
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Multi-Version Search and Cache-Conscious Ranking Optimization

Permalink
https://escholarship.org/uc/item/6c9477tt

Author
Jin, Xin

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c9477tt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Santa Barbara

Multi-Version Search and Cache-Conscious
Ranking Optimization

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Xin Jin

Committee in Charge:

Professor Tao Yang, Chair

Professor Jianwen Su

Professor Xifeng Yan

September 2017



The Dissertation of
Xin Jin is approved:

Professor Jianwen Su

Professor Xifeng Yan

Professor Tao Yang, Committee Chairperson

March 2017



Multi-Version Search and Cache-Conscious Ranking Optimization

Copyright c© 2017

by

Xin Jin

iii



To my grandparents, parents and my wife.

iv



Acknowledgements

First of all, I would like to express my most sincere thanks to my Ph.D. advisor,
Prof. Tao Yang, for his continuous guidence, support and endless help during my
Ph.D. study. I am amazingly lucky to have an advisor who is so great! He is
always there to provide insights and help both in research and in my daily life.
In the past five years, Tao has taught me how to conduct good research with
his patience, enthusiasm and immense knowledge. Specifically, he gives me so
much freedom in pursuing my personal interest in research fields, which makes me
enjoying my projects so much. Also, Prof. Tao Yang has lots of fruitful experience
in both academia and industry. Guided by him as my advisor, I believe the things
I learned during my Ph.D. study will benefit a lot for my entire life. His continous
guidence, care and support is so essential to help me complete my Ph.D.

Secondly, I want to give my sincere thanks to my Ph.D. committee members
Prof. Jianwen Su and Prof. Xifeng Yan for their continuous guidence throughout
my Ph.D. Jianwen and Xifeng have been my committee members for the MAE
(Major Area Exam), proposal and defense. They have given me a lot of valuable
feedback and insightful suggestions on my work. I am deeply grateful to them.

I benefitted a lot from the three internships at different companies. I worked
with Dr. Wei Wang and Dr. Gang Zhao at Electronic Arts on a user-player
relationship system optimization project, collaborated with Dr. Yun Xiao and
Dr. Xingjian Zhang at Yahoo! search team on a second-phase ranking project,
and worked with Dr. Srinath Rao and Kelvin Lim at Google Express search
team on a merchant query redirection project and a search results deduplication
project. I feel so lucky to have a chance to work with so many talented engineers
and researchers and l really learned a lot from them.

My sincere thanks also go to all members in our great laboratory. I was having
a wonderful time with you all, and greatly appreciate the collaboration with Xun
Tang, Michael Daniel Agun, Qinghao Wu, Yifan Shen, Susen Zhao, Jiyu Chen,
Nimisha Srinivasa and Lin Chai. Thanks for our discussion and debates on the
projects, where a lot of new ideas coming up and problems solved. I am also
grateful to other previous and current labmates and my friends at UCSB: Wei
Wang, Maha Alabduljalil, Jinjin Shao, Kun Wan, Olaoluwa Osuntokun, Fangqiu
Han, Yang Li, Huan Sun, Nan Li, Shengqi Yang, Shenghao Li and Jing Hao.
Thanks for your encouragement and sharing along the way, which fullfills my
memories during my Ph.D. study.

I also want to express my great thanks to all my colloborators. It is so good to
be able to work with all these outstanding researchers in the world. I would like to
thank Prof. Stefano Tessaro for your great suggestion and discussion, Dr. Claudio

v



Lucchese for your comments and data/codebase sharing, and also colloborators
at my undergraduate study: Prof. Bin Cui, Dr. Junjie Yao and Yuxin Huang.

I own my deepest thanks to my families and closest friends. Thanks for my
dear grandparents Qingxian Ma and Tianen Chen, you have taught me how to
be a great person and how to love. Thanks for my dear parents Yi Chen and
Jimin Jin for your endless support, encouragement and care. Thanks for your
unconditional love in my life. And Qingyun, my dear wife, you are always there
listening to me, caring me and sharing happiness and sadness with me. It is so
great to have your support by my side all the time. Finally, I want to thank my
closest friends. Thanks for accompanying me along the journey and provide helps
whenever it is and wherever we are. Thank you all, for letting me feel that I am
the luckist person in the world.

This dissertation study was supported in part by NSF IIS-1528041 and IIS-
1118106. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

To all of them I dedicate this dissertation.

vi



Curriculum Vitæ

Xin Jin

Education

2011-2017 Ph.D. in Computer Science (Expected), University of
California, Santa Barbara.

2010-2011 One year of graduate study at School of Computing, National
University of Singapore, Singapore.

2006-2010 B.S. in Computer Science, Peking University, Beijing.

Field of Study

Major Field Computer Science with Professor Tao Yang.

Professional Experience

09/2011-03/2017 Research Assistant, University of California, Santa Barbara.

06/2016-09/2016 Software Intern, Google, Mountain View, CA.

06/2015-09/2015 Software Intern, Yahoo!, Sunnyvale, CA.

06/2014-09/2014 Software Intern, Electronic Arts, Redwood City, CA.

Publications

Xin Jin, Tao Yang, and Xun Tang, Comparison of Cache Blocking Methods for
Fast Execution of Ensemble-based Score Computation, in Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR 2016).

Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, and Susen Zhao,
Hybrid Indexing for Versioned Document Search with Cluster-based Retrieval,
in Proceedings of the 25th ACM International Conference on Information and
Knowledge Management (CIKM 2016).

Xun Tang, Maha Alabduljalil, Xin Jin, and Tao Yang, Partitioned Similarity
Search with Cache-Conscious Data Traversal, in journal of ACM Transactions on
Knowledge Discovery from Data (TKDD 2015).

Xun Tang, Xin Jin (equal contribution with the first author), and Tao
Yang, Cache-Conscious Runtime Optimization for Ranking Ensembles, in Pro-
ceedings of the 37th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2014).

vii



Maha Alabduljalil, Xun Tang, Xin Jin, and Tao Yang, Load Balancing for
Partitioned-based Similarity Search, in Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2014).

Junjie Yao, Bin Cui, Yuxin Huang, and Xin Jin, Temporal and Social Context
based Burst Detection from Folksonomies, in Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2010).

Daniel Agun, Xin Jin, Jinjin Shao, and Tao Yang, Efficient Privacy-Preservation
Top K Search with Multi-Keyword Ranking, to be submitted for publication.

Xin Jin, Lin Chai, and Tao Yang, Cache-Conscious Ranking Optimization with
Fast Parameter Selection for Ensemble-based Score Computation, to be submitted
for publication.

viii



Abstract

Multi-Version Search and Cache-Conscious Ranking

Optimization

Xin Jin

Organizations and companies archive many versions of digital data such as web

pages, internal emails and so on. Such data is critical for internal investigation,

regulatory compliance, and electronic discovery. It is estimated that electronic

discovery market that leverages archival data will reach $9.9 billions globally in

2017. It is not uncommon for many businesses to retain archived collections for

10 to 15 years. How to archive these versioned data is worth to study and we are

facing many challenges including 1) traditional index occupies too much space for

versioned data, 2) traditional search is too slow on versioned data, and 3) how to

guarantee high accuracy when improving efficiency in new architecture.

In this dissertation, we take the opportunity of the fast developement of infor-

mation retrieval and tackle the problem by proposing a new multi-version search

architecture with cache-conscious ranking optimization framework. Specifically,

we will first discuss our new versioned search architecture. Then, we will talk

about a cache-conscious online ranking algorithm to improve the online part. Fi-

nally, we will describe a framework to select best blocking methods and parameters

for our algorithm to achieve best performance.

ix



Firstly, we present our new multi-version search architecture. We propose

an approach that uses cluster-based retrieval to quickly narrow the search scope

guided by version representatives at Phase 1 and develops a hybrid index structure

with adaptive runtime data traversal to speed up Phase 2 search. The hybrid

scheme exploits the advantages of forward index and inverted index based on

the term characteristics to minimize the time in extracting positional and other

feature information during runtime search. We compare several indexing and data

traversal options with different time and space tradeoffs and describe evaluation

results to demonstrate their effectiveness. The experiment results show that the

proposed scheme can be up-to about 4x as fast as the previous work on solid state

drives while retaining good relevance.

Secondly, we talk about our 2D blocking algorithm to optimize the online

ranking part of the system. Multi-tree ensemble models have been proven to

be effective for document ranking. Using a large number of trees can improve

accuracy, but it takes time to calculate ranking scores of matched documents. We

investigate data traversal methods for fast score calculation with a large ensemble

and propose a 2D blocking scheme for better cache utilization with simpler code

structure compared to previous work. The experiments with several benchmarks

show significant acceleration in score calculation without loss of ranking accuracy.

x



Lastly, we describe a framework to fast select best blocking methods and pa-

rameters for our 2D blocking algorithm with the help of a full cache analysis.

2D blocking method is very helpful to improve online search efficiency. However,

different traversal methods and blocking parameter settings can exhibit different

cache and cost behavior depending on data and architectural characteristics. It

is very time-consuming to conduct exhaustive search for performance comparison

and optimum selection. We provide an analytic comparison of cache blocking

methods on their data access performance for an approximation and propose a

fast guided sampling scheme to select a traversal method and blocking parameters

for effective use of memory hierarchy. The evaluation studies with three datasets

show that within a reasonable amount of time, the proposed scheme can identify

a highly competitive solution that significantly accelerates score calculation.

In summary, we have proposed a new multi-version search architecture with

cache-conscious ranking optimization for the online search part and a framework

to help fast select best blocking methods and parameters with full cache analysis

for the 2D blocking method. By proposing this new versioned search system,

we can meet challenges from scalability, efficiency and accuracy in multi-version

search, and we believe this work would be useful to future researchers in this

direction.

xi



Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Multi-version Search System . . . . . . . . . . . . . . . . . . . . . 5
1.3 Cache-Conscious Runtime Optimization for Ranking Ensembles . 6
1.4 A Comparison of Cache Blocking Methods . . . . . . . . . . . . . 8
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Multi-version Search System 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Multiversion Data Index . . . . . . . . . . . . . . . . . . . 17
2.2.2 Traditional Search . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Multiversion Data Search . . . . . . . . . . . . . . . . . . 22
2.2.4 Documents Clustering . . . . . . . . . . . . . . . . . . . . 26

2.3 Cluster-based Retrieval with
Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Cluster Representatives . . . . . . . . . . . . . . . . . . . . 32

2.4 Hybrid per-cluster Indexing and Traversal . . . . . . . . . . . . . 35
2.4.1 Indexing and Search Options for Phase 2 . . . . . . . . . . 36
2.4.2 Term-version Posting Intersection . . . . . . . . . . . . . . 43
2.4.3 Index Storage Layout and Cost . . . . . . . . . . . . . . . 45

2.5 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



2.5.1 Datasets and Experiment Settings . . . . . . . . . . . . . . 51
2.5.2 A Comparison on Overall Search Time . . . . . . . . . . . 56
2.5.3 A Comparison of Phase 2 Indexing and Traversal Options 62
2.5.4 A Comparison on Relevance Scores . . . . . . . . . . . . . 66

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Cache-Conscious Runtime Optimization for Ranking Ensembles 72
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Learning to Efficiently Rank . . . . . . . . . . . . . . . . . 76
3.2.2 Traversal Patterns . . . . . . . . . . . . . . . . . . . . . . 78
3.2.3 Search Engine Caching Techniques . . . . . . . . . . . . . 81

3.3 2D Block Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Datasets and Experiment Settings . . . . . . . . . . . . . . 89
3.4.2 A Comparison of Scoring Time . . . . . . . . . . . . . . . 90
3.4.3 Cache Behavior . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.4 Branch Mis-prediction . . . . . . . . . . . . . . . . . . . . 96

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 A Comparison of Cache Blocking Methods 98
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . 101
4.3 Design Consideration and Cost Model . . . . . . . . . . . . . . . . 104
4.4 Cost Analysis and Comparison . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Time Cost for DSD . . . . . . . . . . . . . . . . . . . . . . 109
4.4.2 Time Cost for SDS . . . . . . . . . . . . . . . . . . . . . . 116
4.4.3 Time Cost for DSDS . . . . . . . . . . . . . . . . . . . . . 120
4.4.4 Time Cost for SDSD . . . . . . . . . . . . . . . . . . . . . 130
4.4.5 Cost Comparison of the Four Methods . . . . . . . . . . . 139
4.4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.4.7 Proof for Proposition 1 . . . . . . . . . . . . . . . . . . . . 143

4.5 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.5.2 A Comparison of Cache Blocking Methods . . . . . . . . . 148
4.5.3 Selective Cache Blocking for QuickScorer . . . . . . . . . . 156
4.5.4 Batched Query Processing . . . . . . . . . . . . . . . . . . 158

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xiii



5 Conclusion 160
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.3.1 Multi-Version Search Extension . . . . . . . . . . . . . . . 168
5.3.2 Cache-Conscious Method on Other Models . . . . . . . . . 169
5.3.3 Secure Versioned Search . . . . . . . . . . . . . . . . . . . 170

Bibliography 172

xiv



List of Figures

2.1 The ratio of the total number of fragments over the unique frag-
ments in a GitHub dataset . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 (a) Term-fragment inverted index. (b) Fragment-version reuse ta-
ble that lists versions sharing each fragment. . . . . . . . . . . . . . . . 24
2.3 Representative-guided search workflow for query processing . . . . 30
2.4 An example of data traversal in Option C that selects the Option
A or Option B approach for each query word at each cluster. . . . . . . 39
2.5 Percentage of queries for different query length . . . . . . . . . . . 55
2.6 Query processing time of different search methods when the index
is on SSD or HDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Query processing time of different search methods when the index
is on SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.8 Query processing time of different search methods when the index
is on HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Impact of representative selection on vNDCG1@10 relevance scores 68

3.1 Data access order in DOT (a) and SOT (b). . . . . . . . . . . . . 80
3.2 Data access order in the SDSD blocking scheme. . . . . . . . . . 84
3.3 Scoring time per document per tree in nanoseconds when varyingm
(a) and n (b) for five algorithms, and varying s and d for 2D blocking (c).
Benchmark used is Yahoo! dataset with a 150-leaf multi-tree ensemble. 91
3.4 L3 miss ratio when varying n (a), varying m (b) for four algorithms,
and when varying s and d for 2D blocking (c). . . . . . . . . . . . . . 94

4.1 Data traversal order of cache blocking methods during execution . 105
4.2 Data access flow of CPU with memory hierarchy. . . . . . . . . . 107
4.3 Performance under different values of d. . . . . . . . . . . . . . . 110
4.4 Range cases of d considered under different scenarios for DSD. . . 112

xv



4.5 Time cost and cache miss of DSD as d varies. . . . . . . . . . . . 150
4.6 Scoring time per vector per tree when m changes. . . . . . . . . . 153
4.7 Scoring time per vector per tree when n changes. . . . . . . . . . 154
4.8 Scoring time of a vector per tree when varying the number of
BWQS scorers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xvi



List of Tables

2.1 Data structure choices for three options. . . . . . . . . . . . . . . 49
2.2 Query processing time in milliseconds when the search index is
preloaded to memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3 Query processing time in milliseconds including the index load cost
from an SSD or HDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Cost distribution of RTP at Phase 2 . . . . . . . . . . . . . . . . 62
2.5 In-memory search time with different options for Phase 2. . . . . . 62
2.6 Phase 2 index size of different options . . . . . . . . . . . . . . . . 64
2.7 Phase 2 index size of different structures . . . . . . . . . . . . . . 64
2.8 Relevance scores of RTP compared with the other methods in terms
of vNDCG@10 for different k values and K=k*V . . . . . . . . . . . . 67
2.9 Word coverage of the four representative selection methods . . . . 69

3.1 Cases of cache miss ratios for area S and D when fit different levels
of cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Scoring time per document per tree in nanoseconds for five algo-
rithms. Last column shows the average scoring latency per query in
seconds under the fastest algorithm marked in gray. . . . . . . . . . . 92

4.1 Cost of DSD when 1 scorer fits in L1. . . . . . . . . . . . . . . . . 115
4.2 Cost of SDS when 1 feature vector can fit in L1. . . . . . . . . . . 120
4.3 Cost of DSDS when 1 feature vector fits in L1. . . . . . . . . . . . 129
4.4 Cost of SDSD when 1 score fits in L1. . . . . . . . . . . . . . . . . 138
4.5 The vector counts for fitting in differnt cache levels. . . . . . . . . 146
4.6 The tree counts for fitting different cache levels. . . . . . . . . . . 147
4.7 Scoring time of one vector per tree in nanoseconds for different
cache blocking range cases. . . . . . . . . . . . . . . . . . . . . . . . . 151
4.8 CPU hours for comparison, sampling errors, and best cases. . . . 153

xvii



4.9 Use of the comparison and selection scheme with BWQS scorers
and with the original regression tree scorers. . . . . . . . . . . . . . . . 154
4.10 Throughput under different batch size when n = 10. . . . . . . . . 158

xviii



Chapter 1

Introduction

Organizations and companies archive many versions of digital data such as web

pages, internal emails, source code, test data, and multimedia documents. Such

data is critical for internal investigation, regulatory compliance, and electronic

discovery [40]. For example, it is estimated that electronic discovery market that

leverages archival data will reach $9.9 billions globally in 2017 [90].

It is not uncommon for many businesses to retain archived collections for 10

to 15 years and in some industries the retention periods may be as long as 100

years or more [42]. A long period of data retention implies many versions may

have to be maintained. The size growth of an archival dataset also becomes rapid

with advancements in cloud computing, content authoring, media sharing, and

low-cost computer devices. Organizations also frequently backup their data. One

1



Chapter 1. Introduction

of the largest archival databases is Internet Archive [64] which has collected and

preserved more than 376 billion web pages in the last decade with tens of petabytes

of data.

Can backup files be used as an archive - all the information is in there, isn’t

it? It is; however there is a big difference between backup and archiving [63].

Backups are designed for recovery while archives require a sophisticated support

for information retention, discovery and search. Discovery requirements grow

every year, and backups simply cannot meet them. Archives are critical for some

unanticipated legal or regulatory event and help discover details of information.

Recently several companies have been developing an integrated backup and

archiving solution. For example, EMC data domain [41], NetApp [82], HP [61]

and IBM SmartCloud Archive [94] are developed to consolidate backup, archive,

and disaster recovery with high-speed, inline deduplication. However, still efficient

support for complex search and analysis on archival data is not extensively studied

and there are limited progress in this field.

To meet the above challenge, we present a representative cluster-based two-

phase framework as the new versioned search architecture. Also, among the dif-

ferent pieces of a search architecture, one of the most important components that

we take into attention is the online ranking part. Ranking is the key component

2



Chapter 1. Introduction

because it is the core of online service and online service is the one that faces users

directly.

Ensemble-based machine learning techniques have been proven to be effec-

tive for dealing data-intensive applications with complex features and document

ranking is a representative application benefiting from use of the large number of

ensembles. For example, in the Yahoo! learning-to-rank challenge [33], all winners

have used some forms of gradient boosted regression trees, e.g. [48]. The total

number of trees reported for ranking can be upto 3,000 to 20,000 [52, 24, 53], or

even 300,000 or more using bagging method [87]. Ranking for large ensembles is

expensive. As reported in [99], it takes more than 6 seconds to rank the top-2000

results for a query processing a 8,051-tree ensemble and 519 features per docu-

ment on an AMD 3.1 GHz core. If such an algorithm is used to compute scores

for a large number of vectors in applications such as classification, the total job

is also very time consuming. It takes even more time for a larger ensemble or

for more candidate documents. The ranking process can be parallelized and the

time can be reduced. However, it does not help for improving query throughput

because less queries are processed in parallel. To tackle this problem, we pro-

pose a cache-conscious ranking framework to improve query throughput without

affecting ranking accuracy.

3



Chapter 1. Introduction

1.1 Dissertation Overview

My research work aims to address the above challenges in multi-version search

and cache-conscious ranking optimization, and the statement of the dissertation

is as follows:

By proposing a versioned data search framework combined with

cache-conscious ensemble ranking, we can build new systems to meet

challenges from scalability, efficiency and accuracy.

Driven by the statement, the following are the three goals of this dissertation.

Firstly, we take an overall look at the whole multi-version search problem, and pro-

pose a solution to versioned search using a hybrid indexing representative-guided

two phase architecture. Then, we look into the ranking component of the online

part of the search architecture by proposing a cache-conscious 2D method, which

can improve ranking speed significantly comparing the state-of-the-art baseline

method. Finally, since parameter setting in our 2D algorithm is huge important

but it takes too much time using a brute force method, to guide our parameter

setting, we propose a cache-analysis framework to help sample and select the best

parameters efficiently. In the following, we briefly introduce the work included in

this dissertation.

4



Chapter 1. Introduction

1.2 Multi-version Search System

The previous work on versioned data has studied the compression algorithms

to identify shared data fragments among different versions [118]. Even though

the index space for a versioned data collection can be compressed dramatically

through fragmentation and deduplication, it is still time consuming to search

the full index structure because a search procedure still has to deal with a large

number of documents with many versions. A two-phase approach [56, 89] has been

proposed to find top results first using a non-positional index and then rerank the

selected top results with a positional index. Still there is a large number of versions

to go through in Phase 1 even without a positional index.

This work is focused on processing conjunctive keyword queries on versioned

datasets and our key idea is to extend the concept of cluster-based retrieval [4,

73, 75, 106] for representative-guided two-phase search and develop a per-cluster

hybrid index to localize data access at Phase 2. Using representatives of docu-

ment versions with full positional information reduces the number of top clusters

needed to retain a good relevancy. The tradeoff is that Phase 2 requires mem-

ory caching of index or the use of solid state drives (SSD). To speedup Phase 2

search, we develop hybrid per-cluster indexing with adaptive traversal of forward

and inverted structure. Our evaluation shows that the proposed scheme is up-to

5



Chapter 1. Introduction

about 4x as fast as the two-phase approach [56] when the search index is available

from memory or from an SSD.

1.3 Cache-Conscious Runtime Optimization for

Ranking Ensembles

Computing scores from a large number of trees is time-consuming. Access

of irregular document attributes along with dynamic tree branching impairs the

effectiveness of CPU cache and instruction branch prediction. Compiler optimiza-

tion [13] cannot handle complex code such as rank scoring very well. For example,

processing a 8,051-tree ensemble can take up to 3.04 milliseconds for a document

with 519 features on an AMD 3.1 GHz core. Thus the scoring time per query

exceeds 6 seconds to rank the top-2,000 results. It takes more time proportionally

to score more documents with larger trees or more trees and this is too slow for in-

teractive query performance. Multi-tree calculation can be parallelized; however,

query processing throughput is not increased because less queries are handled in

parallel.

Tradeoff between ranking accuracy and performance can be played by us-

ing earlier exit based on document-ordered traversal (DOT) or scorer-ordered

traversal (SOT) [26], and by tree trimming [11]. The work in [12] proposes an

6



Chapter 1. Introduction

architecture-conscious solution called VPred that converts control dependence of

code to data dependence and employs loop unrolling with vectorization to reduce

instruction branch mis-prediction and mask slow memory access latency. The

weakness is that cache capacity is not fully exploited and maintaining the lengthy

unrolled code is not convenient.

Unorchestrated slow memory access incurs significant costs since memory ac-

cess latency can be up to 200 times slower than L1 cache latency. How can fast

multi-tree ensemble ranking with simple code structure be accomplished via mem-

ory hierarchy optimization, without compromising ranking accuracy? This is the

focus of this work.

We propose a cache-conscious 2D blocking method to optimize data traversal

for better temporal cache locality. Our experiments show that 2D blocking can be

up to 620% faster than DOT, up to 245% faster than SOT, and up to 50% faster

than VPred. After applying 2D blocking on top of VPred which shows advantage

in reducing branch mis-prediction, the combined solution Block-VPred could be

up to 100% faster than VPred. The proposed techniques are complementary

to previous work and can be integrated with the tree trimming and early-exit

approximation methods.

7



Chapter 1. Introduction

1.4 A Comparison of Cache Blocking Methods

The previous work addressed the speedup of runtime execution for ensemble-

based ranking in several aspects including tree trimming [11] for a tradeoff of

ranking accuracy and performance, earlier exit [27], and loop unrolling [12], and

ensemble restructuring for a tree-based model [76]. Memory access can be 100x

slower than L1 cache and un-orchestrated slow memory access incurs significant

cost, dominating the entire computation. The work shown in [99, 76] proposes

a cache-conscious blocking method for better cache locality. However, there are

other block methods to select and it is an open problem how to identify the best

cache blocking method and parameter settings given different data and architec-

ture characteristics.

Experimentally determining this choice can be extremely time-consuming and

the comparative result may not be valid any more with a change of underlying

feature vector structure or architecture. This work provides an analysis of multi-

ple blocking methods with different data traversal orders, which provides better

insight on program execution performance and leads a fast approximation to select

the optimized structure.

Here, we consider the fast computation of ensemble-based scoring that ag-

gregates and derives final scores for n feature vectors using m ensembles. For

testing and comparing performance in ranking q sampled queries, the time cost

8



Chapter 1. Introduction

for searching through all combinations can be as high as O(m2 ∗n2 ∗ q). The main

contribution of this work is to develop an analytic framework to compare memory

access performance of data traversal under multi-level caches to find the fastest

program execution with effective use of memory hierarchy. Our scheme results in

a much smaller complexity with O(m∗n∗q). Our experiments with three datasets

corroborate the effectiveness of search cost reduction while the guided approxi-

mation identifies a highly competitive blocking choice. We also demonstrate the

use of this scheme with QuickScorer [76] and for batched query processing.

1.5 Contributions

In this dissertation, there are three key contributions to the study of multiver-

sion search with cache-conscious ranking optimization.

• Firstly, we design and propose a hybrid indexing representative-guided two

phase architecture. In particular, the main constribution is a hybrid index-

ing method with adaptive runtime traversal in supporting fast two-phase

versioned data search and an integration with cluster-based retrieval using

guided representatives. Our evaluation with a prototype implementating

using three datasets shows that we can be up-to 4.12x as fast as the baseline

method.

9



Chapter 1. Introduction

• Secondly, we propose a cache-conscious design for computing ranking scores

with a large number of trees and/or documents by exploiting memory hier-

archy capacity for better temporal locality. Multi-tree score calculation of

each query can be conducted in parallel on multiple cores to further reduce

latency. The 2D method proprosed increase efficency tremendously but do

not affect accuracy. Our experiment results show that we can be 50% faster

than VPred, which is the state-of-the-art method in this field.

• Lastly, we develop a fast comparison and selection scheme to find an opti-

mized cache blocking method for the 2D method we proposed with guided

sampling. Our analysis estimates the data access cost of different meth-

ods approximately, which provides a foundation to select sampling points

in comparing different methods and in narrowing search space. By using

this selection framework, we can reduce the parameter finding time from

thousand of years using brute force or tens of days using naive sampling to

several hours.

1.6 Thesis Organization

The rest of the thesis is organized as follow.

10



Chapter 1. Introduction

In Chapter 2, we describe the design of the multi-version search system. We

begin with the background of fragment-based index and introduce the necessity of

using it. Then, we talk about our design considerations and present the cluster-

based two-phase versioned search framework. After that, we elaborate our al-

gorithm on choosing representatives, and we talk about our hybrid per-cluster

indexing and traversal methods in detail. Finally, we give evaluations results on

three datasets to show the advantage of our two-phase search architecture.

In Chapter 3, we present the 2D cache-conscious runtime optimization algo-

rithm for ranking ensembles. We begin with the state-of-the-art famous learning-

to-rank algorithm Gradient Boosted Regression Tree, and point out the possiblity

to increase ranking efficiency by exploiting data/model cache locality. Then, we

introduce different traversal patterns and talk about their data access difference.

After that, we present our 2D block algorithm which can achieve much better

cache locality by partitioning data and model into small blocks. Finally, we give

our evaluation results to show the significant speedup of the proposed algorithm.

In Chapter 4, we elaborate our efforts in introducing a comparative analysis

framework on different blocking methods. We begin with the design considerations

and introduction of different blocking methods: DSD, SDS, SDSD and DSDS.

Next, we give thorough cost analysis on each method under different scenarios.

Then,we do a cost comparison and present our algorithm in choosing best method

11



Chapter 1. Introduction

and parameters. Finally, we show in the experiments that our analysis is indeed

helpful in choosing parameters efficiently. We also provide evidence that our

framework is a generatic one: it not only fits our 2D block algorithm, but also

can be used on other algorithms like QuickScorer.

