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Abstract. When mining image data from PACs or clinical trials or processing large volumes of
data without curation, the relevant scans must be identified among irrelevant or redundant data.
Only images acquired with appropriate technical factors, patient positioning, and physiological
conditions may be applicable to a particular image processing or machine learning task.
Automatic labeling is important to make big data mining practical by replacing conventional
manual review of every single-image series. Digital imaging and communications in medicine
headers usually do not provide all the necessary labels and are sometimes incorrect. We propose
an image-based high throughput labeling pipeline using deep learning, aimed at identifying scan
direction, scan posture, lung coverage, contrast usage, and breath-hold types. They were posed
as different classification problems and some of them involved further segmentation and iden-
tification of anatomic landmarks. Images of different view planes were used depending on the
specific classification problem. All of our models achieved accuracy >99% on test set across
different tasks using a research database from multicenter clinical trials. © 2020 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.2.024501]
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1 Introduction

Image data curation, involving identification and labeling of relevant types of scans with con-
sistent acquisition parameters, is important for machine learning with big data and clinical trials.
Labeling of images meeting standardization requirements is vital in acquiring reliable research
findings from multicenter clinical trials1–4 since images collected from different sites are hetero-
geneous and variable in terms of the types of scans received. For example, each patient may
include image series from multiple time points and each time point could have multiple series
that can be redundant, irrelevant, or unusable. The traditional approach is to manually assign
the labels by reviewing each image series and selecting the best series to process that meets
standardization requirements. It is very time-consuming and prone to human errors. As such,
an efficient automatic image labeling method will be beneficial for large-scale clinical research.

Digital imaging and communications in medicine (DICOM) is the standard format in medical
imaging and it contains a variety of scan parameters and other metadata. DICOM headers, e.g.,
series description, are extensively used to extract for labeling information. Nevertheless, DICOM
tags are often insufficient or unreliable due to manual entry or vendor discrepancies.5–9 To over-
come this limitation, image-based identification is crucial and different techniques have been
introduced.10–13 In recent years, deep learning has been widely used in medical imaging, espe-
cially for classification14–17 and segmentation.18–22 A five-layer convolutional neural network
(CNN) was used to classify the anatomical region scanned in computed tomography (CT)
including brain, neck, chest, abdomen, and pelvis.23,24 Yan et al.25 used a multistage framework
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to recognize 12 different body parts by approximating bounding box of local patches. Similar
approach was applied to anatomical classification in MRI.26 Images of orthogonal planes
(axial, sagittal, and coronal) were used to build three independent CNNs and results were com-
bined to produce 3-D bounding box for each organ, such as heart, lung, kidney, and liver.27,28

Different organs and tissue were segmented on abdominal CT by a 2-D U-net like network to
quantify body composition.29

For a chest CT scan, we want to identify the scan direction (head first or feet first), scan
posture (prone or supine), whole lung anatomical coverage, contrast agent usage, and breath-
hold level [residual volume (RV) or total lung capacity (TLC)]. They are either not consistently
recorded in DICOM header or unreliable in clinical practice. These labeling tasks can be posed
as classification problems. Although there has been extensive image processing, classification,
and segmentation work applied to chest CT,30–32 to our knowledge, there is no related works on
this specific problem of classification for comprehensive scan labeling. Although these labels
seem basic for chest CT, they are labor intensive to assign for large data sets, and effectively and
correctly extracting them is crucial for data mining in clinical research.

A fully automated high throughput labeling method is proposed using deep learning to create
classification models for each. Our hypothesis is that each classifier can achieve>95% accuracy
individually in assigning its label.

2 Materials and Methods

In total, there are five labeling tasks to accomplish. All of them are posed as classification by
CNN and contrast detection and breath-hold identification will further require segmentation of
anatomic landmarks. For efficient processing of the 3-D CT data sets, 2-D images of different
view planes will be used.

2.1 Scan Direction

Patients can be scanned head first or feet first. Examples of head-first and feet-first coronal
images are shown in Fig. 1. Most chest CT analysis algorithms are developed expecting head-
first ordering of images.

Previous studies23–25 used axial slices to identify different anatomies, including brain,
shoulder, chest, abdomen, and pelvis; and thus scanning direction can be inferred by the aggre-
gated anatomical order. One challenge of this approach is the requirement of annotation on every
axial slice. Our approach rather uses the entire scan to determine the scan direction. A total of
1000 chest CT scans of different subjects from a research database comprising six clinical trials
were used, including two idiopathic pulmonary fibrosis (IPF) trials, two chronic obstructive
pulmonary disease (COPD) trials, one scleroderma trial, and one lung cancer screening trial.
Scanners from Siemens, GE, Philips, and Toshiba were used with varied reconstruction kernels.
Slice thickness and spacing is within (0.6, 3 mm). For each scan, a middle coronal slice plus 2
adjacent slices 10 pixels apart were selected for input to the classifier. All scans were confirmed
manually as being head-first and corresponding feet-first scans were generated by vertically

Fig. 1 Example coronal images of head-first and feet-first chest scans.
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flipping the original scans to form a balanced dataset (so each scan generated six samples, two
classes with three coronal slices each). In total, 6000 slices were used and they were split into
training and test set by 4:1.

