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Abstract

Fast Algorithms for Transmission Switching with High Performance Computing

by

Zhu Yang

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Shmuel S. Oren, Chair

There has been multiple national directives to enhance the economic operations of the power
transmission system and promote the efficient use of the current grid configuration and re-
sources. Transmission switching has been proposed as a new control method for various ben-
efits, including improving the economic efficiency and meeting the reliability requirements.
Optimal Transmission Switching model has been introduced to find an optimal generation
dispatch and network topology to minimize the dispatch cost. Binary decision variables are
used to denote the control of the transmission lines, which makes the model a nonlinear
program. It suffers from curse of dimensionality and faces serious computational challenges.

To tackle the computational challenge of the Optimal Transmission Switching model,
we propose three greedy algorithms in which only one line is switched at an iteration. In
each iteration we solve a series of linear programs or smaller MIP programs, which can be
implemented in parallel with the aid of high performance computing. The first algorithm
enumerates all the possible line switching actions. The second algorithm produces a priority
list ranking lines by a sensitivity factor based on dual criterion, and evaluate lines starting
from the top of the list. The last one divides lines into small groups and consider each group
at one time. We test the algorithms on the IEEE 118-Bus network and the FERC 13,867-Bus
network which is representative of PJM Regional Transmission Organization. The results
show that all three proposed algorithms result in cost reduction close to the best known
optimal within a reasonable timeframe for IEEE network. For the FERC network which
can not be solved directly by the OTS, the first two greedy algorithms are able to produce
switching sequences which result in considerable cost reduction.

Furthermore we propose three machine learning based methods to produce priority lists
for ranking possible line switching actions to facilitate faster searching. The algorithms take
in the parameters from network status and network configuration to produce a standardized
score representing the possible cost reduction of the line switching action. The numerical
results on IEEE network and FERC network are presented. We evaluate the effectiveness of
the priority lists based on dual criterion and machine learning methods by both regression
analysis and comparison with random lists.
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Based on the algorithms in literature and those we develop, we propose an algorithm
selection method which selects the algorithm to optimize the cost improvement at each iter-
ation. They show improvement in the cost reduction compared to the individual algorithms,
especially for the FERC network.
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Chapter 1

Introduction

1.1 Overview of Power Network

Power networks, composed of the generators, loads and transmission lines, are typically large
and complexly inter-connected systems. Power dispatched from generators flow to loads to
satisfy their respective demand, according to laws of physics and satisfying the power flow
limits of transmission lines. In the United States, the operations of the regional power sys-
tems are coordinated by Independent System Operators (ISOs) and Regional Transmission
Operators(RTOs). They are authorized by Federal Energy Regulatory Commission (FERC)
to oversee the operations of power systems and relevant markets. The tasks of ISOs and
RTOs include dispatching generators to satisfy the demand, providing non-discriminatory
access to transmission, managing transmission congestion, acquiring and supplying ancillary
services, market monitoring, transmission planning and expansion etc. For example, the pri-
mary mission of California Independent System Operator is to ”operate the grid reliably and
efficiently, provide fair and open transmission access, promote environmental stewardship,
and facilitate effective markets and promote infrastructure development” [23].

To ensure a reliable supply of electricity, the system operators first need to create the
hourly demand forecast for the electricity. Together with the availability of power resources,
reserve requirements and other constraints of the network , the system operators run a unit
commitment model to dispatch the power plants to meet the demand at different nodes. In
the two-settlement market structure, there are two markets: the day-ahead market and the
the real time market. ISOs will accept the offers from generating units and bids from loads for
each hour in the next day in the day-ahead market. Then a generation commitment sched-
ule is produced by solving the security-constrained unit commitment(SCUC) model. With
the fixed generator commitment schedule, a security-constrained economic dispatch(SCED)
is run to compute the Locational Marginal Price(LMP).Then the system operators run a
residual unit commitment to specify the additional power plants ready to produce electricity
they will need for the next day. In order to respond to contingencies and fulfill the differences
between the forecast demand and the actual demand, an operating reserve is needed in the
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real time. North American Electric Reliability Corporation (NERC) establishes and imposes
N-1 reliability standard which states that a transmission network must be able to continue to
supply load uninterrupted and run the grid in a satisfactory state when the network loses a
single asset (circuit, transformer, generator etc). Besides the day-ahead market, the system
operators also run a real-time market in which loads buy the additional power they need
but was not satisfied in the day-ahead market. The optimization and control procedure of
power system operation is illustrated in Fig.1.1[16].

Figure 1.1: Optimization and Control Procedures for the Planning of Power System Opera-
tion

In order to efficiently run the grid and the markets, the system operators need to have
a deep understanding of the network model, which examine and allocates the generation
and transmission resources to find the least expensive dispatching schedule to fulfill demand.
The power network is a highly interconnected system with many physical constraints for
its components, including the production limits of the generators, the line ratings of the
transmission lines and the limits for voltage angle differences between buses. To determine
the best operating levels for the electric power plants, the researchers developed a model
called Optimal Power Flow (OPF). Since its introduction 50 years ago [8], OPT has been in
the spot light of power system research and innovation. It is also one of most well researched
area with practical importance in constrained nonlinear optimization. The bold text in
Fig.1.1 indicates processes that involves variant forms of optimal power flow. They stem
from the power flow problem which seeks a solution of the following network equations.
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Pk =
N∑
j=1

|Vk||Vj||(Gkj cos(θk − θj) +Bkj sin(θk − θj)) (1.1)

Qk =
N∑
j=1

|Vk||Vj||(Gkj sin(θk − θj)−Bkj cos(θk − θj)) (1.2)

Where Pk and Qk are the real and reactive power at bus k respectively

Vi is the voltage of bus i

Gkj and Bkj are the conductance and susceptance of the branch between bus k

and j respectively

θi is the angle at bus i

The above power flow equations, combined with an objective function such as cost min-
imization, forms an optimization problem. By incorporating the generator’s availability,
ramping rates, minimum up/down times and the reliability standards, the system operator
can decide the on/off schedule by the SCUC. It also produces LMP - prices that reflects the
cost of electricity at different locations. LMP is used to establish the wholesale prices at
different locations, calculate transmission congestion charges and distribute compensation
for holders of Financial Transmission Rights (FTR).

Optimal Power Flow problem, in its most accurate and rigorous form, is the Alternating
Current Optimal Power Flow (ACOPF) problem. It’s highly nonlinear and non-convex,
therefore posing substantial computational challenge to the researchers and system operators.
Each ISO deals with a power system with at least thousands of buses and they need to solve
the problem every couple of minutes. Therefore no ISO solves the full scale ACOPF in
the day ahead or real time market. Instead they rely on its direct current approximation
(DCOPF), assuming all voltage magnitudes are fixed and all voltage angles are closed to
zero. The system operators take full advantage of the apparent computational advantage
of DCOPF, and this computational advantage is even more essential for unit commitment
problems with its own binary variables to represent the on/off of the generators.

1.2 Transmission Switching

Power systems are built to be redundant so that it can work in the worst case scenario. This
redundancy and the nature of the power network being a nonlinear and complex system make
it possible to provide economic benefits to the system by switching transmission lines on/off,
especially when there are congested lines. The average congestion cost of PJM from 2013 to
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2017 is $1,252.32 million, with a spike of $2,231.2 million in 2014 [38]. California ISO reports
that in 2017 the San Diego Gas and Electric area was the area that was the most affected
by internal congestion within CAISO. Average day-ahead prices in this area increased by
about $0.90/MWh (2.5 %) above the system average and real-time congestion increased
prices by about $1.50/MWh (4 %) [23]. Therefore, there is a great opportunity for efficiency
improvement through transmission switching. Energy Policy Act of 2005 promotes the use
of state-of-the-art transmission technology and efficient transmission line configuration [51].
Even though the transmission switching can be done through a simple circuit breaker, the
recent development of FACTS devices makes it even more reliable and realistic. They allow
the system operators to control the line impedance so it can provide continuous and reliable
control of power on the transmission line over a wide range.

The following simple 3-bus example can show the economic benefits that switching a
line brings. There is a generator at each bus, with a unit cost of $100/MWh, $200/MWh,
$50/MWh respectively. Three lines share the same impedance but different ratings. There is
a demand of 250MW at node C. By solving the DCOPF model the original optimal outputs
of each generator are: A: 180MW; B: 30MW; C: 40MW. The total cost is $20000. After
switching off the line between bus A and B, the optimal outputs are: A: 200MW, B: 50MW,
C: 0MW. The new total cost is $15000. After opening the line, Kirchhoff’s law on this partic-
ular line is no longer enforced, allowing new solution space in which there is a better solution.

Figure 1.2: Original 3 Bus Network
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Figure 1.3: 3 Bus Network after Opening Line A-B

The existing transmission switching protocols are mostly dictated by system operators
in an ad hoc manner. There are mainly four areas of application in the current industry
practice [19].

Firstly, the system operators can switch some transmission lines out of service in order to
improve voltage profiles. ISO New England has included transmission switching actions in
the list of emergency system actions. When the documented studies have shown that a spe-
cific line switching action can relieve the existing contingency without losing the protection
for another contingency, then the switching action can be implemented [24]. PJM also uses
switching transmission facilities in/out of service for voltage control actions. Specifically,
When high voltage conditions are expected in the PJM, the system operators use PJM Se-
curity Analysis programs to study possible actions i.e., opening an extra-high-voltage (EHV)
line. Several circuits has been identified by PJM to be effective in controlling general high
voltage conditions [37].

Secondly, several ISOs have listed transmission switching in their special protection
schemes (SPS). Special protection scheme is a automatic protection system used to de-
tect system contingencies and implement corrective actions accordingly. They facilitate the
operational solutions of the contingency management which is much faster and less costly
than building new transmission infrastructure. NERC has specified actions taken by SPS,
which include system reconfiguration [48]. PJM has identified a list of potential transmission
switching procedures that may assist to reduce or eliminate transmission congestion.

The transmission lines are due for maintenance from time to time due to the aging of the
infrastructure and the system operators need to schedule the maintenance outages to make
sure they are up to the current standards. Transmission line maintenance scheduling has
traditionally been carried out with the focus on the reliability and the transmission system
adequacy. However Independent System Operator of New England (ISONE) started to take
dispatch efficiency into consideration and estimate a cost saving of $50 million a year [24].
The research on the economic transmission switching could provide insight and benefit to
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this new objective of ISOs for their line maintenance scheduling.
When the load requirements and chance of contingency change with season, it is sensible

for the system operators to switch redundant transmission lines as the situation deems fit.
For example in California, the demand requirements are low in winter while the chance for
outages are high due to winter storms. The operators will choose to keep the redundant
lines in service to maintain the system reliability. However, when summer comes with the
high demand and low chances of contingencies, the system operators will find it beneficial
to switch some of the redundant lines out of service, to avoid overloading concerns.

1.3 Motivation

The system operators regularly use transmission switching as a corrective mechanism but
ignore its application for economic efficiency. When they run the energy market and dispatch
generators the transmission elements are viewed as static components of the network. How-
ever the recent development of FACTS devices make it possible and reliable for the system
operators to open or close the circuit. Furthermore, increasing common social interven-
tions such as Not in My Backyard Phenomenon have caused problems for the transmission
planning. It has been increasingly difficult to site the energy infrastructures, including trans-
mission lines [52]. Therefore, researchers should pay more attention to the optimal use of the
existing transmission system. And since the planning and construction of new transmission
assets could take years, we have to rely on the existing infrastructure to serve the consumers
and run the grid efficiently and reliably.

