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Abstract
There is an urgent need for drug development in brain tumors. While current radiographic response assessment provides 
instructions for identifying large treatment effects in simple high- and low-grade gliomas, there remains a void of strategies 
to evaluate complex or difficult to measure tumors or tumors of mixed grade with enhancing and non-enhancing components. 
Furthermore, most patients exhibit some period of alteration in tumor growth after starting a new therapy, but simple response 
categorization (e.g., stable disease, progressive disease) fails to provide any meaningful insight into the depth or degree of 
potential “subclinical” therapeutic response. We propose a creative solution to these issues based on a tiered strategy meant 
to increase confidence in identifying therapeutic effects even in the most challenging tumor types, while also providing a 
framework for complex evaluation of combination and sequential treatment schemes. Specifically, we demonstrate the util-
ity of digital “flipbooks” to quickly identify subtle changes in complex tumors. We show how a modified Levin criteria can 
be used to quantify the degree of visual changes, while establishing estimates of the association between tumor volume and 
visual inspection. Lastly, we introduce the concept of quantifying therapeutic response using control systems theory. We 
propose measuring changes in volume (proportional), the area under the volume vs. time curve (integral) and changes in 
growth rates (derivative) to utilize a “PID” controller model of single or combination therapeutic activity.

Keywords  Digital flipbooks · RANO · Brain tumors · Imaging response · Early-phase trials · Control systems theory

Role of Imaging in Response Assessment 
and Clinical Care in Neuro‑Oncology

A recent statistical report of primary and other central nerv-
ous system (CNS) tumors compiled by the Central Brain 
Tumor Registry of the United States (CBTRUS) estimated 
83,830 new cases of primary malignant and non-malignant 
brain, and other CNS tumors would be expected to be diag-
nosed in the USA in 2020 [1]. This includes an expected 
24,970 primary malignant and 58,860 primary non-malignant 
tumors with glioblastoma (GBM) being 49% of malignant 
tumors and meningiomas being the most common primary 
non-malignant tumor at 54% of non-malignant tumors. They 
found the incidence rate for GBM was 3.23 per 100,000 pop-
ulation, followed by malignant glioma not otherwise speci-
fied at 0.51 per 100,000, and diffuse astrocytoma was 0.45 
per 100,000 population.

Unfortunately, the survival outcome for high-grade 
infiltrative glioma patients, such as those with GBM, 
is quite dire with a median overall survival (OS) of 
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14–16 months [2, 3] and 8–10% of patients surviving 
beyond 5 years after diagnosis [3, 4]. Currently, the stand-
ard of care for newly diagnosed GBM patients consists of 
maximum safe surgical resection, followed by radiother-
apy plus concomitant and adjuvant temozolomide. Even 
with the introduction of temozolomide and its universal 
acceptance as the adjuvant treatment of choice for newly 
diagnosed GBM patients [2], the dismal prognosis has not 
changed substantially in the past 30 years. In addition, at 
recurrence, few therapeutic options exist. A careful review 
of the clinical trials from 2006 to 2012 involving recurrent 
or progressive GBM found a minority of patients eligible 
for a second surgery or reirradiation. Most patients require 
further chemotherapy with drugs different than temozolo-
mide. Sadly, patients failing adjuvant temozolomide expe-
rience progression-free survival (PFS) rates at 6 months 
of 20–30% with nitrosoureas, temozolomide re-challenge, 
or bevacizumab [5]. There has been an urgent and unmet 
need for new drugs to treat high-grade gliomas for more 
than three decades [6, 7].

The reasons for this failure of therapeutic innovation have 
many causes not the least of which is pharmaceutical indus-
try aversion for high risk, low reward drug development that 
has plagued drug discovery, and development for high-grade 
infiltrative gliomas such as GBM. This is also reflected in 
the current regulatory environment that considers OS as the 
gold standard for effective therapy and, in most cases, the 
only standard. Unfortunately, OS may not directly reflect 
the impact of specific treatment regimens because of poten-
tial confounding effects like prognostic factors and potential 
subsequent therapies. This is especially relevant when study-
ing new therapeutics, where even subtle evidence of treat-
ment effects may be insightful. Therefore, we will argue that 
non-invasive radiographic endpoints can be an effective tool 
to study tumor behavior in the context of drug development 
for brain tumors.

Currently, T1-weighted MR images used with the addi-
tion of T1-shortening gadolinium-based contrast agents 
are the standard for radiographic diagnosis and response 
assessment of high-grade, malignant brain tumors. Areas of 
blood–brain barrier breakdown allow diffusion of the con-
trast agent out of vasculature into the extravascular extracel-
lular space [8], resulting in hyperintensity on T1-weighted 
images in the most aggressive portion of the tumor [9, 10]. 
Cytoarchitectural disruption from infiltrating tumor and 
vasogenic edema both cause increase in tissue T2, result-
ing in subsequent hyperintensity on T2-weighted turbo spin 
echo and T2-weighted fluid-attenuated inversion recovery 
(FLAIR) MRI [11–14]. Thus, the combination of contrast-
enhanced T1-weighted images and T2-weighted FLAIR (or 
turbo spin echo) is often used to characterize enhancing and 
non-enhancing disease in both high-grade (HGGs) and low-
grade gliomas (LGGs).

