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Abstract 
The learning of rule-plus-exception categories relies on pattern 
integration and differentiation, but how the representations of 
rule-followers and exceptions develop through these two 
operations remains obscure. Here, we inspected the 
representational shifts in rule-plus-exception category learning 
by fitting a computational model to behavioral categorization 
data. We found that exceptions were differentiated from rule-
followers within and between categories through learning. The 
distanced rule-follower and exception representations in each 
category formed distinct clusters that together constituted a 
hierarchically structured categorical representation. Moreover, 
exception learning increased the representational overlap 
between rule-followers of opposite categories, thereby blurring 
the category boundary. Our findings illuminate the 
representational dynamic underlying the acquisition of rule-
plus-exception categories and highlight the roles of pattern 
integration and differentiation in category learning. 

Keywords: category learning; computational modeling; 
pattern integration; pattern differentiation 

Introduction 
Nature is full of complex categories that encompass diverse 
objects. For example, members of the mammal category 
commonly have four limbs and live on land, but whales, as 
the category exceptions, have fins and live in the water. Also, 
whales are confusable with members of the fish category due 
to their similar appearances and habitats. Yet, people can 
discriminate whales from fish and classify them under the 
seemingly dissimilar mammal category. To acquire rule-
plus-exception categories, the brain performs pattern 
integration and differentiation on the category members. 
Specifically, pattern integration increases the overlap of 
stimulus representations (Brunec et al., 2020; Schlichting & 
Preston, 2015), whereas pattern differentiation reduces the 
representational overlap (Brunec et al., 2020; Hulbert & 
Norman, 2015). How do the representations of category rule-
followers and exceptions transform through these two 
operations? We aimed to discern the representational shifts in 
rule-plus-exception category learning with computational 
modeling and a novel category learning paradigm. 

People can flexibly transform their stimulus 
representations through category learning. Past behavioral 
(Goldstone et al., 2001; Juárez et al., 2019; Pothos & Reppa, 
2014) and neuroimaging (Dandolo & Schwabe, 2018; Mack 
et al., 2016) studies indicate that the learning of categories 

without exceptions can drive within-category stimuli to 
integrate and between-category stimuli to differentiate. 
However, such representational shifts can be distorted by the 
introduction of exceptions. Prior works imply that the brain 
reduces the representational overlap between rule-followers 
and exceptions within and between categories (Davis et al., 
2012; Heffernan et al., 2021; Sakamoto & Love, 2006). For 
example, Davis and colleagues (2012) found that a 
categorization model that differentiated exceptions from rule-
followers could predict the activation in the medial temporal 
lobe during category learning, indicating that the 
differentiation occurs in this brain region. Other fMRI works 
(Hulbert & Norman, 2015; Kim et al., 2017) suggest that the 
hippocampus can differentiate representations of similar but 
competing events, such as similar-looking exceptions and 
rule-followers from opposite categories. The differentiation 
may enable people to identify exceptions as inconsistent 
members of a category and avoid confusing them with 
resembling items from a competing category. 

Exception learning may also hinder the within-category 
integration and between-category differentiation of rule-
followers indicated by past studies (Goldstone et al., 2001; 
Pothos & Reppa, 2014). Specifically, Silliman and colleagues 
(2020) suggest that the presence of exceptions prevents the 
integration of rule-followers within categories because of the 
inconsistency between category members. Moreover, rule-
follower representations between categories may overlap if 
they are confusable with exceptions from the competing 
category (Heffernan et al., 2021). These exception-induced 
representational changes can blur the category boundary and 
increase the difficulty of classifying rule-followers. 