At the end of the dissertation, we conclude the work, and discuss future direc-

tions.

12



Chapter 2

Multi-version Search System

2.1 Introduction

Organizations and companies archive many versions of digital data such as web

pages, internal emails, source code, test data, and multimedia documents. Such

data is critical for internal investigation, regulatory compliance, and electronic

discovery [40]. For example, it is estimated that electronic discovery market that

leverages archival data will reach $9.9 billions globally in 2017 [90]. It is not un-

common for many businesses to retain archived collections for 10 to 15 years and

in some industries the retention periods may be as long as 100 years or more [42].

A long period of data retention implies many versions may have to be maintained.

The size growth of an archival dataset also becomes rapid with advancements in

13



Chapter 2. Multi-version Search System

cloud computing, content authoring, media sharing, and low-cost computer de-

vices. Organizations also frequently backup their data. One of the largest archival

databases is Internet Archive [64] which has collected and preserved more than

376 billion web pages in the last decade with tens of petabytes of data. Can

backup files be used as an archive - all the information is in there, isn’t it? It is;

however there is a big difference between backup and archiving [63]. Backups are

designed for recovery while archives require a sophisticated support for informa-

tion retention, discovery and search. Discovery requirements grow every year, and

backups simply cannot meet them. Archives are critical for some unanticipated

legal or regulatory event and help discover details of information. Recently sev-

eral companies have been developing an integrated backup and archiving solution.

For example, EMC data domain [41], NetApp [82], HP [61] and IBM SmartCloud

Archive [94] are developed to consolidate backup, archive, and disaster recovery

with high-speed, inline deduplication. Efficient support for complex search and

analysis on archival data is not extensively studied and there are limited The pre-

vious work on versioned data has studied the compression algorithms to identify

shared data fragments among different versions [7, 19, 22, 34, 56, 57, 58, 60, 118].

Figure 2.1 depicts the original number of fragments divided by the number of

unique fragments for a GitHub dataset we have tested when varying the number

of versions per document. The result shows that the majority of fragments can be

14



Chapter 2. Multi-version Search System

removed in the search index since they are duplicates and this corroborates the

importance of exploiting fragment-based compression.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25  30  35  40  45

O
ri

g
in

a
l 
#

 f
ra

g
m

e
n
ts

 /
 u

n
iq

u
e
 f

ra
g
m

e
n
ts

Number of versions

Figure 2.1: The ratio of the total number of fragments over the unique fragments

in a GitHub dataset

Even though the index space for a versioned data collection can be compressed

dramatically through fragmentation and deduplication, it is still time consuming

to search the full index structure because a search procedure still has to deal with

a large number of documents with many versions.

A two-phase approach [56, 89] has been proposed to find top results first using

a non-positional index, which represents a tradeoff of relevance and search cost,

and then rerank the selected top results with a positional index. The weakness of

15



Chapter 2. Multi-version Search System

the existing work on versioned data is that still there is a large number of versions

to go through in Phase 1 even without a positional index.

This chapter is focused on processing conjunctive keyword queries on ver-

sioned datasets and our key idea is to extend the concept of cluster-based re-

trieval [4, 73, 75, 106] for representative-guided two-phase search and develop a

per-cluster hybrid index to localize data access at Phase 2. Using representatives

of document versions with full positional information reduces the number of top

clusters needed to retain a good relevancy. The tradeoff is that Phase 2 requires

memory caching of index or the use of solid state drives (SSD). To speedup Phase

2 search, we develop hybrid per-cluster indexing with adaptive traversal of for-

ward and inverted structure. Our evaluation shows that the proposed scheme is

up-to about 4x as fast as the two-phase approach [56] when the search index is

available from memory or from an SSD.

The rest of this chapter is organized as follows. Next, we describe the back-

ground information and related work. Section 2.3 discusses design considerations

in adopting cluster-based retrieval for searching versioned documents with repre-

sentative guidance. Section 2.4 discusses the hybrid indexing and search options

for fast Phase 2 query processing. Section 2.5 presents our experimental results

on three real datasets which shows the accuracy and efficiency of the proposed

techniques. Finally, Section 2.6 concludes the chapter.

16



Chapter 2. Multi-version Search System

2.2 Background and Related Work

In this section, we will provide background and related work. Firstly, we will

discuss multiversion data index, which is on how to create index on archival data.

Specifically, we will discuss non-positional index and positional index. Then,

traditional data search and multiversion data search will be discussed, which is

about how to retrieve search results on archival data. Fragment-based index will

also be introduced here, which is the data structure we will work on in this chapter.

Finally, we provide background information on documents clustering because it is

highly associated with our cluster-based index.

2.2.1 Multiversion Data Index

The key data structure of document search is the inverted index. [121] is

a detailed survey of related research work on inverted indexing. Given a data

collection with n documents, the non-positional inverted index stores a posting

for each term which is a list of document IDs that contain this word. When

each posting also contains the position information of a term in each appeared

document, this inverted index is called positional inverted index. Otherwise, it is

called a non-positional inverted index. The index can also contain other weight

information such as term frequency and document frequency. Here in our work,

17



Chapter 2. Multi-version Search System

we will use positional index which includes both frequency and offset for each

word.

Since there is such high redundancy among versioned documents and such

a large volume of data, compression is necessary for efficient index storage. For

example, our experiment shows that the redundancy ratio can be more than 99.3%

for large archival data such as the Linux kernel code on GitHub with 439 versions.

Thus there is an up to 143:1 or more storage reduction with the deployment of

advanced compression techniques.

Recent researches on multiversion data indexing can be divided into two cat-

egories: non-positional indexing and positional indexing. We will discuss about

them separately as below.

Non-positional multiversion data indexing: There are a number of pre-

vious research work on non-positional index which only includes non-positional

information. Comparing positional information, non-positional information in-

dicates if a text word appears in a document or not while the positional in-

formation further captures the location of text words appeared in a document.

The use of positional information is critical when query relevancy is sensitive

to the proximity of query words matched in a document, but it incurs signifi-

cant search cost. Non-positional indexing for searching versioned data is stud-

ied in [7, 19, 22, 34, 57, 58, 60]. Numbers in the index are compressed fur-

18



Chapter 2. Multi-version Search System

ther [6, 92, 113, 122]. One approach for the versioned compact index by Broder

et al. [22] considers content sharing patterns among versioned documents with a

tree structure and this work is further extended by Herscovici et al. [60] based

on multiple sequence alignment. While this work does not address the positional

information, some of their ideas can be leveraged in our work in computing the

posting intersection within each document version cluster.

Another approach by Claude et al. is based on run-length, Lempel-Ziv or

grammar-based compression with self-indexing [34] and the grammar-based com-

pression such as re-pairing is also used for the document listing problem which

searches substrings or phrases in versioned documents [35, 45, 50]. Most of these

methods use index compression algorithms like OPT-PDF in [114], PForDelta

in [59, 123] and so on [6, 93, 110].

Positional multiversion data indexing: Positional versioned data indexing

is studied in [118, 34, 56]. The work of Zhang and Suel [118] uses the content-

dependent partitioning method such as Winnowing [91] and 2MIN [101] to divide a

versioned document into fragments and then each unique fragment after duplicate

detection is only indexed once. The above partitioning technique is related to

landmark-based indexing proposed by Lim et al. [74] for efficient index update

when document content is changed. Duplicate detection is done by computing a

19



Chapter 2. Multi-version Search System

hash value for each fragment and comparing it with those of the already indexed

fragments.

In [118], the idea is that firstly using a content-dependent string partitioning

method to partition a whole document into several substrings; then, positional

index is built on each fragment instead of the whole document. Using the stored

information related between fragments and documents, the algorithm can easily

infer the docID, frequency and offsets of a given term. The benefit of partitioning a

whole document into substrings is that for multiversion data, documents between

versions have lots of content overlapping. Therefore, a large number of substrings

can be reused by many documents/versions, which saves both indexing space

and time. As to the content-dependent string partitioning method, there are a

number of related work [91, 62, 72, 81, 96, 97, 101] in OS, networking and many

other fields. In [118], the author uses the Winnowing approach in [91] and 2MIN

method [101] is used in [56] to do the content-based partition. The advantage

of these partition methods is that in a large probability, a random insertion or

deletion in the document will only affect one fragment. Thus, there will be a large

number of common substrings between versions. An improved content partitioning

and compression method is discussed in [56, 34].

A later work in [56] describes a complete framework for full-text positional in-

dexing. Inheriting from [118], they develop several improved partition algorithms

20



Chapter 2. Multi-version Search System

by exploiting knowledge of the edit history of a document. The results show

significant improvement compared to previous work.

On the other hand, the related work in [34] uses different methods such as

run-length, Lempel-Ziv or grammar-based compression to reduce positional index

size and indexing time.

2.2.2 Traditional Search

User experience is largely dependent on searching accuracy and the overall

time consumed in the searching phase. Compared to the indexing phase which

is offline, the online searching phase plays an important part in user experience.

The searching problem is that given a query q={t0, t1, ..., tn} which is composed

of n terms, how to return the top m documents which are most relevant to the

query. A function F (d, q) which accepts one query q and one document d at a

time and returns a relevance score is called a ranking function. Ranking functions

vary from simple ones like BM25, Cosine, Okapi to some complex learning models

such as AdaRank, Rankboost, and LambdaMART. However, no matter what

ranking function is, it needs to use information from inverted index such as docID,

frequency and positions. We refer to [121] as an overview of traditional searching

methods.

21



Chapter 2. Multi-version Search System

Simple ranking functions like Cosine and BM25 is based on non-positional

inverted index. Only information such as docID, term frequency and document

length is needed to compute ranking score. For each document, after the score

of each term is calculated, an intersection step will combine all the scores of all

terms in the query and provide the final score. An early work [71] presents a

DAAT algorithm to do fast intersection. However, it is proved that considering

positional information in the searching phase, more accuracy ranking results can

be achieved [79]. Thus, in this work, we develop our searching algorithm based

on positional index.

2.2.3 Multiversion Data Search

According to our investigation, although there are several recent papers on

range query and query operations on versioned data [5, 54, 104], only a few amount

of work is about standard ranking problem in multiversion positional data [89, 118,

56].

We adopt the fragment-based redundant content compression [118, 56] because

fragments explicitly capture positional information and also because the work by

He et al. [56] shows that it has a higher compression ratio than that of [34].

Grammar-based compression techniques [34, 50, 45, 35] have been used for phrase

queries and we are more interested in exploiting more general positional infor-

22



Chapter 2. Multi-version Search System

mation. It is possible to adopt some of such techniques in version cluster index

compression and this can be considered in the future work. While the tree-based

compression or sequence alignment technique for content sharing [22, 60] does not

address the positional information, some of their ideas are leveraged in our work

for computing the posting intersection within each document version cluster.

We illustrate the fragment concept in more details as follows. Once a page

is represented by a set of fragments instead of terms directly, the inverted index

contains fragments in its compressed data layer. The posting for a term is a set

of fragments instead of a page list and there is another data structure that maps

a fragment to a set of page IDs that use this fragment. This data structure is

caused fragment-page reuse table [118]. Noted that the above index structure can

be augmented with term frequency information. Figure 2.2(a) is an example of

the term-to-fragment index, following the compression scheme in [118, 56]. Each

document version is divided into a set of fragments. The inverted index shows a

list of fragment IDs that contain a term represented by a term ID. In this example,

term “t1” is in fragments f1, f3, and others. Figure 2.2(b) shows an example of

the fragment-to-version reuse table which is the list of page IDs that use this

fragment. In this example, fragment f1 is used by document versions v1, v7, and

so on.

23



Chapter 2. Multi-version Search System

t1

f1

f3

…

t3

f1

f5

…

t2

f2

f3

…

Term-frag Index

(a)

f2f2

v2v2

v4v4

…
f1f1

v1v1

v7v7

…

Frag-version Index

(b)

Figure 2.2: (a) Term-fragment inverted index. (b) Fragment-version reuse table

that lists versions sharing each fragment.

The above compression for versioned data does make inverted indices more

complex and its data layout increases the cost of data traversal during document

matching. In [118], the search algorithm first identifies a set of fragments that con-

tain a query term and then uses the fragment-page reuse table to locate versions

containing each term and the offset of each occurrence within the versions. The in-

tersection for processing multiple conjunctive query words is arranged accordingly

and those version pages which contain all the query terms are scored and ranked.

The advantage of using the compact page-fragment-term structure is a substan-

tially smaller index compared to the standard document-term inverted index. On

the other hand, the intersection of multiple postings takes more resources by going

24



Chapter 2. Multi-version Search System

through the term-fragment-page mapping. For example the tradition intersection

algorithm can take advantges of sorted document IDs by employing skipper or

other posting auxiliary data structure while the fragment index cannot. Compar-

ing searching on the index which is directly built on full versions of all pages, this

method is much faster because the index is much smaller by exploiting content

redundancy. However, this algorithm still cannot satisfy user’s needs because the

job of searching on position data itself is too expensive.

Instead of fetching on all the data D, [89] proposes a method of using a non-

positional index in the first phase and then search on the positional index of a

much smaller dataset Dsmall. In the first step, a simple ranking function is used

to retrieve a top-k′ results. After that, a complex ranking method is applied but

only on the positional data of the top-k′ results from the previous step. Finally,

the top-k results are generated.

The work by He and Suel [56] extends the fragment-guided two-phrase search

based on [89, 118]. Phase 1 uses non-position index while Phase 2 contains de-

tailed position information. In their first phase, they implemented a two-level

index structure called 2R-MSA from [58]. Runtime query processing searches

non-positional inverted index first to retrieve the top K results and then re-rank

these top K results by accessing the full positional index of these versions. The

above two-phase search is motivated by the earlier research on cluster-based re-

25



Chapter 2. Multi-version Search System

trieval [4, 106, 75] for non-versioned documents. Using a non-positional index at

Phase 1 is also motivated by relevancy studies [9, 10] and the argument is that

having a sufficiently large number of top K at Phase 1 without positional infor-

mation can still deliver a good relevancy. Still there is a large number of versions

to go through even without positional index.

2.2.4 Documents Clustering

Since our method uses document clustering to choose representative, at the last

part of this section we briefly discuss some recent work on documents clustering

here.

Document ranking using cluster-based retrieval and language models is studied

by Liu and Croft [75], and cluster ranking is addressed by Kurland and Krikon [73].

Index optimization for cluster-based retrieval for traditional disk storage is studied

in Altingovde et al. [4]. We revisit the cluster-based retrieval techniques as the

storage seek overhead of random access has been reduced significantly with today’s

SSDs. The recent work for searching non-versioned data in Bai et al. [18] considers

the use of flash-memory drives to store the per-document forward index. We

exploit adaptive use of hybrid cluster-specific index structure.

26



Chapter 2. Multi-version Search System

2.3 Cluster-based Retrieval with

Representatives

Deduplication reduces the storage demand significantly in archiving raw doc-

uments and creates opportunities for highly efficient versioned data search since

there are highly repetitive content among different versions of documents. To

maintain the efficiency of search, our proposed algorithm continue uses a two phase

design while using the positional index in both phases to improve the relevance

for conjunctive queries. In this section, we first discuss our design considerations.

Then, we talk about how to choose cluster representatives in detail.

2.3.1 Design Considerations

Our objective is to develop a faster search scheme with much faster query

processing time, especially when there is a large number of versions. Our design

considerations are discussed as follows.

• Since versions of documents have highly repetitive content, most likely there

exists a version or a composed version that could capture the majority of

text features for many versions of each document. Our work is motivated

by the cluster-based retrieval [106, 75, 73, 4] which was proposed to rank

non-versioned data by exploiting document similarity in clustered results.

27



Chapter 2. Multi-version Search System

For versioned datasets, exploiting document similarity can be more impor-

tant to reduce search time because of high similarity among versions of

documents. Thus we adopt the concept of the cluster-based retrieval and

consider versions of a document as a group. We compose a representative

which captures positional and non-positional information for each version

cluster to facilitate cluster ranking. A phased search can start with a set

of representatives instead of the entire document collection. The clustered

index with representative-guided search can quickly narrow the search scope

and results in a big reduction of search time, even there are a large num-

ber of versions with similar content. Since the number of representatives

is modest after removing the versioning effect, it is not necessary to avoid

positional information in Phase 1 index and save index space cost. This ap-

proach can also improve the diversity of ranking results so that results from

one document with many versions will not dominate the entire ranking.

• There is a storage access cost to retrieve cluster-specific information for each

selected cluster at Phase 2. For non-versioned data, the work in [4] studies

a per-term cluster posting so that the number of disk seeks is controlled

as the number of query words. We can extend this work to build per-

term index structure for versioned documents, but the repetition of cluster

information from one term to another becomes extremely large. Consider

28



Chapter 2. Multi-version Search System

the SSD storage with low seek time (e.g. 0.1 ms) is getting popular, we can

afford to access a modest number of clusters dynamically.

• Fragment-based index compresses versioned data significantly while runtime

index traversal becomes slow in order to fetch positional information access

during Phase 2. This gives opportunities for optimization and we will present

a hybrid indexing solution that combines the strength of forward and in-

verted index. This follow-up phase can be conducted to identify the individ-

ual document versions with a high rank within each selected group. Noted

that the two-phase search for a general non-versioned dataset [9, 10] consid-

ers the tradeoff of performance and relevancy by deploying non-positional

index in the first phase of search. While it is true, choosing a large top

k number in first phase exposes most of relevant documents for Phase 2

search. But using popular words in a query can match most of documents

in a collection, as a result, Phase 1 narrowing without using positional in-

dex becomes meaningless for a large data collection when a very large k

is selected. The relevancy impact without using positional index in Phase

1 is more serve for versioned datasets because of highly repetitive content.

The representative-guided approach with a small core index supports more

flexibility for obtaining better relevancy.

29



Chapter 2. Multi-version Search System

Phase 1 Search Phase 2 Search

Representative 
Index

Query

…

Phase 2 
Index 

Clusters
Top-k Results

Final Results

________
________
________…

________
________
________
________

…

Figure 2.3: Representative-guided search workflow for query processing

• Clustering of similar content and the construction of a representative for

a group deserves careful research studies. We would like this representa-

tive document to catch terms that appear in different versions of the same

document. We will elaborate this in the next subsection in detail.

The two-phase query processing workflow is depicted in Figure 2.3. The first

phase is going through the representative index and retrieving the top k rep-

resentatives. The second phase is searching on the related index clusters and

aggregating the matched results from these clusters. Both phases use positional

information. Algorithm 1 lists the search procedure. Since each document has

many versions, to ensure diversified results, we restrict the number of versions

30



Chapter 2. Multi-version Search System

shown for each document in the final result list and a user can select a document

and view more versions of the same document if interested.

1 Phase 1

2 Find top k document clusters that match queries.

3 Phase 2

4 Fetch k cluster-specific index.

5 for each selected cluster do

6 Find document versions that contain conjunctive query terms.

7 Fetch positional and non-positional information to form rank features

and scores.

8 end

9 Select top document versions from all clusters based on ranking scores

Algorithm 1: Two-phase search with cluster-base retrieval for versioned

documents.

Representative and final result ranking. For a standard text document

search system, there are many ranking signals that can be extracted or charac-

terized for each matched document in processing a query [3, 88, 115]. Those

signals need to be aggregated, and their weights can be imposed empirically or

derived using a machine learning method (e.g. LambdaMART [111]). We follow

the previous work in text ranking with proximity (e.g. [17, 25, 68, 98, 100, 120,

31



Chapter 2. Multi-version Search System

119, 111, 116, 112, 75, 73]). Our study focuses on the construction of index that

can provide basic ranking features which can be used to compose scores for these

ranking schemes. The text features for ranking include BM25, query word span,

query word co-occurrence, and query word minimum distance based on the previ-

ous work in text document ranking with proximity [17, 25, 68, 98, 100, 120, 119].

Weights of non-positional text features and proximity features are differentiated

by where matched query words appear in the fields of a document like title or

body. Since each document has many versions, to ensure diversified results, we

restrict the number of results shown for each document version group in the final

result listing and a user can select a group and view more versions of the same

document if interested.

2.3.2 Cluster Representatives

To aid the top k ranking of clusters at Phase 1, we compose a representative

for each cluster to provide essential ranking features. The representative for each

version group is a superdocument that is artificially composed from a specific

version of a document. Our objective here is to create a superdocument that

includes terms that appear in all versions of a document while capturing the

majority of distance relationship among these terms.

32



Chapter 2. Multi-version Search System

The position information of a representative superdocument is built based on

the longest version. More specifically, let si be the super document for document

di with m versions. Denote these versions as vi,1, vi,2 ... vi,m. Let vi,l be the

longest version for di. Let T (si) be the set of terms included in super document

si. Let Pos(t, si) be a position information set for term t in T (si). The index for

representatives with the longest version is defined as

t ∈ T (si) if ∃j, 1 ≤ j ≤ m and t ∈ T (vi,j).

Pos(t, si) =


Pos(t, vi,l) if t ∈ T (vi,l)

∞ if t ∈ T (si)− T (vi,l).

Namely for the extra terms in set “T (si)−T (vi,l)” added to the superdocument we

will treat the appearance of these terms in an unknown position with the∞ offset

value. In the ranking process for document retrieval, a position with the ∞ value

will not contribute to the position related weight in the final score aggregation.

We can also consider other options to form a superdocument, for example, based

on the latest version.

A representative contains terms from all versions, and thus there is a false

positive error occurred during Phase 1 keyword matching. Some positional infor-

mation is not precise because some sentences are obtained from various versions.

Based on our experiment results, we observe that representatives do not introduce

significantly more new words. The false positive error introduced in Phase 1 is

33



Chapter 2. Multi-version Search System

fairly small. In the second phase, the search algorithm makes an accurate as-

sessment of term appearance in all versions for the matched representatives from

Phase 1 to correct errors if there is one.

The above method tries to capture positional information as much as possible

from all versions while using a reasonable amount of space. There is a tradeoff here

that it cannot capture all positional information. A future study includes the con-

sideration of clustering of similar versions from the same or different documents.

We expect a good similarity clustering with proper representative construction

can improve the accuracy.

During offline data processing, each document version is divided into frag-

ments using a content partitioning algorithm called TTTD (Two Thresholds Two

divisors) based on the work of [43, 80], which is a similar but faster method

comparing the ones used in [118, 56]. Since content redundancy among represen-

tatives is modest or less significant, we can use the traditional index structure for

representatives without using fragments for simplicity and efficiency.

Note that the meta information for each version of a document also contains

a timestamp. The time data will be useful for user queries containing temporal

constraints. The offline index may also be partitioned based on a coarse-grained

time interval to optimize the index search if that matches the users’ query pattern.

Studies on versioned data search with a time range are in [19, 55, 105]. This work

34



Chapter 2. Multi-version Search System

focuses on conjunctive query processing and the time range can be added as a

filter in the search process.

2.4 Hybrid per-cluster Indexing and Traversal

Phase 2 query processing needs to identify document versions from selected

clusters that really match required keywords, and compute a ranking score. It

would be more expensive to compute scores for all versions and then filter out

those that do not contain all conjunctive keywords. We discuss how to gather

basic feature data from the index for intersection and scoring below. The basic

feature data includes the positional information of each term in a version and

frequency information can be derived from this process if it is not explicitly stored.

As we adopt the fragment-based compression in the per-cluster index with the

positional information, one option is that an intersection algorithm uses the term-

fragment list and looks up a fragment-version reuse table dynamically to determine

if all conjunctive query words included in an version. From our experiments, we

find the dynamic conversion is very time-consuming. The versions derived from

the fragment-version reuse table do not follow a sorted relationship. It is much

faster to construct the term-version posting first before performing the intersection

operation and how to optimize the traversal of index data structure is the key to

accomplish a low search time.

35



Chapter 2. Multi-version Search System

2.4.1 Indexing and Search Options for Phase 2

We discuss two indexing options first with different time and space tradeoffs

in considering the traversal of cluster-specific inverted index or forward index and

then design a hybrid option.

• Option A: Each posting list of a term in a version cluster index is composed

of fragments and the positions of this term in each fragment. The runtime

search process extracts this list from the term-fragment index and traverses a

per-cluster fragment-version reuse table to reconstruct a term-version post-

ing with positions for each term. This derived term-version posting includes

the positional and frequency information and after that, a multi-keyword

intersection is conducted using such postings.

In detail, we extract the term-posting with positional information from the

inverted term-fragment index and fragment-version mapping. There is a

performance challenge in utilizing the fragment-based index in each docu-

ment group for posting interestion. From the term-fragment index, we can

get a list of fragments which contain the query term. After a set of docu-

ment versions that contain the matched query words is derived, each group

uses the term-fragment index to obtain a list of fragments that contain a

36



Chapter 2. Multi-version Search System

word. Then we use the fragment-version mapping to obtain the positional

information for these matched versions.

For example with query “arabic number”, we will get two fragment lists: one

for “arabic” and the other for “number”. Then by checking the fragment-

version reuse table, we reconstruct a term-version positing with positions

for both “arabic” and “number”. After that, a multi-keyword intersection

is conducted and ranking is done as the last step to return the final top k

results.

• Option B: Compared to Option A, this option adds the extra storage space

overhead to explicitly store the term-version posting of each term, and a

version-fragment forward index, but it does not need to maintain the local

fragment-version reuse table. As the version posting of each term with-

out positional information is available in advance, the intersection of term

postings can be conducted quickly first without a need to dynamically re-

construct such postings. Once a set of matched versions is derived through

the intersection, the query-time process derives positional information by

finding all fragments included in these versions through the forward index,

and then by using a binary search on a term-fragment posting to extract

the positional information of each term at each document version.

37



Chapter 2. Multi-version Search System

For example, given query “Marine Science”, for each version cluster derived

from Phase 1, we directly use the term-version postings of “Marine” and

“Science” to conduct an intersection. Assume v1 and v2 contain both terms,

then we use the version-fragment forward index to identify possible frag-

ments and their positions in v1 and v2 that may contain each term. Finally

a binary search using the term-fragment postings of “‘Marine” and “Sci-

ence” identifies the text positions in real fragments that truly contain these

two words.

A detailed discussion of data structure choices of above two options is in Sec-

tion 2.4.3 summarized in Table 2.1. There is a time and space tradeoff between

Option A and Option B. Option B can be faster than Option A in many cases

while it does use slightly more space. On the other hand, Option A can outper-

form Option B some time, for example, queries using rare terms. We model the

time cost of Options A and B as follows.

TimeCostA = k · (Γ +

q∑
i=1

fi · µi · ρi · τ + Π), and

TimeCostB = k · (Γ + Π +

q∑
i=1

m · γ · (log(fi) + ρi) · τ)

where

• k is the number of top clusters selected by Phase 1;

38



Chapter 2. Multi-version Search System

Figure 2.4: An example of data traversal in Option C that selects the Option A

or Option B approach for each query word at each cluster.

39



Chapter 2. Multi-version Search System

• q is the number of query terms;

• fi is the number of fragments for term ti’s posting at a cluster;

• m is the number of matched document versions after query intersection;

• Γ is the average cost of loading a cluster index to memory from a fast storage;

• Π is the average cost of posting intersection for conjunctive keywords;

• µi is the average number of document versions using a fragment that contains

term ti;

• ρi is the average number of positions of term ti in one fragment;

• γ is the average number of fragments included in one version.

• τ is the average memory access time.

The index data for each cluster is organized separately and the runtime system

loads the data k times for the selected top k clusters from a fast solid state drive.

For our tested applications, the data size for each cluster to be load is less than

5KB and the per-cluster index I/O time Γ is about 0.28 milliseconds or less using

SSDs. The overhead is not overwhelming when fetching the index data for top

few hundred clusters. Π represents the cost of intersection and we discuss this

part in next subsection.

40



Chapter 2. Multi-version Search System

The cost of rank score computation is not explicitly included in the above

formula. Different ranking methods deploy different features which can incur a

different amount of time [36, 98, 100, 25, 17, 119], while we expect such a cost is in

an order subsumable under the above cost formula. (e.g. [21, 49, 47, 67, 111, 116,

112]). Our experiment uses a model of query word span [98] and frequency-based

BM25 score and the calculation cost is proportional to the number of query word

positions appeared at each version.