1.4 Outline

In Chapter 2, we provide a thorough literature review of transmission switching, for both
corrective and economic purpose. We discuss the Optimal Transmission Switching problem
and its economic benefits and computational challenge.

In Chapter 3, the applications of high performance computing in the power system are
reviewed.

In Chapter 4, we first present a greedy algorithm framework to tackle the computational
challenge of the OTS. Within this framework we only need to solve linear programs, not
mixed integer programs. Then we discuss three heuristics that can be implemented in paral-
lel. We present the cost reduction and computational performance of these heuristics on two
networks. One is the IEEE 118-Bus network and the other is the FERC 13867-bus Network
derived from the data set we obtained from PJM Regional Transmission Organization.

In Chapter 5, a machine learning based method is presented to create a priority list for
the line switching candidates. The application of machine learning in the power system is
first reviewed. Then we present three machine learning methods that are popular in the
power system applications and suitable for line selection problem. We show the results of
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the line selection with machine learning on IEEE network and FERC network for the three
machine learning methods. The advantages and drawbacks of different methods are then
discussed.

In Chapter 6 we discuss the application of algorithm selection in transmission switching.
Among the fast heuristics we developed and those in literature, the algorithm selection aims
to choose the algorithm so as to maximize the economic benefit at each iteration based on
the current network status. The framework and past literature of the algorithm selection
are reviewed. The results of algorithm selection on IEEE network and FERC network are
presented and different machine learning methods used for algorithm selection are compared.

The conclusions and the future directions are summarized in Chapter 7.



8

Chapter 2

Literature Review

2.1 Notation

This section lists the notations that are commonly used in this and the following chapters.

Sets and Indices:

n Bus.

N Set of all buses.

g Generator.

Gn Set of generators at bus n.

k Transmission line.

K Set of all lines.

K̂ Set of transmission lines in service.

K̄ Set of transmission lines out of service.

Kto
n Subset of lines with n as ”to” bus.

Kfr
n Subset of lines with n as ”from” bus.

ntok ”To” bus for linke k.

nfrk ”From” bus for linke k.

Parameters:

Bk Susceptance of line k.
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cg Unit cost of power from generator g.

PM
g Maximum power from generator g.

Pm
g Minimum power from generator g.

PM
k Maximum power flow on line k.

Pm
k Minimum power flow on line k.

θM Maximum voltage angle difference.

θm Minimum voltage angle difference.

P dem
n Demand load at bus n.

Decision Variables:

Pg Power from generator g.

Pg Power flow on line k.

θn Voltage angle at bus n.

zk Binary variable indicating the status of the line. 0 (out of service) /1 (in service).

sk Binary decision variable to switch line k. 0 (no switch) /1 (switch).

2.2 Transmission Switching

Past literature has explored the use of transmission switching in the power network for
mainly two purposes: as a corrective mechanism or for operational efficiency. Since the
system operators have constantly been using the transmission switching as an ad hoc tool to
react to line overloading, voltage violations, etc, it’s only natural to formulate transmission
switching as a formal treatment in response to contingencies. Compared to the ad hoc
approach that only aims to alleviate the contingency situation, the formal formulation of
transmission switching for corrective purpose can find the best action while considering
other conditions such as N-1-1 reliability.

Since line switching was proposed as a control tool in 1980 [28] [53], several algorithms
have been proposed to investigate the effect of line switching in the power systems. Glav-
itsch [18] formulated the transmission switching in a systematic way to change the load flow
distribution, improving the voltage profile and enhancing the network security. He also pre-
sented a search approach using current injection to find the optimal solution. Mazi et al [34]
presented a fast algorithm for rank the lins switching actions to relieve the overloads caused
by losing a line. Instead of running a full ACOPF they used line switching to estimate the
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effect of lowering the power flow on a congested line by using line outage distribution fac-
tors based on DC power flow. Bacher et al [2] modeled transmission switching as a current
injection scheme and determined the effect of such an injection on all other elements of the
network by the distribution factor matrix. A linearized model was presented for corrective
switching and the solution with continuous control variables and discrete control variables
were discussed by Bakirtzis et al in [4]. The authors in [33] described a fast technique modi-
fied from existing contingency analysis program to choose line switching actions when there
is a line overloading. Instead of evaluating the magnitude of the change in line flows from the
overloading condition they only calculated the algebraic sign of the flow change, which saved
substantial computing time.Furthermore Schnyder et al [43] proposed a one step method to
optimize the corrective switching and maintain a N-1 secure system. They also differentiated
the preventive corrective switching and post contingency corrective response. Wrubel et al
[58] presented one of the first practical use of the corrective switching algorithm. It was
implemented as part of the security analysis program at Public Service Electric and Gas
Company in New Jersey. Based on the previous research efforts, Rolim et al [41] catego-
rized publications on corrective switching based on several criteria, including the objective,
switchable elements, reduction of search space and solution technique etc.

Transmission switching as a corrective mechanism has seen rapid development in the
last decade. Shao et al in [45] [44] proposed an algorithm to find the best switching action
for relieving line flow and voltage contingencies with fast decoupled power flow and sparse
inverse technique. Korad et al [30] proposed a real time robust corrective switching scheme
which provides several viable line switching candidates with security assessment tool. Bala-
subramanian et al [5] presented a corrective switching algorithm based on sensitivity factors
to reduce the load shedding and tested it for reliability scenarios including N-1, N-m, and
cascading events. In [25], the authors discussed the the use of corrective transmission switch-
ing to improve the efficiency in delivering reserve in the power network. A day-ahead SCUC
model was solved first then the contingency analysis tool coupled with the topology control
determined the reserves and switching actions while satisfying all post-contingency limits.
Furthermore in the light of increasing renewable penetration, Korad et al [29] proposed a
method to determine the the optimal allocation of reserves with renewable penetration and
corrective transmission switching in the day-ahead time frame. Later they used a zonal ap-
proach which reduced the network model into a few interconnected zones to cut down the
computational time [31]. The authors confirmed that a proper chosen transmission switch-
ing solution would be beneficial post-contingency without jeopardizing the reliability of the
network compared to the case without transmission switching. They further showed that the
use of corrective switching actions at N-1 stage will help obtain an N-1-1 reliable solution
by reducing not only N-1 but also N-1-1 violations.

It is well known that the redundancy of the power network can cause operational in-
efficiency, as the 3 bus example illustrated in Chapter 1. Therefore switching out a line
temporarily can enhance the economic efficiency of the network when the network remains
reliable at the same time. The first formal treatment of co-optimization of generator dis-
patch and network topology based on Direct Current Optimal Power Flow (DCOPF) was
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proposed by Fisher et al [14]. The proposed Optimal Transmission Switching (OTS) is a
mixed integer program. It results in more than 25% cost savings on IEEE 118-Bus test
case, but takes a very long running time for a good solution, which prohibits it from prac-
tical application. Based on this model Hedman et al [21] discussed the uncertainty that the
transmission switching may bring to the market participants, including nodal prices, load
payment, generator revenues etc. Then they further incorporated the contingency analysis to
ensure N-1 reliability standards are met [22]. The authors in [20] presented a co-optimization
of unit commitment and network topology while ensuring N-1 reliability. They showed that
co-optimizing the line configuration can change the optimal unit commitment schedule. In
[46] the authors modeled transmission switching as a recourse action in the day-ahead unit
commitment with large-scale renewable generation. They further demonstrated that the
dispatch cost can be reduced by the transmission switching with or without congestion in
the system.

In the next section we are going to present the mathematical model of Optimal Trans-
mission Switching formulation, which we base our work on.

2.3 Optimal Transmission Switching

The Optimal Transmission Switching model assumes a network where all the lines are cur-
rently closed. The objective is to find the network topology and generation schedule to
minimize the dispatch cost. It is built on the DCOPF model which is a linearized form
of ACOPF with three simplification assumptions: voltage magnitudes are constant; voltage
angles are close to zero and lossless system. The voltage angle constraint is imposed by
Eq.(2.1a). Eq.(2.1b) imposes the generator output limits. Eq.(2.1c) ensures the power bal-
ance at each node. Eq.(2.1d) enforces the thermal ratings of transmission lines. Kirchhoff’s
law is ensured by Eq.(2.1e).

DCOPF:

min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , k ∈ K (2.1a)

Pm
g ≤ Pg ≤ PM

g , n ∈ N (2.1b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (2.1c)

Pk ≤ Pk ≤ PM
k , k ∈ K (2.1d)

− Pk +Bk(θnfr
k
− θnto

k
) = 0, k ∈ K (2.1e)

In the following OTS model, a binary variable zk is used to represent the status of the
line. When zk = 0 the line is switched to be open and when zk = 1 the line remains closed.
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Note here M is a number greater than Bk(θnfr
k
− θnto

k
). It ensures that Kirchhoff’s law holds

when the line is closed and vanishes when the line is open. The use of M and zk in Kirchhoff’s
law are necessary because otherwise if we open a single line, the power flow on all its parallel
lines will be zero since the angle difference is forced to zero.

OTS:

min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , k ∈ K (2.2a)

Pm
g ≤ Pg ≤ PM

g , n ∈ N (2.2b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (2.2c)

Pm
k zk ≤ Pk ≤ PM

k zk, k ∈ K (2.2d)

− Pk +Bk(θnfr
k
− θnto

k
) + (1− zk)M ≥ 0, k ∈ K (2.2e)

− Pk +Bk(θnfr
k
− θnto

k
)− (1− zk)M ≤ 0, k ∈ K (2.2f)∑

k

(1− zk) ≤ j. (2.2g)

zk is binary, k ∈ K. (2.2h)

Fisher et al [14] tested this model on IEEE 118-Bus network without the constraint (2.2g)
and the dispatch cost is reduced by 25% when 38 lines were opened, which is the best know
optimal solution. In terms of computation time, it grows exponentially with the increase of
j and large values of j (j ≥ 13 in this case) are impractical for CPLEX software to solve on
a laptop. IEEE 118-Bus network with 10 lines switches from OTS with j = 10 is illustrated
in Fig. 2.1.

2.4 Algorithms to Solve OTS

Several heuristics have been investigated to tackle the computational challenge caused by
the inherent curse of dimensionality of the MIP formulation. There are two mainstream
heuristics, corresponding to two methods for modeling opening a line. The first approach
is to change the susceptance matrix to model the line removal, or in other words, make the
partiticular susceptance zero. By this approach researchers consider possible line switches
one at a time and solve a series of DCOPF problems, which could also be time consuming if
considering all the possible line switches. The authors in [36] showed that high performance
computing can be used to parallelize the computation and improve performance. A priority
list can be established by using a sensitivity factor developed from the dual problem to find
the desirable line switches faster [17].
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Figure 2.1: IEEE 118-Bus Network with 10 Line Opened from OTS

Alternatively, authors in [42] use the power transfer distribution factors (PTDFs) and
flow canceling transactions, which is more scalable with the number of transmission lines
compared to the Bθ model. Instead of removing the line from the topology, this method
maintains the original topology but computes a power transfer transaction that will cancel
the current flow on the particular line. It will have the same effect as an actual line switch
on the other parts of the power system.