The existing literature indicates selective pattern 
integration and differentiation underlying rule-plus-
exception category learning, but no one has directly 
characterized these operations in the learning process. In 
particular, pattern integration and differentiation involve 
changes in representational similarities over time (Hulbert & 
Norman, 2015), but past studies on rule-plus-exception 
categories often focused on the final learning outcomes (e.g., 
Heffernan et al., 2021; Sakamoto & Love, 2006). To clarify 
the integration and differentiation processes during learning, 
we employed a delayed exception sequence created by 
Heffernan and colleagues (2021). They showed that delayed 
introduction of exceptions in the category learning phase 
resulted in more precise categorical representations in a 
hippocampal model in comparison to early introduction of 
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exceptions. Thus, the delayed exception sequence can not 
only promote the formation of accurate stimulus 
representations but also enable comparison between 
representations before and after exception learning. Such 
comparison would reveal shifts in stimuli’s representational 
similarities induced by the exceptions. 

To assess people’s latent stimulus representations, we 
leveraged the Supervised and Unsupervised Stratified 
Adaptive Incremental Network (SUSTAIN), a model that 
simulates human categorization (Love et al., 2004). 
SUSTAIN can develop clusters representative of category 
members and activate the clusters during the classification of 
a stimulus. Clusters that better describe the stimulus have 
higher activations, and the most activated cluster governs the 
categorization decision. By varying the pattern of cluster 
activations across stimuli, SUSTAIN can simulate pattern 
integration and differentiation in the human brain. 
Neuroimaging studies have shown that SUSTAIN could 
predict neural operations and representations within various 
brain regions (e.g., medial temporal cortex, Davis et al., 2012; 
Mack et al., 2016, 2018; ventromedial prefrontal cortex, 
Mack et al., 2020; occipitotemporal cortex, Braunlich & 
Love, 2019). Accordingly, we could fit SUSTAIN to human 
categorization performance to infer how people represent 
stimuli latently during category learning. 

We tested two predictions to evaluate the representational 
shifts in rule-plus-exception category learning: (1) Exception 
learning would result in within- and between-category 
differentiation between rule-followers and exceptions, and 
(2) exception learning would hinder within-category 
integration and between-category differentiation of rule-
followers. We fitted SUSTAIN to human categorization data 
before and after exception learning and performed 
representational similarity analysis (RSA) on stimuli’s 
cluster activations. Importantly, we observed that exception 
learning resulted in differentiated clusters of rule-followers 
and exceptions, in addition to a faded category boundary. 

Methods 

Participants 
We recruited 42 undergraduate students (Mage = 18.83, SDage 
= 2.33; 36 females; 36 right-handed) from the University of 
Toronto Psychology Participant Pool. Participants completed 
the study online to receive course credits. Participants gave 
consent before participation and received debriefing after 
completing the study. 

Stimuli 
We created opposite family-resemblance categories (Shepard 
et al., 1961), in which the stimuli had seven binary feature 
dimensions. The first six dimensions defined the categories, 
and the prototypes of the two categories had distinct feature 
values on these dimensions. Rule-followers in each category 
shared four of the six defining features of their prototype. 
Exceptions shared five of the six features of the prototype in 
the opposite category, making them confusable with non-

exception stimuli in the competing category. However, the 
value of the seventh feature dimension in exceptions differed 
from the value in non-exception stimuli. Thus, the seventh 
dimension was irrelevant to the category membership but 
increased the distinctiveness of exceptions. Each category 
had a prototype, eight rule-followers, and four exceptions. 
The prototype, four rule-followers, and two exceptions from 
each category were shown during learning. The remaining 
stimuli were shown during testing. All the feature values, 
except the values of the seventh dimension, appeared equally 
frequently in the learning and testing phases. 

We generated artificial animals (400×500 px) in Photoshop 
(Figure 1). The animals had seven components, each with two 
variations. The first six components – including the horn, 
beak, wings, hand, foot, and tail – were category-defining, 
and their variations involved simultaneous changes in color 
and shape. We made these two features covary because 
people experienced difficulties detecting changes in only the 
shape in a pilot study. The seventh component, which was the 
body, tagged exceptions and varied only in color so that it 
was less salient than the other six components. For each 
participant, the six category-defining components were 
randomly matched to the six category-defining feature 
dimensions. For example, the stimuli learned by one person 
might have dimensions 1–6 corresponding to horn, beak, 
wings, hand, foot, and tail, and such correspondences would 
change for another individual. In this way, participants could 
learn different stimulus sets with the same category structure. 

