
UC Berkeley
UC Berkeley Previously Published Works

Title
Distributed Many-to-Many Protein Sequence Alignment using Sparse Matrices

Permalink
https://escholarship.org/uc/item/6bh3v2ct

Authors
Selvitopi, Oguz
Ekanayake, Saliya
Guidi, Giulia
et al.

Publication Date
2020-11-19

DOI
10.1109/sc41405.2020.00079
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bh3v2ct
https://escholarship.org/uc/item/6bh3v2ct#author
https://escholarship.org
http://www.cdlib.org/


Distributed Many-to-Many Protein Sequence
Alignment using Sparse Matrices

Oguz Selvitopi∗1, Saliya Ekanayake†1, Giulia Guidi‡∗, Georgios A. Pavlopoulos§, Ariful Azad¶, Aydın Buluç∗‡
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Abstract—Identifying similar protein sequences is a core step
in many computational biology pipelines such as detection of
homologous protein sequences, generation of similarity protein
graphs for downstream analysis, functional annotation, and
gene location. Performance and scalability of protein similarity
search have proven to be a bottleneck in many bioinformatics
pipelines due to increase in cheap and abundant sequencing
data. This work presents a new distributed-memory software
PASTIS. PASTIS relies on sparse matrix computations for effi-
cient identification of possibly similar proteins. We use distributed
sparse matrices for scalability and show that the sparse matrix
infrastructure is a great fit for protein similarity search when
coupled with a fully-distributed dictionary of sequences that
allow remote sequence requests to be fulfilled. Our algorithm
incorporates the unique bias in amino acid sequence substitution
in search without altering basic sparse matrix model, and in turn,
achieves ideal scaling up to millions of protein sequences.

I. INTRODUCTION

One of the most fundamental tasks in computational biology
is similarity search. Its variants can be used to map short DNA
sequences to a reference genome or find homologous regions
between nucleotide sequences, such as genes that are the basic
functional unit of heredity. A pair of genes is homologous
if they both descend from a common ancestor. The DNA
sequence of a gene contains the information to build amino
acid sequences constituting proteins.

Computing sequence similarity is often used to infer homol-
ogy because homologous sequences share significant similari-
ties despite mutations that happen since the evolutionary split.
While the similarity computation can be carried out in the
DNA sequence space, it is more often performed in the amino
acid sequence space. This is because the amino acid sequence
is less redundant, resulting in fewer false positives. In this
paper, we will refer to this problem of inferring homology in
the amino acid space as protein homology search.

Protein homology search has numerous applications. For
example, functional annotation uses known amino acid se-
quences to assign functions to unknown proteins. Another
example area of application is gene localization, which is
crucial to identify genes that may affect a given disease or gain
insight about a particular functionality of interest. The primary

1Equal contribution.

motivation of our work is the identification of protein families,
which are groups of proteins that descend from a common
ancestor. It is a hard problem since the relationship between
sequence similarity and homology is imprecise, meaning that
one cannot use a similarity threshold to accurately conclude
that two proteins are homologous or belong to the same family.

Different algorithms attempt to infer homology directly via
similarity search [1], [2] with variable degree of success in
terms of sensitivity and specificity. Alternatively, one can
perform a similarity search within a protein data set and
construct a similarity graph [3], [4], [5], [6], and then feed
it into a clustering algorithm [7], [8], [9], [10] to ultimately
identify protein families. The advantage of the latter approach
is that the clustering algorithm can use global information
to determine families more accurately. For example, if two
proteins P1 and P2 are incorrectly labeled as homologous by
the similarity search, this false positive link can be ignored by
the clustering algorithm if it is not supported by the rest of
the similarity graph (say if the neighbors of P1 and P2 are
distinct except for P1 and P2 themselves). Likewise, missed
links (false negatives) can be recovered by the clustering
algorithm using the topology of the graph. The disadvantage
of this approach lies in the computational cost of storing the
similarity graph and executing of the subsequent clustering
algorithm. Dual-purpose tools such as Many-against-Many
sequence searching (MMseqs2) [3] can be used to either
directly cluster proteins or to generate a protein similarity
graph, depending on their settings.

Recent advancements in shotgun metagenomics, where a
metagenome is collected from an environmental sample and it
is thus composed of DNA from different species, are leading to
the expansion of the known protein space [11]. The massive
amount of data associated with modern isolate genome and
metagenome databases have rendered many existing tools too
slow in constructing protein similarity graphs. Distributed
parallel computation is one way to efficiently manipulate this
data deluge.

