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of training length L and relative delay fdτ . The simulation was
performed with noise power σ2

n = .1 and Nt = Nr = 4 antennas. 33

Figure 3.1: A virtual channel knowledge exchange system where the trans-
mitter(s) has channel knowledge of all users delayed by ∆t sam-
ples from the current channel and the receiver(s) has individ-
ual channel knowledge delayed by ∆r samples from the current
channel. All nodes are assumed to have Nt = Nr antennas. . . . 36

Figure 3.2: Effectiveness of transmit precoding, UT, when using capacity-
achieving input covariance matrices for (a) perfect CSIT at zero
displacement and (b) CSIT delayed by three wavelengths for Nt

transmit antennas and Nr receive antennas. . . . . . . . . . . . 42

Figure 3.3: Maximum achievable rate for outdated (a) CSIT and (b) CSIR
with varying available power in the single-user channel. In (b),
at a displacement of 1λ, the rate at 20dB power is less than at
10dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.4: K = 3 user broadcast channel with Nr = Nt = 8 antennas and
capacity degradation for DPC, BC-LP, and BC-TS as CSIT
goes out-of-date and CSIR remains perfect. The metric dT is
the distance at which the optimum scheme DPC falls below TS. 51

Figure 3.5: K = 3 user multiple-access channel with Nr = Nt = 8 antennas
as CSIT and CSIR go out-of-date. . . . . . . . . . . . . . . . . 52

Figure 3.6: Vertical lines denote the RCD distances dR,i in which the
achievable rate drops to 50% of capacity for i = 1, 2, 3 trans-
mitters, respectively, in the multiple-access channel. The single-
user case is i = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.1: Average rate versus number of users for fixed Nr = Nt = 4
antennas and P = 10 in Rayleigh, flat-fading channel model.
All nodes have perfect channel knowledge for all realizations of
the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.2: Sample average rate (SAR) as a function of delay for a network
with parameters Nt = Nr = 4, K = 5, and P = 10 given various
transmit precoding schemes in the spatially-white, Jakes’ chan-
nel model with a normalized Doppler frequency of fd = 0.0086. 62

x



Figure 4.3: Comparison of optimal transmit beamforming RCI and MMSE-
CSIT beamforming for Nt = 6, Nr = 1, and P = 10 in a
Rayleigh flat-fading channel. The optimal non-linear prepro-
cessing (DPC) is also shown for comparison. . . . . . . . . . . . 68

Figure 4.4: Convergence of RCI and MMSE-CSIT beamforming algorithms
for Nt = 4, Nr = 4, P = 10, and different number of users for a
channel realization from the measured data. . . . . . . . . . . . 69

Figure 4.5: Precoding effectiveness UT in the MIMO broadcast channel
with K = 3 users, Nr = Nt = 4 antennas, and P = 10 power
constraint. Results are shown for the (a) Indoor, (b) Outdoor,
and (c) Urban environments. . . . . . . . . . . . . . . . . . . . 75

Figure 4.6: Sample average rate versus number of users for Nt = Nr = 4
and P = 10 in the measured channel. There is no lag between
channel acquisition and use. . . . . . . . . . . . . . . . . . . . . 76

Figure 4.7: Sample average rate versus number of users for Nt = Nr = 4
and P = 10 in the measured channel. There is a lag of 1.5λ
between channel acquisition and use. . . . . . . . . . . . . . . . 77

Figure 4.8: Average sum-rate of RCI and RCDI versus displacement for
K = Nr = Nt = 4 and P = 10. The receiver and transmit-
ter share equally delayed knowledge of that channel given by
∆ (wavelengths) from the current channel. Shown are the (a)
Indoor, (b) Outdoor, and (c) Urban environments. . . . . . . . 81

Figure 5.1: Instantaneous throughput for various precoding techniques and
a channel size of Nr = Nt = 4, P = 10 and (a) K = 4 or (b)
K = 6 users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.2: Achievable throughput for RCI-MAC and RCDI-MAC beam-
formers with Nr = Nt = K = 4 and P = 10. For the RCI-MAC
beamformer CSI estimation error is fixed at σ2

e = .1. . . . . . . 92

Figure 6.1: Model capacity versus Nr = Nt in the single-user channel where
each value is normalized by the full correlation model capacity.
Power is constrained to P = 10. . . . . . . . . . . . . . . . . . . 99

Figure 6.2: Average sum-rate versus system size when the matrices St and
Sr are generated by using: the full correlation matrix, the We-
ichselberger model, the Kronecker model, and a rank-1 approx-
imation. Shown are the (a) Indoor, (b) Outdoor, and (c) Urban
environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



Figure 6.3: Average sum-rate versus system size when the matrices St and
Sr are generated by using: the full correlation matrix, the We-
ichselberger model, the Kronecker model, and a rank-1 approx-
imation. Shown are the (a) Indoor, (b) Outdoor, and (c) Urban
environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 7.1: Number of possible schedules given various link constraints in
an N-node ad hoc network. . . . . . . . . . . . . . . . . . . . . 110

Figure 7.2: Average throughput for the ETP simulations with Nr = Nt =
3, P = 10, K = 4, and different link topologies. Links are
sorted by instantaneous rate prior to averaging. . . . . . . . . . 121

Figure 7.3: Instantaneous sum-rate throughputs for Nr = Nt = 3, P = 10,
K = 4, and (a) ENP or (b) ETP simulations in various link
topologies with erroneous CSI at the transmitter(s). . . . . . . 123

Figure C.1: Ergodic capacity with upper and lower bounds in an interfer-
ence limited, single-user system with m = 3 degrees of freedom. 135

Figure C.2: The Expected Sample Average Rate (ESAR) with upper and
lower bounds for various initial displacements. The measured
channel was used for a system with Nt = 4, Nr = 1, K = 6, and
P = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xii



LIST OF TABLES

Table 4.1: Iterative beamforming for maximization of sample average rate . 67

Table 4.2: Iterative beamforming for maximization of ESAR lower bound . 72

Table 4.3: Performance Metrics for DPC, RCI, and TS in Indoor, Outdoor,
and Urban Environments . . . . . . . . . . . . . . . . . . . . . . 76

Table 4.4: Iterative beamforming for MIMO regularized channel distribu-
tion inversion (RCDI) . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 7.1: Number of possible unique schedules using point-to-point, MA/BC,
half-duplex, and duplex links. . . . . . . . . . . . . . . . . . . . 111

Table 7.2: Average sum-rate (bits/sec/Hz) for various links using CSI-Based
Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 7.3: Average sum-rate (bits/sec/Hz) for various links using RCDI-HC 126

xiii



ACKNOWLEDGEMENTS

I would first like to acknowledge my advisor, Dr. Zeidler, and graduate

institution, the University of Califronia, San Diego (UCSD), for providing an envi-

ronment where research and learning can take place. I firmly believe that advanced

education (regardless of the focus) is at the core of maximizing the potential of the

human individual and they have provided this opportunity for me. I would also

like to thank my graduate committee, Drs.: Milstein, Rao, Hodgkiss, and Bitmead

for the time they have invested in my progess through the UC graduate system.

My wife, Brita, and children: Max, Chase, Grace, Madi, and Unnamed, are

an amazing family for me. My wife has provided support and patience through all

these years of advanced study which length of time happens to coincide with all

our years of marriage as well. My children are all brilliant in their own way and

give me satisfaction in being able to raise the next generation of engineers.

I would also like to thank Dr. Jensen specifically for his interest in my

progression since hiring me as an intern when I was an undergraduate student.

Thanks to all my fellow doctoral students and their countless discussions on nu-

merous topics with varying degrees of applicability to this dissertation.

The text presented in this dissertation, in part, was originally published

in the following papers, of which I was the primary researcher and author: A.

L. Anderson, J. R. Zeidler, and M. A. Jensen, “Regularized channel distribution

inversion and parameterization in the MIMO broadcast channel,” in Proc. 2008

IEEE 68th Veh. Technol. Conf., Calgary, Canada, Sept. 2008;A. L. Anderson, J.

R. Zeidler, and M. A. Jensen, “Instantaneous and average rate maximization in

MIMO multiple-access channels (MAC) with linear processing,” in 42nd Asilomar

Conf. Signals, Systems and Computers, Pacific Grove, CA, Oct. 2008;A. L. An-

derson, J. R. Zeidler, and M. A. Jensen, “Linear processing and link scheduling

in MIMO mobile ad hoc networks (MANET),” submitted to 28th Conference on

Computer Communications (INFOCOM 2008);A. L. Anderson, J. R. Zeidler, and

M. A. Jensen, “Stable transmission in the time-varying MIMO broadcast channel,”

EURASIP Journal on Advances in Signal Processing, 2008, Article ID 617020, 14

xiv



pages, 2008. doi:10.1155/2008/617020;A. L. Anderson, J. R. Zeidler, and M. A.

Jensen, “Reduced-feedback linear precoding with stable performance for the time-

varying MIMO broadcast channel,” IEEE Journal on Selected Areas of Commu-

nications, (Special Issue on Limited Feedback). Vol. 26, No. 8, 11 pages, October,

2008.

xv



VITA

2002 BSc in Electrical Engineering, Brigham Young Uni-
versity (BYU)

2002-2003 Intern, Wavetronix LLC

2004 MSc in Electrical Engineering, Brigham Young Uni-
versity

2000-2005 Software Engineer, AJ Design Group, Inc

2004-2008 Graduate Student Researcher, University of Califor-
nia, San Diego (UCSD)

2008 Teaching Assistant, University of California, San Diego

2008 PhD in Electrical Engineering, University of Califor-
nia, San Diego

PUBLICATIONS

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Performance of transmit precod-
ing in time-varying point-to-point and multi-user MIMO channels,” in Conference
Record of the IEEE Asilomar Conference on Circuits, Systems and Computers,
Nov. 2006.

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Parameterized channel feedback
using correlation-based channel models for multi-user MIMO systems,” in Proceed-
ings of the 2008 USNC/URSI National Radio Science Meeting, paper # BS11-4,
1 page, Boulder, CO, Jan. 3-6, 2008. Invited

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Covariance-based signaling and
feedback data parameterization for the time-varying MIMO broadcast channel,”
Proceedings of the 28th General Assembly of International Union of Radio Science,
Chicago, IL, Aug. 7-16, 2008. Invited

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Regularized channel distribution
inversion and parameterization in the MIMO broadcast channel,” in Proc. 2008
IEEE 68th Veh. Technol. Conf., Calgary, Canada, Sept. 2008.

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Instantaneous and average rate
maximization in MIMO multiple-access channels (MAC) with linear processing,”
in 42nd Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Oct.
2008.

xvi



A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Linear processing and link
scheduling in MIMO mobile ad hoc networks (MANET),” submitted to 28th Con-
ference on Computer Communications (INFOCOM 2008).

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Stable transmission in the
time-varying MIMO broadcast channel,” EURASIP Journal on Advances in Signal
Processing, 2008, Article ID 617020, 14 pages, 2008. doi:10.1155/2008/617020.

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Reduced-feedback linear pre-
coding with stable performance for the time-varying MIMO broadcast channel,”
IEEE Journal on Selected Areas of Communications, (Special Issue on Limited
Feedback). Vol. 26, No. 8, 11 pages, October, 2008.

A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Regularized Channel Inversion
Dirty-Paper Coding (RCI-DPC),” in preparation.

xvii



ABSTRACT OF THE DISSERTATION

Correlation-Based Beamforming for Multi-User MIMO Channels

by

Adam L. Anderson

Doctor of Philosophy in Electrical and Computer Engineering

University of California San Diego, 2008

Professor James R. Zeidler, Chair

Transmit precoding strategies in multiple-input multiple-output (MIMO)

systems provide a mechanism for increasing the performance of point-to-point links

and enable spatial division multiple access in multi-user networks. However, com-

munication node mobility in such systems can lead to rapid channel variation

which limits the quality of attainable channel state information (CSI). This work

explores the performance loss of point-to-point and multi-user precoding and de-

tection strategies based on CSI which goes out of date and channel distribution

(correlation) information which provides a more average channel representation

and ultimately stability in achievable performance.

This correlation-based method is a linear beamforming precoding strategy

based on channel distribution information in the form of a full spatial correlation

matrix for each user. This algorithm is shown to provide highly stable communica-

tion, with a throughput that is higher than that for optimal precoders operating on

outdated CSI, in a time-variant environment, indicating that this approach can op-

erate with significantly reduced feedback frequency. Furthermore, the dissertation

demonstrates the use of the well-known Kronecker and Weichselberger models to

parameterize the full correlation matrix to enable further reduction in the amount

of feedback data required for implementation of the new beamforming technique.

xviii



Channel measurements based on an experimentally obtained MIMO channels in

indoor and outdoor environments are used in defining the statistical nature of the

wireless channel.

Finally, the examined beamforming algorithms are extended to work for

all possible scheduled, half-duplex link topologies using explicit channel state in-

formation or distribution information. Each type of derived beamformer, whether

utilizing CSI or CDI, can provide additional scheduling tools for the medium access

control and other network layers in optimizing the overall network throughput, in

a cross-layer fashion, depending on the state of the network and available informa-

tion at the nodes.

xix



Chapter 1

Introduction

The host of a cocktail party is concerned about the enjoyment of each of

her guests. Let us assume that enjoyment in such settings stems entirely from

conversations had with fellow guests and will therefore be entirely dictated at the

discretion of the host. Each guest is gainfully equipped with a single mouth and

single [set of] ears with which communication can take place. The quality (and

equivalently the enjoyment) of each conversation is based on a number of factors:

the number of concurrent conversations, the number of participants in each con-

versation, the distance between guests, the intensity of background music, the type

of vocalization used (hands cupped over mouths work well for long distances), and

so forth. Consider a poorly attended party populated by only two guests. The

host can schedule exactly four types of conversations (the host remains aloof of all

talking besides to inform who may speak to whom). Keeping in mind that talking

to one’s self provides no enjoyment in this setting, the possible conversations are:

the first guest can speak to the second, the second to the first, both guests can

remain silent (rather boring), or they can talk at the same time (not very enjoy-

able). Now, throw in additional guests at a more popular party and the task of

conversation quality assurance becomes incredible. In fact, with only six guests

there are over 1 billion different ways the guests can communicate with each other.

Now give each guest multiple mouths and multiple [sets of] ears (assuming

1
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enough brain power to process) and try to organize the conversations. Assume,

after an exhausting, Herculean effort, the host finds the optimal set of guests and

conversations to make the majority of all guests happy (maximizing the success of

the party). And then the guests start using their single [set of] legs to mingle...

Though a trite example of multi-user, multi-antenna communications, I use the

above analogy with friends and family, who afterward enjoy a small sense of the

complexity of the problem, but are not well-versed in the engineering discipline,

when they ask “So what is your thesis about?” .

And what is this work about? As extra dimensions are added on com-

munication channels between two or more entities the possibility of performance

gains is also increased. A node equipped with multiple antennas will certainly do

better than those with just a single antenna as long as such freedom is exploited

appropriately. Add more users to the channel and receive additional degrees of

freedom on which communication can take place. The multi-user, multiple-input

multiple-output (MIMO) channel is complex, but the possibilities are the focus of

a significant amount of even tutorial papers in just the past decade [1–4] which

provide a good foundation for those entering this field of study. As an exhaustive

analysis of MIMO processing techniques is intractable for any work; this disser-

tation focuses on the degradation of optimal transmission schemes under certain

system conditions, namely error in knowledge of the channel, and then derives

suboptimal schemes that circumvent these described system conditions.

Consider for a moment the multi-user, MIMO channel. Assume an ideal,

one-shot, genie-aided (impractical) scenario where all nodes are given knowledge

of the channel between all other nodes at some initial time. With enough effort,

the optimal transmission schemes can be found for almost any desired scenario or

quality of service (QoS) requirement. Now let all the nodes move even slightly.

These optimal schemes found when the channel knowledge was perfect will have

immediate and severe performance loss due to node mobility (and other effects) if

the channel is not repeatedly updated at applicable nodes. Suboptimal, yet stable,

transmission schemes are the focus of this work and will ultimately be based on

the statistical, rather than instantaneous, properties of the channel.
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Tx Rx

Figure 1.1: A simplified multipath scattering environment where the ith path
leaves the transmitter at the angle φt,i and arrives at the receiver with angle φr,i.

This introductory chapter provides a brief overview of the multipath MIMO

channel, the multi-user MIMO channel, and a visualization of linear processing or

beamforming in multipath channels based off simple line-of-sight (LOS) channels.

Afterwards, the bulk of the dissertation is mapped out as we attempt to find a

stable transmission scheme using “Correlation-Based Beamforming for Multi-user

MIMO Channels”.

1.1 Multipath MIMO Channels

The focus of this work is on the spatial structure of the multipath MIMO

channel and ways to exploit available knowledge to maximize the system perfor-

mance in either single- or multi-user channels. Fundamentally, we assist in an-

swering the question, “Are there communicable, stable subspaces in the wireless

MIMO channel?”. In order to obtain a brief understanding and visualization of this

concept, consider a simplified channel model where contributions from all wireless

paths departing the transmitter and arriving at the received are accounted for by

superposition of each virtual line-of-sight (LOS) component as shown in Fig. 1.1.

For this simplified model, the analytic, baseband channel transfer characterization

between the Nt transmit antennas and Nr receive antennas with L distinct paths
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Figure 1.2: Condition number κ(L), defined in Section 1.1, as a function of number
of multipaths. The number of antennas is fixed at Nr = Nt = 9.

can be written as

H =
L∑

l=1

βla (φr,l) aH (φt,l) (1.1)

where a(φt,l) is the Nt × 1 steering vector for the lth path with angle of departure

(AoD) φt,l, a(φr,l) is the Nr × 1 steering vector for the lth path with angle of

arrival (AoA) φr,l, and βl represents generic path loss (e.g. loss due to distance

traveled or material composition of scatterers). If the transmit and receive nodes

are equipped with uniform linear arrays (ULA) with identical (half-wavelength)

spacing, and region of interest is constrained to the x-y plane, then the steering

vectors are simply functions of the AoD and AoA as written in (1.1).

How good is this channel for communication? There are various methods of

defining the “quality” of the channel H and algorithms that exploit such knowledge

in coding schemes. For example, the condition number κ of a matrix can be defined

as the ratio of the largest to smallest singular values. With this definition a large
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condition number implies a rank deficient matrix while small values of κ suggest

a channel with good/numerous spatial subchannels upon which information can

be conveyed. For this introductory examination of the multipath MIMO channel,

consider defining the channel quality from not only a linear algebra perspective -

singular values - but a communication emphasis as well - number of simultaneous

data streams - by defining the channel condition number as

κ(L) =
1√

σ (min {L, Nt, Nr})
(1.2)

where the function σ(i) returns the ith singular value (given numerical descending

order) of the channel matrix. The definition in (1.2) provides further insight into

the MIMO channel rather than the standard condition number definition. The

denominator expression suggests a situation where communications are pushed to

their limits; if a non-zero subspace exists then it will be used to transfer data.

A large κ suggests that transmissions are overextending themselves by using sub-

channels that are non-zero but weak and will certainly result in poor performance

for standard beamformers.

Fig. 1.2 shows the average condition number of an 9× 9 channel matrix as

a function of the number of paths given the described simple LOS model where

AoD and AoA are random and the path loss is fixed at βl = 1
L
. Consider the

peak shown in Fig. 1.2. With L = 9 resolvable paths and Nr = Nt = 9 antennas

there are theoretically nine subchannels that can be used for information exchange;

however, the gain of the weakest path is extremely small and would result in poor

quality transmissions. Thus, in a purely LOS, single-path environment the channel

can only support a single data stream from transmitter to receiver. Conversely,

with rich scattering (L � Nt) the channel has a nice subspace structure that can

be used for spatial multiplexing and maximize the throughput of the link. Section

1.2 helps visualize the combination of channel richness with beamforming that

maximizes signal gain.
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1.2 Linear Processing (Beamforming)

Linear processing, or beamforming, is a simple method of exploiting knowl-

edge of the channel to maximize the opportunity of desired signal reception. With

beamforming, a signal is spread across all transmit antennas with each antenna

receiving a separate, complex weight according to some design criterion. Analyti-

cally, these separate weights can be written in vector form and are called the trans-

mit beamforming vector or transmit weights. At the receiver, the same method is

used to create the receive beamforming vector. The analytical expression for the

estimate of the transmitted signal, in the single-user channel, is written as

x̂ = wHHbx + wH
η (1.3)

where b and w are the transmit and receive beamforming vectors, respectively, and

η is additive white Gaussian noise (AWGN). The goal of beamforming is to max-

imize some predefined quality given knowledge of the channel at, and cooperation

between, the transmitter and receiver.

1.2.1 Beamforming with Channel Transfer Function

Consider (1.3) with the intent of maximizing the signal gain, defined as

wHHb, of the received signal. This optimization problem can be written as

max
w,b

wHHb

||w||2 = 1, ||b||2 = 1 (1.4)

where the objective function is assumed purely real and the constraints on the

beamforming vectors are in place to normalize noise and transmit power. For some

non-unity transmit power, P , the power can simply be factored out of the objective

function and does not change the analysis. Consider rewriting the channel matrix

using the singular-value decomposition (SVD) as H = USVH where the matrix S

is diagonal containing the singular values of the matrix. The optimization problem
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can then be rewritten as

max
w′,b′

w′HSb′

w′ = Uw, b′ = Vb (1.5)

with the same constraints as previously. It is straightforward to see that the

maximum value of the objective function is simply the maximum singular value of

H. In fact, the transformed vectors w′ and b′ are simply unit basis vectors that

“point” to their corresponding singular vectors for w and b. Thus, as described in

the previous section, the gains available to a multiplexed transmission are related

to the singular values of the channel matrix and are achieved by transmissions

using the corresponding left- and right-singular vectors.

To gain further insight into this behavior, it is interesting to examine the

resulting beampatterns that result from this type of optimal beamforming. Con-

sider the simple channel model described by (1.1) with Nr = Nt = 9 antennas

and constant scaling βl = 1
L
. Assume the AoD are offset by −70◦ and spaced

35◦ apart. Similarly the AoA are offset by 120◦ and spaced 20◦ apart. Fig. 1.3

shows the resulting patterns as the number of multipath components is increased

when beamforming weights are found by (1.5). For this polar plot the transmit-

ter pattern occupies the right hemisphere while the receiver pattern occupies the

left hemisphere. Notice that, depending on the path spacing, the transmitter and

receiver separately attempt to form specific beams to match the AoD and AoA

values or multipaths. However, when the spacing is sufficiently small with enough

paths, the patterns are slightly wider as energy is gathered from separate paths in

a single beam.

1.2.2 Beamforming with Channel Distribution Function

A difficulty that can arise when just the channel transfer matrix is used to

create beamforming vectors, and can cause major performance loss, is a common

occurrence - mobility. If the users move such that the beampatterns created are off

by just a few degrees, and the channel is not updated accordingly, then the resulting
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Figure 1.3: Beampatterns when maximizing the single-user, single-stream gain
with L propagation paths between transmitter and receiver. The right hemispheres
show transmit beampatterns while the left hemispheres are for receive patterns.
AoA and AoD values are defined in Section 1.2.1.
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performance can be catastrophic. In fact, if a user unknowingly moves into the

beampattern nulls while attempting to maximize the signal then a complete outage

of communication can occur. This sensitivity to mobility and channel knowledge

error helps motivate the topic of this work and is illustrated in a simple example

below.

Considering adding mobility to the problem by modifying the simple model

under consideration such that the angles of departure and arrival are perturbed

around their mean by some random variable. This perturbation could represent

movement by the transmitter and/or receiver within some geographical area while

keeping the general angular direction the same. With this additional element to

the problem the resulting channel matrices can be realized with

H =

L∑

l=1

βla
(
φ

r,l

)
aH
(
φ

t,l

)

φ
r,l

= φ̂r,l + θr

φ
t,l

= φ̂t,l + θt

where θr and θt are uniform random variables defined over some angular extent

φmax deviation from the mean. Thus, on average, the multipaths will depart and

arrive the same as the channel defined in (1.1) though any specific realization of the

channel is guaranteed to be off at least slightly and capable of causing significant

performance loss depending on the perturbation.