From the cost model of options A and B, one can infer that if a query term

ti is rare, and fi is very small, this case favors the use of Option A. On the other

hand, if ti is a popular word, and fi is very large, this case favors Option B.

Theoretically, Option A and Option B give better performance under different

scenarios depending on the value of the parameters, which differs for different

datasets and different query terms. We are devising Option C that compares

the relative cost ratio of Options A and B for extracting positional information

and adaptively select one of them based on the characteristics of each term ti

searched in each cluster. The query-time work flow of Option C is summarized in

Algorithm 2.

Figure 2.4 illustrates an example of Option C in processing the query “Marine

Science”. First, the intersection finds v1 and v2 contain “Marine” and “Science”.

For keyword “Marine”, the threshold condition leads to the use of Option A traver-

41



Chapter 2. Multi-version Search System

1 Load the cluster index and accumulate statistics.

2 Perform the intersection of version postings.

3 for each query word ti do

4 If fi · µi · ρi ≤ m · γ · (log(fi) + ρi),

5 Use the term-fragment posting of ti to get fragments and term

positions within fragments.

6 Convert into term positions within all versions by accessing the

fragment reuse table.

7 Else

8 If needed, set L as a list of fragments for all matched versions.

9 Search ti’s fragment posting to find term positions for the fragments

in L.

10 Derive term positions within matched versions.

11 end

Algorithm 2: Option C that extracts position and other meta informa-

tion of the matched versions within each cluster.

42



Chapter 2. Multi-version Search System

sal. From the fragment posting of “Marine”, a list of fragments are found and they

correspond to versions v1, v2, v5 and so on. Only v1 and v2 are acceptable from

the intersection results, then the position at v1 is computed as 3 and the position

at v2 is computed as 78+12 which is 90. For keyword “Science”, a different path

is taken: from version-fragment mapping, v1 contains a list of fragments, such as

f1 and f2. By doing a binary search on the Term-frag list of “Science”, we know

in version v1 only f1 contains “Science” and position 4 is derived at version v1.

We do the same procedure with v2 and position 4 is derived at version v2.

It should be noted that Option C’s decision path is cluster dependent. Namely

this method selects Option A or B based on the difference of fi · µi · ρi and

·m · γ(log(fi) + ρi) for each cluster. Thus for the same query word, one cluster

can make a selection different from another cluster. The time cost of Option C

can be modeled as

k · (Γ + Π +

q∑
i=1

min(fi · µi · ρi, m · γ(log(fi) + ρi)) · τ)

which is usually smaller than that of Option A or Option B.

2.4.2 Term-version Posting Intersection

Term-version posting intersection without position information is used in Op-

tions B and C and we can leverage the ideas of the work in [22, 60]. When the

number of versions is modest for each version cluster, the intersection to identify

43



Chapter 2. Multi-version Search System

versions of a document containing all keywords can be extremely fast by repre-

senting the posting using a bit operation [37]. For a large number of versions,

the intersection with bit operations is less effective. Since versions of a document

tend to be similar, when a word appears in one version, it appears in another

version with a good probability unless this word is added to a version and is

deleted shortly after a few versions. With this data characteristic in mind, a long

bit vector can be represented succinctly by a small set of intervals. Each interval

represents consecutive version numbers that contain this keyword.

When each version posting is represented by a set of intervals, the intersection

algorithm of posting intervals from multiple words can be conducted by modifying

the integer set intersection algorithm by Culpepper and Moffat [37] with a change

in Golomb search to accommodate the interval boundary comparison. For interval

list intersection of two words, assume one word has n1 non-overlapping intervals

and anther word has n2 non-overlapping intervals where n1 < n2. The maximum

number of new intervals produced as the result of intersection is n1 + n2 − 1.

The time cost of this intersection is O(n1 log n1+n2−1
n1

). For q word intersection,

the corresponding bit-vectors have n1, · · ·nq intervals with n1 ≤ · · · ≤ nq. The

total number of subintervals produced can be high, but less than H where H =

min(V,
∑q

i=1 ni− 1) and V is the total number of document versions in a cluster.

The total time cost is bounded by Π = O((q−1)H log H
n1

). Because n1, n2, · · · , nq

44



Chapter 2. Multi-version Search System

tend to be small in a cluster index, the time cost Π is not significant. Note

that the hashing-based intersection [39] does not work well as the intersection of

two intervals requires an inequality comparison of interval boundary values. Skip-

based synchronization points [37] may be used with extra space while adding them

has not given a visible improvement for this problem in our experiments.

2.4.3 Index Storage Layout and Cost

We discuss the data layout for the cluster specific index structures used in the

above three options, and assess the space cost difference in an approximated man-

ner. The sequence of numbers used in each data structure is further compressed

by storing their delta gaps and using one of number compression methods with

fast query-time decompression such as var-Byte, Simple-9, PforDelta, and Opt-

PFD [92, 122, 117, 113]. Through experimentations, we find that a combination

of Simple-9 [6] and var-Byte gives a competitive compression performance in our

context.

We estimate the storage need of each index option approximately before apply-

ing the aforementioned number sequence compression. This gives a rough space

assessment assuming the number compression brings is at a similar level of space

reduction proportionally. Since small integer values typically use less space after

number compression, and to improve the accuracy of the space cost estimation,

45



Chapter 2. Multi-version Search System

we associate the integer size as a coefficient. Document IDs and word IDs need

a 4-byte integers in general, we assume that the version numbers of each docu-

ment and position numbers need integers with 1 to 2 bytes. Also we perform the

fragment ID localization under each cluster so that local fragment IDs may be

ranged with 2 bytes or less. These two-byte numbers are dominating the cluster

index and thus we estimate space cost approximately in terms of the number of

two-byte short integers.

We will use the following additional symbols in addition to ones used in time

cost analysis.

• W: the number of distinct words at a cluster.

• R: the number of fragments at a cluster.

• V: the version number at a cluster.

• µ: the average number of versions using a fragment at cluster.

• ψ: the average number of fragments per term at a cluster.

• β: the average size of the posting bitvector of a term discussed below.

Term-to-version posting bitvectors: The extra term-to-version posting

for Options B and C records version IDs that contain a term without positional

information. When V is not too large, an internal bit vector representation is

46



Chapter 2. Multi-version Search System

appropriate. When V becomes modestly large, we consider a hybrid compression

as follows. Since versions of a document are similar, either many versions shared

the same words or they have little in common for other words used in the cluster.

The characteristic of a posting bit vector for our version dataset is that each

vector either contains lots of 1’s or lots of 0’s. We can either use a few intervals to

represent a bit vector or follow a hierarchical compression scheme from [46]. The

root of a tree structure in [46] can use bit value 1 to represent a large consecutive

number of 1’s when 1 is dominating a bit vector. Otherwise the root uses 0 to

represent a large consecutive number of 0’s. The space for bit vectors of W terms

is β ·W .

Term-to-fragment posting: This posting contains a fragment list and

term positions at each fragment. Because most of terms appear in a fragment

once, we follow the idea from [118, 56] to store a sequence of fragment and

position pairs. The sequence of numbers for each entry in this index is: (term ID,

meta information, fragment ID, position, fragment ID, position, · · · ). The meta

information represents the number of pairs and other control flags. The size of

term-to-fragment index is (5 + 4ψ) ·W .

Local fragment-to-version reuse table: Following the same strategy for a

term-to-fragment posting, we record the number of version and position pairs in

47



Chapter 2. Multi-version Search System

the sequence: (fragment ID, meta information, version ID, position, version ID,

position, . . . ). Total size is (3 + 4µ) ·R.

Version-to-fragment mapping: Similarly, the number sequence of an entry

in this mapping is: (version ID, meta information, fragment ID, position, fragment

ID, position, · · · ). The total size of the forward index is (3 + 4γ) · V .

Considering the total number of fragment occurrences in a local reuse table or

in a forward mapping index across all the document versions remains a constant

in a cluster, we can show that µR = γV . Thus, the version-fragment mapping

and fragment-version mapping have very similar size.

Following data structure choices used in each option, the total space cost of

each option for each cluster before number compression is estimated as:

SpaceCostA ≈ ((5 + 4ψ)W + 3R + 4γV ),

SpaceCostB ≈ ((β + 5 + 4ψ)W + 3V + 4γV ),

SpaceCostC ≈ ((β + 5 + 4ψ)W + 3R + 3V + 8γV ).

There is some additional space need for meta information such as version

document length, which is less significant. The difference ratio between Options

A and B is approximately

βW + 3V − 3R

(5 + 4ψ)W + 3V + 4γV
.

48



Chapter 2. Multi-version Search System

The difference ratio between Options B and C is approximately

4γV + 3R

(β + 5 + 4ψ)W + 3R + 4V + 8γV
.

Note that R << γV assuming high redundancy among versions of the same

document. From the experiment data we have tested, ψ ≈ 2 and γ is in between

13 and 20. When V << W , β ≈ 3 and the difference between A and B is about

β
5+4ψ

which is 23% and the difference between B and C is small. When V >> W ,

the difference between A and B is small and the difference between B and C is

close to 50%.

Table 2.1 summaries the data structure choices in three options. Option C is

faster than Option A or Option B while incurring a modest increase in storage

cost.

Per-cluster Option Option Option

data structure A B C

Posting bitvectors no yes yes

Term-to-frag. index yes yes yes

Frag.-to-version reuse table yes no yes

Version-to-frag. mapping no yes yes

Table 2.1: Data structure choices for three options.

49



Chapter 2. Multi-version Search System

How much does storage space overhead increase by building separate index

for each cluster? We compare space cost difference between Option C and a

corresponding global index with no cluster separation. Since there are full or

partial duplicates among documents, the separation of index by clusters has a

space disadvantage that some of term IDs appear redundantly in the local term-

to-fragment postings. Some of fragment IDs also appear redundantly in both

term-to-fragment postings and the local reuse tables. On the other hand, the

fragment IDs after localization and version IDs in a cluster index uses less number

of bytes compared to a global index and we assume a 1:2 ratio for fragment IDs,

version IDs but still 1:1 ratio for positions. The global index space is modeled

SpaceCostglobal ≈ βWn+ 5M + 6δψWn+ (6δR + 6V + 12γV )n

where n is the number of documents; M is the number of distinct words globally;

δ is the ratio of fragments which are not shared among documents. In our test

datasets, M ≈ 0.05nW and δ is between 0.7 and 1. V , W , and R have the same

meaning as before, except it is an average number per cluster. Thus the space

difference ratio between global index and option C is

[5(1− M
nW

) + (4− 6δ)ψ] ·W + (3− 6δ)R− 3V − 4γV

(β + 5 + 4ψ)W + 3R + 3V + 8γV
.

50



Chapter 2. Multi-version Search System

When V >> W , the difference ratio is about −3−4γ
3+8γ

which is close to −50%.

Namely the global index is about 50% larger. When V << W , the difference is

about 5+(4−6δ)ψ
β+5+4ψ

and thus the global index is up-to 28.8% smaller.

2.5 Evaluations

2.5.1 Datasets and Experiment Settings

Objectives. Our evaluation objectives are:

• Demonstrate the benefits of searching versioned data with cluster-based re-

trieval in terms of query search time difference;

• Compare the index options in building the Phase 2 index in terms of time

and space cost;

• Assess the impact of relevance for using a core representative index with

positional information.

Settings. In this context, we study the impact of using different representa-

tives. We have developed a prototype to implement the proposed approach with

C++. Code is compiled with G++ using optimization flag -O1. Experiments are

conducted on a Linux CentOS 6.6 server with 8 cores of 3.1GHz AMD Bulldozer

FX8120, 16GB memory, Kingston HyperX 3K 240GB SSD and a 1TB Western

51



Chapter 2. Multi-version Search System

Digital Caviar Black hard disk drive (HDD) with 7200 RPM. All experiments

store the index data in the SSD except Table 2.3 which compares time perfor-

mance when the search index is stored in HDD and in SSD.

Datasets. Since there are no standard benchmarks for versioned search, we

have crawled the following three versioned datasets for evaluation. Our datasets

are available upon requests for other researchers.

• The first one is from Wikipedia (called Wiki), which consists of 3.8 million

articles and on average each distinct document contains 13 versions. There

are 315, 673 distinct documents. The versions are archived in a monthly

crawled gap from April 2013 to April 2014. The total size of all 13 version

raw Wiki data is about 100GB. On average each document version has

1.9 KB and each fragment has 156 bytes. There are 5, 160, 703 distinct

fragments after deduplication.

• The second dataset is a web dataset (called Web) of 5 million pages and

there are 20 versions per document on average. There are 252, 285 distinct

documents. The dataset was crawled in 2014 from two university domains.

The total size of raw web pages is 120 GB. After removal of HTML tags, each

document has 3.1KB and each fragment has 191 bytes on average. There

are 4, 138, 852 distinct fragments after deduplication.

52



Chapter 2. Multi-version Search System

• The last dataset is from GitHub (called GitHub) with 5 million versioned

documents in total. Those are Linux code documents dated from April 2005

to April 2014 with 439 versions per document. There are 19, 548 distinct

documents. Searchable text is extracted from the source code using function

names and embedded comments, and each document corresponds to one

source file. The total size of 439 versions of raw data is approximately 86GB.

After pre-processing, each document has 3.35 KB and each fragment has 167

bytes on average. There are 714, 793 distinct fragments after deduplication.

Ranking function. Following the previous text ranking techniques (e.g.

[25, 68, 100, 119]), the text feature in our implementation leveraging non-positional

information is standard Okapi BM25, differentiated by where they appear in the

fields of a document such as title and body. We also use a text proximity feature

that leverages positional information: the length of a minimum text span [98]

to cover query words at each field, scaled by the percentage of query words cov-

ered. The overall ranking score linearly combines weighted BM25 and proximity

features.

We compare our Representative-guided Two-phase Search (RTP) with the

following approaches:

• One phase search (OP). The implementation is based on [118] using the

positional index with fragments. This is essentially the same as Phase 1 of

53



Chapter 2. Multi-version Search System

RTP except that OP searches the entire fragment-based index. This is the

slowest algorithm but it has no accuracy loss.

• Two phase search (TP). This is based on [56] and the Phase 1 implemen-

tation ranks top-K results with non-positional index. Phase 2 re-ranks the

selected top K results using the positional index with fragments. For RTP,

we select the number of representatives k ranked at Phase 1 between 10 to

100 to produce good final top 10 results as an answer.

For TP, K is chosen to be K = k ∗ V so that there are enough good results

selected from each cluster at Phase 1, which allows re-ranking at Phase 2 to

produce relevant results competitive to RTP. The three datasets have different V

values, affecting K values and performance difference of TP and RTP in addition

to relevancy. We will also show the relevance results of RTP and TP with different

k and K values.

For search time measurement, we report the average query processing time

for each query set through 25 runs when excluding or including the index load

overhead from a disk drive. We have generated 500 synthetic queries for each

dataset with query length distribution following a query log study in [8] for the

purpose of performance assessment.

Regarding to index disk loading time, we put Phase 2’s index in our SSD disk

because of the number of random seeks cannot be neglected in reading different

54



Chapter 2. Multi-version Search System

2 3 4 5 6
0

0.1

0.2

0.3

Query length

P
er

ce
n
ta

ge
of

q
u
er

ie
s

Figure 2.5: Percentage of queries for different query length

clusters’ indexes. Several recent studies [102, 107] have given the comparing results

of SSD and HDD random seek time. Thus, using an SSD disk for Phase 2 index

can give a large benefit. As to Phase 1’s index, it is just a traditional search index.

There is no specific requirements of using SSD for it.

Our scheme is designed for handling conjunctive queries with two or more

words and the relevance of RTP for single-word queries is about the same as TP.

Thus our evaluation is focused on such queries.The length distribution of these

queries follows is depicted in Figure 2.5.

For relevance, the standard relevance metric for document search is NDCG [66].

Since there are many versions for each document with similar content and some

of which can be considered as near duplicates, showing too many results per

document would affect result diversity [83]. Thus we restrict the displaying of top

55



Chapter 2. Multi-version Search System

results and only show v versions per document. A user can request for accessing

more versions from a selected document when needed. We expect v to be 1 or 2

at most in practice. In our evaluation, we use v = 1 and collect the NDCG value

at top 10 positions. We call the modified NDCG score as vNDCG1@10.

2.5.2 A Comparison on Overall Search Time

Time (ms) OP TP RTP

Web

Phase1 5899 34.56 16.26

Phase2 0 115.5 21.36

Total 5899 150.0 37.62

Wiki

Phase1 1047 5.378 3.868

Phase2 0 119.9 28.81

Total 1047 125.3 32.68

GitHub

Phase1 5846 46.50 2.394

Phase2 0 539.0 139.7

Total 5846 585.5 142.1

Table 2.2: Query processing time in milliseconds when the search index is

preloaded to memory.

For fair comparison, to prepare same number of candidate pages in Phase 2

for TP and RTP, we set K = k · V . We use K = 2000 and k = 100 for the Web

56



Chapter 2. Multi-version Search System

Time (ms) OP TP RTP

Web
SSD 5901 153.4 67.28

HDD 5950 252 938.6

Wiki
SSD 1049 128.7 55.92

HDD 1098 227.3 738.2

GitHub
SSD 5848 588.9 147.4

HDD 5897 687.5 303.6

Table 2.3: Query processing time in milliseconds including the index load cost

from an SSD or HDD.

with V = 20, K = 1000 and k = 77 for Wiki with V = 13, and K = 5000 and

k = 12 for GitHub with V = 439. Table 2.2 lists the time cost of RTP, OP and

TP in milliseconds when the search index is kept in memory. OP that navigates

all versions of documents is much more time consuming than TP and RTP. For

the Web dataset, OP takes 156x more time than RTP. For the Wiki dataset, OP

takes 31x more time than RTP. For the GitHub dataset, OP takes 40x more time

than RTP.

In terms of TP vs. RTP, for GitHub with a large number of versions, RTP

is about 4.12x as fast as TP. On the other hand, for the Web and Wiki datasets

with a modest number of versions, RTP is about 3.99x as fast as TP on Web data

57



Chapter 2. Multi-version Search System

 0

 1000

 2000

 3000

 4000

 5000

 6000

OP TP RTP

T
im

e
(m

s
)

Methods

WebHDD
WebSSD
WikiHDD
WikiSSD

GitHubHDD
GitHubSSD

Figure 2.6: Query processing time of different search methods when the index is

on SSD or HDD.

and 3.83x on Wiki data. RTP exhibits a fast performance in dealing with a large

number of versions. This is because the high search scope reduction using the

representative index has more efficiency benefits as the number of versions per

document increases. In general, RTP has better efficiency than TP algorithm no

matter the dataset has large number of versions or small number of versions.

Table 2.2 also lists the cost distribution of Phase 1 and Phase 2 time in detail.

RTP’s Phase 1 is faster than that of TP because RTP’s Phase 1 search scope

focused on representatives is much smaller while Phase 1 of TP searches the index

58



Chapter 2. Multi-version Search System

Web Wiki GitHub

0

2,000

4,000

6,000
T

im
e(

m
s)

OP TP RTP

Figure 2.7: Query processing time of different search methods when the index is

on SSD

of all document versions even positional information is skipped. Phase 1 of RTP

has more time advantage for the GitHub dataset in which there are more versions

per document. Note that TP’s Phase 1 time reported here is higher than ”a few

ms” reported in [56]. This is because K parameter selected for Phase 1 in our

experiment is larger in order to improve relevance.

Comparing TP and RTP’s Phase 2 time, RPT is 5.41x as fast as TP on

Web dataset, 4.16x on Wiki dataset and 3.86x on GitHub dataset. While our

optimization plays a significant role, one reason is that extracting the positional

information in [56] uses a global term-fragment index. Following our analysis on

59



Chapter 2. Multi-version Search System

Web Wiki GitHub

0

2,000

4,000

6,000
T

im
e(

m
s)

OP TP RTP

Figure 2.8: Query processing time of different search methods when the index is

on HDD

Option B in Section 2.4.1, if we replace cost of searching local reuse table to a

global reuse table, then the cost of position information extraction increases by

a ratio of logFi

log fi
where Fi is the average posting length of global term-fragment

index, which is much larger than fi. This corroborates a benefit of cluster-based

retrieval.

Table 2.3 shows the total processing time per query including the index loading

overhead from an SSD or HDD. The gap between TP and RTP is narrowed because

RTP has to access the index per version cluster separately and this results in more

random disk block reads. Fortunately the fast SSD seek time for random I/O

60



Chapter 2. Multi-version Search System

still allows RTP to outperform others. RTP is 2.28x as fast as TP on the Web

dataset, 2.30x on Wiki and 3.99x on GitHub. RTP is 87.7x as fast as OP on the

Web dataset, 18.8x on Wiki and 39.7x on GitHub. The SSD I/O cost is about

44%, 41%, or 4% of the overall time, respectively for these datasets. Searching

the GitHub dataset incurs the smallest I/O cost percentage because the number

of versions per cluster is the highest and its k value is the smallest. The above I/O

cost may be further reduced in the future with more code optimization. When

the index resides in HDD, OP is still the slowest because its slow performance in

Phase 1. RTP is 6.34x as fast as OP on the Web dataset, 1.49x on Wiki and 19.4x

on GitHub. Comparing to TP, the time advantage of RTP diminishes in Phase 2

because of high random I/O cost. For GitHub with 439 versions per document,

RTP is 2.26x as fast as TP. For Web wth 20 versions per page and Wiki with 13

versions per document, TP is 3.72x and 3.25x as fast as RTP. Thus we recommend

RTP to be used when the search index can be stored in an SSD. It is suitable for

HDDs only when handling a very large number of versions.

61



Chapter 2. Multi-version Search System

Time (ms) Position extraction Intersection Scoring

Web 9.570 0.24 11.55

Wiki 15.87 0.25 12.69

GitHub 96.47 1.44 41.77

Table 2.4: Cost distribution of RTP at Phase 2

2.5.3 A Comparison of Phase 2 Indexing and Traversal

Options

Table 2.4 shows the cost distribution of RTP in-memory search time at Phase

2. The feature extraction time is significant and this demonstrates the importance

of reducing conversion time in Phase 2 computation.

Time (ms) Web Wiki GitHub

Option A 35.74 20.81 128.5

Option B 9.778 23.57 124.6

Option C 9.57 15.87 96.47

Cluster-choice A 36.34% 91.67% 89.37%

Optimum 8.472 13.55 77.67

Table 2.5: In-memory search time with different options for Phase 2.

62



Chapter 2. Multi-version Search System

Table 2.5 lists the average query processing time of Phase 2 with various op-

tions. Row marked “Optimum” is computed by choosing the minimum value

among Option A and B for each query in searching each cluster. The switch con-

dition listed in Algorithm 2 may not find the best choice in all cases and thus this

row represents the lower time bound an optimum algorithm may achieve. Row

marked “Cluster-choice A” lists the percentage of the clusters that choose Option

A as the traversal method decided by Option C. Option B can be 265% faster

than Option A for Web, but can be 13% slower for Wiki. Option C adaptively

predicts the winner between Option A and B, and is getting closer to what the

optimum can accomplish. Compared to Option A and B, Option C is up-to 273%

faster for Web , 48.5% for Wiki, and 33.2% for GitHub.

Why is Option A slower than Option B even 89.37% of clusters choose Option

A traversal? The reason is that choosing Option A gives an improvement of

0.5523ms per cluster than choosing Option B in this case. In comparison, 10.63%

clusters choose Option B, which gives an improvement of 5.484ms per cluster than

choosing Option A. In general, we find that choosing Option A often delivers

a relatively smaller time reduction while taking Option B often yields a bigger

reduction. One reason is that Option B is often chosen when handling popular

words, which tend to carry more shares of the overall search cost. For Wiki,

choosing Option A reduces time by 0.0430ms per cluster while time reduction is

63



Chapter 2. Multi-version Search System

0.304ms per cluster when choosing Option B. For Web, time reduction 0.01191ms

per cluster than choosing Option A and it is 0.8575ms per cluster when choosing

Option B.

Index(MB) Web Wiki GitHub

Option A 907 614 264

Option B 1225 905 452

Option C 1411 1008 654

Global 1237 1044 991

Table 2.6: Phase 2 index size of different options

Index(MB) Web Wiki GitHub

Posting bitvectors 323 294 155

Term-fragment index 721 511 62

Fragment-version reuse table 186 103 202

Version-fragment mapping 181 100 235

Table 2.7: Phase 2 index size of different structures

Table 2.6 shows the compressed Phase 2 index storage size in megabytes under

different options. Note that the uncompressed index size can be upto an order of

magnitude larger than the numbers reported here. The row marked with “Global”

64



Chapter 2. Multi-version Search System

combines all data structures without cluster separation as explained at the end of

Section 2.4.3. The order of the space usage is Option C, Option B and Option A.

Option C does use more space for accomplishing the fastest processing time. For

Web and Wiki datasets in which V is modest, the space difference ratio between

Option A and Option B is about 26% and 32%. This is close to our storage

cost analysis in Section 2.4.3 which estimates an approximated difference bound

as 23%. From GitHub’s result in which the number of version is large, the space

difference ratio between Option B and Option C is about 31%. That is also within

the estimated upper bound 50%.

Option C has similar cost as the global index for Wiki. For GitHub, the global

index takes about 50% more space than Option C, which is about the same as

what the space anlysis has estimated when V is very large. For Web with a modest

number of versions, the global index uses 12.3% less space than Option C, which

does not exceed the estimated upper bound 28.8%.

Table 2.7 shows the size of different components in our index. For Web and

Wiki’s results with a modest number of versions, term-to-fragment index is the

largest component. On the other hand, for GitHub dataset, term-to-fragment

index becomes less significant. That is because the fragment-based compres-

sion [118] becomes more effective for a large number of versions.

65



Chapter 2. Multi-version Search System

2.5.4 A Comparison on Relevance Scores

For single-word queries, the relevance of RTP is about the same as that of

TP and OP and we report the results of relevance evaluation on queries with

two or more words. We have randomly sampled 50 queries per dataset with

a distribution following the log study in [8]. Here are some sample queries on

the three datasets: 1) Web: dentist insurance, teaching assistant salary, student

research grant application, international student center visa application; 2) Wiki:

heart disease, England football team, second world war death, united nations

security council members; 3) GitHub: Ethernet adapter, virtual memory access,

virtual device data block, Linux kernel boot load device driver. There are four

students involved in rating the final results of the different search methods with

a score leveled from 0 to 3. Here relevance level 3 means the selected version is

perfect for answering the query and level 0 means irrelevant. The names of search

methods are not revealed to the evaluators as we union results from all algorithms

together. Thus there is no bias in the rating process.

The default representative of RTP uses a superdocument that starts from the

longest version (SLO) as the basis and then includes all words from versions. We

have compared another way of selecting the representatives: the superdocument

starts from the latest version(SLA).

66



Chapter 2. Multi-version Search System

vNDCG1@10 Web Wiki GitHub

OP 0.6478 0.7012 0.6889

K=200, 130, 4390 TP 0.4268 0.4833 0.5166

(k=10) RTP 0.6157 0.6460 0.6137

K=400, 260, 8780 TP 0.5856 0.6364 0.6253

(k=20) RTP 0.6557 0.6974 0.6664

K=1000, 650, 21950 TP 0.6460 0.6888 0.6780

(k=50) RTP 0.6560 0.6988 0.6782

K=2000, 1300, 43900 TP 0.6468 0.6912 0.6823

(k=100) RTP 0.6562 0.6988 0.6868

Table 2.8: Relevance scores of RTP compared with the other methods in terms of

vNDCG@10 for different k values and K=k*V

Table 2.8 lists the vNDCG1@10 results of RTP with SLO method compared to

OP and TP for the three datasets. The table lists the number of top documents

(K) selected at Phase 1 for TP and the corresponding number of top clusters (k)

selected at Phase 1 at RTP. For example, “K=200, 130, 4390 (k=10)” means

that TP selects top 200, 130, and 4390 for three datasets Web, Wiki and GitHub

67



Chapter 2. Multi-version Search System

Web Wiki GitHub
0.55

0.6

0.65

0.7

0.55

0.65

v
N

D
C

G
1@

10

LA LO SLA SLO

Figure 2.9: Impact of representative selection on vNDCG1@10 relevance scores

respectively while RTP selects top 10 clusters which contain K pages in total. For

a smaller K (and k), RTP is doing better than TP by taking the proximity into

account earlier. Still both RTP and TP have an insufficient coverage of relevant

results in Phase 1 and thus have a relatively lower score compared to OP. When

increasing the number of top results in Phase 1, the relevancy gap between TP

and RTP becomes smaller and also both are getting closer to OP.

