3.16)
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Then problem (P-5) transforms to the following optimization problem:

max
{(f ia,f in)}i=h,l

f̃p(f
h
a , f

h
n , f

l
a, f

l
n)

s.t. (1− ηh)fha + ηhf
h
n = (1− ηh)f la + ηhf

l
n

(1− ηl)f la + ηlf
l
n = (1− ηl)f(y − `) + ηlf(y)

(P-6)

The Lagrangian of the optimization problem is

L(fha , f
h
n , f

l
a, f

l
n, λ1, λ2) = f̃c(f

h
a , f

h
n , f

l
a, f

l
n)

+ λ1((1− ηh)fha + ηhf
h
n − (1− ηh)f la − ηhf ln)

+ λ2((1− ηl)f la + ηlf
l
n − (1− ηl)f(y − `)). (4.3.17)

Proposition 4.3.3. Given the probabilities 1 − ηj, j = h, l that an agent of type j will
experience a privacy breach, if the insurer solves the optimization problem (P-6), then the
high–risk agent will be fully insured and the low–risk agent will not be fully insured.

Proof. We first show that the risky type will be fully insured. Taking the derivative of the
Lagrangian with respect to fha and fhn we have that

0 = −p(1− ηh)F ′(fha ) + λ1(1− ηh) (4.3.18)

and

0 = −pηhF ′(fhn ) + λ1ηh. (4.3.19)

Solving for λ1 in the first equation and plugging it into the second, we get fha = fhn so that
`−αha = αhn, i.e. the amount the high–risk type pays for insurance is equal to the loss minus
the compensation in the event of a privacy breach. Thus, the high–risk type will be fully
insured.

Now, we show that the low–risk type will not be fully insured. Taking the derivative of
the Lagrangian with respect to f la and f ln, we get

0 = −(1− ηl)(1− p)F ′(f la)− λ1(1− ηh) + λ2(1− ηl) (4.3.20)

and

0 = −(1− p)ηlF ′(f ln)− λ1ηh + λ2ηl. (4.3.21)

From (4.3.18), we solved for λ1 = pF ′(fha ). By plugging in λ1 into (4.3.20), solving for λ2

and plugging both λ1 and λ2 into (4.3.21), we have the following:

0 = F ′(fha )p

(
−ηh + ηl

1− ηh
1− ηl

)
+ ηl(1− p)(F ′(f la)− F ′(f ln)) (4.3.22)

= F ′(fha )p

(
ηl − ηh
1− ηl

)
+ ηl(1− p)(F ′(f la)− F ′(f ln)). (4.3.23)
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Since ηl > ηh, we have that

0 > − F ′(fha )p

ηl(1− p)

(
ηl − ηh
1− ηl

)
= F ′(f la)− F ′(f ln). (4.3.24)

Since F ′ is increasing, the above equation implies that

f ln − f la > 0 (4.3.25)

and hence, the low–risk type does not fully insure.

4.4 Discussion

Smart meters are increasingly becoming more and more capable of collecting data at high
frequencies. As a result, we need to develop tools that allow consumers and power companies
to benefit from these advances. Implementing privacy–aware data collection policies results
in a reduction in the fidelity of the data and hence, a reduction in the efficiency of operations
that depend on that data. This fundamental tradeoff provides an incentive for the power
company to offer new service contracts.

We modeled electricity service as a product line differentiated according to privacy where
consumers self–select the level of privacy that fits their needs and wallet. We derived pri-
vacy contracts with and without privacy loss risks, characterized the optimal contracts, and
provided a comparative study. We showed that privacy loss risks can decrease the level
service offered to each consumer type under certain conditions. Further, people who value a
higher level of privacy free–ride on society and hence, need to be compensated accordingly
to participate in the smart grid. We remark that the power company has an incentive to
purchase insurance and invest in security in order to mitigate the effects of privacy loss risks.
We leave questions regarding insurance versus security investment for future work.

Many open questions remain regarding the design of insurance contracts to be offered
to the power company. We made some initial efforts to understand abstractly the level
of insurance investment by power companies and consumers; however, there is much to be
done in understanding how insurance investment varies as a function of the distribution of
types and the selected privacy metric. Moreover, it is worthwhile to investigate the tradeoff
experienced by the power company between investing in insurance and privacy–based service
contracts.