In this paper, we present a fully distributed pipeline called
Protein Alignment via Sparse Matrices (PASTIS) for large-
scale protein similarity search. PASTIS constructs similarity
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graphs from large collections of protein sequences, which in
turn can be used by a graph clustering algorithm to accurately
discover protein families. A major novelty of PASTIS is
its use of distributed sparse matrices as its underlying data
structure. Not only the sequences and their k-mers are stored
through sparse matrices, but also the substitute k-mers that
are critical for controlling sensitivity and specificity during
sequence overlapping. We develop custom semirings in sparse
matrix computations to enable different types of alignments.
PASTIS extensively hides communication and exploits the
symmetricity of the similarity matrix to achieve load balance.
We present detailed evaluations about parallel performance
and relevance. We demonstrate the scalability of PASTIS by
scaling it up to 2025 nodes (137,700 cores) and show that its
accuracy is on par with MMseqs2.

Our resulting software, PASTIS, is available publicly as
open source at https://github.com/PASSIONLab/PASTIS. The
rest of this paper is organized as follows. Section II describes
the problem we address and Section III presents the related
work. In Section IV we describe our methodology for forming
the similarity graph and then we focus on its parallel aspects
in Section V. We evaluate our approach in Section VI and we
conclude in Section VII.

II. BACKGROUND

Protein homology search, as introduced in Section I, is
modeled as a sequence similarity searching problem. Herein,
we formally define the notation and the problem.

Let S = {s1, s2, . . . , sn} be a set of n protein sequences.
Define the Protein Similarity Graph (PSG) graph G = (V,E)
as V = S and E = {(si, sj) | si and sj exceed a given
similarity threshold}. The weight of an edge (si, sj) is denoted
with w(si, sj) and it indicates the strength of similarity
between sequences si and sj . A k-mer or seed is defined as a
subsequence of a given sequence s with fixed length k.

The problem we address in this work is defined as follows.
Given p processing elements, a set S of proteins, and simi-
larity constraints, compute G = (V,E) efficiently in parallel.
Figure 1 depicts the base pipeline to form the similarity graph.

A. Combinatorial BLAS (CombBLAS)

CombBLAS [12] is a distributed memory parallel graph
library that is based on sparse matrix and vector operations
on arbitrary user-defined semirings. A semiring consists of
two binary operators, addition and multiplication, that satisfy
certain requirements. CombBLAS allows users to define their
own types for matrix and vector elements and overload the
operations on sparse matrices. This allows it to express a broad
range of algorithms that operate on graphs.

CombBLAS supports MPI/OpenMP hybrid parallelism and
uses a 2D block decomposition for distributed sparse matrices.
The 2D decomposition of the matrix constrains most of the
communication operations to rows/columns of the process
grid and enables better scalability than the 1D decomposition.
Among several operations supported by CombBLAS, Sparse
General Matrix Multiply (SpGEMM) is heavily utilized by

Fig. 1. Homology detection pipeline.

PASTIS and it contains several distinct optimizations. Dis-
tributed SpGEMM in CombBLAS uses a scalable 2D Sparse
SUMMA [13] algorithm, and for the local multiplication it
uses a hybrid hash-table and heap-based algorithm that is faster
than the existing libraries [14]. Another distributed matrix
library that supports semiring algebra on sparse matrices is
the Cyclops Tensor Framework (CTF) [15]. Both CTF and
CombBLAS support 2D as well as 3D SpGEMM algorithms.

III. RELATED WORK

pGraph [16] is a distributed software to build protein
homology graph. It is similar to PASTIS but with a different
distributed implementation and a different way of detecting
homologous sequences. Given an input sequence set S, it uses
a suffix tree based algorithm [17] to identify pairs of sequences
that pass a user-defined criteria. These pairs are then aligned
using the Smith-Waterman algorithm [18]. pGraph distributed
implementation includes a super-master process and a col-
lection of subgroups. Each subgroup consists of a master, a
set of producers, and a set of consumers. The producers in
each subgroup are responsible for the generation of sequence
pairs in parallel, while the consumers perform alignment on
those pairs. The master regulates producers and consumers
such that no overactive producers exist in the system while
at the same time keeping consumers busy. The super-master
acts as a regulatory body across all subgroups. One caveat
with the producer-consumer approach is that sequence data
corresponding to a generated pair may not lie within the local
memory of the consumer handling that pair. pGraph introduces
two options to overcome this problem: (a) reading from disk
or (b) communicating remote sequences from other processes.
Both techniques incur latencies, however, their experiments
suggest that remote sequence fetching over the network is
more efficient than reading from disk. Their results show linear
scaling for a set of ≈ 2.5 million sequences, where a total of
5.3 billion pairs were aligned.