Challenges with Complex and Mixed Tumor 
Types

While the standard HGG RANO criteria [15, 16] is useful for 
response criteria for high-grade gliomas exhibiting contrast 
enhancement and the LGG RANO criteria [17] is useful for 
radiographic response assessment in non-enhancing LGGs, 
there are no guidelines for “mixed”-grade gliomas, “molecu-
lar” (IDH wild type) glioblastoma, or patients that may not have 
measurable contrast enhancement at diagnosis or baseline but 
may develop enhancement over time (Fig. 1A). Similarly, there 
is no straightforward way of evaluating complex and unique 
genetic tumors that have a mixture of enhancing and non-
enhancing tumor throughout their clinical history such as those 
exhibited by H3K27m midline gliomas (Fig. 1B). Additionally, 
radiographic response criteria strongly depend on the ability 
and accuracy of lesion measurements, whether it is bidirec-
tional or volumetric. Therefore, the current response assessment 
tools lack guidance on how to study difficult to measure tumors, 
including those exhibiting “gliomatosis”-like features (Fig. 2).

Challenges Assessing Drug Combinations 
in Gliomas

Although most contemporary brain tumor clinical trials involve 
the evaluation of single therapeutic agents, strategies regarding 
how to best evaluate these agents and combination therapies 
are lacking. At times, even single-agent therapy dose and fre-
quency of administration are defined by drug experience against 
extracranial cancers, preclinical toxicology models, or a limited 
phase I study. A precise understanding of the temporal and dose 
dependence of a single drug would be of great help in the design 
of therapeutic combinations. In theory, single agents with some 
measurable therapeutic or clinical “activity” might be candidates 
for exploration of combination therapies. However, the current 
RANO framework does not appreciate this potential nuance, 
ascribing “stable disease” to many agents that are seemingly 
below the radiographic threshold for “response.” Even if single 
agents are effective at shrinking the tumor, the synergistic effects 
of an additional agent are not easily quantified using the current 
RANO criteria beyond incremental increases in the objective 
response rate (ORR).

Tiered Approach to Radiographic Response 
Assessment

At a fundamental level, any patient that has a response to 
a therapeutic agent should have images that convincingly 
demonstrate this effect. In tumors that are non-measurable, 
whether to complex, small, or difficult to measure, a mean-
ingful therapeutic effect should at a minimum be intuitively 
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obvious to even the most casual observer. Tumors that are 
measurable and have a meaningful radiographic response 
should also be able to provide visual evidence to corrobo-
rate this effect. Thus, one may consider utilizing a “tiered” 

approach to evaluate any brain tumor patient that is on a 
study drug by starting with a visual inspection of the radio-
graphic data before and during therapy to get the gestalt of 
the effect, then adding various levels of quantitation and 

Fig. 1   A A 64-year-old female patient with a cerebellar grade 3 ana-
plastic astrocytoma (AA) showing serial post-contrast T1-weighted 
(top row) and T2-weighted FLAIR images (bottom row). The lesion 
started out non-enhancing and only (blue arrows), but over time 
developed both enhancing (red arrows) and non-enhancing tumor 
growth. B A 22-year-old male patient with an H3 K27m mutation 

showing serial post-contrast T1-weighted (top row) and T2-weighted 
FLAIR images (middle row). Also showed is T2-weighted FLAIR 
of an inferior slice demonstrating tumor growth. Similar to (A), this 
patient demonstrated early non-enhancing tumor (blue arrows) that 
later developed enhancing disease (red arrow), both of which con-
tinue to grow

1857Radiographic Response Assessment Strategies for EarlyPhase Brain Trials in Complex Tumor…
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sophistication to enhance and build confidence around this 
observation (Fig. 3).

Enhanced Visual Inspection Using Digital 
“Flipbooks”

At the foundation of such a proposed unified approach to 
response assessment is a qualitative visual assessment of 
radiographic images over time, both before and during the 
therapies of interest. While it may seem obvious that such 
an evaluation is elemental, the current “side-by-side” com-
parison of images is flawed or at least suboptimal. We posit 
that we may be able to take advantage of the unique ability 
for motion perceiving neurons [18–20] in the middle tem-
poral visual area (Fig. 4A–B) to identify subtle changes or 
“motion” in the images by turning these “side-by-side” com-
parisons into videos or “flipbooks,” with each page being a 
separate time point (Fig. 4C). Importantly, images should 
be standardized using international guidelines [21–23] 
and adequately registered using a rigid-body, 6 degrees of 
freedom (no stretching or skewing) to either a baseline or 

reference time point or to a standard radiographic atlas (e.g., 
MNI or Talairach template) in order to ensure the eyes are 
picking out the most relevant features within the images. 
While standardization of image acquisition and using the 
same scanner over time are best for consistent images over 
time, skull stripping to reduce differences in fat saturation 
parameters and bias field correction to adjust for differences 
in coil sensitivity may be desired. Lastly, the registered and 
processed images can be resliced and put into a mosaic (e.g., 
6 images across and 4 images down every 3 mm from infe-
rior to superior slices) and saved/imported into a PDF or 
PowerPoint (PPT) slide deck for easy viewing (note: use of 
transitions between slides can also be beneficial to enhance 
the visual changes). An example of how this process can 
be implemented using open-source tools is illustrated in 
Fig. 4D. First, images are converted from DICOM format 
into NIFTI, a standard 3D (or 4D) format used by many 
open-source neuroimaging software packages, using dcm-
2niix (part of many software packages, like AFNI, other-
wise can be downloaded here: https://​github.​com/​rorde​nlab/​
dcm2n​iix/​relea​ses). Next, NIFTI images can be registered 
using the flirt command in FSL [24–26] (https://​fsl.​fmrib.​