Other researchers have used contract theory for demand–side management such as DLC
and demand response programs. It would be interesting to consider the design of contracts
with multiple goods—e.g. privacy setting, DLC options—in a multidimensional screening
problem. In such a setting, we may also model the consumer’s private information (type)
as multidimensional vector thereby increasing the practical relevance of the model. Noting
that Assumption 4.1.3 is often referred to as the sorting condition, we remark that one of
the major difficulties in extending to the multidimensional case is the lack of being able to
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sort or compare across the different goods and their qualities [Bas05]; however, a potential
solution is to create a partial order of the multiple goods (benefits and privacy) available to
consumers.

Another interesting direction for future research is in examining the network effects of
information on privacy. In particular, we have implicitly assumed that the adversary uses
only data from the individual that is being attacked. Perhaps information about other like
consumers—for instance, based on their type—can be used to infer information about a
particular consumer. These network effects can greatly impact the ability of an adversary
to infer private information. Differential privacy [Dwo11] is a tool for providing privacy
guarantees on the aggregate and perhaps could be used along side of inferential privacy to
address the network effects of information. This is an idea worth exploring.

We have begun the conversation on how to combine inference bounds from statistics
and economic mechanisms for managing the efficiency–privacy. A similar discussion could
be started regarding security in the smart grid. One starting point might be in addressing
financial attacks such as electricity theft. Electricity theft is a nice example of how regulations
such as fines imposed by the regulating body (e.g. the utility commission) directly effect the
consumer–power company interaction. Electricity theft can be modeled using moral hazard
where we consider the hidden action to be the amount of electricity stolen. Incentives can
be designed to thwart such theft along with using detection theory to classify fradulent users
and normal users. In this scenario, it would be interesting to consider the tradeoff between
investing in security tools for theft detection and incentive mechanisms used to dissuade
consumers from stealing.

In conclusion, there are multiple future research directions to be explored. Our model
provides a general a mathematical framework for considering privacy as part of a service
contract between a power company and its consumers. This line of research informs data
collection schemes and privacy policy in the smart grid.
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Chapter 5

Conclusion and Future Directions

This dissertation contributes foundational tools and techniques for characterizing the out-
come of strategic interactions between non–cooperative agents engaging with a larger so-
ciotechnical system which we refer to as a S-CPS (Chapter 2), designing mechanisms to
shape the outcome to a more desirable or socially optimal one in an adaptive, online manner
(Chapter 3), and designing of vulnerability–aware mechanisms (Chapter 4).

5.1 Emerging Tools for S-CPS

The running theme throughout the text is the problem of adverse selection as it arises in
S-CPS, i.e. designing economic mechanisms when the underlying dynamics (generated by
the decision making process of humans coupling to a CPS) of the system are unknown to
the designer. In Chapter 2, we derived a characterization of local Nash equilibria that has
a differentiable structure—therefore, amenable to computation—and is structurally stable
and generic. This is done in support of creating a computationally tractable way of learning
agents’ objective functions and designing incentives to change their behavior. In Chapter 3,
we do just this; we create an online algorithm for utility learning and incentive design
and provide convergence results by adapting tools from adaptive control and online convex
optimization and learning.

Given the motivating problem of a planner taking advantage of new CPS technologies
to integrate the consumer into the closed–loop behavior of the broader S-CPS, we consider
the inherent efficiency–vulnerability tradeoff that arises in such systems. In particular, in
Chapter 4, we focus on the demand–side of the smart grid by considering privacy breaches
that arise due to streaming data from smart meters being used for operations such as DLC.
Since privacy is inherently subjective and intrinsic to the individual, this problem of adverse
selection arises naturally. In particular, how a person values her data and the information
that can be interpreted from it, is unknown to the power provider; however, this data is
also valuable to the provider. We present a solution that combines game theory (economics)
and statistical learning (detection theory) for addressing fundamental problems that arise
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in S-CPS. The tools we derived are not restricted to the demand–side of the smart grid or
even the energy systems domain.

Owning to the greater use and integration of CPS technologies into management and
operations, we are seeing novel vulnerabilities emerge and these vulnerabilities are tightly
coupled with the socioeconomics of the system. Hence, there is a need for new tools and
techniques that combine knowledge from game theory and statistical learning that can ac-
count for the socioeconomics and the variability and uncertainty these CPS technologies
introduce.