Berkeley Efficient Long-Read to Long-Read Aligner and
Overlapper (BELLA) is a shared-memory software for over-
lap detection and alignment for long-read de novo genome
assembly and error correction [19], where long-read indicates
a category of sequencing data. Despite different objectives,
BELLA is the first work to formulate the overlap detection
problem as a SpGEMM. It uses a seed-based approach to
detect overlaps and uses a sparse matrix, A, to represent
its data, where the rows represent nucleotide sequences and
columns represent k-mers. A is then multiplied by AT,
yielding a sparse overlap matrix AAT of dimensions S-by-S,
where each non-zero cell (i, j) of the overlap matrix stores the
number of common k-mers between the ith and jth sequences,
and their positions in the corresponding sequence pair. In this

https://github.com/PASSIONLab/PASTIS


Fig. 2. Overlap detection in PASTIS.

work, we adopt this technique and extend it to implement
a distributed memory k-mer matching. BELLA also has a
distributed version, diBELLA [20], that is being developed.
However, it operates on nucleotide sequences and computes
overlap detection using distributed hash tables rather than
distributed SpGEMM.

MMseqs2 [3] is a software to find target sequences sim-
ilar to a given query sequence by searching a precomputed
index of target sequences. A target sequence is chosen to
be aligned against the query only if they share two similar
k-mers along the same diagonal. The notion of similar k-
mers is comparable to the substitute k-mers of our work
(Section IV-C). The authors claim the two-k-mer approach
increases the sensitivity lowering the probability of that match
happening by chance. Notably, a pair could have more than
one diagonal containing two similar k-mers. Once a pair is
chosen, an ungapped alignment is performed on the k-mers on
each diagonal. Additionally, a gapped alignment is performed
if the diagonal with the best ungapped score passes a given
threshold. MMseqs2 is a faster and more sensitive search tool
compared to its popular counterpart Basic Local Alignment
Search Tool (BLAST) and it can run in parallel on distributed
memory systems.

LAST [5] is another heuristics-based sequence search tool.
LAST also uses matching subsequences to identifying similar
sequences but it supports a richer notion of seed than the
regular k-mer one. LAST provides both spaced seeds and
substitute seeds. A spaced seed can be thought of as supporting
the wildcard ‘*’ in the seed definition, so that certain positions
of a k-mer could be ignored or matched regardless of the
character (or amino acid) in the target sequence at that
position. A substitute seed modifies this idea by restricting
the wildcard matching to a group of designated characters
at each position. Besides introducing extended seed patterns,
LAST takes a step further allowing adaptive seed length. This
features allows LAST to increase the match sensitivity by
repeatedly matching a seed pattern until the number of matches
in the target sequence matches or drops below a frequency
threshold [5]. Currently, LAST implementation is based on
suffix array and runs in a single compute node with optional
shared memory parallelism. Despite the sensitivity advantages,
the shared memory parallelism is a bottleneck for large data
sets as its runtime is in the order of days.

Double Index Alignment of Next-generation Sequencing
Data (DIAMOND) [6] utilizes a double indexing approach
which determines the list of all seeds in both reference
and query sequences. The double indexing strategy is cache-
friendly as it increases the data locality. To attain high sensi-

Fig. 3. The structure of matrix B in PASTIS.

tivity, DIAMOND utilizes spaced seeds of certain weight and
shape. Different shape and weight combinations can be used
to achieve different levels of sensitivity. Another important
feature of DIAMOND is that it uses a reduced amino acid
alphabet for greater sensitivity. This also makes DIAMOND
more memory-efficient as it results in smaller index sizes.

IV. PASTIS CONCEPTS

The PSG, G = (V,E), can technically be a clique, where
an alignment algorithm would perform O(n2) comparisons
and find some similarity between each pair of sequences.
Nevertheless, only pairs above a certain similarity threshold
are assumed to be biologically related via a common ancestor.
This enables PASTIS to avoid the expensive O(n2) alignments
and exploit efficient sparse matrix operations in constructing
the PSG. PASTIS adheres to the pipeline shown in Figure 1 to
compute the PSG. Other heuristics-based sequence alignment
tools, described in Section III, also follow similar stages. In the
following sections, we describe how these stages are handled
in PASTIS.

A. Overlapping Sequences

PASTIS uses the presence of common k-mers as a heuristic
metric, which is a common technique that is also adopted in
tools such as BLAST [21], LAST [5], and MMseqs2 [3]. One
approach to find these common k-mers is to create an index,
such as a suffix array, of the input target sequence set and
query the same sequence against it. A distributed implemen-
tation of this method would require a parallel implementation
of the suffix array. Alternatively, we use a sparse matrix based
implementation that is highly parallel using existing libraries
such as CombBLAS [12].

Figure 2 shows the creation of the |sequences|-by-|k-mers|
matrix A. A nonzero entry Aij denotes the existence of k-
mer j in sequence i. The alphabet determines the number of
all possible k-mers. For proteins, there are a total of 24 amino
acid bases making the size of the k-mer space 24k. Once this
matrix is constructed, we compute B = AAT of size n × n.
If each nonzero entry in A was marked as 1 then Bij would
perform exact k-mer matching and be equal to the count of
common k-mers between sequences i and j. Consequently, we
proceed to align sequence pairs (i, j) where Bij 6= 0.

