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ABSTRACT OF THE DISSERTATION

Toward Perfection of Gyros!

Modeling, Analysis, and Modification of Ring-Type Resonators

by

Amir Hossein Behbahani

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2018

Professor Robert Thomas M’Closkey, Chair

Gyroscopes are sensors that measure the rate of rotation of an object. One common type is a “Cori-

olis Vibratory Gyroscope” (CVG) which takes advantage of Coriolis coupling in sensing rotation.

CVGs exploit two resonant modes for measuring the sensor’s angular rate of rotation. The highest

sensitivity to angular motion is achieved when the resonant modes have degenerate frequencies as

this configuration provides the greatest signal-to-noise ratio (SNR) with respect to extrinsic (elec-

tronic) noise sources. One way to achieve degeneracy is to design an axisymmetric resonator such

as the UCLA CVG. It is impossible to retain the symmetry during manufacturing process because

small fabrication errors detune the modes of interest. To compensate for these fabrication errors,

post-processing of the resonator to recover its optimal axisymmetric configuration is required. One

process, considered here, is the perturbation of the resonator’s mass distribution by removing mass

from specific locations. Perturbing the stiffness of the structure is not permanent, and it requires

relatively large size electronics. A technique which retains wafer-scale processing and packaging

compatibility is described for customizing the dynamics of individual silicon resonators. The ap-

proach uses laser ablation of a protective conformal layer (Parylene-C) to expose silicon in regions

that are targeted for mass removal by subsequent deep reactive-ion etching (DRIE). The technique

is demonstrated on a planar axisymmetric resonator design whereby the frequency mismatches of

a subset of the resonators are reduced to less than 100 mHz which is the mechanical bandwidth of

the resonator.

The model for the resonator is based on a perturbation analysis of ring dynamics which serves

ii



as a basis for the ring-type resonators. The perturbation expansion is found for the exact solution

of imperfect rings for the case in which the damping is neglected. The results show excellent

agreement with both Rayleigh-Ritz and finite element results. The perturbation model is refined

and modified for multi-modal tuning where both n = 2 and n = 3 are considered. The search

algorithm is also improved using linear programming and a branch and bound routine. The results

are successfully demonstrated on a few devices.

The damping mechanisms of this type of resonator are also studied. The thermoelastic damp-

ing which is the dominant damping mechanism in ring-type resonators is studied in detail for a

ring structure. The equation of motion is derived and solved using strong form Galerkin method

for imperfect rings. The imperfections studied are caused by the manufacturing processes (e.g.,

etch non-uniformities) and tuning the devices in practice. The analysis demonstrates a practical

limitation in the tuning process where the damping asymmetries may not necessarily be removed

even for the case that the frequencies are perfectly tuned. A general design guideline based on the

geometry and material of the ring is presented. The temperature profile for the different materials

is shown as well.
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CHAPTER 1

Introduction

Nomenclature - Chapter 1

x1, x2 degrees of freedom fixed to the sensor case
k spring constant m size of point mass

ωn =
√

k
m

natural frequency

Ω angular rotation rate of sensor case
t time θ angular coordinate
˙( ) derivative with respect to t
fexc excitation force freb force to rebalance force
a1 amplitude function of x1 a2 amplitude function of x2

φ1 phase function of x1 φ2 phase function of x2

ψ1(t) := ωnt+ φ1(t) phase argument for the first degree of freedom
ψ2(t) := ωnt+ φ2(t) phase argument for the second degree of freedom
ω0 frequency of the signal used in rate measurement
r location vector r velocity vector
a acceleration vector
er unit vector in radial direction
eθ unit vector in tangential direction
A cross sectional area E modulus of elasticity
I cross section moment of inertia r̄ ring mean radius
ρ density j

√
−1

f radial external force per unit length
p tangential external force per unit length
E total energy ∆ frequency split
M mass matrix C damping matrix
K stiffness matrix
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1.1 Coriolis Vibratory Gyroscopes: Point Mass Model

A sensor that measures the rate of rotation of an object is called a “gyroscope”. Gyroscopes can be

found everywhere, from halteres in fruit flies [BD06] to navigation systems in aircraft [YFZ17].

They are used in biomedical engineering and ergonomics [BME18, IOP17], robotics [BEF97,

ZXM17], etc. One common type is a “Coriolis Vibratory Gyroscope” (CVG). In a CVG, the

underlying physical principle is that a planar vibrating point mass suspended in a “cage” tends

to continue vibrating along the same line even as the cage rotates about the point mass. Thus,

transducers fixed to the cage measure the apparent change in orientation of the vibratory mass –see

Fig. 1.1. This simplified system is often offered as the prototypical example of a CVG. Note that

although the term “gyroscope” is employed, there is no spinning mass involved in this kind of

sensor. The model consists of a point mass of mass m suspended in a frame or case that is allowed

to rotate in the x1-x2 plane about an axis that is located at the center of the case. The orthogonal x1

and x2 degrees of freedom are fixed to the sensor case, that is, they rotate with the case. Assume

the pick-off arrangement permits the measurement of x1 and x2. The springs are chosen so that

the restoring force is isotropic for small displacements from the case center (ignoring geometric

nonlinearities) and so the effective spring rate for displacements in both the x1 and x2 directions is

regarded as k. Writing the equations of motion for the mass assuming pure rotation about the case

center (no translation) yields

ẍ1

ẍ2

+ 2Ω

0 −1

1 0

ẋ1

ẋ2

+

ω2
n − Ω2 Ω̇

Ω̇ ω2
n − Ω2

x1

x2

 =
1

m

fexc
freb

 (1.1)

where Ω is the (time-varying) angular rotation rate of the sensor case (counter-clockwise positive),

Ω̇ is its time derivative and ωn =
√

k
m

is the natural frequency of each degree of freedom [KM12].

Further simplifications are made by assuming Ω, Ω̇ << ωn so that the time-varying term in stiff-

ness matrix can be dropped.

ẍ1

ẍ2

+ 2Ω

0 −1

1 0

ẋ1

ẋ2

+

ω2
n 0

0 ω2
n

x1

x2

 =
1

m

fexc
freb

 (1.2)
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x1

x2

+

sensor case

case center

springs point mass

Figure 1.1: A point mass suspended by springs and attached it to the sensor case. Internal trans-
ducers measure the mass displacement or velocity in the x1-x2 coordinate frame (which is fixed to
and rotates with the case). All motion is in-plane and it is assumed the case rotates with angular
velocity Ω.

The first analysis of (1.2) reflects the so-called “whole angle mode” operation of the sensor in

which the mass is allowed to move freely in the case with only the spring forces acting on it. In

other words, fexc and freb (excitation and force to rebalance forces) are zero. In this case, the

solution of the mass position may be represented as

x1(t) = a1(t) cos(ωnt+ φ1(t)) (1.3)

x2(t) = a2(t) cos(ωnt+ φ2(t)) (1.4)

where a1 and a2 are the amplitude functions of x1 and x2, respectively, and φ1 and φ2 are the phase

functions. The objective is to derive first-order differential equations for the dependent variables

a1, a2, φ1 and φ2. By differentiating (1.3) and (1.4), we have

ẋ1 = ȧ1 cos(ψ1)− a1(ωn + φ̇1) sin(ψ1), (1.5)
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ẋ2 = ȧ2 cos(ψ2)− a2(ωn + φ̇2) sin(ψ2), (1.6)

where ψk(t) := ωnt + φk(t), k = 1, 2. Following the amplitude and phase coordinate procedure,

we set

ȧ1 cos(ψ1)− a1φ̇1 sin(ψ1) = 0, (1.7)

ȧ2 cos(ψ2)− a2φ̇2 sin(ψ2) = 0, (1.8)

which yields simplified expressions for ẋ1 and ẋ2,

ẋ1 = −a1ωn sin(ψ1), (1.9)

ẋ2 = −a2ωn sin(ψ2), (1.10)

Differentiating (1.9) and (1.10) and substituting into (1.2) result into the following equations.

−ȧ1ωn sin(ψ1)− a1ωnφ̇1 cos(ψ1) + 2Ωa2ωn sin(ψ2) = 0 (1.11)

−ȧ2ωn sin(ψ2)− a2ωnφ̇2 cos(ψ2)− 2Ωa1ωn sin(ψ1) = 0 (1.12)

By multiplying (1.7) by + cos(ψ1) and adding it to the product of (1.11) with − sin(ψ1)
ωn

, we have

ȧ1 − 2Ωa2 sin(ψ1) sin(ψ2) = 0. (1.13)

Using similar manipulation for a2 and the phases, we conclude

ȧ2 + 2Ωa1 sin(ψ1) sin(ψ2) = 0, (1.14)
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a1φ̇1 − 2Ωa2 cos(ψ1) sin(ψ2) = 0, (1.15)

a2φ̇2 + 2Ωa1 sin(ψ1) cos(ψ2) = 0. (1.16)

By multiplying (1.13) by a1 and (1.14) by a2, we have

a1ȧ1 − 2a1Ωa2 sin(ψ1) sin(ψ2) = 0, (1.17)

a2ȧ2 + 2a2Ωa1 sin(ψ1) sin(ψ2) = 0. (1.18)

Summing (1.17) and (1.18) together yields

a1ȧ1 + a2ȧ2 = 0, (1.19)

which implies the norm of the amplitude is constant.

If periodic averaging is applied to (1.13) though (1.16) then the following simplified equations

are derived,

ȧ1 − Ωa2 cos(φ2 − φ1) = 0,

ȧ2 + Ωa1 cos(φ2 − φ1) = 0,

a1φ̇1 − Ωa2 sin(φ2 − φ1) = 0,

a2φ̇2 − Ωa1 sin(φ2 − φ1) = 0.

(1.20)

The later two can be manipulated to

a1a2
d
dt

(φ2 − φ1) + Ω
(
a2

2 + a2
1

)
sin(φ2 − φ1) = 0.

This expression is a differential equation for the difference in phases and shows that if φ2(0) −
φ1(0) = 0, then φ2(t) − φ1(t) = 0 for all t ≥ 0. In other words, φ2(t) = φ1(t) which can be

interpreted to mean that if the mass is set in motion along a line, it remains along that line for all
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future time independent of Ω. The change in angle of the sensor case can then be inferred from the

amplitudes since the first two equations in (1.20) reduce to

ȧ1 − Ωa2 = 0

ȧ2 + Ωa1 = 0
=⇒ d

dt
tan−1

(
a2(t)

a1(t)

)
= −Ω(t).

Thus, monitoring the ratio of the amplitudes yields and estimate of the change in orientation of the

sensor case with respect to an initial orientation. This is what is termed “whole angle mode” and it

has the advantage of measuring angles even when the sensor case experiences very large angular

rates of rotation because the “physics” of the device performs the integration of angular rate into a

change in angle. In practice, though, the resonator does exhibit dissipation of energy which must

be replaced to sustain the oscillation on which the angle sensing mechanism depends, and it is

difficult to design a replenishment strategy that does not perturb the orientation of the oscillation.

It is possible to motivate the angular rate sensing mode of operation with considerably less

effort. Starting from (1.2), the two “actuators” are now used. The actuators produce forces along

the x1 and x2 coordinate axes. The x1 degree of freedom is designated the “excitation” degree of

freedom and a control loop is designed whose objective is to maintain a stable harmonic oscillation

of the x1 component of the mass response. In other words, the excitation force, denoted fexc,

ensures that x1(t) = a cos(ω0t). There is a second controller, commonly called the “force-to-

rebalance” controller, that produces the force freb along the x2 degree of freedom. The design

objective of this controller is to null, or zero out, the x2 component of the sensor response. In other

words, if we assume x2(t) = 0, then

freb(t) = 2mΩ(t)ẋ1(t) = −2maω0Ω(t) sin(ω0t) (1.21)

According to (1.21), the force-to-rebalance is proportional to the Coriolis term linking two degrees

of freedom. Thus, a signal proportional to Ω can be recovered by multiplying freb by measurement

of ẋ1 and then low-pass filtering the result. When noise sources are neglected the difference in

modal frequencies of the two degrees of freedom has no impact on estimated angular rate signal

(see Sec. 1.4).
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1.2 CVG: Distributed Mass Model

There are advantages in manufacturing gyroscopes as a distributed mass instead of a point mass

configuration described in Sec. 1.1. A common design of distributed mass is a ring-type resonator.

In this type of resonator, the center can be constrained to be a node of vibration. Having a node

at the center makes the design less susceptible to case vibrations and helps isolate the device

from the environmental translational motion. The other benefit of using ring-type resonators is the

symmetry that can be achieved in the design. This symmetry helps improve the signal-to-noise

ratio of the sensor. On the other hand, using a design other than a point mass has its challenges

as well. As opposed to the point mass case, the vibration pattern is not spatially fixed, and in fact,

lags behind the structure itself. This amount of lagging is fixed for a given mode shape and needs

to be calculated once. The mode shapes for the vibration must be found as well.

1.3 Lag Factor Derivation for Ring-Type Resonators

A ring resonator is the prototype structure for the many variants of planar disk resonators and, as

such, can be studied to infer features associated with the dynamics of more complicated ring-like

structures such as resonators in [SKS15, KBS15, CGL14] and studied in Chapters 3 and 4. The

derivation presented herein is a more complete version of the derivation presented in [BM16].

For a point on the ring, the location vector r can be written as

r = uer + weθ, (1.22)

where u and w are the radial and tangential displacements and er and eθ are the unit vectors in the

radial and tangential directions, respectively (see Fig. 1.2). The ring is subject to the rotation rate

Ω. Differentiating r gives the velocity vector v.

v = (u̇− Ωw)er + (ẇ + Ωu)eθ, (1.23)

where the “˙” notation represents differentiation with respect to time. Differentiating (1.23) leads

7



⌦
<latexit sha1_base64="+lDG7x/ykSwi/8ipDLstarwUW3w=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5KAROxIbOzHxhAQuZG+Zgw17e+fungm58CdsLNTY+nvs/DcucIWCL5nk5b2ZzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR0/6DhVDD0Wi1h1AqpRcIme4UZgJ1FIo0BgOxhfz/z2EyrNY3lvJgn6ER1KHnJGjZU6ld5thENa6ZfKbtWdg6ySWk7KkKPVL331BjFLI5SGCap1t+Ymxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfja/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCRt+xmWSGpRssShMBTExmT1PBlwhM2JiCWWK21sJG1FFmbERFW0IteWXV4lXr15V3bt6udnI0yjAKZzBBdTgEppwAy3wgIGAZ3iFN+fReXHenY9F65qTz5zAHzifP4HGjx4=</latexit><latexit sha1_base64="+lDG7x/ykSwi/8ipDLstarwUW3w=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5KAROxIbOzHxhAQuZG+Zgw17e+fungm58CdsLNTY+nvs/DcucIWCL5nk5b2ZzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR0/6DhVDD0Wi1h1AqpRcIme4UZgJ1FIo0BgOxhfz/z2EyrNY3lvJgn6ER1KHnJGjZU6ld5thENa6ZfKbtWdg6ySWk7KkKPVL331BjFLI5SGCap1t+Ymxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfja/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCRt+xmWSGpRssShMBTExmT1PBlwhM2JiCWWK21sJG1FFmbERFW0IteWXV4lXr15V3bt6udnI0yjAKZzBBdTgEppwAy3wgIGAZ3iFN+fReXHenY9F65qTz5zAHzifP4HGjx4=</latexit><latexit sha1_base64="+lDG7x/ykSwi/8ipDLstarwUW3w=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZCCZW5KAROxIbOzHxhAQuZG+Zgw17e+fungm58CdsLNTY+nvs/DcucIWCL5nk5b2ZzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR0/6DhVDD0Wi1h1AqpRcIme4UZgJ1FIo0BgOxhfz/z2EyrNY3lvJgn6ER1KHnJGjZU6ld5thENa6ZfKbtWdg6ySWk7KkKPVL331BjFLI5SGCap1t+Ymxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfja/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCRt+xmWSGpRssShMBTExmT1PBlwhM2JiCWWK21sJG1FFmbERFW0IteWXV4lXr15V3bt6udnI0yjAKZzBBdTgEppwAy3wgIGAZ3iFN+fReXHenY9F65qTz5zAHzifP4HGjx4=</latexit>

er<latexit sha1_base64="H1hHBESO+m67E/IFXJ3+UObGcjc=">AAAB+HicbVBNT8JAEN3iF+JX1aOXjWDiibRcxBuJF4+YWCGBptlup7Bhu212tySk4Z948aDGqz/Fm//GBXpQ8CWTvLw3k5l5YcaZ0o7zbVW2tnd296r7tYPDo+MT+/TsSaW5pODRlKeyHxIFnAnwNNMc+pkEkoQceuHkbuH3piAVS8WjnmXgJ2QkWMwo0UYKbLsxzEUEMiSygHkgG4Fdd5rOEniTuCWpoxLdwP4aRinNExCacqLUwHUy7RdEakY5zGvDXEFG6ISMYGCoIAkov1hePsdXRolwnEpTQuOl+nuiIIlSsyQ0nQnRY7XuLcT/vEGu47ZfMJHlGgRdLYpzjnWKFzHgiEmgms8MIVQycyumYyIJ1SasmgnBXX95k3it5m3TeWjVO+0yjSq6QJfoGrnoBnXQPeoiD1E0Rc/oFb1ZhfVivVsfq9aKVc6coz+wPn8AtS2TNw==</latexit><latexit sha1_base64="H1hHBESO+m67E/IFXJ3+UObGcjc=">AAAB+HicbVBNT8JAEN3iF+JX1aOXjWDiibRcxBuJF4+YWCGBptlup7Bhu212tySk4Z948aDGqz/Fm//GBXpQ8CWTvLw3k5l5YcaZ0o7zbVW2tnd296r7tYPDo+MT+/TsSaW5pODRlKeyHxIFnAnwNNMc+pkEkoQceuHkbuH3piAVS8WjnmXgJ2QkWMwo0UYKbLsxzEUEMiSygHkgG4Fdd5rOEniTuCWpoxLdwP4aRinNExCacqLUwHUy7RdEakY5zGvDXEFG6ISMYGCoIAkov1hePsdXRolwnEpTQuOl+nuiIIlSsyQ0nQnRY7XuLcT/vEGu47ZfMJHlGgRdLYpzjnWKFzHgiEmgms8MIVQycyumYyIJ1SasmgnBXX95k3it5m3TeWjVO+0yjSq6QJfoGrnoBnXQPeoiD1E0Rc/oFb1ZhfVivVsfq9aKVc6coz+wPn8AtS2TNw==</latexit><latexit sha1_base64="H1hHBESO+m67E/IFXJ3+UObGcjc=">AAAB+HicbVBNT8JAEN3iF+JX1aOXjWDiibRcxBuJF4+YWCGBptlup7Bhu212tySk4Z948aDGqz/Fm//GBXpQ8CWTvLw3k5l5YcaZ0o7zbVW2tnd296r7tYPDo+MT+/TsSaW5pODRlKeyHxIFnAnwNNMc+pkEkoQceuHkbuH3piAVS8WjnmXgJ2QkWMwo0UYKbLsxzEUEMiSygHkgG4Fdd5rOEniTuCWpoxLdwP4aRinNExCacqLUwHUy7RdEakY5zGvDXEFG6ISMYGCoIAkov1hePsdXRolwnEpTQuOl+nuiIIlSsyQ0nQnRY7XuLcT/vEGu47ZfMJHlGgRdLYpzjnWKFzHgiEmgms8MIVQycyumYyIJ1SasmgnBXX95k3it5m3TeWjVO+0yjSq6QJfoGrnoBnXQPeoiD1E0Rc/oFb1ZhfVivVsfq9aKVc6coz+wPn8AtS2TNw==</latexit>

e✓<latexit sha1_base64="G3oTtPHHF5QOZiyyRxq4ZSRIkts=">AAAB/XicbVA9SwNBEN3zM8avU7GyWUwEq3BJY+wCNpYRPBPIhbC3mSRL9vaO3TkhHAH/io2Fiq3/w85/4ya5QhMfDDzem2FmXphIYdDzvp219Y3Nre3CTnF3b//g0D06fjBxqjn4PJaxbofMgBQKfBQooZ1oYFEooRWOb2Z+6xG0EbG6x0kC3YgNlRgIztBKPfe0HKSqDzpkOoNpL8ARICv33JJX8eagq6SakxLJ0ey5X0E/5mkECrlkxnSqXoLdjGkUXMK0GKQGEsbHbAgdSxWLwHSz+flTemGVPh3E2pZCOld/T2QsMmYShbYzYjgyy95M/M/rpDiodzOhkhRB8cWiQSopxnSWBe0LDRzlxBLGtbC3Uj5imnG0iRVtCNXll1eJX6tcV7y7WqlRz9MokDNyTi5JlVyRBrklTeITTjLyTF7Jm/PkvDjvzseidc3JZ07IHzifP5j6lWk=</latexit><latexit sha1_base64="G3oTtPHHF5QOZiyyRxq4ZSRIkts=">AAAB/XicbVA9SwNBEN3zM8avU7GyWUwEq3BJY+wCNpYRPBPIhbC3mSRL9vaO3TkhHAH/io2Fiq3/w85/4ya5QhMfDDzem2FmXphIYdDzvp219Y3Nre3CTnF3b//g0D06fjBxqjn4PJaxbofMgBQKfBQooZ1oYFEooRWOb2Z+6xG0EbG6x0kC3YgNlRgIztBKPfe0HKSqDzpkOoNpL8ARICv33JJX8eagq6SakxLJ0ey5X0E/5mkECrlkxnSqXoLdjGkUXMK0GKQGEsbHbAgdSxWLwHSz+flTemGVPh3E2pZCOld/T2QsMmYShbYzYjgyy95M/M/rpDiodzOhkhRB8cWiQSopxnSWBe0LDRzlxBLGtbC3Uj5imnG0iRVtCNXll1eJX6tcV7y7WqlRz9MokDNyTi5JlVyRBrklTeITTjLyTF7Jm/PkvDjvzseidc3JZ07IHzifP5j6lWk=</latexit><latexit sha1_base64="G3oTtPHHF5QOZiyyRxq4ZSRIkts=">AAAB/XicbVA9SwNBEN3zM8avU7GyWUwEq3BJY+wCNpYRPBPIhbC3mSRL9vaO3TkhHAH/io2Fiq3/w85/4ya5QhMfDDzem2FmXphIYdDzvp219Y3Nre3CTnF3b//g0D06fjBxqjn4PJaxbofMgBQKfBQooZ1oYFEooRWOb2Z+6xG0EbG6x0kC3YgNlRgIztBKPfe0HKSqDzpkOoNpL8ARICv33JJX8eagq6SakxLJ0ey5X0E/5mkECrlkxnSqXoLdjGkUXMK0GKQGEsbHbAgdSxWLwHSz+flTemGVPh3E2pZCOld/T2QsMmYShbYzYjgyy95M/M/rpDiodzOhkhRB8cWiQSopxnSWBe0LDRzlxBLGtbC3Uj5imnG0iRVtCNXll1eJX6tcV7y7WqlRz9MokDNyTi5JlVyRBrklTeITTjLyTF7Jm/PkvDjvzseidc3JZ07IHzifP5j6lWk=</latexit>

Figure 1.2: The schematic for the ring subject to the rate of rotation Ω.

to the expression for the acceleration vector a which can be written as

a = (ü− Ω̇w − 2Ωẇ − Ω2u)er + (ẅ + Ω̇u+ 2Ωu̇− Ω2w)eθ, (1.24)

where ü and ẅ are the inertial accelerations. Assuming Ω and Ω̇ are small compared to u̇, ẇ, ü,

and ẅ, (1.24) can be approximated as

a ≈ (ü −2Ωẇ︸ ︷︷ ︸
Coriolis acceleration

)er + (ẅ + 2Ωu̇︸︷︷︸
Coriolis acceleration

)eθ. (1.25)

The accelerations caused in the radial and tangential directions due to the Coriolis effect are−2Ωẇ

and 2Ωu̇, respectively.

From [Rao07] the equation of motion for a uniform, thin, inextensible ring is

∂6w

∂θ6
+ 2

∂4w

∂θ4
+
∂2w

∂θ2
+

r̄4

EI

(
p− ∂f

∂θ

)
+ ρ

Ar̄4

EI

∂2

∂t2

(
∂u

∂θ
− w

)
= 0 (1.26)

where w(θ, t) and u(θ, t) are the tangential and radial displacements, respectively, at angular posi-

tion θ and time t, r̄ is the ring radius, A is the ring cross-sectional area, E and I are the modulus

of elasticity and moment of inertia, respectively, ρ is the ring material density and p and f are the

tangential and radial external forces per unit length, respectively. The equation of motion for the

ring for more general cases will be derived in Chapters 2 and 5.
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To relate the equation of motion (1.26) to the forces applied to the ring from the rotation, the

lag factor needs to be introduced. As opposed to the point mass case studied in Sec. 1.1, the

vibration pattern is not spatially fixed when distributed mass is used. It lags behind by a certain

amount depending on the mode shape. The amount of lagging is called lag factor. Lag factor for

a ring was first reported by Bryan in 1890 [Bry90]. The present treatment represents a simple and

intuitive derivation working from (1.26) once the Coriolis terms have been included. In particular,

two “pick-off” coordinates that subtend a 45◦ arc are assumed, and the analysis produces the

modulated amplitude equations for these coordinates. The lag factor is then readily determined

from the skew-symmetric matrix in the differential equation that couples these pick-off coordinates

(see Fig. 1.3).

The equation of motion of the ring in a ring-fixed frame which rotates with rate of rotation Ω

with respect to an inertial frame (rotation axis is normal to the ring plane) is still given by (1.26),

however, p and f are due to the Coriolis terms that appear in the ring-fixed frame and from (1.25)

are given by

p = 2ρAΩu̇,

f = −2ρAΩẇ.
(1.27)

When Ω = 0 the tangential motion for the kth pair of degenerate modes can be represented as

w(θ, t) = (b1 cos(kθ) + b2 sin(kθ))ejωt, k = 2, 3, . . . (1.28)

where b1 and b2 are suitable constants that depend on the initial condition associated with the given

pair of degenerate modes. For a nonzero rotation rate Ω, a natural extension of (1.28) is to let the

constant coefficients {b1, b2} vary with time,

w(θ, t) = b1(t) cos(kθ) + b2(t) sin(kθ). (1.29)

Note that this choice of parameterizing the ring displacement assumes that the physical pick-offs

which measure the amplitudes are arranged so that they subtend the angle 90◦/k. The subtended

angle is 45◦ for k = 2, 30◦ for k = 3, and so forth. The fact that tangential displacement is
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measured, as opposed to radial displacement which would be the case in a physical implementa-

tion, does not change the results. Using the Galerkin method (see [Mei67] and Chapter 5 for the

description of the process), the equation of motion becomes

b̈1

b̈2

− 4k

k2 + 1︸ ︷︷ ︸
G

Ω

 0 1

−1 0


︸ ︷︷ ︸

S

ḃ1

ḃ2

+
k6 − 2k4 + k2

k2 + 1

EI

ρAr̄4︸ ︷︷ ︸
ω2
0

b1

b2


︸ ︷︷ ︸

b

= 0,

or, in compact notation,

b̈−GΩSḃ + ω2
0b = 0. (1.30)

When Ω = 0 the two differential equations are decoupled in b coordinates and yield time harmonic

solutions with frequency ω0 =
√

k6−2k4+k2

k2+1
EI
ρAr̄4

(see [Rao07] and Chapter 2). When Ω 6= 0, the

two equations are coupled, however, the net “energy” in the system does not change and energy is

only exchanged between the modes. For example, the “strain” energy is 1
2
ω2

0b
∗b and the “kinetic”

energy is 1
2
ḃ∗ḃ, where (·)∗ denotes the vector transpose. The total energy, denoted E , is the sum of

the kinetic and strain energy expressions. A simple calculation to shows Ė = 0 independent of the

time history of Ω.

In order to determine how the vibration pattern (anti-node orientation) lags the case rotation

we return to (1.30) and assume Ω(t) = Ω0, i.e., constant. The constant rotation rate assumption is

by no means necessary but does simplify the analysis. Consider defining a new set of coordinates,

or virtual pick-offs, denoted y = [y1, y2]T ((·)T takes the transpose of the vector or matrix), that

are related to the case-fixed pick-offs according to

b =

cos (Ψt) − sin (Ψt)

sin (Ψt) cos (Ψt)


︸ ︷︷ ︸

Θ

y.

Starting from b = Θy, we have

ḃ = Θ̇y + Θẏ, b̈ = Θ̈y + 2Θ̇ẏ + Θÿ.
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By plugging in for the expressions for b, ḃ, and b̈, (1.30) can be written in terms of the new

coordinate as

ÿ + (2Θ−1Θ̇−GΩΘ−1SΘ)ẏ + (Θ−1Θ̈−GΩΘ−1SΘ̇ + ω2
0Θ−1Θ)y = 0. (1.31)

In order to decouple the equations represented in (1.31), the following equation must be satisfied,

2Θ−1Θ̇−GΩΘ−1SΘ = 0. (1.32)

Solving (1.32) leads to

Ψ =
G

2
Ω =

2k

k2 + 1
Ω.

The expression in (1.29) can be written in terms of y as

w(θ, t) = y1 cos(kθ + Ψt) + y2 sin(kθ + Ψt).

The “new” mode shapes are cos(kθ+Ψt) and sin(kθ+Ψt). The angle θ is measured in the rotating

frame. To represent the displacements in the inertial frame, the following relationship is used

θ = Φ− Ωt,

where Φ is the angle measured in the inertial frame. Now the mode shapes can be represented as

cos(kθ + Ψt) = cos(kΦ− kΩt+
2k

k2 + 1
) = cos(kΦ− kk

2 − 1

k2 + 1
Ωt),

sin(kθ + Ψt) = sin(kΦ− kΩt+
2k

k2 + 1
) = sin(kΦ− kk

2 − 1

k2 + 1
Ωt).

(1.33)

The argument for cosine and sine is k(Φ− k2−1
k2+1

Ωt). Thus, the lag factor is defined to be

1− k2 − 1

k2 + 1
=

2

k2 + 1
.

For k = 2, this value is 2
5

or 40% (see Fig. 1.3), for k = 3, the lag factor is 2
10

or 20%, and so forth.
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Figure 1.3: Lag factor diagram for the k = 2 pair of modes.

1.4 Practical Issues

The ring-type resonators can be manufactured efficiently using micro-electro-mechanical systems

(MEMS) technology. During the manufacturing process, small errors break the symmetry of the

structure. In practice, MEMS gyros are subjected to intrinsic noise caused by thermo-mechanical

events and extrinsic noise due to thermal noise in the signal conditioning electronics. At low fre-

quencies, the noise power spectral density (PSD) is relatively flat so integrating the rate estimate

produces an angle random walk (ARW) uncertainty in the sensor orientation estimate. The ARW

figure is a typical specification quoted for angular rate sensors. When noise is included in the

CVG analysis, though, the difference in the natural frequencies associated with two coordinates

can severely impact the sensor ARW [KM12, KM13]. The difference in the natural frequencies

is caused by the imperfections that are unavoidable in the manufacturing process. Fig. 1.4 depicts

the PSD for a MEMS CVG (the Boeing disk resonator gyro, or DRG) with very small frequency

mismatch overlaid on the PSD associated with a 1 Hz detuning between the modal frequencies

of the two companion modes. It is clear that even a 1 Hz detuning can significantly worsen the

performance of the gyro. Note that the nominal modal frequencies are about 13.9 kHz. The degra-

dation in ARW due to modal frequency detuning is perhaps the greatest motivation for fabricating
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Figure 1.4: (Left) Open loop frequency response showing DRG with essentially zero detuning
(∆ = 0) compared to the same sensor with 1 Hz detuning (∆ = 1). (Right) The low frequency
angular rate PSD when ∆ = 0 is increased by a factor of three when ∆ = 1 Hz.

a symmetrically shaped MEMS CVG with inherent degenerate modal frequencies in the pair of

modes that are exploited for angular rate sensing [Law98, KM12, KM13].

1.5 Compensating for Manufacturing Errors

As indicated in Sec. 1.4, the manufacturing imperfections can have a detrimental impact on the

sensor’s performance. So it is necessary to correct for these imperfections after the manufacturing

is concluded. Modifying the dynamics of the ring-type resonators can take place by perturbing

the mass and/or stiffness distribution. In a single degree-of-freedom resonator the natural fre-

quency is given by ωn =
√

k
m

where m is the resonator mass, and k is the stiffness. The nat-

ural frequency can be manipulated by changing the stiffness but leaving the mass fixed [GHB05,

Lel03, TSH14, KM06], changing the mass but leaving the stiffness fixed [GHB03, BBC13, KBS15,

SKS15, GKM15] (see Chapters 3 and 4), or modifying both mass and stiffness.

1.5.1 Electrostatic Modification of Resonator Dynamics

The linear mechanics of a simplified CVG were given in (1.1). A more complete description of the

coupled pair of modes is

Mẍ+ Cẋ+ lΩSẋ+Kx = f, (1.34)
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where M , C and K are real 2 × 2 positive definite mass, damping and stiffness matrices, re-

spectively, S is a skew-symmetric matrix and l is the Coriolis coupling coefficient. If dedicated

“tuning” electrodes are available, then the stiffness matrix is, in fact, the sum of an elastic stiffness

and electrostatic stiffness. In this approach, we need to dedicate electrodes to modify K to make

it a scaled version of M . The stiffness matrix can be written as the sum of a positive definite

mechanical stiffness matrix, K0, and ne negative semi-definite electrostatic stiffness matrices, Kp,

p = 1, 2, ..., ne with the corresponding bias electrode potentials, νp, p = 1, 2, ..., ne,

K = K0 +
∑
p

Kpν
2
p . (1.35)

In order to electrostatically “tune” the resonator, the objective is to adjust the bias voltages such

that the generalized eigenvalues of M and K are equal.

The systematic electrostatic tuning problem for the Boeing DRG has been solved [KM06].

One of the challenges was how to determine the various matrices in (1.34). These parameters

were determined by fitting the frequency domain version of (1.34) to the two-input/two-output

empirical frequency response that can be derived from the test data described in [SKS15]. The

frequency response estimates are generated at a handful of bias points so that the electrostatic

stiffness matrices can be uniquely identified. Once the {M,K0, K1, . . . } are known, a simple

optimization problem determines the set of bias voltages to make equal modal frequencies. This

approach has been successfully applied to the Boeing DRG.

Electrostatic biasing requires very stable bias voltages in practice because drift in the biases

changes the resonator dynamics which in turn causes the zero rate bias signal to drift. This adds

very low-frequency noise to the angular rate PSD and degrades the ARW figure. In a sense, instead

of directly addressing the non-idealities in the resonator fabrication, they are accepted knowing it

is possible to “fix” them, but this places stringent requirements on the biasing electronics. The

electrostatic biasing approach developed in [KM06] also relies on the fact that the biases are “re-

versible” because once the mass and stiffness matrices are identified at fixed bias points, the correct

“tuning” bias potentials are determined and then applied to the resonator. In other words, the test

potentials need to be removed before the new potentials are applied.
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1.5.2 Modifying the Resonator Dynamics through Mass Addition/Removal

An alternative approach for reducing the frequency detuning is to perturb the mass distribution on

the resonator instead of electrostatically modifying its stiffness matrix. Changing the resonator

mass distribution is permanent and reduces or eliminates the biasing support electronics. For

modifying the mass matrix, we have the option to remove mass from the resonator or to add mass

to the resonator. The first attempts at extending the systematic electrostatic tuning process to a

mass modification scenario relied on estimating mass perturbation matrices. In other words, the

stiffness matrix is now fixed, but the mass matrix is represented as

M = M0 + α1M1 + α2M2 + · · · ,

where M0 represents the nominal mass matrix of the system and {M1,M2, . . . } represent pertur-

bation matrices that are identified after a series of mass addition experiments modify the resonator

dynamics. The {α1, α2, . . . } quantities represent the relative intensity of the perturbation (in most

cases the same size mass perturbation was used for each experiment). The frequency response

modeling algorithm that was developed for the electrostatic tuning was adapted for this case. The

idea is that the difference in the frequency response data from one mass addition scenario to the

next is due solely to changes in the resonator mass matrix. So the algorithm is forced to fit differ-

ent mass matrices to each set of frequency response data while keeping the damping and stiffness

matrices the same across all data sets. The procedure to reduce the frequency detuning involves

determining the intensities αk such that, again, the generalized eigenvalues of the perturbed mass

matrix and stiffness matrix are equal. This procedure works quite well with large-scale axisymmet-

ric resonators [SKS15, Sch10] but presents some problems for micro-scale resonators such as the

UCLA CVG. First, it is necessary to perform non-reversible mass deposition experiments on the

resonator to identify the perturbation matrices and, ideally, the experiments are performed in such

a way that the frequency detuning is not exacerbated. Second, the intensities αk that are computed

to reduce the degree of detuning are associated with specific deposition locations on the resonator,

and it is entirely possible that more mass is specified at a location than can be accommodated at

that point. In other words, there was no effective way to “spread out” the added mass so that
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the detuning reduction goal was realized. Finally, the modal properties of micro-scale resonators

tend to exhibit fairly significant sensitivity to temperature. For this modeling process to accurately

identify the perturbation matrices, the resonator would need to be tested at the same temperature

for all of the frequency response tests (otherwise a gross shift in mean modal frequency due to the

temperature dependence of the elastic modulus would be interpreted by the modeling algorithm

to be due to the added mass). Thermal regulation of the resonator is possible but complicates the

testing.

The results for tuning the modes using mass perturbations are presented in Chapters 3 and 4

and are based on the frequency analysis of imperfect rings from Chapter 2. Chapter 2 studies

the effect of imperfections on a uniform ring structure. The results form a basis for the modeling

used in the tuning process. Chapter 3 uses the perturbation theory and approximation methods

to develop a model that can be used for tuning n = 2 on the wafer level. The process shown in

this chapter is compatible with the other manufacturing steps since only the material is removed

from the resonator. The naming convention for the modes comes from the mode shapes. For

instance, for a uniform ring, the tangential and radial displacements are weighted sum of cos(kθ)

and sin(kθ). Although the ring-type resonators are more complicated structures than uniform

rings, the dominant terms in the displacements remain the same and so the name is inherited. In

Chapter 4, the model is refined and a linear integer programming algorithm is used to tune both

n = 2 and n = 3 modes simultaneously. The mass perturbations are applied by adding solder

spheres at designated locations.

1.6 Damping Mechanisms

The problem in Sec. 1.5 does not include the effect of damping mechanisms in the structure. In

general, having less damping is desirable, since this translates to a longer time constant for the

sensor. Having a longer time constant is related to the “memory” of the device which means more

averaging can be done, leading to more attenuation on the noise level. There are different types

of damping mechanisms involved in the process such as squeeze film damping, anchor loss, and

thermoelastic damping. Since the resonators ultimately operate in the vacuum, the squeeze film
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damping is negligible. The anchor loss is also not significant in the ring-type structures due to the

existence of a node at the stem. The thermoelastic damping, on the other hand, cannot be removed.

The contributing factors in this type of damping are the design/geometry of the structure and the

material. As such, researchers are switching to low-loss materials such as fused silica.