Consider now examining a beamforming vector based on the average gain,

defined as E[wHHb], of a single stream of data. In other words, if the maximum

singular value of the channel matrix H is the largest possible gain in any instanti-

ation, what is the maximum possible average gain for a fixed set of beamforming

weights? This problem is formulated in a similar manner

max
w,b

E[wHHb]

||w||2 = 1, ||b||2 = 1 (1.6)

where E[·] is the expectation operator on a random quantity. Since w and b are

not random quantities under the assumption of fixed weights then the maximum
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average gain will reduce to the maximum singular value of the average channel

E[H] using the same SVD approach as that used for the perfect channel knowledge

case.

Fig. 1.4 shows the transformation on the beampatterns when the channel

distribution, rather than state, is used for beamforming. For this simulation, the

number of paths was fixed at L = 1, with average angular values of φ̂r,l = 150◦

and φ̂r,l = 0◦. The angular deviation φmax is swept from 0◦ to 40◦. The number of

antennas is set to Nr = Nt = 9. Notice that as the angular deviation increases the

resulting beampatterns broaden in order to gather energy from all possible angles

according to the statistics of the channel matrix. This broadening of the beam in

the LOS channel guarantees a good average performance but will certainly result

in poorer performance over the channel state beamformer when its knowledge is

perfect. This idea of beam broadening will be used as this work delves deeper

into the problem of providing stable performance in multi-user, multipath, MIMO

channels.

1.3 Multi-user MIMO Channels

The addition of multiple users in the multipath MIMO channel results in

extra dimensionality and complexity. Now, in addition to numerous propagating

waves impinging on the receiver, all receive nodes will experience superimposed

multipath interference from all transmitting nodes depending on the transmit pre-

coding used. These additional communicating paths can certainly create detri-

mental interference rendering the channel useless if exploited improperly, or the

multi-user nature of the channel can enhance the system throughput depending on

how links are concurrently scheduled.

Consider a multi-user channel where each node is equipped with multiple

antennas and each link experiences the multipath phenomenon described in this

introduction. Though the possible types of multi-user channels is limitless, Fig. 1.5

shows examples of the possible single- and multi-user links or channels examined
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Figure 1.4: Beampatterns when maximizing the single-user, single-stream aver-
age gain with L propagation paths between transmitter and receiver. The right
hemispheres show transmit beampatterns while the left hemispheres are for receive
patterns. AoA and AoD values and their deviations are defined in Section 1.2.2.
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Figure 1.5: Various link topologies in a size K = 4 subnetwork which could be
contained within a larger MANET or other network. Arrows represent single-
stream but simultaneous transmissions between transmitters and receivers.
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in this work:

• single-user channel (SUC) - Fig. 1.5(a) The standard, interference-free,

point-to-point (P2P) transmission between a single transmitter and single

receiver.

• broadcast channel (BC) - Fig. 1.5(b) A single transmitter sending individual

and unique data to multiple receivers.

• multiple-access channel (MAC) - Fig. 1.5(c) Multiple transmitters sending

simultaneously to a single receiver (not to be confused with the medium

access control (MAC) layer).

• interference channel (IC) - Fig. 1.5(d) Multiple P2P connections which pro-

duce interference with each other if present.

• hybrid channel (HC) - Fig. 1.5(e) Multiple interfering and simultaneous BC

and MAC links.

Each of the possible links in Fig. 1.5 consists of one or more sublinks representing

a single data stream from one transmitting user to one receiving user. If a link

contains multiple sublinks then each sublink will cause interference to all receivers

attempting to decode. For example, the MAC link shown in Fig. 1.5(c) consists

of three sublinks.

1.4 Nonlinear Processing

Though simple to implement and with relatively good performance, beam-

forming is often suboptimal in multi-user channels especially in the low SNR region

when nulls cannot completely remove multiple-access interference (MAI). However,

given enough degrees of freedom (i.e. number of antennas) beamforming can use

spatial processing to null out interference while maintaining strong signal gain to

the desired signal and additionally minimize interference to other users. When this
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condition does not hold, beamforming will under-perform other, optimal, process-

ing techniques at the cost of more expensive processing.

1.4.1 Dirty-Paper Coding (DPC)

Consider the simple broadcast channel that was shown in Fig. 1.5(b). In

this channel, a single transmitter transmits unique and independent data simul-

taneously to all the intended receivers. Assume writing the received signal to the

ith user generically as

ŝi = si +
K∑

j 6=i

sj + ηi (1.7)

where si is the desired symbol and all other symbols are treated as interference

and specific details on the channel and input covariance matrices are omitted for

clarity but will be described in detail further in this work. The idea behind DPC

is that if the transmitter is aware of this interference it can successively remove

interference for future encoded symbols using coding on the symbols themselves.

Thus the new received symbol estimates will look like

ŝi = si +
K∑

j>i

sj + ηi. (1.8)

where the final encoded user sees no interference. Note that the difference between

(1.7) and (1.8) may appear subtle but is vastly important for achieving maximum

capacity of the broadcast channel. The first user/symbol that is encoded at the

transmitter will be interfered with by all other users/symbols. The last encoding

ensures that the only interference is generated by AWGN. The use of DPC certainly

incurs additional overhead in processing but is necessary for optimal transmissions

especially in the low SNR regimes.

1.4.2 Successive Interference Cancellation (SIC)

The dual to the broadcast channel is the multiple-access channel shown in

Fig. 1.5(c). In this scenario multiple users are transmitting to a single receiver
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who must be able to separate the incoming signals. Consider again writing the

received signal at the receiver as the superposition of all interference and noise

y =

K∑

i

si + η. (1.9)

where the differences between (1.9) (single received signal) and (1.7) (single re-

ceived signal per user) is defined by the number of receivers. In theory, if the

symbol si is transmitted at a rate below capacity then it can be detected perfectly

assuming a large enough coding block size. Where DPC removes inter-user inter-

ference prior to transmission, SIC removes interference after detection. Thus, after

detection, this decoded symbol can be subtracted as interference from all symbols

that are decoded after it resulting in reduced total interference for each future

decoded symbol. This method of detection in the MAC is referred to as successive

interference cancellation (SIC) with received estimates written as

ŝi = si +
K∑

j>i

sj + η (1.10)

where the duality between MAC/BC and SIC/DPS is readily apparent. Analogous

to DPC, this technique will also require additional processing and suffers from non-

linearities just as DPC did. Additionally, SIC is susceptible to error propagation as

the criteria for perfect symbol detection is impossible for non-infinite block sizes.

The purpose of introducing these processing techniques now is to give the

reader an idea of the general trade-offs that will be examined in this work. The

nonlinear techniques such as DPC and SIC are optimal in a throughput sense but

require additional processing requirements and assumptions at all nodes. Addition-

ally, these optimal schemes will suffer more from inaccuracies in the channel state

information upon which they rely. The linear processors, beamformers, will cer-

tainly take a loss in performance over the nonlinear counterparts as they trade-off

complexity for optimality. Even with outdated CSI the beamformers can degrade

as was visualized by moving into the nulls in the previous section. However, as

was also shown, beamforming has the additional capability of trading off through-

put gains with stability against mobility in the environment. This stability is the
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focus of this work and provides for exciting future possibilities in correlation-based

beamforming.

1.5 Dissertation Organization

The remainder of this dissertation delves deeper into the concepts presented

in this introduction. In Chapter 2 a brief overview of the channel measurement ca-

pabilities used will be examined. This chapter also overviews a few popular channel

models and occurrences in the system that can cause CSI to be “bad”. Chapter 3

uses the measured channel samples directly to analyze the performance loss seen by

linear and nonlinear processing at both the transmitter and receiver when outdated

CSI is used. Motivated by this loss, Chapter 4 presents a beamforming technique

that provides stable performance in the broadcast channel when receivers have per-

fect CSIR or imperfect CSIR while Chapter 5 examines the dual multiple-access

channel with stable transception. The practicalities of CDI beamforming are ad-

dressed in Chapter 6 by parameterizing the distribution and reducing the amount

of required feedback. Finally, the beamforming algorithm for any possible half-

duplex, multi-user, scheduled, MIMO channel is presented in Chapter 7. Chapter

8 concludes the dissertation.



Chapter 2

The MIMO Channel:

Measurements, Models, and Error

In order to simplify the overview on channel measurements1 we focus on

the multi-user broadcast channel; however, the discussion below can easily be

adapted to any of the multi-user channels discussed in the introduction. The

MIMO broadcast channel communication scenario of interest consists of a single

transmitting node equipped with Nt antennas and K receiving nodes (users) each

with Nr antennas. The Nr × 1 received vector for the jth user at time sample n

can be expressed as

yj(n) = Hj(n)xj(n) +

K∑

i6=j

Hj(n)xi(n) + ηj(n) (2.1)

where Hj(n) is the Nr × Nt matrix of channel transfer functions for user j, xi(n)

is the Nt × 1 signal vector destined for the ith user, and ηj(n) is additive white

Gaussian noise (AWGN). Equation (2.1) presumes no specific transmit precoding

and is therefore appropriately modified later in the discussion of specific transmis-

1The work presented in this dissertation in its entirety is based on joint collaboration between
the University of California, San Diego (UCSD) and Brigham Young University (BYU). However,
the measurement data, as explained in this chapter, was taken by BYU prior to commencement
of research results presented in this dissertation. The information provided in this chapter, in
part, is for the reader’s benefit and is not directly integral to work done by the author on the
dissertation itself.

17
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sion schemes. Ultimately, channel measurements or models produce instantiations

of the channel in time Hj(n) based on some desired criteria while channel esti-

mation errors produce a discrepancy between what a transmitter uses as input to

precoding algorithms and what the state of the channel actually is.

The examination of different precoding and decoding strategies performed

in this work considers both modeled channels – which allow a parametric evalu-

ation over a variety of channel conditions but may not accurately represent the

physical time-space evolution of the subspace – and measured channels which al-

low performance quantification over a limited set of realistic environments. This

chapter details the models and measurements used to facilitate this study as well

as methods of error introduced into estimated channel realizations.

2.1 Wideband Channel Sounding

To assess the loss in rate created by outdated CSIT and CSIR and, perhaps

more importantly, to ensure that the beamforming algorithms based on CDIT and

CDIR are effective in actual channels and not optimized for specified conditions

that are assumed in a generalized channel model, performance analysis in this

work will be partially accomplished using channel transfer functions obtained from

experimental measurements. The equipment used for these measurements was

designed, developed, and tested at Brigham Young University (BYU). The test

equipment at BYU allows sampling of a single-user, point-to-point, mobile MIMO

link with Nr = Nt = 8 antennas. At the the time this work was performed, the

measurements could accommodate up to 100 MHz of instantaneous bandwidth at

a center frequency between 2 and 8 GHz. Specific details of the measurement

equipment are available in [5].

Prior to data collection, calibration measurements were taken with the

transmitter “off” to measure background interference. At the chosen carrier fre-

quency of between 2.45 and 2.55 GHz, the external interference was found to be

below the noise floor in the environments considered. A second calibration per-
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formed with both the transmitter and receiver “on” but stationary revealed that

the time variation of the channel caused by ambient changes such as pedestrians,

atmospheric conditions, and other natural disturbances was insignificant for the

environments examined in this work.

The channel coefficients used in this analysis were measured with a sta-

tionary transmitter and a receiver moving at a constant pedestrian velocity (≈
30 cm/s). Since the channel is highly oversampled, with samples taken every 2.4-

3.2 ms, data decimation or interpolation can be used to create any effective node

velocity. After channel acquisition, each individual realization of the channel is

normalized to have unit average SISO gain [6]. For a given transmitter location,

measurements for different receiver locations were taken (using the same receiver

velocity), with each location producing the channel matrix for one user in Eq. (2.1)

for the simulated multi-user network. Since it was observed that channel time vari-

ation results almost exclusively from node movement, the superposition of these

asynchronous measurements into a single synchronized multi-user channel seems

reasonable. Throughout this work the term “measured channel” refers to channel

coefficients acquired in this fashion.

The statistical space-time-frequency structure of the experimental MIMO

channels has been well analyzed in the literature [7, 8], with ensemble averages

over a variety of locations showing the coefficients to obey a complex Gaussian

distribution (Rayleigh channel magnitudes) with spatial and temporal correlation

functions that closely resemble those generated using the classic Jakes’ model [6].

Because the transmit and receive spatial correlation matrices are used in the de-

velopment of the transmit precoding strategy introduced in this work as well as

the generation of modeled channel matrices, estimation of these matrices from the

data is an important consideration. For example, the one-sided transmit corre-

lation matrix estimated using N samples starting at sample n0 can be written

as

Rt,j(n0, N) =
1

NNr

N−1∑

n=0

HH
j (n0 + n)Hj(n0 + n) (2.2)

where {·}H is the matrix conjugate transpose. Similarly, the receive one-sided
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correlation matrix estimate is

Rr,j(n0, N) =
1

NNt

N−1∑

n=0

Hj(n0 + n)HH
j (n0 + n). (2.3)

The fact that the correlation matrices are functions of the starting channel index

n0 and length of the estimate N suggests that the channel is not stationary [9].

This nonstationarity is a mathematical manifestation of physical changes in the

propagation environment created by changes in the angular characteristics of the

propagation environment due to such effects as a node moving around a corner

or the introduction of a mobile scatterer. However, drastic nonstationary effects

occur on a time scale larger than the channel coherence time, and therefore values

of N are chosen to remain within the channel stationarity time. Other statistical

properties of the channel - which also must be estimated via the measured channel

- will be introduced as needed in future sections.

2.1.1 Indoor

In order to provide results based on different environments this work will

run simulations using datasets acquired from BYU from three different measure-

ment campaigns. The first such set of measurements is referred to as “Indoor” and

consists of channels measured inside the fourth floor of the Brigham Young Uni-

versity engineering building. The layout of this floor is found in Fig. 2.1. Transmit

locations were set in the hallways while receivers were spread through the rooms

and hallways of the floor and were moved at pedestrian speeds to measure time

variability. Scatterers consist of typical objects found in an office environment:

doors, walls, computers, lab equipment, utility fixtures, and so on.

As alluded to in Chapter 1, the distribution of the singular values plays an

important role in system performance and multiplexing gains. Fig. 2.2 shows the

time variation of the four strongest dominant singular values of the Nr = Nt = 8

channel transfer matrix as measured by the BYU equipment in the Indoor envi-

ronment. Note that the trend in both singular value variation and distribution is

consistent with intuition of an indoor environment. These office-like environments
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Figure 2.1: Fourth floor schematic of the Brigham Young University engineering
building. Measurements taken in this environment are referred to as “Indoor”.
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Figure 2.2: Singular value spread and variation in the “Indoor” environment.
These measurements were taken with Nr = Nt = 8 antennas with the four largest
singular values displayed.

will produce higher overall scatter resulting in tighter singular values as well as

significant variation for relatively small movement.

2.1.2 Outdoor

A good dual to the rich scattering provided by the Indoor environment is

an outdoor location with limited scattering. For these datasets the transmit and

receive test equipment was situated upon a large playing field with a single large

office building in the corner. An aerial shot of this geographical location is shown in

Fig. 2.3 and was produced by the GoogleEarth software. Receiver locations were

specifically placed near the large building in an attempt to get a single bounce

multipath component to the channel. Otherwise, measurements were taken when

the conditions could be considered mostly LOS. This environment will be referred

to generically as “Outdoor” for purposes of this work.

Fig. 2.4 shows the same time variation of the four strongest dominant

singular values of the Nr = Nt = 8 channel transfer matrix as was shown for
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Figure 2.3: Overhead view of Deseret Towers field on the campus of Brigham Young
University. Measurements taken in this environment are referred to as “Outdoor”.
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Figure 2.4: Singular value spread and variation in the “Outdoor” environment.
These measurements were taken with Nr = Nt = 8 antennas with the four largest
singular values displayed.

the Indoor channels. The trend in both singular value variation and distribution

is significantly different than those shown for the Indoor datasets. The spread

between singular values is much larger suggesting that there is a significant LOS

component in the channel. Furthermore, the temporal variation of the values

is much lower than for Indoor. Though the temporal variation appears stable

one cannot immediately assume that stable transmission is possible in this case.

For example, the angular deviation of the corresponding singular vectors of the

dominant singular value will certainly be highly varying. Though a thorough

analysis of the time-varying MIMO channel is beyond the scope of this work, the

interested reader may refer to BYU’s, and other’s, work done on analyzing the

measured MIMO channel [7, 10–13].

2.1.3 Urban

Finally, a rough combination of the Indoor and Outdoor channels will also

be examined throughout this work a photo of which appears in Fig. 2.5. This
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Figure 2.5: Photo of the Brigham Young University coalyard. Measurements taken
in this environment are referred to as “Urban”.
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Figure 2.6: Singular value spread and variation in the “Urban” environment. These
measurements were taken with Nr = Nt = 8 antennas with the four largest singular
values displayed.

last environment is located near the coalyard on BYU campus which is tightly

surrounded by buildings of varying sizes and shapes and will be referred to as

“Urban” when used in further discussions. Additionally, a parking lot dominates

the open spaces of the test environment which will further increase the possibil-

ity of scattering and multipath. Like the Indoor and Outdoor environments the

transmitter is fixed during channel sampling while the receiver is moved at pedes-

trian velocities. At the time of writing this dissertation the exact configurations

for all the environments regarding transmitter/receiver locations and paths trav-

elled can be found at the BYU Wireless Communications Research lab webpage

http://ece.byu.edu/wireless/.

Fig. 2.6 is the resulting four strongest singular vectors of the 8 × 8 time-

varying, channel matrix. Note that the behavior demonstrated here has contribu-

tions from both the Indoor and Outdoor environments. Like Indoor, the Urban

channel has high temporal variation due to abundant local scattering. However,

there also exists a strong LOS component to the channel that is shown by the

spread in the largest singular value.
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In addition to the observations shown thus far for the three types of envi-

ronments under consideration, these figures provide some foresight into processing

with correlation -based beamforming. In an environment where all users experience

similarly high scattering, it is most likely that the spatial correlation properties

of all users will be similar. Thus the “average” behavior of the channel is the

same and we can guess that multiple-access to the channel will be more difficult.

With at least some LOS component the user correlation is “different” enough that

multiple users accessing the channel simultaneously can be taken care of spatially

even in an average sense. The effects of correlation on the multi-user channel will

be examined in more detail later.

2.2 Random Matrix Models

Because effective multi-antenna transmit precoding strategies exploit spa-

tial structure, as well as instantaneous knowledge, in the channel, it is important

that the channel models used accurately reflect this spatial information. The spa-

tial correlation of the transfer matrix, which is created by the angular properties

of the multipath propagation as well as the antenna configuration, is a common

mechanism for capturing this spatial structure in the model. Merging the use of

channel measurements and models is a straightforward method of easing analysis

of complex systems while maintaining realistic properties of the wireless channel.

Thus, when a model is used in this work, the spatial correlation defining that

model is estimated directly from the measured data resulting in a method that

can also provide many more channel realizations than are available when strictly

using measurements. Though numerous channel models exist that attempt to ac-

curately describe the channel [4, 14, 15], this work focuses on the three random

matrix models described in this section.
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2.2.1 Spatial Correlation Model

Accurately modeling spatial and temporal correlation in the multi-user

MIMO broadcast channel is facilitated by measurements taken at BYU. Post-

processing on the dataset is performed to estimate the full spatial correlation ma-

trix for the jth user (i.e. dataset) over M channel samples

Rj =
1

M

M∑

m=1

vec (Hj(m)) vec (Hj(m))H (2.4)

where Hj(m) is integer indexed sample m into the measured data.

Once Rj has been estimated for each user, new channels can be realized

using a temporal correlation model and the full measured correlation matrix

Hj(t) =

√
NrNt

tr(Rj)
mat

{√
Rjvec(Hw(t))

}
(2.5)

where tr(·) is the matrix trace, and the normalizing constant forces channel re-

alizations to have unit-norm single-input single-output (SISO) gain. Hw(t) is a

spatially white Nr × Nt matrix, where Nt and Nr are the number of transmit and

receive antennas per user, respectively, and that satisfy some temporal correlation.

This spatial correlation model is often used as a benchmark to other models

as it most accurately generates channel samples with the same distribution as

the true underlying channel, assuming Gaussian channel coefficients, and will be

referred to as the “full” correlation or just correlation model. In fact, whenever

simulations are performed using the “modeled” channel, as referred to in this work,

then the full spatial correlation model is used. However, the amount of parameters

required for this model is immense which motivates other models that reduce the

number of parameters but maintain good representation of the channel itself.

2.2.2 Kronecker Model

The Kronecker model [16] assumes separability between transmit and re-

ceive spatial correlation matrices. Using this mechanism, the channel matrix at
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time t for the jth user can be generated as

Hj(t) =
√

Rr,jHw(t)
√

Rt,j (2.6)

where Hw(t) is the same temporally correlated random matrix used for the cor-

relation model, Rr,j and Rt,j are the Nr × Nr and Nt × Nt receive and transmit

correlation matrices, respectively, for the jth user as estimated from the measured

data using (2.2) and (2.3), and the square root operation on some positive semi-

definite matrix Z is defined as
√

Z
√

Z = Z. There is some debate on the accuracy

of the Kronecker model because the model has been verified for a small number

of antennas in [17] while deficiencies in the model for a larger number of antennas

have been identified in [18]. The application of interest in this work is a mobile

ad hoc network (MANET) in which all nodes are equally equipped with a small

number of antennas; however, the effects of Kronecker model assumptions will be

demonstrated later.

2.2.3 Weichselberger Model

The Weichselberger model [19] was introduced in an effort to overcome some

of the deficiencies discovered with the Kronecker model. The Kronecker model

deficiencies arise from imposing one-sided correlations on the spatial structure of

the channel which result in underestimation of the channel capacity [18]. Under

the Weichselberger model, channel matrix realizations are represented as

Hj(t) = Ur(Ω̌ � Hw(t))UT
t

where Ǎ is the element-wise square root on the matrix A and the matrices Ur

and Ut respectively contain the eigenvectors of Rr and Rt from the Kronecker

model. Hw(t) is, again, the same spatially-white time-varying matrix used as for

the correlation and Kronecker models. Note that the main difference between the

Kronecker and Weichselberger models is the coupling matrix Ω used to describe

power coupling between transmit and receive link ends. This approach allows the

Weichselberger model to cover a larger population of possible environments by
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mitigating the separability assumption of the Kronecker model resulting in better

modeling (the Kronecker model is a subset of the Weichselberger model when the

coupling matrix is set to all ones).

2.2.4 Temporal Correlation Model

The channel model used must also ensure that the channel samples possess

the proper relationship in time. This can be accomplished by properly representing

the temporal correlation between channel samples for sample spacings smaller than

the channel coherence time. This work assumes the temporal correlation function

model suggested by Jakes [20] which is given by

ρd(τ) = J0(2πfdτ) (2.7)

where J0(·) is the zeroth-order Bessel function of the first kind and fd is the normal-

ized Doppler frequency. For simulation purposes a sum of eight weighted sinusoids

is used in Jakes’ model with the specified normalized Doppler taken into account

to produce the temporal correlation in (2.7). There are close similarities between

the temporal correlation of Jakes’ model and that seen with the measured data.

The channel model realizes both spatially and temporally correlated channel

coefficients by exchanging Hw(t) in (2.5) (2.6) (2.7) with the time-varying coeffi-

cients generated from Jakes’ model with the Doppler frequency fd in (2.7) chosen

to match that of the measured channel. Throughout this work, the term “modeled

channel” refers to a sequence of channel matrices generated using this procedure

with the full correlation model. When an analysis is performed not directly related

to temporal variation or correlation then the modeled channel replaces Hw(t) with

Hw a strictly, i.i.d. random, Gaussian matrix.

2.3 Channel Knowledge Error

Though significant gains are guaranteed when CSI is perfectly known, sig-

nificant loss can also occur when assumed channel estimates are erroneous at the
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receiver or additional delay occurs when beamforming weights are fed back to the

transmitters. Such errors in the channel can occur when limited training is used

for channel estimation or when node mobility happens with infrequent training

and feedback. This channel error has the possibility to significantly degrade the

performance of the entire system [21] and negate the theoretical rates given for the

MIMO multi-user channel as shown in this current work. One method of combat-

ing the effects of erroneous CSI is to develop beamforming techniques that use no

CSI for processing [22] though it is important to first identify the degradation of

CSI-based schemes with channel knowledge errors.