NERC defines a PTDF as ”in the pre-contingency configuration of a system under study,
a measure of the responsiveness or change in electrical loadings on transmission system
facilities due to a change in electric power transfer from one area to another, expressed in
percent (up to 100%) of the change in power transfer”. Simply put, PTDF measures the
sensitivity of the flow on one line with respect to a power flow transfer on another line.
It shows the linearized impact of a transfer of power and is independent of the size of the
transfer.

Without modifying the susceptance, a line switch can be modeled by a flow cancelling
transaction. To model the removal of line k between nodes m and n, let m′ and n′ be
infinitely close to the actual nodes, as shown in Fig.2.2. fk is the current flow on the line.
Assume there is a virtual flow injection from m′ to n′ with magnitude νk. This virtual
injection’s effect is equivalent to the switching off line k as far as the impact on the rest of



CHAPTER 2. LITERATURE REVIEW 14

the system is considered. Assume the PTDF between node m and n respect to line l is φmnl .
By the definition of PTDF, the following equation must hold.

fk − (1− φm′n′

l )νk = 0 (2.3)

Figure 2.2: Flow Cancelling Transactions

The resulting formulation of OPF with transmission switching is:

min
p,ν,z

cTp

s.t. 1T (p− 1) = 0 (2.4a)

p ≤ p ≤ p (2.4b)

fM ≤ ΨM(p− 1) + ΨMS(p− 1)ν ≤ f (2.4c)

F Sz ≤ ΨS(p− 1) + (ΨSS −D)ν ≤ F Sz (2.4d)

−M(1 − z) ≤ ν ≤M(1 − z) (2.4e)

zk is binary (2.4f)

Where p is the vector of generation
c is the vector of generation cost
z is the vector representing the status of the transmission lines
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f , f are the vectors of thermal limits

F , F are the diagonal matrices of thermal limits
ΨM is the shift factor matrix associated to monitored lines
ΨS is the shift factor matrix associated to switchable lines
ΨSS is the PTDF matrix of switchable lines
ΨMS is the PTDF matrix of monitored lines
D is the vector of demand



16

Chapter 3

High Performance Computing

3.1 Introduction

High performance computing is the concurrent use of multiple computing cores to solve a
computational problem. It is especially useful when a problem is broken into discrete and
independent parts that are solved simultaneously on different cores. An high level control
mechanism is employed to coordinate the execution of individual parts, as illustrated in
Fig.3.1. Nowadays the high performance computing clusters, including Lawrence Livermore
National Laboratory (LLNL) parallel computer clusters we use, are parallel from a hardware
perspective which means they have multiple functional units and multiple execution cores.
The main reason we are especially interested in supercomputers is that it allows us to solve
larger and more complex problems. It also saves the computation time if the algorithms can
be implemented in parallel.

Figure 3.1: Framework for the Parallel Computing

In order to explicitly exploit the advantage of multiple cores of LLNL clusters, a dis-
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tributed message passing model is required, which has the following characteristics.
1. The independent tasks only require their own local memory for its own execution.

Therefore multiple tasks can be performed on the same machine and/or across different
machines.

2. Since tasks reside on different cores, when the data exchange is needed , the commu-
nication is done by sending and receiving messages.

3. The communication consists of two way cooperative commands between the processes,
for example, ”send” and ”receive” commands in Fig.3.2.

Figure 3.2: Communication between Tasks in Parallel Computing

We use Message Passing Interface (MPI), the standard message passing interface im-
plementation for the parallelization of the algorithms in this thesis. It uses a central task
manager called MPI COMM WORLD to communicate between master thread and worker
threads. The master thread allocates the tasks to the worker threads and each task can do
its work without requiring any information from the other tasks. After a worker finishes the
task it sends the results back to the master. The master thread coordinates the results from
parallel workers and determines when to stop the algorithm.

3.2 Application of High Performance Computing in

Power Systems

The power system has been evolving since it began over 120 years ago with the Pear Street
Station in 1885 and it is likely to see more changes in the next decade than the past century.
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Distributed energy generation and storage, renewable resources, smart devices, demand re-
sponse and wide spread of electric vehicles are also being employed in the power grid rapidly.
The models that are used in power systems are becoming increasingly complicated and com-
putational expensive, and system operators have more and more access to increasingly pow-
erful computing hardware and software. The drastic changes in the size and the complexity
of the power system models call for fundamental change in the tools and methods used for
the operation of the power grid. First we deep to develop capabilities to accommodate the
increasing complexity of smart grid data, which are generated by the power system compo-
nents as well as via simulations to ensure secure and reliable power grids. The new challenge
arises when the system operators need new and computational efficient software programs
to accurately solve the market models. We would also need advanced research on devel-
opment and implementation of algorithms for solving real-time and dynamic problems. In
brief the resulting new dynamic and stochastic behaviors from power system renovations
will demonstrate more complexity in models, while it is challenging to solve those models in
the traditional sequential computing environment . Therefore high performance computing
is promising to enhance the computational performance and though it has a rich history in
power system research, it has not been fully investigated or adopted by the system operators

Monticelli et al. [35] described a method to solve the security-constrained economic dis-
patch problem with Benders decomposition. The method iterated between solution of a
base case economic dispatch and individual contingency analysis with generation reschedul-
ing. The authors in [49] discussed the implementation of concurrent programming envi-
ronment in three power system applications: multi-area reliability, system analysis model
and security-constrained dispatch with post-contingency corrective rescheduling. Falcao [13]
presented a summary of research in the employment of distributed computing to the power
system problems, especially the computing intensive ones in power system optimization and
control. Kim et al. [26] presented an approach to implement optimal power flow in parallel
by decomposing the network model into zones by duplicating the variables on the border and
enforcing coupling constraints between the duplicated variables. They tested the proposed
method on systems including IEEE test networks and parts of the ERCOT system, and
showed potential for very large interconnected power system. Compared to OPF decoupling
around border nodes in [26], Bakirtzis et al. [3] presented an OPF decomposition method
at the tie-lines connecting the adjoining zones. They later implemented the algorithm on a
network of computers using PVM software [6]. Green et al. discussed the development and
change of power network and high performance computing in the last 15 years and explored
the ways in which high performance computing will be used in the smart grid.
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Chapter 4

Greedy Algorithms for Transmission
Switching

4.1 Introduction

In the Chapter 2 we have discussed the computational challenge faced by Optimal Trans-
mission Switching (OTS) problem. By the introduction of the binary variable representing
the status of the line, it becomes a mixed integer program and takes more than half an hour
to solve with CPLEX 11 on a four core commercial laptop for the IEEE 118-Bus network.
In this network there are 186 lines considered for switching, therefore 2186 potential trans-
mission network topologies. Even though it has a large solution space, it is still far too small
compared to the real power networks. Normally thousands of lines will be monitored in a
real power network, which makes OTS impossible to directly solve with a commercial soft-
ware. Even with the aid of super computers the performance is less than satisfactory with
distributed branch and bound, as we are going to show in this chapter. Therefore we develop
several heuristics to achieve the goal of improving economic efficiency within a reasonable
timeframe.

In this chapter we first introduce the framework for the greedy algorithms and then
present three heuristics under the framework. Then we present the numerical results for
IEEE 118-Bus network and FERC 13867-Bus network.

4.2 Fast Heuristics for Transmission Switching

The central idea of the fast heuristics we develop comes from the realization that only two
DCOPFs need to be solved in order to compute the cost savings for a line switch. The cost
saving is equal to the difference of the objective functions of the DCOPF of the original
power network and the DCOPF of the network after a line switch. Therefore we develop a
greedy algorithm framework in which only one line is switched at one iteration. The cost
saving is then evaluated. If the cost improvement is not satisfactory we can evaluate other
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possible line switches before time is exhausted. Otherwise the procedure is terminated and
the best line switching action is selected. This greedy algorithm gives the operator more
control over the computation time. DCOPF, as shown below, is a linear program therefore
quick to solve. The flowchart of the general heuristic procedure is shown in Fig.4.1.

DCOPF:

min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , n ∈ N (4.1a)

Pm
g ≤ Pg ≤ PM

g , g ∈ Gn (4.1b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (4.1c)

Pk ≤ Pk ≤ PM
k , k ∈ K (4.1d)

− Pk +Bk(θnfr
k
− θnto

k
) = 0, k ∈ K (4.1e)
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Figure 4.1: General Framework of Fast Heuristics for Transmission Switching

Line Enumeration

The first heuristic we develop is to directly enumerate all the possible line switches. For
each switch a DCOPF is solved and compared with the original cost. We choose the line
to switch which results in greatest cost reduction. The algorithm is iterated until the lines
are exhausted. We notice that all the line switches are independent and their corresponding
DCOPFs can be solved in parallel. The algorithm is shown in Fig.4.2.
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Figure 4.2: Line Enumeration

Line Selection with Priority List

Based on the Optimal Transmission Switching model in [14], we present the following single
period economic dispatch model based on DCOPF. It is a mixed integer program where zk
represents the switching decision. zk = 1 means the line is on and zk = 0 means the line is
off. The lines K = K̂ ∪ K̄ are divided into two sets, according to their current status: K̂
representing the set of lines in service and K̄ representing the set of lines out of service. The
objective is to minimize the generation cost. Voltage angle limits are imposed by Eq.(4.2a)
and the capacity limits on generating unites are imposed by Eq.(4.2b). Eq.(4.2c) ensures
the power balance for each bus. For lines originally in service, Eq.(4.2d) makes sure the flow
respects the line flow limits if it stays on and the flow is zero if it is to be switched off. M
in Eqs.(4.2e) and Eqs.(4.2f) is a very large number that makes sure Kirchhoff’s law holds
when the line stays on. When the line is out of service at the beginning, the flow on it must
be zero, as Eqs.(4.2g) and Eqs.(4.2h) state.
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min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , n ∈ N (4.2a)

Pm
g ≤ Pg ≤ PM

g , g ∈ Gn (4.2b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (4.2c)

Pm
k zk ≤ Pk ≤ PM

k zk, k ∈ K̂ (4.2d)

− Pk +Bk(θnfr
k
− θnto

k
) + (1− zk)M ≥ 0, k ∈ K̂ (4.2e)

− Pk +Bk(θnfr
k
− θnto

k
)− (1− zk)M ≤ 0, k ∈ K̂ (4.2f)

0 ≤ Pk ≤ 0, k ∈ K̄ (4.2g)

Pk = 0, k ∈ K̄ (4.2h)

zk ∈ {0, 1} (4.2i)

The above model, being a mixed integer program, faces practical computational chal-
lenges. Even for the IEEE 118-Bus test case it takes more than half an hour to solve within
9e-6 optimality gap on a four processor laptop. It prompts a greedy approach which only
considers one line switch at a time. The following modified DCOPF, a linear program, can
be solved fast and it will give the new cost after the line switch if we move the line in
consideration from set K̂ to K̄.

min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , n ∈ N (4.3a)

Pm
g ≤ Pg ≤ PM

g , g ∈ Gn (4.3b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (4.3c)

Pm
k ≤ Pk ≤ PM

k , k ∈ K̂ (4.3d)