Chapter 5 takes a closer look at the effect of imperfections on the damping asymmetries of

the structure. The two types of imperfections considered are width variation in the ring and point

perturbations. The width variation represents the type of imperfections that can happen during the

manufacturing process. The point perturbations are models for the types of corrections used in

practice for tuning the devices. The results in Chapter 5 show a design guideline for different low-

loss materials and modes in addition to a practical limitation in the tuning techniques. The practical

limitation shows tuning the resonators using point mass perturbations does not necessarily lead to

the same damping behaviors for two companion modes which can lead to damping asymmetries.
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CHAPTER 2

Ring Dynamics

Nomenclature - Chapter 2

A cross sectional area E modulus of elasticity
I cross section moment of inertia r̄ ring mean radius
ρ density j

√
−1

M = 2πr̄Aρ uniform ring mass
K = EI

r̄3
nominal spring rate

g1 mass perturbation factor g2 spring perturbation factor
N(P) null space of matrix P t time
R(P) range space of matrix P u radial displacement
R(P)⊥ orthogonal complement ofR(P) v weight vector
dimS dimension of subspace S vk kth term in expansion for v
rank(P) rank of matrix P vkl lth partition of vk
PT transpose of P w tangential displacement
δ variational derivative
Rn vector with n real elements ε perturbation parameter
Rn×m n×m matrix with real elements γ weight vector scaling parameter
U radial displacement eigenfunction
W tangential displacement eigenfunction
W (p) pth derivative of W with respect to θ
κ :=

√
ρAr̄4/(EI) time scale

ω frequency
ωk kth term in expansion for ω
ωkl kth term in expansion for mode l ∈ {1, 2}
T kinetic energy U strain energy
L = T − U Lagrangian
t time ˙( ) derivative with respect to t
θ angle coordinate

18



This chapter studies the in-plane dynamics of a perturbed linearly elastic thin ring in which

non-uniformities are created by point masses and massless radial springs. A perturbation approach

is used to determine expansions for the natural frequencies and eigenfunctions of the exact so-

lutions of the perturbed ring. The perturbation parameter is the point mass value normalized by

the unperturbed ring mass. Massless radial springs are also included in the analysis, and their

contribution relative to the point mass is quantified with an additional parameter. The perturba-

tion results presented herein must be developed for specific scenarios, however, since the modes

appear as degenerate pairs in the uniform ring, the common features among the various case stud-

ies are noted. The boundary conditions that demarcate uniform ring segments separated by the

perturbation locations are developed using Hamilton’s principle, and the resulting algebraic con-

straints on the eigenfunction weights are expanded in the perturbation parameter and sequentially

solved. The case studies consider single- and two-mass perturbations and a mass-spring pertur-

bation. Frequency expansions are developed through order-ε3 and are shown to accurately predict

the perturbed frequencies for large perturbations. Finite element analysis (FEA) of a thin ring is

taken as the benchmark, and the results are also compared with Rayleigh-Ritz analysis using up to

twenty basis functions.

Although the type of perturbations considered here seems to be quite simple, they represent

a fairly accurate model of the type of modifications that can be used in practice for changing the

dynamics of ring-type resonators. Studying the complete dynamics of this type of resonator is

fairly complicated and impedes our full understanding of the change in their dynamics subject to

non-uniformities. On the other hand, focusing on a ring as the prototype structure for the many

variants of planar disk resonators can help us infer features associated with the dynamics of more

complicated ring-like structures. The other issue that needs to be mentioned is the fact that the

ultimate goal of the research is to use the results for making the dynamics of originally perturbed

ring resonators more desirable. However, the effects of imperfections are studied on a uniform ring

as the starting point for the analyses. It is not possible to uniquely figure out what the nature of

perturbations was just by looking at the frequency response of a ring. But from the study of these

effects on an initially uniform ring, we can learn what to do to perturb an originally imperfect ring

or ring-type resonator, regardless of the nature of the imperfections, to make the dynamics more
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ideal.

The in-plane equations of motion for a ring were developed more than a century ago [Bry90,

Lov92], but analysis since the 1980’s has focused on the dynamics of nonuniform rings because

they represent more realistic structures. The analysis tool for most of these studies is the Rayleigh-

Ritz method (e.g., [CP73, ASY86, Fox90, RMF01]) in which a certain number of eigenfunctions

of the uniform ring are used as a solution basis. Other researchers have proposed more compli-

cated basis functions for capturing the motion of an imperfect ring and allow general, distributed

perturbations [BC07, YLY02]. For sufficiently small imperfections, many of these references also

address the frequency trimming problem in which it is desired to reduce the frequency difference

between a detuned pair of modes. The frequency trimming problem has recently received renewed

interest from the sensor community because fabrication techniques now permit the creation of

precision non-planar micro-scale resonant structures. For example, axisymmetric resonators have

been recently reported [SMG14, PZT11, ZTS12, CGN12, KBK15]. The residual frequency dif-

ference after fabrication is significant enough to warrant trimming, however, for these resonators

the fabrication processes are still not sufficiently developed to permit manipulation of the res-

onator mass distribution so no experimental trimming results have been reported. Examples in

which the experimental reduction of the modal frequency differences have been achieved are given

in [BBC13, SKS15, BKS17] (see Chapter 3). In [SKS15], the Rayleigh-Ritz analysis from [Fox90]

was adapted to create an iterative frequency trimming procedure that employs mass deposition on a

planar micro-scale resonator consisting of multiple nested rings. Using the same resonator design,

a tailored etch technique has also produced trimmed devices [KBS15, BKS17] (see Chapter 3).

This chapter does not address the frequency trimming procedure, however, it is shown in the case

studies where the comparison with finite elements is possible that accurate prediction of the per-

turbed natural frequencies is achieved for large perturbations. Connections with the frequency

trimming problem will be developed using FE results in Chapters 3 and 4 and will have relevance

to resonators with large initial differences between the pairs of model frequencies, e.g., [TSH14].

Although only the effect of point masses and radial restoring force springs are analyzed, they are

good approximations of the mass deposition, targeted etch techniques and electrostatic “springs”

that have been employed to modify the dynamics of micro-scale resonators. The results are also
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compared with nominal perturbations on the ring-type resonators. It should be noted that this sec-

tion ignores all types of energy loss in the structure. Chapter 5 takes a closer look at different

damping mechanisms in ring-type resonators.

The chapter is organized as follows. Sec. 2.1 discusses the derivation of the boundary con-

ditions created between ring segments due to point mass or radial spring perturbations. Sec. 2.2

solves the sixth order differential equation for a uniform ring to determine the complete set of

eigenfunctions. Sec. 2.3 discusses the series of algebraic problems that are derived by expanding

the relations between the eigenfunction weights in the perturbation parameter and considers case

studies involving single mass, dual mass, and mass-spring perturbations. Sec. 2.4 considers a thin

silicon ring for the case studies and compares the perturbation results to Rayleigh-Ritz analysis

and finite elements. The results are compared with a practical ring tuning problem in Sec. 2.5. The

ring parameters approximate a single ring of the resonator studied in Chapters 3 and 4. Sec. 2.6

summarizes the results.

2.1 Ring Equation and Boundary Conditions

The equation of motion and boundary conditions for a uniform ring that is perturbed by a point

mass and a co-located massless spring exerting a radial force are derived using Hamilton’s prin-

ciple. It should be noted that the damping is ignored in the derivation of the equations in this

chapter. The uniform ring is defined by the parameters ρ, A, r̄, and M which are the material

density, cross-sectional area, mean radius and total mass of the ring, respectively. The ring’s radial

and tangential displacements, denoted u(θ, t) and w(θ, t), respectively, are dependent on the angle

variable θ and the time variable t. The mass of the point-mass perturbation is εg1M , and for the

boundary condition derivations its location is taken to be θ = 0 without loss of generality, which

is equivalent to θ = 2π radians due to the periodic structure of the ring (see Fig. 2.1). The spring

stiffness is given by εg2K. The parameter ε is used to generate a perturbation expansion of the

exact solution of the perturbed ring and the parameters g1 and g2 are used to modify the relative

contributions of the perturbing mass and spring. The cases when there are more than one mass or

spring perturbation can be simply extended from the analysis presented herein. Furthermore, if the
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angle reference (✓ = 0)
✏g1M

✏g2K

Figure 2.1: Point mass perturbation with co-located spring applied to a thin uniform ring.

mass and spring are not co-located, then g1 or g2 can be set to zero to obtain the desired case. The

standard thin ring equation of motion governs the segments between the perturbation locations and

the derived boundary conditions specify relations between the solutions for each segment. In order

to apply Hamilton’s principle, the kinetic and strain energies for the Lagrangian functional must

be determined.

The Lagrangian functional is L = T − U , where T and U are the kinetic energy and strain

energy, respectively. The kinetic energy T is composed of the kinetic energy of the ring and the

kinetic energy of the mass perturbation located at θ = 0

T =
1

2

∫ 2π

0

ρAr̄
(
ẇ2(θ, t) + u̇2(θ, t)

)
dr dz +

1

2
εg1M

(
(ẇ(0, t))2 + (u̇(0, t))2

)
. (2.1)

The strain energy of the ring is computed (see [Lan49]) and summed with the strain energy of the

spring,

U =
1

2

∫ 2π

0

EI

r̄3

(
∂3w

∂θ3
+
∂w

∂θ

)2

dr dz +
1

2
εg2Ku

2(0, t). (2.2)

The following small angle approximation is employed which provides a kinematic constraint be-

tween the radial and tangential velocities at a point: u(θ, t) = ∂w
∂θ

(θ, t). The derivation of the strain

energy for a more complete case including the temperature effect is presented in Chapter 5. In

Chapter 5, u(θ, t) = −∂w
∂θ

(θ, t) is used instead for the sake of consistency with other references

which does not ultimately affect the general results.

Hamilton’s principle is applied to the Lagrangian L in order to derive the boundary conditions
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created by a point mass and radial spring perturbation co-located at θ = 0◦. The variation of L is

summarized below,

∫ t2

t1

[−
∫ 2π

0

ρAr̄ẅ(θ, t)δ(w(θ, t))dr dz

− ρAr̄∂ẅ
∂θ

(θ, t)δ(w(θ, t))
∣∣∣2π
0

+

∫ 2π

0

ρAr̄
∂2ẅ

∂θ2
(θ, t)δ(w(θ, t))dr dz

− εg1Mẅ(0, t)δ(w(0, t))− εg1M
∂ẅ

∂θ
(0, t)δ(

∂w

∂θ
(0, t))

− EI

r̄3

(
∂3w

∂θ3
δ(
∂2w

∂θ2
)
∣∣∣2π
0
− ∂4w

∂θ4
δ(
∂w

∂θ
)
∣∣∣2π
0

+
∂5w

∂θ5
δ(w)

∣∣∣2π
0
−
∫ 2π

0

∂6w

∂θ6
δ(w)dr dz

)
− EI

r̄3

(
∂3w

∂θ3
δ(w)

∣∣∣2π
0
−
∫ 2π

0

∂4w

∂θ4
δ(w)dr dz

)
− EI

r̄3

(
∂w

∂θ
δ(
∂2w

∂θ2
)
∣∣∣2π
0
− ∂2w

∂θ2
δ(
∂w

∂θ
)
∣∣∣2π
0

+
∂3w

∂θ3
δ(w)

∣∣∣2π
0
−
∫ 2π

0

∂4w

∂θ4
δ(w)dr dz

)
− EI

r̄3

(
∂w

∂θ
δ(w)

∣∣∣2π
0
−
∫ 2π

0

∂2w

∂θ2
δ(w)dr dz

)
− εg2k

∂w

∂θ
(0, t)δ(

∂w

∂θ
(0, t))]dt = 0.

(2.3)

By grouping terms associated with δw(θ, t), fundamental lemma of calculus of variations yields

the equation of motion for the ring.

The equation of motion is

−ρAr̄ẅ(θ, t) + ρAr̄
∂2ẅ

∂θ2
(θ, t) +

EI

r̄3
(
∂6w

∂θ6
+ 2

∂4w

∂θ4
+
∂2w

∂θ2
) = 0, (2.4)

which is equivalent to the equation of motion derived from the Newtonian approach [Rao07].

The continuity of the radial and tangential motion and their derivatives at θ = 0 or θ = 2π

dictates the continuity of u(θ, t), ∂u
∂θ

(θ, t), w(θ, t) and ∂w
∂θ

(θ, t) at that point, which translates to
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three essential boundary conditions

w(2π, t) = w(0, t), (2.5)

∂w

∂θ
(2π, t) =

∂w

∂θ
(0, t), (2.6)

∂2w

∂θ2
(2π, t) =

∂2w

∂θ2
(0, t). (2.7)

The remaining natural boundary conditions are derived from (2.3) by gathering various terms.

Noting δw(0, t) = δw(2π, t) yields

−εg1Mẅ(0, t)−EI
r̄3

(
∂5w

∂θ5
(2π, t)− ∂5w

∂θ5
(0, t)

)
− 2EI

r̄3

(
∂3w

∂θ3
(2π, 0)− ∂3w

∂θ3
(0, t)

)
= 0. (2.8)

Furthermore, ∂w
∂θ

(0, t) = ∂w
∂θ

(2π, t) implies

−εg1M
∂ẅ

∂θ
(0, t)− εg2k

∂w

∂θ
(0, t) +

EI

r̄3

(
∂4w

∂θ4
(2π, t)− ∂4w

∂θ4
(0, t)

)
= 0, (2.9)

and ∂2w
∂θ2

(0, t) = ∂2w
∂θ2

(2π, t) implies

∂3w

∂θ3
(2π, t)− ∂3w

∂θ3
(0, t) = 0. (2.10)

Finally, substituting (2.10) into (2.8) simplifies the boundary condition involving the 5th derivative

of the tangential displacement as

εω2g1Mw(0, t)− EI

r̄3

(
∂5w

∂θ5
(2π, t)− ∂5w

∂θ5
(0, t)

)
= 0. (2.11)

In summary, the six boundary conditions are given by (2.5), (2.6), (2.7), (2.9), (2.10) and (2.11).

Harmonic ring motion is assumed so w(θ, t) = W (θ)ejωt, where W denotes the mode shape

associated with natural frequency ω. The following notation is also used for the pth derivative of

W : W (p) = dpW/dθp. The essential boundary conditions given by (2.5), (2.6) and (2.7) can be
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expressed in terms of W

W (2π)−W (0) = 0,

W (1)(2π)−W (1)(0) = 0,

W (2)(2π)−W (2)(0) = 0.

(2.12)

The remaining natural boundary conditions given by (2.9), (2.10) and (2.11) yield

W (3)(2π)−W (3)(0) = 0,

ε
(
ω2g1M − g2k

)
W (1)(0) +

EI

r̄3

(
W (4)(2π)−W (4)(0)

)
= 0,

εω2g1MW (0)− EI

r̄3

(
W (5)(2π)−W (5)(0)

)
= 0.

(2.13)

2.2 Ring Eigenfunctions

The following differential equation is derived from (2.4) and may be solved for the ring eigenfunc-

tions,

W (6) + 2W (4) +W (2) + ρA
r̄4

EI
ω2(W −W (2)) = 0. (2.14)

The characteristic equation associated with (2.14) is

λ6 + 2λ4 + (1− ρA r̄4

EI
ω2)λ2 + ρA

r̄4

EI
ω2 = 0, (2.15)

in which only the even powers of λ are present. A natural change of variable is λ̃ = λ2, which

converts (2.15) into a third order equation for which closed-form solutions exist,

λ̃3 + 2λ̃2 + (1− (κω)2)λ̃+ (κω)2 = 0, (2.16)

where κ :=
√
ρA r̄4

EI
. Note that κω represents a non-dimensional frequency. The discriminant

of (2.16) is

∆ = 36
(
1− (κω)2

)
(κω)2 − 32(κω)2 + 4

(
1− (κω)2

)2 − 4
(
1− (κω)2

)3 − 27(κω)4, (2.17)
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and has three real roots
(κω)2 = 0,

(κω)2 =
71± 17

√
17

8
.

The discriminant is positive (∆ > 0) when 0 < (κω)2 < (71 − 17
√

17)/8, or (κω)2 > (71 +

17
√

17)/8, and it is negative (∆ < 0) when (71− 17
√

17)/8 < (κω)2 < (71 + 17
√

17)/8.

2.2.1 Eigenfunctions for n = 2

The sign of the discriminant determines different families of eigenfunctions, however, for the

uniform thin ring, all eigenfunctions are of the form cos(nθ + ψ), where n = 2, 3, 4, . . . , and

ψ is an arbitrary phase. The closed-form expression for the ring natural frequencies is ω2 =

n6−2n4+n2

n2+1
EI
ρAr̄4

[Rao07]. Thus, for n = 2, there exists a degenerate pair of modes with natural fre-

quency ω2
0 = 36EI

5ρAr̄4
. Substituting (κω0)2 = 36/5 into (2.17) shows that the discriminant is negative

when n = 2, which implies (2.16) has one real negative root and a complex conjugate pair of roots.

Thus, in the perturbed ring, the six roots of (2.15) can be parameterized as {±ja, ±b± jc}, where

a, b and c are real-valued parameters that are dependent on the perturbed natural frequency ω. The

corresponding eigenfunctions from (2.14) are given byW (θ) = e±jaθ andW (θ) = e(±b±jc)θ, which

can be equivalently expressed as the following set

W1(θ) = cos(aθ), W4(θ)= cosh(bθ) sin(cθ),

W2(θ) = sin(aθ), W5(θ)= sinh(bθ) cos(cθ), (2.18)

W3(θ) = cosh(bθ) cos(cθ), W6(θ)= sinh(bθ) sin(cθ).

The perturbed natural frequencies are represented by regular perturbation expansions in the param-

eter ε, in other words,

ω = ω0 + εω1 + ε2ω2 + · · · (2.19)
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Using this representation, the roots of (2.15) are also expressed as perturbation expansions. The

series for the a, b and c parameters are determined to be

a = 2 + ε (0.26001κω1) + ε2
(
−0.019181κ2ω2

1 + 0.26001κω2

)
+ ε3

(
0.26001κω3 − 0.038361κ2ω1ω2 + 0.0030343κ3ω3

1

)
+ · · · ,

b = 1.0820 + ε (0.19537κω1) + ε2
(
−0.025498κ2ω2

1 + 0.19537κω2

)
+ ε3

(
0.19537κω3 − 0.050995κ2ω1ω2 + 0.0059897κ3ω3

1

)
+ · · · ,

c = 0.41330 + ε (−0.11761κω1) + ε2
(
−0.031796κ2ω2

1 − 0.11761κω2

)
+ ε3

(
−0.11761κω3 − 0.063591κ2ω1ω2 − 0.0067277κ3ω3

1

)
+ · · · .

(2.20)

Symbolic computation software is used for these calculations [Wol16].

The general solution for the perturbed ring is a weighted sum of the eigenfunctions in (2.18),

in other words, W (θ) =
∑6

p=1 vpWp(θ), where the set of weights {vp} will be determined by

enforcing the constraints in (2.12) and (2.13). The process for finding these weights, and values

for ω1, ω2 and ω3 are described in Sec. 2.3.

2.2.2 Eigenfunctions for n > 2

When n > 2, the discriminant is positive and (2.16) has three real roots, one of which is nega-

tive. Thus, the roots of (2.15) can be parameterized as {±ja,±b,±c} which yields the following

eigenfunctions,

W1(θ) = cos(aθ), W4(θ)= sinh(bθ),

W2(θ) = sin(aθ), W5(θ)= cosh(cθ), (2.21)

W3(θ) = cosh(bθ), W6(θ)= sinh(cθ).

Just as for the n = 2 case, the parameters a, b and c can be written as a perturbation expansion in ε.

These expansions are given in Table 2.1 for n = 3, 4, 5.
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Table 2.1: The expansions for a, b and c for n = 3, 4, 5 up to order ε3

n = 3

a
3 + ε(0.16821κω1) + ε2(0.16821κω2 − 0.0048761κ2ω2

1)

+ε3(0.16821κω3 − 0.0097522κ2ω1ω2 + 0.00029030κ3ω3
1)

b
2.4328 + ε(0.21262κω1) + ε2(0.21262 κω2 − 0.010780κ2ω2

1)

+ε3(0.21262 κω3 − 0.021560κ2ω1ω2 + 0.0012651κ3ω3
1)

c
1.0399 + ε(−0.012171κω1) + ε2 (−0.012171κω2 + 0.0029483κ2ω2

1)

+ε3(−0.012171κω3 + 0.0058966κ2ω1ω2 − 0.00067236κ3ω3
1)

n = 4

a
4 + ε(0.049823κω1) + ε2(0.049823 κω2 + 0.0027292κ2ω2

1)

+ε3(0.049823κω3 + 0.0054584κ2ω1ω2 − 0.000070159κ3ω3
1)

b
3.6028 + ε(0.050394κω1) + ε2(0.050394κω2 + 0.0029990κ2ω2

1)

+ε3(0.050394κω3 + 0.0059980κ2ω1ω2 − 0.000051990κ3ω3
1)

c
1.0098 + ε(−0.0029880κω1) + ε2(−0.0029880κω2 + 0.00071864κ2ω2

1)

+ε3(−0.0029880κω3 + 0.0014373κ2ω1ω2 − 0.00016045κ3ω3
1)

n = 5

a
5 + ε(0.022966κω1) + ε2(0.022966κω2 + 0.0014391κ2ω2

1)

+ε3(0.022966κω3 + 0.0028782κ2ω1ω2 − 0.0000098823κ3ω3
1)

b
4.6896 + ε(0.022918κω1) + ε2(0.022918κω2 + 0.0014626κ2ω2

1)

+ε3(0.022918κω3 + 0.00292522κ2ω1ω2 − 0.0000067902κ3ω3
1)

c
1.0037 + ε(−0.0011189κω1) + ε2 (−0.0011189κω2 + 0.00026885κ2ω2

1)

+ε3(−0.0011189κω3 + 0.00053770κ2ω1ω2 − 0.000059818κ3ω3
1)
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2.3 Perturbation Expansions of Solutions

This section develops perturbation expansions of the solutions for number of perturbation scenar-

ios. The first case, a single mass perturbation and no spring perturbation, is developed in Sec. 2.3.1

for n = 2 and the n = 3 modes. Dual-mass perturbation scenarios are studied in Sec. 2.3.2 and

a non co-located spring-mass perturbation is discussed in Sec. 2.3.3. The results are related to a

practical problem in Sec. 2.5.

When there are p > 0 distinct perturbation locations, then there are p ring segments governed

by (2.4), so each segment can be expressed as a sum of the appropriate eigenfunctions (either

(2.18) or (2.21)) with an associated weight vector. Thus, there are 6p constraints generated by

enforcing boundary conditions between each segment for a total of 6p weights. Since the weights

appear linearly in the constraints, the constraint equations can be generically written as Av = 0

where A ∈ R6p×6p and the weights are collected into the vector v ∈ R6p, where Rn and Rn×m

represent a vector with n real elements and a n × m matrix with real elements, respectively. A

perturbation expansion of the expressions for the modal frequencies and eigenfunctions is derived

by expanding A and v with respect to ε: A = A0 + εA1 + ε2A2 + · · · , where

A0 = A
∣∣∣∣
ε=0

, A1 =
∂A
∂ε

∣∣∣∣
ε=0

, A2 =
1

2

∂2A
∂ε2

∣∣∣∣
ε=0

, . . .

and v = v0 + εv1 + ε2v2 + · · · , so

(
A0 + εA1 + ε2A2 + . . .

) (
v0 + εv1 + ε2v2 + . . .

)
= 0. (2.22)

Ak depends on frequency expansion terms ωp, p = 0, 1, . . . , k. Thus, the following set of hierar-

29



chical algebraic problems is solved for every perturbation scenario,

A0(ω0)v0 = 0, (2.23)

A0(ω0)v1 + A1(ω0, ω1)v0 = 0, (2.24)

A0(ω0)v2 + A1(ω0, ω1)v1 + A2(ω0, ω1, ω2)v0 = 0, (2.25)

A0(ω0)v3 + A1(ω0, ω1)v2 + A2(ω0, ω1, ω2)v1 + A3(ω0, ω1, ω2, ω3)v0 = 0, (2.26)
...

The solution details depend on the particular nature of the perturbations, however, there are

some features common to all cases. It is generally possible to derive closed-form expressions

for ωk by projecting the columns of Ak onto the orthogonal complements, or the intersections

thereof, of the subspaces {R(A0), R(A1), . . . ,R(Ak−1)} (R(·) represents the range space), and

then selecting ωk so that these projected components are zero. For example, the unperturbed ring

possesses degenerate pairs of modes so dimR(A0)⊥ = 2 (R(·)⊥ is the orthogonal complement of

the matrix) and dimN(A0) = 2, (N(·) represents the null space and dim(·) is the dimension of the

subspace) independent of the number of perturbations. In the case studies that follow, basis vectors

for R(A0)⊥ are represented by the two columns of P0. Multiplying (2.24) on the left by PT0 ((·)T is

the transpose of the vector or the matrix) and restricting v0 to N(A0) yields a 2 × 2 matrix whose

determinant must be zero. The entries of this matrix are affine in ω1 because the elements of A1

are affine functions of ω1. Thus, simple expressions can be derived for determining ω1. In fact, as

Ak is an affine function of ωk, expressions for ωk are at most quadratic. In the case studies that

follow, the natural frequency expansions are computed through order ε3.

2.3.1 Single Mass Perturbations

Consider the case of a single point mass perturbation (g1 = 1, g2 = 0) located at θ = 0. For the

n = 2 modes, the constraints in (2.12) and (2.13) yield six equations for the six to-be-determined
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weights {v1, . . . , v6} associated with the n = 2 eigenfunctions as shown below

∑
p

vp (Wp(2π)−Wp(0)) = 0,

∑
p

vp
(
W (2)
p (2π)−W (2)

p (0)
)

= 0,

∑
p

vk
(
W (1)
p (2π)−W (1)

p (0)
)

= 0,

∑
p

vk
(
W (3)
p (2π)−W (3)

p (0)
)

= 0,

∑
p

vp

(
εMω2W (1)

p (0) +
EI

r̄3

(
W (4)
p (2π)−W (4)

p (0)
))

= 0,

∑
p

vp

(
εMω2Wp(0)− EI

r̄3

(
W (5)
p (2π)−W (5)

p (0)
))

= 0.

(2.27)

In this case, A ∈ R6×6 matrix derived from (2.27) and v = [v1, . . . , v6]T ∈ R6 is the non-zero

weight vector. For example, when the eigenfunctions are defined as shown in (2.18), the first row

of A is determined from the first expression in (2.27)

[
1− cos(2πa), − sin(2πa), 1− cosh(2πb) cos(2πc), − cosh(2πb) sin(2πc),

− sinh(2πb) cos(2πc), − sinh(2πb) sin(2πc)
]
.

The second row of A is determined from the second expression in (2.27)

[
a sin(2πa), a− a cos(2πa), c cosh(2πb) sin(2πc)− b cos(2πc) sinh(2πb),

c− c cos(2πc) cosh(2πb)− b sin(2πc) sinh(2πb),

b− b cos(2πc) cosh(2πb) + c sin(2πc) sinh(2πb),

− b cosh(2πb) sin(2πc)− c cos(2πc) sinh(2πb)
]
.

The remaining rows of A are determined from (2.27), but these expressions are too lengthy to

include here. As noted in Sec. 2.2, the parameters a, b and c are functions of ε because they are

related to the roots of the perturbed characteristic polynomial (see (2.20)). Symbolic calculation

yields the matrices A0, A1, A2, . . . , but because of their structure, it is useful to partition these

matrices as follows: Ak =
[
Ak1 Ak2

]
, k = 0, 1, 2, . . . , where the Ak1 ∈ R6×2 and Ak2 ∈ R6×4.

31



Similarly, vk are partitioned into

vk =

vk1
vk2

 , k = 0, 1, 2, . . .

which are compatible with the partitions of Ak. The analysis is general in the sense that the com-

puted matrices Ak are common to all thin ring problems with a single mass perturbation in which

the non-dimensional frequency parameters {κω0, κω1, . . . } are used. Thus, these computations

need only be performed once to the desired accuracy.

The partitions of A0 (see (2.28)) are constant since they are functions of the known parameter

κω0 =
√

36/5. The partitions A01 and A02 are

A01 =



0 0

0 0

0 0

0 0

0 0

0 0


, A02 =



384.45 −232.32 383.45 −232.32

510.93 −92.486 512.01 −92.900

592.24 110.65 591.24 111.54

594.02 365.47 594.73 364.09

492.47 639.47 492.28 641.26

268.37 897.41 267.85 895.39


. (2.28)

Since rank (A02) = 4, the first constraint, (2.23), yields v02 = 0, v01 is undetermined. The next set

of constraints, (2.24), yields

[
0 A02

]v11

v12

+
[
A11 A12

]v01

0

 = 0 =⇒
[
A11 A02

]v01

v12

 = 0, (2.29)

where the known zero partitions have been inserted. Let the columns of P0 ∈ R6×2 span R(A02)
⊥.

Singular value decompositions are used to determine R(·), R(·)⊥ and N(·) where required. Anal-
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ysis of A0 yields

P0 =



−0.37374 −0.50351

0.50351 −0.37374

0.41527 0.55946

−0.55946 0.41527

−0.20763 −0.27973

0.27973 −0.20763


. (2.30)

The partitions of A1 are

A11 =



0 −1.6337κω1

3.2674κω1 0

0 6.5347κω1

−13.069κω1 0

0 −26.139κω1 − 90.478

52.278κω1 + 45.239 0


, (2.31)

and

A12 =



299.02κω1 −568.54κω1 299.02κω1 −568.54κω1

606.13κω1 −582.20κω1 606.32κω1 −582.08κω1

985.84κω1 −457.56κω1 985.33κω1 −457.65κω1

1383.8κω1 −135.61κω1 1384.7κω1 −135.78κω1

1713.5κω1 426.28κω1 − 18.697 1712.3κω1 − 48.951 427.02κω1

1848.0κω1 + 45.239 1237.6κω1 1849.3κω1 1236.0κω1


.

(2.32)

Left-multiplication of (2.29) by PT0 yields PT0 A11v01 = 0, where

PT0 A11 =

 12.655 + 23.581κω1 18.786 + 8.7515κω1

−9.3931− 17.503κω1 25.309 + 11.790κω1

 ,
and where P0 and A11 are given by (2.30) and (2.31), respectively. Non-trivial v01 will exist at
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those values of κω1 where det
(
PT0 A11

)
= 0 (det(·) is the determinant of the matrix). These

values, denoted κω11 and κω12 , are

κω11 = −2.1466, κω12 = −0.53665. (2.33)

At these two values of κω1, rank
([

A11 A02

])
= 5, so solutions for v01 and v12 , denoted ṽ01 and

ṽ12 , respectively, are unique up to a scaling,

κω11 = −2.1466 =⇒ ṽ01 =

0

1

 , ṽ12 =
[
−1.7534 −9.7813 1.7614 9.8020

]T
,

κω12 = −0.53665 =⇒ ṽ01 =

1

0

 , ṽ12 =
[
−2.2170 −3.6827 2.2169 3.6731

]T
.

(2.34)

The ṽ01 partitions are normalized to unit length and this sets the scaling for all subsequent elements

of the series for the weight vector. Note that the leading order terms imply that the tangential

motion for a perturbation at θ = 0 are close to sin(2θ) and cos(2θ). Thus, one radial anti-node is

essentially aligned with the perturbation location at θ = 0◦, and the other anti-node is located near

45◦.

The perturbed natural frequencies up to order ε2 can be computed from (2.25), rewritten below

with the partitions,

[
0 A02

]v21

v22

+
[
A11 A12

]v11

ṽ12

+
[
A21 A22

]ṽ01

0

 = 0.

The unknown weights v22 and v11 are gathered into a single vector as follows,

[
A11 A02

]v11

v22

+
[
A21 A12

]ṽ01

ṽ12

 = 0. (2.35)

Since rank
([

A11 A02

])
= 5 when ω1 = {ω11 , ω12}, let P1 ∈ R6 span R

([
A11 A02

])⊥ when κω1
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is selected as either value in (2.33). Left-multiplying (2.35) by PT1 yields

PT1
[
A21 A12

]ṽ01

ṽ12

 = 0. (2.36)

When κω11 = −2.1466, (2.36) yields κω21 = 3.9104, and when κω12 = −0.53666 it yields

κω22 = 1.2159. Expressions for both values of frequency deviations for P1 and A21 are given in

(2.37), (2.38), and (2.39), respectively. The orthogonal complements of R
([

A11 A02

])
are given

by

P1 =
[
0 0.62706 0 −0.69673 0 0.34837

]T
when κω11 = −2.1466, (2.37)

and

P1 =
[
0 0.62706 0 −0.69673 0 0.34837

]T
when ω12 = −0.53666. (2.38)

The first two columns of matrix A2 are grouped into one sub-matrix A21 and is a function of

the first two deviation terms in the frequency expansion κω1 and κω2.

A21 =



2.6689(κω1)2 0.24103(κω1)2 − 3.2674κω2

0.36748(κω1)2 + 6.5347κω2 5.3378(κω1)2

−10.676(κω1)2 2.4340(κω1)2 + 13.069κω2

−8.2662(κω1)2 − 26.139κω2 −21.351(κω1)2

42.703(κω1)2 −23.329(κω1)2 − 158.40κω1 − 52.278κω2

60.250(κω1)2 + 67.438κω1 + 104.56κω2 85.405(κω1)2


(2.39)

The partitions A22 and A31 are necessary for computing the perturbed frequencies through ε3, but

due to their lengthly nature, they are not included in this section.

Solutions for [v11 v22 ]
T can now be determined from (2.35). Although they are not unique,

they can be expressed as a unique least norm solution, denoted [ṽ11 ṽ22 ]
T , plus an arbitrary vector

in N
([

A11 A02

])
. From (2.29), a vector that spans the null space of this matrix is [ṽ01 ṽ12 ]

T . Thus,
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the eigenfunction weights satisfying (2.35) are

v11

v22

 =

ṽ11

ṽ22

+ γ

ṽ01

ṽ12

 , (2.40)

where γ is a real parameter. The least norm solution associated with κω11 is

ṽ11

ṽ22

 =
[
1.7535 2.5193 −1.5010 0.43081 1.4858 −0.36263

]T
,

and the least norm solution associated with κω12 is

ṽ11

ṽ22

 =
[
2.3833 −0.43836 −0.30261 0.50506 0.30756 −0.51076

]T
.

The frequency expansion is computed up to ε3 since this will yield accurate estimates of the

perturbed modal frequencies even for relatively large perturbations. Expanding (2.26) into its

partitions yields,

[
0 A02

]v31

v32

+
[
A11 A12

] v21

ṽ22 + γṽ12


+
[
A21 A22

]ṽ11 + γṽ01

ṽ12

+
[
A31 A32

]ṽ01

0

 = 0.

(2.41)

The unknown weights are v31 , v32 , and v21 . Furthermore, A31 and A32 are functions of κω3. Left-

multiplying (2.41) by PT1 (for a particular value of κω1), eliminates v31 , v32 and v21 and produces

an expression that is only a function of κω3,

PT1 A12 ṽ22 + PT1 A21 ṽ11 + γ PT1 (A12 ṽ12 + A21 ṽ01)︸ ︷︷ ︸
=0, per (2.36)

+PT1 A22v12 + PT1 A31v01 = 0. (2.42)

Although A22 and A31 are required to compute this expression, they are not given here due to their

length. Nevertheless, (2.42) is affine in κω3, and when κω11 = −2.1466 and κω21 = 3.9104, (2.42)
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yields κω31 = −6.0317. Similarly, when κω12 = −0.53665 and κω22 = 1.2159, (2.42) yields

κω32 = −2.7520. Gathering the frequency terms yields the following expansions

κω =

√
36

5
+ ε(−2.1466) + ε2(3.9104) + ε3(−6.0317) + · · · ,

κω =

√
36

5
+ ε(−0.53665) + ε2(1.2159) + ε3(−2.7520) + · · · .

(2.43)

The role of γ will now be clarified in (2.40). Note that left-multiplication of (2.41) by PT1
eliminated v31 , v32 , γ, and v21 . Define P2 ∈ R6 such that P1 and P2 form a basis for R(A02)

⊥ (this

subspace is also spanned by the columns of P0). Then, left-multiplication of (2.41) by PT2 also

eliminates v31 and v32 but yields a relation between γ and unknown vector v21 ,

PT2 A11v21 + PT2 (A12 ṽ22 + A21 ṽ11 + A22 ṽ12 + A31 ṽ01) + γPT2 (A12 ṽ12 + A21 ṽ01) = 0. (2.44)

The solution for v21 can be written as a function of two parameters. First, let ṽ21 represent the

least-norm solution to (2.44) when γ = 0, that is, ṽ21 satisfies

PT2 A11 ṽ21 + PT2 (A12 ṽ22 + A21 ṽ11 + A22 ṽ12 + A31 ṽ01) = 0. (2.45)

It can be shown that the dimension of N(PT2 A11) is one, so let u be its basis vector. All v21 solutions

of (2.45) can be expressed as ṽ21 + α̃u, where α̃ is a free parameter. If γ 6= 0, then ṽ21 + α̃u +γṽ11

satisfies (2.44) because

PT2 (A11 ṽ11 + A12 ṽ12 + A21 ṽ01) = 0. (2.46)

This is shown by first noting PT2 A11 ṽ01 = 0. Then, left-multiplying (2.35) by PT2 ,

PT2
[
A11 A02

]ṽ11 + γṽ01

ṽ22 + γṽ12

+ PT2
[
A21 A12

]ṽ01

ṽ12

 = 0

=⇒ PT2 A11 ṽ11 + γ PT2 A11 ṽ01︸ ︷︷ ︸
0

+ PT2 A02︸ ︷︷ ︸
0

(ṽ22 + γṽ12) + PT2 (A21 ṽ01 + A12 ṽ12) = 0,

from which (2.46) follows. Gathering these results, the coefficient vector associated with a given
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frequency expansion is

v =

ṽ01

0

+ ε

ṽ11 + γṽ01

ṽ12

+ ε2

ṽ21 + α̃u + γṽ11

ṽ22 + γṽ12

+ · · ·

which is rearranged to

v =(1 + εγ)

ṽ01

0

+ ε(1 + εγ)

ṽ11

ṽ12

+ · · ·

Although only the first few terms in the eigenfunction weights have been calculated, it appears that

γ merely scales the entire weight vector. So despite the fact that the leading order term [ṽ01 0]T

was normalized to have unit length, if γ 6= 0 the norm of this term is 1 + εγ, and the other terms

are also scaled by this factor as well. Thus, γ can be chosen to be zero without loss of generality.

The analysis for the n = 3 pair of modes follows the same sequence of steps as the n = 2

analysis with the exception that the eigenfunction basis is now given by (2.21) with the a, b and

c parameters defined in Table 2.1. Only the final results for the perturbed natural frequencies are

given,

κω =

√
576

10
+ ε (−6.8305) + ε2 (20.553) + ε3 (−42.001) + · · · ,

κω =

√
576

10
+ ε (−0.75894) + ε2 (1.9349) + ε3 (−4.9136) + · · · .

(2.47)

Comparisons of the perturbed frequencies are made with FE and approximate methods in Sec. 2.4.

2.3.2 Dual-Mass Perturbations

The case in which two identical masses are placed approximately 45◦ apart is addressed in this

section. The analysis is performed for the n = 2 modes. The modal frequencies detune for finite

perturbations when the masses are exactly 45◦ apart. Furthermore, when the masses are close

to, but not exactly, 45◦ apart, the modal frequencies initially detune as ε is increased, become

degenerate, and then detune again.
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2.3.2.1 Identical Masses at θ = 0 and θ0 = 44◦

For the case that we have Identical masses at θ = 0 and θ0 = 44◦, the ring is divided into two

segments when two mass perturbations are present and as remarked in the introduction to Sec. 2.3,

A ∈ R12×12 and v ∈ R12. The locations of the perturbations are θ = 0 and θ0 = 44◦ (the

angle origin coincides with one of the perturbations). The analysis that follows is also applicable

to any two-mass perturbation when θ0 6= 45◦. The θ0 = 45◦ case is separately addressed in

Sec. 2.3.2.2. The first 6 elements of v correspond to ring segment θ ∈ [0, θ0] and the last 6

elements of v correspond to the ring segment θ ∈ [θ0, 2π] radians. With this parameterization,

A0 is partitioned into four submatrices A0 =
[
A01 A02 A03 A04

]
, where A01 ,A03 ∈ R12×2, and

A02 ,A04 ∈ R12×4. The partitions of v0 are similarly defined and compatible with the partitions of

A0: v0 =
[
v01 v02 v03 v04

]T . The following can be shown

A03 = −A01 ,

rank (A01) = 2,

rank
([

A01 A02 A04

])
= 10.