In this regard, we believe that the contributions of this dissertation are the first steps
towards an emerging systems theory for S-CPS. They present techniques that can be used
to characterize and analyze the outcomes of strategic interactions and can be leveraged in
the design of mechanisms for closing–the–loop around decision making agents—in particular,
humans. These methods can be used to not only consider the design of closed–loop systems
in isolation, but also understand, model, and design the interaction between these tightly
coupled decision–making loops. By providing classical tools from economics and emerging
tools in statistics, the developed techniques offer opportunities to not only obtain qualitative
insights that can support policy development but quantitative metrics for evaluating quality
of service and level of vulnerability protection a particular S-CPS offers. Furthermore, they
expose a number of new directions for future research, some that can be tackled in the short
term and many more for the horizon.

5.2 Future Plans and Frontiers

Critical infrastructures are quickly becoming large-scale, networked S-CPS with many sen-
sors, actuators and decision makers. The complexity of these systems along with socieco-
nomic considerations has led to the need for new scalable and tractable methods that can
address societal–level problems. While in this thesis we provided solutions to some funda-
mental problems that arise in S-CPS, there is much to be done in terms of extending these
concepts to the general S-CPS framework as presented in Chapter 1.

5.2.1 Merging Game–Theory and Statistical Learning

There is a need for game–theoretic tools that incorporate the use of data–driven analytics
for sustainable operation of S-CPS. The development of scalable, tractable algorithms that
apply to problems with many competitive agents and streaming temporal data sources is
necessary for integrating ubiquitous data sources into the sustainable operation of S-CPS.

There is a dichotomy between the data–driven approaches in which scalable tools exist
but typically only correlation can be inferred and the model–based paradigm in which causal
relationships are observed yet scale seems an insurmountable problem. This issue is really
at the heart of the need for new tools at the intersection of game theory and statistical
learning. In particular, game theory captures complex socioeconomic interactions while
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statistical learning aids in reducing dimensionality and provides tools for analysis of large–
scale, time–series data. Through a synergistic joining of the two, data–driven game–theoretic
models can be leveraged in the design of economic/physical controls for sustainability and
resilience.

Competitive environments in critical infrastructures emerge in many forms such as leader–
follower (e.g. physical therapist incentivizing consistent exercise routines), simultaneous
play (e.g. populations of drivers selecting routes), as well as dynamic (e.g. bidding in
electricity markets) games. Further research is needed to advance the frontiers of game
theory by leveraging tools from dynamical systems theory to find generic and structurally
stable representations of equilibria in competitive environments arising naturally in S-CPS.

Due to the importance of agent preferences in the design of incentives and contracts which
are efficient, stable, and resilient, there is a need to understand the type space of agents in
and across various S-CPS. To this end, statistical learning provides tools to derive low–
dimensional models that integrate information in high–dimensional time–series data with
the effect of reducing complexity. On the other hand, dynamical systems theory provides
tools for determining key parameters via bifurcation analysis as well as assessing stability
and efficiency in this low–dimensional space.

Another interesting direction for future research is the construction a modular tool set
that allows subsystems (local interactions perhaps) to be modeled and then integrated into
the analysis of the overall S-CPS. Along this line of thinking, recall that in Chapter 1
microscopic versus macroscopic decision–making was discussed. As the number of interact-
ing parties starts to increase, new behaviors arise that were not readily observable at the
microscopic—or individual human–CPS coupling—level. Techniques for micro–to–macro
and macro–to–micro decision–making need to be developed along with improved methods of
managing large amounts of data in this context. Further, empirical validation of models of
complex interactions that are fundamental to large–scale infrastructure is necessary.

5.2.2 Vulnerability–Aware Incentives and the Emerging Data
Market

The modernization of critical infrastructures into S-CPS leads to new opportunities and
new vulnerabilities. A sustainable society requires secure and privacy–aware data collection.
There have been a number of reports and best practice recommendations released in the
last few years including a report from the National Institute of Standards and Technology
providing qualitative guidelines for data collection policies [Ell14] as well as the reports from
the President’s Council of Advisors on Science and Technology on cyber–security [HL13] and
big data and privacy [HL14]. There is a need to complement such policies via quantifying
both privacy and security in S-CPS. Moreover, understanding the efficiency–vulnerability and
the development metrics for privacy and security risk are imperative for the development of
new service models, e.g. controls and economic mechanisms, and policy.