As shown in Fig. 2, squeeze and excitation (SE)33 embedded DenseNet121 (SE-
DenseNet121) was used as the classification architecture. In DenseNet, each layer obtains
additional inputs from all preceding layers and passes on its own feature maps to all subsequent
layers. It contributes to strengthening feature propagation, encouraging feature reuse, and
substantially reducing the number of parameters. The SE architecture unit is a content aware
mechanism that aims to adaptively recalibrate or weight channel-wise feature responses by
explicitly modeling interdependencies between channels. It contributes to performance improve-
ment with little additional computation cost.

2.2 Scan Posture

Scan posture, face up (supine) or face down (prone), dependent on placement of the patient in the
scanner. Example sagittal images of prone and supine scan are shown in Fig. 3 with the vertical
lines representing the scanner table. Supine imaging is most commonly performed, for example,
in lung cancer screening; however, prone imaging is often performed in evaluating interstitial

Fig. 2 SE-DenseNet121 classification architecture.
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lung disease.34–36 When there are suspicious dependent opacities on a supine scan, it is highly
recommended to also capture corresponding image in the pone position since these dependent
opacities may resolve. Both axial and sagittal images can be used to determine if a scan is prone
or supine. We will use sagittal slices since it clearly depicts the relationship between entire spine
and table. The middle sagittal slice is an ideal representational image and two other sagittal slices
at ¼ and ¾ way through the body in the sagittal direction are also used in case the table is not
present in the image center. A total of 5000 scans (15,000 slices) of different patients from a
research database comprising 16 clinical trials (five IPF, four scleroderma, three COPD, two lung
cancer screening, one tuberculosis, and one lymphangioleiomyomatosis) were used in the train-
ing and test sets, formed with a ratio of 4:1. Prone and supine scans account for 50% in both sets
and the reference is from manual labeling. Scanners of different manufacturers were used and
slice thickness/spacing is within (0.5, 3 mm). The same SE-DenseNet121 was used as classi-
fication architecture in this task.

2.3 Lung Coverage

A chest scan can be defined as complete lung coverage if it includes the lung apex, intermediate
lung, and lung base. Example scans with complete and incomplete lung coverage are shown in
Fig. 4. Scans with only partial lung are not suitable for subsequent processing, such as lung and
lobar segmentation. Representative coronal slices, e.g., middle coronal slice, could be used to
identify the lung coverage; however, for scans where lung coverage is slightly incomplete, a few
coronal slices may appear complete. Therefore, we decided to use axial images to tackle this
problem. First, a deep learning mode was built to detect the presence of lung on each axial image.
After that aggregating individual slice labels to infer whole scan label. A complete lung coverage
scan should begin and end with “no-lung” slices and have “lung” slices in the middle, whereas
superior and/or inferior slices would be classified as “lung” for an incomplete lung coverage
scan. To build the model recognizing lung presence, 20,000 axial slices from 210 different
scans/patients were used with equal number of lung and nonlung slices. They are a collection
from two IPF trials and two COPD trials and all the scans have radiologist approved lung
segmentations that were used to determine individual slice labels. Scanners of various

Fig. 3 Example sagittal images of prone and supine scans.

Fig. 4 Example images with complete lung coverage, missing lung apex, and lung base.
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manufacturers were used and slice thickness/spacing is within (0.6, 3 mm). Training and test sets
were formed by 4:1 and the same classification architecture used in scan direction and posture
was employed again.

2.4 Contrast Usage

CT can be ordered either with or without contrast. Contrast CT is able to enhance the inten-
sity of target tissue, e.g., blood vessels and tumor and assist physicians by providing better
structural and functional information. The presence of enhancement has a considerable
impact on subsequent image analysis results. To identify the presence of contrast, the aorta
is an ideal anatomic location since enhancement can be observed persistently within the
vessels during early arterial phase and late arterial phase.37,38 For contrast scans, the intensity
within aorta is over 90 Hounsfield unit (HU), whereas noncontrast scan intensity is
<50 HU.39 Two example contrast and noncontrast scans are shown in Fig. 5. For contrast
detection, we begin with aorta segmentation. Descending aorta is preferred since it has a
relatively consistent circular shape beyond the aortic arch. From the aorta segmentation, the
mean intensity is computed to determine presence or absence of contrast. In total, 116 scans
(8447 slices) of 70 patients from one lung cancer screening trial were used, comprising 46
contrast scans and 70 noncontrast scans. They were acquired by scanners of multiple manu-
factures and slice thickness/spacing is within (1, 3 mm). Independent 500 slices (half contrast
and half noncontrast) were used as a test set to evaluate the segmentation performance. An
additional independent 500 scans with only scan level label (250 contrast and 250 noncon-
trast scan) were used as test set for contrast detection and they are a collection from five
clinical trials (two IPF, two COPD, and one scleroderma). More noncontrast scans, in which
the aorta has bad contrast with surrounding tissues, were used in building the segmentation
model to reinforce it. The reference segmentation of the training set was done by simple
threshold plus manual editing.