Thus, rank (A0) = 10, and since the first constraint is A0v0 = 0, this implies v02 = 0, v03 = v01 ,

v04 = 0, however, v01 6= 0 and is determined after further analysis. (2.24) is

[
A01 A02 −A01 A04

]


v11

v12

v13

v14

+
[
A11 A12 A13 A14

]


v01

0

v01

0

 = 0, (2.48)

where v1 is also partitioned as shown. Reusing notation from Sec. 2.3.1, let P0 ∈ R12×2 be defined

such that its columns span R(A0)⊥. Left-multiplying (2.48) by PT0 yields the following expression

involving κω1,

PT0 (A11 + A13) v01 =

−33.888− 12.714κω1 −8.9157− 3.5861κω1

−9.6204− 3.3234κω1 34.107 + 12.632κω1

 v01 = 0 (2.49)
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Solutions for v01 will exist when the matrix multiplying it is singular. This yields the following

values for κω1,

κω11 = −2.7395, κω12 = −2.6271,

at which the matrix is rank 1. The values for κω1 are substituted into (2.48), which, after some

rearrangement yields,

[
(A11 + A13) A02 A01 A04

]


v01

v12

v11 − v13

v14

 = 0 (2.50)

and because the matrix multiplying the coefficient vector is rank 11, the solution vector is unique

up to a scaling. The weight vectors associated with κω11 are

ṽ01 =

−0.69466

0.71934

 , ṽ12 =
[
0.76082 −6.3518 0.23719 2.5828

]T

ṽ11 − ṽ13 =

−0.69669

−2.4999

 , ṽ14 =
[
1.0402 −27.417 −1.0332 27.443

]T
.

(2.51)

Similarly, for κω12 the solution vectors are

ṽ01 =

−0.71934

−0.69466

 , ṽ12 =
[
5.2538 5.9227 −0.35983 −12.985

]T
,

ṽ11 − ṽ13 =

0.54526

−2.4566

 , ṽ14 =
[
6.6055 0.65224 −6.6116 −0.65018

]T
.

(2.52)

The weight vectors are scaled so that the ṽ01 partition has unit norm. The tangential displacement

will be dominated byW (θ) = −0.69466 cos(2θ)+0.71934 sin(2θ) andW (θ) = 0.71934 cos(2θ)+
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0.69466 sin(2θ) which implies the radial displacement U = dW/dθ will be proportional to

U(θ) ∝ 0.69466 sin(2θ) + 0.71934 cos(2θ) = cos (2(θ − 22π/180))

U(θ) ∝ −0.71934 sin(2θ) + 0.69466 cos(2θ) = cos (2(θ + 23π/180)) .

Thus, one of the anti-nodes associated with the radial displacement lies between the locations of

the perturbations at θ = 22◦.

The expression for determining κω2 is determined by considering the ε2 terms (see (2.25)) and

using the fact that v02 = v04 = 0,

[
A01 A02 −A01 A04

]


v21

v22

v23

v24

+
[
A11 A12 A13 A14

]


ṽ11

ṽ12

ṽ13

ṽ14

 + (A21 + A23) ṽ01 = 0

which is rearranged to

[
(A11 + A13) A02 A01 A04

]


ṽ13

v22

v21 − v23

v24



+
[
(A21 + A23) A12 A11 A14

]


ṽ01

ṽ12

ṽ11 − ṽ13

ṽ14

 = 0

(2.53)

The left-most matrix is rank 11 at {κω11 , κω12} and the orthogonal complement of its range is

spanned by the vector P1 ∈ R12. Left-multiplying (2.53) by PT1 yields a scalar expression involving
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κω2,

PT1
[
(A21 + A23) A12 A11 A14

]


ṽ01

ṽ12

ṽ11 − ṽ13

ṽ14

 = 0. (2.54)

Evaluating (2.54) at κω11 yields ω21 = 9.2098, and at κω12 yields κω22 = 6.5597.

The process for solving the equation associated with ε3 is similar to the single mass perturbation

case and leads to analysis of

[
(A31 + A33) A22 A21 A24

]


ṽ01

ṽ12

ṽ11 − ṽ13

ṽ14

+

[
(A21 + A23) A12 A11 A14

]


ṽ13

ṽ22

ṽ21 − ṽ23

ṽ24

+

[
(A11 + A13) A02 A01 A04

]


ṽ23

ṽ32

ṽ31 − ṽ33

ṽ34

 = 0.

(2.55)

Left-multiplication of (2.55) by PT1 yields a scalar expression for κω3 because P1 is orthogonal to

the ranges of the latter two matrices multiplying the coefficient vectors in (2.55). Completing this

analysis yields the following frequency expansions

κω =

√
36

5
+ ε(−2.7395) + ε2(9.2098) + ε3(−30.726) + · · ·

κω =

√
36

5
+ ε(−2.6271) + ε2(6.5597) + ε3(−24.643) · · · .
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Table 2.2: Frequency expansions for dual mass perturbation
Location First mode Second mode

θ0 κω11 κω21 κω31 κω12 κω22 κω32

43 −2.7955 9.4627 −31.734 −2.5710 6.4513 −24.519
44 −2.7395 9.2098 −30.726 −2.6271 6.5597 −24.643

44.5 −2.7114 9.0830 −30.221 −2.6552 6.6157 −24.708
44.8 −2.6945 9.0067 −29.918 −2.6720 6.6500 −24.749
45 −2.6833 8.9562 −29.727 −2.6833 6.6730 −24.775

Table 2.2 summarizes the expansions for additional values of θ0. It is also evident from the table

that as θ0 approaches 45◦, the difference between κω11 and κω12 approaches zero, thus, identical

mass perturbations at θ = {0◦, 45◦} only weakly detune the modal frequencies.

2.3.2.2 Identical Masses at θ = 0 and θ0 = 45◦

The θ0 = 45◦ case is considered separately because there is an additional reduction in rank in the

ε1-level analysis and so additional steps are required in order to resolve the weight vectors. Since

rank(A0) = 10, P0 is still defined so that its columns span R(A0)⊥, however, (2.49) is now

3.6795 + 1.3713κω1 35.047 + 13.061κω1

35.047 + 13.061κω1 −3.6795− 1.3713κω1

 v01 = 0,

which is singular at only one value of κω1, namely κω11 = κω12 = −2.6833. In this case the matrix

multiplying v01 evaluates to zero. Thus, dimN
([

(A11 + A13) A02 A01 A04

])
= 2 in (2.50). Let

u1,u2 ∈ R12 form a basis for this null space and, furthermore, let the columns of P1 ∈ R12×2 span

R
([

(A11 + A13) A02 A01 A04

])⊥. Solution vectors are then represented by

ṽ01 = α̃u11 + β̃u21

ṽ12 = α̃u12 + β̃u22

ṽ11 − ṽ13 = α̃u13 + β̃u23

ṽ14 = α̃u14 + β̃u24 ,

(2.56)
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where u1 and u2 are partitioned in the same manner as the solution vectors, and where α̃ and β̃

represent real parameters which will be determined at the next stage of analysis.

Left-multiplying (2.53) by PT1 yields the analog of (2.54),

PT1
[
(A21 + A23) A12 A11 A14

]

α̃u11 + β̃u21

α̃u12 + β̃u22

α̃u13 + β̃u23

α̃u14 + β̃u24

 = 0.

This expression is rearranged to

α̃PT1
(
A12u12+A13v11 − A13u13 + (A21 + A23)u11

)
+ β̃PT1

(
A12u22 + A13v11 − A13u23 + (A21 + A23)u21

)
= 0

(2.57)

When computing u1, u2 and P1 from a singular value decomposition of
[
(A11+A13) A02 A01 A04

]
,

(2.57) can be rewritten as

0.31427− 0.080763κω2 4.7283− 0.69671κω2

3.0604− 0.35681κω2 0.52256− 0.11416κω2

α̃
β̃

 = 0,

which yields κω21 = 6.6730 and κω22 = 8.9562.

The eigenfunction weights are of interest for this perturbation scenario since the modal fre-

quencies are degenerate to ε1. For κω21 , α̃ = 0.33215 and β̃ = 0.94323 from which the leading

order terms in the weights are determined

ṽ0 =
[
−0.70711 −0.70711

]T
.

Similarly, for κω22 , then α̃ = −0.96528 and β̃ = 0.26122 so

ṽ0 =
[
−0.70711 0.70711

]T
.
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Thus, the tangential displacements associated with the modes are dominated byW (θ) = cos(2θ)+

sin(2θ) and W (θ) = − cos(2θ) + sin(2θ), which implies the radial displacements with the slightly

detuned modes will be proportional to U(θ) ∝ − sin(2θ)+cos(2θ) and U(θ) ∝ sin(2θ)+cos(2θ).

The anti-nodes of the radial displacement subtend 45◦ but one anti-node at θ = 22.5◦ is located

between the perturbation locations.

2.3.3 Mass-Spring Perturbation

This section considers a mass perturbation located at θ = 0◦ and a radial spring perturbation located

at θ = 45◦. The objective is to choose the spring parameter g2 such that the first-order expansion

values for the perturbed n = 2 modal frequencies are equal, i.e., ω11 = ω12 (the mass parameter

g1 is taken to be unity). This will guarantee that the n = 2 modes will be essentially tuned

for sufficiently small ε, however, the behavior of the eigenfunction weight vector is of particular

interest in this scenario. It will be shown that like the dual mass perturbation case, the leading

order terms in the eigenfunction weight vector demonstrate that the anti-node orientations of the

modes do not coincide with the {0, 45} degree locations of the perturbations.

The nominal spring rate is the ring bending stiffnessK = EI/r̄3. A single radial spring affects

only one modal frequency in the unperturbed ring. When g1 = 0 and g2 = 1, the following

expansion parameters are derived,

κω11 = 0 , κω12 = 0.047451

where κω12 is associated with the perturbed mode whose radial displacement anti-node is aligned

with the spring at θ = 45◦. On the other hand, a single mass perturbation at θ = 0◦ decreases both

modal frequencies (see (2.33)),

κω11 = −2.1466 , κω12 = −0.53665.

The perturbations of the modal frequencies are additive at this order, so a simultaneous perturbation
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with a mass located at θ = 0◦ and a radial spring at θ = 45◦ yields

κω11 = −2.1466 + 0g2

κω12 = −0.53665 + 0.047451g2,

where g1 = 1 and g2 remains a parameter. By selecting g2 = −33.929 (a negative spring stiffness),

κω11 = κω12 = −2.1466, so for sufficiently small ε the modal frequencies can be considered

degenerate.

The weight vectors for the perturbed modes are of interest, however, analysis of A0v1 +A1v0 =

0 yields κω11 = κω12 = −2.1466 as constructed above but not the leading-order terms in the

weight vector, v0. To compute the weight vector, (2.50) is analyzed for this case. Since

rank
([

(A11 + A13) A02 A01 A04

])
= 10,

then u1,u2 ∈ R12 are defined as a basis for N
([

(A11 + A13) A02 A01 A04

])
. The solution vector

is parameterized using the same form as (2.56) but only the first partitions are reported because

they determine ṽ01 ,

ṽ01 = α̃u11 + β̃u21 , u11 =

−0.99856

0.053726

 , u11 =

0.36301

0.93179

 .
Furthermore, (2.53) reduces to

−7.8786 + 8.0818κω2 26.956− 12.359κω2

44.258− 10.352κω2 30.634− 4.4431κω2

α̃
β̃

 = 0,

so the following values for κω2 and {α̃, β̃} are determined,

κω21 = 1.7427, {α̃, β̃} = {−0.65770, 0.75328} =⇒ ṽ01 =

0.81285

0.58247

 (2.58)
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and

κω21 = 5.0235, {α̃, β̃} = {0.73174, 0.68158} =⇒ ṽ01 =

−0.58247

0.81285

 , (2.59)

where the ṽ01 are normalized to unit norm. This result demonstrates that for arbitrarily small but

non-zero ε, the leading order terms in the eigenfunction weights are orthogonal, which implies the

anti-nodes associated with the modes subtend 45◦, however, the anti-nodes are not aligned with the

perturbation locations. The tangential displacements are dominated by these leading order terms

and are given by W (θ) = 0.81285 cos(2θ) + 0.58247 sin(2θ) and W (θ) = −0.58247 cos(2θ) +

0.81285 sin(2θ). Thus, the radial displacements U will be proportional to

U(θ) ∝ −0.81285 sin(2θ) + 0.58247 cos(2θ) = cos (2(θ + 27.2π/180)) ,

U(θ) ∝ 0.58247 sin(2θ) + 0.81285 cos(2θ) = cos (2(θ − 17.8π/180)) .

2.4 Comparison with Other Analyses

The perturbation results are compared to Rayleigh-Ritz analysis when the basis functions are se-

lected to be W (θ) =
∑

k

(
α̃k cos(kθ) + β̃k sin(kθ)

)
, for k = 2 (two-term), and for k = 1, . . . , 10

(twenty-term). These basis functions satisfy the essential boundary conditions (continuity up

to the second derivative of the tangential displacement). The objective is to minimize the La-

grangian functional L with respect to basis function coefficients [Mei67]. The resulting gener-

alized eigenvalue problem is numerically solved. Comparisons with finite element analysis of a

thin silicon ring are also reported. The ring parameters are: E = 170 GPa, ρ = 2329 kg m−3,

ring height L = 270µm, ring width h = 100µm, I = 1/12Lh3, A = Lh, r̄ = 0.5 cm, and

κ = 1.0137× 10−4 s. Three-dimensional free tetrahedral elements are used and generate over one

hundred thousand degrees of freedom. The density of a small plug of material is manipulated to

create a localized change in mass. The added mass is normalized with respect to the nominal ring

mass to define ε.

The natural frequencies for the single added mass as a function of ε are depicted in Fig. 2.2
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when n = 2, 3. The perturbation analysis, FEA and twenty-term Rayleigh-Ritz analysis produce

essentially the same results for both n = 2 and n = 3 cases. The dual mass perturbation re-

sults are summarized in Figs. 2.3, 2.4 and 2.5 for the n = 2 pair of modes. In these figures, the

absolute value of the difference between the perturbed modal frequencies as a function of ε are

shown when identical mass perturbations subtend 43◦, 44◦ and 45◦. The modes weakly detune in

these cases, however, for sufficiently large mass the perturbation expressions show closer agree-

ment with the FEA. The results also depict interesting behavior for the dual mass perturbations

when the subtended angle is not equal to 45◦: the existence of a non-zero perturbation at which

the modal frequencies are equal. The finite perturbation that achieves degeneracy is quite accu-

rately predicted by the perturbation analysis as seen in Figs. 2.3 and 2.4. Lastly, Fig. 2.6 shows

the normalized modal frequency difference as a function of ε for the spring-mass perturbation.

It can be shown that the two-term Rayleigh-Ritz analysis produces the same order-ε dependence

as the perturbation analysis for these case studies. Thus, for sufficiently small perturbations, the

two-term Rayleigh-Ritz analysis offers greater simplicity for predicting the perturbed modal fre-

quencies. This simplicity is advantageous when deriving a trimming procedure for reducing the

modal frequency difference in ring resonators as described in [Fox90]. Although the perturba-

tion analysis appears to show greater predictive capability for large perturbations, especially with

multiple masses. An effective trimming procedure based these results is still to be developed.

The discrepancy between the perturbation results and Rayleigh-Ritz analysis for large pertur-

bations can be attributed to the fact that the third and fourth derivatives of the radial displacement

with respect to θ are not continuous because of the boundary conditions in (2.13) (equivalent to the

fourth and fifth derivatives with respect θ for the tangential displacement W ). The discontinuity is

proportional to ε and is essentially “built in” the perturbation solution. As the perturbation mag-

nitude increases, the discontinuity becomes more severe, and the Rayleigh-Ritz basis functions,

which have continuous derivatives of all orders have greater difficulty in approximating W (4) and

W (5) in a neighborhood of the perturbation locations.

Another comparison is made between the magnitudes of the coefficients of a Fourier series

expansion computed for the perturbed mode shapes. A comparison is possible between the pertur-

bation results and finite element analysis, but not the two-term Rayleigh-Ritz analysis as it assumes
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Figure 2.2: Top: The modal frequencies when n = 2 modes as a function of a single mass
perturbation. Bottom: The modal frequencies when n = 3 modes as a function of a single mass
perturbation.
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Figure 2.4: The normalized frequency split of the n = 2 modal frequencies with respect to ε when
θ0 = 44◦.
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Figure 2.5: The normalized frequency split of the n = 2 modal frequencies with respect to ε when
θ0 = 45◦. The modal frequencies detune for a non-zero perturbation.

50



0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

M
o
d
al

fr
eq

u
en

cy
d
i↵

er
en

ce

(%
of

th
e

n
om

in
al

fr
eq

u
en

cy
)

✏

two-term Rayleigh-Ritz

twenty-term Rayleigh-Ritz

Perturbation analysis up to ✏2
45

Normalized single mass perturbation size (% of the ring mass)
0 1 2 3 4 5

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0.95

0.96

0.97

0.98

0.99

1

 �1

 �2

45o ✏g1M
✏g

2
K

Figure 2.6: The normalized frequency split of the n = 2 modal frequencies with respect to ε for a
simultaneous mass-spring perturbation.

modes of the form cos(2θ) and sin(2θ). The comparison with twenty-term Rayleigh-Ritz analysis

is possible, but not included. For a given mass perturbation, the tangential velocities of the modes

are sampled at 1000 uniformly-spaced points along the ring centerline for the finite element re-

sults. Similarly, the tangential velocity is evaluated from the eigenfunctions and coefficient vector

derived from the perturbation analysis using the expansion up to ε and with γ = 0. Discrete Fourier

series are determined for these tangential velocities, and since the dominant harmonic corresponds

to the 2θ terms, the magnitudes of these Fourier coefficients are normalized to unity. The magni-

tude of the Fourier coefficients for each perturbed mode are compared in Figs. 2.7 and 2.8 for two

perturbation sizes, ε = 0.017 and ε = 0.069. The perturbation and FE results are very close for

the harmonic indices below 6. The largest contributions after the dominant 2θ component are the

θ and 3θ components.

2.5 Comparison of the Results with a Practical Ring Problem

This section takes a closer look at the comparison of the results with a practical problem. The prop-

erties are selected based on the resonator described in Chapters 3 and 4. The mass perturbations

are solder spheres (see Chapter 4). The electrostatic tuning is based on the spring perturbations.

The material and geometrical properties of the ring are described in Sec. 2.4. Based on the density
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Figure 2.7: Magnitude of the coefficients of the Fourier series expansion of the lower frequency
n = 2 mode derived from the perturbation analysis using ṽ0 + εṽ1 as the weight vector. The
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Harmonic

1 2 3 4 5 610-6

10-5

10-4

10-3

10-2

10-1

100

 from FE for 0 = 0.017
 from perturbation anlysis for 0 = 0.017
 from FE for 0 = 0.069
 from perturbation anlysis for 0 = 0.069

, Perturbation analysis for ✏ = 0.017

, Perturbation analysis for ✏ = 0.069
, Finite element for ✏ = 0.069

, Finite element for ✏ = 0.017

M
ag

n
it

u
d
e

Perturbation analysis, ✏ = 0.017

Perturbation analysis, ✏ = 0.069

Finite element, ✏ = 0.069

Finite element, ✏ = 0.017

Figure 2.8: Magnitude of Fourier series coefficients of the higher frequency n = 2 mode.

52



of tin (Sn) which is the primary element in solder spheres, the relative size of the solder sphere

to the silicon (Si) ring can be calculated. The density for Sn and Si are ρSn = 7310kg/m3, and

ρSi = 2329kg/m3. The volume for a solder sphere can be calculated as VSn = 4
3
π(d

2
)3 = π d

3

6
,

where d is the diameter of the sphere. The masses for the solder sphere and the silicon ring are

mSn = ρSnVSn = ρSnπ
d3

6
and Mring = ρSi2πr̄A, respectively. The value for the perturbation param-

eter ε is equal to the ratio of the masses of the perturbation and the ring.

ε =
mSn

Mring
=

ρSnπ
d3

6

ρSi2πr̄A
= (

ρSn

ρSi
)
d3

12r̄A

Assuming that the nominal solder sphere diameter is d = 75µm, using the same parameter for the

ring as in Sec. 2.4, the value of ε is 8.1702× 10−4.

2.5.1 Single Mass Perturbation Comparison

From Sec. 2.3.1, the values for the first and second frequency deviation terms are κω11 = −2.14662,

κω12 = −0.53665 , κω21 = 3.91039, and κω22 = 1.2159. The values of κ for the silicon ring in

hand are κ =
√
ρSi

Ar̄4

EI
= 1.0139× 10−4, which lead to the following frequency deviations

∆1 = −17.2721rad/s , ∆2 = −4.3164rad/s,

which translate to 2.0620 Hz frequency detuning. Placing the same type perturbation on a uniform

ring results in a 7.7673 Hz change in the frequency split for n = 3 modes. These values are in

the same ballpark as the change in the frequency split resulting from a nominal solder sphere mass

perturbation as will be discussed in Chapter 4.

2.5.2 Dual Mass Perturbation Comparison

For the case of having two mass perturbations one at θ = 0 and one at θ0 = 44◦, from Sec.2.3.2.1,

the frequency deviation terms are κω11 = −2.7395, κω12 = 2.6271, κω21 = 9.2098, and κω22 =

6.5597, which result in −22.0150rad/s and −21.1268rad/s frequency deviations, which lead to a

0.1414 Hz frequency detuning. For the case that θ0 = 45◦ where κω11 = κω12 , the frequency
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detuning is smaller for small values of ε. The frequency detuning for this case is only 0.0024 Hz.

2.5.3 Mass-Spring perturbation comparison

The objective is to compensate for the existence of the mass using the appropriate size spring.

Based on the results from Sec.2.3.3, the relative size of the spring with respect to the mass is

g2 = −33.929. The spring needs to implemented electrostatically. The force from a capacitive

plate is 1
2
CV 2, where C is the capacitance and V is the voltage. The capacitance C for two parallel

plates in the vacuum can be written as ε0A0

d30
, where ε0 = 8.854182 × 10−12F/m, d0 = 25µm

and A0 = 1
8
2πr̄L are the vacuum permittivity, the gap between the plates and the exposed area,

respectively. So the voltage corresponding to the g2 spring can be calculated as

V =

√
g2
ε

ε0

EI

r̄3

2d3
0

A0

= 53.138V,

The frequency split associated with this case is fairly small as expected since the relative stiffness of

the spring is chosen to match the ε terms in the expansion and it is equal to 0.0036 Hz. The voltage

value is at the same order of magnitude as the voltage values used in [KM06] for electrostatically

tuning the resonators.

2.5.4 Results Based on Two-Term Rayleigh-Ritz Analysis

As discussed in Sec. 2.4, for sufficiently small perturbations, the two-term Rayleigh-Ritz analysis

leads to accurate results with greater simplicity, which is advantageous for dealing with the fre-

quency tuning problem. This section takes a closer look at the results that can be extracted from

this analysis. Although, for large perturbations, the results from this analysis deviate from the

actual frequency splits, for practical problems, the mass perturbations used in the tuning process

are relatively small. It can be shown the location of the anti-nodes ψ for modes number n can be

written as

tan(2nψ) =
Σimi sin(2nφi)

Σimi cos(2nφi)
.

54



where mi and φi are the mass perturbation sizes and locations, respectively. The mass sizes are

simply εMring. The resonant frequencies can be written as ω = ω0

√
5

(1+ε)5±3ε
which can be ex-

panded approximately as

κω ≈
√

36

5
− 2.14663ε+ 5.15190ε2,

κω ≈
√

36

5
− 0.53665ε+ 0.32199ε2,

for n = 2 modes.

The resonant frequencies for n = 3 modes can be written as ω = ω0

√
10

(1+ε)10±8ε
which can be

expanded as

κω ≈
√

576

10
− 6.83052ε+ 18.4424ε2,

κω ≈
√

576

10
− 0.758947ε+ 0.227684ε2.

As it can be seen, the expansions are the same as the expansions for the perturbation analysis

(see (2.43) and (2.47)) for the ε term, but they start to deviate for higher order terms. For the case

of dual same size mass perturbations, one at 0 and one at 44◦, we have φi = 0, 44◦, which leads to

tan(2nψ) =
Σimi sin(2nφi)

Σimi cos(2nφi)
=

sin(0) + sin(4× 44◦)

cos(0) + cos(4× 44◦)
=⇒ ψ = 22◦.

The expansions for the resonant frequencies approximation can be written as

κω ≈
√

36

5
− 2.73947ε+ 8.3905ε2,

κω ≈
√

36

5
− 2.62709ε+ 7.71625ε2.
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When the second mass is placed at 45◦, φi = 0, 45◦. and the frequency expansions are

κω ≈
√

36

5
− 2.6833ε+ 8.04984ε2,

κω ≈
√

36

5
− 2.6833ε+ 8.94984ε2.

Similar to the single mass perturbation case, the ε terms match the perturbation analysis. However,

for higher order terms, the expansions deviate.

2.5.5 Anti-node Orientation and Cross Coupling

In addition to the importance of having zero frequency splits for different modes, it is also impor-

tant to know the anti-node orientation ψ, which provides information about the vibration pattern.

Lining up the electrodes and sensors with the anti-nodes is advantageous and reduces the amount

of cross-channel coupling from one mode to the other. As it will be shown in Chapter 3, a two

input two output frequency response is sufficient for finding the frequency splits and the anti-node

orientations. It is ideal to isolate one mode from the other by lining up the electrodes and sensors

with the vibration pattern. However, due to the existence of higher order terms in the radial and

tangential displacements, the modes are not necessarily orthogonal to each other. For instance, for

the case of having a single mass perturbation, which introduces about a 6 Hz frequency split in

a silicon ring with geometrical properties given in Sec. 2.4, assuming that the sensor electrodes

subtend 45◦ and they cover from −22.5◦ to 22.5◦ and from 22.5◦ to 67.5◦, exciting the ring at

θ = 180◦ will lead to about 0.5% cross-channel coupling. This level of detuning is similar to what

can be seen for manufactured resonators (see Chapter 3). The cross-coupling is about the same for

the case that there are two equal size mass perturbations placed at 0 and 45◦. This observation is in

line with the electrostatically tuned case, where the off-diagonal terms are −40 to −50 dB smaller

than the diagonal channels.
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2.6 Summary of Ring Dynamics

Perturbation expansions of the solutions of an imperfect ring have been developed for several case

studies when the perturbations are constrained to be point masses and massless radial springs.

Although each perturbation scenario is solved on a case-by-case basis, a general procedure is out-

lined for determining the expressions that yield the successive terms in the frequency expansions.

Boundary conditions are determined that must be satisfied by the uniform ring segments that lie

between the perturbation locations, and the motion of these segments is represented as a weighted

sum of the eigenfunctions for the uniform thin ring. The eigenfunctions, natural frequencies, and

weights are all functions of the perturbation parameter, ε, which is the perturbing mass normalized

by the ring mass. The expansions yield successive algebraic problems that are solved for a single

perturbing mass, two masses with a varying angle between them, and a mass-spring perturbation.

Rayleigh-Ritz analysis of the case studies using two- and twenty-term bases are also reported. For

mass perturbations less than a few percent of the ring mass, all techniques yield essentially the

same results, however, for larger mass ratios, the perturbation analysis more closely follows the fi-

nite element results in the two-mass cases. The critical issue that needs to be considered is the fact

that as opposed to the practical problem in which the initial state of the ring resonator is imperfect,

and the goal is to make the dynamics more desirable, this section solves the exact opposite prob-

lem. The initial state was perfect and different types of imperfections applied to the perfect ring,

and their effects were studied. Although the perturbations considered in this section seem simple,

they are quite accurate models of modifications we use in practice for correcting for manufactur-

ing imperfections. By looking at the frequency response, we cannot figure out the nature of the

perturbation, but we can find the type of perturbations that can correct for the initial imperfection.

From the study of the effect of imperfections on an originally uniform ring, we learned what to do

to perturb an originally imperfect ring, regardless of the nature of the imperfections, to make the

dynamics more ideal. Chapters 3 and 4 apply the idea to a practical ring resonator.
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CHAPTER 3

Wafer-Level Compensating for the Manufacturing

Imperfections for n = 2 Modes

Nomenclature - Chapter 3

A cross sectional area E modulus of elasticity
I cross section moment of inertia r̄ ring mean radius
θ angle coordinate ωn natural frequency for mode n
ρ density j

√
−1

ω1,0 pre-perturbation natural frequency for the first companion mode
ω2,0 pre-perturbation natural frequency for the second companion mode
ω1 post-perturbation natural frequency for the first companion mode
ω2 post-perturbation natural frequency for the second companion mode
∆0 := ω2,0 − ω1,0 pre-perturbation frequency split
∆ := ω2 − ω1 post-perturbation frequency split
ω0 average modal frequency
U spatial part of radial velocity W spatial part of tangential velocity
i spoke layer k harmonic
αi,k radial velocity amplitude for the kth harmonic in spoke layer i
βi,2 tangential velocity amplitude for the 2nd harmonic in spoke layer i
α̃i,k =

αi,k
α1,2

normalized radial velocity amplitude for the kth harmonic in layer i

β̃i,2 =
βi,2
α1,2

normalized tangential velocity amplitude for the 2nd harmonic in layer i

Tp spatial kinetic energy change from a point mass perturbation
T1,0 nominal kinetic energy for the first companion mode
T2,0 nominal kinetic energy for the second companion mode
T1 kinetic energy change for the first companion mode
T2 kinetic energy change for the second companion mode
ε1 = T1

T1,0
normalized kinetic energy perturbation for the first companion mode

ε2 = T2
T2,0

normalized kinetic energy perturbation for the second companion mode
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Nomenclature - Chapter 3

ψ1,k phase of the kth harmonic for the first companion mode
ψ2,k phase of the kth harmonic for the second companion mode
Q1 quality factor for the first companion mode
Q2 quality factor for the second companion mode
m0 nominal mass perturbation αT normalization factor for amplitudes
γg := 1

4
ω0m0αT global sensitivity parameter rq mass perturbation relative to m0

Coriolis vibratory gyros (CVGs) which employ mode-matched resonators have the advantage

of maximizing the signal-to-noise ratio (SNR) of the angular rate measurement relative to noise

introduced by signal conditioning electronics. In many cases, the resonators are designed with

some degree of axisymmetry such that one or more pairs of modes possess nominally degen-

erate modal frequencies. Small fabrication errors, however, cause the modal frequencies to de-

tune, thereby reducing the signal-to-noise ratio that can be achieved with the associated CVG (see

[KM13] for the analysis of a disk resonator). With the successful development of mode-matched

micro-scale disk resonators [CGL14, SKS15, NAS13], quadruple mass resonators [TPZ11], hemi-

spherical [BBC13, BBC14, SMG14, PZT11, ZTS12, KBK15, TSH14], and hemitoroidal [CWY14,

HJC14] resonators, it has become imperative to create post-fabrication corrective procedures so

that the pairs of modal frequencies can be brought back to degeneracy. This chapter reports the

development and application of a wafer-level targeted silicon deep reactive-ion etching (SiDRIE)

process for eliminating the modal frequency differences in a planar axisymmetric silicon resonator.

The reduction of the frequency difference below 100 mHz is demonstrated for seven resonators on

a wafer by selective ablation of masking resist and, in a subsequent step, a conformal layer of

Parylene-C such that the mass distribution of the resonator is altered by the removal of silicon at

the ablated areas with a timed etch.

There are currently few references reporting the permanent modal frequency mismatch reduc-

tion in MEMS mode-matched resonators as the current focus is to refine the fabrication processes to

yield small initial modal frequency differences before any post-fabrication corrective procedures.

A notable effort is [BBC14] wherein gold was ablated from the lip of a micro-scale hemispher-

ical resonator in a post-fabrication step. Laser ablation of a ring was also reported in [GHB05]
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but it degraded the quality factors. The planar resonator design in this chapter was also used for

modal frequency mismatch reduction by mass-loading the resonator [SKS15] (see Chapter 4). One

advantage of the present approach over the mass deposition in [SKS15] is the fact that the etch sim-

ply removes silicon and does not introduce metals or other materials that may not be compatible

with downstream processing and packaging. Electrostatic tuning approaches, which do not yield

permanent modification of the resonator, are not reviewed here.

The chapter is organized as follows. Sec. 3.1 briefly reviews the resonator used in this study.

The test procedure is described in Sec. 3.1.1. The manufacturing of the resonator and the imper-

fections caused during the process are discussed in Sec. 3.1.2. Secs. 3.1.3 and 3.1.4 develop a

semi-analytical model of the resonator’s n = 2 modal frequency difference as a function of mass

perturbations. A global sensitivity parameter is also defined and unifies several aspects of the

model developed in [SKS15]. In the modeling for this chapter, it is assumed that the anti-node

orientation remains the same before and after mass perturbations. Sec. 3.2.1 introduces the guided

blanket etch, which is the first step in the simultaneous wafer-level reduction of modal frequency

differences for individual die. In Secs. 3.2.2 and 3.2.3 the shortcomings of the guided blanket etch

are elucidated and motivate the second step of the tuning process, which involves further targeted

etching within each die. The results are discussed in Sec. 3.3 and Sec. 3.4 summarizes the results

of this chapter.

3.1 Resonator Description

The resonator used in the present work is composed of nine nested rings connected by spokes of

varying widths and spacing. There are twenty-four large spokes at a given radius which are targets

for mass deposition or removal –see Fig. 3.1. The innermost large spoke layer is designated as the

first layer (i = 1), and the outermost spoke layer is designated as the fourth layer (i = 4). The

resonator is a modification of the design described in [SKS15]. The fabrication process and test

procedure will be discussed here shortly. The reader is referred to [SKS15] for more information on

the resonator fabrication, electrode layout, test procedure, and the process for extracting pertinent

modal parameters from empirical frequency response data. In the present report, the resonator is
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Figure 3.1: Electrode arrangement (S is a sense pick-off, and D is an electrostatic forcer), angle
reference, and spoke layer indices. The dots “•” indicate the locations of perturbations for the
finite element case studies.

fabricated without the gold film on, or the reservoirs in, the large spokes. Consequently, these

areas are targets for further etching to selectively remove material from the resonator instead of

adding material as was pursued in [SKS15]. It will be shown that material removal at the large

spokes locations does not modify the stiffness properties of the resonator and so models that readily

predict the changes in the resonator modal properties can be developed by assuming only the

mass distribution is perturbed. The ultimate goal of this research is the wafer-level production

of axisymmetric resonators with degenerate modal frequencies, but to make the post-blanket etch

processing efficient, improved perturbation models of the resonator are necessary. Thus, the model

developed in [SKS15] is further refined in Sec. 3.1.3 by assuming the anti-node orientation does

not change by placing mass perturbations (this is a reasonable assumption for almost all cases

studied in this chapter) and applied to the resonators on the 4 inch wafer shown in Fig. 3.4. The

model will be further refined in Chapter 4 by removing this assumption. Probing of individual

resonators is achieved with the card shown in the figure inset or by direct wire bonding between

the resonator and a buffer board.
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3.1.1 Test Procedure

Fig. 3.1 shows the pick-off and forcer arrangement that is optimized for testing the n = 2 pair.

In order to optimize the observability and controllability of the n = 2 pair in a uniform thin

ring, the centroids of the two pick-offs should subtend a 45◦ arc due to the fact that the n =

2 mode shapes are elliptical, and the orientation of one anti-node is 45◦ away from the other

one. We dedicate three neighboring electrodes for a single pick-off because this maximizes the

measurement signal associated with the n = 2 modes. The antipodal electrodes are configured as

electrostatic forcers (the actuators), also evident in Fig. 3.1. In a non-ideal resonator, it is shown

that the angle subtended by the anti-node orientations does not necessarily depart exactly 45◦ (see

Chapter 2).

In a typical experiment, the two pick-off currents are buffered with high gain transresistance

amplifiers. The amplifier outputs are then filtered with analog anti-alias filters and then sampled

by the digital signal processing (DSP) analog to digital converter (ADC). The excitation signals

can be directly applied by the DSP DAC since the required current is very low. Samples of the

input and output sequences are stored for later processing, typically as multi-channel empirical

frequency response estimates and occasionally a parametric time-domain model.

The UCLA CVG cannot operate in atmospheric pressure because squeeze film damping be-

tween the gaps created by the resonator rings and the electrodes (and other material attached to the

base wafer) heavily damps the response of all modes (see Chapter 5). In fact, no modes are evident

when the resonator is tested in air. Thus, the resonators are tested in a vacuum chamber in which

the pressure can be reduced to several microTorr if necessary.

Using the aforementioned experimental set up yields a UCLA CVG broadband frequency re-

sponse typical to that shown in Fig. 3.2. As we can see in this figure, there are three distinct peaks

in the 0 to 28 kHz frequency band. They have been determined to be associated with the n = 1, 2

and 3 modal pairs as labeled.

Although Fig. 3.2 seems to indicate a single mode at isolated frequencies, zooming into a

narrower frequency band around any of the peaks reveals that there are two modes. If the resonator

where “perfectly” fabricated, only a single peak would be evident because the degenerate modes
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Figure 3.2: Broadband frequency response of the resonator magnitude plot showing a number of
in-plane modes.

are not controllable or observable from any single forcer/pick-off pair. In fact, as the frequency

detuning is eliminated, it is necessary to use the multi-input multi-output (MIMO) data to correctly

build a model with the correct number of modes. As will be shown more extensively in Sec. 3.1.2

manufacturing errors “break” the resonator symmetry and lead to detuning of the various pairs of

modes. This detuning will be evident in zoomed in frequency response plots.

3.1.2 Manufacturing Process and its Imperfections

Several iterations of the UCLA CVG were fabricated by Teledyne Scientific and Imaging. The

resonator wafer is 270 µm thick (111) silicon (Si), and the base wafer is 450 µm thick (100)

Si. The base wafer is etched to create recessed gaps for clearance of the resonator rings and

thermally oxidized for electrical isolation. Openings in the oxide for substrate electrical contact

are etched in the oxide layer, and gold (Au) is deposited for the wafer-wafer bonding and electrical

connection between the resonator and base wafers. Separately, the resonator wafer is patterned

with the mating bond metal pattern, and then the resonator and base wafers are joined using an

aligned Au-Au thermo-compression bond process. Definition of the resonator rings and reservoir

structures is then done using a two-level mask and deep reactive-ion etching. A resist mask is

subsequently applied and patterned to define the resonator structure. The oxide layer is etched in
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Figure 3.3: (Left) Resonators on the wafer with labels. (Right) Mean frequency and frequency
mismatch

these locations, and a partial SiDRIE is performed using the same resist mask. The resist is then

stripped, and the DRIE etch continued using the oxide mask to complete the etch of the resonator

rings through the top wafer thickness, while simultaneously etching the shallow reservoirs into

outermost spokes. The design of the UCLA CVG would, ideally, yield degenerate n = 2 and

n = 3 modes, however, small manufacturing errors will always detune these modes. For example,

Fig. 3.3 shows 16 resonators on a single 4-inch diameter wafer stack. The masking steps are

identical for each resonator, and the resonators are simultaneously etched, however, it is evident

that at the termination of the standard etch process, each mean frequency of the n = 2 pairs is

different and so is their degree of detuning. In fact, it appears that each resonator etches in its own

unique way, so it is impossible to specify or to determine a priori what the mean frequency will

be let alone the final frequency detuning. Furthermore, the degree of detuning is so large for each

resonator that it is essentially useless as a high-performance CVG in its present state. The same

behavior is also seen for n = 3 modes.

To achieve the CVG’s highest signal-to-noise ratio, it is necessary to modify the dynamics

of each resonator to eliminate the frequency detuning. In this project, the focus is on perturbing

the mass distribution while keeping the stiffness matrix untouched and one unique aspect of the

UCLA CVG design is its ability to support research into the modification of the mass distribution
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Figure 3.4: Sixteen resonators are fabricated on a 4 inch wafer. Wafer probe of a single resonator
also shown.

for micro-scale axisymmetric resonators.