We are already seeing the emergence of new service models, e.g. contracts and other
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economic mechanisms, and controls that support operation and management of S-CPS. An
example in point is the new pay–as–you–go auto insurance model that requires the installa-
tion of a tracking device that broadcasts information—here we see that technology allows for
an adaptive service model yet increases the opportunity for a privacy breach. Expanding this
new set of service models by creating service models that factor in awareness of vulnerabilities
will not only enhance efficiency and sustainability, but also improve resilience.

A fundamental aspect of emerging S-CPS is the web of networked control systems, con-
sumers and providers, third–party solutions providers such as data aggregators, and the
information flows between them. This exchange and trade of data between these actors
and its value in the context of S-CPS is the data market. To understand this data market,
traditional methods of modeling simply the interaction between the user population, e.g.
energy consumers, and the provider of resources, e.g. power company, are inadequate; the
motivations and information sets of third–party solution providers, regulators, and policy
makers need to be modeled as well.

Furthermore, the incentive structure of S-CPS is collectively the motivations of actors,
information asymmetries, and economic mechanisms. For example, in the current energy
system, neither the utility companies nor third–party solution providers are adequately in-
centivized to invest in cyber–security of the composite system (referred to as underinvestment
in the common good). There is a dire need for tools to design contracts and other mecha-
nisms to help shape the market such that participating parties are motivated to improve the
overall operation and resilience of S-CPS.

The contributions of this thesis are a first step towards understanding the data market
and the incentive structure of S-CPS as a set of interactions between multiple stakeholders
along with feedback to regulatory and other entities as well as new business opportunities.
There are a number of potential game changers that could arise in this line of research.
Due to the emerging data market, we seeing the increased awareness of the value of S-CPS
data—hence, the emergence of companies that are capitalizing on access to this data—
but also an increase in risks associated with access to streaming data. On the consumer
side, creating opt–in security and privacy aware mechanisms that incorporate individual
preferences will allow consumers to be adequately compensated for the use of their data.
More broadly, realignment of incentives will lead to increased awareness of and investment
in security and privacy mechanisms thereby increasing the overall resilience of S-CPS. As
more actors come into play in this data market, the influence of third–party companies, such
as data aggregators, will become much more substantial. Such an evolution has already
begun in the transportation and energy CPS infrastructures and has tremendous potential
to revolutionize the both the energy and transportation S-CPS data market and industry
landscape.

5.2.3 Smart Urban Spaces

We are going through a period of greater urbanization; city centers are sprawling into mega
connected cities. As urban centers rapidly grow, we are seeing that many services and
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resources are poorly distributed and require significant effort to manage.
The interplay between these greater infrastructure systems is often—an unavoidable is-

sue in smart urban spaces—ignored. It is not enough to only consider the data market and
incentive structure of S-CPS such as transportation systems and the smart grid in isola-
tion; we must consider their interconnections and interdependencies. New service models
are emerging that capitalize on existence of CPS technologies and integrate previously iso-
lated infrastructure systems. For example, the fact that there is a push towards a higher
penetration of electric vehicles means that transportation infrastructures and the power grid
no longer operate in isolation. New technologies including novel smart sensing and actuation
modalities that can enable urban CPS networks to dynamically respond to human mobility
and behavior patterns are being integrated into S-CPS. Metering at electric vehicle stations
along with cellphone GPS data can provide more granular information about human mo-
bility. However, this also comes at the risk of greater privacy loss. Due to the emerging
interdependencies between S-CPS, there is an increase in exposure to vulnerabilities and op-
portunities for attack. As a result, there is a need for tools and techniques that are modular
not only within a single S-CPS but across various types of S-CPS.

One interesting direction for future research is in the development of new interfaces that
adapt in real–time and conform to individual preferences, needs, and wallets. Such interfaces
will replace traditional static service models with options that are flexible and reflect the
heterogeneous population of users as well as factors that influence their day-to-day decision
making such as mobility, comfort, access, privacy and security.
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[Baş87] T. Başar. “Relaxation techniques and asynchronous algorithms for on-line com-
putation of non-cooperative equilibria”. In: Journal of Economic Dynamics and
Control 11.4 (1987), pp. 531–549. doi: 10.1109/CDC.1987.272779 (cit. on
pp. 10, 35).