 
 

Figure 1: Subway plot of example stimuli and their values 
on the seven feature dimensions. 

Procedure 
Our study was approved by the University of Toronto 
Research Ethics Board. Before the learning phase, we told 
participants that they would learn two novel animal 
categories, cordia and naptha. In each trial of the learning 
phase, an artificial animal appeared for 2.5 s following a 0.7-
s fixation cross. Participants then had 3 s to classify the 
stimulus by pressing a key. We asked them to press “C” on 
the keyboard if they thought the stimulus was a cordia and 
“N” if they thought it was a naptha. After responding, 
participants saw 2-s feedback that included the classified 
animal and the correctness of their response.  

To examine the representational shifts, we introduced 
prototypes, rule-followers, and exceptions successively in the 
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learning phase (Table 1). Specifically, we split the learning 
phase into halves, each with four blocks. In the first half, 
participants learned the prototype and rule-followers from 
each category in succession. In the second half, participants 
were introduced to exceptions in each category one at a time 
while continually learning to classify the prototypes and rule-
followers. In the last two blocks, all the learning stimuli were 
present. Overall, each learning block contained 48 trials, in 
which the stimuli were repeatedly displayed in random order. 

After the first half of the learning phase, participants went 
through an intermediate testing phase in which they 
categorized prototypes as well as learned and novel rule-
followers without feedback. Exceptions were absent in this 
phase because their distinct value on the seventh feature 
dimension could lead participants to guess new category 
rules. The final testing phase followed the second half of the 
learning phase and involved all the learned stimuli, “novel” 
rule-followers from the intermediate testing phase, and novel 
exceptions. 
 

Table 1: The sequence of stimulus introduction for each 
category in the learning phase. For rule-followers and 
exceptions, the numbers inside the brackets indicate 

individual stimuli. The number after the asterisk indicates 
how many times individual stimuli were displayed. 

 

Modeling Analysis 

Model Fitting We used the CatLearn package (Wills et al., 
2017; Wills & Pothos, 2012) in R 4.1.1 to perform the model 
fitting. The fitting procedure was adapted from the study by 
Mack and colleagues (2016). We first trained SUSTAIN with 
trials from the first half of the learning phase using supervised 
learning. Then, we used DEoptim (Mullen et al., 2011), a 
global optimization algorithm, to optimize the model 
predictions of participants’ categorization accuracies in 
learning blocks 1–4 and the intermediate testing phase by 
maximal log-likelihood. Subsequently, we extracted the 
cluster activations for all the stimuli (i.e., the prototype, eight 
rule-followers, and four exceptions from each category) 
before exception learning. With the feature attention weights 
and clusters developed in the first half of the learning phase, 
SUSTAIN was trained with trials from the second half of the 
learning phase and fitted to participants’ categorization 
accuracies in learning blocks 5–8 and the final testing phase. 
From this re-fitted model, we obtained the cluster activations 
for stimuli after exception learning. 

Representational Similarity Analysis We computed 
Fisher’s z-transformed Pearson correlations between 
stimuli’s cluster activations and constructed representational 
similarity matrices (RSMs) for the intermediate and final 
testing phases. Based on past studies on pattern integration 
and differentiation (Brunec et al., 2020; Hulbert & Norman, 
2015), a higher correlation between two stimuli reflects a 
higher overlap of their representations. Accordingly, we 
quantified the within-category similarity (WCS) by 
averaging the z-transformed correlations within categories 
and the between-category similarity (BCS) by averaging the 
correlations between categories. To evaluate our predictions, 
we analyzed the within- and between-category similarities 
between rule-followers and exceptions (i.e., WCSRE and 
BCSRE) and the within- and between-category similarities of 
only the rule-followers (i.e., WCSR and BCSR). Because we 
included multiple exceptions in each category, we also 
explored the within- and between-category similarities of 
only the exceptions (i.e., WCSE and BCSE). 