3.1.3 Perturbation Model

Uniform thin rings possess mode shapes given by cos(nθ) and sin(nθ) with associated degenerate

natural frequencies ω2
n = n6−2n4+n2

n2+1
EI
ρAr̄4

, for n = 2, 3, 4, . . . , where E is the modulus of elasticity,

I is the ring cross-section moment of inertia, ρ is the ring material density, A is the ring cross-

sectional area, and r̄ is the ring radius. These mode shapes and frequencies are derived from a

ring equation of motion that is developed under the same assumptions as those made for an Euler-

Bernoulli beam [Rao07]. If the ring is perturbed, however, then, generally speaking, the mode

shapes associated with the perturbed frequency ωn are no longer simply cos(nθ) and sin(nθ) but

will be composed of harmonics of all orders (see Chapter 2). The mode shapes associated with

the resonator considered in this chapter are composed of multiple harmonics even for the “ideal”

resonator because of the manner in which each ring is attached to its neighbors by the system of

spokes, and despite the fact that the 2θ harmonics have the largest amplitude for ω2 (the n = 2 wine

glass modes), it is necessary to quantify other dominant harmonics, to build an accurate model of

the spoke velocities.
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Due to the complexity of the resonator design, a semi-analytical approach is adopted in order

to develop a perturbation model for the resonator dynamics. As in [SKS15], the natural frequency

deviation due to perturbations at the large spokes is modeled as a change in the resonator kinetic

energy only –the elastic strain energy remains constant under these perturbations. This assumption

is supported by finite element analysis. For example, Fig. 3.5 shows the strain energy density on a

portion of the resonator for an n = 2 mode. The dark vertical bands on the side walls at the root

of the spokes are the areas with the largest strain energy density while the white areas are where

strain energy is smallest. Since the center of the spokes themselves have very little strain energy,

selective etching these areas is assumed to only modify the kinetic energy of the modes.

The analysis of the perturbed kinetic energy of a given mode due to a small change in mass

at the large spokes requires the radial and tangential components of the in-plane velocities at the

large spokes. These velocity components can be represented as a discrete Fourier series with twelve

distinct spatial harmonics since there are twenty-four spokes in a given layer. It will be shown that

the ratios of the amplitudes of these harmonics can be assumed to be independent of the intensities

and location of the mass perturbations. In other words, it is assumed that the mass perturbations

are sufficiently small so that the relative amplitudes of the harmonics present in a given mode

are not modified by the presence of the mass perturbations. This assumption is supported by the

numerical case studies reported in Sec. 3.1.4. On the other hand, the spatial orientations (phases)

are dependent on the mass perturbations. For a given mode of the n = 2 pair, denoted with index

p ∈ {1, 2}, the spatial part of radial and tangential velocities at a particular spoke, defined by angle

θ and spoke layer i ∈ {1, 2, 3, 4}, can be represented by the following partial Fourier series

Up,i(θ) =
∑

k=2,6,10

αi,k cos(k(θ − ψp,k)),

Wp,i(θ) = βi,2 sin(2(θ − ψp,2)),

(3.1)

where the index k defines the kθ harmonic of the n = 2 mode shape, and Up,i andWp,i represent the

radial and tangential velocity components, respectively. The amplitudes of the harmonics are rep-

resented by αi,k and βi,2 for the radial and tangential velocities, respectively, and the phases of the

harmonics are represented by ψp,k. It should be noted that (3.1) is specific for the resonator design
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Figure 3.5: Detail of meshed resonator showing the large spokes. The dark vertical bands on the
sidewalls are the areas where the strain energy density is highest.

under consideration and that other axisymmetric designs may possess a different set of dominant

harmonics in the mode shapes. At the very least, αi,k and βi,k will differ across resonator designs,

however, Sec. 3.1.4 outlines a procedure that can be used to identify the important harmonics and

associated parameters.

The form of (3.1) requires that the following be justified: 1) only three spatial harmonics are

required to represent a spoke’s radial velocity component (k ∈ {2, 6, 10}), 2) only one harmonic is

required to represent a spoke’s tangential velocity (k = 2), 3) the amplitudes of the harmonics are

independent of θ and n = 2 mode under consideration (the amplitudes only depend on the layer, i,

and harmonic index, k), 4) the phases ψp,k depend on the mode and harmonic indices, but not the

layer, and 5) the radial and tangential components have the same k = 2 phase. The justification is

postponed until Sec. 3.1.4 so that an expression for the post-perturbation change in the differences

of the modal frequencies can be developed.

A single mass perturbation of value m0 (may be negative if mass is removed) located on the ith

layer at angle θ0 creates the following spatial perturbations to the kinetic energies of each n = 2

mode,

Tp =
1

2
m0

(
U2
p,i(θ0) +W 2

p,i(θ0)
)
, p = 1, 2. (3.2)

The out-of-plane velocity is negligible for the n = 2 modes and is ignored in this analysis. The

Rayleigh-Ritz method is used to estimate the perturbation of a modal frequency due to a pertur-
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bation of the resonator kinetic energy [Fox90]. Consequently, the mass perturbation perturbs each

modal frequency according to

ω2
1 = ω2

1,0

1

1 + ε1
≈ ω2

1,0 (1− ε1) ,

ω2
2 = ω2

2,0

1

1 + ε2
≈ ω2

2,0 (1− ε2) ,
(3.3)

where ω1,0 and ω1 are the pre- and post-perturbation natural frequencies of one of the n = 2 modes,

respectively, and ω2,0 and ω2 are the pre- and post-perturbation natural frequencies of the second

companion n = 2 mode. When the modification on the dynamic of the structure is through point

mass perturbations, the change in kinetic energy associated with a given mode is due to the new

added masses relative to the new anti-nodes, plus the change in the kinetic energy associated with

the point masses created the initial frequency split. The second term is caused by the change in

the vibration pattern (anti-node orientation). So it should be noted that the analysis presented in

this chapter is only accurate when the initial and final anti-nodes are essentially the same. This can

happen in practice by adding relatively small masses anywhere (so the change in the frequency split

is small compared to the initial split) or when large masses on the initial anti-node are placed since

this implies that the final anti-node will then be close to the initial anti-node. Assuming preserving

the anti-node orientation before and after the perturbations is reasonable for this chapter since for

almost all cases the masses are placed near the anti-node orientations, because for tuning one single

mode, the perturbation locations are essentially restricted to the anti-node orientation. When the

objective becomes tuning multiple modes, though, the model presented herein fails to predict the

results accurately. The model in this chapter is useful for studying the effect of other harmonics in

the dynamics of the structure. A more accurate model for addressing this limitation is presented in

Chapter 4 where there is no a priori information about the perturbation sites.

The relative change in kinetic energies of the modes due to the perturbation are denoted ε1 and

ε2 and are equal to T1/T1,0 and T2/T2,0, where T1,0 and T2,0 are the nominal kinetic energies in each

mode prior to the perturbation. It is necessary for T1 << T1,0 and T2 << T2,0 in order for these

approximate expressions to be accurate, however, this requirement is satisfied in practice since the

absolute change in a given modal frequency is typically less than one part in a thousand.
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The mass perturbations are selected to reduce the difference in perturbed modal frequencies so

it is useful to manipulate the expressions in (3.3) such that the difference is explicit,

ω2
2 − ω2

1 = ω2
2,0 − ω2

1,0 − ω2
2,0ε2 + ω2

1,0ε1. (3.4)

Terms can be factored: ω2
2 −ω2

1 = (ω2−ω1)(ω2 +ω1) and ω2
2,0−ω2

1,0 = (ω2,0−ω1,0)(ω2,0 +ω1,0).

The expressions of interest are the pre- and post-perturbation differences in the modal frequencies.

The pre-perturbation difference is denoted ∆0 := ω2,0 − ω1,0 and the post-perturbation difference

is denoted ∆ := ω2 − ω1, thus, (3.4) is rearranged to

∆ = ∆0
ω2,0 + ω1,0

ω2 + ω1

− ω2
2,0

ω2 + ω1

ε2 +
ω2

1,0

ω2 + ω1

ε1. (3.5)

Let ω0 represent the average modal frequency of the n = 2 modes for the resonator under con-

sideration, then, the leading order value of the ratio (ω2,0 + ω1,0)/(ω2 + ω1) is 1 and the leading

order value for the ratios ω2
2,0/(ω2 + ω1) and ω2

1,0/(ω2 + ω1) is ω0/2. Thus, the following relation

approximately relates the pre- and post-perturbation values of the frequency difference,

∆ = ∆0 −
ω0

2

(
T2

T2,0

− T1

T1,0

)
. (3.6)

Substituting (3.2) into (3.6) yields an expression relating the pre- and post-perturbation modal

frequency differences due to a mass perturbation of size m0 located on the ith layer at angle θ0

∆ = ∆0 −
ω0m0α

2
1,2

4T2,0

[(∑
k

α̃i,k cos(k(θ0 − ψ2,k))

)2

+
(
β̃i,2 sin (2(θ0 − ψ2,2))

)2
]

+
ω0m0α

2
1,2

4T1,0

[(∑
k

α̃i,k cos(k(θ0 − ψ1,k))

)2

+
(
β̃i,2 sin(2(θ0 − ψ1,2))

)2
]
,

(3.7)

where k is summed over indices {2, 6, 10}. In this expression the radial harmonic amplitude for

k = 2 and i = 1, i.e. α1,2, is factored out of the kinetic energy expressions and is used to normalize

the remaining amplitudes. In other words, α̃i,k := αi,k/α1,2 and β̃i,2 = βi,2/α1,2. It will be shown

in Sec. 3.1.4 that these normalized amplitudes can be assumed to be independent of the mode
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under consideration and independent of the size of the (small) mass perturbation. The fact that α̃i,k

and β̃i,2 are the same for both n = 2 modes, and the fact that they are independent of the mass

perturbation, implies that the kinetic energy in a given mode is determined by specifying any one of

the harmonic amplitudes. In this analysis, it is convenient to specify α1,2, which is why it is factored

out of the expressions in (3.7). Thus, further consolidation in (3.7) is possible because α2
1,2/T1,0 =

α2
1,2/T2,0. These ratios are denoted by the parameter αT . Thus, the constant multiplying the sums

with the normalized velocity components is defined as the resonator sensitivity parameter, denoted

γg,

γg :=
1

4
ω0m0αT . (3.8)

This single global sensitivity parameter represents, in a general sense, the change in the modal

frequency difference for a mass perturbation of value m0 (the unit of γg is rad/s). It will be numer-

ically estimated in Sec. 3.1.4 and experimentally estimated in Sec. 3.2.2. Note that γg can be used

for all resonators of a specific design, i.e., it is not necessary to measure the parameter for each

resonator. This definition also removes a shortcoming of the model developed in [SKS15] which

required the estimation of a separate sensitivity parameter for each layer of spokes. This unified

treatment is also applied to a more accurate model in Chapter 4. The global sensitivity idea will be

applied to both n = 2 and n = 3 modes which leads to global sensitivity value for each mode.

Multiple mass perturbations can be addressed by extending (3.7). In fact, the effect of simulta-

neous perturbations on the modal frequency difference are additive because the perturbed kinetic

energies of the modes are simply a sum of the individual perturbations, i.e. these terms are added

to (3.2). Thus, if there are l mass perturbations, located at angles θq, q = 1, 2, . . . , l, and spoke

layer iq ∈ {1, 2, 3, 4} with mass rqm0, where rq represents the mass perturbation relative to m0,

then the expression for ∆ is

∆ = ∆0 − γg

l∑
q=1

rq

[(∑
k

α̃iq ,k cos(k(θq − ψ2,k))
)2

+
(
β̃iq ,2 sin (2(θq − ψ2,2))

)2

−
(∑

k

α̃iq ,k cos(k(θq − ψ1,k))
)2

−
(
β̃iq ,2 sin(2(θq − ψ1,2))

)2
]
.

(3.9)

It should be noted that the expression in (3.9) is a representation of the relationship of the
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frequency split before and after perturbations assuming that the anti-node orientation does not

change due to the perturbations.

It is worthwhile reviewing what information is required to use (3.9) to predict ∆. First, ∆0 is

estimated from frequency response measurements of the resonator prior to the mass perturbation

using the modeling process described in [SKS15]. The normalized radial and tangential velocity

amplitudes are determined from finite element analysis (FEA) in Sec. 3.1.4 and yield a numerical

estimate of γg (a series of experiments in Sec. 3.2.2 provide an experimental estimate). Finally, the

phases of the harmonics, ψp,k, must be considered. The phases must be experimentally determined

because they will be different for every fabricated resonator and will change (slightly) after a

perturbation cycle. This analysis provides insight into what should be measured for employing a

comprehensive model of the frequency perturbation as a function of the mass perturbation. For the

resonator design under consideration, however, it is only possible to reliably measure the phase of

the k = 2 harmonic. This is discussed in more detail in Sec. 3.2.

3.1.4 Numerical Case Studies

This section provides numerical justification for the assumptions that were invoked in claim-

ing (3.1) is a reasonable model for the spoke velocities. Since the resonator dynamics are difficult

to quantitatively analyze using a first principles approach, modal analysis of the structure using fi-

nite elements is used to compute the radial and tangential velocity components at all large spokes.

The finite element model is not fit to a given empirical frequency response as this would be a time

consuming and ultimately fruitless pursuit since it is not known how to estimate the local varia-

tions in mass and stiffness that produce the observed deviations from a modally degenerate “ideal”

resonator. Thus, the modal analysis is used to identify features in the modes which appear to be

invariant under small perturbations. All continuous structural systems have an infinite number of

natural frequencies and finite element analysis can be used to estimate a subset of these natural

frequencies and their associated mode shapes. Although these numerical techniques are not use-

ful for predicting the dynamics of given physical resonator, they can at least be used to estimate

approximate values for the modal frequencies. As the UCLA CVG exploits two resonant modes
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Figure 3.6: In-plane mode shapes for the UCLA CVG with approximate modal as follows:
ω1 ≈ 8.1 kHz, ω2 ≈ 14.6 kHz, ω3 ≈ 27.8 kHz.

for measuring the rotation or angular rate of rotation the primary focus in the modal analysis is on

the mode shapes that have significant Coriolis coupling terms. Furthermore, the analysis also is

mainly concerned with mode shapes that are primarily in-plane because these are the only modes

that can be effectively detected with the on-board electrodes. Several commercial software pack-

ages are used for the FEA (SolidWorks and Comsol Multiphysics) and Fig. 3.6 depicts the three

lowest frequencies of in-plane modes in the UCLA CVG. Each of the modes shown in this figure

has a “companion” mode in very close proximity, however, the orientation of the mode shape will

be different for the companion mode.

The Coriolis coupling between n = 1 in-plane modes is significant, however, these modes are

easily excited by vibration of the central stem and so they are not typically used in CVGs, however,

they can be used in accelerometers. The first pair of modes that are nominally isolated from stem

vibrations is the n = 2 pair. Furthermore, of all of the pairs that are nominally isolated, the Coriolis

coupling term is largest for this pair. Other pairs of interest are the n = 3 and n = 4 pairs and

they enjoy the advantage of having much higher nominal frequencies that serve to even further

isolate from the vibration spectra that are typical in vehicles and aircraft. Note that although the

n = 2, 3, 4 pairs in UCLA CVG are nominally isolated from stem vibration, in practice, there is

some coupling due to the imperfect mass and stiffness distribution associated with these modes.

The disadvantage of the n = 3, 4 pairs, though, is the fact that the Coriolis coupling term is weaker

than in the n = 2 pair. It should be noted that although the Coriolis coupling is weaker for n = 3

modes, having two tuned pair on one device can improve the quality of the measurements. The
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results for n = 3 modes will be postponed until Chapter 4.

An example of the fine mesh that is used in the FEA is shown in Fig. 3.5. The modal analysis

yields the Cartesian velocity components at any point in the resonator but because mass is removed

from the large spokes in the physical resonators, the spoke velocity components are of particular

interest. For the FEA study, the mass at the large spokes is manipulated by changing the density

of the elements in an 80µm×80µm patch in the center of the spokes (also shown in Fig. 3.5),

Thus, the Cartesian velocity components are determined at the center of each large spoke on the

top surface of the resonator and then transformed into radial and tangential components. Then, the

discrete Fourier series of the radial and tangential components are computed for each spoke layer

(twenty-four spokes per layer). Each perturbation “experiment,” in which the density of the square

patch is varied, yields Fourier series for the velocity components for each mode. A total of twenty-

four perturbation case studies were performed: there are thirteen single spoke perturbations at the

locations shown in Fig. 3.1. In addition to the single spoke perturbations, multi-mass perturbations

involving pairs of spokes were also conducted. The modal analysis shows that the ratios of the

amplitudes of Fourier series coefficients for the radial and tangential velocity components can be

assumed to be constant and independent of the n = 2 mode under consideration, even when the

resonator is perturbed. A similar analysis will be performed on n = 3 modes in Chapter 4.

The results of all twenty-four case studies are summarized in Fig. 3.7. The largest magnitude

Fourier coefficient in all cases corresponds to α1,2, that is, the k = 2 harmonic in the radial velocity

at the innermost spoke layer (i = 1). All other Fourier coefficient magnitudes in each experiment

are normalized by α1,2 to yield the normalized Fourier coefficient magnitudes (denoted α̃ and β̃)

shown in this figure. The following may be concluded from Fig. 3.7: 1) only the k ∈ {2, 6, 10}
terms of radial velocity harmonics, and k = 2 term for the tangential velocity harmonics, need

to be retained for an accurate description of the spoke velocities since these Fourier components

are dominant, 2) for a given i and k, the normalized amplitudes are the same for each mode in the

n = 2 pair, and 3) the normalized amplitudes can be assumed to be independent of the mass pertur-

bation intensity and location due to the clustering of normalized amplitudes for a given harmonic

and spoke layer. The values of the normalized amplitudes that are retained for the analysis are

summarized in Table 3.1. It can be argued that retaining the k = 1 and 3 radial velocity harmonics
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is justified due to their amplitude relative to k = 10, however, due to the limited sensing in the

present resonators, it is not possible to measure all of the harmonic phases necessary for predicting

the post-perturbation frequency difference, so these terms are neglected in the analysis.

The phases associated with the Fourier series must also be addressed. The Fourier analysis has

treated each spoke layer separately, however, the numerical experiments show that for a given test

case, the phases for each harmonic are the same for all spoke layers. This vastly simplifies the

analysis because all the layers will have the same pattern of motion with different amplitudes only.

This is the reason that the frequency perturbation model (3.7) assumes for a given harmonic, that

the phases of each layer are equal. This property is appealing because it means that it is necessary

to measure the phase of only one spoke layer when determining the phase of the kθ harmonic.

Numerical evidence supports this hypothesis. For this part of the discussion, the notation will be

modified to avoid a proliferation of indices. The phase of a particular harmonic is still denoted

by ψ, however, the subscript will now indicate the particular spoke layer. The mean value of

the set of phase differentials across layers {ψ4 − ψ3, ψ4 − ψ2, ψ4 − ψ1} for the radial k = 2

harmonic, considering both n = 2 modes, and then averaging over the entire set of numerical

cases is −0.0042◦ with a standard deviation of 0.0123◦. The same computation for the radial

k = 6 harmonic yields a mean value of 0.5326◦ with a standard deviation of 0.2930◦. Finally,

for the k = 10 harmonic, the mean value of ψ2 − ψ1 is 0.5117◦ with a standard deviation of

0.4582◦. These results justify the form for the radial velocity Up,i in (3.1) in which the phases are

independent of the ring under consideration.

The phases of Fourier series coefficients for the spoke tangential velocities must be studied

in order to justify the representation of Wp,i in (3.1). Only the k = 2 harmonic is significant in

the Fourier series of the tangential velocities according to Fig. 3.7. The mean value of the set of

phase differentials across layers {ψ4 − ψ3, ψ4 − ψ2, ψ4 − ψ1} for the tangential k = 2 harmonic,

considering both n = 2 modes, and averaged over the set of numerical cases is −0.0066◦ with a

standard deviation of 0.0250◦. This implies that the phase of the k = 2 tangential harmonics are

equal across the spoke layers. Furthermore, for a given n = 2 mode, computation of the phase

difference between the k = 2 harmonics for the radial and tangential velocities is 45.00◦ with a

standard deviation of 0.0194◦, which implies the phases are locked. In other words, measurement
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Figure 3.7: (Top) The magnitude of the Fourier series coefficients for the spoke radial velocities
at different layers. All the harmonics are negligible except for k ∈ {2, 6, 10}. (Bottom) The
magnitude of the Fourier series coefficients for the spoke tangential velocities. All harmonics are
negligible except for k = 2.
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of the k = 2 phase associated with the radial velocity also determines the phase associated with

the tangential velocity. This analysis is required to justify (3.1) since the 45◦ phase difference

between the tangential velocities and radial velocities is accommodated by using the sine function

in Wp,i instead of the cosine function with the 45◦ offset. It is interesting to note that for a thin,

uniform, inextensible ring the kinematic relationship U = dW/dθ exists between the in-plane

radial and tangential velocities, which implies the phases of the k = 2 radial and tangential velocity

harmonics differ by 45◦ [Rao07].

Additional information can be extracted from the finite element analysis of the perturbation

cases. Considering a single test case, the phase difference between each mode for a given harmonic

can be computed and then these values can be averaged over all test cases. Using the same phase

notation as (3.1), the following is determined for each test case: ψ2,k − ψ1,k, separately for k =

2, 6, 10. Averaging over all test cases yields a value of 44.9954◦ for k = 2 with a standard deviation

of 0.0125◦, 15.0200◦ for k = 6 with a standard deviation of 0.6451◦, and 9.0038◦ for k = 10 with

a standard deviation of 0.0414◦. This shows that the kθ harmonics of the two n = 2 modes in a

given test case can be assumed to be spatially orthogonal in the sense that |ψ2,k − ψ1,k| = 90◦/k.

The velocity components (3.1) do not make explicit use of this property because it is assumed that

ψp,k are available from measurements, however, this property will be assumed when using (3.9)

to compute a range for ∆ for a given perturbation scenario due to unmeasured phases. Finally,

for the cases where the mass perturbations are placed near the anti-node (to ensure preserving the

anti-node orientation), the FEA is also estimated the sensitivity parameter

γFEA = 0.325 Hz (3.10)

for a mass of m0 = 0.1193µg. This mass is equivalent to an 80µm × 80µm × 8µm rectangular

prism of silicon which corresponds to a nominal amount of silicon to be removed in the experi-

ments in Sec. 3.2.2.
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Table 3.1: Normalized amplitudes of velocity harmonics (standard deviation in parenthesis)
layer, i α̃i,2 α̃i,6 α̃i,10 β̃i,2

1
1 0.0413 0.0287 0.4969

(0) (0.00021) (0.00015) (0.00031)

2
0.9289 0.0218 0.0055 0.4603

(0.00011) (0.00023) (0.00040) (0.00036)

3
0.8506 0.0107 0 0.4214

(0.00034) (0.000071 (?) (0.00010)

4
0.7868 0.0065 0 0.3886

(0.00013) (0.00020) (?) (0.00025)

3.2 Wafer-Scale Frequency Tuning

The targeted etch approach for reducing the frequency split across all resonators proceeds in two

steps. The first step, after the standard blanket etch concludes, is to ablate photoresist on the

resonators in strategic areas so that continued etching will reduce the n = 2 modal frequency

differences to a greater degree than the standard blanket etch alone. The perturbation model devel-

oped in Sec. 3.1.3 is used to select ablation locations. However, it is shown that it is not possible

to fine-tune the modal frequencies since etching with small areas exposed on the spokes (denoted

the guided blanket etch) will still globally etch the resonator and modify its dynamics in a manner

that is not predicted by the perturbation model. Indeed, the test results in Sec. 3.2.1 suggest that

the mass removal modifies the stiffness and mass distribution of the resonator in a complicated and

unpredictable manner. The second step of targeted etching occurs once the photoresist is stripped

from the wafer and a conformal coat of Parylene-C is applied. The coating is then ablated in

desired areas, and a timed etch commences, but because the conformal coat withstands the etch,

only the exposed areas have material removed, and the perturbation model in this case accurately

predicts the post-etch modal frequency difference. Thus, the model can be used as a guide for

selecting the areas for conformal coat ablation. The second step is discussed in Sec. 3.2.3.
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3.2.1 Guided Blanket Etch and Initial Steps Toward Wafer-Level Silicon Ablation

At the conclusion of the standard blanket etch, there is an opportunity to selectively remove ma-

terial from the large spokes by ablating the photoresist and continuing the etch. It is necessary to

estimate the modal parameters to use (3.7) to search for ablation locations such that ∆ is reduced

to the desired level. As only one wafer was available for experimentation, the sensitivity parameter

γg was estimated from the FEA (see (3.10)), although experimental estimates of γg are obtained

later. The limited sensing in the resonator (the radial velocity of the outermost ring is measured by

electrodes that subtend a 15◦ arc, [SKS15]) means that it is not possible to reliably measure ψp,6

and ψp,10 because the normalized amplitudes associated with the outermost spokes (i = 4) is about

two orders of magnitude smaller than the amplitudes of the k = 2 harmonics. Furthermore, the

spatial filtering of the electrodes further reduces the gain of these harmonics. The ideal locations

in the resonator for measuring ψp,6 and ψp,10 are in the innermost spoke layers (i = 1) where elec-

trodes do not currently exist for measuring the in-plane motion. The perturbation model (3.9) is

truncated to include only the k = 2 harmonics for purposes of selecting the ablation sites. In other

words, the following expression is used to search over θ and i to determine suitable locations for

perturbations that will reduce |∆| below a desired value,

∆ = ∆0 − γg

l∑
q=1

rq

[
α̃2
iq ,2 cos2(2(θq − ψ2,2)) + β̃2

iq ,2 sin2 (2(θq − ψ2,2))

− α̃2
iq ,2 cos2 (2(θq − ψ1,2))− β̃2

iq ,2 sin2(2(θq − ψ1,2))
]
.

(3.11)

Nevertheless, (3.9) will be used to estimate upper and lower bounds for ∆ by assuming worst-case

values for the unmeasured phases ψp,6 and ψp,10. In order for (3.11) to yield accurate results, the

search space is constrained to anti-node orientations.

The modal parameters of each resonator on the 16-die wafer (Fig. 3.4) can be estimated after the

standard blanket etch concludes even with the photoresist present. The photoresist mass-loads the

resonator and dampens the modes, however, reliable estimates of the modal frequency difference,

i.e., ∆0, and the k = 2 phases can be obtained. The next step is to selectively ablate the photoresist

from certain exaggerated spokes with the objective of exposing the top surface of the silicon in the
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• Pattern resist for resonator etch 

• Etch resonator using Si DRIE; strip 
resist; wafer-scale mechanical testing 
using vacuum probe station; apply 
conformal coat 

• Laser ablation of conformal coat in 
select locations (based on test results) 

• DRIE to remove Si in regions where 
conformal coating is locally removed; 
iterate process if necessary 

• Laser ablation of conformal coat in selected locations
(based on test results)
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• DRIE to remove Si in regions where conformal coating
is locally removed;
iterate process if necessary
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• Pattern resist for resonator etch
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• Etch resonator using Si DRIE;
Strip resist;
Wafer-scale mechanical testing using vacuum probe station;
Apply conformal coat
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Iterate process if necessary

Figure 3.8: Process for photoresist ablation for the guided blanket etch [KBS15].

ablated areas –refer to Fig. 3.8. The wafer is then inserted back into the etcher for a short timed

etch. The ablated areas are selected to be near the anti-nodes of the lower frequency mode of the

n = 2 pair since removing mass from this mode will have the effect of raising its modal frequency

to a greater extent than that of the companion mode, i.e., the frequency detuning will be reduced.

The etch time is estimated based on the desired amount of mass to be removed at the spokes.

The measured modal frequencies are summarized in Table 3.2. Die 2, 8, and 13 are non-

functional and are not included in the table. The n = 2 modal frequencies extend from 13.057 kHz

to 13.657 kHz, and the modal frequencies differences extend from 10.52 Hz to 27.27 Hz. This

range of mean frequencies and initial differences suggests that each die will require a custom etch

profile. The modal frequency differences reported here are always positive because ω2 is always

assigned to higher frequency n = 2 mode once the measurements have been made. Thus, the

phase ψ2,2 in (3.11) is associated with the higher frequency mode as well. It is possible that the

models (3.9) and (3.11) will predict ∆ < 0, however, if a subsequent cycle of etching is desired,

then the labels on the modes will be switched along with their corresponding phases.

The spokes that are selected for ablation are determined by searching over a handful of abla-

tion sites in a neighborhood of the lower frequency mode anti-node such that a reduction of the

frequency differences of approximately 8 Hz is achieved for all resonators as predicted by (3.11),
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Table 3.2: Summary of standard blanket etch results
Die ω1 (Hz) ω2 (Hz) ∆0 (Hz)
1 13394.90 13407.03 12.13
3 13285.87 13298.98 13.11
4 13508.92 13520.46 11.54
5 13592.69 13603.21 10.52
6 13594.35 13609.33 14.98
7 13306.43 13333.70 27.27
9 13657.04 13670.67 13.63
10 13640.40 13652.94 12.54
11 13110.13 13124.30 14.17
12 13365.44 13377.51 12.07
14 13543.59 13554.77 11.18
15 13056.97 13070.67 13.70
16 13197.65 13213.42 15.77

i.e., due to the large spread in ∆0, the guided blanket etch is designed to achieve ∆−∆0 ≤ 8 Hz.

Die 4, 12, 14 and 16 are used for experimental controls and are not ablated. In other words, these

die will continue to be etched using the standard process, while the ablated resonators will experi-

ence the targeted etch at the spokes in addition to the standard process. The ablation is performed

using a New Wave Research QuikLaze laser cutting system. The ablated areas are approximately

80 µm by 80 µm. A DRIE timed etch is performed such that the modal frequency difference would

be reduced by 8 Hz in the absence of any other factors that could influence the modal frequencies.

The etch time is defined by the desired etch depth to remove the targeted mass of material. Using

a calibrated etch rate, the corresponding time is calculated. Due to the large size of the ablated

features and the short etch depths, etch rate consistency run-to-run is typically within a few per-

cent. The sensitivity parameter γFEA is used to estimate the duration of the timed etch based on the

desired etch depth. The results of the guided blanket etch are shown in Table 3.3 and it is clear that

the ablated die experience more significant reductions in modal frequency differences compared to

the control die. Thus, the guided blanket etch appears to successfully reduce the frequency split to

a greater degree than the standard blanket etch.

The challenge with the guided blanket etch, though, is the fact that the resonator stiffness is

also clearly modified in addition to the mass distribution. This is evident from the data in Fig. 3.9
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Mean frequency
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Frequency mismatch
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Die
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Post etch w/ laser trim
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Post etch w/o/ laser trim
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<latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit><latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit><latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit>

Post etch w/ laser trim
<latexit sha1_base64="2CPs05TULwZMw+g5lMxrcPKsByI=">AAAB/3icbVC7TsMwFHXKq5RXgIGBxaJCYipJhQRslVgYi0SgUhtVjuu0Vu04sm9AVdSFX2FhAMTKb7DxN7htBmg5kqWjc+7D90Sp4AY879spLS2vrK6V1ysbm1vbO+7u3p1RmaYsoEoo3YqIYYInLAAOgrVSzYiMBLuPhlcT//6BacNVcgujlIWS9BMec0rASl33oKkMYAZ0gB9PsbCTNAbNZdetejVvCrxI/IJUUYFm1/3q9BTNJEuA2jGm7XsphDnRwKlg40onMywldEj6rG1pQiQzYT49YIyPrdLDsdL2JYCn6u+OnEhjRjKylZLAwMx7E/E/r51BfBHmPEkzYAmdLYozgUHhSRq4xzWjIEaWEKq5/SumA6IJBZtZxYbgz5+8SIJ67bLm3dSrjbMijTI6REfoBPnoHDXQNWqiAFE0Rs/oFb05T86L8+58zEpLTtGzj/7A+fwBF56Vlw==</latexit><latexit sha1_base64="2CPs05TULwZMw+g5lMxrcPKsByI=">AAAB/3icbVC7TsMwFHXKq5RXgIGBxaJCYipJhQRslVgYi0SgUhtVjuu0Vu04sm9AVdSFX2FhAMTKb7DxN7htBmg5kqWjc+7D90Sp4AY879spLS2vrK6V1ysbm1vbO+7u3p1RmaYsoEoo3YqIYYInLAAOgrVSzYiMBLuPhlcT//6BacNVcgujlIWS9BMec0rASl33oKkMYAZ0gB9PsbCTNAbNZdetejVvCrxI/IJUUYFm1/3q9BTNJEuA2jGm7XsphDnRwKlg40onMywldEj6rG1pQiQzYT49YIyPrdLDsdL2JYCn6u+OnEhjRjKylZLAwMx7E/E/r51BfBHmPEkzYAmdLYozgUHhSRq4xzWjIEaWEKq5/SumA6IJBZtZxYbgz5+8SIJ67bLm3dSrjbMijTI6REfoBPnoHDXQNWqiAFE0Rs/oFb05T86L8+58zEpLTtGzj/7A+fwBF56Vlw==</latexit><latexit sha1_base64="2CPs05TULwZMw+g5lMxrcPKsByI=">AAAB/3icbVC7TsMwFHXKq5RXgIGBxaJCYipJhQRslVgYi0SgUhtVjuu0Vu04sm9AVdSFX2FhAMTKb7DxN7htBmg5kqWjc+7D90Sp4AY879spLS2vrK6V1ysbm1vbO+7u3p1RmaYsoEoo3YqIYYInLAAOgrVSzYiMBLuPhlcT//6BacNVcgujlIWS9BMec0rASl33oKkMYAZ0gB9PsbCTNAbNZdetejVvCrxI/IJUUYFm1/3q9BTNJEuA2jGm7XsphDnRwKlg40onMywldEj6rG1pQiQzYT49YIyPrdLDsdL2JYCn6u+OnEhjRjKylZLAwMx7E/E/r51BfBHmPEkzYAmdLYozgUHhSRq4xzWjIEaWEKq5/SumA6IJBZtZxYbgz5+8SIJ67bLm3dSrjbMijTI6REfoBPnoHDXQNWqiAFE0Rs/oFb05T86L8+58zEpLTtGzj/7A+fwBF56Vlw==</latexit>

Post etch w/o/ laser trim
<latexit sha1_base64="kiy3W1XHCa/RLHocRRQJ3T/nf7Q=">AAACAXicbVDLSgMxFM3UV62vUVfiJlgEV+20COqu4MZlBccW6lAyaaYNTSZDckcpQ3Hjr7hxoeLWv3Dn35i2s9DWA4HDOfeRe8JEcAOe9+0UlpZXVteK66WNza3tHXd379aoVFPmUyWUbofEMMFj5gMHwdqJZkSGgrXC4eXEb90zbbiKb2CUsECSfswjTglYqeseNJUBzIAO8ENVVbGwszQGzWXXLXsVbwq8SGo5KaMcza77dddTNJUsBmrHmE7NSyDIiAZOBRuX7lLDEkKHpM86lsZEMhNk0xPG+NgqPRwpbV8MeKr+7siINGYkQ1spCQzMvDcR//M6KUTnQcbjJAUW09miKBUYFJ7kgXtcMwpiZAmhmtu/YjogmlCwqZVsCLX5kxeJX69cVLzrerlxmqdRRIfoCJ2gGjpDDXSFmshHFD2iZ/SK3pwn58V5dz5mpQUn79lHf+B8/gBgfpZJ</latexit><latexit sha1_base64="kiy3W1XHCa/RLHocRRQJ3T/nf7Q=">AAACAXicbVDLSgMxFM3UV62vUVfiJlgEV+20COqu4MZlBccW6lAyaaYNTSZDckcpQ3Hjr7hxoeLWv3Dn35i2s9DWA4HDOfeRe8JEcAOe9+0UlpZXVteK66WNza3tHXd379aoVFPmUyWUbofEMMFj5gMHwdqJZkSGgrXC4eXEb90zbbiKb2CUsECSfswjTglYqeseNJUBzIAO8ENVVbGwszQGzWXXLXsVbwq8SGo5KaMcza77dddTNJUsBmrHmE7NSyDIiAZOBRuX7lLDEkKHpM86lsZEMhNk0xPG+NgqPRwpbV8MeKr+7siINGYkQ1spCQzMvDcR//M6KUTnQcbjJAUW09miKBUYFJ7kgXtcMwpiZAmhmtu/YjogmlCwqZVsCLX5kxeJX69cVLzrerlxmqdRRIfoCJ2gGjpDDXSFmshHFD2iZ/SK3pwn58V5dz5mpQUn79lHf+B8/gBgfpZJ</latexit><latexit sha1_base64="kiy3W1XHCa/RLHocRRQJ3T/nf7Q=">AAACAXicbVDLSgMxFM3UV62vUVfiJlgEV+20COqu4MZlBccW6lAyaaYNTSZDckcpQ3Hjr7hxoeLWv3Dn35i2s9DWA4HDOfeRe8JEcAOe9+0UlpZXVteK66WNza3tHXd379aoVFPmUyWUbofEMMFj5gMHwdqJZkSGgrXC4eXEb90zbbiKb2CUsECSfswjTglYqeseNJUBzIAO8ENVVbGwszQGzWXXLXsVbwq8SGo5KaMcza77dddTNJUsBmrHmE7NSyDIiAZOBRuX7lLDEkKHpM86lsZEMhNk0xPG+NgqPRwpbV8MeKr+7siINGYkQ1spCQzMvDcR//M6KUTnQcbjJAUW09miKBUYFJ7kgXtcMwpiZAmhmtu/YjogmlCwqZVsCLX5kxeJX69cVLzrerlxmqdRRIfoCJ2gGjpDDXSFmshHFD2iZ/SK3pwn58V5dz5mpQUn79lHf+B8/gBgfpZJ</latexit>

Pre etch
<latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit><latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit><latexit sha1_base64="ijtxZjgf+7CdNmF9k+nCaWefDSQ=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoN4KXjxWMLbQhrLZTtqlm03cnQgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmOfg8kYnuhMyAFAp8FCihk2pgcSihHY5vZn77CbQRibrHSQpBzIZKRIIztFKnpYEC8lG/WnPr7hx0lXgFqZECrX71qzdIeBaDQi6ZMV3PTTHImUbBJUwrvcxAyviYDaFrqWIxmCCf3zulZ1YZ0CjRthTSufp7ImexMZM4tJ0xw5FZ9mbif143w+gqyIVKMwTFF4uiTFJM6Ox5OhAaOMqJJYxrYW+lfMQ042gjqtgQvOWXV4nfqF/X3btGrXlRpFEmJ+SUnBOPXJImuSUt4hNOJHkmr+TNeXRenHfnY9FacoqZY/IHzucPD8mPeA==</latexit>

F
re

q
u
en

cy
(H

z)
<latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit><latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit><latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit>
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<latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit><latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit><latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit>

Figure 3.9: Summary of standard and guided blanket etch on the mean n = 2 modal frequencies
and the frequency mismatch. The guided blanket etch is effective in reducing the n = 2 modal
frequency mismatch.

which shows that the mean modal frequencies of the n = 2 modes are decreased by a significant

amount (compared to the detuning that must be eliminated). Figs. 3.10 and 3.11 show empirical

frequency responses of two measurement channels for Die 14 (a control die) and Die 3, respec-

tively, before and after the guided blanket etch. In Table 3.3, the modal parameter measurements

were made after the photoresist was stripped, so that accurate damping values are obtained. Note

that continuing the blanket etch on the control die further reduces the modal frequency differences.

The reductions range from 2.5 to 4.4 Hz depending on the die, but it illustrates the unfeasibility

of using the blanket etch to eliminate the frequency differences across all die, especially since the

range of starting ∆0 is large. Note, however, that the ablated die all experience significant reduc-

tions in their modal frequency differences but the variability introduced from etching other areas

of the resonator still creates too much uncertainty to accurately predict the final modal frequency

difference. Nevertheless, this exercise demonstrates that the guided blanket etch can be used to

systematically reduce ∆ and provides a good starting point for the targeted etching that follows.