Fig. 2   A 48-year-old patient 
with an anaplastic astrocytoma 
exhibiting difficult-to-measure 
gliomatosis-like features

1858 B. M. Ellingson et al.
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ox.​ac.​uk/​fsl/​fslwi​ki/​FLIRT). Skull stripping can then be per-
formed using the Brain Extraction Tool (bet2) (https://​fsl.​
fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​BET/​UserG​uide) and bias field 
correction can be performed using fast in FSL (https://​fsl.​
fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FAST). Lastly, AFNI (https://​afni.​
nimh.​nih.​gov) can be used for visualization and creation of 
the mosaic, which can then be saved and used in PowerPoint 
(see Supplemental Materials for an example of flipbooks).

Modified Levin Criteria

In 1977, the Levin criteria [27] were introduced as a tool 
for evaluating brain tumor patients in how to interpret 
serial changes in neurological examinations, radionuclide 
scintiscans, CT scans, and EEG during chemotherapy and/
or chemoradiation. This criterion presented an intuitive, 
numerical rating scale devised to designate change in tumor 
status and the degree of confidence or magnitude of these 
changes. As the next layer of our proposed “tiered” approach 
to response assessment, we offer a modification of these 
original Levin criteria can be added on top of the visual 
enhancement provided by digital flipbooks in order to add 
nuance to visual inspection (Fig. 5A–B). For example, non-
enhancing tumor can be evaluated simply using the guide 
illustrated in Fig. 5B and a similar approach can be taken 
for both enhancing tumor (on post-contrast T1-weighted 
images) and non-enhancing tumor (on T2-weighted TSE or 
FLAIR images). Briefly, if no change in the tumor occurs 

between two sequential time points, the score would be 
“0” and would indicate stable disease (SD). If the tumor 
looks possibly larger or possibly smaller, or the degree of 
T2 hyperintensity looks worse or slightly more resolved, 
the score would be − 1 or + 1, respectively, with negative 
values denoting tumors looking worse. If there is increased 
confidence, where tumors look definitely worse or better, 
the score would be − 2 or + 2, reflecting progressive disease 
(PD) or partial response (PR), respectively. If the images 
demonstrate emerging enhancement or a new lesion, the 
score would be − 3 and would constitute PD. If there is com-
plete disappearance of all T2 hyperintensity, the score would 
be + 3, and the patient would have a complete response (CR). 
Note that for both PR and CR, this would need to be durable 
for at least 4 weeks to constitute a confirmed PR or CR.

To show the link between these modified Levin criteria 
and lesion volume changes, we conducted a small retrospec-
tive study between Kaiser (San Francisco) and UCLA. A 
total of 37 anaplastic astrocytoma patients from Kaiser, eval-
uated at 5 time points for a total of 148 unique comparisons, 
and 40 anaplastic astrocytoma patients from UCLA, evalu-
ated at 2 time points for a total of 40 unique comparisons, for 
a total of 188 comparisons were evaluated by an independent 
neuroradiologist at UCLA (Fig. 5C–D). Results suggested 
a median change in absolute tumor volume and percentage 
change necessary for a designation of “ − 2”, or PD, was 
21 mL or 72%, respectively, while the median change was 
only 8 mL or 28% for a designation of “ − 1.” The median 
change observed for a modified Levin score of “0,” or no 

Fig. 3   Tiered approach to radiographic assessment for any type of 
brain tumor. At the foundation, all patients can undergo an enhanc-
ing visual inspection of serial changes after image standardization 
(i.e., using BTIP [21]) and co-registration/alignment (e.g., digital flip-
books) have been performed. Even in easy-to-measure tumors, confir-
mation of quantitative changes using flipbooks can provide additional 
confidence in the accuracy of the measurements. Once enhanced 
visual inspection is performed, a qualitative “expert” review can be 
performed on enhancing tumor (using post-contrast T1-weighted 

images) and/or non-enhancing tumor (using T2/T2-weighted FLAIR) 
using modifications to the Levin criteria [27]. Readers can rate 
whether tumors are stable, growing, or shrinking, and to what level 
of confidence they have in this possible change (e.g. “possibly,” “defi-
nitely,” or “significantly” larger). If the lesion can be quantified, then 
more sophisticated modeling techniques can be implemented, includ-
ing the use of control systems theory or mathematical modeling. Note 
that even semi-quantitative scoring can be used as a signal over time, 
but with less granularity than quantitative volume measurements
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change, was 0 mL or around 3% change. Approximately 9 
of the 188 comparisons illustrated “possible shrinkage,” or 
a score of + 1, which had a median change in FLAIR vol-
ume of – 32 mL or a percentage change of around − 41% 
between scans. No patients had scores of + 2 (definitely bet-
ter), − 3, or + 3. There was a significant correlation between 
Levin score and the percentage change in tumor volume 
(Fig. 5C; Spearman correlation, R =  − 0.5623, P < 0.0001). 
Results suggest a significant difference in absolute volume of 
FLAIR hyperintensity between Levin scores of “ − 1” vs. “0” 