http://dx.doi.org/10.1002/mde.1332
http://dx.doi.org/10.1002/mde.1332
http://dx.doi.org/10.1051/cocv/2011198
http://dx.doi.org/10.1007/978-3-642-54568-9_13
http://dx.doi.org/10.1007/978-1-4612-1394-9
http://dx.doi.org/10.1016/0005-1098(86)90002-6
http://dx.doi.org/10.1016/S1874-575X(10)00309-7
http://www.buzzfeed.com/johanabhuiyan/uber-is-investigating-its-top-new-york-executive-for-privacy#.hqqnjn30e
http://www.buzzfeed.com/johanabhuiyan/uber-is-investigating-its-top-new-york-executive-for-privacy#.hqqnjn30e
http://www.buzzfeed.com/johanabhuiyan/uber-is-investigating-its-top-new-york-executive-for-privacy#.hqqnjn30e
http://dx.doi.org/10.1137/1.9781611971132
http://dx.doi.org/10.1137/1.9781611971132
http://dx.doi.org/10.1007/b138910
http://dx.doi.org/10.1023/a:1007327622663
http://dx.doi.org/10.1007/978-1-4615-5529-2_4
http://dx.doi.org/10.1109/CDC.1987.272779


BIBLIOGRAPHY 116

[Ber99] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999 (cit. on pp. 11,
17, 18, 33, 35, 41).

[Bre67] L. M. Bregman. “The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming”.
In: USSR computational mathematics and mathematical physics 7.3 (1967),
pp. 200–217. doi: 10.1016/0041-5553(67)90040-7 (cit. on p. 78).

[CB13] G. Cavraro and L. Badia. “A game theory framework for active power injec-
tion management with voltage boundary in smart grids”. In: European Control
Conference. 2013, pp. 2032–2037 (cit. on p. 15).

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006. doi: 10.1017/CBO9780511546921 (cit. on pp. 48, 53).

[CL14] C. P. Chambers and N. S. Lambert. “Dynamically eliciting unobservable in-
formation”. In: Proceedings of the 15th ACM Conference on Economics and
computation. ACM. 2014, pp. 987–988. doi: 10.1145/2600057.2602859 (cit.
on p. 83).

[Can+10] U. O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo. “Near-optimal
power control in wireless networks: a potential game approach”. In: Proceedings
of the 29th IEEE Conference on Information Communications. 2010, pp. 1–9.
doi: 10.1.1.208.794 (cit. on p. 12).

[Can+11] O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo. “Flows and De-
compositions of Games: Harmonic and Potential Games”. In: Mathematics of
Operations Research 36.3 (2011), pp. 474–503. doi: 10.1287/moor.1110.0500
(cit. on p. 29).

[Can+13] O. Candogan, A. Ozdaglar, and P. A. Parrilo. “Dynamics in near-potential
games”. In: Games and Economic Behavior 82 (2013), pp. 66 –90. doi: 10.10
16/j.geb.2013.07.001 (cit. on p. 29).

[Cha+11] N. Chaturvedi, A. Sanyal, and N. McClamroch. “Rigid-Body Attitude Control”.
In: IEEE Control Systems Magazine 31.3 (2011), pp. 30–51. doi: 10.1109

/MCS.2011.940459 (cit. on p. 14).

[Con+04] J. Contreras, M. Klusch, and J. Krawczyk. “Numerical Solutions to Nash–
Cournot Equilibria in Coupled Constraint Electricity Markets”. In: IEEE Trans-
actions on Power Systems 19.1 (2004), pp. 195–206. doi: 10.1109/TPWRS.200
3.820692 (cit. on pp. 10, 35).

[Coo+13] S. Coogan, L. J. Ratliff, D. Calderone, C. Tomlin, and S. S. Sastry. “Energy
management via pricing in LQ dynamic games”. In: Proceedings of the 2013
American Control Conference. 2013, pp. 443–448. doi: 10.1109/ACC.2013.65
79877 (cit. on pp. 13, 38, 76).

http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1017/CBO9780511546921
http://dx.doi.org/10.1145/2600057.2602859
http://dx.doi.org/10.1.1.208.794
http://dx.doi.org/10.1287/moor.1110.0500
http://dx.doi.org/10.1016/j.geb.2013.07.001
http://dx.doi.org/10.1016/j.geb.2013.07.001
http://dx.doi.org/10.1109/MCS.2011.940459
http://dx.doi.org/10.1109/MCS.2011.940459
http://dx.doi.org/10.1109/TPWRS.2003.820692
http://dx.doi.org/10.1109/TPWRS.2003.820692
http://dx.doi.org/10.1109/ACC.2013.6579877
http://dx.doi.org/10.1109/ACC.2013.6579877


BIBLIOGRAPHY 117

[Coo+15] S. Coogan, G. Gomes, E. Kim, M. Arcak, and P. Varaiya. “Offset optimization
for a network of signalized intersections via semidefinite relaxation”. In: Pro-
ceedings of the 54th IEEE Conference on Decision and Control. 2015 (cit. on
p. 14).