Changing stiffness simultaneously with the mass modification makes it very difficult to predict
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Figure 3.10: Mean modal frequencies reduce with further blanket etching. The modal frequency
difference also has a modest reduction.
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Figure 3.11: Modal frequencies after photoresist ablation on selected spokes and further blanket
etching experiences larger reduction in frequency difference.
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<latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit><latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit><latexit sha1_base64="P9ZCFaH35FMvlnIcfjYrlDa5u/c=">AAAB9HicbVBNS8NAEN34WetX1aOXxSLUS0l6UcFDQZAeKxhbaGPZbCft0s0m7m6UGPo/vHhQ8eqP8ea/cdvmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3f6uiRFJwacQj2faJAs4EuJppDu1YAgl9Di1/dDnxWw8gFYvEjU5j8EIyECxglGgj3V1JuE9A0BRXGk8nvVLZrtpT4EXi5KSMcjR7pa9uP6JJCEJTTpTqOHasvYxIzSiHcbGbKIgJHZEBdAwVJATlZdOrx/jYKH0cRNKU0Hiq/p7ISKhUGvqmMyR6qOa9ifif10l0cOZlTMSJNq/NFgUJxzrCkwhwn0mgmqeGECqZuRXTIZGEahNU0YTgzL+8SNxa9bxqX9fK9Ys8jQI6REeoghx0iuqogZrIRRRJ9Ixe0Zv1aL1Y79bHrHXJymcO0B9Ynz8F75G2</latexit>
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<latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit><latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit><latexit sha1_base64="xbKEwK71jiOnD9LG0xeRIMwTDzY=">AAAB93icbVBNS8NAEN3Ur1o/GvXoZbEI9VKSXlTwUBCkxwrGCm0om+20XbrZxN2NkIb+Ei8eVLz6V7z5b9y2OWjrg4HHezPMzAtizpR2nG+rsLa+sblV3C7t7O7tl+2Dw3sVJZKCRyMeyYeAKOBMgKeZ5vAQSyBhwKEdjK9nfvsJpGKRuNNpDH5IhoINGCXaSD27fCPhMQFBU1wdNydnPbvi1Jw58Cpxc1JBOVo9+6vbj2gSgtCUE6U6rhNrPyNSM8phWuomCmJCx2QIHUMFCUH52fzwKT41Sh8PImlKaDxXf09kJFQqDQPTGRI9UsveTPzP6yR6cOFnTMSJNr8tFg0SjnWEZyngPpNANU8NIVQycyumIyIJ1SarkgnBXX55lXj12mXNua1XGld5GkV0jE5QFbnoHDVQE7WQhyhK0DN6RW/WxHqx3q2PRWvBymeO0B9Ynz9JjZJc</latexit>

Mean frequency
<latexit sha1_base64="RSU/FbytA7PgFSZTNqDFtiwjabQ=">AAAB9HicbVA9SwNBEJ3zM8avqKXNYhCswiWNChYBGxshgmcCyRn2NnPJkr29c3dPCUf+h42Fiq0/xs5/4ya5QhMfDDzem2FmXpAIro3rfjtLyyura+uFjeLm1vbObmlv/07HqWLosVjEqhVQjYJL9Aw3AluJQhoFApvB8HLiNx9RaR7LWzNK0I9oX/KQM2qsdH+NVJJQ4UOKko26pbJbcacgi6SakzLkaHRLX51ezNIIpWGCat2uuonxM6oMZwLHxU6qMaFsSPvYtlTSCLWfTa8ek2Or9EgYK1vSkKn6eyKjkdajKLCdETUDPe9NxP+8dmrCMz/jMkmN/Wq2KEwFMTGZREB6XCEzYmQJZYrbWwkbUEWZsUEVbQjV+ZcXiVernFfcm1q5fpGnUYBDOIITqMIp1OEKGuABAwXP8ApvzpPz4rw7H7PWJSefOYA/cD5/ANtZkkQ=</latexit><latexit sha1_base64="RSU/FbytA7PgFSZTNqDFtiwjabQ=">AAAB9HicbVA9SwNBEJ3zM8avqKXNYhCswiWNChYBGxshgmcCyRn2NnPJkr29c3dPCUf+h42Fiq0/xs5/4ya5QhMfDDzem2FmXpAIro3rfjtLyyura+uFjeLm1vbObmlv/07HqWLosVjEqhVQjYJL9Aw3AluJQhoFApvB8HLiNx9RaR7LWzNK0I9oX/KQM2qsdH+NVJJQ4UOKko26pbJbcacgi6SakzLkaHRLX51ezNIIpWGCat2uuonxM6oMZwLHxU6qMaFsSPvYtlTSCLWfTa8ek2Or9EgYK1vSkKn6eyKjkdajKLCdETUDPe9NxP+8dmrCMz/jMkmN/Wq2KEwFMTGZREB6XCEzYmQJZYrbWwkbUEWZsUEVbQjV+ZcXiVernFfcm1q5fpGnUYBDOIITqMIp1OEKGuABAwXP8ApvzpPz4rw7H7PWJSefOYA/cD5/ANtZkkQ=</latexit><latexit sha1_base64="RSU/FbytA7PgFSZTNqDFtiwjabQ=">AAAB9HicbVA9SwNBEJ3zM8avqKXNYhCswiWNChYBGxshgmcCyRn2NnPJkr29c3dPCUf+h42Fiq0/xs5/4ya5QhMfDDzem2FmXpAIro3rfjtLyyura+uFjeLm1vbObmlv/07HqWLosVjEqhVQjYJL9Aw3AluJQhoFApvB8HLiNx9RaR7LWzNK0I9oX/KQM2qsdH+NVJJQ4UOKko26pbJbcacgi6SakzLkaHRLX51ezNIIpWGCat2uuonxM6oMZwLHxU6qMaFsSPvYtlTSCLWfTa8ek2Or9EgYK1vSkKn6eyKjkdajKLCdETUDPe9NxP+8dmrCMz/jMkmN/Wq2KEwFMTGZREB6XCEzYmQJZYrbWwkbUEWZsUEVbQjV+ZcXiVernFfcm1q5fpGnUYBDOIITqMIp1OEKGuABAwXP8ApvzpPz4rw7H7PWJSefOYA/cD5/ANtZkkQ=</latexit>

Frequency mismatch
<latexit sha1_base64="ANk+lDpxn/F6EiIh1uZ6f0Uweiw=">AAAB+nicbVBNSwMxFMz6WevXWo9egkXwVHZ7UcFDQRCPFVxbaJeSTd+2oUl2TbJiWfpXvHhQ8eov8ea/MW33oK0DgWHmPTJvopQzbTzv21lZXVvf2Cxtlbd3dvf23YPKvU4yRSGgCU9UOyIaOJMQGGY4tFMFREQcWtHoauq3HkFplsg7M04hFGQgWcwoMVbquZVrBQ8ZSDrGgmlBDB323KpX82bAy8QvSBUVaPbcr24/oZkAaSgnWnd8LzVhTpRhlMOk3M00pISOyAA6lkoiQIf5LPsEn1ilj+NE2ScNnqm/N3IitB6LyE7adEO96E3F/7xOZuLzMGcyzYw9b/5RnHFsEjwtAveZAmr42BJCFbNZMR0SRaixdZVtCf7iycskqNcuat5tvdq4LNoooSN0jE6Rj85QA92gJgoQRU/oGb2iN2fivDjvzsd8dMUpdg7RHzifP5b/lFI=</latexit><latexit sha1_base64="ANk+lDpxn/F6EiIh1uZ6f0Uweiw=">AAAB+nicbVBNSwMxFMz6WevXWo9egkXwVHZ7UcFDQRCPFVxbaJeSTd+2oUl2TbJiWfpXvHhQ8eov8ea/MW33oK0DgWHmPTJvopQzbTzv21lZXVvf2Cxtlbd3dvf23YPKvU4yRSGgCU9UOyIaOJMQGGY4tFMFREQcWtHoauq3HkFplsg7M04hFGQgWcwoMVbquZVrBQ8ZSDrGgmlBDB323KpX82bAy8QvSBUVaPbcr24/oZkAaSgnWnd8LzVhTpRhlMOk3M00pISOyAA6lkoiQIf5LPsEn1ilj+NE2ScNnqm/N3IitB6LyE7adEO96E3F/7xOZuLzMGcyzYw9b/5RnHFsEjwtAveZAmr42BJCFbNZMR0SRaixdZVtCf7iycskqNcuat5tvdq4LNoooSN0jE6Rj85QA92gJgoQRU/oGb2iN2fivDjvzsd8dMUpdg7RHzifP5b/lFI=</latexit><latexit sha1_base64="ANk+lDpxn/F6EiIh1uZ6f0Uweiw=">AAAB+nicbVBNSwMxFMz6WevXWo9egkXwVHZ7UcFDQRCPFVxbaJeSTd+2oUl2TbJiWfpXvHhQ8eov8ea/MW33oK0DgWHmPTJvopQzbTzv21lZXVvf2Cxtlbd3dvf23YPKvU4yRSGgCU9UOyIaOJMQGGY4tFMFREQcWtHoauq3HkFplsg7M04hFGQgWcwoMVbquZVrBQ8ZSDrGgmlBDB323KpX82bAy8QvSBUVaPbcr24/oZkAaSgnWnd8LzVhTpRhlMOk3M00pISOyAA6lkoiQIf5LPsEn1ilj+NE2ScNnqm/N3IitB6LyE7adEO96E3F/7xOZuLzMGcyzYw9b/5RnHFsEjwtAveZAmr42BJCFbNZMR0SRaixdZVtCf7iycskqNcuat5tvdq4LNoooSN0jE6Rj85QA92gJgoQRU/oGb2iN2fivDjvzsd8dMUpdg7RHzifP5b/lFI=</latexit>

Prior to parylene coating
<latexit sha1_base64="5DkkoBNRPUhxXcsDYhBEV1sIUVQ=">AAACAXicbVA9SwNBFNyLXzF+nVqJzWIQrMIljQoWARvLCJ4JJEfY27xLluztHrt7QjiCjX/FxkLF1n9h579xL7lCE6caZt7jvZkw4Uwbz/t2Siura+sb5c3K1vbO7p67f3CvZaoo+FRyqToh0cCZAN8ww6GTKCBxyKEdjq9zv/0ASjMp7swkgSAmQ8EiRomxUt89aikmFTYSJ0RNOAjAVFpPDPtu1at5M+BlUi9IFRVo9d2v3kDSNAZhKCdad+teYoKMKMMoh2mll2pICB2TIXQtFSQGHWSzCFN8apUBjuwrkRQGz9TfGxmJtZ7EoZ2MiRnpRS8X//O6qYkugoyJJDUg6PxQlPI8cd4HHjAF1PCJJYQqZn/FdEQUoca2VrEl1BcjLxO/UbusebeNavOqaKOMjtEJOkN1dI6a6Aa1kI8oekTP6BW9OU/Oi/PufMxHS06xc4j+wPn8AXmYlwQ=</latexit><latexit sha1_base64="5DkkoBNRPUhxXcsDYhBEV1sIUVQ=">AAACAXicbVA9SwNBFNyLXzF+nVqJzWIQrMIljQoWARvLCJ4JJEfY27xLluztHrt7QjiCjX/FxkLF1n9h579xL7lCE6caZt7jvZkw4Uwbz/t2Siura+sb5c3K1vbO7p67f3CvZaoo+FRyqToh0cCZAN8ww6GTKCBxyKEdjq9zv/0ASjMp7swkgSAmQ8EiRomxUt89aikmFTYSJ0RNOAjAVFpPDPtu1at5M+BlUi9IFRVo9d2v3kDSNAZhKCdad+teYoKMKMMoh2mll2pICB2TIXQtFSQGHWSzCFN8apUBjuwrkRQGz9TfGxmJtZ7EoZ2MiRnpRS8X//O6qYkugoyJJDUg6PxQlPI8cd4HHjAF1PCJJYQqZn/FdEQUoca2VrEl1BcjLxO/UbusebeNavOqaKOMjtEJOkN1dI6a6Aa1kI8oekTP6BW9OU/Oi/PufMxHS06xc4j+wPn8AXmYlwQ=</latexit><latexit sha1_base64="5DkkoBNRPUhxXcsDYhBEV1sIUVQ=">AAACAXicbVA9SwNBFNyLXzF+nVqJzWIQrMIljQoWARvLCJ4JJEfY27xLluztHrt7QjiCjX/FxkLF1n9h579xL7lCE6caZt7jvZkw4Uwbz/t2Siura+sb5c3K1vbO7p67f3CvZaoo+FRyqToh0cCZAN8ww6GTKCBxyKEdjq9zv/0ASjMp7swkgSAmQ8EiRomxUt89aikmFTYSJ0RNOAjAVFpPDPtu1at5M+BlUi9IFRVo9d2v3kDSNAZhKCdad+teYoKMKMMoh2mll2pICB2TIXQtFSQGHWSzCFN8apUBjuwrkRQGz9TfGxmJtZ7EoZ2MiRnpRS8X//O6qYkugoyJJDUg6PxQlPI8cd4HHjAF1PCJJYQqZn/FdEQUoca2VrEl1BcjLxO/UbusebeNavOqaKOMjtEJOkN1dI6a6Aa1kI8oekTP6BW9OU/Oi/PufMxHS06xc4j+wPn8AXmYlwQ=</latexit>

After parylene coating
<latexit sha1_base64="MTxAk8QR8FNBHmzUhA+GBZMdyOk=">AAAB/nicbVA9SwNBEN3zM8avU8HGZjEIVuEujQoWERvLCJ4JJEfY28wlS/Z2j9094Ygp/Cs2Fiq2/g47/42b5ApNfDDweG+GmXlRypk2nvftLC2vrK6tlzbKm1vbO7vu3v69lpmiEFDJpWpFRANnAgLDDIdWqoAkEYdmNLye+M0HUJpJcWfyFMKE9AWLGSXGSl338Co2oHBKVM5BAKbSGqLfdSte1ZsCLxK/IBVUoNF1vzo9SbMEhKGcaN32vdSEI6IMoxzG5U6mISV0SPrQtlSQBHQ4mt4/xidW6eFYKlvC4Kn6e2JEEq3zJLKdCTEDPe9NxP+8dmbi83DERJoZEHS2KM44NhJPwsA9poAanltCqGL2VkwHRBFqM9FlG4I///IiCWrVi6p3W6vUL4s0SugIHaNT5KMzVEc3qIECRNEjekav6M15cl6cd+dj1rrkFDMH6A+czx9BAJXJ</latexit><latexit sha1_base64="MTxAk8QR8FNBHmzUhA+GBZMdyOk=">AAAB/nicbVA9SwNBEN3zM8avU8HGZjEIVuEujQoWERvLCJ4JJEfY28wlS/Z2j9094Ygp/Cs2Fiq2/g47/42b5ApNfDDweG+GmXlRypk2nvftLC2vrK6tlzbKm1vbO7vu3v69lpmiEFDJpWpFRANnAgLDDIdWqoAkEYdmNLye+M0HUJpJcWfyFMKE9AWLGSXGSl338Co2oHBKVM5BAKbSGqLfdSte1ZsCLxK/IBVUoNF1vzo9SbMEhKGcaN32vdSEI6IMoxzG5U6mISV0SPrQtlSQBHQ4mt4/xidW6eFYKlvC4Kn6e2JEEq3zJLKdCTEDPe9NxP+8dmbi83DERJoZEHS2KM44NhJPwsA9poAanltCqGL2VkwHRBFqM9FlG4I///IiCWrVi6p3W6vUL4s0SugIHaNT5KMzVEc3qIECRNEjekav6M15cl6cd+dj1rrkFDMH6A+czx9BAJXJ</latexit><latexit sha1_base64="MTxAk8QR8FNBHmzUhA+GBZMdyOk=">AAAB/nicbVA9SwNBEN3zM8avU8HGZjEIVuEujQoWERvLCJ4JJEfY28wlS/Z2j9094Ygp/Cs2Fiq2/g47/42b5ApNfDDweG+GmXlRypk2nvftLC2vrK6tlzbKm1vbO7vu3v69lpmiEFDJpWpFRANnAgLDDIdWqoAkEYdmNLye+M0HUJpJcWfyFMKE9AWLGSXGSl338Co2oHBKVM5BAKbSGqLfdSte1ZsCLxK/IBVUoNF1vzo9SbMEhKGcaN32vdSEI6IMoxzG5U6mISV0SPrQtlSQBHQ4mt4/xidW6eFYKlvC4Kn6e2JEEq3zJLKdCTEDPe9NxP+8dmbi83DERJoZEHS2KM44NhJPwsA9poAanltCqGL2VkwHRBFqM9FlG4I///IiCWrVi6p3W6vUL4s0SugIHaNT5KMzVEc3qIECRNEjekav6M15cl6cd+dj1rrkFDMH6A+czx9BAJXJ</latexit>

Die
<latexit sha1_base64="eSznEI5YSPuw5qXOnMxBWAqWuWE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkvKngo6MFjRWMLbSib7aRdutmE3Y1QQn+CFw8qXv1H3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnaKm/v7O7tVw4OH3WSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWOrqd+6wmV5ol8MOMUg5gOJI84o8ZK9zcce5WqW3NnIMvEK0gVCjR7la9uP2FZjNIwQbXueG5qgpwqw5nASbmbaUwpG9EBdiyVNEYd5LNTJ+TUKn0SJcqWNGSm/p7Iaaz1OA5tZ0zNUC96U/E/r5OZ6CLIuUwzg5LNF0WZICYh079JnytkRowtoUxxeythQ6ooMzadsg3BW3x5mfj12mXNvatXG1dFGiU4hhM4Aw/OoQG30AQfGAzgGV7hzRHOi/PufMxbV5xi5gj+wPn8AYV1jXU=</latexit><latexit sha1_base64="eSznEI5YSPuw5qXOnMxBWAqWuWE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkvKngo6MFjRWMLbSib7aRdutmE3Y1QQn+CFw8qXv1H3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnaKm/v7O7tVw4OH3WSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWOrqd+6wmV5ol8MOMUg5gOJI84o8ZK9zcce5WqW3NnIMvEK0gVCjR7la9uP2FZjNIwQbXueG5qgpwqw5nASbmbaUwpG9EBdiyVNEYd5LNTJ+TUKn0SJcqWNGSm/p7Iaaz1OA5tZ0zNUC96U/E/r5OZ6CLIuUwzg5LNF0WZICYh079JnytkRowtoUxxeythQ6ooMzadsg3BW3x5mfj12mXNvatXG1dFGiU4hhM4Aw/OoQG30AQfGAzgGV7hzRHOi/PufMxbV5xi5gj+wPn8AYV1jXU=</latexit><latexit sha1_base64="eSznEI5YSPuw5qXOnMxBWAqWuWE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkvKngo6MFjRWMLbSib7aRdutmE3Y1QQn+CFw8qXv1H3vw3btsctPXBwOO9GWbmhang2rjut7Oyura+sVnaKm/v7O7tVw4OH3WSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWOrqd+6wmV5ol8MOMUg5gOJI84o8ZK9zcce5WqW3NnIMvEK0gVCjR7la9uP2FZjNIwQbXueG5qgpwqw5nASbmbaUwpG9EBdiyVNEYd5LNTJ+TUKn0SJcqWNGSm/p7Iaaz1OA5tZ0zNUC96U/E/r5OZ6CLIuUwzg5LNF0WZICYh079JnytkRowtoUxxeythQ6ooMzadsg3BW3x5mfj12mXNvatXG1dFGiU4hhM4Aw/OoQG30AQfGAzgGV7hzRHOi/PufMxbV5xi5gj+wPn8AYV1jXU=</latexit>

Figure 3.12: Parylene protection experiment shows that the coat protects the resonators from etch-
ing. This implies that we can now control the etching on individual resonators by ablating the
parylene in selected areas.

the effect on the modal properties of the resonator. To resolve this issue, the photoresist has been

replaced with a material which can protect all unexposed areas of the resonators (even on the

underside) from “unwanted” etching effects. The second step was to use a conformal coat of

parylene for this purpose.

An experiment was designed to check new coating’s capability of protecting the silicon, with

the results summarized in Fig. 3.12. First, a few resonators were selected, and their modal prop-

erties were recorded after the photoresist had been stripped by before the parylene was deposited.

Then, a conformal coating of parylene is applied to the entire wafer. After that, the resonator was
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placed into the etcher for timed etch of four minutes. The conformal coating was then removed,

and the previously selected resonators were tested again. The results show that the parylene is able

to protect the resonator from any etching. Fig. 3.12 demonstrates that the mean n = 2 frequency

as well as frequency mismatch remain unchanged.

A coating of Parylene C, approximately 1 µm in thickness, is applied to the wafer at the con-

clusion of the guided blanket etch. Parylene was selected based on its capability of getting ablated

without damaging the underlying silicon, and on its conformality, which protects the sidewalls of

the structure during the etch in addition to the top surface. This sidewall coating prevents lateral

etching, which impacts the width (and hence stiffness) of the device. Besides, the parylene is de-

posited using a vapor-deposition process, avoiding wet processing, and it can be cleanly removed

using an oxygen plasma.

One of the challenges in switching from the photoresist to parylene was the ablation of pary-

lene. As opposed to the ablation of photoresist which was relatively easy to do, the ablation process

for parylene is quite challenging because parylene does not absorb the laser wavelength very well.

An exhaustive search through all of the possible combination of different parameters in our laser

trimming device was performed. The laser trimming device and some of the ablation results are

shown in Fig. 3.13. Based on these experiments, a laser trimming recipe has been developed with

some results shown in Fig. 3.14 which shows a resonator with trimmed spoke (after parylene ab-

lation and etch) with a scanning electron microscope (SEM). The ablated areas using established

recipe are clean and repeatable. The ultra-violet wavelength is used in the process. The Wyko

measurements for the timed etch results can be seen in Fig. 3.15.

3.2.2 Sensitivity Parameter Measurements

The initial objective is to experimentally estimate γg from a series of tests on the control Die 4,

12, 14 and 16. Four rounds of experiments are conducted on these die in which four square

patches, approximately 80µm× 80µm, are opened on a selected spoke layer in a compass-points

pattern. A timed etch removes approximately 8µm of material from these areas for each round of

experiments. A single round targets different spoke layers on the different die. For example, in the
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Figure 3.13: (Left)The laser system and wafer ready for trimming (Right) Some of the laser abla-
tion results

Figure 3.14: Etched areas on resonator after parylene ablation.
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Figure 3.15: The Wyko measurements after removing the parylene coating. The depth is about 8
µm.

Table 3.3: Summary of guided blanket etch results
Die ω1 (Hz) ω2 (Hz) Q1 (k) Q2 (k) ∆ (Hz)
1 13327.14 13329.49 47.0 47.2 2.35
3 13239.00 13242.99 48.7 48.6 3.99
4 13465.70 13474.78 45.9 46.0 9.08
5 13554.99 13556.51 46.7 42.8 1.52
6 13557.38 13560.13 46.7 46.9 2.75
7 13231.85 13248.81 46.0 48.1 16.96
9 13613.48 13615.77 40.9 42.4 2.29
10 13592.83 13594.45 46.3 46.4 1.62
11 12979.60 12982.25 44.4 50.3 2.65
12 13282.89 13291.49 47.9 48.2 8.60
14 13467.45 13475.62 47.4 47.4 8.17
15 12943.30 12944.95 47.9 50.8 1.65
16 13063.30 13074.64 46.2 49.5 11.34
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first round, Die 4 has material removed from the third spoke layer, but Die 12 has material removed

from the second spoke layer. The results of the experiments are collected in Table 3.4. The volume

that is associated with γg is 80×80×8 µm3, which corresponds to a mass ofm0 = 0.1193µg. At the

conclusion of each round of etching, the modal parameters are measured, and precise dimensions of

the material removed are obtained with a Wyko profilometer. Then, the parameter rm is determined

which relates the actual mass perturbation estimated from the Wyko measurements relative to

the canonical mass m0. The fact that rm < 0 indicates that material has been removed, and if

|rm| > 1, then more mass was removed than the mass m0. The sensitivity parameter is then

estimated from (3.11), where γg is replaced by rmγ. Note that ∆, ∆0, ψ2,2 and ψ1,2 are known from

the pre- and post-etch modal parameter measurements, θ0 and index i are defined by the etched

spoke locations, and α̃i,2 and β̃i,2 are known from the FEA. Thus, the estimated γg is calculated for

each round and reported in Table 3.4. The estimates with the lowest variance correspond to spoke

layer i = 4, i.e., the outermost layer of spokes. This can be attributed to the fact that the neglected

k = 6, 10 harmonics in (3.11) have little effect on the spoke velocities in this layer. Thus, the mean

value obtained from perturbations to the outermost spoke layer are used for the estimate of

γEXP = 0.339 Hz. (3.12)

Note that the estimates from the other spoke layers are very close to this value as is the value

for γFEA. It is worthwhile mentioning that since the size of the mass perturbations is small, the

anti-node orientation after the perturbations is essentially the same as its orientation before, which

means that the model used herein is accurate.

The sensitivity parameter experiments also provide an opportunity to determine to what extent

the modal properties of the non-ablated die have changed. Measurements were made on the four

die shown in Table 3.5 and demonstrate that the parylene prevents material removal over the short

duration of the timed etch (see Fig. 3.12). The mean frequencies are reported along with the modal

frequency difference before and after the etch. The mean frequencies can vary due to small fluctu-

ations in wafer temperature (the wafer is not temperature regulated during the tests). Furthermore,

the small differences in pre- and post-etch ∆ are within the accuracy of the model that is fit to the
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Table 3.4: Summary of sensitivity parameter estimates
Die round layer, i ∆0 (Hz) ∆ (Hz) rm γg (Hz)
4 1 3 9.08 8.16 -1.2661 0.3334
4 2 1 8.16 7.08 -1.0200 0.3526
4 3 2 7.08 6.20 -1.0105 0.3724
4 4 4 6.20 5.69 -0.9654 0.3295

12 1 2 8.60 7.69 -1.1579 0.3643
12 2 4 7.69 7.18 -1.0196 0.3453
12 3 1 7.18 6.10 -1.0541 0.3484
12 4 3 6.10 5.33 -1.0279 0.3534
14 1 4 8.17 7.39 -1.2352 0.3438
14 2 2 7.39 6.29 -1.2798 0.3379
14 3 3 6.29 5.63 -0.9766 0.3214
14 4 1 5.63 4.67 -0.9858 0.3428
16 1 1 11.34 10.15 -1.1542 0.3431
16 2 3 10.15 9.33 -1.0689 0.3526
16 3 4 9.33 8.74 -1.0276 0.3369
16 4 2 8.74 7.88 -1.0160 0.3636

Table 3.5: Modal parameters associated with non-ablated die
Before Etch After Etch

Die Mean ω (Hz) ∆ (Hz) Mean ω (Hz) ∆ (Hz)
3 13241.00 3.99 13241.80 4.01
5 13555.75 1.52 13555.70 1.60
11 12980.92 2.65 12981.45 2.66
15 12944.12 1.65 12944.35 1.70

frequency response data and from which the modal parameters are extracted.

3.2.3 Wafer-Level Elimination of Modal Frequency Differences

The sensitivity parameter experiments were conducted using Die 4, 12, 14 and 16 to provide an

estimate of γg but it is evident in Table 3.4 that the ablation locations were also selected to reduce

∆, although not to a specified target. Now the objective is to use γEXP and (3.11) to select ablation

locations on the complementary “test” die in order to achieve ∆ ≈ 0 for these die. Several parylene

deposition-ablate-etch-measure cycles were performed with the wafer because of the approximate

nature of (3.11) in predicting the post-etch frequency difference, however, during each cycle all
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Table 3.6: Summary of parylene etch results
Die ω1 (Hz) ω2 (Hz) Q1 (k) Q2 (k) ∆ (Hz)
1 13332.12 13332.16 51.7 47.6 0.04
3 13245.40 13245.73 45.5 45.1 0.33
5 13557.81 13557.84 46.7 48.4 0.03
6 13562.83 13562.89 47.9 43.7 0.06
7 13234.18 13249.51 49.6 48.8 15.33
9 13617.82 13617.86 49.2 49.5 0.04
10 13596.72 13596.77 49.8 49.9 0.05
11 12984.00 12984.06 51.3 48.0 0.06
15 12946.57 12946.61 54.7 55.0 0.04

test die were modified to demonstrate the feasibility of simultaneously reducing ∆ across all die

on the wafer. Between each cycle, the parylene is removed with an oxygen plasma etch. In

order to achieve the simultaneous reduction of ∆, it is necessary to ablate areas of differing sizes

on the spoke surfaces so as to customize the material removal for each die since each round of

etching penetrates the same depth for all die (typically about 8 µm). For these experiments areas

of dimensions 22µm × 22µm to 87µm × 87µm were ablated. The model (3.11) includes the

scaling rq to account for the deviation of the expected material removal with respect to the mass

m0. The final results are compiled in Table 3.6. All modal frequency differences are reduced below

100 mHz except for Die 3 and 7, the latter of which was used for continued sensitivity parameter

experiments. The success of this approach is easily seen in Figs. 3.16 and 3.17, which show the

empirical frequency responses of each test die (with the exception of Die 7) before and after the

targeted etch process.

3.3 Discussion on Wafer-Level n = 2 Modes Tuning

Tailored etching using the parylene deposition-ablation-etch cycle appears to be successful in re-

ducing modal frequency differences to below the bandwidth of the resonances when starting from

initial frequency differences of about 3 Hz or less. The guided blanket etch was an important step

in realizing these starting values for the parylene cycles. The challenge with the guided blanket

etch, though, is the fact that the stiffness associated with the n = 2 modes is also clearly mod-

89



13.55 13.555 13.56 13.565 13.57

-10

0

10

20

30

13.23 13.235 13.24 13.245 13.25

-10

0

10

20

13.32 13.325 13.33 13.335 13.34

-10

0

10

20

30

Frequency (kHz)

M
ag

n
it

u
d
e

(d
B

)
M

ag
n
it

u
d
e

(d
B

)

Frequency (kHz) Frequency (kHz)

Frequency (kHz)

Die 1

Before etch

After etch

Die 3

Die 5

13.55 13.555 13.56 13.565 13.57

-10

0

10

20

30
Die 6

M
ag

n
it

u
d
e

(d
B

)
M

ag
n
it

u
d
e

(d
B

)

Figure 3.16: Comparison of resonator frequency responses before and after the parylene abla-
tion-etch cycles for Die 1, 3, 5 and 6. The S1/D1 and S2/D2 channels are graphed for the res-
onators before and after the etch cycles.
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Figure 3.17: Comparison of resonator frequency responses before and after the parylene abla-
tion-etch cycles for Die 9, 10, 11, and 15. The S1/D1 and S2/D2 channels are graphed for the
resonators before and after the etch cycles.
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Figure 3.18: Summary for Die 5 after major etch steps. Both S1/D1 and S2/D2 channels are
graphed after each major etch step.

ified in addition to the mass distribution of the resonator. This is evident by comparing the data

summarized in Tables 3.2 and 3.3 but is more clearly observed in Fig. 3.18, which shows the fre-

quency response of Die 5 after the major etch steps, and Fig. 3.19, which shows a bar chart of the

frequency differences for all die after the major etch steps. Note that the mean modal frequencies

of the n = 2 modes decrease by a significant amount by continuing the blanket etch. This fact –

uncontrolled modification of the resonator stiffness – renders the guided blanket etch a useful tool

but one that cannot be used to effectively eliminate the modal frequency difference. It is also inter-

esting to note that the control die also experience a reduction in modal frequency difference during

the guided blanket etch, although not to the extent of the die with ablated photoresist. Thus, it ap-

pears that after the initial release of the resonators, continued etching reduces the modal frequency

differences although in a largely unpredictable manner. The mechanism is attributed to continued

lateral etching of the exposed resonator sidewalls, impacting both local stiffness and mass.

Performing a timed etch after deposition, and then ablation, of parylene, produces highly re-

peatable and predictable results because the areas where the material removal occurs, i.e., the large

spokes, has little impact on the n = 2 stiffness properties and so can be modeled as purely a per-

turbation to the resonator mass distribution. This was the basis of the perturbation model (3.9).

Evidence of mass-only perturbations is also supported by Figs. 3.16 and 3.17 where it is clear that

material removal uniformly increases the modal frequencies of the n = 2 modes. This demon-

strates that the conformal parylene coating is effective in preventing sidewall etching during the
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92



site-specific mass removal. Ideally, the comprehensive perturbation model (3.9) would be used to

search for ablation sites, but due to the limited sensing of the outer ring radial motion, it is not

possible to reliably estimate all of the parameters necessary for application of (3.9). In particular,

the phases associated with the k ∈ {6, 10} harmonics are not known. The analysis shows that the

largest k ∈ {6, 10} harmonic amplitudes are located in spoke layer i = 1 and have amplitudes that

are approximately 4% and 3% of k = 2 harmonic amplitude. Thus, locating sense electrodes in

this area of the resonator would be advantageous for measuring these phases. Nevertheless, bounds

on ∆ can be computed using (3.9) by searching for worst-case values of ψp,6 and ψp,10 where the

relations |ψ1,6 − ψ2,6| = 15◦ and |ψ1,10 − ψ2,10| = 9◦ are assumed based on the finite element

results. Profilometer measurements provide accurate estimates of the mass removal so the largest

uncertainty in the parameters in (3.9) are the unknown phases. The bounds are shown in Table 3.7

and are computed using accurate mass removal estimates starting from the resonator states after

the guided blanket etch but before any targeted etching with the parylene has occurred. The bounds

demonstrate that ∆ can significantly deviate from the final desired modal frequency difference of

approximately zero. The real utility of the bounds is in showing the possible range of outcomes for

∆ if only a single ablation-etch cycle is permitted in which the simplified model (3.11) is used to

reduce ∆ to approximately zero. The bounds imply that the absolute modal frequency difference

may be as large as 0.4 Hz (excluding Die 7). These potentially large deviations were avoided by

employing several ablation-etch cycles, thus, this method has been demonstrated to be compati-

ble with iterative execution, enabling repeated application to achieve increasingly small frequency

splits. Ultimately, however, a single ablation-etch cycle is most desirable, but this will necessitate

the measurement of the unknown phases and using the more accurate model (see Chapter 4).

Finally, the quality factors are reported and appear to have experienced modest changes over

the course of the experiments. In some cases, the quality factors have increased, and in others, they

have decreased, but in general, they appear to remain high throughout the post-fabrication steps.

3.4 Summary of Wafer-Level n = 2 Modes Tuning

A wafer-level post-fabrication technique has been demonstrated for simultaneous reduction of the
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Table 3.7: Bounds for ∆ computed from (3.9)
Die ∆min (Hz) ∆max (Hz)
1 -0.36 0.07
3 -0.32 0.42
5 -0.03 0.31
6 0.05 0.41
7 15.35 15.52
9 0.05 0.27

10 -0.13 0.17
11 -0.15 0.37
15 0.07 0.26

modal frequency differences between the n = 2 modes in an axisymmetric resonator. The res-

onator is designed, so that mass removal at the large spokes creates a readily predictable perturba-

tion to its dynamics. Using a model-based approach to select these areas, a laser is used to ablate

the masking resist and, subsequently, a conformal layer of Parylene-C, to expose the silicon for

further etching with SiDRIE. The lateral dimensions can be tightly controlled with a fixed mask

for the laser, and the depth is controlled through a timed etch. Since only silicon is removed from

the resonator, the process is compatible with any further processing, including wafer-level packag-

ing operations. The underlying assumption for the model used in this chapter is that the anti-node

orientation before and after perturbations is essentially the same which can happen by having suf-

ficiently small masses or by placing them close to the anti-node orientation. This assumption is

justified in practice when the objective is tuning one of the modes. A more accurate model will be

derived in Chapter 4.
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CHAPTER 4

Multi-Modal Tuning

Nomenclature - Chapter 4

ω modal frequency prior to the perturbations
ω̃ modal frequency after the perturbations
θ angle coordinate i spoke layer
εS change in the strain energy εT change in the kinetic energy
εT1 kinetic energy change for the first modal frequency within the nth pair
εT2 kinetic energy change for the second modal frequency within the nth pair
ωn,1 the first modal frequency within the nth pair before perturbations
ωn,2 the second modal frequency within the nth pair before perturbations
ω̃n,1 the first modal frequency within the nth pair after perturbations
ω̃n,2 the second modal frequency within the nth pair after perturbations
δn,1 frequency deviation for the first modal frequency within the nth pair
δn,2 frequency deviation for the second modal frequency within the nth pair
ψn,1 anti-node orientation of the modes associated with frequency ωn,1
ψn,2 anti-node orientation of the modes associated with frequency ωn,2
ψ̃n,1 anti-node orientation of the modes associated with frequency ω̃n,1
ψ̃n,2 anti-node orientation of the modes associated with frequency ω̃n,2
ωn,0 average modal frequency within the nth pair
αn,i radial velocity amplitude for within the nth pair in spoke layer i
βn,i tangential velocity amplitude within the nth pair in spoke layer i
∆n := ωn,2 − ωn,1 initial frequency split
∆̃n := ω2 − ω1 post-perturbation frequency split
p = 1, 2 mode number m0 nominal size of mass perturbation
mq size of point mass perturbations µq mass perturbation relative to m0

θq location of mass perturbations
m̄ size of the initial point mass perturbation
µ̄ initial point mass perturbation relative to m0
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Nomenclature - Chapter 4

Tn,1 nominal kinetic energy for the first companion mode within the nth pair
Tn,1 nominal kinetic energy for the second companion mode within the nth pair
Tn,0 mean value of the nominal kinetic energies within the nth pair
γrn ring sensitivity within the nth pair
C objective function j

√
−1

W2 weight associated with n = 2 modes W3 weight associated with n = 3 modes
Z set of integer numbers
Rn vector with n real elements Rn×m n×m matrix with real elements

As discussed in Chapter 1, having asymmetries in the structure degrades the signal-to-noise

ratio (SNR) significantly [KM13]. Also mentioned are the most common and efficient manufactur-

ing techniques for small sized axisymmetric resonators found in micro-electro-mechanical systems

(MEMS) manufacturing such as masking and etching. In Chapter 3, it is shown that the presence

of the asymmetries is unavoidable even with state of the art MEMS technology and are caused by

etch non-uniformities and mounting stresses. The level and nature of the imperfection is random

and varies for each resonator even if all are on the same wafer [BKS17] (see Fig. 3.3). Based on the

randomness of asymmetries, post-fabrication modification seems to be the most practical option to

correct for these imperfections (see Chapter 3).

Changing the dynamics of the structure can be done by either perturbing the stiffness or the

mass distribution. A combination of these two would also alter the dynamics, but the process

is complex and not practical. Pure change of the stiffness can be achieved electrostatically by

applying voltage at specific locations [KM06]. This process is equivalent to adding or removing

point springs to the ring [BM17]. Although this method is easy to implement, the modification is

not permanent and requires relatively large equipment to maintain a “tuned” status.

Due to the distributed mass nature of the resonators, any addition or removal of mass not only

affects the mass distribution (kinetic energy perturbation), but also alters the stiffness (potential

energy perturbation). The coupling between the kinetic and potential energies is the key reason

for the complexity of the tuning problem. The resonator used in this chapter is the same as the

one used in Chapter 3. The design is specified to address this coupling issue. By changing the
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shape of the connections (spokes) between the four outermost rings, the spokes’ strain energy is

minimized [BKS17] (see Fig. 3.5). Therefore, the adjustment of mass at these fat spokes does not

affect the stiffness of the structure.

Tuning via mass addition and wafer-level mass removal is presented for n = 2 Coriolis coupled

modes in [SKS15] and [BKS17], respectively. Although the n = 2 is the most common pair used

for sensing the angular rotation and rate sensors, there are other modes that can be used such as

the n = 3 Coriolis coupled modes. The lag factor is smaller for this pair of modes, but the pair can

still be used in a gyroscope. It has been shown that using two mode pairs (n = 2 and n = 3) as rate

sensors in one device provides two independent measurements with correlated long-term biases.

This long-term bias correlation can be used for improving the quality of the measurements [GM17].

However, each mode used as a rate sensor needs to be tuned. The tuning of the mode for [GM17]

has been done in an ad-hoc manner. The challenge is that both modes need to be considered in the

tuning process and at the end, both modes must have essentially zero frequency splits.

In tuning the n = 2 modes, the neighborhood of the search for the mass perturbations can

be found from the uniform ring model with point asymmetries (see [Fox90] and [BM17]). The

constrained search space makes the computational aspect of the problem relatively easy. This

means the anti-node orientation is usually preserved during the perturbation process, so the model

used in Chapter 3 is accurate. On the other hand, for simultaneous tuning of n = 2 and n =

3 modes, the search space is essentially all the spokes in the four outermost rings. Due to the

complexity of the problem, the tuning needs to be pursued systematically and the assumption

about preserving the anti-node during the perturbation process must be removed from the model.