Figure 2.9 depicts the vNDCG1@10 scores of different representative selection

options when k is 20 and SLO is the best choice among these options. The

relevance score of SLO is 7.5% higher than SLA for Web, 1.3% lower for Wiki,

and 0.7% lower for GitHub. On average, SLO is better than SLA by 1.83%. We

68



Chapter 2. Multi-version Search System

also assess the impact of adding all words from versions to the superdocuments.

LA means using the latest version without adding words from other documents.

LO means using the longest version without adding words from other documents.

For all three datasets, the superdocument-based selection (SLA or SLO) is in

general more effective than LA or LO. For the Wiki dataset, SLA is 4.39% better

than LA and SLO is 0.87% better than LO. For the Web dataset, SLA is 5.48%

better than LA and SLO is 4.39% better than LO. For GitHub data, SLA improves

0.89% over LA and SLO improves 1.73% over LO. The longest version is more

effective in representing the positional information. Adding the extra terms in a

super version provides 2.33% relevance improvement on average.

Ratio LA LO SLA SLO

Web 50.32% 95.19% 100.00% 100.00%

Wiki 94.26% 98.73% 100.00% 100.00%

GitHub 92.64% 96.60% 100.00% 100.00%

Table 2.9: Word coverage of the four representative selection methods

Table 2.9 shows the average distinct word coverage ratio (AWCR) for the four

representative selection algorithms. Word coverage ratio of a document group is

calculated by dividing the total number of distinct words in a document repre-

69



Chapter 2. Multi-version Search System

sentative by that of all versions of this document. AWCR is the average word

coverage ratio of all documents. Since SLA and SLO have a non-positional index

which covers words from all versions of a document, the AWCR value of SLA and

SLO is 100%. LO has a word coverage 89% higher than LA for the Web dataset,

which indicates SLO has a significantly better positional information coverage

than SLA. This explains why vNDCG score of LO is 8.6% better than LA and

the score of SLO is 7.5% better than SLA in Figure 2.9. For other datasets, the

AWCR value of LA is closer to LO in Table 2.9 and that explains the relevance

score of SLA and SLO is close in Figure 2.9.

2.6 Summary

In this chapter, we study the problem of, and propose a solution to, mul-

tiversion data search using positional index structures. In particular, the main

contribution of this chapter is a hybrid indexing method with adaptive runtime

traversal in supporting fast two-phase versioned data search and an integration

with cluster-based retrieval using guided representatives. Our evaluation with a

prototype implementation using three datasets shows the following results.

• RTP has a significant efficiency advantage on SSDs. It is suitable for HDDs

only when there is a very large number of versions. RTP can be 3.83x to

70



Chapter 2. Multi-version Search System

4.12x as fast as the TP method if the search index is in memory. When

the overhead of loading the index from an SSD is included, RTP can be

2.28x to 3.99x as fast as TP. Both approaches can be one or two orders

of magnitude faster than a classical one-phase algorithm on SSDs while

delivering competitive relevancy with a proper choice of top K or k value.

• The hybrid index with adaptive traversal (Option C) can be up-to 273%

faster than Options A and B in Phase 2 in-memory query processing. Option

C design represents a time-space tradeoff as Option A can use up-to 59.6%

less compressed space while Option B can use up-to 30.9% less. On average,

the space cost of Option C is more or less comparable to that of a global

index.

The proposed work is focused on conjunctive queries and one future study is

to consider disjunctive queries. Another future study is to investigate the incre-

mental index update with time-based partitioning. When a new version is added,

fragments shared with other document versions need to be identified and an ap-

proximation under a certain time interval may be applied for cost reduction. The

Phase 1 index may be changed following the traditional index update techniques

if the cluster representative changes and the update for a cluster index is fairly

local.

71



Chapter 3

Cache-Conscious Runtime

Optimization for Ranking

Ensembles

3.1 Introduction

Learning ensembles based on multiple trees are effective for web search and

other complex data applications (e.g. [49, 33, 51]). It is not unusual that algo-

rithm designers use thousands of trees to reach better accuracy and the number

of trees becomes even larger with the integration of bagging. For example, win-

ning teams in the Yahoo! learning-to-rank challenge [33] have all used boosted

72



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

regression trees in one form or another and the total number of trees reported

for scoring ranges from 3,000 to 20,000 [52, 24, 53], or even reaches 300,000 or

more combined with bagging [87]. Generally speaking, application training data

with less attributes may require smaller trees or a smaller number of trees. But

as complex applications evolve over the time, more attributes are augmented and

more trees can yield better accuracy.

Computing scores from a large number of trees is time-consuming. It is very

expensive because each tree is traversed with branching conditions to compute

an individual score for each document. Access of irregular document attributes

along with dynamic tree branching impairs the effectiveness of CPU cache and

instruction branch prediction. Compiler optimization [13] cannot handle complex

code such as rank scoring very well. As a result, the query processing time or

throughput is affected by using a large number of ensemble trees.

For example, processing a 150-leaf (at most 150 leaves per tree) 8,051-tree

ensemble can take up to 3.04 milliseconds for a document with 519 features on

an AMD 3.1 GHz core. Thus the scoring time per query exceeds 6 seconds to

rank the top-2,000 results. It takes more time proportionally to score more doc-

uments with larger trees or more trees and this is too slow for interactive query

performance. Multi-tree calculation can be parallelized; however, query process-

ing throughput is not increased because less queries are handled in parallel. That

73



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

is too slow for a real-time search system, even it is parallelizable with multiple

cores. Today’s search engines require a query processing time be completed within

several hundreds of milliseconds when result caching is not used and a highly ef-

ficient execution of a tree-based ranking model is desirable. which stimulates the

research of efficiently ranking algorithm even more.

Tradeoff between ranking accuracy and performance can be played by us-

ing earlier exit based on document-ordered traversal (DOT) or scorer-ordered

traversal (SOT) [26], and by tree trimming [11]. The work in [12] proposes an

architecture-conscious solution called VPred that converts control dependence of

code to data dependence and employs loop unrolling with vectorization to reduce

instruction branch mis-prediction and mask slow memory access latency. The

weakness is that cache capacity is not fully exploited and maintaining the lengthy

unrolled code is not convenient. One weakness is that the length of the enrolled

code is quadratic to the depth of a tree and it is hard to maintain such code. For

example, a tree with depth of 55 requires over 20,000 lines of unrolled C code.

In a modern CPU architecture, unorchestrated slow memory access incurs sig-

nificant costs since memory access latency can be up to 200 times slower than L1

cache latency. How can fast multi-tree ensemble ranking with simple code struc-

ture be accomplished via memory hierarchy optimization, without compromising

ranking accuracy? This is the focus of this chapter.

74



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

We propose a cache-conscious 2D blocking method to optimize data traversal

for better temporal cache locality. Our experiments show that 2D blocking can be

up to 620% faster than DOT, up to 245% faster than SOT, and up to 50% faster

than VPred. After applying 2D blocking on top of VPred which shows advantage

in reducing branch mis-prediction, the combined solution Block-VPred could be

up to 100% faster than VPred. The proposed techniques are complementary

to previous work and can be integrated with the tree trimming and early-exit

approximation methods.

3.2 Background and Related Work

In this section, we will provide background and related work. Firstly, we

will discuss learning to efficiently rank, which is how to do fast ranking on a given

learned model. Here we mainly talk about tree-based model because it is the most

state-of-the-art one. Secondly, we will discuss different traversal patterns espe-

cially the document-ordered traversal (DOT) and scorer-ordered traversal (SOT).

We will also introduce VPred which is our major baseline method in this work.

At last, we will talk about search engine caching technique briefly which is related

but more orthogonal to our work here.

75



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

3.2.1 Learning to Efficiently Rank

Document ranking was treated by manually designing ranking functions in

the past (e.g. BM25). Recently, supervised learning has been proved to be the

most effective way to solve this problem. One of the ealist work among which

is RankNet [23], which uses a neural network as a training model. Besides this,

a lot of other famous methods are proposed by researchers, e.g. MART [48],

RankBoost [47], AdaRank [112], Coordinate Ascent [78], LambdaMART [111],

ListNet [28], Random Forests [20] and so on. To provide a fair comparison of all

the ranking models, Yahoo! learning-to-rank challenge [33] invites researchers all

over the world to participate in a contest in ranking. Boosted regression trees are

proved to be the most effective learning models from this contest. In this chapter,

we will discuss how to increase query throughput under the setting of the most

effective ranking model: boosted regression trees.

We first define the problem of tree-based ensemble ranking. Given a query,

there are n documents matching this query and the ensemble model contains m

trees. Each tree is called a scorer and contributes a subscore to the overall score

for a document. The final ranking score is a summation over all subscores.

Gradient Boosted Regression Tree algorithm which has been proved to be

highly effective in learning to rank problems. However, the more accurate results

76



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

we want, the more complex model(more ensembles) we need. Therefore, efficiency

and effectiveness is a tradeoff in the ranking problem.

There are a number of performance speedup techniques proposed in the pre-

vious work to speedup fast ranking score computation, which can be summarized

into two categories.

• The first category is to achieve a tradeoff between ranking efficiency and

accuracy. In the early time, researchers focus more on achieving a efficiency-

effectiveness tradeoff. In [27], Noticing that most users pay more attention

to the first few pages of the ranking results and document relevance follows

a skewed distribution, an early exit optimization was developed to reduce

scoring time while retaining a good ranking accuracy. In [108, 109], ranking

is optimized to seek the tradeoff between efficiency and effectiveness. In

[109], Wang et. al proposed a cascade ranking model that progressively

prunes and refines the candidate documents set to minimize retrieval latency

and maximize accuracy. Asadi et.al [11] considered the fact that compact,

shallow, and balanced trees yield faster computation and generated such

trees with trimming technique.

• The second category is to improve efficiency given a fixed model. In recent

years, there has been several research work on improving ranking efficiency

without affecting accuracy. The work in [12] proposed an architecture-

77



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

conscious solution called VPred that converts control dependence of code

to data dependence and employs loop unrolling with vectorization to reduce

instruction branch misprediction and mask slow memory access latency. The

weakness is that cache capacity is not fully exploited and maintaining the

lengthy unrolled code is not convenient.

Our method belongs to the second category. We propose a 2D framework

which can better use cache locality to improve ranking efficiency while does not

affect accuracy at all. Also, noting that our framework does not only apply to tree-

based ensemble ranking, it also works with many other models and is a generic

one.

3.2.2 Traversal Patterns

Following the notation in [26], Algorithm 3 shows the program of DOT. At

each loop iteration i, all trees are calculated to gather subscores for a document

before moving to another document. In implementation, each document is repre-

sented as a feature vector and each tree can be stored in a compact array-based

format [12]. The time and space cost of updating the overall score with a subscore

is relatively insignificant. The dominating cost is slow memory accesses during

tree traversal based on document feature values. By exchanging loops i and j in

Algorithm 3, DOT becomes SOT. Their key difference is the traversal order. In

78



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

SOT a tree is used to compute subscores for all documents first before visiting

next tree. Operations on test instances are interleaved, and one scorer is applied

to all instances before moving to the next. The outer loop iterates on scorers, so

it requires keeping all feature vectors in memory until the last scorer is executed.

SOT and DOT exhibit different performance behavor. Previous research [26] fa-

vored DOT due to its good cache hit rates in accessing feature vectors, as well as

the convenience to de-allocate an instance vector once it is scored.

1 for i = 1 to n do

2 for j = 1 to m do

3 Compute a subscore for document i with tree j.

4 Update document score with the above subscore.

5 end

6 end

Algorithm 3: Ranking score calculation with DOT.

Figure 3.1(a) shows the data access sequence in DOT, marked on edges be-

tween documents and tree-based scorers. These edges represent data interaction

during ranking score calculation. DOT first accesses a document and the first tree

(marked as Step 1); it then visits the same document and the second tree. All

m trees are traversed before accessing the next document. As m becomes large,

79



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

(a) (b)

Figure 3.1: Data access order in DOT (a) and SOT (b).

the capacity constraint of CPU cache such as L1, L2, or even L3 does not allow

all m trees to be kept in the cache before the next document is accessed. The

temporal locality of a document is exploited in DOT since the cached copy can

be re-accessed many times before being flushed; however, there is no or minimal

temporal locality exploited for trees. Similarly, Figure 3.1(b) marks data interac-

tion edges and their access order in SOT. SOT traverses all documents for a tree

before accessing the next tree. Temporal locality of a tree is exploited in SOT;

however, there is no or minimal temporal locality exploited for documents when

n is large.

VPred [12] converts if-then-else branches to dynamic data accesses by unrolling

the tree depth loop. The execution still follows DOT order, but it overlaps the

score computation of several documents to mask memory latency. Such vector-

80



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

ization technique also increases the chance of these documents staying in a cache

when processing the next tree. However, it has not fully exploited cache capacity

for better temporal locality. Another weakness is that the length of the unrolled

code is quadratic to the maximum tree depth in a ensemble, and linear to the

vectorization degree v. For example, the header file with maximum tree depth

51 and vectorization degree 16 requires 22,651 lines of code. Long code causes

inconvenience in debugging and code extension. In comparison, our 2D blocking

code has a header file of 159 lines.

Our block-based algorithm aims at better utilizing cache to reduce cache miss

rate and reduce the runtime cost. While the processor is waiting for memory

access for one instance, useful computation can happen on another. Rooted from

DOT and SOT, our algorithm does not take the extreme of either, but targeting

the block-based traversal pattern and optimal block setting to increase speed.

3.2.3 Search Engine Caching Techniques

Another thread of research which is orthogonal to our work is search engine

caching techniques. Over the years, many caching techniques have been investi-

gated and used in search engines [14, 15, 16, 44, 77, 84, 85, 86]. In recent years,

research focus transfers to cache design on SSD disks [107, 103]. Search engine

cache is indeed helpful to improve query throughput. However, our work is or-

81



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

thogonal to them so our research can be added to a search system on top of any

of these caching techniques.

3.3 2D Block Algorithm

Algorithm 4 is a 2D blocking approach that partitions the program in Algo-

rithm 3 into four nested loops. The loop structure is named SDSD because the

first (outer-most) and third levels iterate on tree-based Scorers while the second

and fourth levels iterate on Documents. The inner two loops process d documents

with s trees to compute subscores of these documents. We choose d and s values

so that these d documents and s trees can be placed in the fast cache under its

capacity constraint. To simplify the presentation of this part, we assume m
s

and

n
d

are integers. The hierarchical data access pattern is illustrated in Figure 3.2.

The edges in the left portion of this figure represent the interaction among blocks

of documents and blocks of trees with access sequence marked on edges. For each

block-level edge, we demonstrate the data interaction inside blocks in the right

portion of this figure. Note that there are other variations of 2D blocking struc-

tures: SDDS, DSDS and DSSD. Our evaluation finds that SDSD is the fastest for

the tested benchmarks.

There are two to three levels of cache in modern AMD or Intel CPUs. For the

tested datasets, L1 cache is typically too small to fit multiple trees and multiple

82



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

1 Initialize scores to be zero;

2 for j = 0 to m
s
− 1 do

3 for i = 0 to n
d
− 1 do

4 for jj = 1 to s do

5 for ii = 1 to d do

6 Compute subscore for document i×d+ ii with tree j× s+ jj.

7 Update the score of this document.

8 end

9 end

10 end

11 end

Algorithm 4: 2D blocking with SDSD structure.

83



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

Figure 3.2: Data access order in the SDSD blocking scheme.

84



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

document vectors for exploiting temporal locality. Thus L1 is used naturally for

spatial locality and more attention is on L2 and L3 cache. 2D blocking design

allows the selection of s and d values so that s trees and d documents fit in L2

cache.

Detailed cache performance analysis requires a study of cache miss ratio esti-

mation in multiple levels of cache. We use a simplified cache-memory model to

illustrate the benefits of the 2D blocking scheme. This model assumes there is

one level of cache which can hold d document vectors and s tree-based scorers,

i.e. space usage for s and d do not exceed cache capacity. Here we estimate the

total slow memory accesses during score calculation using the big O notation. The

inner-most loop ii in Algorithm 4 loads 1 tree and d document vectors. Then loop

jj loads another tree and still accesses the same d document vectors. Thus there

are a total of O(s) +O(d) slow memory accesses for loops jj and ii. In loop level

i, the s trees stay in the cache and every document block causes slow memory

accesses, so memory access overhead is O(s) +O(d)× n
d
. Now looking at the the

outer-most loop j, total memory access overhead per query is m
s

(O(s) + O(n))

= O(m+ m×n
s

).

From Figure 3.1, memory access overhead per query in DOT can be estimated

as O(m × n + n) while it is O(m × n + m) for SOT. Since term m × n typically

85



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

dominates, our 2D blocking algorithm incurs s times less overhead in loading data

from slow memory to cache when compared with DOT or SOT.

Vectorization in VPred can be viewed as blocking a number of documents

and the authors have reported [12] that a larger vectorization degree does not

improve latency masking and for Yahoo! dataset, 16 or more degree performs

about the same. The objective of 2D blocking scheme is to fully exploit cache

locality. We can apply 2D blocking on top of VPred to exploit more cache locality

while inheriting the advantages of VPred. We call this approach Block-VPred.

The code length of Block-VPred is about the same as VPred.

In order to estimate the access cost of block-based approach, we break down

the cost into accessing different level of caches or memory. The efficiency of

algorithms could be evaluated using a cost ratio

δ1 +m1(δ2 − δ1) +m1m2(δ3 − δ2) +m1m2m3(δmem − δ3). (3.1)

Instead of processing all the documents or all the scorers at-a-time, we break

them each into several blocks, and process each block pair at a time. By varying

the number of documents processed at a time (d) and the number of scorers

processed at a time (s), we fit partial forward index and partial ensemble trees

in cache, achieving high cache utilization. As shown in Algorithm 4, block-based

86



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

Case m1 m2 m3 mmem Description

(D1) 1 1/s 0 0 D fits L2.

(D2) 1 1 1/s 0 D fits L3.

(D3) 1 1 1 1/s D fits memory.

(S1) 1/d d/n 0 0 S fits L2.

(S2) 1/d 1 d/n 0 S fits L3.

(S3) 1/d 1 1 d/n S fits memory.

Table 3.1: Cases of cache miss ratios for area S and D when fit different levels of

cache.

approach loop through m/s scorer blocks and n/d document blocks, where each

block evaluate d document against s scorers.

For each block, we illustrate the memory allocation in In tree-based models

like GBRT, each element is a regression tree. Within a tree, each node stores

a feature (fi) and a threshold (ti) to decide whether to proceed to left or right

subtree. A regression value is returned at some leaf node. The document is

stored in the format of forward index where arrays of weights (wj) are stored

adjacently. For a tree-based scorer with average depth L, a condition in a tree

and a corresponding weight in a document are accessed for each step, and the

step is repeated L times before a score is reached. Hence the total number of

87



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

data load is D0 = 2mnL considering both tree and documents. We estimate the

cache miss ratios for accessing data in D and S respectively, and list several cases

in Table 3.1. For example, if D fits L2 cache (case D1), the number of L2 cache

miss m2 could be reduced to 1/s because for s scorers inside a block, d document

weights are fetched to L2 cache only once. The situation for area S is slightly

different because scorers are the outer loop of the block computation. Each time

a scorer vector is fetched, the next d− 1 accesses are benefited because we do not

need to be fetched again for the d documents in the instance block. This explains

m1 = 1/d for cases S1, S2 and S3. If S fits L2 cache (case S1), it stays in cache

when comparing with documents from the first instance block till the n/dq block,

so m2 = d/n in this case.

We illustrate s and d values for the optimal case as follows. Once we feed the

ratios in Table 3.1 to Equation 3.1, we discover that most cache misses happen

when accessing area D since m1(D) � m1(S). The optimal choice occurs in the

upper boundary of case D1, when the documents in instance block fits right in

L2. It is clear that cases D2 and D3 are worse than D1 due to higher m3 or mmem

values.

88



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

3.4 Evaluations

3.4.1 Datasets and Experiment Settings

Settings. 2D block and Block-VPred methods are implemented in C and

VPred code is from [12]. Code is compiled with GCC using optimization flag -O3.

Memory is allocated for a whole tree with the maximum number of leaf nodes

at a time. The whole ensemble is stored adjacently in memory as an array of

trees. Experiments are conducted on a Linux server with 8 cores of 3.1GHz AMD

Bulldozer FX8120 and 16GB memory. FX8120 has 16KB of L1 data cache per

core, 2MB of L2 cache shared by two cores, 8MB of L3 cache shared by eight

cores. The cache line is of size 64 bytes. Experiments are also conducted in Intel

X5650 2.66GHz six-core dual processors and the conclusions are similar. In this

dissertation, we report the results from AMD processors.

Datasets. We use the following learning-to-rank datasets as the core test

benchmarks.

• Yahoo! dataset [33] with 709,877 documents and 519 features per document

from its learning-to-rank challenge.

• MSLR-30K dataset [2] with 3,771,125 documents and 136 features per doc-

ument.

89



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

• MQ2007 dataset [1] with 69,623 documents and 46 features per document.

The tree ensembles are derived by the open-source jforests [51] package using

LambdaMART [24]. To assess score computation in presence of a large number

of trees, we have also used bagging methods to combine multiple ensembles and

each ensemble contains additive boosting trees.

There are 23 to 120 documents per query labeled in these datasets. In practice,

a search system with a large dataset ranks thousands or tens of thousands of top

results after the preliminary selection. We synthetically generate more matched

document vectors for each query. Among these synthetic vectors, we generate

more vectors bear similarity to those with low labeled relevance scores, because

typically the majority of matched results are less relevant.

Metrics. We mainly report the average time of computing a subscore for each

matched document under one tree. This scoring time multiplied by n and m is

the scoring latency per query for n matched documents ranked with an m-tree

model. Each query is executed by a single core.

3.4.2 A Comparison of Scoring Time

Table 3.2 lists scoring time under different settings. Column 2 is the maximum

number of leaves per tree. Tuple [s,d,v] includes the parameters of 2D blocking and

the vectorization degree of VPred that leads to the fastest scoring time. Choices of

90



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

 50

 100

 150

 200

 250

 300

 350

 400

100 500 1000 2000 4000 8000 16000 32000

T
im

e
 (

n
s
)

Ensemble size m

DOT

SOT

VPred

2D blocking

Block-VPred

(a)

 50

 100

 150

 200

 250

 300

 350

 400

10 100 1000 2000 500010000 100000

T
im

e
 (

n
s
)

Number of matched documents n

DOT

SOT

VPred

2D blocking

Block-VPred

(b)

 50

 100

 150

 200

 250

 300

 350

 400

1 10 100 1000 10000 100000

T
im

e
 (

n
s
)

Number of documents per block d

s=10
s=100

s=1,000
s=8,000

(c)

Figure 3.3: Scoring time per document per tree in nanoseconds when varying

m (a) and n (b) for five algorithms, and varying s and d for 2D blocking (c).

Benchmark used is Yahoo! dataset with a 150-leaf multi-tree ensemble.

91



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

Dataset Leaves m n DOT SOT VPred [v] 2D blocking [s, d] Block-VPred [s, d, v] Latency

Yahoo!

50 7,870 5,000 186.0 113.8 47.4 [8] 36.4 [300, 300] 36.7 [300, 320, 8] 1.43

150 8,051 2,000 377.8 150.2 123.0 [8] 81.9 [100, 400] 76.1 [100, 480, 8] 1.23

400 2,898 5,000 312.3 223.8 136.2 [8] 90.9 [100, 400] 86.0 [100, 400, 8] 1.25

MSLR-30K 50 1,647 5,000 88.3 41.4 32.6 [8] 26.6 [500, 1,000] 31.1 [500, 1,600, 8] 0.22

MQ2007
50 9,870 10,000 1.79 1.66 2.02 [8] 1.51 [300, 5,000] 1.94 [300, 5,000, 8] 0.15

200 10,103 10,000 204.1 30.3 43.1 [32] 28.3 [100, 10,000] 26.2 [100, 5,000, 32] 2.65

Table 3.2: Scoring time per document per tree in nanoseconds for five algorithms.

Last column shows the average scoring latency per query in seconds under the

fastest algorithm marked in gray.

v for VPred are the best in the tested AMD architecture and are slightly different

from the values reported in [12] with Intel processors. Last column is the average

scoring latency per query in seconds after visiting all trees. For example, 2D

blocking is 361% faster than DOT and is 50% faster than VPred for Row 3 with

Yahoo! 150-leaf 8,051-tree benchmark. In this case, Block-VPred is 62% faster

than VPred and each query takes 1.23 seconds to complete scoring with Block-

VPred. For a smaller tree in Row 5 (MSLR-30K), Block-VPred is 17% slower than

regular 2D blocking. In such cases, the benefit of converting control dependence

as data dependence does not outweigh the overhead introduced.

Figure 3.3 shows the scoring time for Yahoo! dataset under different settings.

In Figure 3.3(a), n is fixed as 2,000; DOT time rises dramatically when m in-

92



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

creases because these trees do not fit in cache; SOT time keeps relatively flat as m

increases. In Figure 3.3(b), m is fixed as 8,051 while n varies from 10 to 100,000.

SOT time rises as n grows and 2D blocking is up to 245% faster. DOT time is

relatively stable. 2D blocking time and its gap to VPred are barely affected by

the change of m or n. Block-VPred is 90% faster than VPred when n=5,000, and

100% faster when n=100,000. Figure 3.3(c) shows the 2D blocking time when

varying s and d. The lowest value is achieved with s=1,000 and d=100 when

these trees and documents fit in L2 cache.

3.4.3 Cache Behavior

Linux perf tool reports L1 and L3 cache miss ratios during execution. We

observed no strong correlation between L1 miss ratio and scoring time. L1 cache

allows program to exploit limited spatial locality, but is too small to exploit tem-

poral locality in our problem context. L3 miss ratio does show a strong correlation

with scoring time. In our design, 2D blocking sizes (s and d) are determined based

on L2 cache size. Since L2 cache is about the same size as L3 per core in the tested

AMD machine, reported L3 miss ratio reflects the characteristics of L2 miss ratio.

Figure 3.4 plots the L3 miss ratio under the same settings as Figure 3.3 for

Yahoo! data. This ratio denotes among all the references to L3 cache, how many

are missed and need to be fetched from memory. The ratios of Block-VPred,

93



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

 0

 10

 20

 30

 40

 50

 60

100 500 1000 2000 4000 8000 16000 32000

L
3
 c

a
c
h
e
 m

is
s
 r

a
ti
o
 (

%
)

Ensemble size m

DOT

SOT

VPred

2D blocking

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 100 1000 2000 500010000 100000

L
3
 c

a
c
h
e
 m

is
s
 r

a
ti
o
 (

%
)

Number of matched documents n

DOT

SOT

VPred

2D blocking

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 10 100 1000 10000 100000

L
3
 c

a
c
h
e
 m

is
s
 r

a
ti
o
 (

%
)

Number of documents per block d

s=10
s=100

s=1,000
s=8,000

(c)

Figure 3.4: L3 miss ratio when varying n (a), varying m (b) for four algorithms,

and when varying s and d for 2D blocking (c).

94



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

which are not listed, are very close to that of 2D blocking. In Figure 3.4(a) with

n=2,000, SOT has a visibly higher miss ratio because it needs to bring back most

of the documents from memory to L3 cache every time it evaluates them against

a scorer; n is too big to fit all documents in cache. The miss ratio of DOT is

low when all trees can be kept in L2 and L3 cache; this ratio grows dramatically

after m=500. Figure 3.4(b) shows miss ratios when m=8,051 and n varies. The

miss ratio of SOT is close to VPred and 2D blocking when n¡100, but deteriorates

significantly when n increases and these documents cannot fit in cache any more.

The miss ratios of VPred in both Figure 3.4(a) and 3.4(b) are below 6% because

vectorization improves cache hit ratio. Performance of 2D blocking is the best,

maintaining miss ratio around 1% even when m or n is large.

Figure 3.4(c) plots L3 miss ratio of 2D blocking when varying s and d block

sizes. The trends are strongly correlated with the scoring time curve in Fig-

ure 3.3(c). The optimal point is reached with s=1,000 and d=100 when these

trees and documents fit in L2 cache. When s=1,000, miss ratio varies from 1.64%

(d=100) to 78.1% (d=100,000). As a result, scoring time increases from 86.2ns to

281.5ns.