Throughout this analysis assume that multiple user training is orthogo-

nalized such that channel estimation can be performed on the virtual single-user

channel. Thus, the user index on the channel matrix will be dropped for channel

knowledge error analysis.

2.3.1 Channel Estimation Error

For channel estimation purposes assume that a single transmitter transmits

a known training sequence S of length Nt × L resulting in received signal

Y = HS + η (2.8)

where η is an Nr × L additive white Gaussian noise (AWGN) matrix with per-

element variance σ2
n and time indices are dropped under the assumption that

the channel remains constant over the length of the training sequence. Further-

more, the channel is assumed to be estimated under the maximum-likelihood (ML)

method with time-division multiple access during training [23], satisfying

Ĥ = YS† (2.9)

SSH =
L

Nt
I (2.10)

where Ĥ is the channel estimate, I is the identity matrix, (·)† is the matrix pseudo-

inverse, and power per training time is held to unity. Though exploitation of the

spatial correlation is possible to improve channel estimates [24], this work assumes
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no such knowledge is available under the CSI-based schemes and the simple ML

estimate will be used given the training sequence. For this method of channel

estimation the mean square error for τ = 0 (i.e. no delay between the channel

estimate and current channel) becomes
σ2
nNrN2

t

L
and is not a function of the spatial

correlation.

2.3.2 Temporal Variation

Additionally, we examine errors in the channel estimate caused by lag be-

tween training sequences and data detection at the receiver or data encoding at

the transmitter. The quantity in this case is the mean square error (MSE) between

the channel at time t and some estimate at time t − τ when the initial channel

estimate is perfect

tr(E
[
E(t, τ)EH(t, τ)

]
) = 2(1 − J0(2πfdτ))NrNt (2.11)

where E(t, τ) = H(t)−H(t− τ) and the channel random process is assumed wide-

sense stationary (WSS). Note that error caused by temporal variation is also not a

function of the spatial correlation given the choice of ML channel estimation and

temporal model. This lack of dependence on the spatial correlation is easily seen

by examining a single cross-term in the MSE expression

E
{

vec [H(t)]H vec [H(t − τ)]
}

= trE
{

vec [H (t)] vec [H(t − τ)]H
}

= tr

{
NrNt

tr(R)

√
R (J0(2πfdτ)I)

√
R

}

= NrNtJ0(2πfdτ) (2.12)

where temporally- and spatially-correlated channel samples are defined as in (2.5).

Given these two sources of errors introduced into the channel, the final

channel estimation error will be modeled as

Ĥ = ρd(τ)H +
√

1 − ρ2
d(τ)N1 + σeN2 (2.13)

where σ2
e = σ2

nNt

L
, N1 and N2 are random matrices with unit-norm complex Gaus-

sian entries representing the worse-case error scenario, and time indices are dropped
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Figure 2.7: Channel estimation mean-square error, mse(Ĥ), as a function of train-
ing length L and relative delay fdτ . The simulation was performed with noise
power σ2

n = .1 and Nt = Nr = 4 antennas.

as the error model is assumed a function of: delay, training length, and noise power.

With this model of the error estimate the mean-squared error becomes

mse(Ĥ) = 2NrNt(1 − J0(2πfdτ)) +
σ2

nNrN
2
t

L
. (2.14)

Figure 2.7 shows a plot of the channel error as a function of both the

training length as well as delay between channel estimation and channel use in

signal processing. For this plot the noise power is fixed at σ2
n = .1 and nodes

are equipped with Nt = Nr = 4 antennas. The relative delay is given by the

product fdτ . It is important to note that the independent variables in the figure L

and fdτ can be considered the training length and training frequency, respectively.

Increasing the training length improves channel estimates significantly unless the

delay between training is large at which point there will be an error floor regardless

of the length of training sequence. Plotted with the analytically derived MSE (2.14)

is a simulated MSE validating the channel estimation model.



34

The work presented in this chapter, in part, was originally published in the

following papers, of which the author was also main contributor: A. L. Anderson,

J. R. Zeidler, and M. A. Jensen, “Instantaneous and average rate maximization in

MIMO multiple-access channels (MAC) with linear processing,” in 42nd Asilomar

Conf. Signals, Systems and Computers, Pacific Grove, CA, Oct. 2008; A. L.

Anderson, J. R. Zeidler, and M. A. Jensen, “Performance of transmit precoding in

time-varying point-to-point and multi-user MIMO channels,” in Conference Record

of the IEEE Asilomar Conference on Circuits, Systems and Computers, Nov. 2006.



Chapter 3

Time-Varying MIMO Channel

Analysis

Time variation of the wireless MIMO channel can be a limiting factor in the

system throughput, particularly for signaling schemes which require the availability

of accurate CSIR and/or CSIT. This time variation can be created by alterations

in the scattering environment itself or by mobility of the communicating nodes.

Performance loss due to time variation is closely related to the impact of channel

estimation error, as studied in [25, 26] and the previous chapter, and is examined

in more detail here pertaining to overall system performance degradation.

This chapter summarizes the single-user metrics provided in [12] and utilizes

the same analysis to describe performance loss in single- and multi-user channels.

Specifically, the achievable rate degradation is studied for the SUC, BC, and MAC

when outdated CSI is used to perform optimal or suboptimal processing at the

transmitters and/or receivers. Results based on measured data reveal the well-

known duality between the MAC and BC [2] when applied to erroneous CSI,

namely that while any scheme suffers severe performance loss with outdated CSIR,

including the MAC, outdated CSIT in the BC also creates severe and rapid loss

in achievable rate. Additionally, the metrics from [12] are used to examine the

influence of power availability on capacity with outdated CSI in the SUC which

35



36

H(n)H(n) RxTx

rz ∆∆∆∆−−−−

tz ∆∆∆∆−−−−

Per User Feedforward Channel

Per User Feedback Channel

Figure 3.1: A virtual channel knowledge exchange system where the transmitter(s)
has channel knowledge of all users delayed by ∆t samples from the current channel
and the receiver(s) has individual channel knowledge delayed by ∆r samples from
the current channel. All nodes are assumed to have Nt = Nr antennas.

influences multi-user channel behavior. It is shown that increased power benefits

a single-user link with outdated CSIT, while, with severely outdated CSIR an

increase in power can actually degrade overall system performance. In addition

to the optimal schemes analyzed in this chapter, a transmit precoding scheme is

addressed which uses no CSI that provides insight into the ultimate goal of finding

a precoder that is less susceptible to temporal variations in the channel.

3.1 Single-User Analysis

An integral part of the analysis for time-varying MIMO channels is the delay

effect on channel knowledge passing at both transmitters and receivers. Fig. 3.1

shows a diagram of the virtual feedforward and feedback links representing the

conveyance of delayed channel information between the transmitters and receivers.

For precoding purposes, the transmitter has access to all users’ channel matrices



37

delayed by ∆t samples from the current time. Similarly, during decoding, the re-

ceivers possess a channel realization or receive beamforming vector that is delayed

∆r samples from the current channel. We emphasize that the feedforward path

simply represents a model for accounting for the delay ∆r, and that the true delay

mechanism would be a finite interval between training events combined with net-

work overhead and channel estimation errors. Thus, the feedforward and feedback

“channels” as shown in Fig. 3.1 are simply graphical tools in describing the error

introduced in the time-varying MIMO channel and do not represent any actual

implementation scheme. However, given the additional delay for CSIT that would

be incurred for feedback, it is logical to assume that ∆t ≥ ∆r with equality in the

ideal, instantaneous feedback case. Other than these delays, the channel estimates

and feedback communication are considered error-free; the effects of channel esti-

mation error due to limited training is not examined in this chapter as the focus

is on analyzing the measured MIMO channel itself.

Given the virtual system described by Fig. 3.1, consider writing the single-

user, narrowband, received signal vector for a P2P link with multiple antennas at

the transmitter and receiver as

ySUC = H̃x + E(∆r)x + η (3.1)

where x is the Gaussian input vector, Q(∆t) = E{xxH} is the input covariance

matrix with emphasis on its functional dependence of CSIT delayed by ∆t samples,

E(∆r) is the self-interference caused by inaccurate CSI due to node mobility. If

H represents the actual channel to the receiver and Ĥ(∆n) is outdated CSI used

to construct the precoder (∆n = ∆t) or decoder (∆n = ∆r), then the error H −
Ĥ(∆n) = Eµ +E(∆n) where Eµ is the mean of the error and E(∆n) is a zero-mean

random matrix. Finally, H̃ = Ĥ(∆n) + Eµ.

With outdated CSIT but no CSIR error or delay (e.g. ∆t > 0, ∆r = 0) the

capacity - maximum mutual information - of a single-user MIMO link given the

optimal input covariance matrix calculated by the inaccurate CSIT is

Ct = log
∣∣∣I + HQ̂HH

∣∣∣ (3.2)
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where I is the identity matrix and Q̂ = Q(∆t) is used to emphasize that the

input covariance matrix was calculated using CSIT acquired from a previous lo-

cation Ĥ(∆t). If no knowledge of the channel is used at the transmitter then the

uninformed transmit capacity can be written as

CUT = log

∣∣∣∣I +
P

Nt
HHH

∣∣∣∣ (3.3)

where equal power is split between all sub-channels. As the channel estimate

becomes more and more outdated the transmit capacity will tend to approach the

uninformed transmit capacity [12].

If erroneous CSIR is included with the received signal (3.1), a lower bound

on the mutual information between input and output can be written as (see Ap-

pendix A)

ISUC(x;y|H̃) ≥ log

∣∣∣∣I + H̃H
(
I + ΨQ

E − ΨQ
Eµ

)−1

H̃Q

∣∣∣∣ (3.4)

where Eµ = E[E]. For convenience in both single- and multi-user analyses we use

the shorthand ΨU
V to define the transform on some covariance matrix U with V

ΨU
V = E

[
VUVH

]
. (3.5)

In [25] it was shown that (3.4) is a tight bound for zero mean, i.i.d. channel

error and most values of SNR and number of antennas, though no assumption

is made about the distribution of channel estimation errors in this current work.

Throughout this chapter, maximization of (3.4) will be referred to as an achievable

rate of the channel or a capacity loss when compared with the true capacity of the

channel.

A parameter that arises with outdated CSI, and needs to be evaluated in

order to calculate capacity loss, is the weighted correlation matrix of the estimation

error ΨQ
E. This quantity represents the self-interference caused by using outdated

CSI at the receiver and can be estimated using the measured data. With a small

abuse of notation, consider the error term doubly indexed over the starting distance

n in addition to the differential displacement ∆n

E(∆n) = E(∆n, n) = H(n + ∆n) − H(n). (3.6)
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Using (3.5) and (3.6) the correlation for the error term can be written as

ΨQ
E = mat

{
1

N − ∆n

(
N−∆n∑

n=1

E∗(∆n, n) ⊗E(∆n, n)

)
vec(Q)

}
(3.7)

where ⊗ is the matrix Kronecker product, n is an integer representing channel

sample index and the output quantity is implicitly a function of ∆n. The func-

tion vec(·) is the matrix column stacking operator while mat(·) is its inverse (e.g.

mat(vec(A)) = A). To reiterate, (3.7) is implicitly a function of node displacement

but will be not written so in order to preserve clarity in future expressions.

The separation of the random error with the input covariance in (3.7) is

justified by using a property of the Kronecker product mat(ABC) = mat([CT ⊗
A]vec(B)) and the linearity of expectation. This is extremely useful as the error

statistics can be calculated offline without any foreknowledge of future input co-

variance values. Though (3.7) is a function of distance, it will be assumed that the

receiver knows the statistics for each possible displacement in the dataset. Further

note that (3.7) and (3.5) are not equivalent due to the non-stationarity of the data

and finite sample sizes, though they share the same notation in order to avoid

confusion in the capacity expressions.

Similar to (3.7), the mean of the channel error can also be estimated from

the channel samples. This is accomplished for some node displacement n with

Eµ =
1

N/n

N/n−1∑

j=0

Hi([n + 1]j + n + 1) −Hi([n + 1]j + 1). (3.8)

Again, (3.8) is not equivalent to the expected value of the error, but will be used for

convenience in working with the measured data; the user indices can be dropped

for the single-user channel.

It should be stated that knowledge of (3.7) and (3.8) is necessarily more

information than simply CSI; however, this analysis is focused on determining the

time variation of achievable rates and not necessarily the feasibility of achieving

these rates. In order to achieve the following bounds additional methods of channel

knowledge acquisition would need to be employed; such topics are beyond the scope

of this work.
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3.1.1 Transmit CSI Delay (TCD)

Transmit CSI delay (TCD) measures the change in mutual information

when attempting to perform optimal signaling based on erroneous channel esti-

mates at the transmitter and perfect CSIR. The mutual information expression

(3.4) defined in the previous section is “maximized” according to the nodes’ belief

in, and availability of, their channel information. For TCD, it is assumed that the

receiver has perfect CSI while the transmitter is unaware of the current channel or

the statistics of the channel error. In other words, TCD will affect the input covari-

ance matrix Q but will not have self-interference at the receiver: ΨQ
E = ΨQ

Eµ
= 0

in (3.4). It is interesting to note that TCD does not necessarily degrade from the

capacity at the initial displacement. For example, if the channel estimate occurs at

the end of a fade, then the TCD capacity is likely to be greater as the nodes move

and the channel improves. However, the average trend with TCD is a reduction

in achievable rate. The distance at which the achievable rate of outdated CSIT

approaches the capacity of the uninformed transmitter is called dT.

3.1.2 Receive CSI Delay (RCD)

Receive CSI delay (RCD) affects the loss in achievable information rate as

nodes move and CSI at both the transmitter and the receiver becomes outdated.

For this case, the transmitter will perform suboptimal signaling since knowledge

of the channel is outdated and knowledge of the interference is unavailable. Such

knowledge is necessary in order to maximize the mutual information even with

outdated CSIT. The receiver will cause self-interference by attempting to decode

the signal with a channel estimate that does not match the current channel real-

ization: ΨQ
E ≥ 0. The distance at which the capacity drops to 50% of maximum

is defined as dR.
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3.1.3 Effectiveness of Precoding UT

Both TCD and RCD will be used to describe the sensitivity of throughput

to channel knowledge in single- and multi-user channels. However, it is worthwhile

to first examine the effectiveness of transmit precoding in the single-user channel

which is determined by the contributing factors of: node mobility, transmit power,

number of transmit antennas Nt, number of receive antennas Nr, and so on. This

effectiveness of CSIT can be written, using the defined capacity metrics, as

UT =
CT

CUT
− 1 (3.9)

where, for the single-user case, the numerator comes from (3.2) and the denom-

inator from (3.3). Equation 3.9 will be zero when channel knowledge does not

increase capacity over the uninformed transmitter and UT = 1 when the available

rate is doubled. Equation 3.9 can also become negative when the outdated chan-

nel knowledge is such that using it is actually detrimental and lowers the capacity

below CUT .

Figure 3.2 plots single-user UT in the Indoor, Outdoor, and Urban environ-

ments for perfect CSIT and delayed CSIT at SNRs of 3 and 20 dB, respectively.

The plots in Fig. 3.2(a) use perfect CSIT while Fig. 3.2(b) results show perfor-

mance loss when transmitters use CSIT displaced by approximately three wave-

lengths or a fraction of a meter. This outdated CSIT is equivalent to erroneous

CSIT and hence the effectiveness of channel knowledge drops. Note that for all

environments the effectiveness of CSIT is reduced as the the number of available

receiver antennas increases. This satisfies intuition since receive nodes with more

degrees of freedom are better able to recover the signal and obviate the need for

CSI at the transmitter. Conversely, more antennas at the transmitter provides

mode possible spatial processing thus increasing the utility of CSIT as long as

accuracy can remain high. CSIT is more important for power constrained systems

which is confirmed by noting that the optimal input covariance matrix approaches

the scaled identity (i.e. equivalent optimal input covariance for the uninformed

transmitter) as power is increased. Environmentally, the LOS, Outdoor channel

has more effective CSIT than the other locations due to the low variability in the
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Figure 3.2: Effectiveness of transmit precoding, UT, when using capacity-achieving
input covariance matrices for (a) perfect CSIT at zero displacement and (b) CSIT
delayed by three wavelengths for Nt transmit antennas and Nr receive antennas.
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channel even with large lags.

3.2 Multi-User Analysis

Multi-user channels promise additional gains over the single-user channel by

adding an additional dimension of user selection and multiple, concurrent channel

access to the system. For the MIMO BC, a precoding technique so-called “dirty-

paper coding” (DPC) maximizes the sum-capacity of the BC [2,27] for stationary

applications. DPC is a non-linear algorithm that is considered computationally

complex for standard systems [28] though is optimal in a sum-rate sense. Con-

versely, successive-interference cancellation (SIC) is an optimal detection scheme

for the MIMO MAC but suffers from possible error propagation if a user is decoded

incorrectly. As suggested in Chapter 1, these schemes have an intuitive sensitivity

to outdated CSI that will be analyzed in this chapter.

3.2.1 BC with DPC

Nonlinear dirty-paper coding [2] is optimal in the sense that it maximizes

the sum mutual information (and therefore sum capacity) when the transmitter

and receivers have perfect CSI. DPC is often considered infeasible in practice [28]

but will be analyzed as a benchmark for other precoding algorithms throughout

this work.

The impact of channel estimation error in a two-user SISO channel using

DPC was analyzed in [26]. As an extension, consider the case of DPC in a MIMO

channel when user ordering is not optimized at the transmitter, where user 1 is

encoded first, user 2 second, and so on. At the transmitter, the DPC algorithm

attempts to successively presubtract interference from previously encoded users,

while the receiver uses its delayed channel knowledge for detection. In [26] the

authors refer to DPC as “naive” when only presubtracting interference with the

given channel estimates; this same naive approach to DPC will be used for the
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MIMO case. As an example, consider the received vector for the first encoded user

yDPC

1 = H̃1x1 + E1(∆r)

K∑

i=1

xi + H̃1

K∑

i=2

xi + η1 (3.10)

where η1 is AWGN at the first receiver and channel and error terms are as defined

by the single-user case (3.1) with the addition of indices indicating the specific

user. Note that the first interference term is caused strictly by having erroneous

CSIR while the second interference term is a direct result of being encoded first in

the DPC scheme (all other users’ messages will interfere with user 1). The received

vector for the second user becomes

yDPC

2 = H̃2x2 + E2(∆r)

K∑

i=2

xi + E2(∆t)x1 + H̃2

K∑

i=3

xi + η2 (3.11)

where the additional interference arises from the transmitter only being able to

remove the known portion of the signal encoded for user 1.

Continuing in a similar manner, for a precoded transmit vector xj destined

for the jth user, the resulting receive vector for the jth user can be written as

yDPC

j = H̃jxj +

outdated CSIR︷ ︸︸ ︷

Ej(∆r)
K∑

i=j

xi +

outdated CSIT︷ ︸︸ ︷

Ej(∆t)

j−1∑

i=1

xi +H̃j

K∑

i=j+1

xi + ηj. (3.12)

Since we cannot assume that the transmitter knows any information about Ej(∆n),

we consider the worst-case scenario where it is modeled as a zero mean Gaussian

matrix whose variance grows with delay ∆t or ∆r. Despite the fact that time

indices are dropped for clarity, it is important to recognize that the received vector

is a function of the delay in channel feedback and/or error in channel estimation.

Eq. (3.12) highlights those portions of the interference in the received signal that

are caused by delayed channel knowledge.

The exact mutual information for the transmit and received vectors in (3.12)

is unknown, and therefore the lower bound suggested in [25] will be adapted for

use in the broadcast channel to include the additional interference terms shown in

Eq. (3.12). Details of this analysis appear in Appendix B, with the result that the
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mutual information for user j is bounded by

IDPC(xj;yj |H̃1 . . . H̃K) ≥ log
∣∣∣I + H̃H

j (I + Zj)
−1 H̃jQj

∣∣∣ (3.13)

Zj = Ψ
PK

i=j Qi

Er,j
+ Ψ

Pj−1
i=1 Qi

Et,j
+ Ψ

P
i>j Qi

eHj

where xj are assumed to be independent Gaussian inputs and Et,j = Ej(∆t) are

used for simplicity as explained in Appendix B. The sum mutual information used

for analysis in this work is then

CDPC(∆r, ∆t) =

K∑

j=1

IDPC

(
xj ;yj|H̃1 . . . H̃K

)
(3.14)

where CDPC(∆r, ∆t) is implicitly a function of the input covariance matrices Qj .

For the simulations in this work, the input covariance matrices are found by naively

applying iterative water-filling using the duality of the multiple-access channel and

broadcast channel [2] based on the known portions of CSIT. This implies that when

∆t = ∆r = 0 (i.e. no channel error or delay), (3.14) reduces exactly to the sum

capacity of the broadcast channel, but when ∆t, ∆r ≥ 0 additional performance

loss will be seen in the system due to suboptimal input covariances.

3.2.2 MAC with SIC

The MAC or uplink channel consists of K users transmitting simultane-

ously to a single receiver. Analogous to DPC at the transmitter, the receiver can

successively cancel interference (SIC) after a user has been decoded as long as that

user is transmitting below its per-user capacity. Thus the ith user will see no inter-

ference from the jth user for i > j. The received signal vector for the MAC, yMAC,

when using SIC is the superposition of all transmitted signals, self-interference,

and noise

yMAC

j = H̃jxj +

partial removal︷ ︸︸ ︷
K∑

i=1

Ei(∆r)xi +

uncanceled︷ ︸︸ ︷
K∑

i=j+1

H̃ixi +η (3.15)

where the subscript j corresponds to the virtual received signal for the jth user after

SIC has been performed on all previous users. In order to maximize throughput
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and successfully decode all users the receiver needs to know the channel of all

transmitting users as well as statistics of the error terms. Given the received signal

(3.15), the same approach taken for finding the bound on mutual information in

the BC, found in Appendix B, can be used for the MAC with SIC

IMAC(xj;yj |H̃1 . . . H̃K) ≥ log
∣∣∣I + H̃H

j (I + Zj)
−1 H̃jQj

∣∣∣ (3.16)

Zj =

K∑

i=1

ΨQi

Er,i
+

K∑

i=j+1

ΨQi

eHi

where the same assumptions are made in finding the bound. For completeness the

sum-rate of the system for outdated CSI becomes

CMAC(∆r, ∆t) =
K∑

j=1

IMAC

(
xj ;yj|H̃1 . . . H̃K

)
(3.17)

where CMAC(∆r, ∆t) is also implicitly a function of the input covariance matrices

Qj and channel estimates for all users.

The metrics defined in [12] and reiterated in the previous section can eas-

ily be extended to the multi-user channel by merely changing single-user capacity

to sum-rate or sum-capacity. However, multi-user channels introduce an added

dimension to the time-variation problem which produce interesting results for ca-

pacity degradation with nodal displacement. For example, simple suboptimal en-

coding schemes can out perform optimal transmission at small displacements. This

implies that a single encoding/decoding strategy is not sufficient to fully character-

ize the time variation of the multi-user channels. Since the focus of this work is also

on the sensitivity of optimum transmission policies, we will focus on suboptimal

solutions as well for analysis purposes.

3.2.3 Linear Processing (LP)

Though a detailed discussion on beamforming would be out-of-place this

early it the discussion, it is worthwhile to examine a suboptimal transmission/detection

scheme that uses the spatial degrees of the channel, rather than specific coding, in
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order to reduce MAI via linear processing (LP). For this suboptimal scheme, all

users will be interfered with by all other users and no pre- or post-subtraction of

the signal will be used at either transmitter or receiver in either the MAC or BC.

Specifically, we want to look at the effect that CSIT has on the transmitter in the

BC and the dual effect of CSIR in the MAC. The BC achievable rate with this

approach proceeds by simply removing the successive subtraction of interference

that DPC provides

CBC-LP =

K∑

i=1

log

∣∣∣I + HH
i

(∑K
j=i Qj

)
Hi

∣∣∣
∣∣∣I + HH

i

(∑K
j 6=i Qj

)
Hi

∣∣∣
(3.18)

where there are no error terms as a consequence of perfect CSIR; all performance

degradation is directly a result of suboptimal input covariance values.