(Fig. 5D; Dunn’s test, P = 0.0023) and “ + 1” vs. “0” (Dunn’s 
test, P = 0.0022), but no real difference between “ − 1” and 
“ − 2” (possibly vs. definitely worse). Receiver operator char-
acteristic (ROC) analysis suggests a cutoff of around + 15% 
change in FLAIR volume provides a sensitivity of 78% and 
specificity of 71% for identifying progression, as defined 
by a Levin score of − 1 or − 2 (Fig. 5E; ROC area under 
curve (AUC) = 0.8046 ± 0.0351, P < 0.0001), while a cutoff 
of − 20% provided an 85% sensitivity and 83% specificity 
for detecting a response, as defined as a + 1 (Fig. 5F; ROC 

Fig. 4   A The dorsal and ventral streams of visual motion sensation 
[18–20]. B Motion perceiving neurons in the middle temporal visual 
area, showing increased action potential firing rate in orientation-
dependent neurons when the motion is coherent and in the same direc-
tion (adapted from [20]). C Digital “flipbooks” created to exploit 
these neurons by registering/aligning images over time, allowing the 
user to flip through each time point on separate pages. D Process for 

creating digital flipbooks starts with conversion of DICOM to NIFTI 
format. Then, images are registered to a reference image set, either 
the patient’s own baseline or some template dataset (e.g., MNI152) 
using a 6 degrees of freedom linear transformation. Following align-
ment, images are skull stripped and bias field corrected for uniformity. 
Lastly, images are displayed as a mosaic and saved into PowerPoint or 
a PDF for viewing. This process is then repeated for each time point

1860 B. M. Ellingson et al.
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AUC​ = 0.9040 ± 0.0360; P < 0.0001). Together, these sug-
gest a strong link between a qualitative “expert” review 
using a modified Levin criteria and quantitative tumor vol-
ume measurements in anaplastic astrocytoma.

In addition to quantifying the relationship between 
qualitative “expert” review and quantitative tumor volume 
measurements, we recently compared the progression-free 
survival (PFS) estimated using the modified RANO criteria 
(mRANO) [15] with the PFS calculated using a modified 
Levin criterion, applied to both T2 hyperintense and con-
trast enhancing tumor in 12 recurrent glioblastoma patients 
treated with osimertinib (Fig. 5G–H; ClinicalTrials.gov 
#NCT03732352). By defining the date of progression as the 
time from start of treatment to a confirmed PD event (e.g., 
a total score of − 2 followed by confirmation), we identified 
no difference in PFS between the quantitative mRANO cri-
teria and the qualitative Levin criteria (Fig. 5G; Log-rank, 
P = 0.7602). Additionally, we found a strong correlation 

between PFS and OS for both the mRANO criteria (Fig. 5H; 
R2 = 0.4806, P = 0.0124) and the Levin criteria (R2 = 0.4521, 
P = 0.0234), and no difference between the two (P = 0.7959). 
Jointly, these data suggest that a qualitative, “expert” rating 
of the gestalt changes in brain tumor images can provide 
similar information to more detailed quantitative analysis.

In the case of mixed-grade or complex lesions, one 
might consider tracking both enhancing and non-enhancing 
tumor behaviors using similar criteria. Disease progression 
(PD) would then be determined by whether either enhanc-
ing or non-enhancing disease “definitely” progressed, 
possibly including confirmation, and response (PR) would 
require a “definite” response from both enhancing and non-
enhancing tumor components. In the case of multifocal dis-
ease, evaluation should consider the behavior of all lesions, 
holistically, as it is outlined in the mRANO criteria for 
measurable lesions [15]. While it may be technically possi-
ble to determine changes for more than one discrete lesion, 

Fig. 5   A Example T2-weighted FLAIR images showing modified 
Levin scores of “ − 1” and “ − 2,” corresponding to scans that are 
“possibly worse” and “definitely worse.” B Example modified Levin 
criteria for evaluating non-enhancing tumor in anaplastic astrocyto-
mas. C Correlation between percentage change in FLAIR volume 
and modified Levin score (Spearman, R =  − 0.5623, P < 0.0001). D 
Comparison between absolute change in FLAIR volume compared 

with modified Levin score. E Receiver operator curve (ROC) applied 
to FLAIR changes in order to detect progression. F ROC applied to 
FLAIR changes to detect response. G Kaplan–Meier curves compar-
ing progression free survival (PFS) between modified RANO (volu-
metric) and the modified Levin criteria (P = 0.7602). H  Correlation 
between overall survival and modified Levin- or mRANO-defined 
PFS