95



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

3.4.4 Branch Mis-prediction

We have also collected instruction branch mis-prediction ratios during compu-

tation. For MQ2007 and 50-leaf trees, mis-prediction ratios of DOT, SOT, VPred,

2D blocking and Block-VPred are 1.9%, 3.0%, 1.1%, 2.9%, and 0.9% respectively.

For 200-leaf trees, these ratios increase to 6.5%, 4.2%, 1.2%, 9.0%, and 1.1%.

VPred’s mis-prediction ratio is lower than 2D blocking while its scoring time is

still longer, indicating the impact of cache locality on scoring time is bigger than

branch mis-prediction. For smaller trees, mis-prediction ratios of 2D blocking and

Block-VPred are close and this explains why Block-VPred does not outperform 2D

blocking in Table 3.2 for 50-leaf trees. Adopting VPred’s strategy of converting

if-then-else instructions pays off for large trees. For such cases when n increases,

Block-VPred outperforms 2D blocking with lower branch mis-prediction ratios.

This is reflected in the Yahoo! 150-leaf 8,051-tree benchmark: mis-prediction ra-

tios are 1.9%, 2.7%, 4.3%, and 6.1% for 2D blocking, 1.1%, 0.9%, 0.84%, and

0.44% for Block-VPred, corresponding to the cases of n=1,000, 5,000, 10,000 and

100,000 respectively.

96



Chapter 3. Cache-Conscious Runtime Optimization for Ranking Ensembles

3.5 Summary

The main contribution of this work is cache-conscious design for computing

ranking scores with a large number of trees and/or documents by exploiting mem-

ory hierarchy capacity for better temporal locality. Multi-tree score calculation

of each query can be conducted in parallel on multiple cores to further reduce

latency. Our experiments show that 2D blocking still maintains its advantage

using multiple threads. In some applications, the number of top results (n) for

each query is inherently small and can be much smaller than the optimal block

size (d). In such cases, multiple queries could be combined and processed together

to fully exploit cache capacity. Our experiments with Yahoo! dataset and 150-leaf

8,051-tree ensemble shows that combined processing could reduce scoring time

per query by 12.0% when n=100, and by 48.7% when n=10.

Our 2D blocking technique is studied in the context of tree-based ranking

ensembles and one of future work is to extend it for other types of ensembles by

iteratively selecting a fixed number of the base rank models that can fit in the

fast cache.

97



Chapter 4

A Comparison of Cache Blocking

Methods

4.1 Introduction

Ensemble-based machine learning techniques have been proven to be effec-

tive for dealing data-intensive applications with complex features and document

ranking is a representative application benefiting from use of the large number of

ensembles. For example, in the Yahoo! learning-to-rank challenge [33], all winners

have used some forms of gradient boosted regression trees, e.g. [48]. The total

number of trees reported for ranking can be upto 3,000 to 20,000 [52, 24, 53], or

even 300,000 or more using bagging method [87]. Ranking for large ensembles is

98



Chapter 4. A Comparison of Cache Blocking Methods

expensive. As reported in [99], it takes more than 6 seconds to rank the top-2000

results for a query processing a 8,051-tree ensemble and 519 features per document

on an AMD 3.1 GHz core. If such an algorithm is used to compute scores for a

large number of vectors in applications such as classification, the total job is also

very time consuming. It takes even more time for a larger ensemble or for more

candidate documents. The ranking process can be parallelized and the time can

be reduced. However, it does not help for improving query throughput because

less queries are processed in parallel.

The previous work addressed the speedup of runtime execution for ensemble-

based ranking in several aspects including tree trimming [11] for a tradeoff of

ranking accuracy and performance, earlier exit [27], and loop unrolling [12], and

ensemble restructuring for a tree-based model [76]. Memory access can be 100x

slower than L1 cache and un-orchestrated slow memory access incurs significant

cost, dominating the entire computation. The work shown in [99, 76] proposes

a cache-conscious blocking method for better cache locality. However, there are

other block methods to select and it is an open problem how to identify the best

cache blocking method and parameter settings given different data and architec-

ture characteristics. Experimentally determining this choice can be extremely

time-consuming and the comparative result may not be valid any more with a

change of underlying feature vector structure or architecture. This chapter pro-

99



Chapter 4. A Comparison of Cache Blocking Methods

vides an analysis of multiple blocking methods with different data traversal orders,

which provides better insight on program execution performance and leads a fast

approximation to select the optimized structure for different application and ar-

chitecture scenarios.

Here, we consider the fast computation of ensemble-based scoring that aggre-

gates and derives final scores for n feature vectors using m ensembles. In addition

to comparing the order of traversal in different cache blocking methods, we need

to select d out of n feature vectors and s out of m scorers to form the innermost

loop computation. For testing and comparing performance in ranking q sampled

queries, the time cost for searching through all combinations can be as high as

O(m2 ∗ n2 ∗ q). What is a guideline to select a good combination of d and s? We

will discuss this in this chapter.

The main contribution of this work is to develop an analytic framework to

compare memory access performance of data traversal under multi-level caches to

find the fastest program execution with effective use of memory hierarchy. Our

scheme results in a much smaller complexity with O(m ∗ n ∗ q) to assess and

compare performance with q test queries. Our experiments with three datasets

corroborate the effectiveness of search cost reduction while the guided approxi-

mation identifies a highly competitive blocking choice. We also demonstrate the

100



Chapter 4. A Comparison of Cache Blocking Methods

use of this scheme with QuickScorer [76] and for batched query processing that

significantly accelerate the score calculation without loss of ranking accuracy.

The rest of the chapter is organized as follow. Next, we describe the back-

ground information and related work. Section 4.3 discusses the design consider-

ations. Section 4.4 gives a comparative analysis on different blocking methods.

Section 4.5 presents evaluation results. Finally, Section 4.6 concludes the chapter.

4.2 Background and Related Work

Given n feature vectors and an ensemble model that contains m scorers, these

vectors and scorers fit in memory. The ensemble computation calculates a score

for each feature vector and each scorer contributes a subscore to the overall score

for a vector. For example, for ranking a document set with an additive regression

tree model [48, 24], each document is represented as a feature vector and each

tree can be stored in a compact array-based format [12]. Following the notation

in [27], Algorithm 5 shows the DS method with the two-loop standard execution

order. At each out loop iteration i, all scorers are used to gather subscores for

a vector before moving to another vector. The dominating cost is slow memory

accesses when scorers read feature vector values and update partial values.

Tang et. al [99] proposed a 2D cache blocking structure called SDSD as de-

picted in Algorithm 6 which partitions the program in Algorithm 5 into four

101



Chapter 4. A Comparison of Cache Blocking Methods

1 for i = 1 to n do

2 for j = 1 to m do

3 Update score for vector i with scorer j.

4 end

5 end

Algorithm 5: DS standard method for score calculation.

nested loops. The inner two loops process d feature vectors with s trees. To sim-

plify the presentation, we assume n/d and m/s are integers. By fitting the inner

block in fast cache, this method can be much faster than DS. There are other

possible cache blocking methods with different data traversal orders and it is an

unanswered question on how to choose among them. Also, in [99] there is no cost

analysis on how to set a proper parameter for the size of blocking in terms of s and

d values. While choices of their values can be restricted to fit in the fast cache,

they can still be fairly large. For example, s and d can still reach upto 3,276 and

11,440 respectively in some of our experiments shown in Section 4.5. Assume m

and n are smaller than these upper bound numbers, s ranges from 1 to m and d

ranges from 1 to n and there are m ∗ n combinations to compare as they all fit in

different levels of cache. Since running each test query takes O(n∗m∗q), the total

cost is O(m2 ∗ n2 ∗ q). For instance, given n = 10, 000, m = 3, 000, q = 1000, the

102



Chapter 4. A Comparison of Cache Blocking Methods

total time takes over 1,141 years with one core, assuming it takes 40 nanoseconds

to compute a partial score for a vector with a scorer. If we sample each of s and d

values with step gap 100, the total one-core time is over 41 days without knowing

if such sampling finds a solution competitive to the optimum. While running such

a sampling can be fully parallelized, we still need a faster scheme with well-guided

approximation.

1 for j = 0 to m
s
− 1 do

2 for i = 0 to n
d
− 1 do

3 for jj = 1 to s do

4 for ii = 1 to d do

5 Update score for vector i× d+ ii with scorer j × s+ jj.

6 end

7 end

8 end

9 end

Algorithm 6: 2D blocking with SDSD structure.

There are other performance speedup techniques proposed in the previous

work to speedup fast ranking score computation, which can be summarized into

two categories. The first category is to achieve a tradeoff between ranking effi-

103



Chapter 4. A Comparison of Cache Blocking Methods

ciency and accuracy. In [27], an early exit optimization was developed to reduce

scoring time while retaining a good ranking accuracy. In [108, 109], ranking is

optimized to seek the tradeoff between efficiency and effectiveness. Asadi et.al [11]

considered the fact that compact, shallow, and balanced trees yield faster com-

putation and generated such trees with trimming technique. The second cate-

gory is to improve efficiency given a fixed model. The work in [12] proposed an

architecture-conscious solution called VPred that converts control dependence of

code to data dependence and employs loop unrolling with vectorization. Lucchese

et.al proposed the QuickScorer (QS) algorithm [76] which traverses multiple trees

in an interleaved manner and accelerates with bit-wise operations. They propose

a block-wise variant of QS (called BWQS) by partitioning trees into blocks and

applying QS to each block of trees. Given different dataset characteristics, it is

an open problem how to find the optimal partitioning. Also there are other ways

to arrange blocking and our work is complementary and can be used to compare

different options.

4.3 Design Consideration and Cost Model

There are six ways of loop blocking depending on the order of data traversal:

DSD, SDS, DSDS, DSSD, SDDS, and SDSD. Following the naming in [103], sym-

bol D here stands for a loop control over feature vectors and S stands for a loop

104



Chapter 4. A Comparison of Cache Blocking Methods

(a) DSD (b) SDS (c) DSDS

(d) DSSD (e) SDDS (f) SDSD

Figure 4.1: Data traversal order of cache blocking methods during execution

control over scorers. For example, DSDS means that feature vector traversal is

controlled by the outermost and the third outermost loops while scorer traversal

is controlled by the second and the innermost loops. The inner two loops access

d vectors and s scorers.

Figure 4.1 illustrates the execution and data traversal order of these methods.

Figure 4.1(a) shows that DSD initially visits one scorer and d vectors. Then it

visits another scorer and the same d vectors. Figure 4.1(b) depicts that SDS

initially visits one vector and s scorers. Then it visits another vector and the

same s scorers. Figure 4.1(c) illustrates DSDS which visits scorers and vectors

105



Chapter 4. A Comparison of Cache Blocking Methods

block by block and row by row. Figure 4.1(f) illustrates SDSD which visits scorers

and vectors block by block and column by column.

Our objective is to compare these blocking methods and find a value for s and

d to minimize the time cost of score computation under a constraint 1 ≤ s ≤

m, 1 ≤ d ≤ n. We have the following considerations.

• For DSD, when the inner most loop uses d = 1, it becomes a special case DS

which is the same as the traditional loop structure DS shown in Algorithm 5.

For SDS, when the inner loop uses s = 1, it becomes a special case SD.

• The traversal order of DSSD during execution is the same as that of DSD as

illustrated in Figure 4.1(a) and (d). Thus DSD can represent both during

our analysis. Similarly, the traversal order of SDDS is the same as that of

SDS as shown in Figure 4.1(b) and (e). As a result of the above argument,

the six types of control are reduced to four.

The following parameters are used in assessing the average memory access

cost of processing n feature vectors with m scorers. We assume that CPU has

three levels of caches: L1, L2, and L3 and the three level setting is popular in the

currently available processors from Intel and AMD. Let δ1 be the read or write cost

of accessing L1 and cost for accessing other cache is δ1 multiplied by a constant

106



Chapter 4. A Comparison of Cache Blocking Methods

Figure 4.2: Data access flow of CPU with memory hierarchy.

ratio. Namely c2δ1 is the cost of accessing L2, c3δ1 is the cost of accessing L3, and

c4δ1 is the cost of accessing memory.

Our analysis separates the cost for accessing feature vectors and scorers. With-

out losing the generality, let Ai be the total amount of data access to feature

vectors at cache level i + 1 while ηAi be the total amount of accesses to scorers

at cache level i+ 1 and η is the average frequency ratio between access of feature

vectors and scorers during computation.

The total data access cost is the summation of the cost of accessing each level

of memory hierarchy:

Cost = A0δ1(1 + αDc2 + αDβDc3 + αDβDγDc4)

+ η(A0δ1(1 + αSc2 + αSβSc3 + αSβSγSc4)).

where αS, βS, γS, αD, βD, and γD are the miss rates of L1, L2 and L3 to access

scorers and feature vectors respectively. Data accesses flow from CPU to memory

107



Chapter 4. A Comparison of Cache Blocking Methods

for feature vectors is illustrated in Figure 4.2. A1 = A0αD is the total number of

feature data access to L2 due to their misses to L1; A2 = A0αDβD is the total

number of feature data access to L3. A3 = A0αDβDγD is the total number of data

access to memory.

Then the time cost divided by A0δ1 is defined as

T =
Cost

δ1A0

= ηTS + TD

where TD = 1+αDc2+αDβDc3+αDβDγDc4 and TS = 1+αSc2+αSβSc3+αSβSγSc4.

Since A0 and δ1 are constants, in the rest of the analysis, we focus on computing

the above data access cost ratio T .

Notice that once data is brought from memory hierarchy, the arithmetic com-

puting cost of all four methods is the same. Thus we just need to analyze and

compare the data access cost ratio T for the four traversal methods. In practice,

data access cost often weights more than arithmetic cost.

In this dissertation, we first present the analysis of cache performance for DSD

and then list the result of DSDS, SDSD, and SDS as the case subdivision and cost

derivation process are similar. Finally we describe an approximate scheme to

select the best structure by taking advantages of the derived data access cost

ratio for the four methods.

108



Chapter 4. A Comparison of Cache Blocking Methods

4.4 Cost Analysis and Comparison

4.4.1 Time Cost for DSD

4.4.1.1 Cases under consideration

1 for all vector blocks do

2 for i in all scorers do

3 for j in a vector block do

4 Update score for vector j with scorer i.

5 end

6 end

7 end

Algorithm 7: The program structure of DSD method.

Algorithm 7 lists the program control structure of DSD and a vector block

contains d vectors. Once a scorer si is loaded to cache, it will be used by d vectors

in the inner most loop. Then the next scorer si+1 will go through the same d

vectors. If we choose d properly such that d vectors fit in cache, we do not need

to load them from memory for each scorer. Figure 4.3 illustrates how the cost of

score computation could change when value d increases from 1 to n. The impact of

d value on the cost is segmented with respect to the size of L1, L2, and L3. When

109



Chapter 4. A Comparison of Cache Blocking Methods

d is small, the d vectors can fit in L1 cache, and there is an advantage of reusing

these d vectors within L1 cache. Thus d should be as large as possible. When

d value becomes too big, the benefit of leveraging L1 cache decreases because d

vectors may not fit in L1 any more and therefore the access cost can increase with

larger d value. We can reason similarly when d vectors fit or do not fit in L2 and

L3 caches.

Figure 4.3: Performance under different values of d.

We will clarify the tradeoff of increasing d value when we derive a more concrete

analysis. Let Fsize be the average data size of each feature vector. Without

introducing more symbols, we also let L1, L2 and L3 represent the size of L1

cache, L2 cache and L3 cache respectively in a formula expression. To assess the

110



Chapter 4. A Comparison of Cache Blocking Methods

impact of increasing d values, we divide the increasing range into four parts as

illustrated in Figure 4.3.

• d vectors fits in L1 cache. Namely d ≤ L1
Fsize

• d vectors do not fit in L1 cache, but fit in L2 cache. L1
Fsize

< d ≤ L2
Fsize

• d vectors do not fit in L2 cache, but fit in L3 cache. L2
Fsize

< d ≤ L3
Fsize

• d vectors exceed L3 cache and but fit in memory. L3
Fsize

< d ≤ n.

The cache access behavior of inner most loop in Algorithm 7 is affected by

the average size of each scorer. For example, a larger scorer footprint leaves little

space for L1 to host feature vectors. Figure 4.4 illustrates that we need to consider

the following four scenarios and for each scenario, we need to further consider the

four d range cases discussed above. Let Ssize represent the average data size of

each scorer and the four scenarios corresponding to the root branches in Figure 4.4

are defined as follows.

• Scenario 1: Ssize ≤ L1. When a scorer can fit in L1 cache, there are four

cases for the d vectors: the vector block fits in L1 cache, L2 cache, L3 cache

or memory.

• Scenario 2: L1 < Ssize ≤ L2. When a scorer size is between L1 and L2

cache sizes, the vector block can only fit in a higher level of cache (say L2

111



Chapter 4. A Comparison of Cache Blocking Methods

or L3 cache). Otherwise, old vectors will be kicked out from L1 cache by

the scorer and the vector block could not stay in L1 cache. Thus there are

only three cases for the d vectors as depicted in the second root branch of

Figure 4.4: the vector block fits in L2 cache, L3 cache or memory.

• Scenario 3: L2 < Ssize ≤ L3. When a scorer size is inbetween L2 and L3

cache size, there are two cases for the d vectors: the vector block fits in L3

cache or memory.

• Scenario 4: Ssize > L3. When a scorer cannot fit in L3 cache, the d

feature vectors will not be able to fit in L3 cache also and they can only fit

in memory.

Figure 4.4: Range cases of d considered under different scenarios for DSD.

To simplify the analysis, we assume that m and n are sufficiently large so that

m scorers do not fit in L3 cache, and also n feature vectors do not fit in L3 cache.

112



Chapter 4. A Comparison of Cache Blocking Methods

4.4.1.2 DSD under Scenario 1

Under Scenario 1, we first compute TS as follows. Since each scorer is loaded

once for the inner loop most and will re-used d times for computing the subscores

for d vectors in the inner most loop. Then the L1 cache miss ratio αS ≈ 1/d. If

there is an L1 cache miss for a scorer, L2 cache miss and L3 cache miss can occur

with a high chance because the unseen new scorer has not been used ever and

thus it is fetched from memory. Thus βS ≈ 1 and γS ≈ 1.

TS ≈ 1 +
c2
d

+
1

d
(c3 + c4) ≈ 1 +

c4
d

We shall estimate TD under 4 different ranges of d values following Figure 4.3.

We call these 4 range cases under DSD as DSDi where 1 ≤ i ≤ 4. The total cost

ratio of accessing scorers for DSD is

TDSDi
=
Cost

δ1A0

= ηTS + TD ≈ η +
ηc4
d

+ TD

where

TD = 1 + c2αi + αiβi(c3 + c4γi) (4.1)

and αi, βi and γi are cache miss rates for accessing feature vectors under range

case i. Note that in differentiating these miss rate of different cases, we use script

“i” instead of “D, i” in order to simplify the presentation. Table 4.1 summarizes

the cost of DSD for Scenario 1 when each scorer fits in L1 cache on average.

113



Chapter 4. A Comparison of Cache Blocking Methods

Range Case DSD1: d vectors fit in L1. Once a scorer is loaded to L1, the

inner most loop load d feature vectors to L1 and these vectors stay and will be

available in L1 when a new scorer is fetched to L1. Given m scorers, each feature

vector in L1 is accessed m times and there is one 1 miss initially and the rest of

m − 1 accesses will hit L1. Thus the L1 cache miss ratio with respect to feature

vectors is α1 ≈ 1/m. If there is an L1 cache miss for a feature vector, there must

be an L2 cache miss and L3 cache miss. Thus, β1 ≈ 1 and γ1 ≈ 1. Plugging into

Equation 4.1, we get the total cost ratio:

TD ≈ 1 +
c2
m

+
1

m
· (c3 + c4).

Range case DSD2: d vectors fits in L2. Once a scorer is loaded to L1,

the inner most loop can load a feature vector and keep it at least at L2 when

a new scorer is loaded. Given there are m scorers, A2/A0 ≈ 1/m. Namely

α2β2 = A2/A0 ≈ 1/m. Since L2 can hold d vectors needed for inner most loop,

A2 ≈ A3. Thus γ2 = A3/A2 ≈ 1.

TD ≈ 1 + α2 · c2 +
1

m
· (c3 + c4).

Range case DSD3: d vectors fit in L3. Once a scorer is loaded to L1,

the inner most loop can load a feature vector and keep it at least at L3 when

a new scorer is loaded. Given there are m scorers, A3/A0 ≈ 1/m. Namely

α3β3γ3 = A3/A0 ≈ 1/m.

114



Chapter 4. A Comparison of Cache Blocking Methods

TD ≈ 1 + α3 · c2 + α3β3 · c3 +
1

m
· c4.

Range case DSD4: d vectors donot not fit in L3. In this case, A0 ≈ A1 ≈

A2 ≈ A3. In this case, actually we put n documents in the inner loop. It’s

obvious to see that L1, L2 and L3’s cache miss ratio are all 1 because comparing

to the memory size, even L3 cache size is too small.

α4 ≈ 1, β4 ≈ 1 and γ4 ≈ 1.

TD ≈ 1 + c2 + c3 + c4.

Cases d vectors TDSDi
= ηTs + TD ≈

fit in

DSD1 L1 η + η c4
d1

+ 1 + c2+c3+c4
m

DSD2 L2 η + η c4
d2

+ 1 + α2c2 + c3+c4
m

DSD3 L3 η + η c4
d3

+ 1 + α3c2 + α3β3c3 + c4
m

DSD4 memory η + η c4
d4

+ 1 + c2 + c3 + c4

Table 4.1: Cost of DSD when 1 scorer fits in L1.

4.4.1.3 Other Scenarios of DSD

For Scenario 2 when a scorer fits in L2 on average, there are only 3 range

cases: DSD2, DSD3, and DSD4. L1 miss rate in TD becomes 1 and TS adds c2 as

115



Chapter 4. A Comparison of Cache Blocking Methods

TS ≈ 1+ c2 + c4
d

. For Scenario 3 where a scorer fits in L3, there are only 2 possible

cases to consider: DSD3 and DSD4. L1 and L2 miss rates in TD become 1 and

TS adds c3 as TS ≈ 1 + c3 + c4
d

. For Scenario 4 where a scorer fits memory only,

there is one case to consider: DSD4. Its TD does not change while TS ≈ 1 + c4.

4.4.2 Time Cost for SDS

4.4.2.1 SDS under Scenario 1

1 for all scorers blocks do

2 for i in a vector block do

3 for j in a scorer block do

4 Update score for vector i with scorer j.

5 end

6 end

7 end

Algorithm 8: The program structure of SDS method.

Under the condition that a feature vector can fit in L1, A scorer can fit in

L1, L2, L3 or memory based on the scorer’s size with regard to each memory

hierachy’s size. Different from 4.4.1.2, estimiated TD in SDS is determined by the

scorer block size s. For the inner most loop, a feature vector can be re-used s

116



Chapter 4. A Comparison of Cache Blocking Methods

times once it’s loaded to compute its subscores. Then the L1 cache miss ratio

αD ≈ 1/s. If a feature vector has an L1 cache miss, L2 cache miss and L3 cache

miss can occur with a high chance because an unseen feature vector has not been

used ever and will be fetched from memory. Therefore, βD ≈ 1 and γD ≈ 1.

TD ≈ 1 +
1

s
(c2 + c3 + c4) ≈ 1 +

c4
s

We shall estimate TS under 4 different ranges of s values following the similar logic

with Figure 4.3. We call these 4 range cases under SDS as SDSi where 1 ≤ i ≤ 4.

The total cost ratio of accessing scorers for SDS is

TSDSi
=
Cost

δ1A0

= ηTS + TD ≈ ηTS + (1 +
c4
s

)

where

TS = 1 + c2αi + αiβi(c3 + γic4) (4.2)

and αi, βi and γi are cache miss rates for accessing scorers under range case i.

Note that in differentiating these miss rate of different cases, we use script “i”

instead of “S, i” in order to simplify the presentation. Table 4.2 summarizes the

cost of SDS under Scenario1 when each feature vector fits in L1 cache on average.

Range Case SDS1: s scorers fit in L1. For each feature vector, the inner

most loop loads s scorers to L1 and these scorers will stay and be available in L1

when a new feacture vector is fetched to L1. Given n feature vectors, each scorer

117



Chapter 4. A Comparison of Cache Blocking Methods

in L1 is accessed n times and there is only 1 L1 cache miss initially and the rest

of n− 1 accesses will hit L1. Thus the L1 cache miss ratio of scorers is α1 ≈ 1/n.

If there is an L1 cache miss for a feature vector, there must be an L2 cache miss

and L3 cache miss. Thus, β1 ≈ 1 and γ1 ≈ 1. In addition, we can ignore c2 and

c3 since c2 << c3 << c4. Plugging into Equation 4.2, we get the total cost ratio:

TS ≈ 1 +
1

n
· (c2 + c3 + c4) ≈ 1 +

1

n
· c4.

Range case SDS2: s scorers fit in L2. For each feature vector, the inner

most loop loads s scorers to L2 and these scorers will stay and be always available

in L2 when a new feacture vector is fetched to L1. α1 can also be quantified since

s scorers fit in L2 and if one scorer is loaded from L2 to L1, all nodes in the tree

could be visited based on tree traversal path. Therefore, after all s scorers being

visited once, the second visit will start and the first scorer visited before must

be swapped out of L1 since the capacity of L1 is less than that of L2. Thus, we

can conclude that α1 = 1. In addition, we know that given n feature vectors,

A2/A0 ≈ 1/n. Namely α2β2 = A2/A0 ≈ 1/n. Since L2 can only hold s scorers

for inner most loop, every time accessing L3 must trigger one access to memory.

Therefore, A2 ≈ A3 and γ2 = A3/A2 ≈ 1.

TS ≈ 1 + c2 +
1

n
· (c3 + c4) ≈ 1 + c2.

118



Chapter 4. A Comparison of Cache Blocking Methods

Range case SDS3: s scorers fit in L3. For each feature vector, the inner most

loop loads s scorers to L3 and these scorers will stay and be always available in

L3 when a new feacture vector is fetched to L1. α3 ≈ α3β3 ≈ 1. However, given

there are n feature vectors, A3/A0 ≈ 1/n. Namely α3β3γ3 = A3/A0 ≈ 1/n.

TS ≈ 1 + c2 + c3 +
1

n
· c4 ≈ 1 + c3.

Range case SDS4: s scorers can not fit in L3. In this case, A0 ≈ A1 ≈ A2 ≈

A3. In this case, actually we put m scorers in the inner loop. It’s obvious to

see that L1, L2 and L3’s cache miss ratio are always 1 because comparing to the

memory size, even L3 cache size is too small.

α4 ≈ 1, β4 ≈ 1 and γ4 ≈ 1.

TS ≈ 1 + c2 + c3 + c4 ≈ 1 + c4.

4.4.2.2 Other Scenarios of SDS

Other scenarios include 3 situations: 1) one feature vector fits in L2; 2) one

feature vector fits in L3; 3) one feature vector fits in memory. For the scenario

that one feature vector fits in L2, we only need to consider SDS2, SDS3 and

SDS4. Formula TS is the same as table 4.2 while TD adds c2 and becomes:

TD = 1 + c2 + c4
s

. For the scenario when a feature vector fits in L3, only 2 cases

need to be considered: SDS3 and SDS4. Formula TS still stays the same while

119



Chapter 4. A Comparison of Cache Blocking Methods

Cases s scorers TSDSi
= TD + ηTs ≈

fit in

SDS1 L1 1 + c4
s1

+ η + η c4
n

SDS2 L2 1 + c4
s2

+ η + ηc2

SDS3 L3 1 + c4
s3

+ η + ηc3

SDS4 memory 1 + c4
s4

+ η + ηc4

Table 4.2: Cost of SDS when 1 feature vector can fit in L1.

TD adds c3 (c3 >> c2 such that c2 is dropped) and becomes TD = 1 + c3 + c4
s

.

For the last scenario, we only consider SDS4 in which TS is the same while TD

changes to TD = 1 + c4.

4.4.3 Time Cost for DSDS

4.4.3.1 DSDS under Scenario 1

A feature vector can fit in L1 and a scorer vector can fit in L1, L2, L3 or

memory based on the scorer’s size with regard to each memory hierachy’s size.