Similarly, the analysis of interest is the effect of outdated CSIR on MAC

decoding. Using the same approach as BC-LP of removing all canceling interference

terms, the lower bound on mutual information with outdated CSIR and linear

processing becomes

CMAC-LP = log

∣∣∣I +
∑K

i=1

(
ΨQi

eHi

+ ΨQi

Er,i

)∣∣∣
K

∏K
i=1

∣∣∣I +
∑K

j=1,j 6=i Ψ
Qj

eHi

+
∑K

k=1 ΨQk

Er,k

∣∣∣
. (3.19)

This expression for mutual information considers all signals besides the desired

signal as interference for the current decoded signal.

Equations (3.19) and (3.18) are non-convex functions and need to be solved

numerically. For the purpose of this analysis, these expressions are maximized

suboptimally assuming the input covariances represent water-filling solutions of

their respective virtual channels by including MAI from all other signals.

3.2.4 Time-Sharing (TS)

Perfect time-sharing (TS) completely removes MAI by forbidding users to

access the channel at the same time. In fact, the optimal TS policy only allows

the single user with the best channel to ever transmit - with potential of producing
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an unbalanced and severely delay-constrained network. In this study, we instead

look at “fair” TS where each user is given an equal amount of time accessing the

channel. Since TS is essentially a SUC averaged over all users, the achievable rates

for the MAC and BC are similar in form

CBC-TS =
1

K

K∑

i=1

log
∣∣∣I + HH

i Q̂iHi

∣∣∣ (3.20)

CMAC-TS =
1

K

K∑

i=1

log

∣∣∣I + ΨQi

eHi

+ ΨQi

Ei

∣∣∣
∣∣∣I + ΨQi

Ei

∣∣∣
(3.21)

where MAC-TS (3.21) is the average single-user channel with outdated CSIR/CSIT

and BC-TS (3.20) is the average rate with perfect CSIR and outdated CSIT. The

performance resulting from these expressions should not be compared with each

other since outdated CSIR will obviously cause a more drastic capacity loss. The

BC-TS mutual information (3.20) is instead intended to be used as a benchmark

on which to compare DPC and BF. Furthermore, the TCD distance dT will be

redefined for the BC as the distance in which DPC capacity drops below TS or BF

for either channel.

3.3 Performance Loss Results

The results in this section are derived from measurements taken from the

custom-built MIMO channel sounder at BYU as described in Chapter 2. In Fig.

3.3 the effects on capacity loss are shown for the single-user, Urban channel with

(a) outdated CSIT, (b) outdated CSIR and both cases versus increasing power.

For perfect CSIR, an increase in power leads to growth in capacity, as expected,

even when channel knowledge at the transmitter is not perfect. This is not true,

however, for outdated CSIR resulting from node movement or other environmen-

tal changes discussed in the previous chapter. The achievable rate drops quickly

regardless of power and approaches some asymptotic value far below the true ca-

pacity. In fact, at certain displacements, the capacity actually decreases with

power. To further exacerbate the problem, the RCD distance dR is a decreasing
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Figure 3.3: Maximum achievable rate for outdated (a) CSIT and (b) CSIR with
varying available power in the single-user channel. In (b), at a displacement of 1λ,
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function versus power, meaning link efficiency will degrade faster for higher power.

Knowledge of the time-scale at which additional power is not beneficial is essential

for transmitters to preserve the scarce resources of the network.

For MAC and BC experimental analysis the use of measured data for a

three-user network (four nodes total) is used. Fig. 3.4 displays achievable rate for

the three-user broadcast channel with various environments and precoders analyzed

in this chapter. For the LP curve a suboptimal algorithm is used that attempts to

maximize (3.19) constrained to water-filling matrices as explained in Section 3.2.3.

For the Urban and Indoor environments, at fractions of a wavelength the optimal

transmission strategy, DPC, is outperformed by both suboptimal BC-LP and BC-

TS even when CSIR is perfect. Though not shown, the inclusion of outdated CSIR

would result in a TCD distance that is much smaller showing additional sensitivity

to mobility.

Fig. 3.5 demonstrates the capacity degradation versus displacement for the

MAC when either CSIT is outdated or channel knowledge is outdated at both

transmitter and receiver. Again, it is important to note that the MAC-LP curves

do not represent optimum beamforming, rather, they consider the case when SIC

is not used at the receiver and are included in the analysis to demonstrate the loss

of optimal precoding. The MAC exhibits a similar behavior in performance loss

versus distance for CSIT and CSIR as the SUC. However, a distinction between

the MAC and SU behavior is the distance at which partial CSIT is beneficial

to the overall throughput; using some sort of CSIT is almost always better than

uninformed transmissions. It is interesting to note that SIC always outperforms

MAC-BF and MAC-TS regardless of the delay in CSIR or CSIT. This suggests

that in MAC situations the receiver should always attempt to perform optimum

decoding. Fig. 3.6 shows the same CSIR curves as the number of users increases

from one (single-user channel) to three users. The RCD metric distance tends

to decrease with number of users, implying that the throughput efficiency of the

system may drop to unacceptable levels for small node mobility. It should be noted

that, in this case, the absolute sum-capacity is still greater for a higher number of

users, though the efficiency is less.
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Figure 3.4: K = 3 user broadcast channel with Nr = Nt = 8 antennas and
capacity degradation for DPC, BC-LP, and BC-TS as CSIT goes out-of-date and
CSIR remains perfect. The metric dT is the distance at which the optimum scheme
DPC falls below TS.
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The concluding message of this chapter is apparent - bad CSI almost always

forces poor results in single- and multi-user channels in any environment. Specifi-

cally, the optimal coding strategies for the BC and MAC result in severe rate loss

when naively assuming the channel is perfect at all nodes. If a node is forced to

use CSI without knowledge of its’ datedness then performance loss in inevitable.

The next chapters focus on novel approaches to pre- and post-processing on the

signal in order to provide stable performance with some initial loss in maximum

throughput. The channel spatial correlation and statistical characterization of the

MIMO channel will play an important role in these techniques.

The work presented in this chapter, in part, was originally published in the

following papers, of which the author was also the main contributor: A. L. An-

derson, J. R. Zeidler, and M. A. Jensen, “Reduced-feedback linear precoding with

stable performance for the time-varying MIMO broadcast channel,” IEEE Journal

on Selected Areas of Communications, (Special Issue on Limited Feedback). Vol.

26, No. 8, 11 pages, October, 2008; A. L. Anderson, J. R. Zeidler, and M. A.

Jensen, “Performance of transmit precoding in time-varying point-to-point and

multi-user MIMO channels,” in Conference Record of the IEEE Asilomar Confer-

ence on Circuits, Systems and Computers, Nov. 2006.



Chapter 4

Stable Transception in the MIMO

Broadcast Channel

As results from the time-varying MIMO channel analysis showed, though

temporal diversity gains enabled by channel time variation further increase sys-

tem performance, this temporal variation typically implies that outdated CSI es-

timates are used to construct the signaling strategy, resulting in capacity degrada-

tion [11,12] that is analogous to that created by channel estimation errors [25,26].

These same effects of channel estimation errors and Doppler sensitivity in practical

precoding systems were shown in [29,30] to contribute significantly to performance

loss. These observations motivate the development of transmission schemes which

are robust to physically-realistic channel variations. Regarding this effort to reduce

the sensitivity to CSI quality, recent research has suggested the formation of trans-

mit beamformers using channel distribution information (CDI) at the transmitter

(CDIT) [31, 32], a strategy which is optimal in an ergodic capacity sense under

certain antenna correlation conditions. An adaptive beamformer that uses both

CSI and CDI is suggested in [33] where capacity degradation from outdated CSI

occurs in a time division duplex (TDD) MIMO system with a spatially correlated

Jakes’ channel.

Similar work for the multi-user MIMO channel has focused more on the

55
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effects of channel estimation errors than the impact of outdated CSI created by

channel time variation. For example, for the SISO broadcast channel, a scheduling

strategy was proposed in [34] to combat the effects of channel estimation error.

Furthermore, capacity regions for the MIMO broadcast channel with erroneous

CSIT and CSIR are found in [35] using the duality between the broadcast and

multiple-access channels [36]. The work in [26] uses error statistics for the sum-

capacity-optimal DPC [2] to determine when time-sharing outperforms DPC in the

MISO broadcast channel. A similar study for erroneous CSIT was also performed

for the computationally simpler zero-forcing DPC (ZF-DPC) in [37] using capacity

bounds similar to those presented in [25].

This chapter builds on the existing understanding to study the behavior

of different CSIT-based transmit precoding techniques [28] in the time-variant

multi-user BC. The study considers DPC, linear beamforming, and time-sharing

techniques. While numerous beamforming algorithms exist for various design cri-

teria [28, 38, 39] we focus on the beamforming algorithm that maximizes capacity

for a MIMO broadcast channel (for linear precoding) as defined in [28] which is

an extension of the algorithm in [40] for MISO channels. The TS scheme removes

MAI and the need for CSIT by assigning each user a unique time slot for channel

access and using the optimal signaling strategy for an uninformed transmitter. The

analysis of these schemes begins with simulations based on accepted models for the

spatially-correlated time-variant channel [16,20]. However, since these models may

not capture the complex physical structure of the multi-user time-variant MIMO

channel [41], the results obtained using the models are reinforced using simulations

with experimentally-obtained channels [9] taken in an outdoor environment on the

Brigham Young University (BYU) campus [6, 12]. Motivated by the performance

degradation observed for the existing signaling schemes, this chapter develops and

analyzes an iterative beamforming algorithm that has similar performance to the

capacity optimal beamformer when used with CSIT and provides stable through-

put performance when constructed with CDIT. The stable performance offered by

this algorithm implies the existence of slowly-varying subspaces in the time-varying

multi-user MIMO channel.
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4.1 Regularized Channel Inversion (RCI)

Linear transmit precoding, or beamforming, uses linear preprocessing to

mitigate multi-user interference in an effort to optimize various communication

parameters [28]. Because this chapter considers techniques which maximize the

sum mutual information, we will consider the rate-maximizing RCI technique found

in [28, 42]. This algorithm assumes a single data stream is transmitted to each

user unless the user has been excluded from channel access. Allowing multiple

streams per user is straightforward and only adds complexity to the beamforming

algorithm; however, for the “square” systems (equal number of transmit and receive

antennas) considered in this work, the beamformers almost always choose a single

stream per user even when given the option of multiple streams. Including these

multiple streams does provide additional performance; however, multi-stream gains

are marginal for the channels considered and will therefore be omitted for clarity.

The received signal vector for user j is then

yj = Hjbj(∆t)xj + Hj

K∑

i6=j

bi(∆t)xi + ηj (4.1)

where bj(∆t) is the transmit beamforming vector calculated using the RCI al-

gorithm from the channel knowledge delayed by ∆t samples. It is assumed that

each user only has knowledge of their individual channel matrix and the transmit

weights assigned to all streams; thus, receive beamforming weights wj(∆r) are cal-

culated at each node using the MMSE criterion based on the channel knowledge

delayed by ∆r samples and transmit weights delayed by ∆t samples. The signifi-

cance of this formulation is that all error introduced by inaccurate CSI is contained

within the transmit and receive beamforming vectors taking on suboptimal values.

Application of this linear processing reduces the system to a single stream

per user with mutual information given by

IBF(xj;yj |ρj) = log (1 + ρj) (4.2)

where

ρj =
|wH

j Hjbj |2
1 +

∑
i6=j |wH

j Hjbi|2
(4.3)
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where noise power is assumed unity and throughput degradation arises from using

outdated beamforming vectors on the current channel. When the RCI algorithm

excludes a user from the channel, the weight vector bi becomes zero and equiva-

lently ρi = 0. For completeness with all the other precoding strategies examined

thus far, one can write the total expected rate given the outdated beamforming

weights as

CBF =
K∑

j=1

IBF [xj ;yj|ρj ] . (4.4)

It is shown in [42] that the weights which maximize the sum-rate from (4.4)

in a broadcast channel with linear preprocessing have the form

B =

(
tr(D)

P
I + H∗DjH

)−1

H∗Λ

where B = [b1, . . . ,bK ] is the matrix of beamforming weights for each user, Λ and

D are diagonal weighting matrices [42], and each row of H represents the channel

for each of the individual MISO channels. An iterative procedure was shown in [42]

that guarantees convergence to a local maximum of the sum-rate. Note that the

only input parameter to the RCI algorithm is the channel transfer matrix for each

user.

Some comments are necessary regarding the capacity maximizing MISO

RCI beamforming algorithm. In [28], this technique was used with multiple re-

ceive antennas by iteratively performing the algorithm while updating the receiver

beamformer with MMSE weights, although no proof of optimality was made. In-

deed, varying the initial condition of the diagonal weight vectors can produce

different solutions. Since the beamforming weights are, in form, capacity optimal

for the MISO channel and have the structure of a regularized channel inversion, it

will be used as the rate-maximizing beamformer for the MIMO channel with linear

processing.

Performance comparisons between different transmit precoders can be made

by examining how total throughput scales with the number of network nodes [28].

Consider the standard Rayleigh flat-fading channel scenario where there is no lag
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between CSIR and CSIT (e.g. ∆t = 0) and all nodes have error-free estimates of

the channel. Figure 4.1 shows throughput scaling as the number of users increases

for each of the transmit precoding techniques discussed. The system is fixed at

Nt = 4 transmit antennas, Nr = 4 receive antennas per user, and a total power

constraint of P =
∑

i tr{Qi} = 10. The channel model used is the standard

Rayleigh and spatially-white model discussed in Chapter 2. While these results

reveal the optimality of DPC, they also show that BF captures the majority of

available throughput for larger networks and that the TS performance does not

scale appreciably with increasing network size because it uses no CSIT or multi-

access to the channel.

4.2 Optimization Objective Functions

Assessing the performance of the algorithms under consideration requires

definition of meaningful metrics which capture the performance degradation cre-

ated by outdated CSIT. Naturally, many different metrics could be defined, with

the conclusions drawn ultimately depending on these definitions. However, since

the goal of DPC and RCI is to maximize the sum mutual information, it is logical

that the performance metrics used in this work depend on this quantity. One ex-

cellent metric which describes the maximum rate at which error-free transmission

is theoretically possible for a given channel type is the ergodic channel capacity [2].

However, computing this quantity requires an expectation over an infinite set of

channel realizations, which is not possible using a finite set of measured data, and

is not strictly defined for outdated CSI.

Given the difficulties associated with the ergodic capacity for this appli-

cation, metrics used in this study are based on the sample average rate (SAR)

which is the expected error-free throughput for the channel as a function of the

delay n−n0 where precoding or detection is based off the channel at time n0 after

propagation through the channel at time n. We perform a time average over all

possible initial displacements n0, so that the SAR for a displacement ∆t = n − n0
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is defined as

SX (∆t) =
1

Nmax − ∆t

Nmax−∆t∑

m=0

CX (m, m + ∆t) (4.5)

where sum-rate expressions are written explicitly as functions of time, Nmax is the

total number of samples in the dataset, and the subscript X is a member of the set

of specified precoders {DPC, BF, TS}. Note that for ∆t = 0, Eq. (4.5) represents

the time-average expected system throughput. Since this chapter considers tem-

poral channel variation exclusively, and not coefficient estimation, it is assumed

that the channel estimates Hj(n) and Hj(n0) known respectively at the receiver

and transmitter are error free.

It is noteworthy that CX (n0, n0+∆t) is not necessarily a decreasing function

of ∆t. For example, if the channel estimate occurs at the end of a fade, the sum

mutual information is likely to be greater as the nodes move and the channel

improves. However, because the SAR in Eq. (4.5) represents an average behavior,

it generally decreases with increasing ∆t. Figure 4.2 plots the SAR versus the

spatial displacement ∆ = ∆tTsv, where Ts and v represent respectively the sample

interval and the receiver velocity, for each of the transmit precoders assuming

Jakes’ channel model and a normalized Doppler frequency of fd = 0.0086 chosen

based upon Ts and v. The system parameters include K = 5 users each equipped

with Nr = 4 antennas, a transmitter with Nt = 4 antennas, and a total power

constraint of P = 10. The maximum displacement ∆ is limited to 3λ since the

transient behavior of throughput degradation happens within this interval. Note

that both DPC and RCI experience a reasonably rapid degradation in throughput

as a result of outdated CSIT.

While plots of the SAR such as that in Fig. 4.2 reveal detailed information

regarding performance degradation due to outdated CSIT, it is useful to derive sim-

ple quantitative measures from the SAR that allow single-number comparison of

the behavior for different environments. The remainder of this section outlines two

metrics based on the SAR which help quantify the stability of the transmit precod-

ing algorithms and motivate the new algorithms defined in Sections 4.3.2 and 4.4.1.
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4.2.1 Sample Average Rate (SAR) Cross-Over Distance

As shown in Fig. 4.2, there is a displacement at which the average rate

drops below that for TS. This displacement, denoted as dT , is referred to as the

SAR cross-over distance and quantifies the displacement beyond which CSIT is

no longer useful (i.e. beyond this displacement, TS, which uses no CSIT, offers

higher throughput). Small values of dT suggest that a given precoding algorithm is

highly sensitive to channel temporal variations and will perform poorly in practical

systems. In Fig. 4.2, dT = 0 for TS, dT ≈ 0.25λ for DPC, and dT ≈ 0.4λ for RCI

beamforming.

4.2.2 Expected Sample Average Rate (ESAR)

While the SAR cross-over distance gives an indication of how quickly the

performance degrades with node displacement, it clearly provides only limited

insight into the behavior. This fact motivates another performance metric which

incorporates the throughput over all displacements. The Expected Sample Average

Rate (ESAR) is defined by

S̄X (M) =
1

M

M−1∑

d=0

SX (d) (4.6)

where M represents the extent of displacements in the region of interest. From

Fig 4.2, the normalized ESAR values S̄X/S̄TS are 1, 0.89, and 0.55 for TS, RCI,

and DPC, respectively.

Some important observations from Fig. 4.2 can be made regarding the

performance metrics and their effects on transmission stability. The distance dT

is meaningful in that it defines the sensitivity of an algorithm to node movement

but is not practical as an optimizable variable. For example, maximizing dT will

not necessarily result in a stable transmission policy since the majority of available

throughput may be lost in the first few fractions of a wavelength. In fact, Fig. 4.2

indicates that the most stable transmission scheme is TS which maximizes the

ESAR. These observations will be used to motivate a more stable transmit precoder
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in the following section.

4.3 Broadcast Channel Stable Transmission: Per-

fect CSIR

As shown in the previous sections, attempting to transmit with either the

optimal non-linear transmit precoding scheme (DPC) or linear beamforming on

the optimal subspaces (RCI) results in significant performance loss with even small

node displacement. This observation suggests that a signaling strategy which is in-

sensitive to node displacement must use transmission on suboptimal subspaces that

remain constant for longer periods of time. Motivated by this fact, we present an

iterative beamforming algorithm that has similar performance to RCI beamform-

ing when used with CSIT and stable performance when used with CDIT. While the

complexity of this algorithm is higher than that of RCI, it enables a significantly

reduced frequency at which the transmitter BF weights must be updated.

4.3.1 MMSE-CSIT Beamforming

Our goal is to define a beamforming algorithm that achieves the capacity-

optimal performance of RCI when used with CSIT but can be extended for use

with CDIT. We apply the standard coordinated transmitter/receiver beamform-

ing algorithm suggested in [28] where weights at the transmitter and receiver are

updated in an iterative manner. To motivate the steps at each iteration of the

algorithm, the following observations are considered:

• The metric of interest is maximizing the total mutual information (capacity)

of the system with linear beamforming (Section 4.1),

• MMSE beamforming at the receiver is capacity optimal [36],

• There exists a duality between transmit and receive beamforming [2, 36].
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For the following, the optimization variable is indexed over the current sample

index n and the index n0 at which the transmitter acquires CSI. This indexing is

for convenience when we address CDI beamforming, while for CSI beamforming

the transmitter assumes n0 = n for all time (i.e. the transmitter only calculates a

single set of beamforming weights).

Unit norm transmit beamforming weights bi(n0) are initialized for a given

number of data streams Ns using the singular vectors of a random matrix, similar to

the random beamforming algorithm [43], with the powers for all streams initially

equal. Given transmit weights and powers, each receiver calculates a set of Ns

MMSE beamforming weights, one for each of the Ns streams. For unit receiver

noise variance and assuming linear receiver processing (so that multiple streams

destined for the same user will interfere with each other), the resulting received

SINR of the ith stream to the jth user for the MISO broadcast channel is written

as

ρi,j(n0, n) =
pi(n0)b

H
i (n0)H

H
j (n)Hj(n)bi(n0)

1 +
∑

k 6=i pk(n0)bH
k (n0)HH

j (n)Hj(n)bk(n0)
(4.7)

where pi(n0) is the power allocated to the ith stream and
∑

i pi(n0) ≤ P .

The next step within the iteration is to assign a single user to each stream.

This is accomplished by sequentially moving through each of the Ns streams and

assigning to it the user which achieves the highest value of ρi,j(n0, n0). If π(i) repre-

sents the user index for the ith stream, this process is represented mathematically

as

π(i) = arg max
j

ρi,j(n0, n). (4.8)

It is important to note that while the stream mapping policy π(i) may result in

nodes without an assigned stream at a given iteration, these nodes may recapture

a stream at a future iteration.

Once streams have been mapped to users, MMSE receiver beamforming

weights are computed using

wi,j(n0, n) =

{
I + Hj(n)

K∑

k=1

pk(n0)bk(n0)b
H
k (n0)H

H
j (n)

}−1

Hj(n)bi(n0)pi(n0).

(4.9)
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Each receiver then “transmits” using its set of beamforming weights over the re-

ciprocal channel HH
j (n0), and for each stream the transmitter computes updated

MMSE beamforming weights bi(n0). For a given set of transmitter and receiver

beamforming weights, the quasiconvexity of the single-input single-output SINR

function enables a straightforward numerical optimization of the power coefficients

pi(n0) to increase the expected system rate. The sample average rate based on the

beamforming weights and power allocations using

CMMSE-CSIT(n0, n) =

Ns∑

i=1

log
(
1 + ρi,π(i)(n0, n)

)
(4.10)

where Eq. (4.7) is modified to include transmit weights. The final solution corre-

sponds to the weights wi(n0) associated with the value of Ns that maximizes Eq.

(4.10). The complete algorithm for maximizing the sample throughput through

linear processing, referred to as MMSE-CSIT, is summarized in Table 4.1. Note

that since the algorithm is performed with n = n0, Table 4.1 drops sample indices

from the variable matrices.

Figure 4.3 compares RCI and MMSE-CSIT beamforming for Nt = 6, Nr =

1, P = 10, and a variable number of receiver nodes for perfect CSI. The channel

coefficients were generated using the standard Rayleigh, flat-fading model for the

multi-user channel. Figure 4.3 also shows the optimal non-linear DPC precoder as

a performance reference. Note that, with power optimization, RCI and MMSE-

CSIT perform almost identically, which is the intended result. When Step 4 is

dropped from the algorithm, equal power is used for each data stream and only a

small loss in throughput is seen as the number of users increases. Figure 4.4 shows

the convergence with the number of iterations for RCI and MMSE-CSIT. Note that

the trend for both algorithms is a longer convergence time as the number of users

is increased. Though not shown, a similar behavior is observed as the number

of antennas is increased for either the transmitter or receiver. It is noteworthy

that both the RCI and MMSE-CSIT algorithms only guarantee convergence to

a local maximum when used in the MIMO broadcast channel, therefore allowing

the situation where one algorithm outperforms the other. From a computational

complexity standpoint, at each iteration the complexity of the RCI algorithm is
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Table 4.1: Iterative beamforming for maximization of sample average rate

1. Assume an initial set of Ns random transmit weights bi

with equal power allocation pi = P/Ns

2. Calculate the MMSE receiver beamforming weights

for all streams to all users

wi,j = (I + Hj

(∑
k pkbkb

H
k

)
HH

j )−1Hjbipi

3. Find the survivor streams using SINR

π(i) = arg maxj ρi,j

4. Numerically optimize the powers pi assigned to each stream

5. Update the MMSE transmitter beamforming weights

bi =
(
I +

∑
k pkH

H
π(k)wk,π(k)w

H
k,π(k)Hπ(k)

)−1

Hπ(i)wi,π(i)pi

6. Repeat 2-5 until convergence

7. Repeat 1-6 for Ns = 1 . . .K

8. Use wi,π(i) corresponding to the value of Ns that maximizes

CMMSE-CSIT =
∑Ns

i=1 log
(
1 + ρi,π(i)

)
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dominated by the cost of taking the inverse of a single Nt × Nt and K Nr × Nr

matrices, with an asymptotic cost of O(N3
t +KN3

r ). In contrast, the complexity of

the MMSE-CSIT algorithm requires taking the inverse of approximately K Nt×Nt

and K2 Nr × Nr matrices, which is roughly K times the cost of the RCI scheme.