The previous classification architecture SE-DenseNet121 was extended to perform segmen-
tation by adding a decoder section to recover original resolution and achieve pixel-wise
segmentation.

As shown in Fig. 6, the segmentation architecture is composed of encoder and decoder
stagers. The down-sampling path includes four transitions down and four dense blocks
(256 × 256 to 16 × 16). Corresponding up-sampling path includes four transitions up and four
dense blocks (16 × 16 to 256 × 256). Each dense block includes four densely connected layers
and an SE block. Transition down includes (batch normalization, Convolution2D, maxpooling,
and SE block). Transition up includes (transposed Convolution2D, batch normalization,
SE block).

Fig. 5 Typical (a) noncontrast and (b) contrast enhanced scans.
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2.5 Breath-Hold Types

Patients are usually asked to hold their breath during scanning at full inspiration, i.e., TLC, or at
full expiration, i.e., at RV. Typically, inspiratory chest CT scans are the preferred imaging method
in patients with pulmonary disease, whereas expiratory scans sometimes are superior to dem-
onstrate some pathophysiological alterations. For example, TLC scan is commonly used in
evaluation of most diffuse lung diseases, including fibrosis and emphysema. On the other hand,
RV scan is ideal for the assessment of air trapping.40–42 Lung volume alone is not sufficient to
differentiate between TLC and RV since it is influenced by a variety factors, such as gender
difference, adult versus pediatrics, and pulmonary disease. Clinically, the compression of the
trachea is often used by radiologists to identify RV scans. It is characterized by the collapse
of carina and posterior wall of trachea bows forward.43–48 Some examples of TLC and RV axial
images were shown in Fig. 7. As such, breath-hold identification can be divided into three steps:

Fig. 7 Example RV and TLC scans shown in axial slice and the compression of trachea carina is
a characteristic of RV.

Fig. 6 SE-DenseNet121-based segmentation network. Dashed lines indicate skip connections
from down-sampling to up-sampling.
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(1) segmentation of trachea, (2) identification of carina, and (3) identification of RV or TLC
based on the shape of carina.

A total of 356 scans (32,298 slices) of 92 patients from two lung cancer screening trials were
used to build the trachea segmentation model. Of these, 176 were RV scans and 180 were TLC
scans. Images were acquired from scanners of different manufacturers and slice thickness/
spacing is within (0.6, 1.5 mm). Independent 1000 slices were saved for trachea segmentation
evaluation. The segmentation of the training set was done by intensity thresholding plus manual
editing, covering the main bronchi and left/right bronchus beyond carina. Because the ultimate
goal of trachea segmentation is to find the carina, it is not necessary to segment the whole airway
tree. The same SE-Denset21-based segmentation network was applied to build the model.

After segmenting the trachea, the carina is identified by searching slice by slice until the
bifurcation. In addition to the segmentation model, a classification model is required to differ-
entiate RVand TLC based on carina shape. To train the classification model with more samples,
multiple slices above the bifurcation will be used and this strategy also applies in the inference
stage using majority voting for final output. As a result, 1633 scans of 495 patients that is
independent of dataset of trachea segmentation were used, including 11,948 RV slices and
11,953 TLC slices and 20% of cases were used as the test set. They were collected from 11
clinical trials (four IPF, three COPD, one scleroderma, one non-small cell lung cancer, one lung
cancer screening, and one tuberculosis). The previous SE-DenseNet12 classification architecture
was used to differentiate RV and TLC.

Table 1 shows the number of training, validation, and test set on each specific task.

3 Data Preparation

Fivefold cross validation was applied in evaluation for all of the classification tasks. The same
image normalization and down-sampling was used in preprocessing. Every slice was normalized
by linear remapping of [−1000, 1000 HU] to [0.0, 1.0] and resized to 256 × 256.

Data augmentation was used, including rotation, translation, horizontal and vertical flipping,
rescaling, and options are varied across different tasks. For example, vertical flipping was
dropped in training the head- or feet-first model using coronal slices.

In the training of aorta and trachea segmentation, dice loss was used as loss function since
they are very small compared to the background. The optimizer was Adam49 with learning rate of
0.001 and decay rate of 1 × 10−4. Training of models was performed using a NVIDIATITAN X
with 12 GB memory and implemented using Keras50 with tensorflow51 backend.

4 Results

The specific accuracy on each classification task as shown in Table 2. The number of classes is
balanced in test sets of different classification tasks and accuracy was used as metric. The last
columns show the computational time for a chest scan with 300 slices.

Table 1 Number of training, validation, and test set by slice/scans.