Using SpGEMM to find sequences that share at least one
k-mer has been originally proposed in BELLA [19] in the con-
text of overlapping of long error-prone sequences. Importantly,
BELLA work did not use distributed data structures nor did
it use the substitute k-mers concept we discuss in the next
section.

PASTIS stores the positions of the shared k-mers in each
sequence along with the k-mer count as such information is



Fig. 4. Semiring for exact k-mer matching.

Fig. 5. Common k-mers of two sequences.

useful in the alignment step. For example, Figure 5 shows
the location of two common k-mers, AVG and DMI, on a pair
of sequences r and c. Figure 3 shows how this information
is recorded in Brc. Notably, B is symmetric. Therefore, we
process only nonzeros belonging to strictly lower or upper
triangular portion of it.

In order to yield the custom structure in B as shown above,
we employ a custom semiring to overload the addition and
multiplication operators in AAT. In addition, Aij represents
the starting position of k-mer j in sequence i instead of 1 for
its presence. Figure 4 shows the matrix multiplication with
a custom semiring in PASTIS when exact k-mer matching is
used. In PASTIS, the multiplication operator saves the position
on the two sequences for k-mer j into a pair while the addition
operation organizes the seed positions on sequence r into one
list and positions of c into another list. Currently, a maximum
of two shared k-mer locations per sequence pair are kept out
of all such possible pairs. While k-mers attempt to capture
the latent features of protein sequences, there is no accepted
standard as to which k-mers yield better results than others.
In future, we plan to study the effect of different number of
k-mers as well as the distance between k-mers.

B. Substitute K-mers

AAT results in exact k-mer matches. However, our exper-
iments suggest that exact matches pose an excessively strict
constraint on the overlapping landscape yielding to signifi-
cantly low recall. In this context, recall is defined as the ratio
between sequence pairs belonging to the same family in both
PASTIS output and the original data. Herein, we introduce
the notion of substitute k-mers as an approach to improve the
recall of this step (see Section VI-B for results about accuracy).
Importantly, this is different from the notion of substitute seeds
used in LAST [5], which is about specifying a seed as a pattern
similar to a regular expression. The similar k-mers concept
of MMseqs2 is closest to our approach with the difference
being MMseqs2 limiting similar k-mer sets through a scoring
threshold whereas PASTIS defines a fixed-sized neighborhood.

In the state-of-the-art, scoring matrices such as BLO-
SUM62 [22] are used to quantify the chance of a certain amino
acid being substituted by another during evolution. While these

scores are typically used during the alignment phase, we adopt
the notion of “evolution” for k-mers by producing a set of
substitute k-mers for any given k-mer. Given a set of substitute
k-mers, the algorithm chooses the one with the highest chance
to appear in-place of the original k-mer.

For example, under BLOSUM62 the 3-mer AAC will have
a score of 4 + 4 + 9 = 17 for an exact match. As seen in
Figure 6, the base A can be substituted with S for the least
amount of penalty. Thus, 3-mers SAC and ASC both have a
score of 1 + 4 + 9 = 14 when matched with AAC. Continuing
with this idea, the next 3-mer closest to AAC is SSC, which
has a match score of 1 + 1 + 9 = 11. In PASTIS, we restrict
ourselves to computing m “nearest” such substitute k-mers for
any original k-mer present in a sequence.

We remark that m-nearest k-mers are not restricted to single
substitutions. Depending on the scoring matrix and the values
of m and k, the m-nearest neighbors of a given k-mer include
k-mers can be multiple hops away in terms of the edit distance.
This can be true even when m is significantly smaller than
k(|Σ|−1) where Σ is the alphabet. If we consider our original
example AAC, Figure 6 shows that substitutions in C cost more
than substitutions in A under BLOSUM62. Given that a match
in C provides a gain of 9 in the score, even the least costly
substitution lowers the score (e.g., to M whose score is −1)
by 10. By contrast, a match in A only has a score of 4.
Substituting it with C, D, or T, all of which have scores 0,
would only lower the cost by 4. Therefore, 3-mers of the form
{T |C|G}{T |C|G}C are all closer to AAC (at a “distance” of
8) than any 3-mer of the form AA∗ (except AAC itself), despite
requiring two letter substitutions.

Given non-uniform scores, the efficient generation of m-
nearest k-mers is non-trivial. For each k-mer in the data set,
we first generate its 1-hop neighbors (i.e., single-substitution
k-mers) that are the m nearest. This can be done significantly

Fig. 6. The BLOSUM62 scoring matrix for proteins.



Algorithm 1 Find the nearest m substitute k-mers of a given
k-mer r, using sorted expense matrix E.