4.3.2 MMSE-CDIT Beamforming

As observed at the end of Section 4.2.2 and shown in Fig. 4.2, stable trans-

mission is achieved by the scheme that maximizes the ESAR of the channel rather

than instantaneous throughput. We therefore reformulate the beamforming prob-

lem to maximize the average of Eq. (4.10) over some window size M , or

C̄MMSE-CSIT(n0, M) =
1

M

M−1∑

m=0

Ns∑

i=1

log
(
1 + ρi,π(i)(n0, n0 + m)

)
. (4.11)

While direct maximization of Eq. (4.11) with no CSIT appears difficult, under

ideal conditions the average throughput can be upper and lower bounded by (see

Appendix C for discussion on bounds)

C̄upper(n0, M) =
Ns∑

i=1

log(1 + ρ̄i,π(i)(n0, M)) (4.12)

C̄ lower(n0, M) =

Ns∑

i=1

log
(
1 + ρ̃i,π(i)(n0, M)

)
(4.13)

where

ρ̄i,π(i)(n0, M) =
1

M

M−1∑

m=0

num{ρi,π(i)(n0, n0 + m)}
den{ρi,π(i)(n0, n0 + m)} (4.14)

ρ̃i,π(i)(n0, M) =
1
M

∑M−1
m=0 num{ρi,π(i)(n0, n0 + m)}

1
M

∑M−1
m=0 den{ρi,π(i)(n0, n0 + m)}

(4.15)

and num{·} and den{·} return the numerator and denominator, respectively, of

the argument. Equation (4.14) is the average SINR (ASINR) while Eq. (4.15)

is the ratio of the average signal power to the average interference plus noise

powers (ASAINR). Analogous to the instantaneous throughput of Eq. (4.10), the

bounds on average throughput Eqs. (4.12) and (4.13) can each be considered
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instantaneous throughputs assuming the SNR is given by the average quantities

ASINR and ASAINR, respectively.

Since, as shown in Appendix C, the lower bound on ESAR is tighter than

the upper bound, we will use this bound as the objective function for maximization.

The ASAINR can be expanded generically as

ρ̃i,j(n0, M) =
1
M

∑M−1
m=0 num{ρi,j(n0, n0 + m)}

1
M

∑M−1
m=0 den{ρi,j(n0, n0 + m)}

=
1
M

∑M−1
m=0 pi(n0)b

H
i (n0)H

H
j (n0 + m)Hj(n0 + m)bi(n0)

1 + 1
M

∑M−1
m=0

∑
k 6=i pk(n0)bH

k (n0)HH
j (n0 + m)Hj(n0 + m)bk(n0)

=
pi(n0)b

H
i (n0)

√
Rt,j(n0, M)

H√
Rt,j(n0, M)bi(n0)

1 +
∑

k 6=i pk(n0)bH
k (n0)

√
Rt,j(n0, M)

H√
Rt,j(n0, M)bk(n0)

(4.16)

where Rt,j(n0, M) is the transmit correlation matrix from Eq. (2.2). Note that

Eq. (4.16) is in the exact form of Eq. (4.7) used for maximizing throughput with

CSIT when the transmit correlation matrices are exchanged for channel realiza-

tions. Thus, the same beamforming algorithm used to maximize instantaneous

throughput can also be used to maximize the lower bound on average throughput

by simply swapping CDIT for CSIT. Table 4.2 shows the beamforming algorithm

that utilizes CDIT (MMSE-CDIT) with power optimization removed for compu-

tational savings.

An important discrepancy between the MMSE-CSIT and MMSE-CDIT

beamformers is the use of channel duality when updating the beamformer weights.

With MMSE-CSIT beamforming, the dual of the downlink channel is simply the

matrix Hermitian of the uplink and vice versa. However, for MMSE-CDIT beam-

forming, the receive correlation matrix is not generally the Hermitian of the trans-

mit correlation matrix. For example, if the transmitter is closely obstructed by

interferers or contains tightly spaced antennas then Eq. (2.2) will reflect more

correlation than Eq. (2.3) and duality will not hold. For this algorithm, however,

SINR equality is only required when the transmitter and receiver change roles, and

this is satisfied when using RH
t,j(n0, M) as the dual “channel” for MMSE-CDIT.

This result suggests that the beamforming weights produced by the MMSE-
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Table 4.2: Iterative beamforming for maximization of ESAR lower bound

1. Assume an initial set of Ns random transmit weights bi

with equal power allocation pi = P/Ns

2. Calculate the receiver beamforming weights for all streams to all users

wi,j = (I +
√

Rt,j

(∑
k pkbk bH

k

)√
Rt,j

H
)−1
√

Rt,jbipi

3. Find the survivor streams by using

π(i) = arg maxj ρ̃i,j

4. Update the transmitter beamforming weights

bi =
(
I +

∑
k pkR

H
t,π(k)wk,π(k)w

H
k,π(k)Rt,π(k)

)−1

Rt,π(i)wi,π(i)pi

5. Repeat 2-4 until convergence

6. Repeat 1-5 for Ns = 1 . . .K

7. Use wi,π(i) corresponding to the value of Ns that maximizes

CMMSE-CDIT =
∑Ns

i=1 log
(
1 + ρ̃i,π(i)

)

CDIT algorithm reside in stable subspaces within the multi-user time-varying

MIMO channel. This stability can be seen by noting that the throughput as a

function of SINR and delay is only based on the single set of beamformer weights

produced at zero delay and not adapted to channel conditions and variations. It

is also interesting to note that the SAR cross-over distance dT for the RCI beam-

former in this spatially-correlated channel is larger than that observed for the

spatially-white Jakes’ channel considered in Fig. 4.2. This observation suggests

that spatial correlation provides an innate robustness to channel temporal varia-

tion when used with linear beamforming even when the correlation is not explicitly

used in the computation of the beamforming weights.

Some comments regarding the MMSE-CDIT beamforming algorithm are

necessary. First, it is important to reinforce that for simulation purposes, the

weights found from the iterative MMSE-CDIT algorithm are treated like standard

beamforming weights of RCI. In other words, the algorithm is used to find a single

set of weights, and these weights are fixed as the nodes move throughout the

system. No adaptive beamforming is considered for either case. Second, one might
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consider using CDIT knowledge directly with either DPC or RCI. However, we

have observed that the resulting performance is lower than that obtained from

either the MMSE-CDIT beamformer or TS, and therefore these approaches are

not considered further in this work.

4.3.3 Stable Transmission Results

Full assessment of the performance of the algorithms considered in this

chapter requires sweeping over a large number of independent parameters, includ-

ing available power at the transmitter, number of transmit and receive antennas,

node velocities, channel spatial correlation, number of users, and type of scat-

tering environment. For measured channel data, certain parameters (number of

antennas, transmit power) can be altered to some degree while others (scattering

environment, node velocities, number of users) are determined by the operational

environment. In this section, the SAR is examined for a fixed number of antennas

and transmit power level. The following conditions are imposed on the simulations

undertaken:

• Although the ordering of users could be optimized in order to maximize in-

formation throughput [2], this chapter is focused on the performance degra-

dation due to channel time-variation for a specified ordering, and therefore

user signal encoding is performed in a fixed order.

• The measured data can accommodate a maximum of six users in the broad-

cast channel.

• Prior to node movement both transmitter and receiver share perfect (i.e.

channel estimation error-free) knowledge of the channel. As nodes move, the

receiver is assumed to always have the current CSI while the transmitter only

has the initial channel state. This assumption suggests embedded training

symbols in the transmitted signal and error-free channel estimation at the

receiver with limited feedback to the transmitter.
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• When spatial correlation is used with the modeled channel, the transmit cor-

relation matrix is taken from estimates generated by the measured channel.

Although results in this section are focused on the measured data, we also

provide results in a later chapter for the modeled channel (i.e. spatially-

correlated Jakes’ model) which allows for some contrast between the two.

Figure 4.5 shows the SAR of the four transmit precoders examined in this

work, namely non-linear optimal DPC, linear optimal BF (RCI), the iterative

beamformer presented in this chapter (MMSE-CDIT), and time-sharing (TS) each

of which will be normalized by the TS sum-rate to describe precoding effectiveness

as defined for the single-user channel 3.9. The simulation uses the measured data

with Nt = 4 transmit antennas and K = 3 users each with Nr = 4 antennas. The

total available power is fixed at P = 10 and nodes are displaced at a constant

pedestrian velocity. These results reveal that while DPC has the highest possible

throughput, it is also the most sensitive to outdated CSIT as measured by the de-

crease in effectiveness. Optimal CSIT beamforming achieves an initial performance

that is near that of DPC and has a more graceful loss in performance as nodes

move. MMSE-CDIT beamforming throughput performance is initially suboptimal,

but remains constant throughout the length of the simulation and is always more

effective than TS. It is clear that the SAR cross-over distance for MMSE-CDIT is

beyond the simulation region and is much larger than that of any other precoder.

As a reference, the SAR cross-over distance (dT ) and normalized ESAR (S̄X/S̄TS)

for each of the transmit precoders and channel models are provided in Table 4.3.

The differences between the results for the various environments demonstrate the

fundamental spatial characteristics of the channels. Despite these differences, the

results for the channel types suggest the same performance trends, with the most

notable one being that MMSE-CDIT beamforming outperforms all other schemes

for the metrics presented given sufficient delay between channel acquisition and

channel use. Furthermore, it appears that linear precoding even with outdated

CSI provides some robustness to channel temporal variations for the given antenna

correlations while the self-interference caused by nonlinear precoding significantly

degrades the system.
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Figure 4.5: Precoding effectiveness UT in the MIMO broadcast channel with K = 3
users, Nr = Nt = 4 antennas, and P = 10 power constraint. Results are shown for
the (a) Indoor, (b) Outdoor, and (c) Urban environments.
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Table 4.3: Performance Metrics for DPC, RCI, and TS in Indoor, Outdoor, and
Urban Environments

DPC RCI MMSE-CDIT

Indoor .32λ .75 1.292λ 1.1 > 3λ 1.17

Outdoor > 3λ 1.167 > 3λ 1.33 > 3λ 1.38

Urban 0.383λ 0.81 1.57λ 1.08 > 3λ 1.27

dT
S̄DPC

S̄TS
dT

S̄RCI

S̄TS
dT
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S̄TS
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Figure 4.6: Sample average rate versus number of users for Nt = Nr = 4 and
P = 10 in the measured channel. There is no lag between channel acquisition and
use.
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Figure 4.6 demonstrates scalability of the network for different types of

precoding when both transmitter and receiver are equipped with perfect channel

knowledge. The simulation uses measured data with Nt = Nr = 4 and P = 10 with

a variable number of receivers. These results confirm the finding from Fig. 4.1 that

all schemes that use some form of channel knowledge scale in throughput versus

the number of users. Figure 4.7 shows the results of the same simulation performed

with a displacement of ∆ = 1.5λ between channel update and transmission. This

intriguing result reveals that the performance degradation for DPC worsens as

the network size increases. MMSE-CDIT beamforming is impervious to mobility

in the network within the channel stationarity time and is the only precoder that

provides significant increase in performance with the number of nodes for outdated

transmit channel information.

4.4 Broadcast Channel Stable Reception: Erro-

neous CSIR

The severe loss in rate with outdated CSIT observed in the prior section

will be magnified by outdated CSI at the receiver and poses a more difficult prob-

lem. Therefore, we will use a combination of the approaches outlined in [21] of

maximizing the lower bound on an idealized average sum-rate, and [42] of deriving

the form of the maximizing beamformer weights. The general steps followed for

finding the beamforming weights that maximize the approximate sum-rate are: 1)

define the sum-rate objective function as a function of the beamforming vectors, 2)

solve for the weights that provide maxima to the objective function, and 3) define

an iterative algorithm that finds the weights given some initial condition.

4.4.1 Regularized Channel Distribution Inversion (RCDI)

Consider the sum-rate approximation given linear processing as described in

Appendix C. Under this constraint of linear preprocessing, the objective function
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is written as

C̄ =

K∑

j=1

log

(
1 +

n̄j

d̄j

)
(4.17)

where n̄j = E[num(ρj)], d̄j = E[den(ρj)], and num(·) and den(·) return the numer-

ator and denominator of the argument, respectively. The optimization problem

is then to construct transmit and receive beamforming vectors to maximize this

quantity, or

max
wj ,bj

C̄ (4.18)

with power constraints imposed on the input beamforming vectors.

The details of the maximization process can be found in Appendix D. The

resulting regularized channel distribution inversion (RCDI) beamformer matrix B,

each column of which represents the transmit beamformer bj for the jth user, is

given as

B =

(
tr(D)

P
I +

K∑

i=1

Di,iH̄j

)−1

Λ (4.19)

where the definitions for D, Λ, and H̄j can be found in Appendix D. It is interest-

ing that the form of (4.19) is similar to that in (4.5) for the RCI beamformer (see

also [42]). However, because RCI depends on CSI, the required feedback frequency

for RCI is on the order of the channel coherence time. In contrast, since RCDI

depends on CDI, feedback is only required when the channel correlation structure

changes appreciably.

Since B appears on both sides of (4.19) (both Λ and D are functions of B),

an iterative solution must be used to obtain the final solution. Using a combination

of the steps suggested in [21, 28, 42] results in the iterative RCDI beamforming

algorithm shown in Table 4.4 where steps 1-6 update the transmit weights while

step 7 updates the receive weights using an MMSE criterion on the average signal

to average interference plus noise ratio (ASAINR). Whereas the channel matrix is

the only required input for the RCI algorithm, St,j and Sr,j, which are nonlinear

permutations of the full spatial correlation matrix for each user, are the only inputs

required for the RCDI algorithm. Furthermore, the RCDI algorithm gives the



80

Table 4.4: Iterative beamforming for MIMO regularized channel distribution in-
version (RCDI)

Calculate St,j = E[HT
j ⊗HH

j ] and Sr,j = E[H∗
j ⊗ Hj]

Initialize D and Λ

Repeat until convergence:

1. H̄j = mat(St,jvec(wjw
H
j ))

2. B = (tr(D)
P

I +
∑i=K

i=1 Di,iH̄i)
−1Λ

3. n̄j = B:,jH̄jB
H
:,j

4. d̄j = 1 +
∑

i6=j B:,iH̄jB
H
:,i

5. Λ =
[

(H̄1B):,1
d̄1

, . . . ,
(H̄KB):,K

d̄K

]

6. D = diag
(

n̄1

d̄1(d̄1+n̄1)
, . . . , n̄K

d̄K(d̄K+n̄K)

)

7. Update wj using Sr,j and the MMSE criterion on ASAINR

end

same results as the RCI algorithm when the expectation operator is removed (i.e.

St,j = HT
j ⊗HH

j ).

Because of the nonconvex nature of the beamforming capacity expression,

both RCI and RCDI algorithms only guarantee convergence to a local maximum,

and they therefore may not produce the true sum capacity of the broadcast chan-

nel with linear precoding [42]. The implication of this observation is that the

performance depends on the initial values of D and Λ. For RCI, the beamformer

created from the regularized pseudo-inverse of the channel offers a good starting

point. However, since an analogous initial condition for the RCDI algorithm has

not yet been discovered, we will use several starting points and select the result

which gives the highest bound on the average sum-rate.

4.4.2 Stable Reception Results

The performance of using the described algorithm will be analyzed using

measured channel data. While modeled channel analysis could be insightful, the
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Figure 4.8: Average sum-rate of RCI and RCDI versus displacement for K = Nr =
Nt = 4 and P = 10. The receiver and transmitter share equally delayed knowledge
of that channel given by ∆ (wavelengths) from the current channel. Shown are the
(a) Indoor, (b) Outdoor, and (c) Urban environments.
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difficulty lies in the fact that many models impose wide sense stationarity and spa-

tial structure on the channel realizations, which is a characteristic that will favor

CDI-based techniques especially when such techniques exploit a priori knowledge of

the model. Our goal in using measured data is to show that the CDI-based schemes

with reduced feedback requirements work well in realistic channels when station-

arity or structure is not artificially imposed. Furthermore, multiple measurement

campaigns were adopted in the simulations in order to confirm the algorithmic

performance over a wide variety of spatial structures.

Fig. 4.8 compares RCI and RCDI performance as a function of displace-

ment for Indoor, Outdoor, and Urban measurements. For these simulations, it

is assumed the transmitter has the full spatial correlation matrix for all users.

The elements of the full correlation matrix estimated using (2.4) are appropriately

arranged to construct the matrices St,j and Sr,j required for the RCDI implemen-

tation. Once RCDI beamforming vectors have been found, each user is assumed to

have knowledge of their transmit and receive weights which they use for all time

independent of the time variations in the channel. The results in Fig. 4.8 confirm

that while the performance of RCDI is lower than that of RCI with recent CSIT

and CSIR, its throughput remains stable over large node displacements where the

slight fluctuations in performance are artifacts of using measured data. The stabil-

ity of RCDI implies that the feedback frequency for the RCDI algorithm is much

lower than that required by the RCI approach to maintain a specified through-

put. Furthermore, as shown in Fig. 4.8(a) for the Indoor environment, spatial

structures introduced on the channel due to the environment directly affect the

possibility of effectively using CDI as a precoding resource. For a spatially-white

channel, the RCDI algorithm could not make any distinction between users and

no gains would be possible over outdated CSI.

Results presented in this chapter suggest possibilities in combating the chan-

nel time-variation difficulties that were observed in Chapter 3 and which directly

motivated this work. Two beamforming algorithms were established to this end.

By simply exchanging CSI for CDI in the form of one-sided correlation matrices,

with the assumption of perfect CSIR, MMSE-CDIT beamforming provides a sim-
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ple manner of providing stability. With outdated CSIR, the RCDI algorithm can

be used to provide more complete robustness at the cost of suboptimality in the

initial performance. When channel estimates are poor the correlation-based beam-

formers are the only examined precoding techniques that enjoy significant network

throughput scaling.

The work presented in this chapter, in part, was originally published in the

following papers, of which the author was also main contributor: A. L. Anderson,

J. R. Zeidler, and M. A. Jensen, “Reduced-feedback linear precoding with stable

performance for the time-varying MIMO broadcast channel,” IEEE Journal on

Selected Areas of Communications, (Special Issue on Limited Feedback). Vol. 26,

No. 8, 11 pages, October, 2008; A. L. Anderson, J. R. Zeidler, and M. A. Jensen,

“Stable transmission in the time-varying MIMO broadcast channel,” EURASIP

Journal on Advances in Signal Processing, 2008, Article ID 617020, 14 pages,

2008. doi:10.1155/2008/617020.



Chapter 5

Stable Transception in the MIMO

Multiple-Access Channel

As developed in the previous chapter, when CSI is available at the trans-

mitter in the BC the optimal, rate-maximizing beamformer is found in [42] for the

MISO channel or in [28] for the MIMO channel. This current chapter takes the

approach found in [22] in order to maximize the sum-rate of the MAC using linear

processing and either channel state information in the form of estimated channel

matrices or channel distribution information which will take the form of spatial

correlation matrices.

Though significant gains are guaranteed when CSI is perfectly known, sig-

nificant loss will also occur in the MAC when assumed channel estimates are er-

roneous at the receiver or additional delay occurs when beamforming weights are

fed back to the transmitters. Such errors in the channel can occur when limited

training is used for channel estimation or when node mobility happens with infre-

quent training and feedback. This channel error has the possibility to significantly

degrade the performance of the entire system [21] and negate the theoretical rates

given for the MIMO MAC as shown in this current work. The same method of

combating the effects of erroneous CSI developed for the BC is adapted for the

MAC - beamforming techniques that use no CSI for processing [22]. In addition

84
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to deriving the rate-maximizing beamformer with CSI in the MAC, this chapter

also introduces a beamforming method that attempts to maximize the average

sum-rate thus circumventing the loss seen by channel errors.

5.1 Regularized Channel Inversion in the MAC

(RCI-MAC)

Consider the scenario where the receiver estimates the channel to all users

and uses some algorithm to calculate transmit and receive beamforming vectors for

all desired data streams. After this processing, the data transmission phase begins

where the received signal for user j in the K-user MAC with linear beamforming

at the transmitters and receiver is written as

yj = wH
j Hjbjxj + wH

j

K∑

i6=j

Hibixi + wH
j ηj

where wj and bj are the beamforming vectors, xj is the transmitted Gaussian

symbol, and ηj is an Nr × 1 AWGN noise vector. Again, time indices are dropped

as the channel is considered stationary over the data detection phase; lag due to

time variation in the channel and mobile users is taken into account through the

channel estimation error (2.13).

In order to account for per-user power constraints and users that are ex-

cluded from the channel, the transmitted signals are normalized as

yj =
wH

j Hjbjxj

max(||bj||, 1)
+ wH

j

K∑

i6=j

Hibixi

max(||bi||, 1)
+ wH

j ηj. (5.1)

The normalized received vector (5.1) is valid for all users whether or not they access

the channel and also valid for any weight of the transmit vector bj . If ||bj|| = 0

then the user is considered “off” and will provide no interference to other users nor

have any signal gain at the receiver. For, ||bj|| > 0 the user is “on” and accessing

the channel at the same transmit power as all other transmitting users; thus, the
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normalization in (5.1) accounts for the per-user power constraint and user selection

at each transmitter.

Given this normalized expression for received signals the instantaneous

SINR can be written for each received signal and consequently rate equations that

describe the achievable throughput of the MAC as a function of the SINR [44]

rj = log

(
1 +

|wH
j Hjbj |2

σ2
n||wj||2δj +

∑
i6=j

δj

δi
|wH

j Hibi|2

)
(5.2)

where δj = max(||bj||, 1). The sum of these rate equations becomes the total pos-

sible throughput of the system given linear precoding and detection. Ultimately,

the rate expression will be used for optimization purposes in order to find the form

of the rate maximizing beamformer; however, the δj terms which contain the max-

valued functions provide for difficult manipulation. These rate expressions can be

simplified by separating the data streams into “on” or “off” regions which leads to

rj =





log
(
1 +

|wH
j Hjbj |

2

σ2
n||bj ||2+

P
i6=j |w

H
j Hibi|2

)
, “on”

log
(
1 +

|wH
j Hjbj |2

σ2
n+

P
i6=j |w

H
j Hibi|2

)
, “off”

(5.3)

where receive vectors are normalized to unity. It is straightforward to confirm that

(5.3) describes the same rate as (5.2) when ||bj ||2 ∈ 1, 0 as is the case for the final,

power-constrained, solution.

The rate maximizing beamformer for the MISO BC was found in [42] and

used in the MIMO channel in [28]. For distinction between the various types of

beamforming algorithms discussed in this chapter, the method from [28] will be

referred to as the regularized channel inversion in the broadcast channel (RCI-BC)

algorithm. It is noteworthy to mention that the RCI-BC algorithm may be used

in the MAC when coupled with the duality between BC/MAC where transmitters

and receivers exchange roles but keep the same beamforming vectors and power

allocations [44]. This duality ensures that the achievable rate in the BC is the

same as the MAC; however, since the BC only has a sum-power constraint users

may be allocated more or less of the total available power contrary to the MAC

where, in this work, all users are considered either silent or transmitting a single
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stream at full power. However, for comparison purposes, this work allows illegal

allocation of power when using RCI-BC and the channel duality; this method of

beamformer construction is referred to as the RCI-BC→MAC algorithm.

As will be shown in this section, direct maximization of the MAC sum-rate

also has the form of a regularized channel inversion and is referred to as RCI-MAC.

The optimization problem is written as

max
wj ,bj

∑
j rj

||wj||2 = 1 ||bj||2 ∈ {1, 0}

where rj is found from the simplified expression (5.3). Note that the norm con-

straint on the transmit beamformer is used under the assumption that information

streams are either “on” or “off”.