Classification task Training set Validation set Test set

Scanning direction (head or feet first) (scans) 640 160 200

Scanning posture (prone or supine) (scans) 3200 800 1000

Lung presence detection (slices) 12,800 3200 4000

Aorta segmentation/contrast detection 6757 slices 1690 slices 500 slices/independent
500 scans

Trachea segmentation (slices) 25,838 6460 1000

Breath-hold types (RV or TLC) (slices) 15,297 3824 4780
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4.1 Scan Direction

The scanning direction model achieved 100% accuracy on test set and works even when the lung
coverage is incomplete in clinical practice. Figure 8 shows two cases from the public dataset
Lobe and Lung Analysis 2011 (LOLA11).52 One of them has partial right lung and the other has
only right lung. Figure 9 contains examples applying the model on low-resolution scans
(spacing ¼ 20 mm) and it still succeeded in differentiating the scan directions.

4.2 Scan Posture

The scan posture model achieved 99.5% accuracy on test set. Figs. 10(a) and (b) are the cases
where the CNN correctly identifies the posture even though the information in the DICOM
header tag is incorrect. There is a scan posture related DICOM tag called “PatientPosition,”
which is a relatively reliable, but as shown in Fig. 10 it is not always correct when the image
is flipped. Our CNN model could consistently recognize the posture despite of bed position.

Table 2 Test accuracy and speed of each task.

Classification task # cases Accuracy Scan of 300 slices

Scanning direction (head or feet first) 1200 slices/400 scans 100%/100% 10 ms

Scanning posture (prone or supine) 3000 slices/1,000 scans 99.5%/100% 10 ms

Lung presence/coverage completeness 4000 slices/42 scans 99.1%/100% 5 s

Contrast detection 500 scans 100% 5 s

Breath-hold types (RV or TLC) 4780 slices/326 scans 98.4%/99.3% 10 ms

Fig. 8 CNN inference on (a) a case with partial right lung and (b) a case with only right lung.

Fig. 9 Application on low-resolution scans (spacing = 20 mm).
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Figs. 10(c) and (d) show two cases with intermediate blank slices and the model is still able to
correctly identify the posture.

Figure 11 shows the application of scan posture model to three low-resolution scans
(slices pacing ¼ 20 mm) and their postures were all correctly identified.

4.3 Lung Coverage

The lung coverage model achieved 99.4% accuracy on identifying slice-based lung presence and
100% accuracy on lung completeness recognition. Figure 12 shows two incomplete lung cover-
age cases. The first row is an example with incomplete coverage of the lung apex (most superior
axial slices contains lung) and the second row corresponds to a case with incomplete coverage of
the lung base (most inferior axial slices contains lung).

The model is able to correctly classify slices as “no lung” containing only gut or intestines
instead of lung (central image of first row). Additionally, it is capable of correctly identifying
slices as “lung” with small amount of basal (central image of second row). Indicated by the

Fig. 10 Example scan posture detection by the proposed CNN. (a) and (b) Examples with incor-
rect DICOM header information. (c) and (d) Examples with intermediate blank slices.

Fig. 11 Scan posture model applied to low-resolution scans (spacing = 20 mm). (a) Sagittal slices
as input to the model and (b) corresponding axial slices to confirm that the CNN inference is
correct.

Wang et al.: High throughput image labeling on chest computed tomography by deep learning

Journal of Medical Imaging 024501-9 Mar∕Apr 2020 • Vol. 7(2)



coronal view of last column, using representative coronal slice, e.g., middle coronal slice, is
sometimes risky.

Although the lung completeness model achieved 100% accuracy, there are some misclassi-
fications by the lung presence mode. They are thin slices either from lung apex and lung base
are shown in Fig. 13. All of them were identified without lung presence (false negative, if
0 ¼ no lung and 1 ¼ with lung) by the model, which is in contrast with reference as indicated
by red circle in each case. Their slice thickness and spacing is 0.625 mm. It is challenging to the

Fig. 12 (a) A case with incomplete coverage of lung apex. (b) A case with incomplete coverage of
lung base.

Fig. 13 Examples of misclassified slices from lung apex and base by CNN.
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model since those slices only contain very small area of lung, especially when the image is noisy.
However, such misclassified 1 or 2 slice is unlikely to impact the overall lung coverage inference
unless an incomplete scan happens to start and end with that thin slice. On the other hand, even
they are identified with complete lung coverage, it will not significantly affect the subsequent
quantitative image analysis, e.g., lung segmentation and fibrosis scoring.

4.4 Contrast Usage

Since our ground truth does not cover the whole aorta, we evaluated the aorta segmentation based
on 500 slices and achieved a dice coefficient of 0.938� 0.12. In terms of contrast detection, the
system achieved an accuracy of 100% on the test set of 500 scans using 80 HU as threshold.
Examples of aorta segmentation on contrast and noncontrast scan are shown in Figs. 14 and 15.

Fig. 14 Aorta segmentation on a contrast scan and overlay image demonstrated by axial, sagittal,
and coronal views. (a) Raw image and (b) overlay with segmentation.

Fig. 15 Aorta segmentation on a noncontrast scan by the model.
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Figure 16 shows a noncontrast scan from LOLA1152 with a warped aorta that was success-
fully segmented by the model.