The chapter is organized as follows. Sec. 4.1 reviews the effect of point mass perturbations on

a simple ring without restricting the anti-node orientation and generalizes the idea to the resonator

used in this study. The results from a finite element analysis are presented to find the connection

between point mass size and location and kinetic energy perturbation. The tuning equation is also

derived at the end of Sec. 4.1. The linear integer programming problem is studied in Sec. 4.2. The

objective function and the practical constraints are introduced and written in a format compatible

with linear programming. The section shows why the solution to the tuning problem always exists

in practice by properly choosing the size of the nominal mass perturbation. The process of testing
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and the results for two devices are presented in Sec. 4.3. Sec. 4.4 summarizes the results of the

section.

4.1 Modeling

The reader is referred to [SKS15] and Chapter 3 for information on the resonator design and fab-

rication. The modal parameter estimation method used for this chapter is more sophisticated than

the one used in [SKS15] and it contains two inputs and eight outputs for each of the modes. The

method is especially more accurate when a given companion mode’s frequencies are approximately

equal. In this case, the improved model yields a more accurate anti-node orientation. The ultimate

goal of this research is the systematic and simultaneous modification of the two Coriolis coupled

modes in axisymmetric resonators to achieve degenerate modal frequencies. After tuning, the two

modes can be used to provide independent measurements in one device with correlated bias errors.

This section is divided into two parts. The first portion discusses the effect of point mass

perturbations on a ring for different modes. The second half applies the idea to the resonator in

hand using finite element (FE) analysis of the structure.

4.1.1 Effect of Point Mass Perturbations

The modal frequencies in a vibrating structure are perturbed from their nominal values by changes

in the structure’s mass and/or stiffness distribution. The pre- and post-perturbation modal frequen-

cies in a linear elastic structure are related by,

ω̃2 = ω2 1 + εS
1 + εT

, (4.1)

where ω is the modal frequency prior to the perturbations, ω̃ is the modal frequency after the

perturbations, and εS and εT are the changes in the strain and kinetic energies of the perturbed

mode, respectively, normalized by the unperturbed energies [Mei67].

In the case of a vibrating ring we are interested in the behavior of two “companion” modes,

which in a uniform thin ring have degenerate modal frequencies [Rao07]. The modal pairs are
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indexed by n = 1, 2, 3, . . . , which refers to the fact that the mode shapes associated with a given

pair are represented by the radial displacement functions cos(nθ) and sin(nθ), defined relative

to the nominal, undeformed ring radius. The angular coordinate θ identifies a point on the ring

relative to some datum. The two modal frequencies within the nth pair are denoted ωn,1 and ωn,2.

In a uniform ring ωn,2 = ωn,1, but, in general, ωn,2 6= ωn,1 in an imperfect ring. The mode-shapes

in an imperfect ring are still well-approximated by cos(n(θ − ψn,1)) and cos(n(θ − ψn,2)), where

ψn,1 and ψn,2 denote the anti-node orientation of the modes associated with frequencies ωn,1 and

ωn,2, respectively. Furthermore, ψn,2 − ψn,1 ≈ ±90◦/n so the second mode-shape reduces to

± sin(n(θ − ψn,1)).

The “tuning problem” consists of perturbing the imperfect resonator so that the post-perturbation

frequencies satisfy ω̃n,2 = ω̃n,1. This may be desired at only one value of n (typically n = 2 for

axisymmetric resonators used in Coriolis Vibratory Gyros - see Chapter 3), or, as is addressed

in this chapter, when n = 2, 3. Assuming a perturbation only modifies the kinetic energy in the

modes, then
ω̃2
n,1

ω2
n,1

− ω̃2
n,2

ω2
n,2

=
1

1 + εT1
− 1

1 + εT2
≈ εT2 − εT1 (4.2)

where εT1 represents the change in kinetic energy of the ωn,1 mode due to the perturbation nor-

malized by its pre-perturbation kinetic energy T1, and so forth. The post-perturbation frequen-

cies are related to the pre-perturbation frequencies by the frequency deviations δn,1 and δn,2:

ω̃n,1 = ωn,1 + δn,1 and ω̃n,2 = ωn,2 + δn,2. The left-hand side of (4.2) can be approximated as

ω̃2
n,1

ω2
n,1

− ω̃2
n,2

ω2
n,2

≈ 2

(
δn,1
ω1

− δn,2
ω2

)
≈ 2

(
δn,1 − δn,2
ωn,0

)
, (4.3)

where ωn,0 is the mean value of ωn,1 and ωn,2, and where the terms with δ2
n,1 and δ2

n,2 have been

neglected. Thus, the difference between the modal frequency deviations due to a perturbation is

approximated as

δn,1 − δn,2 ≈
ωn,0

2
(εT2 − εT1) . (4.4)

If the initial state of the ring is such that ωn,2 6= ωn,1, then this state is the starting point for any

“tuning” strategy which aspires to modify the resonator in such a manner so as to remove the differ-
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ences in these modal frequencies, i.e. ω̃n,2 = ω̃n,1, with an appropriate perturbation. It is assumed

that ωn,1, ωn,2 and ψn,1 (and, hence, ψn,2) are known at the outset. The physical perturbations at

our disposal for the resonator depicted in Fig. 4.1 of the subsequent section are the deposition of

quantized masses at the large spoke locations. These quantized masses modify the distribution of

resonator mass and therefore change the modal properties of, generically, all modes. Thus, for

the study of a slightly imperfect ring, it is assumed that point masses can be loaded onto the struc-

ture. Despite the fact that point masses can be safely assumed to not modify the ring stiffness at the

point of attachment (a design feature of the resonator in Fig. 4.1), it is nevertheless possible that the

normalized strain energy associated with a perturbed mode is different from the normalized strain

energy associated with the mode in its initial state. The difference in normalized strain energies

caused by a pure mass perturbation is due to non-uniformity of local bending stiffness in the ring:

a mass perturbation will generally modify the anti-node orientation which will produce different

strain energy. Although there appears to be little rationale for a priori assuming the normalized

strain energy is invariant with respect to ψn,1, this assumption is made here because not only does

it yield a tractable relationship for the degree of frequency detuning as a function of point-mass

perturbations but, more importantly, the model is able to predict with high accuracy the changes in

modal frequencies in actual resonators. Henceforth, it is assumed that the bending stiffness in the

ring is uniform and so any change in the normalized strain energy can be neglected compared to

changes in the kinetic energy.

A consequence of assuming the normalized strain energy is invariant with respect to ψn,1 is any

difference in observed modal frequencies can be assumed to be produced by a single point-mass of

appropriate size. Indeed, affixing a point mass to a uniform thin ring will create an anti-node at the

attachment point that is associated with the lowest frequency mode in the pair. The difference in

modal frequencies will be proportional to the perturbing mass. This is the source of the imbalance

parameters discussed in [Fox90, SKS15]. When mass is added to ring in order to modify its modal

properties, the change in kinetic energy can be computed based on the new added mass relative to

the new anti-nodes as well as the original mass with respect to the new anti-nodes.

It is assumed the point mass m̄ is attached to the uniform thin ring at ψn,1, which creates

an anti-node at ψn,1 associated with frequency ωn,1. The mass size is adjusted so that the initial
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frequency split ∆n := ωn,2 − ωn,1 > 0 matches the measured difference in frequencies (without

loss of generality, ωn,2 is always assigned as the higher frequency mode in the nth pair). This is

the initial state of the ring. In this case, the radial and tangential displacements relative to the

undeformed ring are

αn cos(n(θ − ψn,1)) (radial),

βn sin(n(θ − ψn,1)) (tangential),

for mode ωn,1, and

αn cos(n(θ − ψn,2)) = ±αn sin(n(θ − ψn,1)) (radial),

βn sin(n(θ − ψn,2)) = βn cos(n(θ − ψn,1)) (tangential),

for mode ωn,2. It appears the radial and tangential components are constrained to have the same

amplitudes in both modes. Further, the normalized change in kinetic energy for each mode is

amplitude independent so one may assume the amplitudes to be the same. Likewise, the post-

perturbation radial and tangential displacements are given by

αn cos(n(θ − ψ̃n,1)) (radial),

βn sin(n(θ − ψ̃n,1)) (tangential),

for mode ω̃n,1, and

αn cos(n(θ − ψ̃n,2)) = ±αn sin(n(θ − ψ̃n,1)) (radial),

βn sin(n(θ − ψ̃n,2)) = βn cos(n(θ − ψ̃n,1)) (tangential),

for mode ω̃n,2. The post-perturbation frequency difference is defined ∆̃n := ω̃n,2 − ω̃n,1 and note

that ∆̃n < 0 is possible and depends on the details of the perturbation.

Suppose a set of point masses {mq} are placed on the slightly imperfect ring at points {θq}.
Based on the harmonic assumption for the radial and tangential displacements, the spatial portion
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of the kinetic energy associated with these masses in the perturbed resonator is

1

2

∑
q

mq

(
α2
n cos2(n(θq − ψ̃n,p)) + β2

n sin2(n(θq − ψ̃n,p))
)
,

where p = 1, 2 for the first and second companion modes, respectively. This spatial potion of

kinetic energy is hereby referred to the kinetic energy. For the original mass m̄ that created the

initial imperfect ring, the change in kinetic energy associated with this mass due to the change in

anti-node orientations is

1

2
m̄× [

(
α2
n cos2(n(ψn,1 − ψ̃n,p)) + β2

n sin2(n(ψn,1 − ψ̃n,p))
)

−
(
α2
n cos2(n(ψn,1 − ψn,p)) + β2

n sin2(n(ψn,1 − ψn,p))
)
].

where p = 1, 2 for the first and second companion modes, respectively. Thus, the change in

normalized kinetic energy associated with mode ωn,1 (p = 1) is

εT1 =
1

2Tn,1
× [
∑
q

mq

(
α2
n cos2(n(θq − ψ̃n,1)) + β2

n sin2(n(θq − ψ̃n,1))
)

+ m̄× (α2
n cos2(n(ψn,1 − ψ̃n,1)) + β2

n sin2(n(ψn,1 − ψ̃n,1))− α2
n))],

(4.5)

where Tn,1 is the nominal kinetic energy for the first companion mode of the pair. The expression

in (4.5) can be simplified as

εT1 =
1

4Tn,1
× [
∑
q

mq

((
α2
n + β2

n

)
+
(
α2
n − β2

n

)
cos(2n(θq − ψ̃n,1))

)
+m̄

(
−
(
α2
n − β2

n

)
+
(
α2
n − β2

n

)
cos(2n(ψn,1 − ψ̃n,1))

)
].

(4.6)

The expression for the change in normalized kinetic energy associated with mode ωn,2 (p = 2) is

similarly derived as

εT2 =
1

4Tn,2
× [
∑
q

mq

((
α2
n + β2

n

)
+
(
α2
n − β2

n

)
cos(2n(θq − ψ̃n,2))

)
+m̄

((
α2
n − β2

n

)
+
(
α2
n − β2

n

)
cos(2n(ψn,1 − ψ̃n,2))

)
],

(4.7)
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where Tn,2 is the nominal kinetic energy associated with the second companion mode of the pair.

Assuming αn and βn are the same for two companion modes, the nominal kinetic energies are the

same as well,

Tn,1 ≈ Tn,2 ≈ Tn,0,

where Tn,0 is the mean value of Tn,1 and Tn,2.

Using the orthogonality condition for the two companion modes for both before and after

perturbations,

ψ̃n,2 − ψ̃n,1 ≈ ψn,2 − ψn,1 ≈ ±90◦/n.

From (4.6) and (4.7), the relative change in normalized kinetic energies is

εT2 − εT1 = −2
α2
n

4Tn,0

(
(
αn
αn

)2 − (
βn
αn

)2

)
× [
∑
q

mq

(
cos(2n(θq − ψ̃n,1))

)
+ m̄

(
−1 + cos(2n(ψn,1 − ψ̃n,1))

)
].

(4.8)

From (4.4) and (4.8), the difference in the frequency deviations can be written in terms of the

change in the kinetic energy as

δn,2 − δn,1 ≈
m0ωn,0α

2
n

4Tn,0
× [
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)(
cos(2n(θq − ψ̃n,1))

)
+µ̄

(
(
αn
αn

)2 − (
βn
αn

)2

)(
−1 + cos(2n(ψn,1 − ψ̃n,1))

)
],

(4.9)

where m0 is the nominal perturbation size (mq = µqm0 and m̄ = µ̄m0). Based on the definition

of the frequency deviations, the left hand side of (4.9) is ∆̃n−∆n. By defining the ring sensitivity

γrn for the nth pair as m0ωn,0α2
n

4Tn,0
, (4.9) can be written as

∆̃n −∆n = γrn × [
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)(
cos(2n(θq − ψ̃n,1))

)
+µ̄

(
(
αn
αn

)2 − (
βn
αn

)2

)(
−1 + cos(2n(ψn,1 − ψ̃n,1))

)
].

(4.10)

The ring sensitivity multiplied by
(

(αn
αn

)2 − ( βn
αn

)2
)

is the change in the frequency split when the
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mass perturbation of size m0 is placed on the anti-node. As such, µ̄ can be related to the frequency

split before perturbations ∆n as

µ̄ =
∆n

γrn

(
(αn
αn

)2 − ( βn
αn

)2
) . (4.11)

Plugging in for µ̄ from (4.11) in (4.10) leads to

∆̃n −∆n = γrn ×
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
cos(2n(θq − ψ̃n,1))−∆n + ∆n cos(2n(ψn,1 − ψ̃n,1)),

(4.12)

which can be written as

∆̃n =γrn ×
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
cos(2nθq) cos(2nψ̃n,1)

+ γrn ×
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
sin(2nθq) sin(2nψ̃n,1)

+ ∆n cos(2nψn,1) cos(2nψ̃n,1) + ∆n sin(2nψn,1) sin(2nψ̃n,1).

(4.13)

The anti-node orientation after placing the mass perturbations can be written as

∆̃n

∆̃n

tan(2nψ̃n,1) =
∆n sin(2nψn,1) + γrn

∑
q µq

(
(αn
αn

)2 − ( βn
αn

)2
)

sin(2nθq)

∆n cos(2nψn,1) + γrn
∑

q µq

(
(αn
αn

)2 − ( βn
αn

)2
)

cos(2nθq)
. (4.14)

Using (4.14), the expression in (4.13) yields

∆̃n cos(2nψ̃n,1) = ∆n cos(2nψn,1) + γrn
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
cos(2nθq),

∆̃n sin(2nψ̃n,1) = ∆n sin(2nψn,1) + γrn
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
sin(2nθq).

(4.15)

In compact form, using Euler’s formula, (4.15) can be written as

∆̃nej2nψ̃n,1 = ∆nej2nψn,1 + γrn
∑
q

µq

(
(
αn
αn

)2 − (
βn
αn

)2

)
ej2nθq , (4.16)
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where j =
√
−1. The kinetic energy model for a ring in (4.16) will be extended to ring-type

resonators using finite element analysis. As discussed for n = 2 modes in Chapter 3, the only

difference between various rings is the amplitude of vibration.

4.1.2 Generalization to Ring-Type Resonators

The expression in (4.16) is general in the sense that it can be used for all modes. However, it is

should be noted (4.16) is derived only for a single ring. For the ring-type structures such as the one

in hand, (4.16) needs to be generalized. The main difference between different rings in a resonator

is the variation in the radial and tangential amplitudes (or the αn and βn values in the mode shapes).

As discussed in Chapter 3, there is a fixed relationship between the radial and tangential amplitudes

for different rings. For the resonator in hand, since the mass perturbation is restricted to the four

outermost rings (see Fig. 4.1), the sensitivities must be found for those rings for n = 2 and n = 3

modes. As the structure is fairly complicated, FE is used for finding the relative amplitudes. The

process of numerical case studies is similar to [BKS17] (explained in Chapter 3 and will be briefly

reviewed here) and is also extended to n = 3 modes as well. The modal analysis yields the

Cartesian velocity components at any point in the resonator, but because the mass at the large

spokes is perturbed, the spoke velocity components are of particular interest. The FE analysis

yields the velocities at the center of each spokes. The velocities are decomposed into radial and

tangential components and the discrete Fourier series are computed for each spoke layer. The

largest magnitude Fourier coefficient in all cases corresponds to nth harmonic radial motion of the

innermost ring (out of the four rings). Thus, all other Fourier coefficient magnitudes are normalized

by this value in each experiment to yield the normalized Fourier coefficient magnitudes shown in

Figs. 4.2 and 4.3 for n = 2 and n = 3 modes, respectively. In the current study, all the harmonics

are neglected except for the nth one due to the fact that there are other sources of uncertainties

in the process. The most important uncertainty would be the variation in the size of the mass

perturbations. Also, sensing the other harmonics orientations is not possible from the outermost

ring due to the relatively small sizes of them. Keeping all the harmonics is not practical and

does not necessarily impact the tuning process in a positive way. The values of the normalized

amplitudes retained for the analysis are summarized in Tables 4.1 and 4.2. for n = 2 and n = 3

105



angle reference
<latexit sha1_base64="hx7fLfQtF6qZoQtyf4cE69KlUtA=">AAAB93icbVBNT8JAEJ36ifhB1aOXjcTEE2m5qDeiF4+YWCGBhmyXKWzYbpvdrQkSfokXD2q8+le8+W9coAcFXzLJy3szmZkXZYJr43nfztr6xubWdmmnvLu3f1BxD48edJorhgFLRaraEdUouMTAcCOwnSmkSSSwFY1uZn7rEZXmqbw34wzDhA4kjzmjxko9t0LlQCBRGKNCybDnVr2aNwdZJX5BqlCg2XO/uv2U5QlKwwTVuuN7mQknVBnOBE7L3VxjRtmIDrBjqaQJ6nAyP3xKzqzSJ3GqbElD5urviQlNtB4nke1MqBnqZW8m/ud1chNfhhMus9zYrxaL4lwQk5JZCqTPFTIjxpZQpri9lbAhVZQZm1XZhuAvv7xKgnrtqubd1auN6yKNEpzAKZyDDxfQgFtoQgAMcniGV3hznpwX5935WLSuOcXMMfyB8/kDFnaS6A==</latexit><latexit sha1_base64="hx7fLfQtF6qZoQtyf4cE69KlUtA=">AAAB93icbVBNT8JAEJ36ifhB1aOXjcTEE2m5qDeiF4+YWCGBhmyXKWzYbpvdrQkSfokXD2q8+le8+W9coAcFXzLJy3szmZkXZYJr43nfztr6xubWdmmnvLu3f1BxD48edJorhgFLRaraEdUouMTAcCOwnSmkSSSwFY1uZn7rEZXmqbw34wzDhA4kjzmjxko9t0LlQCBRGKNCybDnVr2aNwdZJX5BqlCg2XO/uv2U5QlKwwTVuuN7mQknVBnOBE7L3VxjRtmIDrBjqaQJ6nAyP3xKzqzSJ3GqbElD5urviQlNtB4nke1MqBnqZW8m/ud1chNfhhMus9zYrxaL4lwQk5JZCqTPFTIjxpZQpri9lbAhVZQZm1XZhuAvv7xKgnrtqubd1auN6yKNEpzAKZyDDxfQgFtoQgAMcniGV3hznpwX5935WLSuOcXMMfyB8/kDFnaS6A==</latexit><latexit sha1_base64="hx7fLfQtF6qZoQtyf4cE69KlUtA=">AAAB93icbVBNT8JAEJ36ifhB1aOXjcTEE2m5qDeiF4+YWCGBhmyXKWzYbpvdrQkSfokXD2q8+le8+W9coAcFXzLJy3szmZkXZYJr43nfztr6xubWdmmnvLu3f1BxD48edJorhgFLRaraEdUouMTAcCOwnSmkSSSwFY1uZn7rEZXmqbw34wzDhA4kjzmjxko9t0LlQCBRGKNCybDnVr2aNwdZJX5BqlCg2XO/uv2U5QlKwwTVuuN7mQknVBnOBE7L3VxjRtmIDrBjqaQJ6nAyP3xKzqzSJ3GqbElD5urviQlNtB4nke1MqBnqZW8m/ud1chNfhhMus9zYrxaL4lwQk5JZCqTPFTIjxpZQpri9lbAhVZQZm1XZhuAvv7xKgnrtqubd1auN6yKNEpzAKZyDDxfQgFtoQgAMcniGV3hznpwX5935WLSuOcXMMfyB8/kDFnaS6A==</latexit>

mass modification sites
<latexit sha1_base64="pSz+IbsK2hOg1JMB10xwgjDTj+A=">AAAB/3icbVA9T8MwEHXKVylfAQYGFosKialKugBbBQtjkQit1EaV41xaq7YT2Q5SVXXhr7AwAGLlb7Dxb3DbCEHLk056eu/OvntRxpk2nvfllFZW19Y3ypuVre2d3T13/+Bep7miENCUp6odEQ2cSQgMMxzamQIiIg6taHg99VsPoDRL5Z0ZZRAK0pcsYZQYK/XcI0G0xiKNfzSsmQHdc6tezZsBLxO/IFVUoNlzP7txSnMB0lBu3+z4XmbCMVGGUQ6TSjfXkBE6JH3oWCqJAB2OZwdM8KlVYpykypY0eKb+nhgTofVIRLZTEDPQi95U/M/r5Ca5CMdMZrkBSecfJTnHJsXTNHDMFFDDR5YQqpjdFdMBUYQam1nFhuAvnrxMgnrtsubd1quNqyKNMjpGJ+gM+egcNdANaqIAUTRBT+gFvTqPzrPz5rzPW0tOMXOI/sD5+AZeSZZ0</latexit><latexit sha1_base64="pSz+IbsK2hOg1JMB10xwgjDTj+A=">AAAB/3icbVA9T8MwEHXKVylfAQYGFosKialKugBbBQtjkQit1EaV41xaq7YT2Q5SVXXhr7AwAGLlb7Dxb3DbCEHLk056eu/OvntRxpk2nvfllFZW19Y3ypuVre2d3T13/+Bep7miENCUp6odEQ2cSQgMMxzamQIiIg6taHg99VsPoDRL5Z0ZZRAK0pcsYZQYK/XcI0G0xiKNfzSsmQHdc6tezZsBLxO/IFVUoNlzP7txSnMB0lBu3+z4XmbCMVGGUQ6TSjfXkBE6JH3oWCqJAB2OZwdM8KlVYpykypY0eKb+nhgTofVIRLZTEDPQi95U/M/r5Ca5CMdMZrkBSecfJTnHJsXTNHDMFFDDR5YQqpjdFdMBUYQam1nFhuAvnrxMgnrtsubd1quNqyKNMjpGJ+gM+egcNdANaqIAUTRBT+gFvTqPzrPz5rzPW0tOMXOI/sD5+AZeSZZ0</latexit><latexit sha1_base64="pSz+IbsK2hOg1JMB10xwgjDTj+A=">AAAB/3icbVA9T8MwEHXKVylfAQYGFosKialKugBbBQtjkQit1EaV41xaq7YT2Q5SVXXhr7AwAGLlb7Dxb3DbCEHLk056eu/OvntRxpk2nvfllFZW19Y3ypuVre2d3T13/+Bep7miENCUp6odEQ2cSQgMMxzamQIiIg6taHg99VsPoDRL5Z0ZZRAK0pcsYZQYK/XcI0G0xiKNfzSsmQHdc6tezZsBLxO/IFVUoNlzP7txSnMB0lBu3+z4XmbCMVGGUQ6TSjfXkBE6JH3oWCqJAB2OZwdM8KlVYpykypY0eKb+nhgTofVIRLZTEDPQi95U/M/r5Ca5CMdMZrkBSecfJTnHJsXTNHDMFFDDR5YQqpjdFdMBUYQam1nFhuAvnrxMgnrtsubd1quNqyKNMjpGJ+gM+egcNdANaqIAUTRBT+gFvTqPzrPz5rzPW0tOMXOI/sD5+AZeSZZ0</latexit>

S1<latexit sha1_base64="cbsM51ZXyMQvVXefrYzXwn24zVU=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkNpYYPSGBC9lb5mDD3t5ld8+EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSq4Nq777RTW1jc2t4rbpZ3dvf2D8uHRo04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLRzcxvPaHSPJEPZpxiENOB5BFn1FjJr973vGqvXHFr7hxklXg5qUCOZq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noMphwmWYGJVssijJBTEJmn5M+V8iMGFtCmeL2VsKGVFFmbD4lG4K3/PIq8eu1q5p7V680rvM0inACp3AOHlxAA26hCT4w4PAMr/DmSOfFeXc+Fq0FJ585hj9wPn8A9zGNpA==</latexit><latexit sha1_base64="cbsM51ZXyMQvVXefrYzXwn24zVU=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkNpYYPSGBC9lb5mDD3t5ld8+EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSq4Nq777RTW1jc2t4rbpZ3dvf2D8uHRo04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLRzcxvPaHSPJEPZpxiENOB5BFn1FjJr973vGqvXHFr7hxklXg5qUCOZq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noMphwmWYGJVssijJBTEJmn5M+V8iMGFtCmeL2VsKGVFFmbD4lG4K3/PIq8eu1q5p7V680rvM0inACp3AOHlxAA26hCT4w4PAMr/DmSOfFeXc+Fq0FJ585hj9wPn8A9zGNpA==</latexit><latexit sha1_base64="cbsM51ZXyMQvVXefrYzXwn24zVU=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkNpYYPSGBC9lb5mDD3t5ld8+EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSq4Nq777RTW1jc2t4rbpZ3dvf2D8uHRo04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLRzcxvPaHSPJEPZpxiENOB5BFn1FjJr973vGqvXHFr7hxklXg5qUCOZq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noMphwmWYGJVssijJBTEJmn5M+V8iMGFtCmeL2VsKGVFFmbD4lG4K3/PIq8eu1q5p7V680rvM0inACp3AOHlxAA26hCT4w4PAMr/DmSOfFeXc+Fq0FJ585hj9wPn8A9zGNpA==</latexit> S2<latexit sha1_base64="k57PiOI10UA5GsZPfhR/utAxDUI=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbQyJjSVGT0jgQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDo0cSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQvB2Mb2Z++4lrI2L1gJOE+xEdKhEKRtFKXvW+36j2yxW35s5BVkk9JxXI0eqXv3qDmKURV8gkNaZbdxP0M6pRMMmnpV5qeELZmA5511JFI278bH7slJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDSz8TKkmRK7ZYFKaSYExmn5OB0JyhnFhCmRb2VsJGVFOGNp+SDaG+/PIq8Rq1q5p716g0r/M0inACp3AOdbiAJtxCCzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4A+LWNpQ==</latexit><latexit sha1_base64="k57PiOI10UA5GsZPfhR/utAxDUI=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbQyJjSVGT0jgQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDo0cSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQvB2Mb2Z++4lrI2L1gJOE+xEdKhEKRtFKXvW+36j2yxW35s5BVkk9JxXI0eqXv3qDmKURV8gkNaZbdxP0M6pRMMmnpV5qeELZmA5511JFI278bH7slJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDSz8TKkmRK7ZYFKaSYExmn5OB0JyhnFhCmRb2VsJGVFOGNp+SDaG+/PIq8Rq1q5p716g0r/M0inACp3AOdbiAJtxCCzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4A+LWNpQ==</latexit><latexit sha1_base64="k57PiOI10UA5GsZPfhR/utAxDUI=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbQyJjSVGT0jgQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDo0cSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQvB2Mb2Z++4lrI2L1gJOE+xEdKhEKRtFKXvW+36j2yxW35s5BVkk9JxXI0eqXv3qDmKURV8gkNaZbdxP0M6pRMMmnpV5qeELZmA5511JFI278bH7slJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDSz8TKkmRK7ZYFKaSYExmn5OB0JyhnFhCmRb2VsJGVFOGNp+SDaG+/PIq8Rq1q5p716g0r/M0inACp3AOdbiAJtxCCzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4A+LWNpQ==</latexit>

S3
<latexit sha1_base64="M9A9YtgNkmxwTSaMm8gKl0FMkds=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5A4LtTEkNpYYPSGBC9lb9mDD3t5ld86EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+jmNpg==</latexit><latexit sha1_base64="M9A9YtgNkmxwTSaMm8gKl0FMkds=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5A4LtTEkNpYYPSGBC9lb9mDD3t5ld86EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+jmNpg==</latexit><latexit sha1_base64="M9A9YtgNkmxwTSaMm8gKl0FMkds=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5A4LtTEkNpYYPSGBC9lb9mDD3t5ld86EEH6DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+jmNpg==</latexit>

S4<latexit sha1_base64="SqPOz7/irSNtmSSMZtg5Se5pKBI=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJIiqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+72Npw==</latexit><latexit sha1_base64="SqPOz7/irSNtmSSMZtg5Se5pKBI=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJIiqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+72Npw==</latexit><latexit sha1_base64="SqPOz7/irSNtmSSMZtg5Se5pKBI=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJIiqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH+72Npw==</latexit>

S5
<latexit sha1_base64="DV5hZ8flMs+MVOHB1RSuDX3eykc=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJKCqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH/UGNqA==</latexit><latexit sha1_base64="DV5hZ8flMs+MVOHB1RSuDX3eykc=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJKCqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH/UGNqA==</latexit><latexit sha1_base64="DV5hZ8flMs+MVOHB1RSuDX3eykc=">AAAB63icbVBNS8NAEJ34WetX1aOXxVbwVJKCqBcpePFY0dhCG8pmu2mXbjZhdyKU0t/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Ngtbxe2d3b390sHho0kyzbjPEpnoVkgNl0JxHwVK3ko1p3EoeTMc3kz95hPXRiTqAUcpD2LaVyISjKKV/Mp997zSLZXdqjsDWSZeTsqQo9EtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQZjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXiV+rXlXdu1q5fp2nUYBjOIEz8OAC6nALDfCBgYBneIU3RzkvzrvzMW9dcfKZI/gD5/MH/UGNqA==</latexit>

S7
<latexit sha1_base64="WQ4lzYVLy9+QjT9iARPeSfyuA3Q=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYMGbQyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMML/xMqCRFrthiUZhKgjGZfU4GQnOGcmIJZVrYWwkbUU0Z2nxKNoT68surxGvULmvubaPSusrTKMIJnMI51KEJLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAFiNqg==</latexit><latexit sha1_base64="WQ4lzYVLy9+QjT9iARPeSfyuA3Q=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYMGbQyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMML/xMqCRFrthiUZhKgjGZfU4GQnOGcmIJZVrYWwkbUU0Z2nxKNoT68surxGvULmvubaPSusrTKMIJnMI51KEJLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAFiNqg==</latexit><latexit sha1_base64="WQ4lzYVLy9+QjT9iARPeSfyuA3Q=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYMGbQyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMML/xMqCRFrthiUZhKgjGZfU4GQnOGcmIJZVrYWwkbUU0Z2nxKNoT68surxGvULmvubaPSusrTKMIJnMI51KEJLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAFiNqg==</latexit>

S6
<latexit sha1_base64="KYElMZ2pO00LIndWzERhrOqfaBQ=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5I7Cj8aQ2Fhi9IQELmRv2YMNe3uX3TkTQvgNNhZqbP1Ddv4bF7hCwZdM8vLeTGbmhakUBl3321lZXVvf2CxsFbd3dvf2SweHjybJNOM+S2SiWyE1XArFfRQoeSvVnMah5M1weDP1m09cG5GoBxylPIhpX4lIMIpW8iv33fNKt1R2q+4MZJl4OSlDjka39NXpJSyLuUImqTFtz00xGFONgkk+KXYyw1PKhrTP25YqGnMTjGfHTsipVXokSrQthWSm/p4Y09iYURzazpjiwCx6U/E/r51hdBmMhUoz5IrNF0WZJJiQ6eekJzRnKEeWUKaFvZWwAdWUoc2naEPwFl9eJn6telV172rl+nWeRgGO4QTOwIMLqMMtNMAHBgKe4RXeHOW8OO/Ox7x1xclnjuAPnM8f/sWNqQ==</latexit><latexit sha1_base64="KYElMZ2pO00LIndWzERhrOqfaBQ=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5I7Cj8aQ2Fhi9IQELmRv2YMNe3uX3TkTQvgNNhZqbP1Ddv4bF7hCwZdM8vLeTGbmhakUBl3321lZXVvf2CxsFbd3dvf2SweHjybJNOM+S2SiWyE1XArFfRQoeSvVnMah5M1weDP1m09cG5GoBxylPIhpX4lIMIpW8iv33fNKt1R2q+4MZJl4OSlDjka39NXpJSyLuUImqTFtz00xGFONgkk+KXYyw1PKhrTP25YqGnMTjGfHTsipVXokSrQthWSm/p4Y09iYURzazpjiwCx6U/E/r51hdBmMhUoz5IrNF0WZJJiQ6eekJzRnKEeWUKaFvZWwAdWUoc2naEPwFl9eJn6telV172rl+nWeRgGO4QTOwIMLqMMtNMAHBgKe4RXeHOW8OO/Ox7x1xclnjuAPnM8f/sWNqQ==</latexit><latexit sha1_base64="KYElMZ2pO00LIndWzERhrOqfaBQ=">AAAB63icbVA9TwJBEJ3zE/ELtbTZCCZW5I7Cj8aQ2Fhi9IQELmRv2YMNe3uX3TkTQvgNNhZqbP1Ddv4bF7hCwZdM8vLeTGbmhakUBl3321lZXVvf2CxsFbd3dvf2SweHjybJNOM+S2SiWyE1XArFfRQoeSvVnMah5M1weDP1m09cG5GoBxylPIhpX4lIMIpW8iv33fNKt1R2q+4MZJl4OSlDjka39NXpJSyLuUImqTFtz00xGFONgkk+KXYyw1PKhrTP25YqGnMTjGfHTsipVXokSrQthWSm/p4Y09iYURzazpjiwCx6U/E/r51hdBmMhUoz5IrNF0WZJJiQ6eekJzRnKEeWUKaFvZWwAdWUoc2naEPwFl9eJn6telV172rl+nWeRgGO4QTOwIMLqMMtNMAHBgKe4RXeHOW8OO/Ox7x1xclnjuAPnM8f/sWNqQ==</latexit>

S8
<latexit sha1_base64="H8wnV4FpUd4HbC0MM2O9FpBtJ0I=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbAyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMMm34mVJIiV2yxKEwlwZjMPicDoTlDObGEMi3srYSNqKYMbT4lG0J9+eVV4jVqlzX3tlFpXeVpFOEETuEc6nABLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAdyNqw==</latexit><latexit sha1_base64="H8wnV4FpUd4HbC0MM2O9FpBtJ0I=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbAyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMMm34mVJIiV2yxKEwlwZjMPicDoTlDObGEMi3srYSNqKYMbT4lG0J9+eVV4jVqlzX3tlFpXeVpFOEETuEc6nABLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAdyNqw==</latexit><latexit sha1_base64="H8wnV4FpUd4HbC0MM2O9FpBtJ0I=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGbAyJjSVGT0ngQvaWPdiwt3fZnTMhF36DjYUaW/+Qnf/GBa5Q8CWTvLw3k5l5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fDowcSpZtxjsYx1J6CGS6G4hwIl7ySa0yiQ/DEYX8/8xyeujYjVPU4S7kd0qEQoGEUredW7frPaL1fcmjsHWSX1nFQgR7tf/uoNYpZGXCGT1Jhu3U3Qz6hGwSSflnqp4QllYzrkXUsVjbjxs/mxU3JmlQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMMm34mVJIiV2yxKEwlwZjMPicDoTlDObGEMi3srYSNqKYMbT4lG0J9+eVV4jVqlzX3tlFpXeVpFOEETuEc6nABLbiBNnjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwBAdyNqw==</latexit>

D1<latexit sha1_base64="08cW+Tkca582p6jOBl5Cnn2i/4A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkWlhi4gkJXMjeMgcb9vYuu3smhPAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmZ+6wmV5ol8MOMUg5gOJI84o8ZKfvW251V75Ypbc+cgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dkjOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxEl8GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXiV+vXdXc+3qlcZ2nUYQTOIVz8OACGnAHTfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kD4FeNlQ==</latexit><latexit sha1_base64="08cW+Tkca582p6jOBl5Cnn2i/4A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkWlhi4gkJXMjeMgcb9vYuu3smhPAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmZ+6wmV5ol8MOMUg5gOJI84o8ZKfvW251V75Ypbc+cgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dkjOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxEl8GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXiV+vXdXc+3qlcZ2nUYQTOIVz8OACGnAHTfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kD4FeNlQ==</latexit><latexit sha1_base64="08cW+Tkca582p6jOBl5Cnn2i/4A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatTEkWlhi4gkJXMjeMgcb9vYuu3smhPAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmZ+6wmV5ol8MOMUg5gOJI84o8ZKfvW251V75Ypbc+cgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dkjOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxEl8GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXiV+vXdXc+3qlcZ2nUYQTOIVz8OACGnAHTfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kD4FeNlQ==</latexit>
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Figure 4.1: An isometric view of the resonator showing the mass perturbation sites and the elec-
trodes used in driving and data collecting.

modes, respectively. By labeling these amplitudes as αn,i and βn,i for the radial and tangential

components for the modes n in the kth layer, a unified model can be derived for both n = 2 and

n = 3 modes. The sensitivity of the innermost ring, γn1 , can be taken as the universal sensitivity

for mode n where the amplitude of the radial velocity αn,1 is the largest. The normalization then

takes place based on this value. It should be noted the term
(

(
αn,i
αn,1

)2 − (
βn,i
αn,1

)2
)

is unit-less and is

a characteristic of the resonator’s design. This multiplicative factor needs to be found from FEA.

For an arbitrary design, FEA yields the ratio of different harmonics for the mass perturbation sites.

Table 4.1: Normalized amplitudes of velocity harmonics for n = 2 modes
layer, i α2,i β2,i

1 1 0.4969
2 0.9289 0.4603
3 0.8506 0.4214
4 0.7868 0.3886
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Figure 4.2: (Top) The magnitude of the Fourier series coefficients for the spoke radial velocities
at different layers for n = 2 modes. (Bottom) The magnitude of the Fourier series coefficients for
the spoke tangential velocities at different layers for n = 2 modes. All harmonics are negligible
except for the second one.

Table 4.2: Normalized amplitudes of velocity harmonics for n = 3 modes
layer, i α3,i β3,i

1 1 0.3257
2 0.8741 0.2878
3 0.7543 0.2492
4 0.6750 0.2171

Extending (4.16), the kinetic energy model for a practical ring-resonator can be written as

∆̃nej2nψ̃n1 = ∆nej2nψn1 + γn
∑
q

µq

(
(
αn,r(q)

��
�* 1

αn,1
)2 − (

βn,r(q)

��
�* 1

αn,1
)2

)
ej2nθq , (4.17)
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Figure 4.3: (Top) The magnitude of the Fourier series coefficients for the spoke radial velocities
at different layers for n = 3 modes. (Bottom) The magnitude of the Fourier series coefficients for
the spoke tangential velocities at different layers for n = 3 modes. All harmonics are negligible
except for the third one.

where γn is the universal sensitivity for the resonator, µq is an integer indicating the number of fixed

size point mass perturbations placed at angle θq, and r(i) is a function with integer output ranging

from 1 to 4 which indicates the layer associated with the mass perturbations. The values for αn,r(q)

and βn,r(q) can be found from Tables 4.1 and 4.2. The expression in (4.17) is used in simultaneous

tuning of n = 2 and n = 3 modes of the axisymmetric resonator. This expression is more general

than the tuning expression used in [SKS15] and [BKS17]. It is worthwhile mentioning that the

model in (4.17) allows the variation of the anti-node orientations due to the mass perturbations as

opposed to the model developed in Chapter 3 which is meant to be used for single mode tuning.
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4.2 Solution via Integer Linear Programming

4.2.1 Relaxed Linear Programming Problem

In order to tune the n = 2 and n = 3 modes, both of the frequency splits must be reduced to

essentially zero. To capture both modes in one expression, a combination of the two frequency

splits can be used as the objective function that needs to be minimized (it will be discussed that the

frequency splits should remain essentially positive). The objective function C is

C = W2∆̃2 cos(4ψ̃2) +W2∆̃2 sin(4ψ̃2)

+W3∆̃3 cos(6ψ̃3) +W3∆̃3 sin(6ψ̃3),
(4.18)

where W2 and W3 are the weights associated with the n = 2 and n = 3 frequency splits, respec-

tively.