Results 

Behavioral Results The average categorization accuracies in 
the learning and testing phases are shown in Figure 2a. We 
used multivariate analysis of variance (MANOVA) to test the 
effects of learning blocks on the categorization accuracies for 
prototypes, rule-followers, and exceptions. For the first half 
of the learning phase, we found a significant positive main 
effect of learning blocks on the accuracies for prototypes 
(F(3, 164) = 4.98, p = .002, R2 = .08) and rule-followers (F(3, 
164) = 3.85, p = .01, R2 = .07), suggesting that individuals’ 
learning performance improved over the first four blocks. 
The last four blocks did not exert any significant main effect 
on the accuracies for prototypes (F(3, 164) = 0.22, p = .88, R2 
= .004), rule-followers (F(3, 164) = 0.61, p = .61, R2 = .01), 
and exceptions (E: F(3, 164) = 1.33, p = .27, R2 = .02). Thus, 
the introduction of exceptions might have impeded people’s 
ability to improve their learning performance. 

The testing performance is shown in Figure 2b. We 
examined participants’ learning success by running one-
sample t-tests to check if their categorization accuracies in 
the testing phases were greater than chance (> .5). In the 
intermediate testing phase, participants achieved 
significantly above-chance accuracies for prototypes (M = 
.96, SE = 0.02, t(41) = 27.18, p < .001), learned rule-followers 
(M = 0.79, SE = 0.02, t(41) = 12, p < .001), and novel rule-
followers (M = .59, SE = 0.03, t(41) = 3.36, p < .001). In the 
final testing phase, the accuracies were significantly above 
chance for prototypes (M = .95, SE = 0.02, t(41) = 23.2, p < 
.001), learned rule-followers (M = .79, SE = 0.02, t(41) = 
14.37, p < .001), novel rule-followers (M = .59, SE = 0.03, 
t(41) = 3.19, p = .001), and learned exceptions ( M = .7, SE = 
0.05, t(41) = 4.06, p < .001). The above-chance 
categorization accuracy for novel rule-followers indicates 
that participants could generalize the general category rules 
to unfamiliar items. However, the accuracy for novel 
exceptions was at the chance level (M = .53, SE = 0.05, t(41) 

Block Prototype Rule-followers Exceptions 
1 P * 6 R[1, 2] * 9  
2 P * 6 R[3, 4] * 9  
3 P * 5 R[1, 2, 3, 4] * 4  
4 P * 5 R[1, 2, 3, 4] * 4  
5 P * 8 R[1, 2, 3, 4] * 2 E[1] * 8 
6 P * 8 R[1, 2, 3, 4] * 2 E[2] * 8 
7 P * 8 R[1, 2, 3, 4] * 2 E[1, 2] * 4 
8 P * 8 R[1, 2, 3, 4] * 2 E[1, 2] * 4 
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= 0.67, p = .25). This result suggests that individuals 
experienced difficulties generalizing patterns of exceptions. 

We assessed the link between intermediate and final testing 
performance. We found a significant positive correlation 
between the categorization accuracies in the intermediate and 
final testing phases for non-exception stimuli (prototypes and 
rule-followers; r = .48, t(40) = 3.46, p = .001). The 
intermediate testing accuracy for non-exception stimuli was 
not significantly correlated to the final testing accuracy for 
exceptions (r = -.07, t(40) = -0.48, p = 0.64). We compared 
the two correlations using Pearson and Filon’s z in the cocor 
package (Diedenhofen & Musch, 2015). We found that the 
correlations were significantly different (z = 3.27, p = .001). 
Thus, participants classified non-exception stimuli more 
accurately in the final testing phase if they performed better 
on these items before exception learning. In contrast, the 
intermediate testing performance on non-exception stimuli 
was not predictive of how participants categorized exceptions 
in the final testing phase. 

 
 

Figure 2: (a) Human categorization accuracies in learning 
blocks 1–8 and testing phases. Test 1: Intermediate testing; 
Test 2: Final testing. (b) Human categorization accuracies 

for learned and novel stimuli in testing phases. The asterisks 
represent the statistical significance of one-sample t-tests. 
***p < .001; **p < .01; ns: p > .05. Error bars: ± SE. P: 

Prototypes; R: Rule-followers; E: Exceptions. 