4.5 Breath-Hold Types

1000 slices were used in trachea segmentation evaluation and achieved dice coefficient of
0.948� 0.08. Figure 17 shows an example of trachea segmentation on a scan with spacing
of 1 mm.

Figure 18 shows trachea segmentation applied to a challenging case from LOLA11 with
tilted body.

After trachea segmentation, the carina is localized by searching slice by slice until bifurca-
tion. Using the label from previous scanning direction model, the search direction can be cor-
rected if a scan is feet-first. Figure 19 shows the identification of carina based on mask images.

Fig. 16 Segmentation on a noncontrast scan from LOLA 11 with warped aorta.

Fig. 17 Example trachea segmentation by the model.
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The breath-hold classification based on the shape of carina achieved an accuracy of 99.3% on
the test set. Example classified RV and TLC masks are shown in Fig. 20. The first row contains
three example masks of carina from RV scans and the second row contains three masks of
carina at TLC.

Fig. 18 Segmentation of trachea on tilted chest scan from LOLA11.

Fig. 19 Process to localize the carina through searching slice by slice.

Fig. 20 Classified mask images of (a) RV and (b) TLC scans.
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5 Discussions

The labeling tasks were able to be posed as classification problems and deep learning was shown
to be an ideal method to solve them. For individual labeling tasks, images of different view
planes were exploited to achieve both reliability and efficiency. This helped to mitigate the dif-
ficulty of annotating a large training set. Specifically for contrast usage and breath-hold detec-
tion, identification of anatomic landmarks (descending aorta and carina, respectively), allowed
us to tackle the problem using segmentation followed by classification, rather than by applying
deep learning to the entire image. As such, the contrast detection accuracy is largely dependent
on how accurate the aorta segmentation is and trachea/carina segmentation is critical for breath-
hold identification. Although a small annotated training set was used for aorta segmentation, it
demonstrated good performance on both contrast and noncontrast images. Data augmentation
techniques mentioned before were very helpful in preventing overfitting and it demonstrated
feasibility to build a robust model with limited annotation in medical imaging.

We did not assess 3-D quantitative segmentation with a large test set because we our ultimate
goal is not to segment the whole aorta or airway tree perfectly. In practice, annotating the entire
target for a large data set is very challenging and not necessary in this setting.

All models built with the SE-DenseNet121 architecture are generalizable and robust, working
on incremental (large slice spacing, e.g., >10 mm) and volumetric (high-resolution) scans, and
various lung pathologies. We used to be concerned about the scan direction and posture model
when applied to low-resolution scans since they were built using coronal and sagittal images,
respectively, and all training samples were high resolution (spacing < 3 mm). However, those two
models demonstrated reliable performance even when the slice spacing was 20 mm.

We observed that the aorta and trachea segmentation were robust even in very noisy scans
although they were trained only using diagnostic scans (∼15 mGy). Figures 21 and 22 show
application of aorta and trachea segmentation on an ultralow-dose scan (∼0.2 mGy, 1/75 of
training set dose) simulated by a CT reconstruction pipeline53 in our group.

Such robustness is not unique to segmentation model. Fig. 23 shows example application of
scan direction and scan posture model to ultralow-dose scans. Figure 24 corresponds to results of
lung coverage identification.

There are a few potential reasons for the models’ immunity to noise. First, the features
extracted by the deep network are very rigorous to noise perturbation. Second, the diversity
of the training set contributes to robustness of models, including various slice thicknesses, recon-
struction kernels, and cohorts from various trials. Finally, the extra noise introduced does not
change the original HU range of different tissues. Some limitations of this labeling pipeline

Fig. 21 Aorta segmentation on an ultralow-dose scan.
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should be noted: (1) It is built for chest CT, not for other modality, e.g., MR and PET. (2) The
proposed contrast detection method is based on the segmentation of aorta. As such, it is not
applicable to other vascular CT studies aimed contrast identification in pulmonary arteries.
(3) The identification of breath-hold is dependent on the shape of carina that is acquired from
trachea segmentation. For extreme cases with one lung resected, it is not possible to find the carina.

Automatic labeling enables further quantitative image analysis appropriate for the type of
scan identified. For example, we and others have developed deep learning models for lung

Fig. 22 Trachea segmentation on an ultralow-dose scan.

Fig. 23 Scan direction and posture detection on ultralow-dose cases.

Fig. 24 Lung coverage identification on an ultralow-dose scan.
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and lobe segmentation,54 quantitative analysis of emphysema,55 lung fibrosis,56 and nodule
detection.57 Future studies may involve testing the utility of the automated labeling as a driver
for such analysis systems.

6 Conclusion

The proposed automatic chest CT labeling pipeline was successfully applied to identify scanning
direction, scanning posture, lung coverage completeness, contrast usage, and breath-hold types.
Labeling accuracy from the classification models is sufficient for use in big data mining and high
throughput processing.

Disclosures

There is no conflict of interest to disclose.