1861Radiographic Response Assessment Strategies for EarlyPhase Brain Trials in Complex Tumor…
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tracking changes over time becomes problematic due to 
complexity in determining how to manage the patient and 
trial when observing mixed responses—particularly when 
one lesion may be responding while the other growing. 
Additionally, quantifying response for individual lesions in 
multifocal disease becomes challenging when it is not clear 
whether a lesion is truly multifocal, as some multifocal 
enhancing lesions have contiguous T2 hyperintense regions 
connecting them, suggesting they are one (non-enhancing) 
tumor with two distinct foci of enhancement. Therefore, in 
practice, mixed responses should be gauged based on the 
gestalt. For example, if one lesion is larger and the other 
lesion is stable, then the gestalt would suggest that, overall, 
the tumor burden has increased, and, thus, the modified 
Levin score could be − 1 or − 2. If, on the other hand, one 
lesion has increased and another similarly sized lesion has 
decreased about the same degree, one might conclude that 
the overall tumor burden for the patient is unchanged, or 
a score of 0. While this approach is pragmatic and makes 
logistical sense from a clinical trial management perspec-
tive, it is important to note that tracking individual lesion 
responses may be beneficial for different circumstances, as 
the nature of the therapy might also impact the need to deal 
with the uncommon multifocal condition.

Control Systems Theory for Quantifying 
Drug Behavior in Glioblastoma

Extensive clinical studies have shown a clear association 
between tumor size [28–37], change in tumor size (or 
growth rate) [28, 38–40], and survival in glioblastoma. 
This evidence appears to suggest a more comprehensive 
modeling approach that takes both parameters into account 
may be valuable. A logical expansion of the proportional 
(change in tumor volume) and derivative (growth rate) 
parameters is an integral parameter that loosely can be 
thought of as a tumor control parameter. The comprehen-
sive risk associated with a given treatment can then be 
described as the linear combination of the proportional, 
integral, and derivative (PID) terms using a Cox propor-
tional hazards model as (Fig. 6A):

where h(t) is the risk or hazard as a function of time with 
base hazard h0, β1 is the coefficient for the risk associated 
with the integral or “tumor control” component, β2 is the 

Risk = h(t)

= h
0
⋅ exp
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coefficient for the risk associated with the proportional or 
“current tumor burden” component, β3 is the coefficient 
for the risk associated with the derivative or “growth rate” 
component, and V(t) is the tumor volume at time point t. 
One way to think of this is to compare measurements of 
these parameters before and after treatment. For example, 
the integral term would essentially compare the area under 
the volume vs. time curve (Fig. 6B). Conceptually, given the 
same time duration, if there is no change in growth rate, the 
areas under the curve should also be equivalent. However, 
if the tumor is stabilized for a period of time, no matter 
how convoluted the shape of the curve, this will manifest 
as a smaller area and thus a higher level of tumor control. 
Similarly, if the tumor shrinks, this will result in a negative 
area and similarly indicate a higher level of tumor control. 
Additionally, change in tumor size, as computed at the end 
of the treatment duration (V(tend)) minus the baseline time 
point (V(tbaseline)), can be used similarly to interpret treat-
ment effect, with smaller or negative differences indicating 
a stronger therapeutic effect (Fig. 6C). In the same fashion, 
changes in the linear growth rate over the treatment duration 
and a similar duration of time can be used to quantify the 
effects of new drugs, with smaller and more negative dif-
ferences suggestive of stronger therapeutic effect (Fig. 6D). 
Using all three PID parameters allows for better characteri-
zation of how a therapy influences tumor growth behavior, as 
a therapy may be cytotoxic/cytoreductive and affect the pro-
portional component, may stabilize, or control the tumor and 
influence the integral component, and/or it may slow down 
tumor growth rate and impact the derivative component of 
the model—all of which are meaningful for the survival of 
brain tumor patients.

The aforementioned PID components, and their math-
ematical definitions, can conveniently be described and 
characterized using linear control systems theory [41, 42]. 
Using this theory, the therapy or therapeutic regimen can be 
thought of as a “PID controller” [43–45] for the “disease” 
system (or “Plant”) (Fig. 7A), much like how a car’s speed 
controller is used to control the car (or Plant) by setting 
a certain target speed for the control system and the con-
troller then reacts to bring the plant to its desired veloc-
ity. The “set point” for the tumor volume (desired “speed”) 
might be naturally desired to be a value of zero, a complete 
response, making the current tumor volume the direct input 
to the “controller”, or therapeutic paradigm. Using historic 
volumetric data, the internal characteristics of this control-
ler then determines how this new measurement of tumor 
volume will influence the hazard or risk to the patient, h(t), 
using the characteristics described by the PID model. Given 
this risk, h(t), the characteristics of the patient’s tumor then 
dictate how this adjustment in risk is translated into some 
change in tumor volume for the next time point, which can 
be measured using MRI.
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It is intuitive to think of the treatment regimen for a brain 
tumor patient as some sort of control system for a runaway, 
uncontrollable vehicle that continues to accelerate. Beyond 
this convenient metaphor, the use of control systems theory 
in this context provides powerful insight into how to opti-
mize a therapeutic regimen in the context of drug devel-
opment or clinical management of brain tumors. Knowing 
something about the timing of the expected response, either 
from preclinical models, pharmacodynamics/pharmacoki-
netics, or the natural history of the disease, it may be pos-
sible to provide insight into how frequently to scan patients 
using principles outlined in discrete control system theory 
[46] (i.e., Nyquist criteria for stability [47] and non-periodic 
sampling schemes[48]). Given enough data, it may even be 
possible to perturb a system using different types of thera-
pies and characterize the “plant” or disease state for differ-
ent genetic subtypes of tumor, or even predict future tumor 
growth and treatment resistance [49].