Model Fitting Results We evaluated SUSTAIN’s testing 
performance because we aimed to infer people’s stimulus 
representations in the testing phases. The model testing 
performance is shown in Figure 3. The model’s 
categorization accuracies in the testing phases were 
significantly correlated to participants’ accuracies for all 
stimulus types except the prototypes in the final testing phase 
(Table 2). This non-significant correlation could be due to the 
model and participants’ near-ceiling-level performance on 
the prototypes. Moreover, we found a significant positive 
correlation between the model’s intermediate and final 
testing accuracies for non-exception stimuli (r = .54, t(40) = 
4.08, p < .001). However, the intermediate testing accuracy 

for non-exception stimuli was not significantly correlated to 
the final testing accuracy for exceptions (r = .18, t(40) = 1.15, 
p = .26). Pearson and Filon’s z test from the cocor package 
(Diedenhofen & Musch, 2015) revealed a significant 
difference between the two correlations (z = 2.49, p = .01). 
Therefore, like human participants, the model’s intermediate 
testing performance predicted its final testing performance on 
non-exception stimuli but not exceptions. 
 

Table 2: Correlations between model and human 
categorization accuracies in the testing phases. The asterisks 
indicate the statistical significance of each correlation. ***p 

< .001; **p < .01; ns: p > .05. 

 
 

Figure 3: Model categorization accuracies for learned and 
novel stimuli in testing phases. The asterisks represent the 
statistical significance of one-sample t-tests that checked if 

the categorization accuracies were above chance (> .5). 
***p < .001; *p < .05; ns: p > .05. Error bars: ± SE. P: 

Prototypes; R: Rule-followers; E: Exceptions. 

RSA Results The RSMs for the intermediate and final testing 
phases (Figure 4a) revealed shifts in stimulus representations 
through exception learning. We performed two-tailed 
repeated-measures t-tests to assess how the similarity scores 
(i.e., WCS and BCS) for rule-followers and exceptions 
changed between testing phases (Figure 4b). We found that 
WCSRE decreased significantly in the final testing phase 
(intermediate: M = -0.48, SE = 0.09; final: M = -0.76, SE = 
0.07; final vs. intermediate: t(41) = -3.14, p = .003), 
suggesting a reduction in the representational overlap 
between within-category rule-followers and exceptions 
during exception learning. In addition, BCSRE showed a 
significant decrease (intermediate: M = 0.9, SE = 0.11; final: 
M = -0.23, SE = 0.07; final vs. intermediate: t(41) = -7.14, p 
< .001), indicating that the representations of between-
category rule-followers and exceptions became less 
overlapped through exception learning. These results support 
our prediction that rule-followers and exceptions would 
undergo pattern differentiation within and between categories 
in the learning process. 

 Prototype Rule-followers Exceptions 
Intermediate Testing Phase 

Learned .72*** .8***  
Novel  .81***  

Final Testing Phase 
Learned .01(ns) .68*** .77*** 
Novel  .83*** .41** 
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We assessed changes in the representational similarities of 
only the rule-followers. We found a significant increase in 
WCSR across the intermediate and final testing phases 
(intermediate: M = 0.92, SE = 0.1; final: M = 1.49, SE = 0.09; 
final vs. intermediate: t(41) = 5.15, p < .001), which indicates 
the integration of within-category rule-followers. This result 
challenges our prediction that exception learning would 
disrupt the overlapping of rule-followers from the same 
category. Furthermore, BCSR increased significantly across 
the testing phases (intermediate: M = -0.15, SE = 0.1; final: 
M = 0.83, SE = 0.11; final vs. intermediate: t(41) = 6.29, p < 
.001), implying that the representations of between-category 
rule-followers were integrated. The result is consistent with 
our prediction that exception learning would hamper the 
between-category differentiation of rule-followers. 