Acknowledgments

The authors acknowledge the support of MedQIA, LLC in collaboration and data sharing, and
Ms. Eloisa Rodriguez-Mena for the article preparation and formatting.

References

1. B. Krishnankutty et al., “Data management in clinical research: an overview,” Indian J.
Pharmacol. 44(2), 168–172 (2012).

2. J. R. Gaddale, “Clinical data acquisition standards harmonization importance and benefits in
clinical data management,” Perspect. Clin. Res. 6(4), 179–183 (2015).

3. L. Houston et al., “Exploring data quality management within clinical trials,” Appl. Clin. Inf.
9(1), 72–81 (2018).

4. C. Ducar et al., “Benefits of a comprehensive quality program for cryopreserved
PBMC covering 28 clinical trials sites utilizing an integrated, analytical web-based portal,”
J. Immunol. Methods 409, 9–20 (2014).

5. P. M. Kuzmak and R. E. Dayhoff, “Minimizing digital imaging and communications in
medicine (DICOM) modality worklist patient/study selection errors,” J. Digital Imaging
14(2 Suppl. 1), 153–157 (2001).

6. M. O. Gueld et al., “Quality of DICOM header information for image categorization,”
Proc. SPIE 4685, 280–287 (2002).

7. P. Mongkolwat et al., “Validating DICOM content in a remote storage model,” J. Digital
Imaging 18(1), 37–41 (2005).

8. A. G. Selvarani and S. Annadurai, “Medical image retrieval by combining low level features
and DICOM features,” in Int. Conf. Comput. Intell. and Multimedia Appl., Vol. 1, pp. 587–
589 (2007).

9. D. S. Lituiev et al., “Automatic labeling of special diagnostic mammography views from
images and DICOM headers,” J. Digital Imaging 32, 228–233 (2019).

10. X. Wang et al., “A machine learning approach for classification of anatomical coverage in
CT,” Proc. SPIE 9785, 97853P (2016).

11. N. Sharma et al., “Segmentation and classification of medical images using texture-primitive
features: application of BAM-type artificial neural network,” J. Med. Phys. 33(3), 119–126
(2008).

12. J. Hong et al., “Non-Euclidean classification of medically imaged objects via s-reps,”
Med. Image Anal. 31, 37–45 (2016).

13. E. Miranda, M. Aryuni, and E. Irwansyah, “A survey of medical image classification
techniques,” in Int. Conf. Inf. Manage. and Technol., pp. 56–61 (2016).

14. J. Antony et al., “Quantifying radiographic knee osteoarthritis severity using deep convolu-
tional neural networks,” in 23rd Int. Conf. Pattern Recognit. (2016).

15. E. Kim, M. Corte-Real, and Z. Baloch, “A deep semantic mobile application for thyroid
cytopathology,” Proc. SPIE 9789, 97890A (2016).

Wang et al.: High throughput image labeling on chest computed tomography by deep learning

Journal of Medical Imaging 024501-16 Mar∕Apr 2020 • Vol. 7(2)

https://doi.org/10.4103/0253-7613.93842
https://doi.org/10.4103/0253-7613.93842
https://doi.org/10.4103/2229-3485.167101
https://doi.org/10.1055/s-0037-1621702
https://doi.org/10.1016/j.jim.2014.03.024
https://doi.org/10.1007/BF03190323
https://doi.org/10.1117/12.467017
https://doi.org/10.1007/s10278-004-1034-2
https://doi.org/10.1007/s10278-004-1034-2
https://doi.org/10.1109/ICCIMA.2007.427
https://doi.org/10.1007/s10278-018-0154-z
https://doi.org/10.1117/12.2216259
https://doi.org/10.4103/0971-6203.42763
https://doi.org/10.1016/j.media.2016.01.007
https://doi.org/10.1109/ICIMTech.2016.7930302
https://doi.org/10.1109/ICPR.2016.7899799
https://doi.org/10.1117/12.2216468


16. H. Il Suk and D. Shen, “Deep learning-based feature representation for AD/MCI classifi-
cation,” Lect. Notes Comput. Sci. 8150, 583–590 (2013).

17. S. M. Plis et al., “Deep learning for neuroimaging: a validation study,” Front. Neurosci.
8, 229 (2014).

18. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical
image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

19. Ö. Çiçek et al., “3D U-net: learning dense volumetric segmentation from sparse annotation,”
Lect. Notes Comput. Sci. 9901, 424–432 (2016).

20. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: fully convolutional neural networks for
volumetric medical image segmentation,” in Fourth Int. Conf. 3D Vision, pp. 1–11 (2016).

21. A. Kalinovsky, A. Kalinovsky, and V. Kovalev, “Lung image segmentation using deep learn-
ing methods and convolutional neural networks,” in XIII Int. Conf. Pattern Recognit. Inf.
Process. (PRIP-2016) (2016).

22. V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: a deep convolutional encoder-
decoder architecture for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.
39(12), 2481–2495 (2017).

23. H. R. Roth et al., “Anatomy-specific classification of medical images using deep convolu-
tional nets,” in IEEE 12th Int. Symp. Biomed. Imaging, pp. 101–104 (2015).