Different from 4.4.1.2 and 4.4.2, DSDS need to consider the size of d and s togother

with regard to different memory level’s size. Therefore, instead of 4 range cases

in DSD and SDS, there are 10 cases to be analyzed when estimating TS and TD.

We call these 10 range cases under DSDS as DSDiSj where 1 ≤ j ≤ i ≤ 4.

120



Chapter 4. A Comparison of Cache Blocking Methods

1 for all vector blocks do

2 for all scorers blocks do

3 for i in a vector block do

4 for j in a scorer block do

5 Update score for vector i with scorer j.

6 end

7 end

8 end

9 end

Algorithm 9: The program structure of DSDS method.

The total cost ratio of accessing scorers for DSDS is

TDSDiSj
=
Cost

δ1A0

= ηTS + TD ≈ η + η
c4
d

+ TD

where

TD = 1 + c2αi + αiβi(c3 + c4γi) (4.3)

TS = 1 + c2αj + αjβj(c3 + c4γj) (4.4)

αi, βi and γi are cache miss rates for accessing feature vectors; αj, βj and γj are

cache miss rates for accessing scorers within the range 1 ≤ j ≤ i ≤ 4. Note that

in differentiating these miss rate of different cases, we use script “i” instead of

“D, i” and “j” instead of “S, j” in order to simplify the presentation. Table 4.3

121



Chapter 4. A Comparison of Cache Blocking Methods

summarizes the cost of DSDS under Scenario1 when each feature vector fits in L1

cache on average.

For range cases of DSDiS1 (s scorers always fit in L1), we first compute TS as

follows. Since each scorer block is loaded once for the inner loop most and will

be re-used d times for computing the subscores for d vectors in a feature vector

block. Then the L1 cache miss ratio αS ≈ 1/d. If there is an L1 cache miss for a

scorer, L2 cache miss and L3 cache miss can occur with high possibility because

the unseen new scorer has not been used ever and it will be fetched from memory.

Thus βS ≈ 1 and γS ≈ 1.

TS ≈ 1 +
1

d
(c2 + c3 + c4) ≈ 1 +

c4
d

Range Case DSD1S1: s scorers fit in L1 and each feature vector block fits

in L1 as well. For each feature vector in one feature block, the inner most loop

loads s scorers to L1. The second inner loop is responsible to control the load of

the next scorer block in the fourth inner loop, but the third inner loop still uses

the same feature block. Therefore, each feacture vector will be accessed for m

times, and only the first access will be missed in L1. So α1 ≈ 1/m. If there is an

L1 cache miss for a feature vector, there is very high possibility with an L2 cache

miss and L3 cache miss. Thus, β1 ≈ 1 and γ1 ≈ 1. In addition, we can ignore c2

and c3 since c2 << c3 << c4. Plugging into Equation 4.3, we get the total cost

122



Chapter 4. A Comparison of Cache Blocking Methods

ratio:

TD ≈ 1 +
1

m
· (c2 + c3 + c4) ≈ 1 +

1

m
· c4.

Range case DSD2S1: d feature vectors fit in L2 and s scorers fit in L1. Once

we load one scorer block (s scorers) into L1, each feature vector loaded by the

third inner loop will be accessed s times, and only the first time will be missed in

L1. Thus, we can estimate α1 ≈ 1/s. Besides, since one feature block (d feature

vectors) fit in L2, each feature vector in L2 will be accessed m times in total

with only the first time being L2 miss. Therefore, L2 cache miss ratio for each

feature vector, that is α1β1, is estimated as 1/m and γ1 = A3/A2 ≈ 1.Referring

to Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· c2 +

1

m
· (c3 + c4).

Furthermore, since s << m, 1
s
· c2 will be much greater than 1

m
· (c3 + c4), we can

make the formula above more concise and easy to analysis:

TD ≈ 1 +
1

s
· c2.

Range case DSD3S1: d feature vectors fit in L3 and s scorers fit in L1. Once

we load one scorer block (s scorers) into L1, each feature vector loaded by the third

inner loop will be accessed s times, and only the first time will be missed in L1

and L2 under the condition that d feature vectors can only fit into L3. Thus, we

123



Chapter 4. A Comparison of Cache Blocking Methods

can estimate α1 ≈ 1/s and α1β1 ≈ 1/s. Besides, since one feature block (d feature

vectors) fit in L3, each feature vector in L3 will be accessed m times in total with

only the first time being L3 miss. Therefore, L3 cache miss ratio for each feature

vector, that is α1β1γ1, is estimated as 1/m. In addition, 1
s
· (c2 + c3) >>

1
m
· c4 and

c2 << c3, we can get the total cost ratio as follows with regard to Equation 4.3:

TD ≈ 1 +
1

s
· (c2 + c3) +

1

m
· c4 ≈ 1 +

1

s
· c3.

Range case DSD4S1: d feature vectors cannot fit in L3 and s scorers still fit

in L1. In this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/s.

Referring to Equation 4.3, we get the total cost ratio with the condition that

c2 << c3 << c4:

TD ≈ 1 +
1

s
· (c2 + c3 + c4) ≈ 1 +

1

s
· c4.

For range cases of DSDiS2 (s scorers always fit in L2 and i in range [2, 4]),

we first compute TS as follows. The fourth loop will traverse all the s scorers

for one feature vector and for the next feature vector, it will re-visit the same

s scorers in order. Since these s scorers can only fit in L2, it means that the

second time visiting the same scorer, one L1 miss will happen. Therefore, we can

estimate αS ≈ 1. Since one scorer block always fit into L2, for d iterations in the

third loop, the fourth loop only need to load one scorer block once and for all the

124



Chapter 4. A Comparison of Cache Blocking Methods

following d-1 iterations, accesses of this scorer block will hit on L2. Therefore, we

can conclude that αSβS ≈ 1
d

and γS ≈ 1.

TS ≈ 1 + c2 +
1

d
(c3 + c4) ≈ 1 + c2 +

1

d
· c4

Range Case DSD2S2: d feature vectors fit in L2 and s scorers fit in L2 as

well.

Once we load one scorer block (s scorers) into L2, each feature vector loaded

by the third inner loop will be accessed s times, and only the first time will be

missed in L1. Thus, we can estimate α1 ≈ 1/s. Besides, since one feature block

(d feature vectors) fit in L2, each feature vector in L2 will be accessed m times

in total with only the first time being L2 miss. Therefore, L2 cache miss ratio

for each feature vector, that is α1β1, is estimated as 1/m and γ1 = A3/A2 ≈ 1.

Referring to Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· c2 +

1

m
· (c3 + c4) ≈ 1 +

1

c
· c2.

Range Case DSD3S2: d feature vectors fit in L3 and s scorers fit in L2. Once

we load one scorer block (s scorers) into L2, each feature vector loaded by the

third inner loop will be accessed s times, and only the first time will be missed in

L1 and L2 under the condition that d feature vectors can only fit into L3. Thus,

we can estimate α1 ≈ α1β1 ≈ 1/s. Besides, since one feature block (d feature

125



Chapter 4. A Comparison of Cache Blocking Methods

vectors) fit in L3, each feature vector in L3 will be accessed m times in total with

only the first time being L3 miss. Therefore, L3 cache miss ratio for each feature

vector, that is α1β1γ1, is estimated as 1/m. Referring to Equation 4.3, we get the

total cost ratio:

TD ≈ 1 +
1

s
· (c2 + c3) +

1

m
· c4 ≈ 1 +

1

s
· c3.

Range Case DSD4S2: d vectors fit in memory and s scorers fit in L2. In

this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/s.

Referring to Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· (c2 + c3 + c4) ≈ 1 +

1

s
· c4.

For range cases of DSDiS3 (s scorers always fit in L3 and i in range [3, 4]), we

first compute TS as follows. The fourth loop will traverse all the s scorers for one

feature vector and for the next feature vector, it will re-visit the same s scorers

in order. Since these s scorers can only fit in L3, it means that the second time

visiting the same scorer, one L1 miss and one L2 miss will happen. Therefore,

we can estimate αS ≈ αSβS ≈ 1. Since one scorer block always fit into L3, for

d iterations in the third loop, the fourth loop only need to load one scorer block

once and for all the following d-1 iterations, accesses of this scorer block will hit

on L3. Therefore, we can conclude that αSβSγS ≈ 1
d
.

126



Chapter 4. A Comparison of Cache Blocking Methods

TS ≈ 1 + c2 + c3 +
1

d
· c4 ≈ 1 + c3 +

1

d
· c4

Range Case DSD3S3: d feature vectors fit in L3 and s scorers fit in L3

as well. Once we load one scorer block (s scorers) into L3, each feature vector

loaded by the third inner loop will be accessed s times, and only the first time

will be missed in L1 and L2 under the condition that d feature vectors can only

fit into L3. Thus, we can estimate α1 ≈ α1β1 ≈ 1/s. Besides, since one feature

block (d feature vectors) fit in L3, each feature vector in L3 will be accessed m

times in total with only the first time being L3 miss. Therefore, L3 cache miss

ratio for each feature vector, that is α1β1γ1, is estimated as 1/m. Referring to

Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· (c2 + c3) +

1

m
· c4 ≈ 1 +

1

s
· c3.

Range Case DSD4S3: d feature vectors only fit in memory and s scorers fit

in L3. In this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/s.

Referring to Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· (c2 + c3 + c4) ≈ 1 +

1

s
· c4

Range Case DSD4S4: d feature vectors and s scorers cannot fit in L3. That

is, all feature vectors and scorers stay in memory. First we estimate TS. Since m

127



Chapter 4. A Comparison of Cache Blocking Methods

scorers fit in memory only, every time loading one scorer block will encounter L1,

L2 and L3 cache miss. therefore, α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1 (here α1 denotes the

L1 cache miss ratio for scorers, so as to others). We have TS as:

TS ≈ 1 + (c2 + c3 + c4) ≈ 1 + c4

Although every time accessing one feature block will have L1, L2 and L3

misses, each block will be reused for s times before being swapped out of the

caches. Therefore, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/s (here α1

denotes the L1 cache miss ratio for feature vectors, so as to others). Referring to

Equation 4.3, we get the total cost ratio:

TD ≈ 1 +
1

s
· (c2 + c3 + c4) ≈ 1 +

1

s
· c4

4.4.3.2 Other Scenarios of DSDS

There are 3 other scenarios for DSDS with regard to one feature vector’s size:

1) one feature vector fits in L2; 2) one feature vector fits in L3; 3) one feature vector

fits in memory. For the scenario that one vector fits in L2, we only need to consider

DSD2S2, DSD3S2, DSD4S2, DSD3S3, DSD4S3 and DSD4S4. Formula TS is the

same as 4.3 while TD adds c2 to its formula in the table since it cannot fit to L1

and every access has L1 cache miss. For the scenario when a feature vector fits

in L3, only 3 cases need to be considered: DSD3S3, DSD4S3, DSD4S4. Formula

128



Chapter 4. A Comparison of Cache Blocking Methods

Cases d vectors s scorers TDSDiSj
= TD + ηTS ≈

fit in fit in

DSD1S1 L1 L1 1 + c4
m

+ η + η c4
d1

DSD2S1 L2 L1 1 + c2
s1

+ η + η c4
d2

DSD3S1 L3 L1 1 + c3
s1

+ η + η c4
d3

DSD4S1 memory L1 1 + c4
s1

+ η + η c4
d4

DSD2S2 L2 L2 1 + c2
s2

+ η + ηc2 + η c4
d2

DSD3S2 L3 L2 1 + c3
s2

+ η + ηc2 + η c4
d3

DSD4S2 memory L2 1 + c4
s2

+ η + ηc2 + η c4
d4

DSD3S3 L3 L3 1 + c3
s3

+ η + ηc3 + η c4
d3

DSD4S3 memory L3 1 + c4
s3

+ η + ηc3 + η c4
d4

DSD4S4 memory memory 1 + c4
s4

+ η + ηc4

Table 4.3: Cost of DSDS when 1 feature vector fits in L1.

129



Chapter 4. A Comparison of Cache Blocking Methods

TS still stays the same while TD adds c3 (c3 >> c2 such that c2 is dropped) to its

part in table 4.3. For the last scenario, we only consider DSD4S4 in which TS is

the same while TD changes to TD = 1 + c4.

4.4.4 Time Cost for SDSD

4.4.4.1 SDSD under Scenario 1

1 for all scorers blocks do

2 for all vectors blocks do

3 for i in a scorer block do

4 for j in a vector block do

5 Update score for vector j with scorer i.

6 end

7 end

8 end

9 end

Algorithm 10: The program structure of SDSD method.

For this scenario, a scorer fits in L1. A feature vector can fit in L1, L2, L3 or

memory based on the feature vector’s size with regard to each memory hierachy’s

size.Similar to 4.4.3, SDSD needs to consider the size of s and d togother with

130



Chapter 4. A Comparison of Cache Blocking Methods

regard to different memory level’s size. Therefore, there are also 10 cases to be

analyzed when estimating TS and TD. We call these 10 range cases under SDSD

as SDSiDj where 1 ≤ j ≤ i ≤ 4. Table 4.4 summarizes the cost of SDSD under

Scenario1 when each scorer fits in L1 cache on average.

The total cost ratio of accessing scorers for SDSD is

TSDSiDj
=
Cost

δ1A0

= ηTS + TD ≈ ηTS + 1 +
c4
s

where

TS = 1 + c2αi + αiβi(c3 + c4γi) (4.5)

TD = 1 + c2αj + αjβj(c3 + c4γj) (4.6)

αi, βi and γi are cache miss rates for accessing scorers and αj, βj and γj are cache

miss rates for accessing feature vectors within the range 1 ≤ j ≤ i ≤ 4. Note that

in differentiating these miss ratio of different cases, we use symbol “i” instead of

“S, i” and “j” instead of “D, j” in order to simplify the presentation.

For range cases of SDSiD1 (d feature vectors always fit in L1), we first compute

TD as follows. Since each feature vector block is loaded once for the inner most

loop and will be re-used s times for computing the subscores for d vectors in a

feature vector block. Then the L1 cache miss ratio αD ≈ 1/s. If there is an L1

cache miss for a feature vector, L2 cache miss and L3 cache miss can occur with

131



Chapter 4. A Comparison of Cache Blocking Methods

a high chance because the unseen new feature vector has not been used ever and

thus it is fetched from memory. Thus βD ≈ 1 and γD ≈ 1.

TD ≈ 1 +
1

s
(c2 + c3 + c4) ≈ 1 +

c4
s

We will calculate TS in the following 4 range cases.

Range Case SDS1D1: d feature vectors fit in L1 and each score block fits in

L1 as well. For each scorer in one scorer block, the inner most loop loads d feature

vectors to L1. The second inner loop is responsible to control the load of the next

feature vector block in the fourth inner loop, but the third inner loop still uses the

same scorer block. Therefore, each score will be accessed for n times, and only

the first access will be missed in L1. So α1 ≈ 1/n. If there is an L1 cache miss for

a feature vector, there is very high possibility with an L2 cache miss and L3 cache

miss. Thus, β1 ≈ 1 and γ1 ≈ 1. Plugging into Equation 4.5, we get the total cost

ratio:

TS ≈ 1 +
1

n
· (c2 + c3 + c4) ≈ 1 +

1

n
· c4.

Range case SDS2D1: s scorers fit in L2 and d feature vectors fit in L1. Once

we load one feature vector block (d feature vectors) into L1, each scorer loaded

by the third inner loop will be accessed d times, and only the first time will be

missed in L1. Thus, we can estimate α1 ≈ 1/d. Besides, since one scorer block (s

scorers) fit in L2, each scorer in L2 will be accessed n times in total with only the

132



Chapter 4. A Comparison of Cache Blocking Methods

first time being L2 miss. Therefore, L2 cache miss ratio for each scorer, that is

α1β1, is estimated as 1/n and γ1 = A3/A2 ≈ 1.Referring to Equation 4.5, we get

the total cost ratio:

TS ≈ 1 +
1

d
· c2 +

1

n
· (c3 + c4) ≈ 1 +

1

d
· c2.

Range case SDS3D1: s scorers fit in L3 and d feature vectors fit in L1. Once

we load one feature vector block (d feature vectors) into L1, each scorer loaded

by the third inner loop will be accessed d times, and only the first time will be

missed in L1 and L2 under the condition that s scorers can only fit into L3. Thus,

we can estimate α1 ≈ 1/d and α1β1 ≈ 1/d. Besides, since one scorer block (s

scorers) fit in L3, each scorer in L3 will be accessed n times in total with only the

first time being L3 miss. Therefore, L3 cache miss ratio for each feature vector,

that is α1β1γ1, is estimated as 1/n. Referring to Equation 4.5, we get the total

cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3) +

1

n
· c4 ≈ 1 +

1

d
· c3.

Range case SDS4D1: s scorers cannot fit in L3 and d feature vectors still fit

in L1. In this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/d.

133



Chapter 4. A Comparison of Cache Blocking Methods

Referring to Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3 + c4) ≈ 1 +

1

d
· c4.

For range cases of SDSiD2 (d feature vectors always fit in L2 and i in range

[2, 4]), we first compute TD as following. The fourth loop will traverse all the d

feature vectors for one scorer and for the next scorer, it will re-visit the same d

feature vectors in order. Although these d feature vectors only fit in L2, there is

still possibility that when the scorer vector is small and only a small portion of one

feature vector is visited, one L1 miss may not happen for next visit. Therefore,

we can’t estimate the value of αD. However, since one feature vector block always

fit into L2, for s iterations in the third loop, the fourth loop only need to load one

feature vector block once and for all the following s-1 iterations, accesses of this

feature vector block will hit in L2. Therefore, we can conclude that αDβD ≈ 1
s

and γD ≈ 1.

TD ≈ 1 + αDc2 +
1

s
· (c3 + c4) ≈ 1 + αDc2 +

1

s
· c4.

Then we will calculate TS in the following 3 range cases.

Range Case SDS2D2: s scorers fit in L2 and d feature vectors fit in L2 as

well.

Once we load one feature vector block (d feature vectors) into L2, each scorer

loaded by the third inner loop will be accessed d times, and only the first time

134



Chapter 4. A Comparison of Cache Blocking Methods

will be missed in L1. Thus, we can estimate α1 ≈ 1/d. Besides, since one scorer

block (s scorers) fit in L2, each scorer in L2 will be accessed n times in total with

only the first time being L2 miss. Therefore, L2 cache miss ratio for each scorer,

that is α1β1, is estimated as 1/n and γ1 = A3/A2 ≈ 1. Referring to Equation 4.5,

we get the total cost ratio:

TS ≈ 1 +
1

d
· c2 +

1

n
· (c3 + c4) ≈ 1 +

1

d
· c2.

Range Case SDS3D2: s vectors fit in L3 and d feature vectors fit in L2.

Once we load one feature block (d feature vectors) into L2, each scorer loaded by

the third inner loop will be accessed d times, and only the first time will be missed

in L1 and L2 under the condition that s scorers can only fit into L3. Thus, we can

estimate α1 ≈ α1β1 ≈ 1/d. Besides, since one scorer block (s scorers) fit in L3,

each scorer in L3 will be accessed n times in total with only the first time being

L3 miss. Therefore, L3 cache miss ratio for each feature vector, that is α1β1γ1, is

estimated as 1/n. Referring to Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3) +

1

n
· c4 ≈ 1 +

1

d
· c3.

Range Case SDS4D2: s scorers fit in memory and d feature vectors still fit

in L2. In this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/d.

135



Chapter 4. A Comparison of Cache Blocking Methods

Referring to Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3 + c4) ≈ 1 +

1

d
· c4.

For range cases of SDSiD3 (d feature vectors always fit in L3 and i in range [3,

4]), we first compute TD as follows. The fourth loop will traverse all the d feature

vectors for one scorer and for the next scorer, it will re-visit the same d feature

vectors in order. Although these d feature vectors only fit in L3 and it seems

visiting a feature vector will always have L1 and L2 miss, there is still possibility

that when the scorer vector is small and only a small portion of one feature vector

is visited, one L1 and L2 miss may not happen for next visit. Therefore, we can’t

estimate the value of αD and αDβD. However, since one feature block always fit

into L3, for s iterations in the third loop, the fourth loop only need to load one

feature block once and for all the following s-1 iterations, accesses of this scorer

block will hit on L3. Therefore, we can conclude that αDβDγD ≈ 1
s
.

TD ≈ 1 + αDc2 + αDβDc3 +
1

s
· c4.

Range Case SDS3D3: s scores fit in L3 and d vectors fit in L3 as well. Once

we load one feature vector block (d vectors) into L3, each scorer loaded by the

third inner loop will be accessed d times, and only the first time will be missed

in L1 and L2 under the condition that s scorers can only fit into L3. Thus, we

136



Chapter 4. A Comparison of Cache Blocking Methods

can estimate α1 ≈ α1β1 ≈ 1/d. Besides, since one scorer block (s scorers) fit in

L3, each scorer in L3 will be accessed n times in total with only the first time

being L3 miss. Therefore, L3 cache miss ratio for each scorer, that is α1β1γ1, is

estimated as 1/n. Referring to Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3) +

1

n
· c4 ≈ 1 +

1

d
· c3.

Range Case SDS4D3: s scorers fit in memory and d feature vectors fit in

L3. In this case, A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/s.

Referring to Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3 + c4) ≈ 1 +

1

d
· c4

Range Case SDS4D4: s scorers fit in memory and d feature vectors fit in

memory as well. First we estimate TD. Since d feature vectors fit in memory only,

every time loading one feature vectors block will enconter L1, L2 and L3 cache

miss. therefore, α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1 (here α1 denotes the L1 cache miss ratio

for scorers, so as to others). We have TD as:

TD ≈ 1 + (c2 + c3 + c4) ≈ 1 + c4

Then let’s check TS. A0 ≈ A1 ≈ A2 and α1 ≈ α1β1 ≈ α1β1γ1 ≈ 1/d (here

α1 denotes the L1 cache miss ratio for scorers, so as to others). Referring to

137



Chapter 4. A Comparison of Cache Blocking Methods

Equation 4.5, we get the total cost ratio:

TS ≈ 1 +
1

d
· (c2 + c3 + c4) ≈ 1 +

1

d
· c4

Cases s scorers d vectors TSDSiDj
= TD + ηTS ≈

fit in fit in

SDS1D1 L1 L1 1 + c4
s1

+ η + η c4
n

SDS2D1 L2 L1 1 + c4
s2

+ η + η c2
d1

SDS3D1 L3 L1 1 + c4
s3

+ η + η c3
d1

SDS4D1 memory L1 1 + c4
s4

+ η + η c4
d1

SDS2D2 L2 L2 1 + α2,2c2 + c4
s2

+ η + η c2
d2

SDS3D2 L3 L2 1 + α3,2c2 + c4
s3

+ η + η c3
d2

SDS4D2 memory L2 1 + α4,2c2 + c4
s4

+ η + η c4
d2

SDS3D3 L3 L3 1 + α3,3c2 + α3,3β3,3c3 + c4
s3

+ η + η c3
d3

SDS4D3 memory L3 1 + α4,3c2 + α4,3β4,3c3 + c4
s4

+ η + η c4
d3

SDS4D4 memory memory 1 + c4 + η + η c4
s4

Table 4.4: Cost of SDSD when 1 score fits in L1.

138



Chapter 4. A Comparison of Cache Blocking Methods

4.4.4.2 Other Scenarios of SDSD

For the scenario that one scorer fits in L2, we only need to consider SDS2D2,

SDS3D2, SDS4D2, SDS3D3, SDS4D3 and SDS4D4. Since L1 cache’s capacity is

not enough for one scorer, accessing a feature vector for every scorer will always

need to fetch data from L2. Namely, accessing the feature vector always has L1

cache miss. Therefore, α in TD is 1. Besides, TS adds c2 to its formula in the table

since it cannot fit to L1 and every access has L1 cache miss. For the scenario

when a scorer fits in L3, only 3 cases need to be considered: SDS3D3, SDS4D3,

SDS4D4. α and β both become 1 in Formula TD while TS adds c3 (c3 >> c2

such that c2 is dropped) to its part in table 4.4. For the last scenario, DSD4S4 is

considered in which TD is the same while TS changes to TS = 1 + c4.

4.4.5 Cost Comparison of the Four Methods

There is a total of 28 range cases considered in these four methods: DSDi,

SDSi, DSDiSj, and SDSiDj where 1 ≤ i, j ≤ 4. The cost results of these 28

cases can be used in the following two aspects.

• Identify the approximated optimum selection from 28 cases instead of ex-

haustive search of all combinations. The selection algorithm goes through 28

cases and runs the average time performance sampling through a benchmark

of q queries.

139



Chapter 4. A Comparison of Cache Blocking Methods

From Tables 4.1, Tables 4.2, Tables 4.3, and Tables 4.4, increasing d or s

under its range limit decreases the time cost. Thus d and s should be chosen

to be as large as possible. On the other hand, scorers and vectors share each

level of cache and we set a constraint that vectors and scorers accessed

in the inner most loop of DSD and SDS or in the two inner most loops of

DSDS and SDSD fit in the corresponding cache. For example, as a midpoint

approximation, we let d vectors occupy upto half of each cache level and s

scorers occupy upto half of each cache level. Namely, for 1 ≤ i ≤ 3, d and

s are chosen for each range case as: di = 0.5Li
Fsize

, si = 0.5Li
Ssize

. As all n vectors

and m scorers fit in memory, d4 = n and s4 = m.

• Narrow the search scope when characteristics of a dataset or targeted ma-

chine architecture is given because many of 28 cases may be eliminated.

That facilitates the reduction of search space and allows more sampling

points at each range case selected as long as time complexity permits. For

example, the above midpoint sampling for each range case after elimination

can be expanded as follows. Since each scorer may only access a fraction of

a feature vector and a fraction of the scorer data structure for computation,

we choose sampling points as di = 0.5Li
µFsize

, si = 0.5Li
µSsize

. Coefficient µ repre-

sents the average data usage of a vector or a scorer during computation and

for example, we sample more points with µ as 1, 0.75, 0.5, and 0.25.

140



Chapter 4. A Comparison of Cache Blocking Methods

To illustrate the second point above, we show that the following proposition

is true and can narrow the search scope from 28 to 4 range cases.

Proposition 4.4.1. When each feature vector fits in L1 and each score fits in L1

on average, and ηc4
d2
� 1, c4

s2
� 1, the candidates with the lowest access cost are

among range cases DSD2, DSD2S1, SDS2D2, and SDS2D1.

A proof is listed in 4.4.7. Yahoo!, MS, and MQ datasets discussed in Section 4.5

fall into the condition of this proposition when each regression tree used is not too

big (e.g. containing upto 50 leaves). The range of d and s values for these datasets

is listed in Table 4.6 and Table 4.5 of Section 4.5. When a regression tree contains

150 leaves, ratio c4/s2 is getting close to 1, cases SDS3D1 and SDS3D2 can be

competitive as a best candidate. Thus with such a condition, we can search for 6

cases instead of 28 cases.

In summary, a guided sampling scheme conducts the following steps. 1) Iden-

tify data and architecture parameters. When possible, apply Proposition 1 or its

variation to eliminate some of 28 range cases from the cost analysis of DSD, SDS,

DSDS, and SDSD. 2) For each of selected range cases, choose blocking factor di

and si under a constraint that vectors and scorers accessed in the inner most loop

of DSD and SDS or in the two inner most loops of DSDS and SDSD fit in the

corresponding level of cache. One approach is to choose di = 0.5Li
µFsize

si = 0.5Li
µSsize

with a number of sampled µ values. 3) Run and collect the average query response

141



Chapter 4. A Comparison of Cache Blocking Methods

time with m scorers and n vectors from each sampled case. Select the case and

parameter setting with the lowest response time. The total complexity of this

scheme with q test queries is O(m ∗ n ∗ q).

4.4.6 Discussions

Integration with the QuickScorer method. When the ensemble compu-

tation uses the original computing algorithm for gradient boosted regression trees

(e.g. [48, 24]), the main data structure of each scorer is a tree. To use the BWQS

algorithm [76], we treat each scorer as the application of QS on a block of trees.

The following parameters are involved: the size of a scorer changes when different

partitioning is adopted while the number of inner-loop scorers (s) and inner-loop

vectors (d) can vary too for different blocking methods. Thus we add a partition-

ing search loop on the top of the aforementioned comparison and sampling scheme

to select the best partitioning.