Pk = Bk(θnfr
k
− θnto

k
), k ∈ K̂ (4.3e)

0 ≤ Pk ≤ 0, k ∈ K̄ (4.3f)

Pk = 0, k ∈ K̄ (4.3g)

Following the dual criterion that Fuller [17] proposed, we would like to calculate the
sensitivity of the optimal cost respective to the line switching action. In order to do that we
have to express the line status explicitly as a constraint. Therefore we propose the following
nonlinear program which contains a separate constraint representing the switching action.
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min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. (4.3a), (4.3b) and∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N, [ρn] (4.4a)

Pm
k (1− sk) ≤ Pk ≤ PM

k (1− sk), k ∈ K̂, [λ−k , λ
+
k ] (4.4b)

Pm
k sk ≤ Pk ≤ PM

k sk, k ∈ K̄, [λ−k , λ
+
k ] (4.4c)

Pk = Bk(1− sk)(θnfr
k
− θnto

k
), k ∈ K̂, [ψk] (4.4d)

Pk = Bksk(θnfr
k
− θnto

k
), k ∈ K̄, [ψk] (4.4e)

sk = 0, k ∈ K, [γk] (4.4f)

The above model (4.4) is mathematically equivalent to model (4.3), but more complex
by having a binary variable sk which denotes the switching decision. For a line in service
(k ∈ K̂), s = 1 means it switches the line off and s = 0 means the line stays on, and
vice versa. The dual variable γ measures the sensitivity of the objective function with an
infinitesimal increase on the right hand side of Eq.(4.4f). Therefore it can be used as an
indicator of possible cost reduction resulting from a line switch. A priority list can be
produced by ranking the lines by ordering their respective γ from smallest to the largest
(more negative γ indicates larger possible decrease in objective function, i.e. higher cost
reduction). From KKT conditions we can derive the following fomula:

γk = PM
k λ+k + Pm

k λ
−
k +Bk(θnfr

k
− θnto

k
)ψk, k ∈ K̄ (4.5a)

γk = Pk(ρnfr
k
− ρnto

k
)ψk, k ∈ K̂ (4.5b)

We can see that all the variables on the right hand side are either parameters of the prob-
lem or the optimal primal/dual variables from model (4.3). Calculating γ doesn’t necessarily
require solving model (4.4), a nonlinear program. It can be obtained by just solving a linear
program: model (4.3). This drastically reduces the computation time and makes producing
a priority list operationally feasible.

Having computed the sensitivity factors in Eqs.(4.5a)&(4.5b), we can rank the lines
according to them. In this algorithm we run DCOPF with a single switched line according
to the priority list. We first evaluate the top k lines in the priority list. If a cost reduction
is found, we implement the line switch with the most cost reduction and stop. Otherwise
we move on to next k lines until the list is exhausted. The value of k is chosen based on the
number of cores available. The algorithm is shown in Fig.4.3.
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Figure 4.3: Line Selection with Priority List

Divided MIP

The Divided MIP divides the network into mutually exclusive and collectively exhaustive
zones, each of which contains a group of candidate switching lines. Then a OTS with limited
line switches is solved for each group in parallel. Assume the group of lines in consideration
now is represented by K∗. Here we only consider switching out lines that are currently in
service. Therefore K∗ ⊂ K̂. Eqs.(4.6d), (4.6e) and (4.6f) ensure the power flow on a line
respects the thermal limits and Kirchhoff’s Law holds for the lines in consideration. For
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the closed lines that are out of consideration, the normal thermal limit and Kirchhoff’s Law
constraints are enforced without binary variables, as in Eqs.(4.6g) and (4.6h).

min
θn,Pg ,Pk

∑
n∈N

∑
g∈Gn

cgPg

s.t. θmn ≤ θ ≤ θMn , k ∈ K (4.6a)

Pm
g ≤ Pg ≤ PM

g , n ∈ N (4.6b)∑
k∈Kto

n

Pk −
∑
k∈Kfr

n

Pk +
∑
g∈Gn

Pg = P dem
n , n ∈ N (4.6c)

Pm
k zk ≤ Pk ≤ PM

k zk, k ∈ K∗ (4.6d)

− Pk +Bk(θnfr
k
− θnto

k
) + (1− zk)M ≥ 0, k ∈ K∗ (4.6e)

− Pk +Bk(θnfr
k
− θnto

k
)− (1− zk)M ≤ 0, k ∈ K∗ (4.6f)

Pm
k ≤ Pk ≤ PM

k , k ∈ K̂ \K∗ (4.6g)

− Pk +Bk(θnfr
k
− θnto

k
) = 0, k ∈ K̂ \K∗ (4.6h)

0 ≤ Pk ≤ 0, k ∈ K̄ (4.6i)

Pk = 0, k ∈ K̄ (4.6j)

zk ∈ {0, 1}, k ∈ K∗ (4.6k)

Note that here we don’t solve OTS for a smaller network. We solve a full power flow
network model, just with a smaller set of binary variables. The program above will either
produce a set of switching actions that will result in a cost improvement, or find no line
switching action will further reduce the cost. The group of switching actions with the most
cost reductions will then be implemented. The procedure will terminate if no cost saving
switching action is found. Fig.4.4 shows the algorithm framework.
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Figure 4.4: Divided MIP

4.3 Case Study Networks

IEEE 118-Bus Network

The first network we use is a the IEEE 118-Bus system with 118 buses, 19 generators, and
186 lines. We modify the thermal ratings of several lines so that they are fully loaded, or
congested, thus creating conditions where the transmission switching can be used to mitigate
the overloading conditions. The total demand is 4519 MW.

Figure 4.5: IEEE 118-Bus Network
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FERC 13867-Bus Network

The second test case is FERC 13867-bus Network derived from the data set we obtained
from PJM RTO, with 1,011 generating units, 18,824 lines and 13,867 buses. It is a much
larger power network which is representative of realistic power grids that RTOs manage. We
also obtained the loading condition of a typical summer day and a typical winter day. The
average hourly load is 1,005,892MW in summer and 968,829MW in winter.

Figure 4.6: PJM Backbone Transmission System

4.4 Numerical Results

IEEE 118-Bus Network

We apply the three greedy algorithms discussed in Chapter 4.2 to the IEEE 118-Bus net-
work. The percentage cost reduction and line switching action by each iteration is shown
in Table.4.1. 12 Iterations are run for Line Enumeration and Line Selection with Priority
List until there is little improvement by each iteration. For Divided MIP heuristic we par-
tition 186 lines into 10 groups: nine with 18 lines and one with 24 lines. After 2 iterations
the algorithm stops because we can no longer find the cost reduction further. L162, L153,
L136 and L132 are switched by both Line Enumeration and Divided MIP. Line Selection
with Priority List and Divided MIP switch L153 and L132. L132 is switched by both Line
Enumeration and Line Selection with Priority List. We note that all algorithms switch two
lines (L153 AND L132), which means they are critical lines for switching.

The computation time of the algorithms is listed in Table.4.2, with comparison to the
best known optimal from directly solving the OTS problem. The algorithms are implemented
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Table 4.1: % Cost Reduction of each Fast Heuristic (IEEE Case)

Iteration Line Enumeration Line Selection w/ Priority List Divided MIP

Line % Cost Line % Cost Line % Cost
Switched Reduction Switched Reduction Switched Reduction

1 L153 6.30 L132 6.01 L129, 13.42
L132,
L126

2 L132 21.86 L163 12.49 L148, 24.59
L153,
L161,
L162

3 L136 20.65 L133 16.52
4 L162 21.72 L153 18.06
5 L37 21.95 L151 21.65
6 L122 22.09 L78 22.07
7 L14 22.25 L85 22.27
8 L31 22.30 L82 22.29
9 L19 22.31 L96 22.33
10 L54 22.32 L45 22.33
11 L60 22.32 L48 22.33
12 L68 22.32 L59 22.33

on a laptop with 3 cores in parallel. In this toy test case, the computation time for the OTS
with limited line switching choices is comparable to the time of solving a DCOPF. Therefore
Line Enumeration and Line Selection with Priority List take much longer than Divided MIP.
They have more models to run and need more iterations as well. From Fig.4.7, we can see
that in terms of cost improvement, Divided MIP also outperforms the other two, only 0.5%
less cost reduction than the best known optimal, with a computation time much less than
directly solving the OTS. By the end of 12th iteration, Line Enumeration and Line Selection
with Priority List achieve almost the same cost reduction, around 2.5% less than the best
known optimal. For IEEE 118-Bus network, Divided MIP performs the best among three,
both in terms of computation time and cost performance.

The convergence of the cost saving from Line Selection and Priority List show that to
gain most of economic benefits from transmission switching, only a small number of lines
need to be switched. This proves to be true in the original OTS model as well. However
OTS model doesn’t benefit from this knowledge since the operator still needs to run a full
network MIP model. With the greedy algorithm, the operator can choose to stop after a few
iterations after he sees the convergence of the cost savings.
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Table 4.2: Final % Cost Reduction & Computation Time of each Heuristic

Alogorithm % Cost Reduction Computation Time (in seconds)
Line Enumeration 22.32 1314

Line Selection with Priority List 21.86 300
Divided MIP 22.33 17

Best Known Optimal 24.88 1680

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

%
Co

st
Re

du
ct

io
n

Iteration

Line Enumeration Line Selection with Priority List Divided MIP Best Known Optimal

Figure 4.7: % Cost Reduction of each Heuristic compared to the Best Known Optimal (IEEE
Case)

FERC 13867-Bus Network

For the FERC model, we implement the algorithms on the high performance computing
cluster in LLNL. The demand data is from a typical summer day. Due to the scale of the
model, Divided MIP, the best performer for the IEEE case, fails to be applicable for the
FERC case. The MIP program, even with only a very small number of switching choices,
cannot be solved within a reasonable timeframe. Therefore we only present the results of Line
Enumeration and Line Selection with Priority List in Table.4.3, including the cost reduction
and switching sequence.
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Table 4.3: % Cost Reduction by each Heuristic(FERC Case)

Iteration Line Enumeration Line Selection with Priority List

Line % Cost Line % Cost
Switched Reduction Switched Reduction

1 L17230 0.193 L2813 0.098
2 L2913 0.502 L1831 0.200
3 L8731 0.792 L11231 0.226
4 L12031 0.991 L103 0.441
5 L7031 1.404 L7482 0.605
6 L721 1.420 L2310 0.893
7 L293 1.556 L14823 1.030
8 L7981 1.652 L5567 1.059
9 L10002 1.762 L787 1.255
10 L8310 1.860 L8313 1.268

Due to running time constraints, we only performed 10 iterations. With both algorithms
implemented on 500 cores, Line Enumeration takes 18 hours to run while Line Selection with
Priority List takes only 5.5 hours. Both algorithm leads to a cost reduction less than 2%
after 10 iterations. However the cost saving has the potential to increase further when we
switch more lines. Compared to the large number of lines in the network, 10 lines switched
are far too small for the cost saving to converge. No line is switched by both algorithms.
Line Enumeration is better than Line Selection with Priority List in the cost improvement.
However the running time of Line Selection with Priority List is much less than the running
time of Line Selection since Line Selection with Priority List only examines a small part of
the lines at each iteration.
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Figure 4.8: % Cost Reduction by each Heuristic (FERC Case)
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4.5 Results Discussion

Demand Profile

In the last section we test the greedy algorithms on the base case of power networks. Obvi-
ously different patterns of loading conditions will produce different optimal network topology.
The magnitude of cost benefits that the transmission switching is going to bring will also
differ for different loading conditions. The loading condition used in the last section already
causes congestion in several lines. If the demands are increased by 10% more, the problem
becomes infeasible. Therefore we refer to the original load profile as High Demand. We
decreased the demand by 10% to create the Medium Demand case and 20% to create the
Low Demand case to simulate different loading scenarios. In the Low Demand profile there
is nearly no congestion in the network.