To operationalize this concept, continuous control sys-
tems theory needs to be described in terms of discrete or 
digital systems theory [46], as the continuous volumes are 
only sampled at specific time points during clinical MRI 
visits (Fig. 7B). For non-measurable or complex lesions, 
the modified Levin scores can also be digitized and tracked 
over time, added up to create an estimate of tumor behav-
ior albeit with less granularity. There are two conceivable 
ways to utilize this concept for drug development or in a 

clinical trial, both of which require standardizing the pre-
treatment and post-treatment evaluation period for adequate 
comparison. The first approach includes the full feedback 
model as described mathematically in Fig. 6A and graphi-
cally on Fig. 7A in order to characterize the influence of 
PID parameters directly on the Cox hazard ratio. With this 
more comprehensive approach, it may be theoretically pos-
sible to interrogate, in real time, the impact of the different 
drugs with respect to administered dose and frequency of 
dosing, and then add combinations to quantify the impact 
on growth patterns. The second, more practical approach 
for early trials would include characterizing the change in 
PID variables before and after therapy, then comparing to 
an adequate control or reference arm. As an example, stand-
ardizing the evaluation period to a 6-month pre-treatment 
period and 6 months on study for recurrent glioblastoma 
may allow for a judicious comparison between PID param-
eters by quantifying tumor burden (proportional), growth 
rates (derivative), and “area under the volume vs. time 
curve” (integrative). While this approach does not directly 
link change in tumor behavior with outcome vis-à-vis the 
hazard ratio, it nonetheless can be used to characterize “sub-
clinical” therapeutic effects via PID parameters. To realize 
this, one can calculate the area under the volume vs. time 
curve before treatment “A” ( �A

1−PreTx
 ) and after treatment 

“A” ( �A
1−PostTx

 ) for a group of patients, then look at how 
therapy “A” has changed this parameter (Fig. 8A):

Fig. 6   A Cox proportional hazard model including proportional 
(change in tumor burden), integral (tumor control), and derivative 
(tumor growth rate) components of tumor volume changes. B The 
“integral” component, or “area under the volume vs. time curve,” 
allows for evaluation and comparison of complex tumor volume 
changes by looking at the area before and after treatment. C The 

“proportional” component, corresponding to changes in the abso-
lute volume, compares tumor volume between the current time point 
and the baseline. D The “derivative” component, reflecting the linear 
growth rate changes before and after treatment, can be used to deter-
mine whether tumor growth rates are altered as a result of treatment
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This can similarly be applied to change in tumor burden 
at baseline and after the treatment period:

and changes in tumor growth rate over the same interval:

Δ�A
1
= (�A

1−PostTx
− �A

1−PreTx
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
t=+6mo

∫
t=0

V(t�) − V(0)dt� −

PreTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
t=0

∫
t=−6mo(historic)

V(t�) − V(t
historic

)dt�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Δ�A
2
= (�A

2−PostTx
− �A

2−PreTx
)

=

⎛⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞

V(t = 6mo) −

PreTx

⏞⏞⏞⏞⏞

V(t = 0)

⎞⎟⎟⎟⎠

Here, Δ�A
n
 is the change in the parameter n before and 

after treatment A. Note that the pre- and post-treatment 
evaluation period could be shorter or longer depending 
on the characteristics of the tumor (i.e., slower or faster 
growing tumor may require more sparse or frequent evalu-
ation periods).

Statistically, the distribution of these parameters across 
all patients in a treatment arm can be compared to a theoreti-
cal value or values from a control group, with the hypothesis 
that the experimental treatment PID parameters are lower 
than the expected control value, or Δ𝜆A

n
< Δ𝜆Control

n
 (i.e., if 

Δ�A
3
=
�
�A
3−PostTx

− �A
3−PreTx

�

=

⎛⎜⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
d

dt
V(t)�t=+6mo

t=0
−

PreTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
d

dt
V(t)�t=0

t=−6mo

⎞⎟⎟⎟⎟⎠

Fig. 7   A Linear control systems theory applied to treatment response 
modeling. The “controller,” or therapy, is used to regulate or alter the 
“plant,” or disease system. The volume measured by MRI is used as 
the input to the “PID Controller” or model. The output of the con-
troller is the hazard ratio, or influence of the therapy on the disease. 
Given the relative risk resulting from the treatment, the disease sys-
tem then determines the tumor volume at the next time point. Note 
that if no treatment is applied, the plant or disease is uncontrolled and 
the tumor volume vs. time is dictated purely from the disease system. 