24. H. Sugimori, “Classification of computed tomography images in different slice positions
using deep learning,” J. Healthcare Eng. 2018, 1–9 (2018).

25. Z. Yan et al., “Bodypart recognition using multi-stage deep learning,” Lect. Notes Comput.
Sci. 9123, 449–461 (2015).

26. H. Bertrand, M. Perrot, and R. Ardon, “Classification of MRI data using deep learning and
Gaussian process-based model selection,” in IEEE 14th Int. Symp. Biomed. Imaging (2017).

27. B. D. de Vos et al., “2D image classification for 3D anatomy localization: employing deep
convolutional neural networks,” Proc. SPIE 9784, 97841Y (2016).

28. G. E. Humpire-Mamani et al., “Efficient organ localization using multi-label convolutional
neural networks in thorax-abdomen CT scans,” Phys. Med. Biol. 63(8), 085003 (2018).

29. A. D. Weston et al., “Automated abdominal segmentation of CT scans for body composition
analysis using deep learning,” Radiology 290(3), 181432 (2018).

30. I. Sluimer et al., “Computer analysis of computed tomography scans of the lung: a survey,”
IEEE Trans. Med. Imaging 25(4), 385–405 (2006).

31. M. Haas, B. Hamm, and S. M. Niehues, “Automated lung volumetry from routine thoracic
CT scans,” Acad. Radiol. 21(5), 633–638 (2014).

32. A. El-Baz et al., “Lung imaging data analysis,” Int. J. Biomed. Imaging 2013, 1–2 (2013).
33. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE/CVF Conf.

Comput. Vision and Pattern Recognit., Salt Lake, Utah, pp. 7132–7141 (2018).
34. J. A. Verschakelen et al., “Differences in CT density between dependent and nondependent

portions of the lung: influence of lung volume,” AJR Am. J. Roentgenol. 161(4), 713–717
(1993).

35. J. R. Mayo, “CT evaluation of diffuse infiltrative lung disease,” J. Thorac. Imaging 24(4),
252–259 (2009).

36. J. A. Verschakelen, “The role of high-resolution computed tomography in the work-up of
interstitial lung disease,” Curr. Opin. Pulm. Med. 16(5), 503–510 (2010).

37. “ACR LI-RADS,” https://cortex.acr.org/RadsPreview/CaseView.aspx?CaseId=naC0fAazxPg=
(accessed 14 February 2019).

38. R. Iezzi et al., “Tailoring protocols for chest CT applications: when and how?” Diagn.
Interventional Radiol. 23(6), 420–427 (2017).

39. R. Bibb, D. Eggbeer, and A. Paterson, Medical Modelling: The Application of Advanced
Design and Rapid Prototyping Techniques in Medicine, 2nd ed., Elsevier, Amsterdam,
Netherlands (2015).

40. T. B. Grydeland et al., “Quantitative CT measures of emphysema and airway wall thickness
are related to DLCO,” Respir. Med. 105(3), 343–351 (2011).

41. D. M. Hansell et al., “CT staging and monitoring of fibrotic interstitial lung diseases in
clinical practice and treatment trials: a position paper from the Fleischner society,”
Lancet Respir. Med. 3(6), 483–496 (2015).

Wang et al.: High throughput image labeling on chest computed tomography by deep learning

Journal of Medical Imaging 024501-17 Mar∕Apr 2020 • Vol. 7(2)

https://doi.org/10.1007/978-3-642-38709-8
https://doi.org/10.3389/fnins.2014.00229
https://doi.org/10.1007/978-3-319-24574-4
https://doi.org/10.1007/978-3-319-46723-8
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/ISBI.2015.7163826
https://doi.org/10.1155/2018/1753480
https://doi.org/10.1007/978-3-319-19992-4_35
https://doi.org/10.1007/978-3-319-19992-4_35
https://doi.org/10.1109/ISBI.2017.7950626
https://doi.org/10.1117/12.2216971
https://doi.org/10.1088/1361-6560/aab4b3
https://doi.org/10.1148/radiol.2018181432
https://doi.org/10.1109/TMI.2005.862753
https://doi.org/10.1016/j.acra.2014.01.002
https://doi.org/10.1155/2013/618561
https://doi.org/10.2214/ajr.161.4.8372744
https://doi.org/10.1097/RTI.0b013e3181c227b2
https://doi.org/10.1097/MCP.0b013e32833cc997
https://cortex.acr.org/RadsPreview/CaseView.aspx?CaseId=naC0fAazxPg=
https://cortex.acr.org/RadsPreview/CaseView.aspx?CaseId=naC0fAazxPg=
https://cortex.acr.org/RadsPreview/CaseView.aspx?CaseId=naC0fAazxPg=
https://cortex.acr.org/RadsPreview/CaseView.aspx?CaseId=naC0fAazxPg=
https://doi.org/10.5152/dir.2017.16615
https://doi.org/10.5152/dir.2017.16615
https://doi.org/10.1016/j.rmed.2010.10.018
https://doi.org/10.1016/S2213-2600(15)00096-X


42. D. A. Lynch et al., “Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner
Society White Paper,” Lancet Respir. Med. 6(2), 138–153 (2018).