Batched query processing. When the ensemble score computation is used

for query processing where n is small, d value of the inner most loop limited by n

can be insufficient to explore the cache locality and the effectiveness of blocking

degrades. When batch processing is allowed, we can boost the cache utilization

by processing feature vectors from multiple queries in fast cache, which essentially

raises n values. One application of such batched processing is to conduct an offline

142



Chapter 4. A Comparison of Cache Blocking Methods

experiment to assess the ranking performance of an algorithm in answering a large

number of queries and there is no need to output ranking results immediately.

For an online ranking application, the ranking results need to be produced

promptly. While reaching a high throughput, batching a large number of queries

can increase the average waiting time of batched queries and affect the response

time. With this constraint in mind, we set a limit on the largest waiting time

allowed in choosing a batch size for a higher throughout with a modest increase

of response time.

4.4.7 Proof for Proposition 1

For each of DSD, SDS, DSDS, and SDSD methods, we eliminate its range

cases that do not qualify for the best candidate as follows.

• For DSD cases listed in Table 4.1, case DSD4 is excluded from the best case

list as term c4 in DSD4 cost dominates the weight. Thus TDSD4 > TDSD3 ,

TDSD4 > TDSD2 , and TDSD4 > TDSD1 . We also drop DSD1 because TDSD1 >

TSDS2D1 .

Now we compare DSD2 and DSD3. Since ηc4
d2
� 1, ηc4

d3
� 1, and these two

terms can be dropped approximately from the cost expressions. Note that

α3β3 = 1
mγ3
≥ 1

m
, and c3 is much larger than c2. Also α2 < α3 since the

inner most loop of DSD2 accesses less vectors. This makes TDSD3 > TDSD2 .

143



Chapter 4. A Comparison of Cache Blocking Methods

• Now we compare SDS cases listed in Table 4.2. Since c4
s2
� 1, this leads to

c4
s3
� 1, and c4

s4
� 1, and c4

m
� 1. Therefore TSDS4 > TSDS3 > TSDS2 . Thus

we drop cases SDS3 or SDS4.

We drop case SDS2 because TSDS2 > TDSD2S2 . We also drop case SDS1

because TSDS1 > TDSD2S1 given ηc4
d2
� 1.

• For DSDS, since ηc4
d2
� 1, TDSD2S1 ≈ 1 + η + c2

s1
. Then TDSD2S1 < TDSD3S1

and TDSD2S1 < TDSD4S1 . Thus we drop cases DSD2S1 and DSD4S1.

Since c4
s2
� 1, c2

s2
� 1. Then TDSD2S2 ≈ 1 +η+ηc2. Then TDSD2S2 is smaller

than any of TDSD3S2 , TDSD4S2 , TDSD3S3 , TDSD4S3 , and TDSD4S4 . We drop all

cases in DSDS except DSD1S1, DSD2S1, and DSD2S2.

Since TDSD2S2 > 1 + η + η c2
d1
≈ TSDS2D1 given ηc4

s2
� 1, we can further

drop case DSD2S2. Then TDSD1S1 > TDSD2S1 and we can further drop case

DSD1S1.

• For SDSD, we drop case SDS1D1 because TSDS1S1 ≈ 1 + η + c4
s1
> TDSD2S1

given ηc4
d2
� 1. We drop Case SDS3D1 because TSDS3S1 ≈ 1 + η + η · c3

d1
>

TSDS2S1 . We drop Case SDS4D1 because TSDS4S1 ≈ 1 +η+η · c4
d1
> TSDS2S1 .

Note that TSDS2S2 ≈ 1 + η + α2,2c2 because ηc4
s2
� 1 and ηc2

d2
< ηc4

d2
� 1.

Then we drop SDS4D4 because TSDS2D2 < TSDS4D4 . Also, TSDS2D2 is smaller

than any of TSDS3D2 , TSDS4D2 , TSDS3D3 , and TSDS4D3 . That is because α2,2 <

144



Chapter 4. A Comparison of Cache Blocking Methods

α3,2, α4,2, α3,3, α4,3 due to the fact that s scorers fits in the smaller cache in

Case SDS2D2 than other cases compared here. Thus only SDS2D2 and

SDS2D1 qualify for the best candidates.

4.5 Evaluations

4.5.1 Settings

This section provides an experimental comparison of different cache blocking

methods and validates the effectiveness of the selected method with unoptimized

ones. The evaluation tasks are listed as follows: (1) Illustrate the fast comparison

of the 28 range cases for using DSD, SDS, SDSD and DSDS with guided sampling.

(2) Integrate our cache blocking selection algorithm with the QS algorithm [76]

for tree-based ranking. (3) Assess the batched query processing in improving the

throughput when n is small.

We implement the blocking methods using C compiled with GCC optimization

flag -O3. Experiments are conducted on a Linux CentOS 6.6 server with 8 cores

of 3.1GHz AMD Bulldozer FX8120 and 16GB memory. FX8120 has 16KB of L1.

We set L2 ≈ 1MB as 2MB L2 cache is shared by two cores. Its 8MB L3 cache

is shared by 8 cores and since L3 hosts tree data useful for multiple queries, we

set L3 ≈ 2MB. The cache line is of size 64 bytes. For AMD Bulldozer, c2 is

145



Chapter 4. A Comparison of Cache Blocking Methods

around 7.3, c3 is around 25.1, and c4 is around 80.9. We have also conducted

experiments in a 24-core Intel Xeon E5-2680v3 2.5 GHz server with L1 = 32KB,

L2 = 256KB,, and L3 ≈ 2.5MB per core. The Intel results are similar and thus

we mainly report the AMD numbers.

The following learning-to-rank datasets are used as evaluation benchmarks. (1)

Yahoo! dataset [33] with 700 features per document feature vector. (2) MSLR-

30K dataset [2] with 136 features per document vector. (3) MQ2007 dataset [1]

with 46 features per document vector. Table 4.5 shows the range of d values when

fitting d vectors in different cache levels for these 3 datasets.

d vectors fit in Yahoo! MS MQ

L1 d ≤ 5 d ≤ 30 d ≤ 89

L2 d ≤ 373 d ≤ 1928 d ≤ 5720

L3 d ≤ 747 d ≤ 3856 d ≤ 11440

Memory d ≤ n d ≤ n d ≤ n

Table 4.5: The vector counts for fitting in differnt cache levels.

We use LambdaMART [24] for ranking with additive tree ensembles and de-

rive tree ensembles using the open-source jforests [51] package. To assess score

computation in presence of a large number of trees, we have also used a bagging

method [87] to combine multiple ensembles and each ensemble contains additive

146



Chapter 4. A Comparison of Cache Blocking Methods

boosting trees. Because the size of a scorer affects the cache performance and pa-

rameter choices, we generate the size of each tree with several settings: 10 leaves

per tree, 50 leaves per tree, and 150 leaves per tree. Table 4.6 shows the range

of s values when fitting s scorers in different cache levels under three choices of

the regression tree size. The η value is about 1 because the basic access operation

of a scorer is to fetch 1 tree node and then a document feature. Each of them

fits in one cache line. The default total number of trees used is about 20,000 for

Yahoo! dataset, 10,000 for MS, and 4,000 for MQ. We also use other numbers of

trees in our experiments. When using the QS method [76], each scorer is a meta

tree merged from multiple trees and η value is around 4 because the basic access

operation of a scorer fetches elements from 4 data structures and then a document

feature.

s scorers fit in 10 leaves 50 leaves 150 leaves

L1 s ≤ 25 s ≤ 5 s = 1

L2 s ≤ 1638 s ≤ 327 s ≤ 109

L3 s ≤ 3276 s ≤ 655 s ≤ 218

Memory s ≤ m s ≤ m s ≤ m

Table 4.6: The tree counts for fitting different cache levels.

147



Chapter 4. A Comparison of Cache Blocking Methods

The above data sets contain 23 to 120 documents per query with labeled rele-

vancy judgment. In practice, a search system with a large dataset ranks thousands

or tens of thousands of top results after a preliminary selection. To evaluate the

score computation in such a setting, we synthetically generate more matched doc-

ument vectors for each query. In this process, we generate relatively more vectors

that bear similarity to those with low labeled relevance scores, because a large

percentage of matched results per query are less relevant in practice. The number

of vectors per query including synthetically generated vectors varies from 3,000 to

10,000 for Yahoo! dataset, from 2,000 to 6,000 for MS, and from 1,000 to 4,000

for MQ.

Metrics. We mainly report the average time of computing a subscore for each

vector under one tree. With n matched vectors scored using an m-tree model, this

scoring time multiplied by n and m is the scoring time per query. The throughput

is the number of feature vectors scored per second. The number reported here is

measured in a multi-core environment where each query is executed in a single

core.

4.5.2 A Comparison of Cache Blocking Methods

Table 4.7 shows the score computing time of a vector per tree in nanoseconds

under different cache blocking cases for Yahoo!, MS and MQ datasets. “Y! 10”

148



Chapter 4. A Comparison of Cache Blocking Methods

means Yahoo! dataset and each regression tree has 10 leaves. Row 2 is the scor-

ing time of DS without cache blocking. The cost of all 28 cases under 4 cache

blocking methods using guided sampling are listed, starting from Row 3. Un-

der Proposition 1, our scheme searches the optimum only from four cases DSD2,

DSD2S1, SDS2D1, and SDS2D2. The corresponding entries in this table are

marked in a gray color. For Yahoo! dataset with 150 leaves per tree, as we dis-

cussed in Section 4.4.5, extra two cases SDS3D1, and SDS3D2 are also compared

and thus marked in a gray color. For each column from column 2, entry marked

‘?’ indicates the smallest value is found and this entry is considered to be highly

competitive. Our comparison scheme selects DSD2 as the best range case with

d = 373 for Yahoo! dataset under all three tree size settings, d = 1928 for MS 50

leaves case and d = 5720 for MQ 10 leaves case. It selects SDS2D2 with d = 1928

and s = 1638 for MS 10 leaves case.

The running cost of the above guided sampling in CPU hours with one core is

shown the second row of Table 4.8 and can be completed within about 10 hours

using a 8-core server. We have also conducted exhaustive search with greatly-

increased sampling points to obtain an estimated optimum solution. The best

cases identified in the estimated optimum are listed in the third row of Table 4.8

and exactly match what has been selected by our guided sampling scheme. The

fourth row of the Table 4.8 shows the sample error which is the cost difference ra-

149



Chapter 4. A Comparison of Cache Blocking Methods

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 1  10  100  1000  10000 100000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Ti
m

e(
ns

)

L3
 m

is
s 

ra
tio

(%
)

d value

Time
L3 miss

(a) Yahoo! 50 leaves

 50

 100

 150

 200

 250

 300

 350

 400

 1  10  100  1000  10000 100000
 0
 10
 20
 30
 40
 50
 60
 70
 80

Ti
m

e(
ns

)

L3
 m

is
s 

ra
tio

(%
)

d value

Time
L3 miss

(b) Yahoo! 150 leaves

Figure 4.5: Time cost and cache miss of DSD as d varies.

tio between the optimum solution and the solution approximated by our scheme.

The difference is within 2.2%. The fifth and sixth rows are the best cases and

difference ratio obtained on the Intel machine. The error is within 2.4% while all

best cases of the estimated optimum match those of the approximated solution.

The above result shows that our guided sampling can find a highly competitive

blocking solution within reasonable hours using a modest server and such a so-

lution can result in upto 6.57x response time reduction compared to DS without

cache blocking.

Impact of blocking size on time cost and cache miss rate. In Sec-

tion 4.4, we have used Figure 4.3 to illustrate the correlation between data access

time cost and blocking size in deriving the cost for DSD. Figure 4.5 shows the

experimental result to validate. This figure shows time cost curve of DSD and L3

150



Chapter 4. A Comparison of Cache Blocking Methods

Y! 10 Y! 50 Y! 150 MS 10 MS 50 MQ 10

DS 59.83 214.29 374.56 59.67 206.98 34.89

DSD1 33.04 99.00 193.95 17.34 47.79 9.82

DSD2 14.09? 39.11 ? 78.11? 14.37 31.49? 8.52?

DSD3 25.51 71.45 143.55 25.95 49.72 13.84

DSD4 54.06 126.32 241.47 42.37 77.75 20.13

DSD1S1 41.56 125.44 237.35 24.46 63 13.67

DSD2S1 21.55 50.41 84.87 17.31 38.61 11.4

DSD3S1 25.71 77.75 141.07 18.1 40.38 11.6

DSD4S1 40.13 120.84 235.36 19.93 52.93 11.83

DSD2S2 29.77 72.42 123.3 30.38 67.33 19.5

DSD3S2 30.49 72.79 124.16 31.25 67.71 19.88

DSD4S2 29.73 72.74 123.07 31.35 68.45 19.85

DSD3S3 39.58 79.73 131.6 40.73 76.2 22.39

DSD4S3 46.13 105.91 157.47 46.2 100.58 28.16

DSD4S4 59.81 217.14 375.24 59.09 210.08 34.95

SDS1D1 60.67 149.17 267.69 23.67 62.61 10.99

SDS2D1 23.75 58.28 102.93 16.28 40.53 9.52

SDS3D1 27.08 72.31 130.48 16.85 43.22 9.6

SDS4D1 31.58 98.72 192.1 17.47 48.65 9.83

SDS2D2 14.5 39.75 82.26 13.21? 32.23 8.68

SDS3D2 15.71 42.68 88.05 15.09 37.30 10.12

SDS4D2 15.55 45.46 88.45 15.07 34.52 10.03

SDS3D3 20.76 59.03 120.15 21.55 50.02 13.04

SDS4D3 26.28 73.81 143.4 26.28 52.29 13.93

SDS4D4 54 131.58 250.17 42.46 81.7 20.13

SDS1 42.96 113.73 240.89 21.39 50.83 12.62

SDS2 30.91 72.22 122.22 31.65 67.28 20.27

SDS3 46.11 107.19 156.67 46.56 100.75 28.78

SDS4 59.83 214.29 374.56 59.67 206.98 34.89

Table 4.7: Scoring time of one vector per tree in nanoseconds for different cache

blocking range cases.
151



Chapter 4. A Comparison of Cache Blocking Methods

miss rate measured using Linux tool perf when d value varies for Yahoo! dataset

with 50 leaves (a) and 150 leaves (b) per tree. When d is too small, cache is not

fully utilized and the cost of TS for DSD derived in Section 4.4.1.2 is large. When

d is too big which falls into case DSD3 or DSD4, the cost curve matches the

analysis that TDSD4 > TDSD3 > TDSD2 .

There is also a correlation between the overall time cost and L3 cache miss

when d varies. For small d, the coefficient for L3 cost c3 in TS is big. For large d,

there is more L3 cache miss, making TD bigger as shown in Section 4.4.

Impact of m and n values on time cost. Figure 4.6 shows the time cost

per tree per document when m changes from 2,000 to 20,000 for all datasets. In

this experiment, we generate extra trees for MS and MQ datasets. It shows that

with sufficiently large value of m, the cache behavior does not change much and

the processing cost is about the same for different m values.

Figure 4.7 shows the time cost per tree per vector when n changes from 1 to

100,000. When n is smaller than 100, the performance drops significantly and

cache is not fully utilized. When n is larger than 1000, the cost becomes stable

and there is no much reduction. We will discuss the experiment results when

batched query processing is allowed shortly.

152



Chapter 4. A Comparison of Cache Blocking Methods

Y! 10 Y! 50 Y! 150 MS 10 MS 50 MQ 10

Comp. time 10.67h 27.09h 81.86h 2.719h 6.349h 0.424h

Best AMD DSD2 DSD2 DSD2 SDS2D2 DSD2 DSD2

Error AMD 0.21% 0.15% 0.10% 0.61% 2.2% 0.47%

Best Intel DSD2 SDS2D2 SDS2D2 DSD2 SDS2D2 DSD2

Error Intel 1.4% 2.4% 0.64% 0.18% 0.52% 0.14%

Table 4.8: CPU hours for comparison, sampling errors, and best cases.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  5000  10000  15000  20000  25000

Ti
m

e(
ns

)

m value

Yahoo! 50 leaves
Yahoo! 150 leaves

MS 50 leaves
MQ 10 leaves

Figure 4.6: Scoring time per vector per tree when m changes.

153



Chapter 4. A Comparison of Cache Blocking Methods

 0
 50

 100
 150
 200
 250
 300
 350
 400

1 10 100 1k 10k 100k

Ti
m

e(
ns

)

n value

Yahoo! 50 leaves
Yahoo! 150 leaves

MS 50 leaves
MQ 10 leaves

Figure 4.7: Scoring time per vector per tree when n changes.

Time(ns) Tree scorers BWQS scorers

Yahoo! 10 14.09 11.24

Yahoo! 50 39.11 52.88

Yahoo! 150 78.11 2869.29

MS 50 31.49 44.64

MQ 10 8.52 7.39

Table 4.9: Use of the comparison and selection scheme with BWQS scorers and

with the original regression tree scorers.

154



Chapter 4. A Comparison of Cache Blocking Methods

 0

 50

 100

 150

 200

 250

 300

 350

1 10 100 1k 5k 20k

Ti
m

e(
ns

)

No. of scorers

Yahoo! 64 leaves
Yahoo! 32 leaves
Yahoo! 16 leaves

MS 64 leaves

Figure 4.8: Scoring time of a vector per tree when varying the number of BWQS

scorers.

155



Chapter 4. A Comparison of Cache Blocking Methods

4.5.3 Selective Cache Blocking for QuickScorer

We integrate our scheme with the BWQS algorithm [76] as follows. Step 1:

Given m trees and let τ be the number of trees that will be merged to use the

QS method. The number of scorers is m′ = m/τ . Step 2: Given m′ scorers and

n vectors, use our scheme to find the best blocking method and parameters. Step

3: Repeat Step 1 and Step 2 for a different sampling choice of τ . Step 4: The τ

with the smallest time cost yields the best overall performance.

Figure 4.8 shows the BWQS results under the different number of scorers m′

where m is fixed as 20,000 and m′ varies from 1 to 20,000. Notice that when m′

is small, each scorer contains many trees and does not fit in L1 or even L2. The

best m′ found for Y!64, Y!32, Y!16 and MS64 are 20, 10, 4 and 200, respectively.

For Y!64, when m′ = 20, case DSD3 with d = 75 reaches the best performance

with 62.89ns scoring time. If d is chosen as 1, the scoring time would be 89.33ns.

Here the constraint to derive d value is explained as follow. Let F be the number

of features in each document vector and L be the number of leaves in each tree.

Following [76], the size of d document vectors is 4dF bytes and the QS data

structure is composed of 6 parts: the result bit vectors with size dτ · L
8
, the

thresholds with size 4τL, the offsets with size 4F , the tree ids with size 4τL, the

bitvectors with size τ ·L2

8
, and leaves with size 4τL. The total size of d vectors and

QS data structure is 4F (d + 1) + (d · L
8

+ (12 + L
8
)L) · τ , which needs to fit in

156



Chapter 4. A Comparison of Cache Blocking Methods

L3 cache because one BWQS scorer may not fit in L2. For Yahoo! dataset with

F = 700, when L = 64 and τ = 1000, we can derive d = 75.4 with L3 ≈ 2MB.

Table 4.9 shows the scoring time per vector per tree when applying cache

blocking with our comparison and selection scheme to the original tree scorer and

to the BWQS scorer. This comparison shows that when the number of leaves

per tree is small(10), BWQS performs better. When the number of leaves per

tree increases to 150, BWQS becomes fairly slow. Our explanation is listed as

follows. The core QS scheme has a complexity sensitive to the number of tree

nodes detected as “false” nodes because bit-wise operations need to be conducted

for all such nodes. When the number of “false” nodes is large and linear to L, the

overall time cost grows at linearly to increasing of L for small L. When L > 64,

the bit operation has to be carried by multiple 64-bit instructions and there is

additional overhead for managing this complexity. For a large tree with many

false nodes, QuickScorer can become very expensive. On the other other hand, the

original regression tree algorithm has a complexity logarithmically proportional

to L. It should be mentioned that the scoring time per vector per tree reported

here seems to be slower than what was reported in [76] for L = 64. That can be

caused by a difference in dataset characteristics, our code implementation, and

test platform. We will investigate this issue in the future work.

157



Chapter 4. A Comparison of Cache Blocking Methods

4.5.4 Batched Query Processing

Batch size Y! 50 Y! 150 MS 50 MQ 10

10k 125.79 60.78 310.27 2880.2

1k 125.60 60.64 304.88 2805.8

100 125.00 60.37 308.45 2673.8

10 121.54 56.03 232.94 2460.6

1 73.53 31.40 125.33 1505.1

DS 23.87 13.12 38.89 565.6

Table 4.10: Throughput under different batch size when n = 10.

We illustrate the benefit of batched query processing when n is small. Ta-

ble 4.10 shows the throughput under different batch sizes when ranking only 10

document vectors (n = 10). The throughput is defined as the number of queries

processed per second. The last row shows the throughput when DS without cache

blocking is used. When batch size is 10, for MS 50, the average processing time

is reduced from 79.79ns to 42.93ns. When the batch size becomes much bigger,

the benefit is not significant any more while there is an increase of waiting time.

Thus a modest batch size is sufficient in this case to reach upto 1.86x throughput

performance improvement.

158



Chapter 4. A Comparison of Cache Blocking Methods

4.6 Summary

The main contribution of this work is a fast comparison and selection scheme

to find an optimized cache blocking method with guided sampling. Our analysis

estimates the data access cost of different methods approximately, which provides

a foundation to select sampling points in comparing different methods and in

narrowing search space.

The evaluation studies with 3 datasets show that different blocking methods

and parameter values can exhibit different cache and cost behavior and our guided

sampling can identify a highly competitive solution among DSD, SDS, DSDS, and

SDSD methods in a reasonable amount of hours using a modest multi-core server.

The difference between the selected solution and the estimated optimum is within

2.4% and the response time of this solution can be 6.57x faster than DS without

cache blocking. The analytic cost analysis shows that the search space for datasets

such as Yahoo!, MS, and MQ can be greatly narrowed by taking advantages of data

and architectural characteristics. When the number of feature vectors per query

is small, cache utilization is affected and if allowed, batched query processing can

bring upto 1.86x performance improvement. The evaluation demonstrates that

our scheme can be used to find the optimized partitioning for QuickScorer.

159



Chapter 5

Conclusion

In this dissertation, we have sought the opportunities for the developement

of information retrieval especially multi-version search and cache-conscious opti-

mization, and we have also faced the challenges from scalability, efficiency and

accuracy. We have thoroughly developed a new multi-version search architecture

with fast ranking mechanism, where in Chapter 2 we present the new multi-version

search system, in Chapter 3 we talked about how to speed up the core module of

the online part of a search system, ranking, by proposing a new 2D block-based

cache-conscious algorithm, and in Chapter 4 we provide a new framework with

full cache analysis to help find best algorithm and parameter setting for our 2D

block-based algorithm. We believe that our architecture and algorithm is general

and can be used in both research and industry.

160



Chapter 5. Conclusion

In this chapter, we first summarize our work on multi-version search and cache-

conscious ranking optimization. We then share our lessons and wisdom learned

from this work. Hopefully, our work can provide useful guidence and insights for

researchers working in this domain. Finally, we discuss future work to conclude

the chapter.

5.1 Summary

Thanks to the fast developement of information retrieval especially the pro-

liferation of versioned search, organizations and companies archive many versions

of digital data and this increases the needs to not only back up but also archive

versioned data. This brings in many opportunities and challenges in this domain.

Different from traditional search, versioned data has lots of redundancies between

versions. How to inherit the property of redundancy is the key to tackle this

problem. In this dissertation, we look at the problem from a system perspec-

tive, where we propose a new multi-version search architecture with representa-

tive cluster-based two-phase hybrid index, we revisit the key component of online

search, the ranking module, and develope a new 2D block-based algorithm which

can speedup ensemble ranking tremendously, and we present a new framework

with full cache analysis to help find best algorithm and parameter setting for

161



Chapter 5. Conclusion

our 2D block-based algorithm. In all the issues we looked at, we develope novel

solutions and evaludate their effectiveness with several real-world datasets.

Firstly, we look at the state-of-the-art multi-version search architecture, where

a two-phase approach [56, 89] has been proposed to find top results first using a

non-positional index and then rerank the selected top results with a positional

index. We find the problem is that still there is a large number of versions to

go through in Phase 1 even without a positional index, so we are considering

proposing a new architecture. In Phase 1, we use representatives of document

versions with full positional information to reduce the number of top clusters

needed to retain a good relevancy. In Phase 2, we extend the concept of cluster-

based retrieval [4, 73, 75, 106] for representative-guided two-phase search and

develop a per-cluster hybrid index to localize data access. The tradeoff is that

Phase 2 requires memory caching of index or the use of solid state drives (SSD).

To speedup Phase 2 search, we develop hybrid per-cluster indexing with adaptive

traversal of forward and inverted structure. Finally, we evaluate our architecture

on three real-world datasets which shows the effectiveness of our method.

Next, we look at the key component of online search within the whole search

architecture, the ranking module. We find that among the whole online process,

ranking is usually a significant time-consuming component and we are aiming at

optimizing it. Gradient Boosted Regression Tree is the state-of-the-art learning-

162



Chapter 5. Conclusion

to-rank algorithm which achieves best tradeoff between accuracy and efficiency

and is widely used in industry nowadays. However, computing scores from a

large number of trees is time-consuming. Access of irregular document attributes

along with dynamic tree branching impairs the effectiveness of CPU cache and

instruction branch prediction. Multi-tree calculation can be parallelized; however,

query processing throughput is not increased because less queries are handled

in parallel. We find that unorchestrated slow memory access incurs significant

costs since memory access latency can be up to 200 times slower than L1 cache

latency. Thus, we ask a question: how can fast multi-tree ensemble ranking with

simple code structure be accomplied via memory hierarchy optimization, without

compromising ranking accuracy? We focus on this and propose a cache-conscious

2D blocking method to optimize data traversal for better temporal cache locality.

Our evaluation shows that 2D blocking can be much faster than the baseline

methods.

Last, we tackle problems on selecting best algorithm and parameter settings

for the 2D blocking method. 2D blocking shows better cache locality and is much

more efficient than traditional methods. However, there are other blocking meth-

ods to select and it is an open problem how to identify the best cache blocking

method and parameter settings given different data and architecture character-

istics. Experimentally determining this choice can be extremely time-consuming

163



Chapter 5. Conclusion

and the comparative result may not be valid any more with a change of underlying

feature vector structure or architecture. Thus, we provide an analysis of multi-

ple blocking methods with different data traversal orders, which provides better

insights on program execution performance and leads a fast approximation to se-

lect the optimized structure. The main contribution is that we have developed

an analytic framework to compare memory access performance of data traversal

under multi-level caches to find the fastest program execution with effective use

of memory hierarchy. Our experiments with three datasets corroborate the ef-

fectiveness of search cost reduction while the guided approximation identifies a

highly competitive blocking choice. We also demonstrate the use of this scheme

with QuickScorer [76] and for batched query processing.

5.2 Lessons

Through the study of multi-version search and cache-conscious ranking opti-

mization, we have learned three lessons. In this section, we will summarize them,

and hopefully it can provide guidence for researchers in this direction.

Balance Tradeoffs in System Design. Large systems often face the chal-

lenges from different aspects. For example, for a search engine, on one hand we

need to maintain high accuracy because users care a lot on the quality of the

final ranking results. On the other hand, efficiency is also a key aspect. Nowa-

164



Chapter 5. Conclusion

days, the online search is usually done within hundreds of milisecond to provide

great user experience. However, balancing different tradeoffs is usually difficult

because they natually contradict with each other. Therefore, we need to balance

them according to the requirement of different projects and arrange the priority

accordingly.

For example, in Chapter 2 we design a multi-version system using this phi-

losophy. Comparing the baseline one phase approach (OP), we can be up-to two

order of magnitude faster than them, while our accuracy is lower than them when

we achieve the best efficiency. Comparing another baseline two phase approach

(TP), its accuracy is low when it achives high efficiency so our accuracy can beat

them tremendously, while the efficiency does not beat them like OP’s two order

of magnitude, but we are still up to 4 times faster than TP. Thus, we propose a

new system which is better than both OP and TP by balancing the importance

of different aspects.