In order to model continuous tumor growth behavior, V(t), it must 
first be described in terms of discrete or sampled data as measured 
by MRI estimates of V(t). This sampling, however, is often aperiodic 
(e.g., between 1 and 3 months for glioblastoma) depending on if the 
patient is exhibiting rapid changes that require more frequent obser-
vation. Like quantitative measurements of tumor volume, qualitative 
modified Levin scores can be used over time as an estimate of tumor 
growth behavior Ṽ(t) (red) and used in the same types of control sys-
tem models
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the treatment is working, the area, volume, and growth rate 
should be lower in the post-treatment setting compared to the 
pre-treatment setting). Combination therapies can be treated 
the same way (Fig. 8B), with parameters can be recalculated 
for each patient in this new arm using the same pre- and 
post-treatment duration, resulting in Δ�A+B

1
,Δ�A+B

2
,Δ�A+B

3
 

for the combination setting. The distribution of these param-
eters can then be used to determine the probability of a lower 
parameter value (better response) compared with the single 
agent setting (Fig. 8C), or p(Δ𝜆A+B

n
< Δ𝜆A

n
) . This approach 

can easily be used to determine whether combinations are 
affecting growth patterns and whether these alterations are 
synergistic. Additionally, this approach addresses some of 
the fundamental issues surrounding the use of combination 
therapies in brain tumors including inefficiencies, expenses, 
and the long trial durations necessary to test sequential com-
binations through the identification of potential subclinical 
effects independent on their impact on survival.

It is important to note that with more complex modeling, 
the variance from individual parameters and measurements 
can be amplified when calculating the overall risk. Assum-
ing that the errors in volume or size measurement are ran-
dom and normally distributed, difference calculations will 
result in twice the variance of the original measurements. 
Similarly, the variance in the difference parameters used to 
estimate treatment effect before and after treatment, Δ�A

n
 , 

will also exhibit approximately double the variability of the 
parameter in either the pre-treatment or post-treatment set-
ting. For growth rate estimation, a linear slope estimator 
can be used to generalize the growth rate over the entire 
evaluation period, generally reducing the variability, while 
numerical integration approaches including the trapezoidal 
[50], midpoint [50], or Simpson’s rules [51] can help reduce 
the amplified variability in the integral terms from the differ-
ence calculations for both tumor size and time differences.

To demonstrate the operation of this approach and 
put this mental exercise into practice, 80 relatively slow-
growing tumors with baseline tumor size of 10 mL were 
simulated 6 months prior to treatment, growing at a rate 
of 1 mL every 3 months (0.33 mL/month). Perturbations 
in tumor volume were simulated using a normal distribu-
tion with variability of 0.25 mL (~ 250 voxels), leading 
to an approximate pre-treatment baseline tumor volume 
of 12 mL ± 0.5 (S.D.). The scan date was simulated every 
3 months ± 2 weeks (S.D.) to mimic the clinical variability 
often seen with regard to the date of the MRI exam. We 
then assumed a 1:1 randomization between a treatment 
with no effect (N = 40), so the tumor grew at the same rate 
after treatment (Fig. 9A), and a treatment that stabilized or 
flattened the growth rate (Fig. 9D, N = 40). In the simulated 
control arm (Fig. 9B), the linear growth rate estimated over 
the 6 months prior to treatment was 0.338 ± 0.130(S.D.) 

Fig. 8   A The effects of a single drug “A” can be modeled as a single 
system block element with a known transfer function RA(s) by quanti-
fying the change in the area under the volume vs. time curve, 

Δ�A
1
= (�A

1−PostTx
− �A

1−PreTx
) =

⎛⎜⎜⎜⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
t=+6mo

∫
t=0

V(t�) − V(0)dt� −

PreTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
t=0

∫
t=−6mo(historic)

V(t�) − V(t
historic

)dt�

⎞⎟⎟⎟⎟⎟⎟⎠

 , 

the difference in volume, Δ�A
2
= (�A

2−PostTx
− �A

2−PreTx
) =

⎛
⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞

V(t = 6mo) −

PreTx

⏞⏞⏞⏞⏞

V(t = 0)

⎞⎟⎟⎟⎠
 , and the change in linear growth rate, Δ�A

3
= (�A

3−PostTx
− �A

3−PreTx
) = 

⎛⎜⎜⎜⎜⎝

PostTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
d

dt
V(t)�t=+6mo

t=0
−

PreTx

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
d
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V(t)�t=0

t=−6mo

⎞⎟⎟⎟⎟⎠

 . (Note that in this example, the dura-

tion of evaluation is 6 months prior to treatment and 6 months after 
start of treatment.) B In combination therapies, a similar approach 
can be taken where each parameter is quantified Δ�A+B