We explored shifts in the representational similarities of 
only the exceptions. WCSE showed a significant increase in 
the final testing phase (intermediate: M = 2.09, SE = 0.09; 
final: M = 2.36, SE = 0.07; final vs. intermediate: t(41) = 2.72, 
p = .01), which suggests that exceptions from the same 
category were integrated during exception learning. 
Similarly, BCSE increased significantly (intermediate: M = -
0.89, SE = 0.1; final: M = 0.31, SE = 0.12; final vs. 
intermediate: t(41) = 7.63, p < .001), indicating that exception 
representations from competing categories became 
overlapped. Therefore, like the rule-follower representations, 
exception representations underwent pattern integration 
within and between categories through learning. 

Multidimensional Scaling of RSMs Our RSA results 
indicate that exception learning not only causes 
differentiation between rule-followers and exceptions but 
also drives these two types of stimuli to undergo separate 
integration. Consequently, specialized clusters for rule-
followers and exceptions may form in the representational 
space. To visualize the clustering of stimulus representations, 
we converted each RSM into a distance matrix by computing 
the absolute difference between each z-transformed 
correlation and the z-transformed correlation between the 
cluster activations of the same stimulus (i.e., the maximum 
correlation in the RSM). Thus, a higher value in the distance 
matrices reflected higher dissimilarity between two stimuli’s 
activation patterns. Then, we ran metric multidimensional 
scaling (MDS; k = 2) on the distance matrices to visualize 
stimuli’s distributions on a two-dimensional plane. 

The stimulus distributions in the intermediate and final 
testing phases are shown in Figure 4c. Before exception 
learning, exception representations were intermixed with 
rule-follower representations from the competing category 
due to the perceptual similarity. After learning, rule-follower 
and exception representations in each category formed their 
distinct, non-overlapping clusters. Also, exception learning 
led rule-follower representations from competing categories 
to overlap. Altogether, these changes in stimulus 
distributions suggest that exception learning results in the 
formation of differentiated rule-follower and exception 
clusters and the integration of between-category rule-
followers in the representational space. 

 
 

Figure 4: (a) RSMs in testing phases. Each cell represents a 
z-transformed correlation between the cluster activations of 
two stimuli. (b) Representational similarity scores in testing 
phases. The asterisks indicate the statistical significance of 

repeated-measures t-tests. ***p < .001, **p < .01. Error 
bars: ± SE. (c) Distributions of stimuli’s cluster activation 

patterns projected onto a two-dimensional MDS space. The 
ellipses separately group rule-followers and exceptions in 

each category based on the multivariate t-distribution. 

Discussion 
We investigated transformations of stimulus representations 
during rule-plus-exception category learning. Matching our 
predictions, we found that exception learning drove pattern 
differentiation between rule-followers and exceptions within 
and between categories. Also, the learning led to the pattern 
integration of between-category rule-followers. Contrary to 
our prediction, within-category integration of rule-followers 
happened during exception learning. We further showed that 
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rule-followers and exceptions in each category formed their 
unique representational clusters. In summary, our findings 
help discern the detailed representational shifts underlying 
the learning of rule-plus-exception categories. 

We showed that exception learning resulted in within- and 
between-category differentiation between rule-followers and 
exceptions. The dissociated rule-follower and exception 
representations might explain why people’s intermediate 
testing accuracies for non-exception stimuli predicted the 
final testing accuracies for only the non-exception but not the 
exception stimuli. Our results align with findings from past 
neuroimaging (Davis et al., 2012), behavioral (Sakamoto & 
Love, 2006), and neural modeling (Heffernan et al., 2021) 
studies that indicate that the human brain constructs distinct 
exception representations during rule-plus-exception 
category learning. However, none of the past studies directly 
characterized the differentiation process that leads to those 
distinct representations. Here, we leveraged a computational 
model and a delayed exception sequence to fill the gap in the 
existing literature, providing novel evidence of selective 
pattern differentiation in the category learning process. 