Our lesson learned is that when building a real world large system, it is usually

hard to beat all previous systems from all perspectives. How to choose the key

aspect to optimize is very critical. Using the idea of balancing tradeoffs benefits

a lot for our system design.

Apply Ideas from Other Research Domains. Avoid “reinventing wheel”

again. There are many great research work in other domains and we can always

165



Chapter 5. Conclusion

seek help from them to borrow ideas for our own problem. It is critical to un-

derstand the concept, background, challenges of our problem and the difference

between ours to others.

One example is in Chapter 3 that we need to optimize the ensemble ranking

problem. After unveiling the issue, we find one major problem lies in the data

visit pattern. More specifically, there are too many cache misses in the algorithm.

Thus, to enhance cache locality, we borrow the idea from other domains like com-

puter achitecture and database optimization, where many previous work focused

on improving cache locality by modifying loop orders and data visit patterns.

However, we also notice there are several differences between our work and

the previous work. Firstly, we are aiming at an online ranking problem, so the

number of features and ensemble size can change frequently. This leads to a

key problem on how to find the best parameters because the efficiency is greatly

dependent on choosing the block size properly, but a brute-force way to choose

the best parameter takes too long. Therefore, in Chapter 4 we propose a new

framework with complete cache analsysis to guide the parameter settings for our

2D block-based algorithm. Secondly, since its a ranking problem, we not only care

about the average speed of one document ranked on one tree, we also care about

the throughput of our system. Thus, we extend our 2D block-based algorithm to

handle this issue.

166



Chapter 5. Conclusion

Our lesson learned is that we can apply ideas from other research domains,

but we also need to understand our problems deeply and consider the difference

between our problem and the other ones carefully.

New Computer hardware Provides New Opportunities. Computer

hardwares update in a fast pace. Some old ideas which do not work well on tra-

ditional hardware might work very well on new hardware and bring in opportuni-

ties. Thus, new hardware is like a revolution and might bring some “out-dated”

ideas/research work back to our sights.

For example, in Chapter 2 when we design a two-phase hybrid index, we benefit

a lot using the traditional concept of cluster-based index. This idea was proposed

decades ago but did not end up as the main stream of versioned search. One of

the reasons is on traditional HDD disk, the disk random IO is very costly and

the cluster-based index brings in many random IOs. Therefore, although this

idea has many merits in it, it was abandoned by the main stream of versioned

search academia. However, with the developement of disk hardwares especially

the widely used SSD disk, the random disk IO overhead is not that significant,

so we bring back the idea of cluster-based index and reuse it on SSD disks. This

gives us a lot of advantage under new hardware era.

167



Chapter 5. Conclusion

Our lesson learned is that new computer hardware brings in new opportu-

nities. We might be able to reuse some “out-dated” ideas under new hardware

environment.

5.3 Future Work

In this dissertation, we discussed our work on multi-version search and cache-

conscious ranking optimization. Because of the fast development in information

retrieval especially versioned search and online ranking, we need to meet the

challenges from different perspectives. Here, we discuss three potential future

work in this section: multi-version search extension, cache-conscious method on

other models and secure versioned search.

5.3.1 Multi-Version Search Extension

Our proposed multi-version search system is focused on conjunctive queries.

One future study is to consider disjunctive queries because in real scenario, dis-

junctive queries will include more search results and can potentially increase search

accuracy especially for queries with less matching documents.

Another future study is to investigate the incremental index update with time-

based partitioning. When a new version is added, fragments shared with other

168



Chapter 5. Conclusion

document versions need to be identified and an approximation under a certain

time interval may be applied for cost reduction. The Phase 1 index may be

changed following the traditional index update techniques if the cluster represen-

tative changes and the update for a cluster index is fairly local.

Also, the method of choosing representatives can be improved. Currently our

recommended method is SLO, which includes the non-positional information from

all versions and the positional information from the longest version. One potential

future change is to add more positional information to the super document. For

example, we can add phrases or sentences which appear in other versions but

not the representative version to the super document. In this way, the super

document will contain more positional information, which hopefully can improve

search accuracy in Phase 1.

5.3.2 Cache-Conscious Method on Other Models

Our 2D blocking technique is studies in the context of tree-based ranking

ensembles and one of the potential future work is to extend it for other types of

ensembles, like Neural Networks and so on, by iteratively selecting a fixed number

of the base rank models that can fit in the fast cache. Note that since our 2D

block-based algorithm is a generic one, it should work for any ensemble based

methods.

169



Chapter 5. Conclusion

As to our proposed framework to choose best parameters and blocking methods

using full cache analysis, for other ensembles we might meet the challenges like

the ensemble size is not independant with the data size as we showed in the QS

model. In this way, the cache analysis may be more complex and need further

mathematics optimization.

Another future study is to investigate the cache behaviour under multi-thread

environment. As to our tree-based ensemble, each tree and data entry is relatively

small so we didn’t see any difference from single-thread environment. However, as

to other models where the ensemble is much larger than one thread’s L1/L2 cache

size, this might incur complex situation which needs to be investigated further

because different thread might grab others’ shared cache usage.

5.3.3 Secure Versioned Search

As sensitive information is increasingly stored on the cloud, privacy concerns

have been a critical factor for users to adopt cloud-based information services. A

dilemma commonly considered is that a user may not trust the capability that a

cloud maintains for data privacy, yet the user also wants to take full advantage of

the much larger resources of the cloud to search her or his data. Recently, there

are lots of research work on secure search building on traditional index [95, 38, 32,

65, 70, 69, 30, 29, 31]. How to combine them with our new multi-version search

170



Chapter 5. Conclusion

architecture to propose a new secure multi-version search system is an interesting

problem.

Recall our system search pipeline, Phase 1 is just the same as traditional index

so all the related work of secure search on traditional index should be able to

migrated directly. Phase 2 uses cluster-based index. In each local cluster, we have

fragment-version inverted index, forward index, reuse table and other auxiliary

data structure. How to encrypt these needs further investigation. Also, currently,

each cluster contains all versions of only one document. Since our system will go

into k clusters in Phase 2, it knows which documents are highly relevant to the

query and this is a severe leakage for secure multi-version search. One potential

solution is to combine multiple documents’ all versions to one cluster, say one

cluster contains 100 or 1000 documents. Although this reduces the efficiency

somehow, the server can now only guess the returned results with the probability

of 1/100 or 1/1000. The higher the number of documents are in each cluster, the

lower the probability that the server can guess correctly.

171



Bibliography

[1] Lector 4.0 datasets. http://research.microsoft.com/en-

us/um/beijing/projects/letor/letor4dataset.aspx.

[2] Microsoft learning to rank datasets. http://research.microsoft.com/en-

us/projects/mslr/.

[3] Eugene Agichtein, Eric Brill, Susan Dumais, and Robert Ragno. Learning

user interaction models for predicting web search result preferences. In

Proceedings of the 29th annual international ACM SIGIR conference on

Research and development in information retrieval, SIGIR ’06, pages 3–10,

New York, NY, USA, 2006. ACM.

[4] Ismail Sengor Altingovde, Engin Demir, Fazli Can, and Özgür Ulusoy. In-

cremental cluster-based retrieval using compressed cluster-skipping inverted

files. ACM Trans. Inf. Syst., 26(3):15:1–15:36, 2008.

172



Bibliography

[5] Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf Schenkel,

Avishek Anand, Srikanta Bedathur, Klaus Berberich, and Ralf Schenkel.

Efficient temporal keyword queries over versioned text. In In Proc. of ACM

CIKM Conf, 2010.

[6] Vo Ngoc Anh and Alistair Moffat. Index compression using fixed binary

codewords. In Proc. of 15th Australasian Database Conference, pages 61–

67, 2004.

[7] Peter G. Anick and Rex A. Flynn. Versioning a full-text information re-

trieval system. In SIGIR, pages 98–111, 1992.

[8] Avi Arampatzis and Jaap Kamps. A study of query length. In Prc. of ACM

SIGIR, pages 811–812, 2008.

[9] Diego Arroyuelo, Senén González, Mauricio Marin, Mauricio Oyarzún, and

Torsten Suel. To index or not to index: Time-space trade-offs in search

engines with positional ranking functions. In Proc. of 35th ACM SIGIR,

pages 255–264, 2012.

[10] Nima Asadi and Jimmy Lin. Effectiveness/efficiency tradeoffs for candidate

generation in multi-stage retrieval architectures. In Proc. of 36th ACM

SIGIR, pages 997–1000, 2013.

173



Bibliography

[11] Nima Asadi and Jimmy Lin. Training Efficient Tree-Based Models for Doc-

ument Ranking. In ECIR, pages 146–157, 2013.

[12] Nima Asadi, Jimmy Lin, and Arjen P De Vries. Runtime Optimizations for

Tree-Based Machine Learning Models. IEEE TKDE, pages 1–13, 2013.

[13] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-

mations for high-performance computing. ACM Comput. Surv., 26(4):345–

420, 1994.

[14] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock,

Vassilis Plachouras, and Fabrizio Silvestri. The impact of caching on search

engines. SIGIR ’07, pages 183–190, 2007.

[15] Ricardo A. Baeza-Yates and Simon Jonassen. Modeling static caching in

web search engines. In ECIR, pages 436–446, 2012.

[16] Ricardo A. Baeza-Yates and Felipe Saint-Jean. A three level search engine

index based in query log distribution. In SPIRE, pages 56–65, 2003.

[17] Jing Bai, Yi Chang, Hang Cui, Zhaohui Zheng, Gordon Sun, and Xin Li.

Investigation of partial query proximity in web search. In Proceedings of

the 17th International Conference on World Wide Web, WWW ’08, pages

1183–1184, 2008.

174



Bibliography

[18] Jing Bai, Jan Pedersen, and Mao Yang. Web-scale semantic ranking. In

Proceedings of the 2014 SIRIP, 2014.

[19] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, and Gerhard

Weikum. A time machine for text search. In Proc. of 30th ACM SIGIR,

pages 519–526, 2007.

[20] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.

[21] Leo Breiman and E. Schapire. Random forests. In Machine Learning, pages

5–32, 2001.

[22] Andrei Z. Broder, Nadav Eiron, Marcus Fontoura, Michael Herscovici,

Ronny Lempel, John McPherson, Runping Qi, and Eugene J. Shekita. In-

dexing shared content in information retrieval systems. In EDBT, volume

3896, pages 313–330, 2006.

[23] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent.

ICML ’05, pages 89–96, 2005.

[24] Christopher J. C. Burges, Krysta Marie Svore, Paul N. Bennett, Andrzej

Pastusiak, and Qiang Wu. Learning to rank using an ensemble of lambda-

gradient models. In J. of Machine Learning Research, pages 25–35, 2011.

175



Bibliography

[25] Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman. Term proximity

scoring for ad-hoc retrieval on very large text collections. In Proc. of 29th

ACM SIGIR, pages 621–622, 2006.

[26] B Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, and Jiang Chen.

Early Exit Optimizations for Additive Machine Learned Ranking Systems

Ranking in Additive Ensembles. In WSDM, pages 411–420, 2010.

[27] B. Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya

Liao, Zhaohui Zheng, and Jon Degenhardt. Early exit optimizations for

additive machine learned ranking systems. WSDM ’10, pages 411–420, 2010.

[28] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning

to rank: From pairwise approach to listwise approach. ICML ’07, pages

129–136, 2007.

[29] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable

encryption in very-large databases: Data structures and implementation. In

NDSS 2014, 2014.

[30] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-

Catalin Rosu, and Michael Steiner. Highly-scalable searchable symmetric

176



Bibliography

encryption with support for boolean queries. In CRYPTO 2013, pages 353–

373, 2013.

[31] David Cash and Stefano Tessaro. The locality of searchable symmetric

encryption. In EUROCRYPT 2014, pages 351–368, 2014.

[32] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. ACNS’05, pages 442–455, 2005.

[33] Olivier Chapelle and Yi Chang. Yahoo! Learning to Rank Challenge

Overview. J. of Machine Learning Research, pages 1–24, 2011.

[34] Francisco Claude, Antonio Fariña, Miguel A. Martinez-Prieto, and Gonzalo

Navarro. Indexes for highly repetitive document collections. In Proc. of 20th

ACM CIKM, pages 463–468, 2011.

[35] Francisco Claude and J. Ian Munro. Document listing on versioned docu-

ments. LNCS, 8214:72–83, 2013.

[36] Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: In-

formation Retrieval in Practice. Addison Wesley, 2010.

[37] J. Shane Culpepper and Alistair Moffat. Efficient set intersection for in-

verted indexing. ACM Trans. Inf. Syst., 29(1):1:1–1:25, December 2010.

177



Bibliography

[38] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-

able symmetric encryption: Improved definitions and efficient constructions.

CCS ’06, pages 79–88. ACM, 2006.

[39] Bolin Ding and Arnd Christian König. Fast set intersection in memory.

Proc. of VLDB, 4(4):255–266, January 2011.

[40] Laura DuBois and Marshall Amaldas. Building the Case for Moving Com-

pliance, eDiscovery, and Archives to the Cloud., June 2011.

[41] EMC. Data domain: Protection storage for backup and archive.

http://www.emc.com/backup-and-recovery/data-domain/index.htm.

[42] EMC. Archive solutions for the enterprise with emc isilon scale-out nas.

http://www.emc.com/collateral/white-papers/h11224-archive-solutions-

enterprise-emc-isilon-wp.pdf, December, 2012.

[43] Kave Eshghi and Hsiu K. Tang. A Framework for Analyzing and Improv-

ing Content-Based Chunking Algorithms. Hewlett-Packard Labs. Technical

Report, TR 2005-30, 2005.

[44] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando.

Boosting the performance of web search engines: Caching and prefetching

178



Bibliography

query results by exploiting historical usage data. ACM Trans. Inf. Syst.,

24:51–78, 2006.

[45] Héctor Ferrada and Gonzalo Navarro. A Lempel-Ziv compressed structure

for document listing. LNCS, 8214:116–128, 2013.

[46] A. S. Fraenkel, S. T. Klein, Y. Choueka, and E. Segal. Improved hierarchical

bit-vector compression in document retrieval systems. In Proc. of 9th ACM

SIGIR, pages 88–96. ACM, 1986.

[47] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient

boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933–

969, December 2003.

[48] Jerome H. Friedman. Greedy function approximation: A gradient boosting

machine. Annals of Statistics, 29:1189–1232, 2000.

[49] Jerome H. Friedman. Greedy function approximation: A gradient boosting

machine. Annals of Statistics, 29:1189–1232, 2000.

[50] Travis Gagie, Kalle Karhu, Gonzalo Navarro, Simon J. Puglisi, and Jouni

Sirén. Document listing on repetitive collections. LNCS, 7922:107–119,

2013.

179



Bibliography

[51] Yasser Ganjisaffar, Rich Caruana, and Cristina Lopes. Bagging Gradient-

Boosted Trees for High Precision, Low Variance Ranking Models. In SIGIR,

pages 85–94, 2011.

[52] Pierre Geurts and Gilles Louppe. Learning to rank with extremely random-

ized trees. J. of Machine Learning Research, 14:49–61, 2011.

[53] Andrey Gulin, Igor Kuralenok, and Dmitry Pavlov. Winning the transfer

learning track of yahoo!’s learning to rank challenge with yetirank. J. of

Machine Learning Research, 14:63–76, 2011.

[54] Jinru He and Torsten Suel. Faster temporal range queries over versioned

text. In Proc. of 34th ACM SIGIR, pages 565–574. ACM, 2011.

[55] Jinru He and Torsten Suel. Faster temporal range queries over versioned

text. In Proc. of 34th ACM SIGIR, pages 565–574, 2011.

[56] Jinru He and Torsten Suel. Optimizing positional index structures for ver-

sioned document collections. In Proc. of ACM SIGIR, pages 245–254, 2012.

[57] Jinru He, Hao Yan, and Torsten Suel. Compact full-text indexing of ver-

sioned document collections. In Proc. of 18th ACM CIKM, pages 415–424,

2009.

180



Bibliography

[58] Jinru He, Junyuan Zeng, and Torsten Suel. Improved index compression

techniques for versioned document collections. In Proc. of 19th ACM CIKM,

pages 1239–1248, 2010.

[59] Sándor Héman. Super-scalar database compression between ram and cpu-

cache. In MS Thesis, Centrum voor Wiskunde en Informatica, 2005.

[60] Michael Herscovici, Ronny Lempel, and Sivan Yogev. Efficient indexing of

versioned document sequences. In ECIR, pages 76–87, 2007.

[61] HP. Backup, Recovery and Archive – Eliminate the

boundaries of traditional data protection and retention.

http://www8.hp.com/us/en/products/data-storage/storage-backup-

archive.html.

[62] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta algorithms: An

empirical analysis. ACM Trans. Softw. Eng. Methodol., 7(2):192–214, 1998.

[63] Symantec Inc. Your Backup Is Not an Archive , 2011.

[64] Internet Archive. http://www.archive.org.

[65] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access

pattern disclosure on searchable encryption: Ramification, attack and mit-

igation. In NDSS 2012, 2012.

181



Bibliography

[66] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation

of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446, October 2002.

[67] Thorsten Joachims. Optimizing search engines using clickthrough data. In

Proceedings of the eighth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’02, pages 133–142, New York, NY,

USA, 2002. ACM.

[68] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model

of information retrieval: development and comparative experiments. Inf.

Process. Manage., 36(6):779–808, November 2000.

[69] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic search-

able symmetric encryption. In FC 2013, pages 258–274, 2013.

[70] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic

searchable symmetric encryption. In CCS’12, pages 965–976, 2012.

[71] Marcin Kaszkiel, Justin Zobel, and Ron Sacks-davis. Efficient passage rank-

ing for document databases. ACM Transactions on Information Systems,

17:406–439, 1999.

[72] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M Tracey.

Redundancy elimination within large collections of files. In ATEC ’04: Pro-

182



Bibliography

ceedings of the annual conference on USENIX Annual Technical Conference,

pages 59–72, Berkeley, CA, USA, 2004. USENIX Association.

[73] Oren Kurland and Eyal Krikon. The opposite of smoothing: A language

model approach to ranking query-specific document clusters. J. Artif. Int.

Res., 41(2):367–395, May 2011.

[74] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and

Ramesh Agarwal. Dynamic maintenance of web indexes using landmarks.

In Proceedings of the 12th International Conference on World Wide Web,

WWW ’03, pages 102–111. ACM, 2003.

[75] Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language

models. In Proc. of 27th ACM SIGIR, pages 186–193, 2004.

[76] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele

Perego, Nicola Tonellotto, and Rossano Venturini. Quickscorer: A fast al-

gorithm to rank documents with additive ensembles of regression trees. In

SIGIR, pages 73–82, 2015.

[77] Evangelos P. Markatos. On caching search engine query results. Computer

Communications, 24:137–143, 2001.

183



Bibliography

[78] Donald Metzler and W. Bruce Croft. Linear feature-based models for infor-

mation retrieval. Inf. Retr., 10(3):257–274, June 2007.

[79] Donald Metzler and W. Bruce Croft. A markov random field model for term

dependencies. In Proc. of 28th ACM SIGIR, pages 472–479. ACM, 2005.

[80] Teng-Sheng Moh and BingChun Chang. A running time improvement for the

two thresholds two divisors algorithm. In Proc of 48th ACM Ann. Southeast

Regional Conf., pages 69:1–69:6, 2010.

[81] Athicha Muthitacharoen, Benjie Chen, and David Mazires. A low-

bandwidth network file system. In SOSP, pages 174–187, 2001.

[82] NetApp. Data Archieve Solutions. http://www.netapp.com/us/solutions/data-

protection/archive-solutions.aspx.

[83] Douglas W. Oard, Jason R. Baron, Bruce Hedin, David D. Lewis, and

Stephen Tomlinson. Evaluation of information retrieval for e-discovery. Ar-

tif. Intell. Law, 18(4):347–386, December 2010.

[84] Rifat Ozcan, Ismail Sengr Altingvde, Berkant Barla Cambazoglu,

Flavio Paiva Junqueira, and zgr Ulusoy. A five-level static cache archi-

tecture for web search engines. Inf. Process. Manage., 48:828–840, 2012.

184



Bibliography

[85] Rifat Ozcan, Ismail Sengr Altingvde, and zgr Ulusoy. Static query result

caching revisited. In WWW, pages 1169–1170, 2008.

[86] Rifat Ozcan, Ismail Sengr Altingvde, and zgr Ulusoy. Cost-aware strategies

for query result caching in web search engines. TWEB, 5:9, 2011.

[87] Dmitry Yurievich Pavlov, Alexey Gorodilov, and Cliff A. Brunk. Bagboo:

a scalable hybrid bagging-the-boosting model. In CIKM, pages 1897–1900,

2010.

[88] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. Letor: A benchmark collec-

tion for research on learning to rank for information retrieval. Inf. Retr.,

13(4):346–374, August 2010.

[89] Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-based

retrieval systems. In In Proc. of the 25th European Conf. on IR Research,

pages 207–218, 2003.

[90] Transparency Market Research. eDiscovery (Software and Service) Mar-

ket - Global Scenario, Trends, Industry Analysis, Size, Share and Fore-

cast, 2010 - 2017. http://www.transparencymarketresearch.com/ediscovery-

market.html, 2013.

185



Bibliography

[91] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local

algorithms for document fingerprinting. In Proc. of ACM SIGMOD, pages

76–85, 2003.

[92] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compres-

sion of inverted indexes for fast query evaluation. In Proc. of 25th ACM

SIGIR, pages 222–229, 2002.

[93] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compres-

sion of inverted indexes for fast query evaluation. In Proc. of SIGIR’02,

pages 222–229. ACM, 2002.

[94] IBM Global Technology Services. Cloud-based data archiving service. IBM

White paper. July 2011 .

[95] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-

niques for searches on encrypted data. SP ’00. IEEE Computer Society,

2000.

[96] Neil T. Spring and David Wetherall. A protocol-independent technique for

eliminating redundant network traffic. In SIGCOMM, pages 87–95, 2000.

186



Bibliography

[97] Torsten Suel and Nasir Memon. Algorithms for delta compression and re-

mote file synchronization. In In Khalid Sayood, editor, Lossless Compression

Handbook. Academic Press, 2002.

[98] Krysta M Svore, Pallika H Kanani, and Nazan Khan. How good is a span

of terms?: exploiting proximity to improve web retrieval. In Proc. of 33rd

ACM SIGIR, pages 154–161, 2010.

[99] Xun Tang, Xin Jin, and Tao Yang. Cache-conscious runtime optimization

for ranking ensembles. SIGIR ’14, pages 1123–1126, 2014.

[100] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in

information retrieval. In Proc. of 30th ACM SIGIR, pages 295–302, 2007.

[101] Dan Teodosiu, Nikolaj Bjorner, Yuri Gurevich, Mark Manasse, and Joe

Porkka. Optimizing file replication over limited bandwidth networks using

remote differential compression. Microsoft Research TR-2006-157, 2006.

[102] Jiancong Tong, Gang Wang, and Xiaoguang Liu. Latency-aware strategy

for static list caching in flash-based web search engines. In CIKM, pages

1209–1212, 2013.

187



Bibliography

[103] Jiancong Tong, Gang Wang, and Xiaoguang Liu. Latency-aware strategy

for static list caching in flash-based web search engines. In CIKM, pages

1209–1212, 2013.

[104] Leong Hou U, Nikos Mamoulis, Klaus Berberich, and Srikanta Bedathur.

Durable top-k search in document archives. In Proc. of 2010 ACM SIGMOD,

pages 555–566, 2010.

[105] Leong Hou U, Nikos Mamoulis, Klaus Berberich, and Srikanta Bedathur.

Durable top-k search in document archives. In Proc. of ACM SIGMOD,

pages 555–566, 2010.

[106] Ellen M. Voorhees. The cluster hypothesis revisited. In Proc. of 8th ACM

SIGIR, pages 188–196, 1985.

[107] Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, and

Xiaoguang Liu. The impact of solid state drive on search engine cache

management. SIGIR ’13, pages 693–702.

[108] Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to efficiently rank.

SIGIR ’10, pages 138–145, 2010.

[109] Yuedui Wang, Xiangming Wen, Yong Sun, Zhenmin Zhao, and Tianpu

Yang. The Content Delivery Network System Based on Cloud Storage. 2011

188



Bibliography

International Conference on Network Computing and Information Security,

pages 98–102, May 2011.

[110] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images, second edition. Morgan

Kaufmann Publishing, May 1999.

[111] Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao.

Adapting boosting for information retrieval measures. Inf. Retr., 13(3):254–

270, June 2010.

[112] Jun Xu and Hang Li. Adarank: a boosting algorithm for information re-

trieval. In Proceedings of the 30th annual international ACM SIGIR con-

ference on Research and development in information retrieval, SIGIR ’07,

pages 391–398, 2007.

[113] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and

query processing with optimized document ordering. In Proc. of 18th Inter.

Conf. on World Wide Web, pages 401–410, 2009.

[114] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and

query processing with optimized document ordering. In Proc. of 18th inter.

Conf. on World Wide web, pages 401–410. ACM, 2009.

189



Bibliography

[115] Tao Yang and Apostolos Gerasoulis. Web search engines: Practice and

experience. in Computer Science Handbook (Teofilo Gonzalez, Jorge Diaz-

Herrera, Allen Tucker. Eds), Chapman and Hall/CRC Press, 2014.

[116] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A

support vector method for optimizing average precision. In Proceedings

of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, SIGIR ’07, pages 271–278, 2007.

[117] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of com-

pressed inverted list caching in search engines. WWW ’08, pages 387–396.

[118] Jiangong Zhang and Torsten Suel. Efficient search in large textual collections

with redundancy. WWW ’07, pages 411–420.

[119] Jiashu Zhao and Jimmy Xiangji Huang. An enhanced context-sensitive

proximity model for probabilistic information retrieval. SIGIR ’14, pages

1131–1134. ACM, 2014.

[120] Jiashu Zhao, Jimmy Xiangji Huang, and Ben He. Crter: Using cross terms

to enhance probabilistic information retrieval. In Proc. of 34th ACM SIGIR,

pages 155–164, 2011.

190



Bibliography

[121] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM

Comput. Surv., 38(2), 2006.

[122] M. Zukowski, S. Hman, N. Nes, P. A. Boncz, Marcin Zukowski, Sndor Hman,

Niels Nes, and Peter Boncz. Super-scalar ram-cpu cache compression. In

Proc. of IEEE ICDE, page 59, 2006.

[123] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar

ram-cpu cache compression. In Proc. of ICDE, pages 59–59. IEEE, 2006.

191


	Contents
	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Multi-version Search System
	Cache-Conscious Runtime Optimization for Ranking Ensembles
	A Comparison of Cache Blocking Methods
	Contributions
	Thesis Organization

	Multi-version Search System
	Introduction
	Background and Related Work
	Multiversion Data Index
	Traditional Search
	Multiversion Data Search
	Documents Clustering

	Cluster-based Retrieval with Representatives
	Design Considerations
	Cluster Representatives

	 Hybrid per-cluster Indexing and Traversal
	Indexing and Search Options for Phase 2
	Term-version Posting Intersection
	Index Storage Layout and Cost

	Evaluations
	Datasets and Experiment Settings
	A Comparison on Overall Search Time
	A Comparison of Phase 2 Indexing and Traversal Options
	A Comparison on Relevance Scores

	Summary

	Cache-Conscious Runtime Optimization for Ranking Ensembles
	Introduction
	Background and Related Work
	Learning to Efficiently Rank
	Traversal Patterns
	Search Engine Caching Techniques

	2D Block Algorithm
	Evaluations
	Datasets and Experiment Settings
	A Comparison of Scoring Time
	Cache Behavior
	Branch Mis-prediction

	Summary

	A Comparison of Cache Blocking Methods
	Introduction
	Background and Related Work
	Design Consideration and Cost Model
	Cost Analysis and Comparison
	Time Cost for DSD
	Time Cost for SDS
	Time Cost for DSDS
	Time Cost for SDSD
	Cost Comparison of the Four Methods
	Discussions
	Proof for Proposition 1

	Evaluations
	Settings
	A Comparison of Cache Blocking Methods
	Selective Cache Blocking for QuickScorer
	Batched Query Processing

	Summary

	Conclusion
	Summary
	Lessons
	Future Work
	Multi-Version Search Extension
	Cache-Conscious Method on Other Models
	Secure Versioned Search


	Bibliography