The % cost reduction for the High demand, Median Demand and Low Demand are shown
in Fig.4.9, 4.10 and 4.11. Several observations can be made. Firstly, Divided MIP heuris-
tic constantly performs better than others, with more cost reduction and fewer iterations.
Secondly due to the low congestion in Low Demand case, there is little potential for the
transmission switching and the problem becomes merit-order dispatch. In contrast there are
considerable cost reductions in the High Demand and Median Demand cases. Thirdly in
terms of cost improvement the performances of Line Enumeration and Line Selection with
Priority List are very close in all three loading conditions.
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Figure 4.9: % Cost Reduction by each Heuristic (High Load)
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Figure 4.10: % Cost Reduction by each Heuristic (Median Load)
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Figure 4.11: % Cost Reduction by each Heuristic (Low Load)

Table 4.4: Computation Time of each Heuristic in High/Median/Low Demand(in seconds)

Alogorithm High Demand Medium Demand Low Demand
Line Enumeration 1314 1278 1264

Line Selection with Priority List 300 260 592
Divided MIP 17 24 14

Best Known Optimal 1680 1530 1280

The computation time of different loading conditions are summarized in the Table.4.4.
The elapsed times for Line Enumeration under three loading conditions are relatively stable.
This is expected since in Line Enumeration we examine every single possible line switch at
every iteration. Line Selection with Priority List under Low Demand takes much longer than
the other two because it has to search more lines for the cost improvement.
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Table 4.5: R2 of Regression Analysis between Actual Cost Reduction and γ

Alogorithm R2

High Demand 0.093
Medium Demand 0.082

Low Demand 0.010

Accuracy of γ as Predictor of Cost Reduction

In Line Selection with Priority List, the priority list is based on γ which is a dual variable
indicating possible cost reduction. Ideally if γ is a good predictor then the priority list would
be beneficial. More indicative is γ, less lines we need to search in each iteration. So we would
like to find about how ”accurate” γ is in terms of cost reduction prediction.

The most basic and intuitive measure for the above task is the regression analysis. We
iterate over all possible line switching actions and compute the cost reduction corresponding
to each line switch. Then we use ordinary least squares to understand whether actual cost
reduction and γ are correlated. The R2 measures the percentage of cost reduction explained
by γ. R2 = 100% means the two variables are perfectly correlated and therefore one is the
perfect indicator of the other. R2 = 0% indicates a list of lines in random order is as good
as using γ. Table.4.5 shows the results from the regression analysis.

We can see that the performance of γ is very poor in terms of regression analysis. This
is understandable because the dual variable just computes the cost reduction when there is
an infinitesimal change towards opening the line. OPF is highly nonlinear and non-convex
so when the binary variable actually changes from 1 to 0, the cost reduction can be very
different than the sensitivity measure. Luckily we do not require γ to predict the magnitude
of cost savings nor to produce a list with the perfect order of cost savings from line switches.
With parallel computing techniques we are going to examine a number of lines as a batch
and choose the best line switch within the batch. As long as the line with largest cost savings
is within the first k lines in the priority list, it would be chosen as the next switching actions.
Obviously larger number of k will give us a higher chance to choose the best possible line.
For different k values, we calculate the average cost improvement difference between the best
possible line switch in all lines and the best line switch in the first k lines over 5 iterations,
for the IEEE 118-Bus Network. The results are shown in Fig.4.12, 4.13, and 4.14. Note that
sometimes we cannot find the cost reduction among the first k lines. In the actual algorithm
we move to the next k lines. But for this graphs, we treat the line switch with least cost
increase as the one with largest cost reduction when there is no cost improving switching
action in first k lines.
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Figure 4.12: % Cost Reduction Difference between Overall Best Line and Best Line among
First k Lines in the Priority List (High Demand)
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Figure 4.13: % Cost Reduction Difference between Overall Best Line and Best Line among
First k Lines in the Priority List (Medium Demand)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

k=10 k=20 k=30

%
Co

st
Re

du
ct
io
n
Di
ffe

re
nc
e

Figure 4.14: % Cost Reduction Difference between Overall Best Line and Best Line among
First k Lines in the Priority List (Low Demand)
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We can see that increasing number of parallel cores (k) can effectively reduce the per-
centage cost reduction differences, which means high k will lead to a more robust algorithm.
With k = 30, the best line switching action among first 30 lines in the priority list only pro-
duce 1% less cost reduction on average than the best switching action among all lines, for all
loading profiles. Even though γ is not the perfect indicator of cost saving, it provides good
enough guidance for the line selection. It is also worth noticing that in the Low Demand
case, the performance of γ is poor since the percentage cost difference shown in Fig.4.14 is
relatively large compared to the actual cost reduction in Fig.4.11. It seems that when the
network is more congested, the performance of γ is better.

Line Grouping of Divided MIP

For Divided MIP algorithm, the lines are assigned to their groups based on line numbers
in IEEE 118-Bus model. Lines close in number are more likely to connect to the same bus
or close to each other. Therefore, when we solve a Divided MIP model, the line switching
actions considered are the lines in the same region in the network. In order to remove this
effect, we randomly divided lines into 10 groups and investigate if different grouping could
affect the result of this algorithm. The results are shown in Fig.4.15 and 4.16 for High
Demand and Medium Demand. We don’t include the results for Low Demand case here
since the cost savings are not significant by Divided MIP in Low Demand.

We can see that there is no significant impact of different line groups. Therefore, line
grouping mechanism is not an important consideration when we use Divided MIP algorithm.
However we do notice that different line groups will result in different number of iterations
used. This may be worth investigating when the network size becomes much larger and
each iteration takes much longer. Except for Line 132 and L153, there are no other common
switched lines from different groups. This suggests that there are multiple line switching
combinations that can achieve satisfactory cost reduction.
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Figure 4.15: % Cost Reduction by Divided MIP of Different Line Groupings (High Demand)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3

%
Co

st
Re

du
ct

io
n

Iteration

Original Grouping Random Grouping 1 Random Grouping 2 Random Grouping 3

Figure 4.16: % Cost Reduction by Divided MIP of Different Line Groupings (Medium De-
mand)

Warm Starts for FERC Network

If the optimal solution of a linear program has been found and minor changes to the model
need to be made, we can use a warm start in which the previous solution is initially used
to restart the program. This is extremely useful for transmission switching algorithms since
each iteration the network only differs by one line switch. For FERC network, the majority
of the line flows and generator outputs will remain the same. Essentially only the area with
the line switch needs to be re-evaluated. This property is especially useful since the model
size of FERC network is so large that a DCOPF takes more than 5 minutes to solve on with
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CPLEX 11. With the warm start technique, the solution time is reduced to seconds. Warm
start may prove it even more beneficial for the Divided MIP algorithm, which is very hard
to solve directly.
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Chapter 5

Application of Machine Learning to
Transmission Switching Line Selection

5.1 Introduction

The power system industry has been dealing with big data in many areas and constantly
striving to develop new big data analytic tools to run the grid reliably and efficiently. Su-
pervisory control and data acquisition (SCADA) has been implemented in power system to
oversee, control and optimize the generation, transmission and distribution systems. SCADA
improves the efficiency as well as enhance the reliability and stability of the integrated system
operation. System operators depend on computer aided tools such as Energy management
systems (EMS) to control and run the grid efficiently.

Machine Learning is an important branch of big data analytics which has been the center
of research in the recent years. It is known for its superior performance for both classification
and regression problems with large complex datasets, and the insights it can provide to the
big data. Utilities have realized the potential that the machine learning will bring to the
delivery of more reliable energy to their costumers. A survey [50] by SAS has revealed that
utilities already use or plan to use machine learning in their key management and operation
areas, as shown in Fig.5.1 and 5.2. The survey also revealed that one of the primary ways
the utilities use machine learning is to better fit demand response events. The utilities used
to determine the customers’ baselines and find out how they actually performed by a manual
process. Now they use machine learning to come up with a better baseline and operate in a
real-time fashion. There is also great potential for risk management where neural network
is used to predict the probability of outages of certain network components. The utilities
have also used machine learning for the contingency response: identifying what the outage
is, where it is and how fast they need to respond to it.

In the recent years there has also been rich literature of machine learning applications
in the power system. Wehenkel [57] developed a framework that used machine learning
to assess power system security. Firstly they examined diverse simulation scenarios which
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Figure 5.1: Use of Machine Learning for Key Utility Areas

Figure 5.2: Top Five Machine Learning Benefits identified by Utilities

produced a large database. Then they extracted the main features of the system by applying
machine learning techniques to the scenarios in the database. Based on this work, Ernst et
al. [11] further explored how a computational reinforcement learning approach can be used
for power system control. They discussed two reinforcement learning methods: the online
mode and the offline model. In the online mode the machine learning agents were used in
the realistic power system. In the offline mode the machine learning agents were used in a
simulation model of the realistic power system. The authors in [10] reviewed the applications
of unsupervised machine learning to the dynamic security assessment, including optimal load
shedding and optimal power flow with security constraints. Canyasse et al. [7] designed and
compared various supervised learning algorithms to compute the cost of ACOPF. They tested
the algorithms on two IEEE networks and showed less than 1% error for both cost regression
and feasibility classification. By reducing the dimensionality of the phasor measurement



CHAPTER 5. APPLICATION OF MACHINE LEARNING TO TRANSMISSION
SWITCHING LINE SELECTION 41

unit data, Xie et al. [59] proposed an early event detection algorithm. They implemented
a dimensionality reduction algorithm based on PCA with an adaptive training procedure.
Chen et al. [9] tackled the scenario generation problem by a data driven approach with high
renewable penetration using two interconnected neural networks.

Due to the nature of the power network as a large and complex system and the fact that
most properties of the network remain unchanged after a line switch, machine learning seems
a natural choice for the line selection. In the next section we are going to discuss the general
machine learning framework and the machine learning techniques used for this purpose.

5.2 Machine Learning Techniques

The general framework for machine learning consists of the following three components:

• Knowledge Base Generation

• Machine Learning Model Creation

• Test and Implementation

Knowledge Base Generation For the training of a machine-learning method, a Knowl-
edge Base is necessary. A Knowledge Base contains a substantial amount of network states
or instances. Each instance is described by a vector of variables called features or attributes,
which are either directly given or measured (network configuration, generation limits etc)
or indirectly calculated quantities (outputs from DCOPF, cost improvement by each line
switch etc). A Knowledge Base is generated offline either with historical data or by random
sampling. For IEEE toy test cases, the Knowledge Base is generated from random variables
drawn from independent uniform distributions. For real networks, sufficient historical data
of demand would be the best. If they are not available, the next best solution is to generate
samples based on one instance of historical demand.