In order to find the beamforming vectors that maximize the instantaneous

rate of the MAC, a similar process is employed as that used for maximization in

the BC. The partial derivative of the sum-rate (5.3) is taken with respect to each

element of bj . Each partial derivative is set equal to zero and terms are gathered

to create vectored-valued equations

bj =





(
[D]j,j

P
I + HH

j D̄Hj

)−1

HH
j wj∆j , “on”

(
HH

j D̄Hj

)−1
HH

j wj∆j , “off”
(5.4)

where the following organizational assignments are used for simplifying the expres-

sions

rj = log

(
1 +

nj

dj

)

W = [w1 . . .wK ]

∆j = (wH
j Hjbj)

∗

D = diag

(
n1

d1(n1 + d1)
. . .

n1

d1(n1 + d1)

)

D̄ = WDWH.

Note that different beamformer expressions are used depending on whether a node

is considered “on” or “off” which allows for user selection when the number of users
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is greater than that sustainable by the receiver. Furthermore, bj terms appear

on each side of the vector equation leading to an iterative solution as described

in [22]. The form of (5.4) also resembles a regularized channel inversion, and

direct maximization of the sum-rate in the MAC beamforming algorithm is called

RCI-MAC. It is also important to remark that though the RCI-MAC and RCI-BC

beamformers have a similar structure, it is a non-trivial adaptation to go from one

expression to the other due to the per-user versus sum power constraint of the

respective systems. Finally, the RCI-MAC is a function of the assumed channel

and performance loss will be seen when this input is erroneous.

As a comparison between RCI-BC→MAC and RCI-MAC consider gener-

ating temporally independent realizations of the spatially-white channel for each

user. Figure 5.1 shows the resulting sum-rate of these realizations of the wireless

MIMO channel when each technique is used for either (a) K = 4 or (b) K = 6 users

with Nt = Nr = 4 antennas each. As a benchmark, the optimal non-linear process-

ing [2] using successive interference cancellation (SIC) is also plotted. Note that

for the situation described in (a) the RCI-MAC algorithm almost always equally

divides power between the data streams resulting in RCI-BC→MAC having the

same performance as RCI-MAC. However, when there are a greater number of

users than sustainable streams, user selection and power allocation play a more

significant role in throughput as shown in (b). In fact, under certain channel real-

izations, RCI-MAC outperforms the rate maximizing RCI-BC→MAC scheme even

though there is a stricter rule on power allocations. For all simulations, the total

power of the system was the same.

5.2 Average-Rate Maximizing Beamformer

in the MAC (RCDI-MAC)

In the previous section it was shown that linear precoding in the MAC can

achieve a significant portion of the total possible information throughput of the

system under consideration when CSI is perfectly available at both the transmitters



89

1 2 3 4 5 6 7 8 9 10
22.5

23

23.5

24

24.5

25

25.5

26

26.5
(a)

channel realization

su
m

−
ra

te

RCI−MAC
RCI−BC−>MAC
SIC

1 2 3 4 5 6 7 8 9 10
23.5

24

24.5

25

25.5

26

26.5

27
(b)

channel realization

su
m

−
ra

te

RCI−MAC
RCI−BC−>MAC
SIC
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nel size of Nr = Nt = 4, P = 10 and (a) K = 4 or (b) K = 6 users.
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and receiver and a beamforming algorithm (RCI-MAC) was derived to directly

achieve these throughputs. When the assumption of perfect CSI no longer holds,

significant degradation was shown to occur in the BC [22] and will also influence

rate loss in the MAC. To combat these detrimental effects of inaccurate CSI, a

beamforming algorithm was derived in [22] that attempts to maximize the average

sum-rate of the BC - referred to as regularized channel distribution inversion in the

BC (RCDI-BC). This section shows a similar analysis in the MAC and presents

results regarding performance loss with erroneous CSI.

In order to maximize the average sum-rate in the MAC, an approximation

on the sum-rate will be used analogous to that used in Chapter 4. For clarity, this

expression is reiterated here as

r̄j = log

(
1 +

n̄j

d̄j

)
(5.5)

where n̄j and d̄j are the expected values of numerator and denominator, respec-

tively, of (5.2) or analogously (5.3) when simplification is used on the rate equa-

tions. Given this approximation on the average per-user rate, the optimization

problem becomes

max
wj ,bj

∑
j r̄j

||wj||2 = 1 ||bj||2 ∈ {1, 0}

where the objective function is the approximation (5.5) derived from (5.3).

Using a similar approach to average sum-rate maximization in the BC, the

RCDI-MAC beamforming weights are derived as

bj =





(
[D]j,j

P
I +

∑i=K
i=1 [D]i,iR̄i,j

)−1

Ωj , “on”
(∑i=K

i=1 [D]i,iR̄i

)−1

Ωj , “off”

where

R̄i,j = mat(Rivec(wjw
′
j))

D = diag

(
n̄1

d̄1(n̄1 + d̄1)
, . . . ,

n̄1

d̄1(n̄1 + d̄1)

)

Ωj =
R̄j,jbj

d̄j

. (5.6)
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However, it is worthwhile to note that the RCDI-MAC can not be written directly

from the RCDI-BC algorithm nor is it apparent how channel duality can be used

with CDI beamforming; thus, only RCDI-MAC is analyzed to maximize the av-

erage rate approximation (i.e. no straightforward RCDI-BC→MAC mapping is

available).

Figure 5.2 shows the performance of RCDI-MAC as well as the degradation

of RCI-MAC when erroneous CSI is used to calculate the beamforming weights.

Two specific cases are examined for comparison purposes. In Case A, the situa-

tion where the receiver has perfect CSI and the transmitters have either erroneous

CSI feedback or perfect CDI feedback is examined. In practical MAC systems,

the receiver will most likely calculate transmit beamforming weights for all users

and simply feed the weights or a quantized version back to the transmitters. For

Case A, the effect of lag and error in the feedback channel is simply modeled as

if the transmitters calculated the beamforming weights with the given channel

estimation error while the receiver has error-free CSI to calculate receive beam-

forming weights. Case B shows the opposite extreme when the feedback channel

is assumed instantaneous and perfect while the transmitters and receiver possess

equally-erroneous CSI as quantified by ρd and the error model (2.13) or perfect

CDI from all users.

Figure 5.2 demonstrates that RCDI-MAC provides stable performance at

the expense of lower rate compared to the CSI based scheme; however, RCI-MAC

eventually has poorer performance when the error in the channel estimates becomes

large enough (due to lag in this case). The results indicate the importance of

obtaining accurate CSI at the receiver as the degradation is rapid as CSI accuracy

lessens as displayed by Case B. Another interesting result, as shown in Case A, is

the stability of using the RCDI-MAC vectors at the transmitters. A MAC receiver,

aware of the mobility in the channel, may choose to instead feedback RCDI-MAC

weights rather than RCI-MAC weights to provide for better performance against

the time-varying channel. Environmentally, the Outdoor channel has a tighter

spread between RCI-MAC and RCDI-MAC curves which follows the general trend

seen throughout this dissertation.
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Chapter 6

Reduced Feedback RCDI

Beamforming

As demonstrated in previous chapters, to limit the frequency of feedback,

alternatively stable (yet suboptimal) communication performance may be obtained

by signaling based on channel distribution information, often referred to as partial

CSI, in the form of either channel mean (CMI) or covariance (CCI) information

in both single-user and multi-user channels [2,45,46]. Combining various forms of

partial CSI is also possible [47], [48] where both CQI and CDI are used to perform

coarse channel acquisition for scheduling purposes in the broadcast channel. The

work in [21] develops a signaling approach for the broadcast channel based on min-

imum mean squared error (MMSE) beamforming weights at the transmitter and

receiver computed from CDI in the form of one-sided spatial correlation matri-

ces under the assumption that the receiver possesses perfect CSIR. The algorithm

is shown to provide stable communication performance for time-variant channels

with low required feedback frequency.

In addition to limiting the frequency of feedback it is important to limit the

quantity of required feedback for coding algorithms. One approach for mitigating

these quantities in both single- and multi-antenna channels is to change the type or

amount of information used to construct the precoder [49]. For example, a simple
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method of limiting the quantity of feedback, often referred to as opportunistic or

random beamforming [43,50], is for each user to simply return information regard-

ing the signal-to-interference plus noise ratio (SINR) to the transmitter who can

then determine user selection for the given beamforming vectors and scheduling al-

gorithm. Variations on and comparisons to opportunistic or random beamforming

can be found in [51, 52]. Another approach to limited feedback is to create quan-

tized beamforming codebooks for either single-user [53] or multi-user [54,55] chan-

nels, which when known to transmitter and receiver(s), can reduce the feedback

to simply an index into the predetermined codebook. Other methods of feedback

quantization are also possible, as in [56] where feedback of normalized channel

vectors is compared with standard beamforming codebooks or when information

about the channel itself is quantized and fed back to the transmitter [57–59]. Other

types of information, often generically referred to as channel quality information

(CQI), can also be used for beamformer construction [44, 60, 61]. Though each of

these methods can dramatically reduce the amount of feedback data required, the

frequency of feedback must still remain high to compensate for time variations in

the channel.

The RCDI algorithm was shown to limit the frequency of feedback in BC

and MAC using linear processing on the channel statistics. The drawback of the

algorithm, however, is that since it requires the full spatial covariance matrix, each

user must feed back a significant amount of information to describe the spatial

correlation compared to CSI-based schemes. This chapter therefore develops a

method for parameterizing the required CDI using two commonly accepted channel

models, namely the Kronecker [16] and Weichselberger [19] models, that can both

be utilized to explicitly represent the spatial covariance structure. Simulations in

realistic channels show that this parameterization reduces the feedback on par with

CSI-based schemes with minor loss in throughput performance while significantly

lowering the frequency of feedback.



96

6.1 Channel Distribution Parameterization

The prior chapters demonstrated that the RCDI algorithm enables good

throughput performance with reduced feedback frequency in the time-varying

broadcast or multiple-access channels. However, because the algorithm compu-

tation requires the full spatial correlation matrix

R = E[vec(H)vec(H)H ]

through the permutations St and Sr, where the user index is dropped for conve-

nience, the amount of data that must be fed back is significant. In fact, assum-

ing M antennas per node, each user must feedback an M2 × M2 matrix, or M4

complex values, in contrast to the M2 numbers that must be fed back for RCI

implementation using the channel matrix. The goal of this section is to consider

ways to parameterize St and Sr to reduce the required volume of feedback data.

The approach taken is to explore the use of popular channel models, namely the

Kronecker and Weichselberger models, which impose structure on the correlation

matrix to allow its representation using smaller matrices. Throughout this devel-

opment, we will make use of the properties AB ⊗ CD = (A ⊗ C)(B ⊗ D) and

(A�B)⊗ (C�D) = (A⊗C)� (C⊗D) where ⊗ is the matrix Kronecker product

and � is the element-wise, matrix, Schur-product.

6.1.1 Kronecker Model

The Kronecker model [16] assumes separability between transmit and re-

ceive spatial correlation matrices. Assuming that Hw is an M × M matrix with

zero-mean, unit variance, i.i.d. complex Gaussian entries, the correlated channel

matrices can be realized using

HKron =
√

RrHw

√
Rt

where the one-sided correlation matrices are calculated from Rr = E[HHH ] and

Rt = E[HTH∗] or estimated from the measured data using (2.2) and (2.3). As-
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suming this structure leads to the RCDI input matrix

SKron

t = E[HT
Kron

⊗ HH
Kron

]

= E
[
(
√

RrHw

√
Rt)

T ⊗ (
√

RrHw

√
Rt)

H
]

= E
[
R̃Kron

t

(
HT

w ⊗ HH
w

)
R̃Kron

r

]

= R̃Kron

t ItR̃
Kron

r (6.1)

where It = E[HT
w ⊗HH

w ], R̃Kron

t =
√

Rt
T ⊗√

Rt
H

, and R̃Kron

r =
√

Rr
T ⊗√

Rr
H

. In

a similar fashion we can construct

SKron

r = R̃Kron

r IrR̃
Kron

t (6.2)

where Ir = E[H∗
w ⊗Hw]. These results demonstrate that the feedback information

is reduced to two M × M matrices for a total of 2M2 complex numbers.

6.1.2 Rank-1 Approximation Model

Computing Rr and Rt directly from the channel matrices and then using the

Kronecker products to estimate the full correlation matrix can result in substantial

modeling error. An alternate approach is to impose the Kronecker structure of the

correlation matrix but compute estimates R̂t and R̂r from the optimization

min
R̂r,R̂t

||R− R̂t ⊗ R̂r||2. (6.3)

These estimates can be obtained using the solution discussed in [62], which is

referred to as the rank-1 approximation. These matrices can be fed back to the

transmitter and used in (6.1) and (6.2). This approach also results in a feedback

complexity of 2M2 complex numbers.

6.1.3 Weichselberger Model

The Weichselberger model [19] was introduced in an effort to overcome some

of the deficiencies discovered with the Kronecker model. The Kronecker model
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deficiencies arise from imposing one-sided correlations on the spatial structure of

the channel which result in underestimation of the channel capacity [18]. Under

the Weichselberger model, channel matrix realizations are represented as

HWeichs = Ur(Ω̌ � Hw)UT
t

where Ǎ is the element-wise square root on the matrix A and the matrices Ur and

Ut, respectively, contain the eigenvectors of Rr and Rt from the Kronecker model.

Under this representation we can write

SWeichs

t = E[HT
Weichs

⊗ HH
Weichs

]

= E
[
(Ur(Ω̌ �Hw)UT

t )T ⊗ (Ur(Ω̌ � Hw)UT
t )H

]

= E
[
ŨWeichs

t

{
(Ω̌ �Hw) ⊗ (Ω̌ � Hw)

}
ŨWeichs

r

]

= ŨWeichs

t

{
(Ω̌

T ⊗ Ω̌) � It

}
ŨWeichs

r

(6.4)

where ŨWeichs

t = UT
t ⊗ UH

t , and ŨWeichs

r = UT
r ⊗ UH

r . Similarly,

SWeichs

r = ŨWeichs

r

{
(Ω̌

∗ ⊗ Ω̌) � Ir

}
ŨWeichs

t . (6.5)

This result indicates that the RCDI implementation requires feedback of three

M × M matrices for a feedback complexity of 3M2 complex numbers. Details on

estimation of these matrices from the data can be found in [19].

6.2 Parameterization Results

Prior to examining the performance of each parameterization technique, it is

worthwhile to first note the resulting modeling error that each technique introduces

if it were used to model channel capacity. Fig. 6.1 examines this modeling error by

way of normalized capacity with respect to the full correlation model. For this plot,

the measured data is used to estimate the various parameters necessary for each

model. In other words, the full correlation matrix and its Rank-1 approximation is

calculated as well as the left- and right-sided correlation matrices for the Kronecker
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Figure 6.1: Model capacity versus Nr = Nt in the single-user channel where each
value is normalized by the full correlation model capacity. Power is constrained to
P = 10.
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model and the coupling matrix for the Weichselberger model. Once estimated,

new channels are realized for each of these models, Eqs. (2.5) (6.1) (6.4), and the

resulting uninformed capacity is found and normalized by the capacity found under

the full correlation model. Note that the results are similar to those presented in

other work [18]; namely, the Kronecker model produces higher error with more

antennas while the Weichselberger model provides for a good model of the spatial

correlation. The Rank-1 approximation of the Kronecker model results in a poor

model of the channel capacity since the framework used places constraints on

minimizing the norm of the correlation error but does not address the modeling

error directly.

The performance of the RCDI implementation for the different parameter-

izations is examined in Fig. 6.2 for various environments in the BC. For this plot,

the power is held constant at P = 10 while the number of antennas and users

was swept assuming Nr = Nt = K. Similar results are available for the MAC in

Fig. 6.3. Parameterizing the spatial correlation is less beneficial in the MAC as

the receiver can just feed back the beamforming weights rather than the entire

or parameterized correlation matrix. However, these results are still applicable

in larger network settings when other users may invoke knowledge of the receiver

spatial properties for their own transmissions. Notice that the results in Fig. 6.3

mirror a similar trend as shown in Fig. 6.2 for the BC.

These results show that when an appropriate parameterization is used, the

impact of parameterization on the overall performance is relatively small. This

is noteworthy, since this parameterization significantly reduces the quantity of

feedback data. As an example, for M = 6 antennas at all nodes feedback of the

full correlation matrix requires communication of 1296 complex numbers per user

compared to only 108 and 72 complex numbers using parameterizations based on

the Weichselberger and rank-1 models, respectively. These results also show that

while the Kronecker structure for the correlation matrix is reasonable (as evidenced

by the performance for the rank-1 model), it is critical that the matrices Rt and

Rr be properly estimated. The deficiencies in the traditional Kronecker model

for larger array sizes observed here appear supportive of other studies which have
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Figure 6.2: Average sum-rate versus system size when the matrices St and Sr

are generated by using: the full correlation matrix, the Weichselberger model, the
Kronecker model, and a rank-1 approximation. Shown are the (a) Indoor, (b)
Outdoor, and (c) Urban environments.
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Figure 6.3: Average sum-rate versus system size when the matrices St and Sr

are generated by using: the full correlation matrix, the Weichselberger model, the
Kronecker model, and a rank-1 approximation. Shown are the (a) Indoor, (b)
Outdoor, and (c) Urban environments.
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shown that this model fails to accurately represent the channel spatial structure

as the number of antennas increases [18].

The work presented in this chapter, in part, was originally published in the

following papers, of which the author was also main contributor: A. L. Anderson,

J. R. Zeidler, and M. A. Jensen, “Reduced-feedback linear precoding with stable

performance for the time-varying MIMO broadcast channel,” IEEE Journal on

Selected Areas of Communications, (Special Issue on Limited Feedback). Vol. 26,

No. 8, 11 pages, October, 2008; A. L. Anderson, J. R. Zeidler, and M. A. Jensen,

“Regularized channel distribution inversion and parameterization in the MIMO

broadcast channel,” in Proc. 2008 IEEE 68th Veh. Technol. Conf., Calgary,

Canada, Sept. 2008.



Chapter 7

Generalized Correlation-Based

Beamforming

In this work MIMO antenna links have been shown to increase the link ca-

pacity in both single- and multi-user channels including the broadcast and multiple-

access channels using either CSI or CDI. Such links promise future generation

wireless networks increased reliability and throughput over standard single-input

single-output links by exploiting the dimensionality gains of employing both mul-

tiple antennas per node and multiple nodes per channel. With this increased per-

formance comes increased complexity at both the medium access control (MAC)

layer and physical (PHY) layer where scheduling and allocation of correct link

topologies [63–65] become an issue in large MANETs, and where optimal per-link

transmission strategies require nonlinear precoding [2, 28, 66]. In this chapter, we

examine the various possible link topologies in a MANET and also simple trans-

mission strategies, in the form of sum-rate maximizing beamformers, to aid the

MAC and PHY layers in finding the “best” possible combination of link schedules

in a cross-layer fashion.

The net gain seen by MIMO links and capacity of MANETs is intimately

connected to the precoding and detection schemes utilized by the transmitters and

receivers as well as the link access algorithm. Significant work has been done on

104
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analyzing the capacity regions of multi-user and ad hoc networks employing links

from simple P2P to more complex interference and multiple-access links. In [67,68]

fundamental limits on capacity of a network are examined for both SISO and

MIMO channels. These limits are increased when additional assumptions about

node capabilities are made such as multi-packet reception (MPR) [69] or more

complex information dissemination [70]. Other work [71, 72] examines the ad hoc

network capacity with emphasis on the available transport capacity regions for

various network sizes and link topologies. Ultimately, capacity optimal analyses

often require that nonlinear techniques be used at the transmitters and/or receivers

which can further increase the complexity of the overall system [28].

As specific examples, such nonlinear coding techniques as dirty-paper cod-

ing (DPC) and successive interference cancellation (SIC) provide optimal perfor-

mance at the cost of complexity and nonlinearity at the link nodes [27,28,66]. As

focused within this work, beamforming, or linear processing, is a simpler form

of transmission that sacrifices some performance in exchange for simplicity in

its implementation. In [73] an iterative minimum mean-square error (MMSE)

beamformer was suggested for optimization of a minimum power constraint in ad

hoc networks. It is shown that linear beamforming for MANETs [74] is optimal

when the interference is sufficiently large and CSI is available at all nodes. The

rate-maximizing beamformers for both single-user channels as well as the broad-

cast [21, 40] and multiple-access channels [75] have been examined previously for

both multiple-input single-output (MISO) and MIMO links. This current work

extends these rate-maximizing beamforming algorithms in the context of network

link topologies regardless of the type of scheduled channel. However, as these

rate maximizing beamformers also require accurate knowledge of channel state in-

formation (CSI) at all nodes, performance loss is incurred due to erroneous CSI

caused by numerous factors, including: limited training, channel estimation errors,

delayed feedback from network overhead, quantization effects, and so on.

Each of these loss factors for erroneous CSI are quantized into a single value

in Chapter 2 that demonstrates instability of the CSI-beamformers, as analyzed

in this work, and also shows severity of lost throughput based on the link type.
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To alleviate the problem of obtaining accurate CSI and combating the effects of

erroneous CSI, the approach found in [22] is adapted to the channels analyzed in

this work. In [22] a beamforming algorithm based exclusively on CSI or CDI, de-

pending on the available information, is derived that results in stable performance

in the broadcast channel with feedback limited to a single transmission of the spa-

tial correlation matrices given the assumption of statistically-stationary channels.

A more general form of this beamformer is presented in this work that will be

useful in analyzing the stability gains for all links in a MANET. Given this form of

beamforming and for the simulation scenarios examined in this work, it is shown

that each channel can maintain roughly 70-80% of the optimal CSI-based average

sum-rate but with the advantage of being immune to time variations in the channel

and CSI acquisition overhead. Thus, the CDI-beamformers equalize the differential

time-scales between the MAC and PHY layers mitigating the overhead required for

all nodes within a multi-user channel to share information. This approach allows

the MAC layer to perform truly cross-layer optimization in the network as the

MAC and PHY layers share common information about link throughput.

7.1 Notation and Definitions

As any work focusing on MIMO MANETs range in scope from large N -node

networks down to a single data transmission between nodes at the PHY layer it is

important to specifically define the terminology that may have ambiguous meaning

depending on the context. For example, traditionally a “link” may refer to two

nodes communicating with one another via a single P2P data stream while in this

work a link has a different meaning depending on the type of single- or multi-user

channel that has been scheduled for access. Consider the following definitions for

different partitions of the network:

• Network - For this work, the terminology MANET and network will be

interchangeable in describing a group of N mobile nodes each consisting

of Nr = Nt antennas and some power constraint P per node. All nodes
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are considered within transmission range to all other nodes meaning any

simultaneous transmission, without further partitioning, will interfere with

all other transmissions.

• Subnetwork - A subdivision or partition of the larger network is referred

to as a subnetwork. These subnetworks consist of K ≤ N users which are

orthogonally separated from other subnetworks - whether via time, code,

or frequency is unimportant for this analysis. As working with subnetworks

reduces the complexity and simulation time of performance results, the focus

of this work will be on the smaller subnetworks for these practical reasons.

• Link or Schedule - Refer to one of the various possible types of topologies

available to the MAC layer for access scheduling. Links can consist of any

number of data streams and may also contain multiple transmit and receive

nodes all transmitting and receiving at the same time while also interfering

with on another. From Chapter 1, Fig. 1.5 shows examples of the possible

single- and multi-user links or channels examined in this work. As defined, a

single link in a MIMO subnetwork can consist of both multiple data streams

and users all of which can be used for optimization purposes in the subnet-

work or full network throughput.

• Sublink or Stream - Each of the possible links in Fig. 1.5 consists of one or

more sublinks representing a single data stream from one transmitting user

to one receiving user. If a link contains multiple sublinks then each sublink

will cause interference to all receivers attempting to decode. For example,

the MAC link shown in Fig. 1.5(c) consists of three sublinks.

• Channel - As the five single- and multi-user channels have been defined as

links with appropriate acronyms, the term “channel” will be used primarily

as the Nr × Nt channel transfer matrix H{m,n} between the mth and nth

users.