43. M. Loeve et al., “Cystic fibrosis: are volumetric ultra-low-dose expiratory CT scans
sufficient for monitoring related lung disease?” Radiology 253(1), 223–229 (2009).

44. O. M. Mets et al., “Identification of chronic obstructive pulmonary disease in lung cancer
screening computed tomographic scans,” JAMA 306(16), 1775–1781 (2011).

45. E. Exhibit et al., “What every radiologist should know about expiratory and in the prone
position chest computed tomography” (2015).

46. M. Gaeta et al., “Expiratory CT scan in patients with normal inspiratory CT scan: a finding
of obliterative bronchiolitis and other causes of bronchiolar obstruction,” Multidiscip.
Respir. Med. 8(1), 44 (2013).

47. C. P. Hersh et al., “Paired inspiratory-expiratory chest CT scans to assess for small airways
disease in COPD,” Respir. Res. 14(1), 42 (2013).

48. J. Park et al., “Inspiratory lung expansion in patients with interstitial lung disease: CT histo-
gram analyses,” Sci. Rep. 8(1), 15265 (2018).

49. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in 3rd Int. Conf.
Learn. Represent. (ICLR), Y. Bengio and Y. LeCun, Eds., San Diego, California, (2015).

50. F. Chollet, “Keras,” GitHub (2015).
51. M. Abadi et al., “TensorFlow: a system for large-scale machine learning,” in 12th USENIX

Symp. Oper. Syst. Des. and Implementation, pp. 265–283 (2016).
52. “LOLA11—Home,” https://lola11.grand-challenge.org/ (accessed 5 February 2019).
53. J. Hoffman et al., “Technical Note: FreeCT_wFBP: a robust, efficient, open-source imple-

mentation of weighted filtered backprojection for helical, fan-beam CT,” Med. Phys. 43(3),
1411–1420 (2016).

54. X. Wang et al., “High throughput lung and lobar segmentation by 2D and 3D CNN on chest
CT with diffuse lung disease,” Lect. Notes Comput. Sci. 11040, 202–214 (2018).

55. D. Chong et al., “Reproducibility of volume and densitometric measures of emphysema on
repeat computed tomography with an interval of 1 week,” Eur. Radiol. 22(2), 287–294
(2012).

56. H. J. Kim et al., “Comparison of the quantitative CT imaging biomarkers of idiopathic pul-
monary fibrosis at baseline and early change with an interval of 7 months,” Acad. Radiol.
22(1), 70–80 (2015).

57. M. S. Brown et al., “Toward clinically usable CAD for lung cancer screening with computed
tomography,” Eur. Radiol. 24(11), 2719–2728 (2014).

Xiaoyong Wang is a PhD student of bioengineering at the University of California, Los
Angeles. His research interests include computer vision and machine learning in the field of
medical imaging.

Pangyu Teng received his PhD in bioengineering from the University of Illinois at Chicago in
2014. He is a staff scientist at the Center for Computer Vision and Imaging Biomarkers (CVIB),
University of California, Los Angeles. His research interests include medical imaging analysis
and processing, machine learning, and development of imaging biomarkers.

Ashley Ontiveros received her bachelor’s degree in biology from the University of California,
Los Angeles, in 2010. She is a research associate at the CVIB, University of California, Los
Angeles.

Jonathan G. Goldin received his MD and PhD degrees from the Faculty of Medicine at the
University of Cape Town. Currently, he is an executive chief of Clinical Care, a chief of Radiology
Department, a professor of Radiology and Biomedical Physics Program at the University of
California, Los Angeles, as well as a director of Santa Monica Multi-Specialty Radiology.

Matthew S. Brown received his PhD in computer science in 1997 from the University of
New South Wales, Sydney, Australia. Currently, he is a director of the CVIB and a professor of
radiological sciences at the University of California, Los Angeles.

Wang et al.: High throughput image labeling on chest computed tomography by deep learning

Journal of Medical Imaging 024501-18 Mar∕Apr 2020 • Vol. 7(2)

https://doi.org/10.1016/S2213-2600(17)30433-2
https://doi.org/10.1148/radiol.2532090306
https://doi.org/10.1001/jama.2011.1531
https://doi.org/10.1186/2049-6958-8-44
https://doi.org/10.1186/2049-6958-8-44
https://doi.org/10.1186/1465-9921-14-42
https://doi.org/10.1038/s41598-018-33638-x
https://lola11.grand-challenge.org/
https://lola11.grand-challenge.org/
https://lola11.grand-challenge.org/
https://doi.org/10.1118/1.4941953
https://doi.org/10.1007/978-3-030-00946-5
https://doi.org/10.1007/s00330-011-2277-1
https://doi.org/10.1016/j.acra.2014.08.004
https://doi.org/10.1007/s00330-014-3329-0