[Cár+09] A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry. “Chal-
lenges for securing cyber physical systems”. In: Workshop on future directions
in cyber-physical systems security. 2009. doi: 10.1.1.152.5198 (cit. on p. 5).

[DB11] F. Dörfler and F. Bullo. “On the Critical Coupling for Kuramoto Oscillators”.
In: SIAM Journal on Applied Dynamical Systems 10.3 (2011), pp. 1070–1099.
doi: 10.1137/10081530x (cit. on p. 14).

[DB12] F. Dörfler and F. Bullo. “Synchronization and Transient Stability in Power
Networks and Nonuniform Kuramoto Oscillators”. In: SIAM Journal on Control
and Optimization 50.3 (2012), pp. 1616–1642. doi: 10.1137/110851584 (cit. on
pp. 14, 33).

[DB78] S. Daan and C. Berde. “Two coupled oscillators: Simulations of the circadian
pacemaker in mammalian activity rhythms”. In: Journal of Theoretical Biology
70.3 (1978), pp. 297 –313. doi: 10.1016/0022- 5193(78)90378- 8 (cit. on
p. 14).

[DS67] N. Dunford and J. T. Schwartz. Linear operators. Ed. by 4. New York: Inter-
science Publishers, Inc., 1967 (cit. on p. 34).

[Don+13a] R. Dong, L. J. Ratliff, H. Ohlsson, and S. Sastry. “Energy disaggregation via
adaptive filtering”. In: Proceedings of the 51st Annual Allerton Conference on
Communication, Control, and Computing. 2013, pp. 173–180. doi: 10.1109

/Allerton.2013.6736521 (cit. on p. 9).

[Don+13b] R. Dong, L. Ratliff, H. Ohlsson, and S. S. Sastry. “Fundamental Limits of
Nonintrusive Load Monitoring”. In: Proceedings of the 3rd ACM International
Conference on High Confidence Networked Systems (2013), pp. 11–18. doi:
10.1145/2566468.2566471 (cit. on pp. 9, 83).

[Don+14] R. Dong, A. A. Cárdenas, L. J. Ratliff, H. Ohlsson, and S. S. Sastry. “Quan-
tifying the Utility-Privacy Tradeoff in the Smart Grid”. In: arXiv 1406.2568
(2014) (cit. on pp. 9, 82, 83, 85, 89, 91–93, 99).

[Dor+13] D. Dorsch, H. Jongen, and V. Shikhman. “On Structure and Computation of
Generalized Nash Equilibria”. In: SIAM Journal on Optimization 23.1 (2013),
pp. 452–474. doi: 10.1137/110822670 (cit. on p. 10).

[Dwo11] C. Dwork. “Differential privacy”. In: Encyclopedia of Cryptography and Secu-
rity. Springer, 2011, pp. 338–340. doi: 10.1007/11787006_1 (cit. on pp. 93,
108).

http://dx.doi.org/10.1.1.152.5198
http://dx.doi.org/10.1137/10081530x
http://dx.doi.org/10.1137/110851584
http://dx.doi.org/10.1016/0022-5193(78)90378-8
http://dx.doi.org/10.1109/Allerton.2013.6736521
http://dx.doi.org/10.1109/Allerton.2013.6736521
http://dx.doi.org/10.1145/2566468.2566471
http://dx.doi.org/10.1137/110822670
http://dx.doi.org/10.1007/11787006_1


BIBLIOGRAPHY 118

[Dör+13] F. Dörfler, M. Chertkov, and F. Bullo. “Synchronization in complex oscillator
networks and smart grids”. In: Proceedings of the National Academy of Sciences
110.6 (2013), pp. 2005–2010. doi: 10.1073/pnas.1212134110 (cit. on pp. 14,
33).

[Eis82] T. Eisele. “Nonexistence and nonuniqueness of open-loop equilibria in linear-
quadratic differential games”. In: Journal of Optimization Theory and Applica-
tions 37.4 (1982), pp. 443–468. doi: 10.1007/BF00934951 (cit. on p. 37).
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