There are some practical constraints that should be taken into consideration in the optimization

problem. In a nutshell, the optimization problem and the constraints can be written as

minimize
µq∈Z

C

subject to ∆̃2 cos(4ψ̃21) 6 d2, ∆̃2 sin(4ψ̃21) 6 d2,

−∆̃2 cos(4ψ̃21) 6 d2,−∆̃2 sin(4ψ̃21) 6 d2,

∆̃3 cos(6ψ̃31) 6 d3, ∆̃3 sin(6ψ̃31) 6 d3,

−∆̃3 cos(6ψ̃31) 6 d3,−∆̃3 sin(6ψ̃31) 6 d3.

(4.19)

where d2 and d3 are two positive bounds that need to be selected by the user. The justification

for using (4.19) will be postponed to later in this section where the linear programming will be

explained.

Defining the objecting function as in (4.18) allows us to favor one mode more than the other if

necessary. For instance, if only tuning n = 2 frequency split is desired, then W2 and W3 can be

picked to be 1 and 0, respectively. For simultaneous tuning, a reasonable choice is W2 = W3 = 1

which are the selected values for the weights in all the case studies in this chapter. The reason
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the frequency splits did not appear in the objective function as ∆̃2 + ∆̃3 is the fact that we cannot

benefit from the linear programming algorithms in such a case (see (4.17)).

From (4.17), the frequency split and anti-node orientation can be estimated after the perturba-

tions if the frequency split and the anti-node orientation of any of the modes before the perturba-

tions are known as well as the size and location of the mass perturbations. However, the actual

problem is different and the perturbations are not known. The only set of information available

contains the frequency splits and the anti-node orientations prior to the perturbations. Further,

there may be some practical constraints for the problem, yet the goal is always the same: reducing

the frequency splits to essentially zero. The solution to this problem is the size and location of the

mass perturbations. Assuming a nominal size mass is used, the solution can be written as a vector

containing the number of masses at each of the locations dedicated to mass perturbations. The

number of masses is represented by µq ∈ Z, where Z is the set of integer numbers. Changing the

size of the nominal mass perturbation affects the solution.

Although, the kinetic energy perturbation model (see (4.17)) is applicable to both n = 2 and

n = 3 with minor modifications, tuning both modes simultaneously is significantly more compli-

cated than the tuning of one mode. From the dynamics of perturbed rings, the neighborhood of

the mass perturbations can be selected quite easily when the objective is tuning one of the modes.

Knowing this constraint makes the numerical problem and search algorithm much easier. How-

ever, when the focus is tuning both modes, the search space cannot be restricted in general (except

for rare cases, such as coincidence of the anti-nodes of two modes) and finding the solution to the

tuning problem requires sophisticated search algorithm.

This section takes a closer look at the search process and a relaxed version of the problem

is solved using linear programming. The relaxed assumption is the solution may have a non-

integer number of perturbations at a given location. A branch and bound technique yields the

integer solution by removing the relaxation assumption for the number of a nominal point mass

perturbations at each location. In Sec. 4.2.3, it is shown that the tuning process is feasible in

practice by adjusting the size of the mass perturbation.

The first step for finding the optimal solution to the tuning problem is defining the objective
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function (see (4.18)) and the constraints. The constraints are mostly practical limitations in placing

the mass perturbations. The main constraints encountered in the tuning process are

• Integer number of perturbations at each location

• Number of point mass perturbations in one location

• Total number of point mass perturbations

• Positiveness of the frequency splits

Below, each of the aforementioned constraints is discussed in more detail.

Integer Number of Perturbations at Each Location

As discussed in Sec. 4.1.1, the sensitivity is defined based on a nominal fixed size point mass per-

turbation. One is allowed to have an integer number of point mass perturbations at each of the pre-

defined locations. Even when there is an infinite resolution for mass perturbations (see [BKS17]),

defining a nominal mass size is practical. For mass addition, the technique used in this work,

defining the mass quanta is inevitable.

Number of Point Mass Perturbations in One Location

Based on the size of the mass perturbation compared to the dedicated spokes, the number of mass

perturbations that can be placed at one location varies. In the case studies of this chapter, two

types of mass perturbations are used: a large and a small perturbation. For the larger one, only

one perturbation can be placed at each location. However, for the smaller perturbation, up to three

masses can be used at a spoke. This is a practical constraint for the tuning problem and, depending

on the size of the spoke as well as the type and size of the mass perturbations, the limit needs to be

set.
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Total Number of Point Mass Perturbations

The constraint on the total number of perturbations is more concerned with the practicality of the

solution. The total number of mass perturbations that can be used is set to make sure the tuning

algorithm can be solved in a reasonable amount of time.

Positiveness of the Frequency Splits

For solving the tuning problem, the objective function must be minimized. However, having a large

negative frequency split is as undesirable as having a large positive frequency split. A constraint

that guarantees the absolute values of the frequency splits are minimized is therefore necessary.

As mentioned in Sec. 4.2.1, the ultimate goal is to have an integer number of nominal point

masses at each of the spokes. However, it is common to solve a relaxed version of the problem by

removing the integer constraint. For this case, a linear programming problem will be solved for

minimizing the objective function C subject to the other constraints (all but having integer number

of perturbations at each spoke). There are several different methods for solving linear programming

optimizations. One of the common methods is the simplex method. This method is used as the

default version for the command linprog, a built-in command in the optimization toolbox in

MATLAB. Instead of explaining about the steps of the simplex method, the steps for writing the

optimization in a format compatible to this command are shown. The command linprog can

solve for x which leads to a minimum value of fTx subject to

• Ax 6 b,

• lb 6 x 6 ub ,

where f , x, b, lb, and ub are vectors, and A is a matrix.

The first step is to write the objective function as fTx where the f is fixed and x is the solution

to the optimization problem. The variable x contains the information about the number of point
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mass perturbations at each location. The vector f ∈ R97 is equal to

 W2∆2h(4ψ21) +W3∆3h(6ψ31)

W2γ2(α2
2,r − β2

2,r)h(4θ) +W3γ3(α2
3,r − β2

3,r)h(6θ)

 , (4.20)

where h(θ) = cos(θ) − sin(θ). The first element W2∆2h(4ψ21) + W3∆3h(6ψ31) is a scalar and

the second portion of (4.20) is a 96× 1 vector based on the locations of the dedicated areas in the

resonator for mass perturbations. The values of α2,r, β2,r, α3,r and β3,r are selected based on the

layer of the spoke and Tables 4.1 and 4.2 whereas the angle θ specifies the location of the spoke

with respect to the angle origin. The angle origin can be selected arbitrarily as long as it is the

same as the angle used for the anti-node orientations. In order to get the objective function C to be

in the form of fTx, the first element in the 97 × 1 vector x has to be 1 and the other 96 elements

are the solutions to the optimization problem.

The vectors lb and ub give the minimum and the maximum number of perturbations at each

spoke. For the first element of x, both the lower and upper bound are equal to 1. For the rest of

the elements, the lower bound is always equal to 0 and the upper bound depends on the size of

the nominal perturbation. For the larger perturbation, the upper bound is 1 at the first step. The

upper bound can set to be 0 for the locations we wish to avoid due to the pre-existence of mass

perturbation.

The other constraint is on the maximum number of point mass perturbations. In order to get

the total number, all the elements in the vector x need to be summed except for the very first one.

So, the first row in the matrix A is called A1 and is composed of a 0 stacked next to 96 elements

all equal to 1. The first element in the vector b is called b1 and is the maximum number of masses

allowed.

The last constraint is based on the fact that the frequency splits cannot be large negative num-

bers which would lead to a smaller objective function which is not desirable in practice. In order

to avoid such a scenario, we want to have the following constraints.

|∆̃2| 6 d′2, |∆̃3| 6 d′3, (4.21)
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where | · | gives the absolute value and d′2 and d′3 are two positive bounds that need to be selected

by the user. These two numbers are usually selected based on the initial frequency splits and the

sensitivity of the fixed size point mass perturbation used in tuning. Implementing (4.21) for a linear

optimizer is practically very difficult. Instead, the constraints used are

|∆̃2 cos(4ψ̃21)| 6 d2, |∆̃2 sin(4ψ̃21)| 6 d2,

|∆̃3 cos(6ψ̃31)| 6 d3, |∆̃3 sin(6ψ̃31)| 6 d3,
(4.22)

where d2 and d3 are two positive bounds that need to be selected by the user. The expressions

in (4.22) need to be written in a linear format as

∆̃2 cos(4ψ̃21) 6 d2, ∆̃2 sin(4ψ̃21) 6 d2,

−∆̃2 cos(4ψ̃21) 6 d2, − ∆̃2 sin(4ψ̃21) 6 d2,

∆̃3 cos(6ψ̃31) 6 d3, ∆̃3 sin(6ψ̃31) 6 d3,

−∆̃3 cos(6ψ̃31) 6 d3, − ∆̃3 sin(6ψ̃31) 6 d3.

(4.23)

The expressions in (4.23) can be implemented as A2x 6 b2 and they will be stacked together

with the constraint on the total number of point mass perturbations. The matrix A2 ∈ R8×97 and

each row of A2 is associated with one of the inequalities in (4.23). The construction of one row is

explained here. The first element of the first row is ∆2 cos(4ψ21) and the remaining elements are

γ2(α2
2,r − β2

2,r) cos(4θ), where α2,r, β2,r and θ are the same as the terms in (4.20). The other rows

of the matrix A2 are constructed similarly. The first four elements in the vector b2 are d2 and the

last four elements are d3 (Sec. 4.2.1). The matrix A ∈ R9×97 matrix and the 9× 1 vector b can be

written as

A =

A1

A2

 , b =

b1

b2

 . (4.24)

The optimization problem can be solved easily using the simplex method. However, the solution

vector contains non-integer components which makes the implementation very difficult.
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4.2.2 Integer Linear Programming

Now the relaxation assumption made in Sec. 4.2.1 regarding potentially non-integer number of

nominal mass perturbations at the spokes is revoked. To properly reformulate the problem, a

branch and bound technique is used. The version of the branch and bound routine that is explained

here is for the binary case meaning that there is either one or zero nominal point mass at each

spoke. The same idea can be extended to the scenario when the number of perturbations can be

greater than one.

The binary assumption is typically the first step for tuning these resonators with larger point

mass perturbations. Since there are 96 perturbation sites, the number of different permutations is

296. Considering all of these scenarios is impossible in practice, and so a systematic method needs

to be implemented for significantly reducing the number of cases. The branch and bound method

is a clever way of enumerating all solutions and solves the problem more efficiently. The process

starts with one node for which there is no restriction on the values of different variables. At each

node, a “branch” on an integer variable is formed, where on each branch, the integer variable is

restricted to take certain values. Assume that all the spokes are numbered from 1 to 96. The first

branch puts a constraint on the value of the first variable and assumes it is either 1 or 0. There are

no constraints on the other 95 variables. The value for the objective function is calculated based on

the frequency splits and anti-node orientations prior to the mass perturbations from (4.18) and is

called the stored optimal objective. The linear programming is solved using the built-in command

for each case. It is clear that the objective function value for the relaxed problem is smaller than the

non-relaxed version of the problem, since the solution to the non-relaxed version is a subset of the

relaxed case. So if the relaxed version’s solution is insufficient, then the node can be deactivated.

After “pruning” a node, there is no need for branching from it. We need to continue the process

while there are some active nodes in the branch and bound graph. Fig. 4.4 summarizes the branch

and bound routine as it applies to the binary mass tuning problem.

The optimization toolbox in MATLAB has also a built-in command that implements this rou-

tine efficiently which is called intlinprog. The results from this command and the branch and

bound algorithm described here are essentially the same.
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Figure 4.4: Flowchart summary of the branch and bound routine.
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4.2.3 Existence of a Solution

The general idea is to use the expression in (4.17) to get sufficiently small values for both n = 2

and n = 3 frequency splits after the perturbations (∆̃2 and ∆̃3). The sufficient reduction depends

on the application. This section studies why the solution for the problem necessarily exists in

practice. Without loss of generality, the process can be restricted to either mass addition or mass

removal. Here, mass addition is considered to be the only type of mass perturbations. The proof is

essentially the same for the mass removal case.

Assume the frequency splits and the anti-node orientations for the smaller frequencies for n = 2

and n = 3 modes are (∆2, ψ21) and (∆3, ψ31), respectively. The frequencies are sorted in this

analysis such that the frequency splits are assumed to be always positive (ωn2 > ωn1) without loss

of generality (negative frequency split would lead to the change in the orientation of the anti-node).

From [BM17], we know that placing two same sized perturbations at 45◦ (or 135◦) will not

change the frequency split for n = 2 modes for sufficiently small perturbation size. Now the

objective becomes reducing the frequency split for n = 3 modes using two point masses of the

same size that are 45◦ apart. First of all, based on the quantized location constraints, the two

locations with 45◦ spacing can always be found assuming the practical constraints allow. For two

point mass perturbations 45◦ apart with the size of fixed nominal mass perturbation located at θ0

and θ0 + 45◦ at a given layer, (4.17) becomes

∆̃3 cos(6ψ̃31) = ∆3 cos(6ψ31) + g3 (cos(6θ0) + cos(6(θ0 + 45◦))) ,

∆̃3 sin(6ψ̃31) = ∆3 sin(6ψ31) + g3 (sin(6θ0) + sin(6(θ0 + 45◦))) ,
(4.25)

where g3 is the sensitivity for n = 3 modes for a nominal mass multiplied by appropriate factors

based on the layer. The expression in (4.25) can be simplified as

∆̃3 cos(6ψ̃31) = ∆3 cos(6ψ31) + g3 (cos(6θ0) + sin(6θ0)) ,

∆̃3 sin(6ψ̃31) = ∆3 sin(6ψ31) + g3 (sin(6θ0)− cos(6θ0)) ,
(4.26)

The frequency split after the perturbation can be found from the square root of the sum of the
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squares of the right hand sides of (4.26),

∆̃3 =
√

∆2
3 + 2g2

3 + 2∆3g3 (cos(6(ψ31 − θ0))− sin(6((ψ31 − θ0))). (4.27)

For the case of mass addition, g3 > 0. In order for the frequency split to decrease, the following

inequality should hold.

cos(6(ψ31 − θ0))− sin(6(ψ31 − θ0)) < − g3

2∆3

, (4.28)

which can be simplified as

cos(6(ψ31 − θ0) +
π

4
) < − g3

2
√

2∆3

. (4.29)

The solution for θ0 to (4.29) is always a non empty set as long as the size of mass associated with

g3 is selected properly according to the frequency split ∆3. This shows it is always possible to

reduce the n = 3 frequency split by preserving the n = 2 frequency splits by sufficiently small

size mass perturbations. A similar argument can be made about reducing ∆̃2 using two equally

sized perturbations 30◦ or 90◦ apart from each other. This shows that each pair can be tuned while

leaving the other split unperturbed. The optimization algorithm addresses the practical constraints.

4.3 Demonstration

The systematic simultaneous tuning for n = 2 and n = 3 modes are demonstrated for two res-

onators in this section. First, the electrode configuration is described for the drive and sense chan-

nels, followed by the results are presented for different rounds of measurements.

4.3.1 Electrode Configuration

For this chapter, a single electrode is used for all the sense and drive channels as opposed to

[SKS15], [BKS17] and the experiments done in Chapter 3. Two drive and eight sense channels

are used for finding the frequency response estimates for each of the modes. It should be noted
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that looking at two sense channels is sufficient for finding the frequency split and the anti-node

orientation especially when the frequency split is sufficiently large [SKS15]. On the other hand,

by focusing on two channels only when the frequency splits are small, the frequency response

estimates from the regular chirp signal can be misleading. For the cases with small splits, it is

suggested to look at all of the sense channels to ensure accurate frequency splits for both modes.

Fig. 4.5 shows the electrodes’ configuration. All the sense electrodes and D1 are used for both

modes while D8 and D6 are used for n = 2 and n = 3, respectively. The electrodes associated

with the gyro bias are removed from the figure for clarity. By using eight sense channels in addi-

tion to three drive channels, close proximity between some of the channels is inevitable and causes

a relatively high feedthrough which can mask the resonance peak. In order to avoid this, a fre-

quency response with the same frequency range needs to be recorded at atmospheric pressure and

is subtracted from the frequency response in the vacuum. A demodulation technique is used for

removing the feedthrough from different channels.

The locations of the sense channels are selected to obtain as many independent measurements

as possible from the outermost ring to see if there is any other harmonics present that can be

sensed. Although finite element suggests other harmonics are present in the motion, due to their

small sizes compared to the dominant harmonics in the outermost ring, it is not possible to sense

them even with eight single sense electrodes. The orientation of the anti-nodes for three innermost

rings is the same as the one measured for the outermost ring (see [BKS17] and Chapter 3). For

this study, the angle origin is assumed to be the same for both n = 2 and n = 3 modes. However,

having the same origins for two modes is not necessary. On the other hand, having the same angle

origin for reading the anti-node and the locations of the mass perturbations is required. This is the

assumption made in (4.17). Ultimately, having two inputs and two outputs are sufficient for getting

a decent frequency response for a resonator especially when the frequency split is large enough. In

Sec. 4.3.2, the results are presented for two-input two-output case.
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Figure 4.5: The electrodes configuration for testing n = 2 and n = 3 modes. All the sense
electrodes and D1 are used for both modes. D8 and D6 are used for n = 2 and n = 3, respectively.
The electrodes associated with the gyro bias are removed from the figure.
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4.3.2 Test Results

In this section, the results for two resonators are presented. The two resonators are selected from

the same wafer. First of all, the generalized sensitivities for n = 2 and n = 3 modes need to

be found. This can be done by placing mass perturbations on the resonator and comparing the

frequency splits and anti-node orientations before and after perturbations using (4.17) modified

for n = 2 and n = 3 modes. The sensitivities can be estimated using FEA. There are two mass

perturbations used in this study. The larger mass is about 10 times larger than the smaller one.

Once the sensitivities are found for the larger masses, the sensitivities for the smaller ones are also

known. According to the specifications of the larger masses, the diameters can vary by about 5%.

Based on the spherical shape of the masses prior to melting, this variation in the diameter can

lead to up to 30% variation in the volume. However, the variation between the masses selected

from the box for tuning is much smaller and it is about 10 − 15% of the volume, resulting in the

sensitivities having up to 15% uncertainty. The general idea in the tuning process is to use the

larger solder spheres to reduce the frequency splits to less than a couple of hertz and then use the

smaller solder spheres to tune both modes. If the uncertainties were less significant, the tuning

could have always happened in two rounds: one with large and one with small spheres. However,

due to the uncertainties, addition of an extra round to the process may be necessary. In almost all

cases, the tuning can be done systematically in a maximum of three rounds.

The frequency splits and anti-node orientations from the frequency response of the resonator

must be estimated. The frequency splits and the anti-node orientations are the inputs to the tuning

algorithm. In the test results presented here, due to the faster turn around time, the mass addition

technique used is not compatible with wafer-level manufacturing as opposed to the technique in-

troduced in Chapter 3. The first level of reduction happens with larger mass perturbations which

are solder spheres with about 75µm diameter. The sensitivities for this nominal mass can be esti-

mated with FE and confirmed with test results. These sensitivity values are the other inputs for the

tuning algorithm. At this step, the constraints are the total number of mass perturbations (for this

problem, the limit is set to be 9) and the fact that we cannot have more than one mass at each loca-

tion. The tuning algorithm gives the locations that need to be targeted. The frequency splits seen
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Table 4.3: Summary of tuning steps for the first device
Round ∆2 (Hz) ∆3 (Hz) Perturbations
Initial testing 23.4896 2.4251 N/A
After round #1 3.6749 1.0647 9 large masses
After round #2 0.7192 1.1691 5 large masses
After round #3 0.1050 0.1601 8 small masses

after the first round differ from the ones predicted from the model by about 10% and are caused by

the variation in the solder sphere size (sensitivities). The frequency splits and the anti-nodes are

used one more time to find the target locations. The large spheres are used for this round and an

additional constraint excising the locations used in the previous round is imposed. This limitation

comes from a practical point of view and results from the difficulty of placing a large solder sphere

on top of another one. Five locations are selected by the algorithm in this round.

The last round is with the smaller mass perturbations which have sensitivities 10 times smaller

than the larger solder spheres. There is no need for having constraints on the possible target

locations. The small masses can be placed on top of larger solder spheres. Also, two or three small

point masses can be used in one spoke. For this part of the problem, an extended version of the

branch and bound routine described in Sec. 4.2.2 needs to be used to accommodate for potentially

having more than one mass at a spoke. Fig. 4.6 shows frequency response magnitude plots of

n = 2 and n = 3 modes for two of the channels after total of three rounds of perturbations. The

modes are essentially tuned and the frequency splits are reduced to 105 mHz and 160 mHz for

n = 2 and n = 3 modes, respectively.

Fig. 4.7 shows a close up view of solder spheres melted on the resonator. The final mapping

of the target locations is shown in Fig. 4.8. Different marks are used for large and small mass

perturbations. Table 4.3 summarizes the tuning steps for the first device.

The frequency response magnitude plots for n = 2 and n = 3 modes are shown before and

after perturbations in Fig. 4.9 for another device. The tuning process is done in two rounds using

large masses. The targeted locations are depicted in Fig. 4.10. Table 4.4 summarizes the tuning

steps for the second device.
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Figure 4.6: The frequency response magnitude plots of n = 2 and n = 3 for two of the channels
at the initial testing after each round of perturbations show reduction from 23.4896 Hz and 2.4251
Hz to 105 mHz and 160 mHz frequency splits for n = 2 and n = 3 modes, respectively

Table 4.4: Summary of tuning steps for the second device
Round ∆2 (Hz) ∆3 (Hz) Perturbations
Initial testing 6.8724 8.5496 N/A
After round #1 1.3898 0.8297 7 large masses
After round #2 0.1227 0.0585 6 large masses
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<latexit sha1_base64="T6BzJKE+Sim1ExvwSZ9IUEXBFMs="></latexit><latexit sha1_base64="T6BzJKE+Sim1ExvwSZ9IUEXBFMs="></latexit><latexit sha1_base64="T6BzJKE+Sim1ExvwSZ9IUEXBFMs="></latexit>

two small perturbations
<latexit sha1_base64="tp+SMxb29xEmhpEpEtLRjsoenAI="></latexit><latexit sha1_base64="tp+SMxb29xEmhpEpEtLRjsoenAI="></latexit><latexit sha1_base64="tp+SMxb29xEmhpEpEtLRjsoenAI="></latexit>

Figure 4.7: A close up view of solder spheres melted on the resonator spokes.

angle reference
<latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit><latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit><latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit>

Large perturbation - round #1
<latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit><latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit><latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit>

Large perturbation - round #2
<latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit><latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit><latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit>

Small perturbation - round #3
<latexit sha1_base64="x69vkRInpLfMI2VeEVVUuGLH1eg=">AAACCHicbVA9T8MwEHXKVylfAUYWixSJhSotA2WrxMJYBKGV2qhyHKe16tiR7SBVUVcW/goLAyBWfgIb/wY3zQAtTzrp6b073d0LEkaVdt1vq7Syura+Ud6sbG3v7O7Z+wf3SqQSEw8LJmQ3QIowyomnqWakm0iC4oCRTjC+mvmdByIVFfxOTxLix2jIaUQx0kYa2PA2RozBhEidyiAX4RmUIuUhrPad6vnAdtyamwMuk3pBHFCgPbC/+qHAaUy4xgwp1au7ifYzJDXFjEwr/VSRBOExGpKeoRzFRPlZ/skUnhglhJGQpriGufp7IkOxUpM4MJ0x0iO16M3E/7xeqqOmn1GepJpwPF8UpQxqAWexwJBKgjWbGIKwpOZWiEdIIqxNeBUTQn3x5WXiNWqXNfem4bSaRRplcASOwSmogwvQAtegDTyAwSN4Bq/gzXqyXqx362PeWrKKmUPwB9bnD8XimJk=</latexit><latexit sha1_base64="x69vkRInpLfMI2VeEVVUuGLH1eg=">AAACCHicbVA9T8MwEHXKVylfAUYWixSJhSotA2WrxMJYBKGV2qhyHKe16tiR7SBVUVcW/goLAyBWfgIb/wY3zQAtTzrp6b073d0LEkaVdt1vq7Syura+Ud6sbG3v7O7Z+wf3SqQSEw8LJmQ3QIowyomnqWakm0iC4oCRTjC+mvmdByIVFfxOTxLix2jIaUQx0kYa2PA2RozBhEidyiAX4RmUIuUhrPad6vnAdtyamwMuk3pBHFCgPbC/+qHAaUy4xgwp1au7ifYzJDXFjEwr/VSRBOExGpKeoRzFRPlZ/skUnhglhJGQpriGufp7IkOxUpM4MJ0x0iO16M3E/7xeqqOmn1GepJpwPF8UpQxqAWexwJBKgjWbGIKwpOZWiEdIIqxNeBUTQn3x5WXiNWqXNfem4bSaRRplcASOwSmogwvQAtegDTyAwSN4Bq/gzXqyXqx362PeWrKKmUPwB9bnD8XimJk=</latexit><latexit sha1_base64="x69vkRInpLfMI2VeEVVUuGLH1eg=">AAACCHicbVA9T8MwEHXKVylfAUYWixSJhSotA2WrxMJYBKGV2qhyHKe16tiR7SBVUVcW/goLAyBWfgIb/wY3zQAtTzrp6b073d0LEkaVdt1vq7Syura+Ud6sbG3v7O7Z+wf3SqQSEw8LJmQ3QIowyomnqWakm0iC4oCRTjC+mvmdByIVFfxOTxLix2jIaUQx0kYa2PA2RozBhEidyiAX4RmUIuUhrPad6vnAdtyamwMuk3pBHFCgPbC/+qHAaUy4xgwp1au7ifYzJDXFjEwr/VSRBOExGpKeoRzFRPlZ/skUnhglhJGQpriGufp7IkOxUpM4MJ0x0iO16M3E/7xeqqOmn1GepJpwPF8UpQxqAWexwJBKgjWbGIKwpOZWiEdIIqxNeBUTQn3x5WXiNWqXNfem4bSaRRplcASOwSmogwvQAtegDTyAwSN4Bq/gzXqyXqx362PeWrKKmUPwB9bnD8XimJk=</latexit>

 2,1 - before round#1

 3,1 - before round#1

 2,1 - before round#2

 3,1 - before round#2

 2,1 - before round#3

 3,1 - before round#3

Figure 4.8: The map of different masses placed on the resonator in different rounds and the location
of the anti-nodes for n = 2 and n = 3 modes at the initial testing and after each round. As seen,
the locations are not necessarily selected near the anti-nodes.
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Figure 4.9: The frequency response magnitude plots of n = 2 and n = 3 modes for two of the
channels at the initial testing and after two rounds of perturbations show reduction from 6.8724
Hz and 8.5496 Hz to 122.7 mHz and 58.5 mHz frequency splits for n = 2 and n = 3 modes,
respectively.
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angle reference
<latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit><latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit><latexit sha1_base64="ReEodyq4Q5nMr3Bhtdcplcjsqsg=">AAAB93icbVBNS8NAEJ34WetHox69LBbBU0l6US9S8OKxgrGFNpTNdtIu3WzC7kaopb/EiwcVr/4Vb/4bt20O2vpg4PHeDDPzokxwbTzv21lb39jc2i7tlHf39g8q7uHRg05zxTBgqUhVO6IaBZcYGG4EtjOFNIkEtqLRzcxvPaLSPJX3ZpxhmNCB5DFn1Fip51aoHAgkCmNUKBn23KpX8+Ygq8QvSBUKNHvuV7efsjxBaZigWnd8LzPhhCrDmcBpuZtrzCgb0QF2LJU0QR1O5odPyZlV+iROlS1pyFz9PTGhidbjJLKdCTVDvezNxP+8Tm7iy3DCZZYb+9ViUZwLYlIyS4H0uUJmxNgSyhS3txI2pIoyY7Mq2xD85ZdXSVCvXdW8u3q1cV2kUYITOIVz8OECGnALTQiAQQ7P8ApvzpPz4rw7H4vWNaeYOYY/cD5/ABVCkuQ=</latexit>

Large perturbation - round #1
<latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit><latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit><latexit sha1_base64="+JNF1vTm573H5gxTZpjNFF/CDms=">AAACCHicbVA9T8MwEHX4LOUrwMhikSKxUCVdKFslFgaGIhFaqa0qx720Vh0nsh2kKurKwl9hYQDEyk9g49/gphmg5UknPb13p7t7QcKZ0q77ba2srq1vbJa2yts7u3v79sHhvYpTScGnMY9lOyAKOBPga6Y5tBMJJAo4tILx1cxvPYBULBZ3epJALyJDwUJGiTZS38Y3RA4BJyB1KoNcxOdYxqkY4ErXqXh923Grbg68TLyCOKhAs29/dQcxTSMQmnKiVMdzE93LiNSMcpiWu6mChNAxGULHUEEiUL0s/2SKT40ywGEsTQmNc/X3REYipSZRYDojokdq0ZuJ/3mdVIf1XsZEkmoQdL4oTDnWMZ7FggdMAtV8YgihkplbMR0RSag24ZVNCN7iy8vEr1Uvq+5tzWnUizRK6BidoDPkoQvUQNeoiXxE0SN6Rq/ozXqyXqx362PeumIVM0foD6zPH6wVmIk=</latexit>

Large perturbation - round #2
<latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit><latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit><latexit sha1_base64="1CBEQXm11G9lSEsxfEp5lDZWmdI=">AAACCHicbVA9TwJBEN3zE/ELtbTZCCY2kjsasSOxsbDAxBMSIGRvbw427O1d9sOEXGht/Cs2Fmps/Ql2/huXg0LBl0zy8t5MZuYFKWdKu+63s7K6tr6xWdgqbu/s7u2XDg7vVWIkBZ8mPJHtgCjgTICvmebQTiWQOODQCkZXU7/1AFKxRNzpcQq9mAwEixgl2kr9Er4hcgA4BamNDHIRn2OZGBHiSrdcqfVLZbfq5sDLxJuTMpqj2S99dcOEmhiEppwo1fHcVPcyIjWjHCbFrlGQEjoiA+hYKkgMqpfln0zwqVVCHCXSltA4V39PZCRWahwHtjMmeqgWvan4n9cxOqr3MiZSo0HQ2aLIcKwTPI0Fh0wC1XxsCaGS2VsxHRJJqLbhFW0I3uLLy8SvVS+r7m2t3KjP0yigY3SCzpCHLlADXaMm8hFFj+gZvaI358l5cd6dj1nrijOfOUJ/4Hz+AK2YmIo=</latexit>

Figure 4.10: The map of different masses placed on the resonator in different rounds.
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4.4 Multi-Modal Tuning Summary

A systematic post-fabrication technique has been demonstrated for simultaneous reduction of the

modal frequency differences between the n = 2 and n = 3 modes in an axisymmetric resonator.

The resonator is designed so mass removal at the large spokes creates a readily predictable pertur-

bation to its dynamics. The mass addition on the large spokes can be assumed to be a pure mass

perturbation with no effect on the potential energy of the structure. Finite element analysis is used

to generalize the idea of perturbing the dynamics of a simple ring to a ring-type resonator. The

dynamics are resonator-specific and the analysis needs to be done once for each resonator. The

tuning equation is derived for both n = 2 and n = 3 modes by defining the universal sensitivi-

ties for each mode for a nominal fixed mass. The values for the sensitivities can be found in the

first round of testing or from FEA and scaled for smaller or larger mass perturbations. The ob-

jective function is defined based on the absolute values of the frequency splits of two modes. The

objective function and the constraints which are mostly based on the practical limitations of the

process are written. A branch and bound routine is implemented based on a relaxed version of the

problem by removing the assumption of having integer nominal point mass perturbations at each

spoke. The relaxed version of the problem is solved using linear programming algorithm (simplex

method) with a built-in command in optimization toolbox of MATLAB. The optimization problem

is solved and two devices are tuned based on the solution systematically in two and three rounds.
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CHAPTER 5

Damping Mechanisms

Nomenclature - Chapter 5

r radial coordinate εr radial strain
θ angle coordinate εθ tangential strain
z out-of-plane coordinate εz out-of-plane strain
t time γzθ shear strain
u radial displacement σθ tangential stress
w tangential displacement Q quality factor
v out-of-plane displacement τ time constant
r̄ ring mean radius Re(·) real part
h ring width Im(·) imaginary part
h0 nominal ring width W tangential displacement eigenfunction
L ring thickness j

√
−1

ρ density ω modal frequency
ρ0 nominal density T kinetic energy
T temperature U strain energy
T0 spatial temperature profile L Lagrangian
Tamb ambient temperature U0 strain energy for no temperature change
E modulus of elasticity ∆W energy dissipation over one cycle
k thermal conductivity (·),θ derivative with respect to θ
Cv specific heat in constant volume (·),mθ mth derivative with respect to θ
α thermal diffusivity ˙( ) derivative with respect to t
β thermal expansion coefficient | · | absolute value

Newly devised methods for fabricating micro-scale resonators have enabled the production of

many axisymmetric designs that are finding application in compact, high-performance Coriolis

vibratory gyros (CVGs) [ZTS12, CWY14, KBK15, BBC13, SAT14]. The axisymmetry produces

modal frequency degeneracy which is desirable for reducing the effect of electronic buffer noise
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on the measured angular rate [KM13]. Furthermore, the resonator attachment points to the sen-

sor case are nodes of the modes that are exploited for the angular rate sensing –this decouples the

modes from case motion and limits the transfer of energy from the modes into the supporting struc-

ture. Any physical resonator, however, suffers from some degree of imperfection which typically

causes detuning of modal frequencies and couples the modes to the sensor case (see Chapter 3).

The modal frequency detuning can be corrected by using electrostatic forces to essentially create

springs between the resonator and its support [GHB05, KM06], or by perturbing the mass distri-

bution of the resonator [SKS15, BKS17] (see Chapters 3 and 4). Both methods are effective in

practice and have been used to create compact and very low noise CVGs [CGL14, GM17].

Modal time constants are also important factors in CVG performance. For example, the low-

frequency root spectral density of the angular rate measurement is inversely proportional to the

modal time constant [KM13]. Furthermore, time constant asymmetry appears in the expression

for the zero-rate offset in CVGs: if τ1 and τ2 represent the time constants associated with the

modes, then 1/τ1 − 1/τ2 is a multiplicative factor that scales the rate offset [IEE04]. Of the

many factors contributing to resonator energy dissipation, thermoelastic dissipation (TED), which

is determined by the resonator material and geometry, is a source of energy loss that cannot be

eliminated. Thus, sensor designers have strived to increase the modal time constants by fabricating

resonators from low-loss materials like fused silica [PZT11]. There are other low-loss materials

such as Invar, Zerodur and Corning ULE, which are ideal as far as the thermoelastic dissipation

properties are concerned, but they have their challenges such as difficulties in their manufacturing

process. In general, as opposed to the most common material for these types of resonators, silicon,

the manufacturing process for other materials can be challenging.

Physically realizable resonators such as those found in CVGs have complicated geometries

and are not analytically tractable (see Chapter 2). Ring resonators, on the other hand, are simple

analogs of modally degenerate CVG resonators and although they lack a means of attachment to the

sensor case, they are analytically tractable and provide conceptual guidance without delving into

the complexity associated with practical resonator designs. Within this context, this chapter ana-

lyzes thermoelastic dissipation in ring resonators that are perturbed from uniformity. As discussed

in Chapter 2, the dynamic analysis of a thin uniform ring with no dissipation was studied over a
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century ago [Lov92]. The analysis has focused on the dynamics of nonuniform rings in the past

three decades since they represent a more realistic model for manufactured structures. The analy-

sis tool for most of these studies is the approximation method (e.g., [?, Fox90, BC07, YLY02]) in

which a certain number of eigenfunctions of the uniform ring are used as a solution basis. The ex-

pansion of the exact solution for a uniform thin ring subject to point mass and spring perturbations

can be found in Chapter 2 [BM17].

The problem of thermoelastic dissipation was first considered by Zener in the context of a

vibrating beam [Zen37]. Thermoelastic dissipation in a uniform thin silicon ring resonator was

studied in [WFM06] based on modifying the beam model proposed in [LR00]. The in-plane vi-

bration of ring structure with multiple finite-sized imperfections is studied in [KK16] where the

imperfections are modeled using the Heaviside step function. The effect of abrupt changes in the

ring thickness on the frequencies, quality factors, and mode shapes were quantified. Step changes

in ring thickness, however, are not typical of the imperfections caused by masking errors and

etch non-uniformity during the fabrication of micro-scale resonators. Thermoelastic dissipation is

considered for a ring with legs in [HMP16]. This is a more realistic model of a resonator since

it provides a means of attachment to a substrate. The effect of the legs on the dynamics of the

structure is analyzed, however, imperfections are not considered. Modifications to the geometry

of tuning fork resonators and micro-scale hemispherical resonators are considered in [ZSP14] and

[DSC17], respectively. Although TED plays a role in these studies, the primary objective was to

mitigate anchor loss via coupling of the modes to the substrate to which the resonator is mounted.

An objective of this chapter is to address potential differences between the time constants of

paired modes in perturbed ring resonators. In fact, it is shown that some imbalance in modal time

constants is to be expected even when thermoelastic dissipation is the only energy loss mechanism.

This chapter combines the temperature relationship in [WFM06] with the approach in [BC07]

and [BM17] to derive the general equation of motion including thermoelastic effects for a thin

ring subjected to ring width variation and point-mass perturbations. The gradual variation in struc-

tural member width is a typical model for capturing manufacturing imperfections whereas point-

mass perturbations (either through mass loading or removal at specific locations on the ring) have

been implemented as a post-fabrication technique for manipulating the resonator modal proper-
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ties, primarily the frequencies of paired modes. The width perturbations are modeled as low-order

harmonic variations and are not intended to capture abrupt changes in ring width.

The chapter is organized as follows. The equation of motion, which includes thermoelastic

effects, is derived in Sec. 5.1 for a thin ring whose width and density are allowed to be functions

of the angular variable θ. Galerkin’s method employing a partial set of eigenfunctions of the

unperturbed ring is used to estimate modal frequencies and mode shapes of the perturbed ring

in Sec. 5.2. In the fully coupled problem, the modal frequencies are complex-valued with the

imaginary parts being related to the time constants of the modes. This section also considers the

weakly coupled approximation in which the perturbed ring equation in the absence of thermal

effects is analyzed. The solution to the elastic problem is subsequently used to determine the

temperature distribution in the ring and, finally, the work done over one period of harmonic motion

is computed. Several case studies are considered in Sec. 5.3 for uniform and imperfect rings. The

resonant frequencies and time constants for different geometries and different materials are plotted

for n = 2 and n = 3 modes. The temperature profiles are compared for silicon and fused silica

for a given geometry. The effects of 1-θ and 2-θ perturbations of the ring width, as well as point-

mass perturbations, are determined for fused silica ring resonators on the scale of the resonator

discussed in [CGL14]. The width perturbations are used to model fabrication imperfections that

can be introduced by mask errors and etch non-uniformities in microscale resonators, while point-

mass perturbations are good models for the post-fabrication approaches that have been developed

for reducing the differences between the modal frequencies in disk resonators, e.g., [SKS15,

BKS17]. A case study shows that degeneracy between modal frequencies is possible, however,

differences between the modal time constants still exist and thus reveals limitations of the mass

trimming techniques that have been employed for post-fabrication correction. The weakly coupled

approximation is also performed, and it is shown that the modal frequencies and time constants

derived from the weakly coupled analysis are indistinguishable from the fully-coupled analysis

results.
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5.1 Ring Model

The equation of motion for a nonuniform ring is derived. Fig. 5.1 shows the schematic of a thin

ring in which the ring width, denoted h, is assumed to be small compared to the nominal mean

radius r̄, but may vary as a function of θ. The ring thickness, L, is constant. The following are

assumed for this analysis:

1. There is no out-of-plane motion so the out-of-plane displacement, denoted v, and all the

derivatives with respect to the out-of-plane coordinate denoted z, are equal to zero.