For notational purposes throughout the analysis, scalars are written in ei-

ther unbold-face lower- or upper-case, while vectors and matrices are written as
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bold-face in lower- or upper-case, respectively. Standard matrix operations of

transpose, conjugate, and conjugate-transpose are defined as {·}T , {·}∗, and {·}H ,

respectively. The function vec(·) is the matrix column stacking operator while

mat(·) is its inverse (e.g. mat(vec(A)) = A). Finally, ⊗ is the matrix Kronecker

product.

7.2 Network Partitioning and Scheduling

Prior to any analysis on an N-node MANET it is important to determine

the complexity that scheduling algorithms will encounter given the allowed types of

PHY layer links. The end goal of this work is to find the optimal beamformers for

each of five different types of single- and multi-user channels, as defined in Section

7.1, with any number of sublinks per channel. The total number of possible links

given the network or subnetwork size will directly determine the complexity in

finding the network rate-maximizing beamforming weights.

Consider first a full-duplex N-node network represented by a fully-connected

graph which models the case when all nodes are in transmission range of all other

nodes. If full duplexing is allowed then nodes are allowed to simultaneously trans-

mit and receive, and each possible sublink in the connected graph can be described

by a single-digit 4-ary number representing the relationship between two nodes:

transmit, receive, transmit and receive, or silent. The total number of sublinks in

the connected graph is
(

N
2

)
leading to a total number of unique, duplex network

topologies

LDUP (N) = 4(N

2 ) (7.1)

where
(
1
2

)
is assumed identically zero. Though this work will not address the

question of duplexity on wireless links, the number of different duplex sublinks

LDUP (N) will be used as a comparison in complexity with the number of half-

duplex sublinks determined in this paper.

In [71] it was shown that the total number of different multiple-access

topologies for the standard MAC link given an N-node network can be written
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as

LMA(N) = 1 +

B(N)∑

i=1

Li∏

j=1

bi
j (7.2)

where B(N) is the Bell number of the network which gives the total number of ways

the network can be divided into subnetworks, bi
j represents the ith Bell partition

of size j, and Li is the number of active links. Similarly, it is possible to find the

total number of P2P (or IC) links LP2P (N) [71, 72] given the size of the network

and excluding duplex links.

However, the ultimate goal of this work is to find the number of all possible

half-duplex link schedules (i.e. all the links defined in Section 7.1) in a network or

subnetwork without constraint to a specific type. It is straightforward to arrive at

this solution and is facilitated by considering the network as an irreducible bipartite

graph where users are placed in one of two sets representing transmit or receive

nodes (but not both). We can then sum over all possible number of transmit nodes

Ntx = 1, 2, . . . , N − 1 and Nrx = N − Ntx receive nodes where each user takes a

turn as transmitter or receiver with a unique set of other transmitting or receiving

nodes. With this approach it is assumed that all nodes in the transmit set must

transmit but nodes in the receive set do not need to be a part of any link (i.e. not

all nodes who are not transmitting will necessarily have information destined for

themselves).

Using the simplification that the sum of binomial coefficients can be written

as
∑K

i=0

(
K
i

)
= 2K , the total number of possible half-duplex links at any given

realization of the channel in an ad hoc network with N nodes is written as

L(N) = 1 +

N−1∑

i=1

(
N

i

)
(2N−i − 1)i. (7.3)

As any valid link can be considered a subset of the HC link, L(N) gives the total

number of HC links as well. In brief, the resulting values of L(N) represent the

total number of possible schedules that the MAC layer is allowed to work with in

the MIMO MANET of size N . Note that validating (7.3) is possible for small values

of N by performing an exhaustive search over all possible sublink configurations,

though for N > 8 the search time becomes quite large.
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Table 7.1: Number of possible unique schedules using point-to-point, MA/BC,
half-duplex, and duplex links.

N LP2P (N) LMA(N) L(N) LDUP (N)

1 1 1 1 1

2 3 3 3 4

3 7 10 13 64

4 25 41 87 4096

5 81 196 841 1048576

6 331 1057 11643 −
7 1303 6322 227893 −
8 5379 41393 6285807 −
9 26785 293608 − −

10 133651 2237921 − −

Though (7.3) is a number representative of the total complexity for MAC

layer scheduling if all possible half-duplex links are considered viable, it is worth-

while and informative to also determine the specific number of each type of link

as well. Using the same approach as above, and for completeness, the topologies

for multiple-access links only can be written as

LMA(N) = 1 +
N−1∑

i=1

(
N

i

)
(N − i)i. (7.4)

Thus (7.2) and (7.4) are equivalent expressions which also give the total number

of BC links as well. In a similar fashion, the expressions for the number of P2P

topologies, which includes both SUC and IC links, becomes

LP2P (N) = 1 +

N−1∑

i=1

(
N

i

)(
N − i

i

)
i!. (7.5)

Note that all topology sizes for LDUP (N), L(N), LMA(N), and LP2P (N) contain

the “zero” topology where no transmission takes place between any set of nodes -

all nodes are silent.
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Table 7.1 lists the resulting values of L for the various link topologies de-

pending on constraints placed at the PHY layer. Missing values in Table 7.1

represent extremely large numbers while these same results are represented graph-

ically in Fig. 7.1 on a logarithmic scale to show the general trend for large values

of L(N). This plot also helps to get an intuitive feel for the schedule complexity

growth as a function of network size even for small networks. Note that only al-

lowing simple SUC/IC links has a similar trend in growth as MA/BC links while

allowing HC links has a significant increase in complexity.

Given the complex nature of possible link schedules, this work will focus

on subnetworks of size K = 4 for a possible L(4) = 87 unique topologies (ranging

from the “zero” topology to the almost fully-connected HC link) in order to keep

the results tractable. It needs to be reiterated, however, that though we limit the

network in this manner for ease in presenting results, the following work is valid

for all possible values of K or N . Furthermore, dividing a larger network into

smaller orthogonal subnetworks (such as K = 4) is related to the task of clustering

MANETs into smaller partitions (see [76] for a tutorial on MANET clustering).

7.3 Network Model and Performance Metric

In the previous section, the total number of subnetwork topologies was

found for a MANET or subnetwork that allows any type of half-duplex link at the

PHY layer. In this section, these specific links will be analyzed and the model

used to represent the time variation and spatial correlation of the wireless channel

as well. Finally, the performance metric used for optimization purposes will be

the sum-rate of each given link as a function of the SINR under the assumption of

effective SISO sublinks via transmit and receive beamforming weights. This metric

sum-rate will be used exclusively throughout the analysis.

For organizational purposes, assume that each possible schedule can be

written as a set L consisting of sublink duples representing input and output nodes

for the schedule under question. For example, the HC link shown by Fig. 1.5(e) can
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be written as the set of sublinks L = [{1, 2}, {1, 4}, {3, 4}] where the first number of

each duple represents the transmit node, the second number the receive node, and

the cardinality of L represents the total number of simultaneous streams occurring

for the current schedule. Thus for the K = 4 subnetwork under examination there

are a total of 87 unique sets L consisting of cardinalities ranging from zero (i.e. no

transmissions) to four (i.e. HC with two BC and two MAC sublinks).

Consider the kth sublink defined as the duple {m, n} of the topology defined

by L where the received signal can be written as

y{m,n} = H{m,n}b{m,n}x{m,n} +
L∑

{i,j}6={m,n}

H{i,n}b{i,j}x{i,j} + η{m,n} (7.6)

where H{m,n} is the Nr ×Nt channel transfer matrix from user m to user n, b{m,n}

is the transmit beamformer for each link that attempts to transfer a single stream

of information represented by the Gaussian symbol x{m,n}, η{m,n} is additive white

Gaussian noise (AWGN) with variance σ2
n, and all other sublinks are considered

interference to the desired stream. A power constraint is placed upon each trans-

mitting node such that no power is shared between users
∑

{m,j}∈L ||b{m,j}||2 = P

for the {m, n} sublink. However, nodes acting as a BC can allocate power to

individual sublinks as power optimization dictates.

In addition to the transmit beamforming vector b{m,n}, for each sublink

received vector given by (7.6), there will be an associated received beamforming

vector given by w{m,n} used for detection purposes. Given this received vector

and assumption that all sublinks will interfere with one another, the signal-to-

interference plus noise ratio (SINR) can be calculated for each channel realization.

Given the per-sublink SINR values, the total available sum-rate of the link [44]

can be written as

C =

L∑

{m,n}

log

(
1 +

|wH
{m,n}H{m,n}b{m,n}|2

σ2
n

∑
{m,j}∈L ||b{m,j}||2 +

∑
{i,j}6={m,n} |wH

{m,n}H{i,n}b{i,j}|2

)

(7.7)

where it is assumed that ||w{m,n}||2 = 1. Without losing generality of power allo-

cation, (7.7) assumes unit-average power constraints for all beamforming vectors
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which is ensured for the {m, n} stream by the normalizing factor in the denomi-

nator of the SINR value [75].

Finally, the spatial correlation of the channel matrices H{m,n} will play

an important role in providing the throughput/stability tradeoff for the MANET

MAC layer. Modeling spatial correlation in the multi-user MIMO channel is fa-

cilitated by measurements taken by Brigham Young University [12]. For MIMO

channel measurements, the receiver testbed is placed at a specific location in a given

environment while the channel is sampled as the receiver traverses a fixed path.

The receiver measurement equipment is then moved to a another location and the

measurement process is repeated. In this manner, realizations of the multiple-

user, multiple-antenna, time-varying channel can be created. Post-processing on

the dataset is then performed to estimate the full spatial correlation matrix for the

{m, n} link

R{m,n} =
1

M

M∑

i=1

vec
(
H̃{m,n}(i)

)
vec
(
H̃{m,n}(i)

)H

(7.8)

where the integer index i represents samples into the measured channel H̃{m,n}

and M is the estimation window size. Once R{m,n} has been estimated for each

sublink, sublink channels can be realized using a random matrix model with the

measured, full correlation matrix

H{m,n} = mat
{√

R{m,n}vec(Hw)
}

(7.9)

where Hw is an Nr×Nt matrix with unit-variance, complex Gaussian entries and
√·

is the matrix square root operator (i.e.
√

A
√

A = A). This full correlation model

(7.9) coupled with statistically measured samples from (7.8) allow for realistic

correlation values while also providing a simplified method of channel realizations

for statistical analysis.
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7.4 Regularized Channel Inversion in

Hybrid Channels (RCI-HC)

Priori knowledge of the available sum-rate per link per channel realization

would provide the MAC layer with an invaluable tool in optimizing the overall net-

work throughput. In order to provide this type of information to the MAC layer,

the sum-rate maximizing beamforming vectors need to be found for all possible

links as a function of the current channel realization. In [77], the sum-rate of a

noncooperative, fully-informed HC link is examined by decomposing the channel

into two noninterfering BC or MAC links. The algorithm from [42] was derived to

maximize the sum-rate of a MISO broadcast channel with perfect CSI at the trans-

mitter and receivers and is referred to as regularized channel inversion (RCI) in this

work. This section details the steps taken to generalize the RCI beamformer and

maximize the sum-rate of any link consisting of: single-user, broadcast, multiple-

access, interference, or hybrid channels with nodes equipped with MIMO antennas.

Since the HC represents the most complex channel topology - all other links can

be considered subsets of the HC link - we will refer to the generic beamforming

algorithm of this section as RCI-HC regardless of the actual channel it is used in

(i.e. the RCI-HC algorithm will be used for SUC/IC/MAC/BC links as well).

To bring the MIMO channel into context and in order to incorporate multi-

ple antennas at the receivers, an effective MISO channel can be created by initial-

izing each sublink with a receive beamforming vector. Furthermore, to simplify the

steps taken while deriving the rate maximizing beamformer, the following notation
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is defined:

N{m,n} = num{ρ{m,n}}
D{m,n} = den{ρ{m,n}}

A{l,m,n} = HH
{l,n}w{m,n}w

H
{m,n}H{l,n}

Λ{m,n} =
AH

{m,m,n}b{m,n}

D{m,n}

d{m,n} =
N{m,n}

D{m,n}

(
N{m,n} + D{m,n}

) (7.10)

where ρ{m,n} is the {m, n} sublink SINR used to calculate rate (7.7) and num(·)
and den(·) return the numerator and denominator of the argument, respectively.

The sum-rate (7.7) can be rewritten and expanded as

C =

L∑

{m,n}

log
(
N{m,n} + D{m,n}

)
− log

(
D{m,n}

)
(7.11)

where the notation found in (7.10) is used for convenience. In order to find the

maximum value of C the partial derivative must be taken against each element

of all transmit and receive beamforming vectors. The partial derivative of the

sum-rate with respect to b{m,n} is first written as

∂C

∂b{m,n}

=
N ′

{m,n}

D{m,n}

+
−D′

{m,n}N{m,n} −N ′
{m,n}N{m,n}

D{m,n}(D{m,n} + N{m,n})

−
L∑

{i,j}6={m,n}

D′
{i,j}N{i,j}

D{i,j}(D{i,j} + N{i,j})

(7.12)

after rearranging and gathering terms. Prior to continuing with the derivation of

finding the optimal beamforming weights, the solution is facilitated by finding the

following partial derivatives

N ′
{m,n} = A{m,m,n}b

∗
{m,n}

D′
{m,n} = σ2

nb
∗
{m,n}

D′
{m,j} = A{m,m,j}b

∗
{m,n} + σ2

nb
∗
{m,n}, j 6= n

D′
{i,n} = A{m,i,n}b

∗
{m,n}, i 6= m (7.13)



117

where each partial is taken with respect to b{m,n}. Inserting each of these values

into (7.12) results in

∂C

∂b{m,n}
=

A{m,m,n}b
∗
{m,n}

D{m,n}

−
(
σ2

nb
∗
{m,n} + A{m,m,n}b

∗
{m,n}

)
d{m,n}

−
L∑

{i=m,j 6=n}

(
A{m,m,j}b

∗
{m,n} + σ2

nb
∗
{m,n}

)
d{m,j}

−
L∑

{i6=m,j=n}

A{m,i,n}b
∗
{m,n}d{i,n}.

(7.14)

Finding the partial derivatives for all beamforming weights, setting each equation

to zero, and then stacking each solution into matrix form leads to

Λ{m,n} − σ2
n

L∑

{i=m,j}

d{m,j}b{m,n} −
L∑

{i,j}

d{i,j}A{m,i,j}b
∗
{m,n} = 0 (7.15)

with the final solution becoming

b{m,n} =



σ2
n

L∑

{i=m,j}

d{m,j}I +

L∑

{i,j}

d{i,j}A{m,i,j}




−1

Λ{m,n}. (7.16)

It should be noted that (7.16) is not an explicit solution to the transmit beamform-

ing weights; the vector b{m,n} appears on each side of the equation through the

definitions found in (7.10). Additionally, all other transmit vectors and all receive

vectors were assumed fixed through the solution.

On the receive side, a similar result can be arrived at by fixing the transmit

beamforming vectors and, with simple but necessary modifications, the form of the

receive weight updates can be written as

w{m,n} =


σ2

nd{m,n}I + d{m,n}

L∑

{i,j}

Ã{n,i,j}




−1

Λ̃{m,n} (7.17)

where

Ã{l,m,n} = HH
{m,l}b{m,n}b

H
{m,n}H{m,l}

Λ̃{m,n} =
ÃH

{n,m,n}w{m,n}

D{m,n}

. (7.18)
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Since both transmit and receive vectors are implicitly functions of themselves, the

iterative algorithm suggested in [22, 42] will be used for optimization purposes.

As an overview, each node alternates updating b{m,n} and w{m,n} in a round-

robin fashion until convergence or change in sum-rate is sufficiently small. After

convergence, and with final solutions for b{m,n} and w{m,n} for all sublinks, the

sum-rate for each link can be calculated using (7.7).

The performance of each possible link is of importance for scheduling pur-

poses in the MAC layer and will be analyzed now. For these simulations it is

assumed that given a type of link (i.e. SUC, BC, etc.) the best possible of all such

links is used for each channel realization. For example, given a channel realization

of the spatially-correlated fading model consider two (out of four total) distinctly

possible MACs, L1 = [{1, 2}, {3, 2}, {4, 2}] and L2 = [{1, 3}, {2, 3}, {4, 3}]. Both

topologies contain three links with either node 2 or node 3 acting as the receiver.

However, due to multi-user diversity in the channel one of these MAC links will

have a higher throughput than the others. The average sum-rate calculated in this

first analysis will choose the best possible link over all possible links of that same

type given the current channel realization. Furthermore, only HC links that use

all four streams will be classified as HC in order to provide distinction between the

link types which are all subsets of HC. To enact some fairness, SUC is the only

link allowed to transmit multiple streams from the same transmitter to the same

receiver. In other words, with some small modifications to the RCI-HC algorithm

L = [{1, 2}, {1, 2}, {1, 2}] is a valid SUC link with multiple streams transmitted

from user 1 to user 2. The average sum-rate for each of the link topologies using the

RCI-HC algorithm is found in Table 7.2 with the following simulation procedures.

Two different simulations are performed in creating Table 7.2 which is di-

vided into two respective columns representing per-node power equality (ENP)

and equal total power (ETP). In ENP, each node has a power constraint P = 10

which gives advantage to nodes with multiple transmitters (higher total power in

the network per channel use) but is realistic in an ad hoc setting where nodes can-

not “share” power. The second column, or ETP simulation, shows the sum-rate



119

Table 7.2: Average sum-rate (bits/sec/Hz) for various links using CSI-Based Pre-
coding

Link Equal

Per-Node

Power

(ENP)

Equal

Total

Power

(ETP)

Single-User (SUC) 10.00 13.23

Broadcast (BC) 12.04 16.27

Multiple-Access (MAC) 16.16 16.24

Interference (IC) 12.76 13.76

Hybrid (HC) 16.33 18.07

Maximum Rate 16.77 18.12

Nonlinear Broadcast (DPC) 13.20 17.66

of each link when the per-node power is scaled such that the total power is the

same over all links which is useful for providing theoretical conclusions by remov-

ing power advantages of certain links. For example, with ETP and the BC link,

the transmitting node will be allowed to have triple the power of the MAC nodes

(which remain at P = 10) while HC nodes have 1.5 times the power of MAC nodes

in the network so that the total power for each link is constant for each channel

realization. For both types of simulations the antenna configuration is fixed at

Nr = Nt = 3 in the K = 4 subnetwork.

For comparison purposes Table 7.2 contains values for the maximum sum-

rate over all beamformers and also the average sum-capacity when using the non-

linear DPC algorithm in the BC. The maximum sum-rate was chosen by scheduling

the channel with the highest instantaneous sum-rate using linear beamforming with

RCI-HC over all links. Note that this value is larger than any of the individual

beamforming link values suggesting that no single channel exclusively dominates

the throughput for all channel realizations for either ENP or ETP. The sum-rate
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DPC value is used as a benchmark and “sanity” check for the RCI-HC beamform-

ing algorithm in the BC. Since DPC is rate optimal it outperforms RCI-HC in the

BC but the linear beamformer is able to capture a large portion of the available

rate in the channel for both ENP and ETP simulations thus validating the RCI-HC

algorithm. Furthermore, RCI-HC has similar performance to the decomposition

scheme in [77]. The linear HC link outperforms DPC in the ETP simulation even

with optimal nonlinear precoding versus beamforming because HC allows four si-

multaneous sublinks while DPC can only support three.

Table 7.2 provides several insightful observations into multi-user links. Even

with only three antennas per node, HC allows up to four simultaneous sublinks

to occur due to the additional benefit of multiple transmitters. Likewise, though

not shown in Table 7.2, HC can support three streams with only Nr = Nt = 2

antennas available. MAC links for ENP only allow three streams per transmission

but have more total power per channel use than any other link topology and are

therefore beneficial to schedule in MANETs. When the power is equalized for the

ETP simulations, HC has significant gains over MAC and all other links fortifying

the importance of stream control in MANETs. For ETP, BC and MAC have the

same average throughput which is a manifestation of channel duality [36].

Interesting and exploitable characteristics of MIMO MANETs are the gains

available with having both multiple antennas and multiple users. As shown in Table

7.2, the use of multiple antennas allows for spatial reuse and the transmission of

multiple and simultaneous data streams per channel use. However, Table 7.2

shows the best case scenario of the optimal link being chosen per topology for

every channel realization. As shown in the previous section there are numerous

links of the same type for even small K = 4 subnetworks. In fact, the variance

between the highest and lowest sum-rate for a given channel can be significant as

shown in Fig. 7.2. In this plot the average sum-rate is shown for each channel

when all channel possibilities are first sorted from lowest to highest sum-rate. As

an example, consider the SUC case. At each channel realization, for a K = 4

subnetwork, there are a total of 12 possible SUC links. The RCI-HC algorithm is

used for each of the 12 possible link topologies and then sorted with the average
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Figure 7.2: Average throughput for the ETP simulations with Nr = Nt = 3,
P = 10, K = 4, and different link topologies. Links are sorted by instantaneous
rate prior to averaging.
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taken after sorting (keep in mind no single transmit-receive pair will always be

the best or worst link). The step-like nature of the curves stress the reciprocity

assumption of the wireless channel (i.e. H{m,n} = HH
{n,m}). Similarly, the duality

between the MAC and BC [66] is evident when there is a total power constraint as

shown by the same average throughput variance. In brief, Fig. 7.2 shows that the

performance gains (or losses) can be quite significant when diversity gains from

multi-user subnetworks are used (or unused).

7.5 Regularized Channel Distribution Inversion

in Hybrid Channels (RCDI-HC)

The gains seen in the previous sections are all based on the strong assump-

tion that perfect CSI is available. Providing CSI to all nodes in the network (even

a small network) is often considered infeasible due to overhead costs and time vari-

ations of the channel. The results shown in Table 7.2 are for the best-case scenario

of perfect CSI at all nodes and may not be feasible for even slowly time-varying

mobile nodes when excessive handshaking becomes difficult. An important aspect

of the RCI-HC beamformer is the performance loss seen by using imperfect CSI to

calculate the RCI-HC beamforming weights.

Consider simplifying the model of erroneous CSI given from Chapter 2 as

Ĥ{m,n} = H{m,n} + E{m,n} (7.19)

where the channel error given by E{m,n} is a zero-mean, Gaussian random matrix

with i.i.d. entries of variance σ2
e which is a combination of channel delay and

estimation error. Fig. 7.3 shows the loss in sum-rate when transmitting nodes use

Ĥ{m,n} to calculate RCI-HC beamforming weights while the sum-rate is calculated

with (7.7) and the actual channel H{m,n}. For these simulations it is assumed that

the receivers maintain perfect CSI regardless of the state at the transmitters while

CSI quality at the transmitters is measured by σ2
e . Fig. 7.3 simulations assume

the same linear processing subnetwork topologies as were used to calculate Table
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Figure 7.3: Instantaneous sum-rate throughputs for Nr = Nt = 3, P = 10, K = 4,
and (a) ENP or (b) ETP simulations in various link topologies with erroneous CSI
at the transmitter(s).
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7.2 (i.e. σ2
e = 0 in Fig. 7.3 would have the same values as those shown in Table

7.2). Besides the general loss in sum-rate apparent as a function of channel error,

it is interesting to note how each channel degrades differently depending on their

dependence of CSI at the transmitter. The BC and HC (downlink) are much more

susceptible to channel errors at the transmitter than the MAC (uplink) confirming

the even higher importance of accurate CSI in downlink channels.

The loss in performance seen by RCI-HC beamforming as well as the gen-

eral infeasibility of CSI at all nodes motivates a beamformer that requires no CSI

and thus frees itself from all the difficulties that arise with such an assumption. In

the previous section the RCI-HC algorithm was derived to maximize the sum-rate

of a MIMO HC with perfect CSI at the transmitters and receivers for any topology

at the link level. In this section the constraint on optimizing the instantaneous

sum-rate is loosened in order to allow for more stable transmissions to occur at

the cost of lower throughput. This beamformer will instead attempt to maximize

the average sum-rate of the channel with no knowledge of CSI at the transmit-

ters; rather, CDI is assumed. Thus we derive the so-called regularized channel

distribution inversion beamformer for the hybrid channel (RCDI-HC).