The Knowledge Base is then divided into a learning set for training the machine learn-
ing algorithms and a test set used for evaluating the performance of the developed algorithm.

Machine Learning Model Creation The model creation is constructed and trained
using the learning set. It is used to extract and integrate hidden information and present
it in a way useful for decision making. Normally the model creation will contain five steps:
model type selection, data preprocessing, feature selection, model parameters fine tuning
and the actual learning procedure.

The efficiency and effectiveness of the method depend on the selection of proper machine
learning model. Feature selection techniques - algorithms that select a subset of relevant
variables, are applied in order to cut down the dimensionality of the Knowledge Base. Feature
selection is essential for shorter training times and it also makes the model easier to interpret
by users. The noise of the training patterns is reduced by means of data preprocessing such
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as normalization and scaling of the data. The parameters of the model itself, such as the
value of k or k nearest neighbor, are also tuned, in order to provide an optimized model.

Machine Learning model creation is the heart of the framework. A large number of ma-
chine learning methods may be used in a toolbox fashion, in accordance with the nature of
data they have access to and type of prediction they need to make. Machine learning meth-
ods are organized into three main classifications: supervised learning methods, unsupervised
learning methods, and reinforcement learning methods. In our work we use supervised learn-
ing methods since every line switch is tagged with a label: cost reduction. And we want to
predict the switching action with the most cost reduction.

Test and Implementation During the test and implementation stage, the machine
learning model takes the current network status as inputs, in order to predict the best line
switch for the cost improvement.

Based on past literature, we select three common machine learning techniques that prove
useful for the nonlinear and complex physical nature of the power systems: k nearest neigh-
bor, artificial neural network and decision tree.

k Nearest Neighbor

The k nearest neighbor algorithm is the most basic of the instance reasoning method. This
method view every instance as a point in the n-dimensional space Rn, where n is the dimen-
sion of the feature vector. The standard Euclidean distance is used to calculate the nearest
neighbor of an instance. More precisely, let the feature vector of an instance x be

{a1(x), a2(x), ..., an(x)}

Where ar(x) represents the value of the rth feature of instance x

Then the distance between instances xi and xj is defined as d(xi, xj):

d(xi, xj) =

√√√√ n∑
r=1

(ar(xi)− ar(xj))2) (5.1)

Fig.5.3 shows how k nearest neighbor algorithms work where every instance is described
by only two features. The label or the prediction one tries to make with the algorithm is a
boolean variable. With a 5 nearest neighbor algorithm, the query instance xq shown in the
figure should be predicted with a negative value since the majority of its 5 nearest neighbor
is labeled with a negative value.

The steps of k-nearest neighbor algorithm with a continuous function label are shown
below.

Step 1: Add every training instance (x, f(x)) the Knowledge Base.



CHAPTER 5. APPLICATION OF MACHINE LEARNING TO TRANSMISSION
SWITCHING LINE SELECTION 43

Figure 5.3: K-Nearest Neighbor

Step 2: For a query instance xq, let x1, ..., xk be the k instances in the Knowledge Base

that are nearest to xq in Euclidean distance. Return f̂(xq) =
∑k

i=1 f(xi)

k
.

The k nearest neighbor algorithm is a very effective inductive inference algorithm espe-
cially when the Knowledge Base contains adequately large amount of training data. It also
can handle noisy training data ver well. However feature selection is extremely important for
this algorithm since the algorithm solely relies on the Euclidean distance which is based on
all features. Therefore all attributes are considered equal. To avoid the distance dominated
by many irrelevant features, the features have to be chosen very carefully.

Decision Tree

The decision tree is a tree built from the root node at the top covering all the features in the
Knowledge Base to ensure it is representative of the system. Each node examines a single
feature, each branch represents a decision rule and each leaf contains an outcome. At each
iteration, a leaf is examined and the algorithm determines whether it will be a terminal leaf
node or it will be further splitted. An example decision tree predicting passenger’s survival
rate based on sex, age and number of relatives aboard on the Titanic is shown in Fig.5.4.

To further grow the tree based on a node, a proper feature is chosen first. Then a
dichotomy test based on the feature’s value is identified. The test T0 is defined as:

T0 : X ≥ t∗ (5.2)

To determine what is the next feature to split and what is the optimal test, the additional
information gained from the split is maximized. The additional information gain is calculated
from the entropy (represented by ”H”) of each subset resulting from the split. The entropy
is defined as:
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Figure 5.4: The Decision Tree: Probability of Survival on Titanic

H(X) = −
n∑
i=1

pi log2 pi (5.3)

Where X is the split
n is the number of different classes in the child node
pi is the percentage of class i in the child node

The information gain is the decrease in entropy after a split of a node. The algorithm
will find the feature and its split with the maximum information gain. The construction of
a decision tree takes the following five steps:

Step 1: Calculate the entropy of existing tree.
Step 2: Consider splitting current node based on different attributes. Normally two

branches will be added to the tree and entropy for each branch is calculated. The sum of
entropies from two branches are the total entropy after the split. The difference in entropies
before and after the split is the information gain(”IG”) , defined as:

IG(T,X) = H(T )−H(T,X) (5.4)

Where IG(T,X) is the information gain of decision tree T with a child node X
H(T ) is the entropy of decision tree T before the spitting
H(T,X) is the entropy of the decision tree T with a child node X

Step 3: Choose the feature and the test to maximize the information gain as the new
branches and the child nodes.

Step 4a: If there is a branch with entropy 0, then it is a terminal node.
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Step 4b: If the entropy is more than 0 for some branches, Step 1-3 is run recursively on
those branches, until all branches’ entropy are 0.

Artificial Neural Network

Inspired by biological neural systems composed of complicated layers of interconnect neu-
rons, neural network learning is a robust approach to approximate real valued functions.
The backpropagation algorithm has been proven to be a robust method and shown surpris-
ingly successful performance in many practical problems such as recognition of handwritten
characters [32], speech recognition [56], and facial recognition [15].

Capable of approximating different types of functions, multilayer networks with back-
propagation algorithm is extremely useful when a nonlinear decision surface is considered.
The network consists of one input layer whose number of neurons equal to the number of
features, one output layer whose number of neurons equal to the number of outputs, and
some hidden layers. Fig.5.5 shows a simple graphical illustration with 2 hidden layers. The
neural network with backpropagation algorithm will learn the weights for neurons with an
attempt to minimize the squared error between the network output values and the target
values by gradient descent.

E(−→w ) =
1

2

∑
d∈D,k∈outputs

(tkd − okd)2

Where D is the training dataset
tkd and okd are the target and real output values for kth
output unit of instance d

Figure 5.5: A Multi-layer Artificial Neural Network with 2 Hidden Layers

The steps for neural network algorithm with back propagation are as follows:
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Each training instance consists of two parts: (−→x ,−→y ), where (−→x is the vector of features
to input in the network, and −→y is the function value we want to approximate, i.e. the target
output values.

Other parameters are defined as:

η: the learning rate.
nin: the number of network features (inputs).
nhidden: the number of neurons in the hidden layer.
nout: the number of output neurons.
xji: the input from unit i to j.
wji: the weight from unit i to j.

Step 1: Create a network with nin neurons in the input layer, nhidden neurons in the
hidden layer, and nout neurons in the output layer.

Step 2: Randomly sets the initial value of weights.

Step 3: Until time is exhausted or target accuracy is acheved, do
For each (−→x ,−→t ) in Knowledge Base, do

Forward Propagation:
1). For instance −→x as input, calculate the output ou of every neuron u in the
network
For each neuron we use a sigmoid activation function to calculate the output
o from the input x:

o =
1

1 + e−
−→w−→x

Backward Propagation:
2). For each neuron k in the output layer, calculate its error term δk

δk = ok(1− ok)(yk − ok)

3). For each neuron h in the input layer, calculate its error term δh

δh = ok(1− ok)
∑

k∈outputs

wkhδk

4). Update each network wji

δji = δji + ∆δji

where
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∆δji = ηδjxji

5.3 Algorithm Framework

We used three established machine learning algorithm in Weka machine learning software
which are 10 nearest neighbor, artificial neural network and decision tree, as introduced
in the last section. These are the most used regression methods that can take in the the
parameters and loading conditions of the power network and produce a list of high priority
line switches. The inputs are network status including the line configuration and DCOPF
solutions and the output is a standardized score indicating the possible cost reduction. The
process of this algorithm is very similar to the line selection with priority listing and shown
in Fig.5.6. The only difference is that here we use machine learning to produce the list of
lines which are worth evaluating more than others.
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Figure 5.6: Line Selection with Machine Learning

5.4 Numerical Results

IEEE 118-Bus Network

Different network states were randomly generated representing various loading conditions
in order to train and test the algorithm. In each network state, the loads were scaled
by independent random variables drawn from uniform distributions. 30000 test cases are
created for IEEE 118-Bus network are created for training, tuning and validation. First we
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Table 5.1: % Cost Reduction by each Machine Learning Method (IEEE Case)

Iteration 10 Nearest Neighbor Decision Tree Neural Network
1 5.46 3.80 5.80
2 10.75 7.90 14.50
3 15.62 9.45 16.79
4 17.33 12.53 18.35
5 19.50 14.78 20.50
6 20.88 15.32 21.87
7 21.56 16.77 22.53
8 21.99 16.96 23.62
9 22.39 17.22 23.69
10 22.50 17.80 23.79

run the line enumeration algorithm on all the test cases so we have the complete information
on the performances of every line switch which we can label the lines with. Then another
10000 test cases of IEEE network are used to assess the performance of the machine learning
algorithm. The average percentage cost reduction by each iteration of Line Selection with
Machine Learning is shown in Table.5.1, for three machine learning techniques. For each
algorithm we run 10 iterations.