1: procedure FINDSUBKMERS(r,E,m)
2: nbrs ← {} . neighbor list
3: minmaxheap ← {}
4: EXPLORE(r,minmaxheap, r,E,m)
5: while |nbrs| < m do
6: mink ← FINDMIN(minmaxheap)
7: nbrs ← nbrs ∪mink
8: EXPLORE(mink ,minmaxheap, r,E,m)
9: EXTRACTMIN(minmaxheap)

10: end while
11: return nbrs
12: end procedure

faster than the naive O(k(|Σ| − 1)) approach if m is small.
For each letter in Σ, we can pre-compute the lowest cost
substitutions by simply sorting (in decreasing values) the off-
diagonal entries in the corresponding column (or row because
the scoring matrix is symmetric) of the scoring matrix. This
pre-computation only needs to be done once per scoring matrix
rather than for each k-mer, therefore the cost is minuscule.
Assuming m < k(|Σ| − 1), we now just need to simply
merge these sorted lists into a single sorted list of length m.
The crux is that we do not need to touch the entire set of
columns during this merging because we only need the top
m elements of the final merged list. Hence, the cost of initial
list generation is O(m). This initial list is solely composed
of single-substitution k-mers and no other single-substitution
k-mer can be closer to our seed k-mer.

From here, we run an algorithm in the spirit of Dijkstra’s
shortest path algorithm. The differences are that (1) we are
only interested in paths that are up to length m, (2) the edges
in our case are implicit (i.e., never materialized) and only
generated as needed, and (3) this implicit graph is acyclic;
in fact, we are exploring a tree with a branching factor of
(|Σ| − 1). Properties (1) and (3) allow us to stop exploring
substitutions in a given position once we know that the current
distance is farther than the current m-nearest neighbors list.
Those positions are marked as inactive. This current m-nearest
neighbors list is implemented using a max heap (priority
queue). For each active position, we iterate over substitutions
in increasing distance, using the sorted columns of our scoring
matrix. If a substitution gives a score lower than the top of
our heap, we push it to our heap. Note that checking the top
of the heap with FINDMIN is O(1) whereas insertion and
extraction are O(log(m)), hence it only costs when we find
a new m-nearest neighbor. If a substitution does not give a
score lower than the top of our heap, we mark that position
as inactive and not explore any further substitutions. This is
possible because we are exploring substitutions in increasing
cost, and thus no other substitution on that position can make
it to the m-nearest neighbor list. The algorithm stops when all
of the k k-mer positions are marked as inactive.

The pseudocode to find the most possible substitute k-mers
is described in Algorithm 1. Here, the scoring matrix whose
row entries are sorted is denoted by E because it encodes
the “expense” we incur in order to substitute the amino acid

Algorithm 2 Explore the next nearest k-mers of a given k-mer
p, with respect to a root k-mer r and an existing set of nearest
k-mers. The min-max heap mmheap is of size m.

1: procedure EXPLORE(p,mmheap, r,E,m)
2: minheap ← {} . stores triplets, sorted by first value
3: for idx ∈ {FREEIDXS(p)} do . Free indices of p
4: cheap ← E[idx][1] . Cheapest substitution
5: newtuple ← (cheap +DIST(p, r), idx , 1)
6: PUSH(newtuple,minheap)
7: end for
8: (msb,fid , sid)← FINDMIN(minheap)
9: . msb is the minimum substitution cost, fid the free index,

sid the substitution index
10: if !ISFULL(mmheap) then . |mmheap| < m
11: repeat
12: MAKENEWSUBK(p,minheap,mmheap,E)
13: (msb,fid , sid)← FINDMIN(minheap)
14: until ISFULL(mmheap)
15: else
16: max ← FINDMAX(mmheap)
17: while msb < DIST(max , r) do
18: MAKENEWSUBK(p,minheap,mmheap,E)
19: (msb,fid , sid)← FINDMIN(minheap)
20: max ← FINDMAX(mmheap)
21: end while
22: end if
23: end procedure

bases in those k-mers. If the substitution matrix is denoted
by C, then E = SORT(DIAG(C) − C), where the function
DIAG() simply creates a diagonal matrix out of its parameter
by deleting its off-diagonal entries, and SORT() sorts the rows
of a matrix in ascending order.
E stores both the integer expenses and the bases cor-

responding to that expense in its auxiliary field, which is
accessed by accessible via .base. For example, the first row
of E would be: E[1] = {(0, A), (3, S), (4, C), (4, G), . . .} for
the BLOSUM62 shown in Figure 6. The first entry of each
row is somewhat uninteresting and E[i][1] (the arrays are 0-
indexed) would give the cheapest substitution to the ith base.
Each individual base in k-mers can be accessed and modified
using operator[]. Furthermore, each k-mer object has a
list of “free” indices, which are locations that have not been
previously substituted by the algorithm. At the beginning, the
entire list of indices [0, k − 1] is free.