2. The structure experiences small deformation which leads to a geometrical constraint between

the radial and tangential displacements.

3. Since the beam thickness h is much smaller than the mean radius r̄, Poisson’s ratio is zero

and derivatives of displacement variables with respect to the radial coordinate r are zero.

4. The beam width h is defined with respect to the mean radius r̄, i.e., on each side of the mean

radius circle, the width is h/2. So in the polar cylindrical coordinates, the radial component

is between −h/2 and h/2. This assumption is reasonable because of the small beam width

compared to the ring radius.

5. Heat transfer occurs only in the radial direction even though the width is a function of θ.

Thus, the temperature profile scales according to the local thickness.

The last assumption is justified because the perturbation of the width is at most 15% of the nominal

width h0 and, furthermore, no abrupt changes in width are considered, so width perturbations are

slowly varying as a function of θ.

The equation of motion is determined once the kinetic and strain energies are computed. The

kinetic energy only depends on the geometry of the structure and is independent of temperature,

however, the strain energy is a function of the temperature profile. Due to the simplicity of the

heat diffusion problem, a closed-form expression for the temperature profile is determined and

then substituted into the strain energy expression and in this way, the derived equation of motion

incorporates thermoelastic effects. Solutions are then approximated using Galerkin’s procedure.
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Figure 5.1: Ring parameters. Note that h is not a function of θ in this figure, although it is for the
analysis.

5.1.1 Kinetic Energy

The kinetic energy T of the ring is

T =

∫ 2π

0

1

2
ρ(θ)h(θ)Lr̄

(
ẇ2(θ, t) + u̇2(θ, t)

)
dθ, (5.1)

where ρ and h are the θ-dependent density and beam thickness, respectively, L and r̄ are the

constant out of plane height and mean radius, w(θ, t) and u(θ, t) are the in-plane tangential and

radial displacements, respectively. The out-of-plane displacement is zero and does not appear in

the kinetic energy expression.

5.1.2 Strain Energy

Langhaar derives the strain tensor components for a thin elastic shell under the assumption of

constant temperature [Lan49]. These results can be simplified for a ring by assuming no out-of-

plane motion. Furthermore, since the ring is assumed to be thin in both the radial and out-of-plane

directions, the derivatives of any kinematic variables with respect to r and z are zero. Consequently,

Poisson’s ratio can also be assumed to be zero for a thin ring for in-plane motion. The origin of

r is the centerline of the ring, and it is assumed that perturbations to the ring width are symmetric
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about the centerline. Lastly, small displacements imply that a geometric constraint exists between

the radial and tangential displacements, i.e., u,θ = −w. The sign depends on the assumed direction

of positive displacement and is consistent with [Lan49] and is different from Chapter 2. The strain

components for a thin ring at constant temperature reduce to

εθ =
1

r̄2

(
w,θ + w,3θ

)
r, εz = 0, εr = 0, γzθ = 0. (5.2)

The following shorthand notation is used to make the expressions more compact: w,θ = ∂w/∂θ,

w,kθ = ∂kw/∂θk. There is only one non-zero stress component,

σθ =
E

r̄2

(
w,θ + w,3θ

)
r. (5.3)

where E is the modulus of elasticity of the material.

When temperature variation is included, the strain components are modified to

εθ =
σθ
E

+ βT (r, θ, t), εr = εz = βT (r, θ, t), γzθ = 0, (5.4)

where β is the linear coefficient of thermal expansion and T is the temperature within the ring

(assumed to be a function of r, θ and t). Even with temperature variation, σθ is given by (5.3). Due

to the fact that σθ is the only non-zero stress component, the strain energy at time t simplifies to

U =
1

2

∫ 2π

0

∫ L

0

∫ h
2

−h
2

σθεθ dr dz r̄ dθ =
r̄L

2E

∫ 2π

0

(∫ h
2

−h
2

(
σ2
θ − βETσθ

)
dr

)
dθ. (5.5)

Further manipulation is possible once the temperature profile T is determined.

5.1.3 Temperature Profile

The strain energy computation requires the ring temperature T . The temperature profile for a

uniform thin ring was derived in [WFM06] under the assumption of small deviations of the ring

temperature relative to the ambient temperature. It was also shown in this reference that the ring

temperature can be approximated as a one-dimensional problem. The source term in the diffusion
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equation governing the ring temperature is the azimuthal strain, εθ, and so T is a function of θ,

however, the diffusion can be considered to occur only in the radial direction due to the small ratio

of nominal ring width to the ring radius, i.e., h0/a, where h0 is the nominal ring width. Thus,

[WFM06] showed the following differential equation to be a reasonable approximation of the ring

temperature,
∂T

∂t

(
1 + 2

Eβ2Tamb

Cv

)
− α∂

2T

∂r2
= −EβTamb

Cv

∂εθ
∂t
, (5.6)

where α is the thermal diffusivity of the material, Cv is the heat capacity per unit volume, and Tamb

is the ambient temperature of the ring when not in motion.

The solution of (5.6) is obtained by representing the temperature and tangential displacement

as T (r, θ, t) = T0(r, θ)ejωt and w(θ, t) = W (θ)ejωt, where ω is complex-valued, and j =
√
−1.

Thus, (5.6) can be written as

∂2T0

∂r2
− jω

µ

α
T0 = jω

1

α

∆E

r̄2β
(W,θ +W,3θ) r. (5.7)

where ∆E = Eβ2Tamb/Cv and µ = 1 + 2∆E . Assuming negligible heat flow between the surfaces

of the ring and the environment, the boundary conditions for (5.7) are ∂T0/∂r(±h/2, θ) = 0. Note

h is assumed to be a function of θ, but as heat diffusion in the azimuthal direction is ignored, the

temperature profile derived from (5.7) is simply scaled to the local ring width. The temperature

profile can then be determined as function of the tangential mode shape W ,

T0(r, θ) = − ∆E

µr̄2β
(W,θ +W,θθθ)

[
r − 1

K
sec

(
hK

2

)
sin(Kr)

]
, (5.8)

where the parameter K is defined to be
√
−jω/α.
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5.1.4 Equation of Motion and Boundary Conditions

In Sec. 5.1.1 the expression for the kinetic energy T is given, however, the final expression for the

strain energy U is determined by combining (5.5) and (5.8),

U =
EL

2r̄3

∫ 2π

0

(w,θ + w,θθθ)
2 ×

[
h3

12

(
1 +

∆E

µ
+

∆E

µ

(
hK − 2 tan(hK

2
)

K3

))]
dθ. (5.9)

Thus, the Lagrangian L = T − U is determined from (5.1) and (5.9). The ring equation of motion

is found by computing the first variation of L and then applying Hamilton’s principle,

−ρ(θ)h(θ)Lr̄ẅ + ρ,θhLr̄ẅ,θ + ρh,θLr̄ẅ,θ + ρhLr̄ẅ,2θ

+ κ
(
w,θ + w,3θ

)[(
1 +

∆E

µ

)
g,3θ +

∆E

µ
f,3θ

]
+ 3κ

(
w,2θ + w,4θ

)[(
1 +

∆E

µ

)
g,2θ +

∆E

µ
f,2θ

]
+ κ
(
w,θ + 4w,3θ + 3w,5θ

)[(
1 +

∆E

µ

)
g,θ +

∆E

µ
f,θ

]
+ κ
(
w,2θ + 2w,4θ + w,6θ

)[(
1 +

∆E

µ

)
g +

∆E

µ
f

]
= 0,

(5.10)

where

κ =
EL

12r̄3
, g(θ) = h3, f(θ, ω) =

12

K3

(
hK − 2 tan

(
hK

2

))
. (5.11)

It should be noted that h and ρ are permitted to be functions of θ. Furthermore, K depends on the

complex frequency ω.

5.2 Approximate Solutions

5.2.1 Galerkin Procedure

Solutions of (5.10) are approximated using the strong form Galerkin (SFG) method [Mei67]. The

most sensible choice of basis functions are the eigenfunctions associated with the uniform thin

ring, i.e., cos(kθ) and sin(kθ) for integer values of k, because they satisfy both the essential and
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natural boundary conditions. Thus, the trial solution, denoted W̃ , is given by

W̃ (θ) =
N∑
k=1

b2k−1 cos(kθ) + b2k sin(kθ), (5.12)

where {b1, b2, · · · , b2N} is the set of basis function weights. The trial solution does not typically

satisfy the equation of motion, so upon substitution of W̃ (θ)ejωt into (5.10), the left-hand side

of (5.10) becomes the residual, denoted R, which is a function of ω and θ. The basis function

weights are selected so that each basis function is orthogonal to R. In other words, the system of

equations for the weights are generated from the conditions

∫ 2π

0

R(ω, θ) cos(kθ)dθ = 0,

∫ 2π

0

R(ω, θ) sin(kθ)dθ = 0.

By increasing the number of basis functions in the trial solution, the accuracy of the approximate

solution improves, however, the computational complexity also increases.

The orthogonality between R and each basis function generates a row in a 2N × 2N matrix

that is denoted R. The constraints are gathered as Rb = 0, where b is the vector of basis func-

tion weights. Note that R is a function of ω, however, it can be expressed in terms of a mass

matrix, denoted M, and stiffness matrix, denoted K. In other words, R = −Mω2 + K(ω).

While the mass matrix is constant, the stiffness matrix depends on ω as noted. Thus, Galerkin’s

method produces a non-standard eigenvalue problem due to the ω-dependence of K, however, an

iterated procedure for determining the weight vectors and frequencies appears to work well in

practice: an initial frequency “guess”, ω0, is used to determine K(ω0), then the eigenvalue prob-

lem (−Mω̃2 +K(ω0)) b̃ = 0 is solved for ω̃ and b̃; the process is repeated by setting ω0 = ω̃.

Convergence after one or two iterations is typical for the examples in Sec. 5.3, however, no proof

of convergence is offered. The starting value for ω0 can be chosen as the (real) frequency of the

uniform ring with same nominal width and radius. Once the iterations terminate and ω is in hand,

the quality factor Q and time constant τ can be computed

Q =
1

2

Re(ω)

Im(ω)
, τ =

2Q

Re(ω)
, (5.13)
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where ω is expressed in rad/s, and where Re(·) and Im(·) are the real and imaginary parts of the

argument, respectively.

5.2.2 Weakly Coupled Analysis

Time constants can also be estimated using a weakly coupled approximation [DCK06]. For low-

loss materials like fused silica, the TED results from the weakly coupled approximation are indis-

tinguishable from the TED results derived from fully-coupled equations when the same set of basis

functions are used in the analyses. The weakly coupled approximation offers some advantages over

the coupled analysis mainly deriving from the simpler equation of motion, the standard eigenvalue

problem generated by applying Galerkin’s method, and the routine calculations to compute the

work done over one cycle of oscillation of harmonic motion. The ring equation derived under the

assumption of no thermoelastic effects is obtained from (5.10) by setting f and its derivative zero.

When analyzing this system, the mass matrixM is unchanged, however, K is now independent of

ω so the eigenvalue problem yields mode shapes and (real-valued) modal frequencies.

The energy change over one cycle of harmonic motion, denoted ∆W , is given by

∆W =
1

2π

∫ 2π
ω

0

∫
V

Re(σθ)Re (ε̇θ) dr dz a dθ dt, (5.14)

where V denotes the ring volume. This quantity is negative since energy is dissipated over one

cycle. The quality factor Q can be determined from the ratio of the total strain energy U0 to the

energy lost |∆W |,
Q =

U0

|∆W |
. (5.15)

The expression for U0 in this case omits temperature effects and so (5.9) is simplified accordingly.

It is rewarding to further study (5.14) because the role of the thermal conductivity α can be

more clearly identified. Since all variables are assumed to be time-harmonic, Re(σθ) is

Re(σθ) =
E

r̄2
(W,θ +W,3θ) r cos(ωt). (5.16)
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Furthermore,

Re (ε̇θ) = Re
(
σ̇θ
E

+ βṪ

)
= − ω

r̄2
(W,θ +W,3θ) r sin(ωt)− ωβ (Im(T0) cos(ωt) + Re(T0) sin(ωt)) ,

(5.17)

where T0 is given by (5.8) in which ω is real and known. The terms in (5.16) and (5.17) that are in

time-quadrature evaluate to zero in (5.14), thus, the energy dissipated is given by

∆W =

∫
V

−Eβ
2r̄

(W,θ +W,3θ) rIm(T0) dr dz dθ. (5.18)

As noted, T0 is given by (5.8). However, an approximation can be made under the condition

e−h/
√
α/ω << 1, (5.19)

and in this case, ∫ h
2

−h
2

rIm(T0)dr ≈ α

ω

∆E

r̄2β
(W,θ +W,3θ)

(√
2α

ω
− h
)
.

Thus, the energy dissipation over one cycle can be approximated by

∆W = −α
ω

∆EEL

2r̄3

∫ 2π

0

(W,θ +W,3θ)
2

(√
2α

ω
− h
)

dθ. (5.20)

This expression is only valid when (5.19) is satisfied. This is the case for the fused silica ring

case studies in Sec. 5.3 because e−h/
√
α/ω ≈ 1.3 × 10−5 for the dimensions used. On the other

hand, this approximation is not valid for silicon rings of similar dimensions, and thus the complete

expression for T0 must be used in computing (5.18).

5.3 Thermoelastic Damping-Case Studies

This section presents several case studies for rings made out of silicon and low-loss materials such

as fused silica, Invar, Zerodur and Corning ULE. The material properties used in the analysis are

given in Table 5.1. It is assumed that the ambient temperature is Tamb = 300 K. The first set of case
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studies determines the modal frequencies and time constants for uniform thin rings (no variations

in beam thickness or density) as a function of ring width and radius. In these cases, the modal

frequencies appear in degenerate pairs with equal time constants. The resonant frequencies and

time constants for n = 2 and n = 3 modes for different materials and various geometries are

shown. Although, the manufacturing can still be an important issue for materials such as Invar or

fused silica, knowing the potential advantages of different designs can be a quite useful guide for

the researchers in the field. The result of the chapter will be a general guideline for researchers

in the field for estimating the time constant that can be potentially achieved for a “non-standard”

material. Obviously the process of machining and manufacturing materials other than silicon is

more expensive and more difficult. However, taking into the account the potential upside, it may

be a worthwhile investment based on the application. After choosing the material, getting the most

out of that material is an essential task for the designers. This study will provide an optimization

tool for this task. The optimization of the geometry can be used for any material and helps the

researchers to get the best possible outcome for a given material. The temperature profiles for

n = 2 and n = 3 modes for fused silica and silicon in a given geometry are studied to shed light

on why low-loss materials have small damping.

E (GPa) β (K-1) Cv (J m-3) ρ (kg m-3) α (m2s-1)
Silicon 165 2.56 ×10-6 1.64 ×106 2330 86 ×10-6

fused silica 71.7 0.59 ×10-6 1.55 ×106 2203 1.4 ×10-6

Invar 142 1.5 ×10-6 4.18 ×106 8100 3.2 ×10-6

Zerodur 90.3 0.02 ×10-6 2.02 ×106 2530 0.72 ×10-6

Corning ULE 67.6 30 ×10-9 1.70 ×106 2210 0.79 ×10-6

Table 5.1: Material properties for silicon, fused silica, Invar, Zerodur and Corning ULE

The second set of case studies considers perturbed rings with small deviations from the uni-

form ring with a fixed nominal radius and width. The perturbations consist of variations in ring

width, expressed in terms of harmonics in θ, and local changes in density to model point mass

perturbations on the ring. The perturbation scenarios are considered both in isolation and in var-

ious combinations. The harmonic variations in thickness are intended to model manufacturing

imperfections. In truth, it is unlikely for only one harmonic to be present in the width variation,

but individually studying each harmonic provides insights into how different harmonics can affect
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both the resonant frequencies and dissipation. The point mass perturbations are intended to model

the kinds of “trimming” techniques that are likely to be used for eliminating modal frequency dif-

ferences in micro-scale resonators, e.g., [SKS15, BKS17] (see Chapters 3, and 4). A scenario is

also studied in which width variation is combined with point mass perturbations to yield degener-

ate modal frequencies for the “elliptical” pair of modes, however, the modes possess different time

constants. The second set of case studies is presented for fused silica only. However, the results

are also applicable to other materials.

5.3.1 Uniform Rings

5.3.1.1 Resonant Frequencies and Time constants for Different Geometries and Materials

The modal frequencies and time constants are computed for various geometries of a uniform ring.

For fixed radii r̄ ∈ {0.25, 0.5, 0.75, 1} cm, the modal frequencies and time constants are graphed

versus ring width. The modes of interest are the elliptical pair, commonly referred to as the “n = 2

modes” (the mode shapes are given by cos(2θ) and sin(2θ)) and “n = 3 modes” (the mode shapes

are given by cos(3θ) and sin(3θ)). Indeed, for the uniform ring, these are exactly the eigenfunctions

associated with the modes. The out-of-plane dimension L does not play any role in the ring in-

plane motion analysis. The modal frequencies and time constants for rings made out of fused

silica for the n = 2 and n = 3 modes are shown in Fig. 5.2. The resonant frequencies and time

constants for the n = 2 and n = 3 modes for silicon, Invar, Zerodur and Corning ULE for different

geometries are given in Figs. 5.3, 5.4, 5.5 and 5.6, respectively.

5.3.1.2 Temperature Discussion

The temperature profile for the ring structure depends on the radial variable r, angle variable θ and

time t. In Sec. 5.2, the temperature profile and the displacement are assumed to be harmonic. The

time independent portion of the temperature variation T0(r, θ) can be found from (5.8). However,

the expression in (5.8) depends on the tangential displacement W (θ). For each of the modes, the

corresponding time-independent temperature profile can be written once the tangential displace-

ment W (θ) is found. Because of the existence of the term K =
√
−jωµ

α
in (5.8) and the fact that
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Figure 5.2: The comparison between ω and τ for n = 2 and n = 3 modes for fused silica rings for
different geometries.

the frequency itself is a complex number, the temperature can be written as

T0(r, θ) = T0R + jT0I,

where T0R and T0I are the real and imaginary parts of the time independent temperature profile,

respectively. The resonant frequency of the structure ω which appears in ejωt can be written as

ωR + jωI, where ωR and ωI are real and imaginary parts of the frequency, respectively. Based on

the harmonic motion assumption, the temperature profile can be written as

T (r, θ, t) = T0(r, θ)ejωt

=
(
T0R + jT0I

)
ej(ωR+jωI)t

=

(
T0R + jT0I

)
×
(

cos(ωRt) + j sin(ωRt)

)
e−ωIt

=

(
T0R cos(ωRt)− T0I sin(ωRt)

)
e−ωIt︸︷︷︸

decaying term

+ j
(
T0R sin(ωRt) + T0I cos(ωRt)

)
e−ωIt.

(5.21)

142



50 100 150 200 250 300
0

10

20

30

40

50

50 100 150 200 250 30010-2

100

102

104

50 100 150 200 250 300
0

50

100

150

50 100 150 200 250 300104

105

106

Silicon

!
(k

H
z)

!
(k

H
z)

n
=

2
n

=
3

h(µm) h(µm)

h(µm) h(µm)

⌧
(s

)
⌧
(s

)

r̄ = 0.25cm
<latexit sha1_base64="U7yzUq73xA/e3W4wnwaAW+LAVMk=">AAACAnicbVBNS8NAEN3Ur1q/ot70stgKnkJaEPUgFLx4rGBsoQlls920Szcf7E7EEgJe/CtePKh49Vd489+4bXPQ1gcDj/dmmJnnJ4IrsO1vo7S0vLK6Vl6vbGxube+Yu3t3Kk4lZQ6NRSw7PlFM8Ig5wEGwTiIZCX3B2v7oauK375lUPI5uYZwwLySDiAecEtBSzzyouT6RmczxJbatxil2gT1ARsO81jOrtmVPgRdJvSBVVKDVM7/cfkzTkEVABVGqW7cT8DIigVPB8oqbKpYQOiID1tU0IiFTXjb9IcfHWunjIJa6IsBT9fdERkKlxqGvO0MCQzXvTcT/vG4KwbmX8ShJgUV0tihIBYYYTwLBfS4ZBTHWhFDJ9a2YDokkFHRsFR1Cff7lReI0rAvLvmlUm3aRRhkdoiN0guroDDXRNWohB1H0iJ7RK3oznowX4934mLWWjGJmH/2B8fkDBTSV/A==</latexit><latexit sha1_base64="U7yzUq73xA/e3W4wnwaAW+LAVMk=">AAACAnicbVBNS8NAEN3Ur1q/ot70stgKnkJaEPUgFLx4rGBsoQlls920Szcf7E7EEgJe/CtePKh49Vd489+4bXPQ1gcDj/dmmJnnJ4IrsO1vo7S0vLK6Vl6vbGxube+Yu3t3Kk4lZQ6NRSw7PlFM8Ig5wEGwTiIZCX3B2v7oauK375lUPI5uYZwwLySDiAecEtBSzzyouT6RmczxJbatxil2gT1ARsO81jOrtmVPgRdJvSBVVKDVM7/cfkzTkEVABVGqW7cT8DIigVPB8oqbKpYQOiID1tU0IiFTXjb9IcfHWunjIJa6IsBT9fdERkKlxqGvO0MCQzXvTcT/vG4KwbmX8ShJgUV0tihIBYYYTwLBfS4ZBTHWhFDJ9a2YDokkFHRsFR1Cff7lReI0rAvLvmlUm3aRRhkdoiN0guroDDXRNWohB1H0iJ7RK3oznowX4934mLWWjGJmH/2B8fkDBTSV/A==</latexit><latexit sha1_base64="U7yzUq73xA/e3W4wnwaAW+LAVMk=">AAACAnicbVBNS8NAEN3Ur1q/ot70stgKnkJaEPUgFLx4rGBsoQlls920Szcf7E7EEgJe/CtePKh49Vd489+4bXPQ1gcDj/dmmJnnJ4IrsO1vo7S0vLK6Vl6vbGxube+Yu3t3Kk4lZQ6NRSw7PlFM8Ig5wEGwTiIZCX3B2v7oauK375lUPI5uYZwwLySDiAecEtBSzzyouT6RmczxJbatxil2gT1ARsO81jOrtmVPgRdJvSBVVKDVM7/cfkzTkEVABVGqW7cT8DIigVPB8oqbKpYQOiID1tU0IiFTXjb9IcfHWunjIJa6IsBT9fdERkKlxqGvO0MCQzXvTcT/vG4KwbmX8ShJgUV0tihIBYYYTwLBfS4ZBTHWhFDJ9a2YDokkFHRsFR1Cff7lReI0rAvLvmlUm3aRRhkdoiN0guroDDXRNWohB1H0iJ7RK3oznowX4934mLWWjGJmH/2B8fkDBTSV/A==</latexit>

r̄ = 0.75cm
<latexit sha1_base64="mth6IKjd5J2K4RgcYivKtAYalcQ=">AAACAnicbVBNS8NAEN34WetX1JteFlvBU0gLUj0IBS8eKxhbaELZbDft0s0HuxOxhIAX/4oXDype/RXe/Ddu2xy09cHA470ZZub5ieAKbPvbWFpeWV1bL22UN7e2d3bNvf07FaeSMofGIpYdnygmeMQc4CBYJ5GMhL5gbX90NfHb90wqHke3ME6YF5JBxANOCWipZx5WXZ/ITOb4EttW4wy7wB4go2Fe7ZkV27KnwIukVpAKKtDqmV9uP6ZpyCKggijVrdkJeBmRwKlgedlNFUsIHZEB62oakZApL5v+kOMTrfRxEEtdEeCp+nsiI6FS49DXnSGBoZr3JuJ/XjeF4NzLeJSkwCI6WxSkAkOMJ4HgPpeMghhrQqjk+lZMh0QSCjq2sg6hNv/yInHq1oVl39QrTbtIo4SO0DE6RTXUQE10jVrIQRQ9omf0it6MJ+PFeDc+Zq1LRjFzgP7A+PwBDP+WAQ==</latexit><latexit sha1_base64="mth6IKjd5J2K4RgcYivKtAYalcQ=">AAACAnicbVBNS8NAEN34WetX1JteFlvBU0gLUj0IBS8eKxhbaELZbDft0s0HuxOxhIAX/4oXDype/RXe/Ddu2xy09cHA470ZZub5ieAKbPvbWFpeWV1bL22UN7e2d3bNvf07FaeSMofGIpYdnygmeMQc4CBYJ5GMhL5gbX90NfHb90wqHke3ME6YF5JBxANOCWipZx5WXZ/ITOb4EttW4wy7wB4go2Fe7ZkV27KnwIukVpAKKtDqmV9uP6ZpyCKggijVrdkJeBmRwKlgedlNFUsIHZEB62oakZApL5v+kOMTrfRxEEtdEeCp+nsiI6FS49DXnSGBoZr3JuJ/XjeF4NzLeJSkwCI6WxSkAkOMJ4HgPpeMghhrQqjk+lZMh0QSCjq2sg6hNv/yInHq1oVl39QrTbtIo4SO0DE6RTXUQE10jVrIQRQ9omf0it6MJ+PFeDc+Zq1LRjFzgP7A+PwBDP+WAQ==</latexit><latexit sha1_base64="mth6IKjd5J2K4RgcYivKtAYalcQ=">AAACAnicbVBNS8NAEN34WetX1JteFlvBU0gLUj0IBS8eKxhbaELZbDft0s0HuxOxhIAX/4oXDype/RXe/Ddu2xy09cHA470ZZub5ieAKbPvbWFpeWV1bL22UN7e2d3bNvf07FaeSMofGIpYdnygmeMQc4CBYJ5GMhL5gbX90NfHb90wqHke3ME6YF5JBxANOCWipZx5WXZ/ITOb4EttW4wy7wB4go2Fe7ZkV27KnwIukVpAKKtDqmV9uP6ZpyCKggijVrdkJeBmRwKlgedlNFUsIHZEB62oakZApL5v+kOMTrfRxEEtdEeCp+nsiI6FS49DXnSGBoZr3JuJ/XjeF4NzLeJSkwCI6WxSkAkOMJ4HgPpeMghhrQqjk+lZMh0QSCjq2sg6hNv/yInHq1oVl39QrTbtIo4SO0DE6RTXUQE10jVrIQRQ9omf0it6MJ+PFeDc+Zq1LRjFzgP7A+PwBDP+WAQ==</latexit>

r̄ = 1.00cm
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Figure 5.3: The comparison between ω and τ for n = 2 and n = 3 modes for silicon rings for
different geometries.

For the case that the real part of the harmonic motion is considered, the real part of the the temper-

ature profile needs to be taken as the actual temperature. So, the temperature profile for the ring

structure from (5.21) is

T (r, θ, t) =

(
T0R cos(ωRt)− T0I sin(ωRt)

)
e−ωIt. (5.22)

The expression in (5.22) is general and can be used for both uniform (constant beam width h and

density ρ for throughout the whole ring) and imperfect rings.

To get a better understanding of the temperature profiles for different materials, the expression

from (5.22) will be evaluated for a perfect ring with a given geometry based on the outer most ring

of resonator presented in [BKS17] for silicon and fused silica. Although the analysis presented

in this section is for a perfect ring, it can be easily extended to any other case studies by simply

replacing W (θ) by the appropriate expression from the SFG analysis. For a uniform ring, the

solution for W (θ) for n = k modes are simply cos(kθ) and sin(kθ). For instance, for n = 2

modes in a uniform ring, the tangential displacement for one of the modes can be represented

as a constant multiplied by cos(2θ), and for the other mode it is simply proportional to sin(2θ).
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Figure 5.4: The comparison between ω and τ for n = 2 and n = 3 modes for Invar rings for
different geometries.

For the case that the ring is not uniform, the tangential displacement for each of the modes is

B1 cos(kθ) +B2 sin(kθ), where B1 and B2 should be found from SFG.

In the analysis presented herein, since the tangential displacement can be scaled with any ar-

bitrary scalar value in the eigenfrequency analysis, the temperature will be scaled with the same

scaling factor. So, the absolute value of the temperature is not related to any physical variable, and

the plots can only be used for comparing relative magnitudes of the temperature profiles. Although

the absolute values for the temperatures cannot be extracted from this analysis, comparing the re-

sults is reasonable since the same weights for the basis functions are considered for both silicon

and fused silica. The ring structure is opened and is presented as a rectangle with the length of

2π radians or 360◦ and width of h. The results are plotted over one period by looking at different

phases. The times are selected based on the real part of the resonant frequency of the structure,

which are 0, 0.25T, 0.5T, 0.75T and T, where T is the period of the motion which is equal to
2π
ωR

. The plot is a gradient plot normalized based on the largest present temperature variation in

the problem. The purple color corresponds to the cooler temperature which is equivalent to less

temperature variation, and the cyan color shows the hotter area which is equivalent to more temper-

ature variation. Fig. 5.7 compares the normalized temperature profiles for silicon and fused silica
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Figure 5.5: The comparison between ω and τ for n = 2 and n = 3 modes for Zerodur rings for
different geometries.

for one of the n = 2 modes. The variation in silicon is much more significant because the thermal

expansion coefficient is larger compared to fused silica. The other interesting observation is the

phase of the temperature profiles which is different for the two materials. So, the lag is different

for each material with respect to the displacement.

Fig. 5.8 depicts the normalized temperature profiles for silicon and fused silica for one of the

n = 3 modes. The resonant frequency for which the times are selected is now based on the real

part of the n = 3 resonant frequency of the structure. Fig. 5.8 clearly shows a much wider range

of variation for silicon which leads to more loss in the motion and lower quality factor.

The lower thermal expansion coefficient which leads to less generated energy within the struc-

ture due to a given strain, and lower thermal diffusivity which causes a different energy distribution

or temperature variation within the structure are the main reasons for less energy dissipation in

“low-loss” materials such as fused silica.

5.3.2 Fused Silica Ring with a Single Perturbation

This section studies the effect of single perturbations on the n = 2 modes of the rings made out
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Figure 5.6: The comparison between ω and τ for n = 2 and n = 3 modes for Corning ULE rings
for different geometries.

of fused silica. The analysis is readily applicable to other modes and other materials. When the

ring is perturbed by variations in its width or density, for example, other harmonics are produced

in the eigenfunctions for the n = 2 modes, however, as the perturbations are assumed to be small,

the eigenfunctions are dominated by 2θ terms. Nevertheless, the trial function (5.12) includes

harmonics 1 through 5, i.e., N = 5, for accurate estimates of the modal properties and their trends

as a function of the perturbation magnitude. The first type of perturbations that are considered is

the point mass perturbation. The second type of perturbations is individual harmonic change to

the ring width. In all cases the nominal ring radius and width are r̄ = 0.5 cm and h0 = 100µm,

respectively. The n = 2 modal frequencies and time constants for a uniform fused silica ring of

these dimensions are approximately 2813 Hz and 282 seconds, respectively, and so the perturbed

ring parameters deviate from these values.

For the case of having one point mass perturbation, the ring width is assumed to be constant,

however, the density varies as a function of θ. The density variation is impulsive and so creates a

point mass perturbation at angle θ0 on the ring. Without loss of generality, θ0 can be set to 0 for a

uniform ring. The perturbing mass magnitude is ερM0, where M0 = 2πρ0h0r̄L is the nominal ring
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Figure 5.7: The normalized temperature profile over one period for silicon and fused silica for a
given ring and same tangential displacement amplitude for one of the n = 2 modes.

mass. The ring thickness, L, is 270µm. The density is defined to be

ρ(θ) = ρ0 + 2περρ0δ(θ − θ0). (5.23)

Figures 5.9 and 5.10 summarize the behavior of the n = 2 modal frequencies and the corresponding

time constants. These figures also show the results of weakly coupled analysis in which the time

constant is determined after computing (5.20).

For the case of having thickness variation, the density is assumed to be constant, ρ0, but the

ring width varies with respect to θ,

h(θ) = h0 + εh0 cos(sθ), (5.24)

where s = 1, 2, reveals the effect of single harmonic perturbations of the width. Fig. 5.11 shows

exaggerated 1-θ and 2-θ width perturbations. The perturbed resonant frequencies and time con-

stants for n = 2 modes are shown in Figs. 5.12 and 5.13.
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Figure 5.8: The normalized temperature profile over one period for silicon and fused silica for a
given ring and same tangential displacement amplitude for one of the n = 3 modes.

5.3.3 Fused Silica ring with Multiple Perturbations

This section considers scenarios in which there exist a combination of point mass and thickness

perturbations given by

h(θ) = h0 + ε2 cos(2θ),

ρ(θ) = ρ0 + 2περρ0δ(θ − π).
(5.25)

In this perturbation scenario the “phase” of the width perturbation relative to the point mass per-

turbation is important. The point mass location is chosen to be near the anti-node of the higher

frequency mode when considering only the 2θ width variation. Fig. 5.11 shows location of the

point mass perturbation relative to the 2-θ width perturbation. The higher frequency mode is pref-

erentially “loaded” and its modal frequency is more susceptible to the presence of the perturbing

mass than the companion mode. This permits, for a given width perturbation, the calculation of

the perturbing mass size to bring the modal frequencies into degeneracy. Thus, as the 2θ variation

in width is changed from 0 to 15% of the nominal ring width, the point mass magnitude is calcu-

lated to yield equal modal frequencies. The point mass value given by ερ is shown as a function of

the amplitude of the width perturbation, given by ε2, in Fig. 5.14. The corresponding frequencies

and time constants are shown in Figs. 5.15 and 5.16. It is clear from these cases that “tuning” the
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Figure 5.9: The two resonant frequencies of the n = 2 modes for single mass perturbation case.
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Figure 5.10: The two time constants of the n = 2 modes for single mass perturbation case.
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Figure 5.11: (Left) Exaggerated 1-θ ring width perturbation. (Right) Exaggerated 2-θ ring width
perturbation. The location of the point-mass perturbation (solid grey disk) relative to the phase of
the 2-θ ring width variation is also shown for the multi-perturbation case in Sec. 5.3.3
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Figure 5.12: The modal frequencies of the n = 2 modes for 1-θ and 2-θ width variation. A 1-θ
width variation does not detuning of the modal frequencies.
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Figure 5.13: The time constants of the n = 2 modes for 1-θ and 2-θ width variation. The
time constants for the 1-θ case are essentially the same, however, the 2-θ width perturbation does
introduce differences in the time constants.

resonant frequencies does not necessarily produce matching time constants.

5.4 Thermoelastic Damping Discussion

The point-mass perturbation analysis reveals that both modal frequencies decrease when the ring

is loaded with additional mass, however, the modal time constants are insensitive to this kind of

perturbation. Thus, the point-mass perturbations are useful for manipulating the modal frequencies

without modification of the modal time constants as far as thermoelastic dissipation is concerned.

Point mass perturbations may have a significant impact on anchor loss, though, and so care is

required when using point-mass perturbations to modify modal frequencies.

The ring thickness variations have a markedly different impact on the modal properties depend-

ing on the harmonic of the variation. The 1-θ variation does not create a split between the modal

frequencies or time constants of n = 2 modes although both quantities are decreased. Thus, this

perturbation is relatively benign from the perspective of TED. However, if one considers its impact

on anchor loss, then the 1-θ perturbation may have a significant effect on the time constants. The

2-θ thickness variation, on the other hand, creates a split in both the modal frequencies and time

constants. The last perturbation scenario shows that the frequency detuning created by the 2-θ
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Figure 5.14: The size of the point mass given by ερ that is required to eliminate the modal frequency
split caused by a 2-θ width variation.
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Figure 5.15: Both n = 2 modal frequencies are rendered equal for different values of ε2 by appro-
priate choice of ερ.
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Figure 5.16: The n = 2 time constants as a function of ε2. Although the frequencies are equal,
the time constants are not.

thickness variation can be “corrected” by point-mass loading, however, the time constant split due

to the thickness variation remains largely intact in the “tuned” resonator.

The weakly coupled analysis yields results which are indistinguishable from the coupled analy-

sis and, furthermore, the weakly coupled analysis has the advantage of greater simplicity since the

ring equation of motion without thermoelastic effects yields a standard eigenvalue problem in con-

trast to the ad hoc iterative approach that was used to analyze the coupled case. An approximate

expression for the dissipated energy (5.20) was derived from making the quantity α/ω explicit.

This estimate of ∆W is useful because it shows how a small ratio (relative to other materials) of

thermal diffusivity to modal frequency essentially scales the energy loss, so a significant factor of

TED in fused silica rings is derived from α/ω in addition to widely recognized importance of the

thermal expansion coefficient, β.

5.5 Summary for Thermoelastic Damping

The equation of motion for a perturbed ring including thermoelastic effects was derived. A total

of ten basis functions were used to approximate solutions using the strong form Galerkin method.

The resonant frequencies and time constants were calculated for the n = 2 modes under different

perturbation scenarios. In one interesting case study, it was shown how a 2-θ ring width pertur-
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bation creates not only detuning of the modal frequencies, but also introduced differences in their

time constants. In another case study, the modal frequency detuning was eliminated by point-mass

loading, however, since point-mass loading has little impact on the time constants, a difference

in the time constants remains even for “tuned” modes. Thus, it appears that some degree of time

constant mismatch will always exist in so far as thermoelastic dissipation is concerned because

the elimination of the differences would require actual modification of the 2-θ harmonic in the

resonator width. Measuring these harmonics, much less correcting for them, has not been demon-

strated in micro-scale resonators. On the other hand, point-mass loading has been demonstrated to

be practical for certain planar axisymmetric resonators.
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CHAPTER 6

Concluding Remarks

From the study of ring-type resonators in this thesis, the following remarks can be made as a

summary.

• A gyroscope is a sensor that measures the rate of rotation of an object. One common type

is a “Coriolis Vibratory Gyroscope” (CVG) which takes advantage of Coriolis coupling in

sensing rotation. There are advantages in manufacturing the resonator, the heart of the CVG,

as a distributed mass. The challenge of using distributed mass is finding the mode shapes

and associated lag factors.

• The greatest sensitivity to angular motion is achieved when the resonant modes have de-

generate frequencies since this configuration provides the greatest signal-to-noise ratio with

respect to electronics. One way to achieve degeneracy is to design an axisymmetric res-

onator.

• Ring-type resonators can be manufactured efficiently with the techniques used in micro-

electro-mechanical systems (MEMS). Even with the state of the art MEMS technology, small

fabrication errors are introduced which break the symmetry of the structure.

• To recover the symmetry of the structure, post-fabrication processing is required. The mass,

stiffness or combination of both can be modified to achieve this recovery. Changing the

stiffness is not permanent, so adding/removing mass is desirable. Two custom recipes for

selectively removing from and adding mass to the resonator are developed.

• The perturbation model is developed for imperfect rings. The results are in excellent agree-

ment with Rayleigh-Ritz and finite element analysis. The analysis is extended to the ring-
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type resonator in hand to study the effect of the mass perturbations to compensate for the

asymmetries introduced from the manufacturing.

• The refined model is used for tuning multiple modes simultaneously. Having two tuned

modes is advantageous for providing two independent measurements from one device. The

correlation between the measurements can be used to enhance the quality of the sensor.

• The linear programming and a branch and bound algorithm are implemented to systemati-

cally tune both n = 2 and n = 3 modes. The results are successfully implemented for n = 2

modes on seven devices using a custom etching technique which is compatible with other

manufacturing steps and can be implemented at the wafer-level. The results for simultaneous

tuning are successfully implemented on two devices using a mass addition technique.

• The damping mechanisms are studied for ring-type resonators. The equation of motion with

the dominant damping mechanism as thermoelastic damping is derived and solved using

strong form Galerkin for imperfect rings. The types of the imperfections considered come

from manufacturing imperfections, such as etch non-uniformities, and arise in practice for

(point mass) tuning. A practical limitation is demonstrated when mass addition/removal is

used for tuning the resonant frequencies as far as the damping asymmetry is concerned. A

design guide is developed based on the geometry and material properties. The temperature

profile is compared for silicon, a common material used in manufacturing, and fused silica

as a low-loss material. It is shown that in addition to the thermal expansion coefficient of the

material, the effect of its thermal diffusivity is a key player in the thermoelastic dissipation

of a given structure.
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