The average cost reduction of 10000 test cases by Line Selection with Machine Learning
is shown in Figure.5.7. We can see that neural network outperforms the 10 nearest neighbor,
which outperforms the decision tree. After 10 iterations, neural network and 10 nearest
neighbor based line selection methods produce approximately 25% more cost reduction than
decision tree method.
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Figure 5.7: Average % Cost Reduction of each Machine Learning Method (IEEE Case)

In order to compare with the algorithms discussed in the last chapter, we apply the
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three machine learning based line selection algorithm to the base case of IEEE 118-Bus
Network. This base case isn’t in the Knowledge Base so it is considered as out of sample
testing. The results are shown in Fig.5.8 and average percentage cost reduction after 5
and 10 iterations of all algorithms are illustrated in Fig.5.9. The computation time of each
algorithm is shown in Table.5.2. Divided MIP is still the best algorithm in terms of cost
improvement and computational performance. Line Enumeration and Line Selection with
Priority List converge fast as the cost reduction after 5 iterations is very close to the cost
reduction after 10 iterations. Machine learning based line selection generally converge slower
than them. However after 10 iterations, neural network based line selection is able to achieve
a higher cost reduction (1.5% more). In terms of computation time, machine learning based
line selection methods are generally faster than the line selection based on dual criterion.
With machine learning based line selection, no model is needed to be solved to develop the
dual criterion so it takes less time to develop a priority list. But most of the solution time
is dedicated to solve DCOPFs therefore the reduced solution time by the machine learning
based line selection means that machine learning based methods are able to find a cost
reduction switching action faster. The performance of the priority list produced by machine
learning based methods will be discussed further in the Chapter 5.5.
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Table 5.2: Computation Time of each Algorithm

Alogorithm Computation Time (in seconds)
Line Enumeration 1314

Line Selection with Priority List 300
Divided MIP 17

10 Nearest Neighbor 263
Neural Network 278
Decision Tree 235

Best Known Optimal 1680

FERC 13867-Bus Network

Since we only have limited demand data for the FERC network, which is not enough to build
a Knowledge Base, random sampling based on a hourly demand is used to generate instances.
Similarly to IEEE 118-Bus network, we generate 4000 instances of network states drawn from
independent uniform distributions, 3000 for training and 1000 for evaluation. The average
percentage cost reductions by each iteration of line selection with machine learning for FERC
network are shown in Table.5.3, for three machine learning techniques. 10 iterations are run
for each algorithm. The best performer is still the neural network and it almost triples the
cost reduction by decision tree after 10 iterations. The cost reduction hasn’t converged by
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Table 5.3: % Cost Reduction by each Machine Learning Method (FERC Case)

Iteration 10 Nearest Neighbor Decision Tree Neural Network
1 0.21 0.14 0.24
2 0.60 0.35 0.55
3 0.94 0.51 1.01
4 1.31 0.76 1.43
5 1.76 0.87 1.83
6 2.01 0.93 2.21
7 2.13 0.99 2.45
8 2.29 1.09 2.65
9 2.38 1.19 2.79
10 2.50 1.21 2.95

the end of 10 iterations and conducting more line switching actions have the potential to
further reduce the cost.
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Figure 5.10: Average % Cost Reduction of each Machine Learning Method (FERC Case)

Compare to the number of lines in the network, this seems a small Knowledge Base due
to the computation power constraint. However in reality operators only monitor part of
the transmission assets and even a smaller set of lines are in consideration for switching.
With the development of High Performance Computing and analysis on the switchable lines,
through reliability analysis for example, a larger Knowledge Base and a smaller switchable
set could enhance the accuracy and efficiency of the model training.

The results from applying machine learning based line selection methods on the base
demand of FERC network are shown in Fig.5.11 and Fig.5.12. After 10 iterations, neural
network and 10 nearest neighbor based line selection achieve similar cost reduction with
Line Enumeration, and they outperform dual criteria based line selection. Decision tree
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method is the worst performer, which is the same with the IEEE network. Due to the small
number of iterations performed compared to the large size of switchable lines, there is no
convergence to a best known optimal. Almost every method used double the cost reduction
from 5 iterations to 10 iterations. If more iterations are performed, it is highly likely that
there will continue to be significant increase in the cost reduction.
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Figure 5.11: Average % Cost Reduction of Algorithms in FERC Base Case
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Figure 5.12: Average % Cost Reduction after 5 and 10 Iterations

5.5 Results Discussion

In this section, we would like to first summarize the results of machine learning based algo-
rithms for IEEE network and FERC network and then discuss some important issues related
to the machine learning algorithms and the results. After 10 switches the cost reduction gets
very close to best know optimal for the 118-bus IEEE network, but not so for FERC network,
understandably due to the size of the FERC model. 10 nearest neighbor and artificial neural
network based line selection’s performances are at least as good as Line Enumeration and
Line Selection with Priority List. The best performer is neural network with little surprise
for its consistent impressive performance with continuous-valued inputs and robustness to
noisy data. The idea behind K nearest neighbor is simple but here it well captures the
property of the power network that the switching action of a similar network state can be
highly relevant and suggestive. The decision tree approach performs worse than others. The
possible explanation is that it is most suitable for linear separable classes which goes against
the nature of power systems. And data for transmission switching problem contains a lot of
noise and outlier which decision tree approach is sensitive to.

A significant advantage of the machine learning based line selection algorithm, besides
its superior performance in cost reduction for FERC network, is that once it completes the
training, the runtime to select a line switch with cost reduction is negligible. In the previous
algorithms, solving DCOPF and line selection are done online, which means for a practical
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Table 5.4: R2 of Regression Analysis between Actual Cost Reduction and γ

Alogorithm R2

Dual Criterion 0.093
10 Nearest Neighbor 0.219

Decision Tree 0.050
Neural Network 0.235

power network such as FERC network, it can take hours on a commercial laptop. It is
especially critical for line enumeration algorithm, where a DCOPF optimization problem
has to be solved at each step and for every branch. However if we use the machine learning
approach, at each step we only need to examine a few switches that the algorithm suggests,
which takes a few seconds, therefore saving computation power and time.

The Effectiveness of the Priority List

So far we have developed four methods to create a priority list which ranks the line according
to the possible cost reductions. They are: dual criterion discussed in Chapter 4 and three
machine learning based methods in this chapter. We would like to analyze and compare the
effectiveness of the priority lists produced by different methods. First we show the result of
regression analysis which gives the relationship between the actual cost saving and scores
output by the machine learning methods or the γ produced by dual criterion, as in Table.5.4.
The results are based on IEEE 118-Bus network. We can see that the results are still not very
good but R2 for 10 nearest neighbor and neural network has improved a lot compared to the
dual criterion. Decision tree method may experience severe over fit or excess generalization
error. The potential problem comes from the sequential nature of the decision tree.
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To further analyze the effectiveness of the priority list, we consider a control group where
the priority lists are randomly generated. The algorithm will search the first k lines and
implement the line switching action with the most cost reduction. If the algorithm cannot
find the cost reduction in first k lines it will search the next k lines until all the lines
are exhausted. We compare the results from the four line selection algorithms and three
randomized list, as shown in Fig.5.13, 5.14 and 5.15. Note that the random lists used for
each case are different even though they may have the same name. (Random List 1 in
Fig.5.13 is not the same list as the Random List 2 in Fig.5.14).

From these three figures we can see in general the four priority list based methods perform
better than the random lists, especially for small k. When k = 10, the % cost reduction
achieved by priority lists almost doubled the cost reduction of Random List 1 and Random
List 3. Random List 2 is an exception. Random lists seem to be ”hit or miss” while priority
lists provide more reliable and consistent cost savings.

We notice in Fig.5.13 when k = 10, Random List 2 shows superior performance than the
other two and even some random lists for k = 20 or 30. We take a closer look into the details
of Random List 2 and find out that the first 10 lines on the list contains L153, which is a
critical line switched in all three greedy algorithms, as discussed in Chapter 4. Therefore at
the first iteration, L153 is switched, which leads to good performance in cost reduction in
this case.

Another observation we make is that in general as the value of k increases, the perfor-
mances of all algorithms will become better. This effect is more significant for the random
lists both in terms of cost reduction and rate of convergence, which means that the priority
lists are more robust against small k. When the number of parallel cores are limited (which
is often so in reality), priority lists prove to be more beneficial than the random lists.
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(k = 10)

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

%
Co

st
Re

du
ct

io
n

Iteration

Line Selection with Priority List 10 Nearest Neighbor Neural Network
Decision Tree Random List 1 Random List 2

Random List 3

Figure 5.14: Average % Cost Reduction of Line Selection Algorithms And Random Lists
(k = 20)



CHAPTER 5. APPLICATION OF MACHINE LEARNING TO TRANSMISSION
SWITCHING LINE SELECTION 58

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

%
Co

st
Re

du
ct

io
n

Iteration

Line Selection with Priority List 10 Nearest Neighbor Neural Network
Decision Tree Random List 1 Random List 2

Random List 3

Figure 5.15: Average % Cost Reduction of Line Selection Algorithms And Random Lists
(k = 30)



59

Chapter 6

Algorithm Selection

6.1 Introduction

Many research explored how to select the optimal algorithm for a given problem based on
the varying properties of the problem. Rice [39] first propose the formal formulation of the
algorithm selection problem, which has attracted a lot of attention since then. With the
development of various algorithms for a single application, researchers have come to realize
it is very difficult to find one best algorithm for the application with different properties or
data inputs. The algorithm selection problem seeks to find the relationship between the data
inputs of the model and the performances of different algorithms for the model. Once the
relationship is established, it can be used to predict the performances of different algorithms
for new data inputs. Machine learning has a rich history in algorithm selection for various
applications. It is a classification problem which should be trained by supervised learning
methods with label attached to each training example representing its optimal algorithm.
The selector is trained to pick the best algorithm with inputs being parameters of the sys-
tem’s status. Many machine learning methods have been applied to the algorithm selection
problem. A meta-learning inspired framework for analyzing the performance of heuristics
for optimization problems by neural networks was proposed by [47]. The effectiveness of an
integrated algorithm selection method was demonstrated in simulation systems with decision
trees when the underlying algorithms and their implementations were unclear to the users in
[12]. The authors of [55] showed the performance of support vector machine based automatic
tuning system for computational kernels. The authors of [27] presented algorithm selectors
for the power flow management based on network states and show performance benefit based
on IEEE networks and a real power grid.

Algorithm Selection Problem

Following the framework developed by Rice [39] and Vanschoren [54], we characterize the
Algorithm Selection Problem by the following four elements:
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• The Problem Space (P ), characterized by all the inputs x in the dataset used for the
study. In this paper each x represents a different network state.

• The Feature Space (F ), characterized by the key characteristics produced by a feature
extraction process f(x), that can be used to represent the problem. In transmission
switching features it could be the line status or the loading conditions of each network
state.

• The algorithm Space (A), containing the set of algorithms used to solve a given prob-
lem. In this paper it contains heuristics proposed to solve the transmission switching
problem.

• The performance measures space (Y ), containing ranges of measures that describes the
performance of the algorithms. In this paper the performance is measured by the cost
reduction from the line switches.

Solving the algorithm selection problem can be illustrated as follows: [1]

Definition: For a given problem instance x ∈ P , with features f(x) ∈ F , there is a se-
lection mapping S(f(x)) into the algorithm space A, such that the selected algorithm α ∈ A
maximize the performance mapping y(α ∈ A) ∈ Y .

In the algorithm selection problem, we use machine learning methods to try to find the
mapping S, which is from problem space to algorithm space, which will produce a prediction
on the performances of algorithms based on the features of x.

The framework of the algorithm selection is shown in Fig.6.1 [1].

Figure 6.1: Framework for Algorithm Selection

Algorithm Selection Methodologies

In an ideal situation, we would have adequate information of the algorithms and dataset to
choose the most suited algorithm based on some characteristics of the problem. However in
reality, the systems like power grids are too vast and complex for such analysis. Due to the
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fact that a large amount of data is involved in the various applications including power flow
problems, machine learning is a natural choice to derive selectors. Several most prevailing
machine learning methodologies are discussed here.

Case-based Reasoning

As first introduced in [40], case- based reasoning chooses algorithm for the existing problem
with knowledge of past problems. Instead of trying to learn what characteristics affect the
performance, it just used the performances of past known problems to infer performance on
new problems.

The most intuitive and commonly used case-based reasoning algorithm is nearest neighbor
classifier. The case base contains the solved problem instances, labeled with the optimal
algorithms to solve them. The nearest neighbors are determined by calculating the Euclidean
distance. The advantage of case-based reasoning is that when the case base (a.k.a Knowledge
Base) contains instances representative of all the possible problem states, it usually achieves
very good performance. Weka IBk nearest neighbour classifier with 10 nearest neighbors is
used in this thesis.