C. Overlapping with Substitute K-mers

The matrix formulation we used in Section IV-A can be
elegantly extended to find overlaps with substitute k-mers. The
naive approach is to modify matrix A with all the substitute
k-mers. However, this would be costly. A protein of length
L has L − k + 1 k-mers in it. Given that L is often around
100−1000, this itself is not a problem. However, modifying A
to include all substitute k-mer would increase the number of
nonzeros in each row to potentially m× (L−k+ 1), severely
increasing the computational cost and memory consumption.

Instead, we use a second matrix that encodes the k-mer-
to-substitute-k-mer mappings. This matrix S is at most of
dimensions |Σ|k × |Σ|k but its sparsity is controlled at m
nonzeros per row. The matrix S does not need to be binary, and



Algorithm 3 Create and insert a new substitute k-mer to an
existing set of nearest k-mers, only modifying the free index
fid .

1: procedure MAKENEWSUBK(p,minheap,mmheap, r,E)
2: (msb,fid , sid)← EXTRACTMIN(minheap)
3: subk ← p . initialize substitute k-mer
4: bid ← INDEXOF(subk [fid ]) . Base to index
5: subk [fid ] = E[bid ][sid ].base . Replace that base
6: DELETEFREEIDX(fid , subk)
7: if ISFULL(mmheap) then
8: EXTRACTMAX(mmheap)
9: end if

10: PUSH(subk ,mmheap)
11: sid ← sid +1 . Get next cheapest substitution
12: newtuple ← (E[fid ][sid ] + DIST(p, r),fid , sid)
13: PUSH(newtuple,minheap)
14: end procedure

we can encode substitution costs in it. With this modification,
our overlapping computation becomes ASAT. Importantly,
this requires a new semiring for AS and a slight change to
the existing semiring for (AS)AT. This new semiring chooses
the closest k-mer for a substitute k-mer when there is more
than one k-mer in a given read that has the same substitute
k-mer. For example, suppose a given sequence i has k-mers
kp and kq at Aip and Aiq . Also, assume a substitute k-mer
ks is common to both kp and kq in S but each with distances
dps and dqs. Even though substitute k-mers do not actually
appear in a given sequence, we record the starting position of
their closest k-mer as their location. That is, if dps ≤ dqs we
would store the position of kp as the starting position of ks
and vice versa. We omit the technical details for brevity.

D. Sparse Matrix Storage

CombBLAS supports the doubly compressed sparse column
(DCSC) format [23] (among others) for storing sparse matrices
locally on each process. DCSC is designed for the representa-
tion of hypersparse matrices, in which the number of nonzeros
is smaller than the number of rows or columns. It is an efficient
format for hypersparse matrices in terms of space as it avoids
storing pointers of empty columns.

The size of the k-mer space in PASTIS is |Σ|k, where
|Σ| = 24. Even for a relatively small k, this results in
a large column count in A and row/column counts in S.
Moreover, as these matrices are distributed by CombBLAS
among processes in a 2D manner (Section V-A), the columns
of submatrices stored in each process become increasingly
empty as the process count increases. For example, for the
Metaclust50-1M dataset we use in our experiments (which
contains 1 million sequences) and for a k-mer size of 6, A
is a 1M × 244M matrix containing 108M nonzeros, and
S is a 244M × 244M matrix containing 611M nonzeros.
These matrices respectively contain 0.44 and 2.50 nonzeros
per column, and when they are distributed among multiple
processes, the number of nonzeros per column gets even
smaller in the submatrices stored. Hence, to scale to thousands
of processes, PASTIS stores submatrices in the DCSC format.

Fig. 7. PASTIS software stack. PASTIS implicitly uses MPI and/or OpenMP
through CombBLAS and SeqAn libraries. It also explicitly uses both parallel
programming paradigms in certain stages.

E. Alignment of Overlapping Sequences

PASTIS supports two alignment modes for sequence pairs
detected in the first step: seed-and-extend with x-drop (XD) [4]
and Smith-Waterman (SW) alignment [18].

In XD, PASTIS initiates the alignment starting from the po-
sition of the shared k-mers and extending it in both directions
until the end of the sequences using gapped x-drop. Since we
store up to two shared k-mers, the alignment is performed
starting from of both of them separately. The alignment with
the best score and that passes the similarity thresholds is
retained.

The SW alignment computes a local alignment starting from
the beginning of each sequence. Even though the alignment
computations initiates at the beginning of the sequences and
it is performed until the end, only the local alignment with
higher score between the two sequences is returned. In SW,
scores cannot assume negative values. In this case, our seed
position is ignored and the seed is merely used to mark
the two sequences as potentially related and worth aligning.
One advantage of this method over seed-and-extend is that
alignment quality does not depend on the seeds we found.
The implementation of XD and SW is offloaded to the The
Library for Sequence Analysis (SeqAn) C++ library [24].