In order to maximize the average sum-rate in the HC with no CSI, an

approximation on the sum-rate expression in (7.7) will be used. Consider writing

this approximation as

C̄ =
L∑

{m,n}

log

(
1 +

N̄{m,n}

D̄{m,n}

)
(7.20)

where N̄{m,n} and D̄{m,n} are the expected values of numerator and denominator,

respectively, of the SINR values. Validity and motivation for using this approx-

imation is discussed in [21] for the BC. Intuitively, this approximation can be

considered a maximization on the average signal to average interference plus noise

ratios (ASAINR) rather than the average sum-rate explicitly. Given (7.20) as the

objective function for optimization purposes, it is straight forward to redefine a

few input parameters of the RCI-HC algorithm in order to arrive at RCDI-HC.

The main difference between maximizing (7.7) and (7.20) is that the channel
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H{m,n} becomes a random quantity. However, because of the process used to

maximize (7.7) coupled with the locations of the expectation operators in (7.20)

it is a simple matter of redefining the input parameters of the RCI-HC algorithm

in order to find RCDI-HC. Consider the definitions:

S{m,n} = E
[
HT

{m,n} ⊗ HH
{m,n}

]

S̃{m,n} = E
[
H∗

{m,n} ⊗ H{m,n}

]

Ā{l,m,n} = mat
(
S{l,n}vec

(
w{m,n}w

H
{m,n}

))

˜̄A{l,m,n} = mat
(
S̃{l,n}vec

(
b{m,n}b

H
{m,n}

))

(7.21)

where each definition represents “averaged” quantities of those input parameters

defined for the transmit and receive RCI-HC weights. For example, by simply

replacing A{l,m,n} from (7.10) with Ā{l,m,n} the transmit beamforming vectors can

be found that maximize the approximate average sum-rate (7.20) by using the

RCI-HC algorithm. This resulting beamforming algorithm is referred to as RCDI-

HC for distinction and clarity. The most important observation about RCDI-HC

is that H{m,n} us not an input parameter to the algorithm. Only the statistics of

the channel in the form of the spatial correlation matrices S{m,n} are required to

calculate both transmit and receive beamforming weights.

With the same simulation parameters as those used in Table 7.2, the average

sum-rates for the RCDI-HC beamformer are shown in Table 7.3. Note that for these

simulations the sum-rate approximation (7.20) is only used to calculated transmit

and receive beamforming weights. Once these are calculated, the actual sum-rate

is found using (7.7) and the current channel. It is also assumed that all nodes

share the spatial correlation matrices and that all receive nodes possess perfect

CSI. With no knowledge of CSI at the transmitters, the best link per channel

realization can not be chosen thus the “Maximum Rate” value does not appear in

Table 7.3. Note that the trend seen in sum-rate performance is similar to that for

RCI-HC with perfect CSI with the HC link providing the highest average rate for

ETP simulations. Furthermore, RCDI-HC beamformers for each link perform at

roughly 70-80% of their RCI-HC counterparts.
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Table 7.3: Average sum-rate (bits/sec/Hz) for various links using RCDI-HC

Link Equal

Per-Node

Power

(ENP)

Equal

Total

Power

(ETP)

Single-User (SUC) 7.22 9.98

Broadcast (BC) 8.47 11.37

Multiple-Access (MAC) 11.73 11.71

Interference (IC) 10.03 11.00

Hybrid (HC) 11.38 12.56

The most important conclusion of Table 7.3 needs to emphasize that the

resulting sum-rates are not a function of CSI nor time variations in the statistically-

stationary channel under consideration. The RCDI-HC beamformers will not suffer

performance loss due to delay or overhead in acquiring CSI at each node as CSI

does not appear in the RCDI-HC algorithm. Also, given that sufficient time has

elapsed to accurately estimate the channel distribution, the assumption of perfect

CDI is not unfounded compared to the constant updates that maintaining perfect

CSI requires. The final result being that the values shown in Table 7.3 are constant

for all values of σ2
e from Fig. 7.3 which emphasizes their stability in the MIMO

channel. Thus the RCDI-HC beamformers provide a stability-throughput tradeoff

by lowering the initial available sum-rate of a link but maximizing the time that the

average sum-rate is valid. RCDI-HC beamformers provide truly cross-layer alter-

natives to CSI-based transmissions by allowing the MAC layer to have immediate

knowledge of the PHY layer transmission scheme facilitating possible cross-layer

optimizations on the network.

The work presented in this chapter, in part, was submitted to: A. L. An-

derson, J. R. Zeidler, and M. A. Jensen, “Linear processing and link scheduling

in MIMO mobile ad hoc networks (MANET),” submitted to 28th Conference on
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Computer Communications (INFOCOM 2008).



Chapter 8

Conclusions

The optimal linear and nonlinear precoders for the MIMO broadcast chan-

nel result in significant throughput loss when used with outdated or erroneous CSI,

and therefore require frequent feedback to maintain high performance. This work

has quantified this loss, and has adapted the sum-rate maximizing beamformer

to use CDI in an effort to obtain an approach whose throughput performance re-

mains stable in time-variant channels. Analysis of the throughput for this RCDI

beamforming algorithm using measured channel data has demonstrated that it is

robust to temporal variations and delay in the feedback channel and outperforms

the optimal precoding techniques for node displacements that are just fractions

of a wavelength. This suggests that the approach can be used to maintain good

throughput with significantly reduced feedback frequency. Furthermore, simple

parameterization of the channel correlation matrix using popular channel models

allows significant reduction in the amount of data that must be fed back to the

transmitter without resulting in significant performance loss.

This work has also addressed the dual multiple-access channel under thte

same channel conditions as analyzed with the broadcast channel. When good

estimates of CSI are available, the RCI-MAC beamformer provides performance

on par with the rate maximizing beamforming algorithm in the dual broadcast

channel. With channel errors caused by limited or infrequent training or feedback,

128
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RCI-MAC beamforming degrades resulting in performance loss as demonstrated

by the sum-rate degradation. For these scenarios, a beamformer was also found

(RCDI-MAC) that attempts to maximize the average rate of the MIMO MAC

using the channel distribution statistics in the form of spatial correlations. This

beamformer provides the receiver with signaling options in order to combat the

effects of estimation errors and mobility in multi-user MIMO networks.

As an extension to larger networks, this work has also derived and ana-

lyzed a linear beamforming technique (RCI-HC) for link-level use and all possible

half-duplex configurations in a MIMO MANET. The RCI-HC beamformer works

with point-to-point (P2P) links including the single-user (SUC) and interference

channels (IC), standard multi-user broadcast (BC) and multiple-access channels

(MAC), and even more complex topologies generally referred to as hybrid channels

(HC). The impact of both rate-maximizing linear precoding and multi-user diver-

sity was examined for each of these links with the RCI-HC beamforming algorithm.

When the input information necessary to derive these optimal beamformers be-

comes outdated or erroneous, significant loss at the PHY layer is seen which would

have a cascaded loss effect on the higher network layers. Motivated by this loss,

another beamformer (RCDI-HC) based on channel distribution information was

formulated in order to provide the medium access control layer with the option of

a throughput-stability tradeoff by way of the type of information used to create

beamforming weights. The RCDI-HC beamformer bridges the gap in time-scales

between the PHY layer’s channel coherence time when using CSI and the MAC

layer’s longer network time-scale.



Appendix A

Single-User Mutual Information

Lower Bound

The expression used for capacity degradation from outdated CSI is based

on the lower bound of mutual information for MIMO links with erroneous chan-

nel estimates [25]. The mutual information between input and output given the

channel matrix and initial displacement is bounded by

I(x;y|H̃) = h(x|H̃) − h(x|y, H̃)

≥ log |πeQ| − log |πeRx−x̂| (A.1)

assuming that x is Gaussian with covariance Q, x̂ is the MMSE estimate of x, and

Rv = E[vvH ] is the correlation matrix of the random vector v. For the measured

channel, the error statistics are assumed to be neither i.i.d. nor zero-mean leading

to

Rx−x̂ = E[(x − x̂)xH ]

= Q − RxyR
−1
yy Ryx

= Q − QH̃HR−1
yy H̃QH (A.2)

where H̃ = Ĥ + Eµ. Equation (6.1) results is an upper-bound on the entropy

h(x|y, Ĥ) ≤ log |Q − QH̃H(H̃QH̃H + ΨE − ΨEµ + I)−1H̃Q|. (A.3)
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Using (A.1) and (A.2) with the matrix inversion lemma results in the lower bound

on mutual information

I(x;y|H̃) ≥ log

∣∣∣∣I + H̃H
(
I + ΨQ

E − ΨQ
Eµ

)−1

H̃Q

∣∣∣∣ . (A.4)



Appendix B

Multi-User Per-User Mutual

Information Lower Bound

In order to obtain the lower bound on mutual information with measured

data for the multi-user channels with optimal processing and outdated CSIR, the

proof from [25] can be modified to include multiple users with channel error that

is neither i.i.d. nor zero mean. For the jth user in the broadcast channel, the

mutual information between input and output given the sum channel matrix and

error mean is bounded by

I(xj ;yj|H̃1 . . . H̃K) = h(xj |H̃1 . . . H̃K) − h(xj |yj, H̃1 . . . H̃K)

≥ log |Qj| − log |Rxj−x̂j
| (B.1)

which assumes that xj given H̃j is Gaussian with covariance Qj , the effective

channel is H̃j = Ĥj + Eµ,j , x̂j is the MMSE estimate of xj, h{·} is the entropy

function, and Ruv = E[uvH ] is the correlation matrix of the random vectors u and

v. The correlation matrix for the error vector can be found by

Rxj−x̂j
= E

[
(xj − x̂j)x

H
j

]

= Qj − Rxjyj
R−1

yjyj
Ryjxj

= Qj − QjH̃
H
j R−1

yjyj
H̃jQ

H
j . (B.2)
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Using (B.2) with the received vector defined by (3.12) results is an upper-bound

on the entropy expression

h(xj |yj, H̃1 . . . H̃K) ≤ log

∣∣∣∣Qj − QjH̃
H
j

(
I + H̃jQjH̃

H
j + Zj

)−1

H̃Qj

∣∣∣∣ (B.3)

where Zj was defined for (3.13) and the notation Er,j = Ej(∆r) and Et,j = Ej(∆t)

is used for simplicity. The matrix inversion lemma on (B.3) combined with (B.1)

results in the lower bound on mutual information

IDPC(xj ;yj|H̃1 . . . H̃K) = log
∣∣∣I + H̃H

j (I + Zj)
−1 H̃jQj

∣∣∣ (B.4)

Zj = Ψ
PK

i=j Qi

Er,j
+ Ψ

Pj−1
i=1

Qi

Et,j
+ Ψ

P
i>j Qi

eHj
.

For K = j = 1, Eq. (B.4) is equivalent to the single-user bound in [25] with an

effective channel H̃ and the given correlated error matrix.

Following the same method used for the broadcast channel, the multiple-

access channel with outdated/erroneous CSI and received signal (3.15) results in

the mutual information bound

IMAC(xj;yj |H̃1 . . . H̃K) ≥ log
∣∣∣I + H̃H

j (I + Zj)
−1 H̃jQj

∣∣∣ (B.5)

Zj =
K∑

i=1

ΨQi

Er,i
+

K∑

i=j+1

ΨQi

eHi

where the interference term Zj is unique to the channel under consideration.



Appendix C

Expected Sample Average Rate

(ESAR) Bounds

Consider parameterizing the single-user, MISO, beamforming channel er-

godic capacity into a function of scalar quantities as

C = E

[
log

(
1 +

σ2
ss

σ2
nn

)]
(C.1)

where s and n are random variables representing the signal and interference, respec-

tively, and specific realizations are assumed known at the receiver. The quantities

σ2
s and σ2

n are normalizing factors corresponding to the signal and interference

powers. Equation (C.1) is the composition of a concave (log{·}) and quasiconvex

(SINR) function leading to the constrained bounds

Cupper = log

(
1 + E

[
σ2

ss

σ2
nn

])
(C.2)

C lower = log

(
1 +

σ2
sE [s]

σ2
nE [n]

)
. (C.3)

Equation (C.2) is always a true upper bound from Jensen’s inequality and the con-

cavity of the logarithm. The lower bound is conditionally true since the composed

ergodic capacity is a quasiconvex function [78]. A straightforward example of when

the lower bound holds is when s is held constant (i.e. signal power equalization

over all time channel realizations). Although the lower bound fails when the inter-

ference is held constant, we later show numerically that, since the distribution on
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Figure C.1: Ergodic capacity with upper and lower bounds in an interference
limited, single-user system with m = 3 degrees of freedom.

the SINR is a function of both channel realizations and beamforming weights, the

lower bound will hold for the channels of interest in this work. Therefore, Eq. (C.3)

is a constrained lower bound.

Since the MMSE-CDIT beamforming algorithm maximizes a bound rather

than the exact ergodic capacity, we are interested in the tightness of each bound.

For small SINR σ2
s/σ

2
n � 1 the ergodic capacity can be approximated using a

first-order Taylor series expansion on the natural logarithm

C = E

[
log

(
1 +

σ2
ss

σ2
nn

)]

=

i=∞∑

i=1

(−1)i

(2i)!
E

[(
σ2

ss

σ2
nn

)i
]

,
σ2

ss

σ2
nn

< 1

≈ E

[
σ2

ss

σ2
nn

]

≈ Cupper (C.4)

where the final approximation comes from applying the same expansion to (C.2).
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For larger SINR σ2
s/σ

2
n � 1, the ergodic capacity can be approximated by

C ≈ E

[
log

(
σ2

ss

σ2
nn

)]

= E
[
log
(
σ2

ss
)]

− E
[
log
(
σ2

nn
)]

= log
(
σ2

s

)
− log

(
σ2

n

)
+ E [log (s)] − E [log (n)]

= log

(
σ2

sE [s]

σ2
nE [n]

)

≈ C lower (C.5)

where E[log(s)] − E[log(n)] = 0 if we assume that s and n are i.i.d. random

variables. Figure C.1 plots ergodic capacity with upper and lower bounds as a

function of SINR when s and n are chi-squared random variables each with three

degrees of freedom and a base-2 logarithm. Fig. C.2 results are for measured data

with various initial positions for Nt = 4, Nr = 1, K = 6, and P = 10. The

optimal beamforming weights were found using the RCI algorithm and then fixed

as the channel changes over time. Similar results were demonstrated for a variety of

different datasets over all possible starting displacements and various beamforming

algorithms.

The results show that Cupper is tight for small SINR while C lower is a better

approximation for large SINR. Since this work focuses on the high-capacity, multi-

user channel, the high SINR region in Fig. C.1 is of interest, suggesting that the

lower bound provides a tighter approximation to the actual ergodic (or sample)

capacity and should be used for the MMSE-CDIT beamforming algorithm. It

should be noted that 1) with beamforming the signal gains will not necessarily

follow the same distribution as the interference plus noise and 2) the bound results

from Fig. C.1 suggest performance in an ideal case. Even with these limitations,

however, the results in Fig. C.2 on bound tightness still hold.
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Figure C.2: The Expected Sample Average Rate (ESAR) with upper and lower
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system with Nt = 4, Nr = 1, K = 6, and P = 10.



Appendix D

Regularized Channel Distribution

Inversion (RCDI)

The RCI algorithm from [42] was derived to maximize the sum-rate of a

MISO broadcast channel with perfect CSI at the transmitter and receivers. This

section details the steps taken to maximize an approximation of the average sum-

rate of a MIMO broadcast channel with perfect CDI. During the maximization

process for the sum-rate bound used in the current work, the following notation is

defined

St,j = E[HT
j ⊗HH

j ]

Sr,j = E[H∗
j ⊗ Hj]

H̄j = mat
(
St,jvec(wjw

H
j )
)

Λ =

[
(H̄1B):,1

d̄1

, . . . ,
(H̄KB):,K

d̄K

]

D = diag

(
n̄1

d̄1(d̄1 + n̄1)
, . . . ,

n̄K

d̄K(d̄K + n̄K)

)
(D.1)

where diag(·) returns a diagonal matrix of the input argument. In order to in-

corporate multiple antennas at the receivers, an effective MISO channel can be

created using the beamforming vectors at each receiver. Including these values
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with the bound in (4.17) produces an effective average rate that can be written as

C̄ =

K∑

j=1

log



1 +
E[|wH

j Hjbj |2]
E
[
tr(BBH)

P
+
∑

i6=j |wH
j Hjbi|2

]





=

K∑

j=1

log

(
1 +

BH
:,jH̄jB:,j

tr(BBH)
P

+
∑

i6=j BH
:,iH̄jB:,i

)
(D.2)

where H̄j = mat
(
St,jvec(wjw

H
j )
)

as defined in (D.1). Deriving the form of the

RCDI beamformer follows the same formulation found in [42] for the capacity-

optimal, CSI-based, RCI beamformer where, instead, the derivative of C̄ is taken

with respect to each of the transmit beamforming vector elements.

The average rate bound from (D.2) can be simplified and expanded as

C̄ =
K∑

j=1

log(n̄j + d̄j) − log(d̄j) (D.3)

where the notation found in (4.17) and (D.1) will be used for convenience. In order

to find the maximum value of C̄ the partial derivative must be taken against each

element of B = [b1, . . . ,bK ]. For simplicity, we show the first partial derivative of

the first element; all other derivatives follow in a similar manner

∂C̄

∂B1,1
=

d̄′
1 + n̄′

1

d̄1 + n̄1

− d̄′
1

d̄1

+

{
n̄′

1

d̄1

− n̄′
1

d̄1

}
+

K∑

i=2

d̄′
i + n̄′

i

d̄i + n̄i

− d̄′
i

d̄i

=
n̄′

1

d̄1

+
−d̄′

1n̄1 − n̄′
1n̄1

d̄1(d̄1 + n̄1)
−

K∑

i=2

d̄′
in̄i

d̄i(d̄i + n̄i)

=
n̄′

1

d̄1

−
K∑

i=1

[bH
1 H̄ib1]

′n̄i

d̄i(d̄i + n̄i)
−

K∑

i=1

σ2
nB

∗
1,1n̄i

d̄i(d̄i + n̄i)

=

(
H̄1B

∗
)
1,1

d̄1

−
K∑

i=1

(
H̄iB

∗
)
1,1

n̄i

d̄i(d̄i + n̄i)
−

K∑

i=1

σ2
nB

∗
1,1n̄i

d̄i(d̄i + n̄i)

(D.4)

where n̄′
i = 0 and d̄′

i = σ2B∗
1,1+[bH

1 H̄ib1]
′ for i 6= 1. Finding the partial derivatives

for all beamforming weights, setting each equation to zero, and then stacking each

solution into matrix form leads to

Λ−
K∑

i=1

Di,iH̄iB − tr(D)

P
B = 0 (D.5)
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with the final solution becoming

B =

(
tr(D)

P
I +

i=K∑

i=1

Di,iH̄i

)−1

Λ. (D.6)

It should be noted that, though the form of the RCI and RCDI beamformers

are similar, one cannot simply take the expectation of the beamformer from [42]

directly in order to find the final solution here; special care needs to be taken with

the expectation operator and the random quantities found in the rate bound.



Abbreviations and Definitions

AoA angle of arrival
AoD angle of departure
ASAINR average-signal-to-average-interference-plus-noise ratio
ASINR average-signal-to-interference-plus-noise ratio
AWGN additive white Gaussian noise
BC broadcast channel
BYU Brigham Young University
CCI channel covariance information
CDI channel distribution information
CDIR channel distribution information at the receiver
CDIT channel distribution information at the transmitter
CMI channel mean information
CSI channel state information
CSIR channel state information at the receiver
CSIT channel state information at the transmitter
dB decibels, 10 log10(·)
DPC dirty-paper coding
HC hybrid channel
Hz Hertz (1 cycle/s)
IC interference channel
Indoor measurements taken in the BYU engineering building
LP linear processing
LOS line-of-sight
MAC multiple-access channel
MANET mobile adhoc network
ML maximum-likelihood
MMSE minimum mean-square error
MMSE-CDIT iterative MMSE beamforming with CDIT
MMSE-CSIT iterative MMSE beamforming with CSIT
MPR multi-packet reception
MIMO multiple-input multiple-output
MISO multiple-input single-output
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Model channel realizations created via random matrix models
MSE mean-square error
Outdoor measurements taken at DT field on BYU campus
P2P peer-to-peer
QoS quality of service
RCDI regularized channel distribution inversion
RCDI-BC broadcast channel regularized channel distribution inversion
RCDI-HC hybrid channel regularized channel distribution inversion
RCDI-MAC MAC regularized channel distribution inversion
RCI regularized channel inversion
RCI-BC regularized channel inversion for the broadcast channel
RCI-HC regularized channel inversion for the hybrid channel
RCI-MAC regularized channel inversion for the multiple-access channel
Rx receiver
SIC successive-interference cancellation
SIMO single-input multiple-output
SINR signal-to-interference plus noise ratio
SISO single-input single-output
SNR signal-to-noise ratio
SUC broadcast channel
SVD singular value decomposition
TDD time division duplex
Transception what transceivers do
Tx transmitter
UCSD Univeristy of California, San Diego
ULA uniform linear array
Urban measurements taken at the BYU coalyard
WSS wide-sense stationary
ZF-DPC zero-forcing dirty-paper coding



Operators and Miscellaneous
Symbols

vec(·) the matrix column stacking operator
mat(·) inverse of vec (e.g. mat(vec(A)) = A)
diag(·) either vector of diagonal elements or diagonal matrix
E{·} expected value
max maximum
log(·) log base 2
n! factorial
(·)∗ complex conjugate
(·)T matrix transpose
(·)H matrix conjugate transpose
| · | matrix determinant
tr(·) matrix trace
|| · || vector or matrix norm
= equal
≈ approximately equal
≤ less than or equal to
≥ greater than or equal to
< strictly less than
> strictly greater than
� much less than
� much greater than
∈ in the set
∀ for all
� matrix Schur product
⊗ matrix Kronecker product(

n
k

)
“n choose k”√

A is the matrix square root operator
√

A
√

A = A
I identity matrix
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[9] M. Herdin, N. Czink, H. Özcelik, and E. Bonek, “Correlation matrix distance,
a meaningful measure for evaluation of non-stationary MIMO channels,” in
Proc. 2005 IEEE 62nd Veh. Technol. Conf., 2005.

144



145

[10] M. A. Jensen and J. W. Wallace, “Recent advances in antennas and propa-
gation for MIMO systems: Multi-user networks and channel temporal varia-
tion,” in Proc. of the 2005 International Conference on Electromagnetics in
Advanced Applications., Sept. 2005.

[11] J.W. Wallace and M.A. Jensen, “Measurement and characterization of the
time variation of indoor and outdoor MIMO channels,” in Proc. 2005 IEEE
62nd Veh. Technol. Conf., Sept. 2005, pp. 1289–1293.

[12] J. W. Wallace and M. A. Jensen, “Time varying MIMO channels: Measure-
ment, analysis, and modeling,” IEEE Trans. Antennas Propag., vol. 54, pp.
3265–3273, Nov. 2006.

[13] J. W. Wallace and M. A. Jensen, “Modeling antenna coupling and corre-
lation in rapidly fading MIMO channels,” in Proceedings of 2006 European
Conference on Antennas and Propagation, Nov. 2007.

[14] A. A. M Saleh and R. A. Valenzuela, “A statistical model for indoor multipath
propagation,” IEEE J. Selected Areas Commun., vol. SAC-5, pp. 128–137,
Feb. 1987.

[15] J. W. Wallace and M. A. Jensen, “Modeling the indoor MIMO wireless chan-
nel,” IEEE Trans. Antennas Propag., vol. 50, pp. 591–599, May 2002.

[16] S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Khan, “Fading correlation
and its effect on the capacity of multielement antenna systems,” IEEE Trans.
Commun., vol. 48, pp. 502–513, Mar. 2000.

[17] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach,
“Second order statistics of NLOS indoor MIMO channels based on 5.2GHz
measurements,” in Proc. 2001 IEEE Global Telecomm. Conf., Nov. 2001, pp.
156–160.

[18] H. Ozcelik, M. Herdin, J. Wallace, and E. Bonek, “Deficiencies of ’Kronecker’
MIMO radio channel model,” Electronics Letters, vol. 39, pp. 1209–1210, Aug.
2003.

[19] W. Weichselberger, M. Herdin, H. Özcelik, and E. Bonek, “A stochastic
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