Classification

Conceptually, algorithm selection is a straightforward classification problem - each problem
instance comes with a label on the best algorithm to solve this particular instance. This
classification problem is usually solved by building a model that differentiates he algorithms
based on the input dataset of the problem. Many of the classifier machine learning methods
have been applied to the algorithm selection problem, most popular two being artificial neural
networks and decision trees. The input layer contains input neurons that send information
to the hidden layer. For neural networks, we use MultilayerPerceptron ANN implementation
from Weka machine learning software. For decision tree learning, Weka’s J48 implementation
of classification tree is used in this paper.

Regression

On the other hand, researchers have been using regressors to predict the performances of each
algorithm. For example, when runtime is considered as a factor in the performance space,
regression is usually used to predict the computation time. Instead of labeling each problem
instance with the best algorithm to use, the regression model predicts the performance of all
algorithms for a given problem and gives the users more information about how algorithms
compare to each other for different input datasets.
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6.2 Generation of Algorithm Selector

As discussed in Chapter 2, there are two mainstream transmission switching formulations:
one based on DCOPF and the other with PTDF and flow canceling transactions. Our work
propose a method to create algorithm selectors for transmission switching. In the algorithm
space, three algorithms are considered: line enumeration, line selection with priority listing
and PTDF based method. The first two algorithms are discussed in Chapter 3.. We use
the PTDF based algorithm as illustrated in [42], which is reviewed in Chapter 2. We train
classifiers which take in the parameters and solutions of DCOPF as inputs and predict which
is the best algorithm to use for a specific loading profile. To create an algorithm selector,
the following five steps are followed:

Step 1: Generate the training dataset to be used for building selectors. The problem
instance is the transmission switching problem, whose purpose is to find the best switching
line in terms of cost improvement. For IEEE 118-Bus network, the training dataset is
constructed by testing each algorithm on 30000 loading profiles generated for each network.
This dataset and the loading profiles with in it are separate from the 10000 test cases that
later are used to test the selectors. For FERC network, the procedure is similar except for
the fact that only 3000 test cases are used for training and 1000 are used for evaluation.

Step 2: Split the algorithm performance dataset into equal parts for training, tuning and
validation.

Step 3: Iterate over possible selection sets and create selectors. In this step first we train
a selector with training and tuning parts of the dataset then evaluate the selectors with the
validation dataset.

Step 4: Re-split algorithm performance dataset into equal parts for training and tuning.
Step 5: Take the most effective selector built in Step 3 and re-train it.
We still use the same three machine learning algorithms: k nearest neighbor, artificial

neural network and decision tree.

6.3 Results

IEEE 118-Bus Network

We test the three machine learning based algorithm selectors on test set which contains
10000 instances. The results are shown in Fig.6.2. It also shows the cost reduction achieved
by an ”oracle” that has perfect a priori knowledge about which algorithm will be the best.
Specifically, this is the result when the algorithm with the most cost reduction is used at each
iteration to select the line switching action. Note that it does not mean the line selection is
the optimal. We can see in general that neural network performs better than nearest neighbor
and decision tree, though the differences in final cost reductions are relatively small. Even
the worst performing decision tree is only around 10% worse than the oracle selection.



CHAPTER 6. ALGORITHM SELECTION 63

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

%
Co

st
Re

du
ct

io
n

Iteration

10 Nearest Neighbor Decision Tree Artifical Neural Network Oracle Selection

Figure 6.2: Average % Cost Reduction of Algorithm Selectors (IEEE Case)

Table 6.1: % Cost Reductions of Transmission Switching Algorithms and Selectors (10 Iter-
ations) in IEEE Base Case

Algorithm % Cost Reduction
Line Enumeration 22.31%

Line Selection with Priority Listing 22.33%
PTDF Method 21.04%

10 Nearest Neighbor Based Selector 22.12%
ANN Based Selector 23.15%
DT Based Selector 21.45%
Oracle Selections 23.51%

Fig.6.3 and Table.6.1 show the performances of individual transmission switching algo-
rithms available to the selectors and the selectors themselves. For IEEE 118-Bus base test
case, two selectors show performance improvement from the best performer of individual
transmission switching algorithm - Line Enumeration. All three selectors show improvement
from the worst performer - PTDF method. The cost reduction improvement is small, less
than 2% in the best case. This is expected since the individual algorithm’s solution gets very
close to the best known optimal: 24.88%. Even with optimal algorithm selection at every
step the cost reduction is 23.51%, only half percent higher than our best selector performer
- ANN based selector.
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Figure 6.3: % Cost Reduction of Algorithm Selectors in IEEE Base Case

FERC 13867-Bus Network

We test the three machine learning based algorithm selectors on test set which contains
10000 instances. The results are shown in Fig.6.2, with comparison to oracle selection. We
can see for FERC network, the neural network outperforms decision tree which outperforms
the 10 nearest neighbor. The differences in performance are significant that neural network
is almost as good as oracle selection whereas 10 nearest neighbor is only half as good as
oracle selection after 10 iterations.
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The individual algorithm and selectors’ performances are summarized in Fig.6.5 and
Table.6.2. We can see that all three machine learning based selectors improve on the in-
dividual algorithms. The improvement is much more significant in FERC network then in
IEEE network. Even though the nearest neighbor based selector performs worst than the
line selection, the best performer - ANN based selector results in around 50% more cost re-
duction than the best performer in the individual algorithm, and doubles the cost reduction
of the other two. It also gets very close to the oracle selection, which means that the selector
wisely chooses the algorithms so that it captures most of the benefits brought by the ability
to select algorithms. Decision tree based selector shows considerable performance improve-
ment from the individual algorithms as well. In terms of computation time, the selector
itself adds negligible time to the computation since it just performs a linear calculation to
select the algorithm for use.
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Table 6.2: % Cost Reductions of Transmission Switching Algorithms and Selectors (10 Iter-
ations) in FERC Base Case

Algorithm % Cost Reduction
Line Enumeration 1.86%

Line Selection with Priority Listing 1.268%
PTDF Method 1.4%

10 Nearest Neighbor Based Selector 1.87%
ANN Based Selector 2.65%
DT Based Selector 2.35%
Oracle Selections 3.01%

All three machine learning based selectors prove effective in terms of cost reduction for
both test cases. It shows considerable improvement especially for the realistic FERC test
case. Due to the high complexity of the FERC network, it is expected that no algorithm will
always be the most effective, therefore rendering algorithm selector useful. Even though with
the machine learning algorithm we tested, the selector gets very close to oracle selection, it
isn’t necessarily the best selector there is. Although we tested it on two networks that are
drastically different in their scales and characteristics, it doesn’t guarantee the performance
improvement for all power networks.

Machine learning based algorithm selection requires significant amount of computational
power and time to train the model. Without proper parallelization techniques for the machine
learning methods, it takes more than 10 hours to train the selector for FERC case. The
effective parallelization of the machine learning methods and the increasing computational
power within power systems are the two critical factors that will speed up the process of
creating selectors.
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Chapter 7

Conclusions and Perspectives

In order to tackle the computational challenge of the mixed integer Optimal Transmission
Switching program, we present several fast greedy algorithms implemented in parallel to find
the transmission switching actions for economic benefits. Instead of solving the OTS problem
directly, the algorithms we use only seek to switch one line per each iteration. A series of
DCOPF, a linear program, are solved in sequence. We presented three algorithms: Line
Enumeration, Line Selection with Transmission Switching and Divided MIP. Furthermore
we explore the use of machine learning methods for the line selection, which proves useful
both in cost performance and computation time. Lastly, based on the algorithms in literature
and algorithms we develop, we apply the algorithm selection to the transmission switching
problem. The algorithm selection, based on machine learning classification methods, re-
selects the algorithm at each iteration. We tested these algorithms on IEEE 118-Bus network
and a realistic FERC 13867-Bus network and present the results.

In this chapter first we present a summary of conclusions based on our current work. Then
possible further directions that can contribute to the research on transmission switching are
discussed.

7.1 Conclusions

Greedy algorithms can achieve near optimal cost reduction with significant sav-
ing in computation time. The IEEE network results show that all three greedy algorithms
achieve near optimal cost reduction within a few iterations. The numerical results also show
that for small sized IEEE network, Divided MIP performs better than Line Enumeration and
Line Selection with Priority List. However for the practical size network, Divided MIP fails
to work due to the large size of the model. The other two algorithms show their strength for
practical size models for they only need to deal with linear programs. Line Selection with
Priority List is especially promising since at each iteration we only need to examine limited
number of lines on the top of the priority list, therefore reducing computation time. A good
priority list is essential for the performance of the algorithm.
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High performance computing resources are essential for the greedy algorithms’
superior performance in computation time. The advantage of the greedy algorithms
is further strengthened by adoption of high performance computers. With the parallel im-
plementation of the greedy algorithms, the computational time can be greatly reduced.
Increasing the number of cores available will directly reduce the computation time. When
the number of lines are far more than number of cores, doubling number of cores will halve
the computation time.

The appropriate machine learning improves the performance of line selection.
We test three machine learning methods for the line selection. With input being the net-
work’s configuration and DCOPF outputs, the machine learning based algorithm is trying to
learn a score representing the possible benefits that line switching actions can bring. The test
results of two networks show that the neural networks and 10 nearest neighbor improve the
cost performance of the original dual criteria, while the decision tree fails. Machine learning
based line selection also enjoys the advantage of quick online priority list production, even
though the offline training time can be significant.

Algorithm selection effectively selects the algorithm for both test networks The
three machine learning based algorithm selector all outperform the individual switching
algorithms. With the artificial neural network based selector the cost reduction gets very
close to the oracle selection. The performance improvement is especially significant for the
FERC case, showing great benefit potential of algorithm selectors for real life power networks.

7.2 Future Area of Research

The Divided MIP produce the best result for IEEE network. However it does’t scale well
for the real size power network with the current parallelization method. Further research in
the parallelization of MIP programs with large sets of continuous variables and constraints
but a small set of integer variables can be useful to improve the performance of Divided
MIP algorithm. A promising direction is distributed parallel mixed integer programming,
which modifies the branch and bound algorithm to be implemented in parallel. It facilitates
solving a MIP problem with distributed memory and possibly across different machines. It
takes advantage of the fast development of high performance computing resources and can
be potentially very useful for the transmission switching problem with limited set of line
switching candidates.

When we train the machine learning line selection for the FERC network, a Knowledge
Base of only 3000 instances is used due to time and computational power constraints. Even
though only part of the lines are monitored and considered for the FERC network, it still
suffers the risk of being under trained. Further research will be useful to confirm the benefit
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of machine learning based line selection a with larger Knowledge Base and more efficient
machine learning algorithms, potentially implemented in parallel as well.

Another further research direction is to incorporate the requirement of reliability stan-
dards. NERC has imposed a ’safety net’ minimum reliability standard of N-1 for contin-
gencies which means that the system is planned such that for any one credible contingency
event, the system can move to a satisfactory operating state. Reliability and stability check
after switching actions are necessary in practice to ensure the smooth operation of the power
grid. This is especially important if the operators wish to switch multiple lines at once for
economic benefits.
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