F. Sequence Similarity Filter

The last stage of the pipeline is the alignment post-
processing, which includes filtering out sequence pairs that
fall below certain quality metrics provided to PASTIS. From
our experience, these metrics typically include vetoing pairs
with alignment similarity less than 30% and length coverage
less than 70%.

V. PASTIS DISTRIBUTED IMPLEMENTATION

PASTIS provides a single scalable distributed implemen-
tation of the pipeline illustrated in Figure 1. The connections
found in the PSG are oblivious to the number of processes used
to parallelize PASTIS. This is an important aspect of our tool
as it allows reproducible results under different configurations.
Some of the suffix array based existing tools such as LAST, in
contrast, may produce configuration specific results depending
on the physical resource limitations.

The current implementation of PASTIS uses Message Pass-
ing Interface (MPI) as its underlying parallel communication
library. We assume PASTIS is run with p = q2 number
of parallel processes, where q is a positive integer. The
requirement to have a square number of processes is due to
2D domain decomposition that happens during sparse matrix



Fig. 8. Input sequence partitioning in PASTIS

creation and multiplication using the CombBLAS library. The
following sections describe the implementation details along
with some of the computation and communication optimiza-
tions. Figure 7 shows the libraries and parallel programming
paradigms PASTIS relies on.

Among the two libraries utilized by PASTIS, CombBLAS
supports hybrid MPI/OpenMP parallelism while SeqAn sup-
ports shared-memory parallelism with OpenMP. By utilizing
these libraries, PASTIS implicitly makes use of the inherent
parallelism in them. Apart from those, PASTIS explicitly
makes use of MPI/OpenMP hybrid parallelism as well. For an
example, in the preparation of batches of pairwise alignments
for SeqAn, it uses OpenMP threads. Then, when SeqAn
completes these alignments, the threads at each process again
process the output information in parallel to gather neces-
sary statistics for forming the similarity graph. In this way,
OpenMP is used both implicitly and explicitly in PASTIS.

A. Data Partitioning

The input to PASTIS is a set of protein sequences in
FAST-All (FASTA) format. We use parallel file I/O to read
independent chunks of this file. Each process gets the size
of the file and then divides this size evenly by the number
of processes. This gives a begin and end location, a chunk,
to be read by each process in parallel. It is common that a
file chunk read with such splitting may not start and end at
sequence margins, so we read a user defined extra amount
of bytes in each process. With this approach, each process
will ignore any partial sequences at the start of its chunk and
read until the end of the last sequence in chunk with possibly
reading over on the extra bytes at the end.

Figure 8 shows an example of how PASTIS would partition
100 sequences among 9 processes. Note how some processes
have different number of sequences due to the length variation
among proteins. This variation does not cause any load imbal-
ance because the runtime of the parallel I/O section depends
on the total length of the sequences that is being read and
parsed, which is exactly what our implementation balances
by choosing process boundaries via assigning each process
an equal number of bytes as opposed to an equal number of
sequences. The processes then start communicating sequences
to fit into a 2D distribution (Section V-C). Each process is

Fig. 9. Remote sequence requests from P5 to other processes.

responsible for a predefined range of protein IDs in this 2D
grid, ensuring load balance by construction.

Internally, PASTIS stores a pointer to the character buffer
of its sequences in each process for efficient storage without
converting to a separate data structure. It records sequence
identifier and data start offsets, so any sequence can be
accessed using a local or global index. A parallel prefix sum of
sequence counts are computed cooperatively by all processes,
so that each process is aware what sequences are stored by
which processes.

B. Seed Discovery

As explained in Section IV-A, seed discovery requires the
creation and multiplication of A with its transpose. The
columns A present a direct mapping to k-mers. Therefore,
we compute a unique number for each k-mer as follows.

We index each base in the protein alphabet uniquely from
0 to 23. Then each base gets a number as b24i, where b is the
index of the base in the alphabet and i is the zero-based posi-
tion of the base in the k-mer from right to left. For example,
under the ARNDCQEGHILKMFPSTWYVBZX∗ alphabet, the 3-mer
RCQ will be assigned the id 1 · 242 + 4 · 241 + 5 · 240 = 677.
Importantly, we only perform this for k-mers present in
sequences and not the entire k-mer space.

C. Overlapping Communication

CombBLAS uses a 2D decomposition of matrices, so both
A and B will be distributed onto a process grid of

√
p×√p,

where p is the total number of processes. This decomposition
is especially important for B as nonzero elements of this
matrix indicate sequence pairs that need to be aligned but a
particular process may not have the corresponding sequences
in its partition.