n
=(

�A+B
n−PostTx

− �A+B
n−PreTx

)
 for each patient. C Since each PID parameter is 

calculated for each individual patient, the distributions of these 
parameters can be statistically compared between treatment condi-
tions, including individual treatments, “A” or “B,” and combinations 
A + B (red) with respect to historic or prospective control group 
receiving standard therapies
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mL/month, and after the ineffective therapy, the growth 
rate averaged 0.317 ± 0.129(S.D.) mL/month, with a differ-
ence in growth rates of − 0.021 ± 0.227 (S.D.) mL/month 
not significantly different from zero (P = 0.5573) (note that 
the standard deviation was almost twice in the difference 
measure). Similarly, the integral of the volume vs. time 
curve (Fig. 9C), or tumor control, averaged 5.466 ± 2.512 
(s.d) and 6.080 ± 2.975 (s.d) mL/month, respectively, and 
the difference in tumor control for this ineffective treat-
ment was 0.615 ± 3.96 (s.d) mL/months (P = 0.3322). By 
simulating a cytostatic treatment that stabilizes or slows 
down tumor growth using the same noise parameters 
(Fig. 9E), we can see that the tumor growth rate after treat-
ment averaged − 0.006 ± 0.098 (S.D.) mL/month, resulting 
in a growth rate of − 0.366 ± 0.191 (S.D.) mL/month, sig-
nificantly lower than zero (P < 0.0001). Similarly, tumor 
control rates showed a significant decrease after treatment 
(Fig. 9F), averaging − 0.286 ± 2.778 (S.D.) mL/months, 
resulting in a change in tumor control of − 5.983 ± 4.068 
(S.D.) mL/months (P < 0.0001). Together, these simulated 
data demonstrate how the aforementioned concepts can be 

operationalized to identify and evaluate ineffective and 
effective treatments for brain tumors.

Although specific strategies surrounding optimization 
of combination therapies are beyond the scope of this 
current manuscript, it is worth mentioning that the most 
common approach glioma therapies over the past dec-
ades has been to combine a new agent with an alkylating 
agent, either temozolomide or lomustine, solely because 
they have been considered standards for care of recur-
rent and or progressive gliomas over the past decades. 
Another approach, especially relevant to cell signaling 
inhibitors, would be to combine two drugs that might 
have complementary antitumor activity based on pre-
clinical science. It would also be equally logical to try 
and interfere with a signaling pathway in two locations as 
opposed to seeking to inhibit a secondary pathway. Both 
approaches have merit, and both would benefit from a 
new and better-informed approach to evaluate whether 
the new combination is “effective.” In our present regula-
tory world “effective” means, at the very least the ability 
of the therapy to prevent tumor growth and, at its apogee, 

Fig. 9   Simulated clinical trial data showing use of growth rates and 
tumor control estimations. A total of N = 80 slow-growing gliomas 
with baseline tumor size of 10  mL ± 0.5 (S.D.), 6  months prior to 
treatment, growing at a rate of 1 mL every 3 months were simulated. 
Perturbations in tumor volume were simulated using a normal distri-
bution with variability of 0.25 mL (~ 250 voxels). The baseline tumor 
volume just prior to treatment was 12 mL ± 0.5 (S.D.) for all patients. 
The scan date was also simulated every 3 months ± 2 weeks(S.D.) to 
mimic the clinical variability often seen with regard to the date of the 
MRI exam. A Volumetric growth rate simulations in patients rand-

omized to the control arm with no change in growth rate. B Tumor 
growth rates estimated through linear regression across the pre-
treatment and post-treatment time points, as well as the difference in 
growth rates. C Tumor control measurements before and after treat-
ment in the control arm showing no difference in area under the vol-
ume vs. time curves. D Volumetric growth rate simulations in patients 
randomized to a cytostatic agent that slows or stabilizes the growth of 
the tumors. E Tumor growth rates and F tumor control measurements 
in the cytostatic treatment arm showing quantifiable reductions even 
in the presence of noise
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increased survival. While we cannot argue about this 
approach, we can argue from decades of experience that it 
is an inefficient, long-duration, and expensive approach. 
Furthermore, learning from the failed experimental trial 
may be limited. A better approach might be to design an 
experiment where one interrogates the impact of the first 
drug with respect to administered dose and frequency of 
dosing on tumor growth dynamics, and then the second 
drug is added to quantify the combination benefits and 
resulting alterations in growth trajectory. Although the 
details of such an approach remain to be determined, it 
is conceivable that the framework outlined above, evalu-
ated over intervals of weeks to a couple of months, can 
aid and guide this quest. Importantly, a good understand-
ing of the experimental drugs are required, since there 
needs to be a balance between acquiring enough data to 
make an informed decision about a treatment and limiting 
potential harm from keeping a patient on an ineffective 
therapy.

Conclusion

There is an urgent need for drug development in brain 
tumors. Current approaches for radiographic response 
assessment are limited, particularly for complex or difficult 
to measure tumors, mixed grades, or if therapeutic effects 
are subtle. We propose a tiered strategy that increases confi-
dence in identifying therapeutic effects, while also providing 
some creative ideas for how to overcome many of the limita-
tions associated with challenging tumor types or scenarios. 
To be truly valuable in drug development, this approach to 
radiographic drug assessment must be coupled to a good 
understanding of the mechanisms of action of novel drugs 
being investigated with this methodology.
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