The differentiation between rule-follower and exception 
representations may support the identification of exceptions, 
especially when these items are confusable with members of 
the competing category. The pattern differentiation between 
confusable events has been found within the hippocampus in 
prior fMRI works (Hulbert & Norman, 2015; Kim et al., 
2017). Such works hint that the perceptual similarity between 
rule-followers and exceptions from competing categories 
may govern the between-category differentiation between 
these two types of stimuli. In contrast, the within-category 
differentiation between rule-followers and exceptions may be 
driven by their inconsistent patterns. Future works can delve 
into the determinants of the within- and between-category 
differentiation and the specific contributions of these 
operations to category learning.  

We found that within-category integration of rule-
followers occurred during exception learning, contrary to our 
prediction that the learning would hinder this operation. Our 
result also contradicts Silliman and colleagues (2020)’ s 
findings: They showed that exception learning prevented the 
typical increase in the perceived similarity of non-exception 
stimuli within categories. The inconsistent findings may be 
due to differences in the learning sequences the two studies 
used. We introduced exceptions in only the second half of the 
learning phase, whereas Silliman and colleagues (2020) 
introduced all the stimuli at the beginning of the learning 
phase. As implied by Heffernan and colleagues (2021), the 
delayed introduction of exceptions, compared to the early 
introduction, can result in more established similarity 
representations of within-category rule-followers that are less 
susceptible to the distortions induced by subsequent 
exception learning. Overall, the opposite findings from the 
present and past studies necessitate a comparison between the 
representational shifts in early and delayed exception 
learning conditions. 

 We observed that rule-followers between categories 
underwent pattern integration during exception learning. 
Particularly, the inconsistency in members of the same 
category and the overlap of members from competing 
categories may drive the between-category integration and 
blur the category boundary. Indeed, similar boundary-
blurring during the learning of rule-plus-exception categories 
was observed in the modeling study by Heffernan and 
colleagues (2021). The overlapping of between-category 
rule-followers potentially hinders category learning and 
explains our finding that people’s learning performance 
failed to improve after the introduction of exceptions. 

 We revealed that exceptions between categories became 
integrated through exception learning, which further hints at 
the blurred category boundary. Moreover, we found pattern 
integration of within-category exceptions during learning. 
The separate integration of rule-followers and exceptions, 
combined with the differentiation between these stimulus 
types, gave rise to distinct rule-follower and exception 
clusters in the representational space. Our results are 
congruent with the behavioral findings by Savic and Sloutsky 
(2019), which imply that people represent within-category 
exceptions as a subgroup away from the rule-followers in the 
same category. The rule-follower and exception clusters 
within a category can serve as subcategories that constitute a 
hierarchically structured categorical representation. In 
support of the notion of the hierarchical structure, past works 
have shown that the human brain and artificial neural 
networks could divide within-category stimuli into subgroups 
based on their perceptual dissimilarities (Ahn et al., 2021; 
Konkle & Alvarez, 2022). The hierarchical representational 
structure may allow people to distinguish patterns that 
characterize different within-category stimuli, such as the 
distinct patterns for rule-followers and exceptions. 

Our study provides a novel modeling approach to inspect 
the latent representational shifts during category learning. 
Specifically, we leveraged SUSTAIN to examine people’s 
representations because past works suggest that this model 
can predict neural activities related to category learning (e.g., 
Davis et al., 2012; Mack et al., 2016). However, we expect 
any model that supports pattern integration and 
differentiation, such as the hippocampal model (Schapiro et 
al., 2017), to allow inference of the representational shifts. 
Future works can extend our modeling approach to the 
acquisition of other types of categories. Future works can also 
use the representational shifts in the model to predict changes 
in the neural representations during rule-plus-exception 
category learning to deepen the understanding of the neural 
mechanisms underlying the learning process. 

In conclusion, we combined a computational model and a 
delayed exception sequence to shed new light on how 
stimulus representations transform in rule-plus-exception 
category learning. By studying category learning at the 
representational level, we can discern the operations 
fundamental to this cognitive process and understand the 
acquisition of sophisticated categories in the real world.  
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