To clarify, consider the example in Figure 9. Here, we show
the decomposition of matrix B over a 3× 3 process grid
identified as P0 through P8. If we look at P5, for example,
it needs sequences, S33 through S65 (row sequences), and S66

through S99 (column sequences). While, in practice, it may not
need all of these sequences as not each pair within these ranges
will have shared k-mers, these represent the entire space of
sequences P5 would need in the worst case. However, based on
the linear decomposition of sequences, P5 only has sequences



Fig. 10. Overlapping communication and computation in PASTIS.

S56 through S66 available locally. Any remaining sequences it
would need has to be fetched from other processes that contain
them.

In fetching remote sequences, a process has the option to
either wait until B is computed to figure out the sequences
it would need or request the full range of sequences it might
need. We observe that with a parallelism of p, each process
has to store 2n/

√
p sequences, at the most. Given the memory

available in today’s machines and with a reasonable p, we
note it is feasible to store this many sequences locally. The
advantage of this decision is that it allows to perform remote
sequence fetching in the background while the operations such
as seed discovery, matrix creation, and matrix multiplication
are being performed.

Figure 10 illustrates the implementation of overlapping
communication in PASTIS. Immediately after reading local
sequences, each process computes the ranks that it has to
request from as well as the ranks that will request from it.
It will then proceed to issue the necessary MPI Irecv and
MPI Isend calls to initiate the remote sequence exchange.
After computing B, an MPI Waitall guarantees that each
process has received the sequences it needs.

D. Moving Computation to Data

Once B is computed, the nonzero sequence pairs in its
upper triangular portion needs to be aligned. If this were done
naı̈vely, a

√
p(
√
p− 1)/2 number of processes would sit idle.

Alternatively, one could redistribute the pairs in the upper
triangular portion among all processes but that would incur
additional communication cost.

We can avoid both of these and move computation to data
for free since B is symmetric. This is shown in Figure 11.
Note all processes except the off-diagonal ones in the last
row and column of the figure are square blocks. Despite their
dimensions, we see that all the pairs in the upper triangular
portion of B are equivalent to the collection of pairs in
individual upper triangular portions of each process block.

For example, the matrix at the left of Figure 11 shows that
P5 should compute all nonzero pairs in its row and column
sequence ranges. At right, we show that this is equivalent
to P5 computing nonzero pairs in its upper triangular and
P7 computing nonzero pairs in its upper triangular. Also
note that the diagonal entries of each block will only be
computed by processes on or above the main diagonal, i.e.,
P0,P1,P2,P4,P5,P7.

VI. EVALUATION

We present our evaluation in two categories: parallel perfor-
mance and relevance. We use different set(s) of data in each.

Fig. 11. Distribution of computation over data.

In the former category, we use subsets of Metaclust50 [25]
dataset. Originally, this dataset has a total of 313 million
sequences and we use random subsets of different sizes in our
evaluation: 0.5, 1, 1.25, 2.5, and 5 million sequences, depend-
ing on the setting of the experiment. We indicate the subset
size within the evaluated dataset, e.g., Metaclust50-0.5M
for a subset of 0.5 million sequences. In the latter category,
we use the curated (a combination of automatic and manual
curation) dataset SCOPe (Structural Classification of Proteins
– extended) [26] to measure precision and sensitivity. From
the original set of 243,813 proteins in this dataset, we pick
77,040 unique proteins. SCOPe dataset has 4,899 protein
families. In the relevance evaluation, we compare PASTIS
against MMseqs2 [3], a many-against-many sequence search-
ing and clustering software for large protein and nucleotide
sequence sets, and LAST [5], an aligner with an emphasis on
discovering weak similarities. The evaluation and discussions
for the two categories are presented in Section VI-A and VI-B,
respectively.

We conduct our evaluations on NERSC Cori system - a Cray
XC40 machine. Each Haswell node on this system consists
of two 2.3 GHz 16-core Intel Xeon E5-2698 v3 processors
and has a 128 GB of total memory. Each KNL node consists
of a single 1.4 GHz 68-core Intel Xeon Phi 7250 processor
and has 96 GB of total memory. We use Haswell nodes in
our comparisons against MMseqs2 and LAST, while we use
KNL nodes in analyzing scalability of PASTIS. The KNL
partition of Cori has more nodes and hence it allows larger-
scale experiments. Given MMseqs2 does not support AVX512,
the comparison against it is run on Haswell nodes with AVX2
instructions for a fair comparison.

Both PASTIS and MMseqs2 support hybrid MPI and
OpenMP parallelism. For both tools, we assign each node a
single MPI task with as many threads as there are cores on the
node. Both tools are compiled with gcc 8.3.0 and the O3
flag. In our evaluations, both MMseqs2 and the SeqAn library
used for alignment in PASTIS make use of vectorization with
Advanced Vector Extensions 2 (AVX2), while LAST uses
SSE4.

Both alignment modes described in Section IV-E are used
in our evaluation of PASTIS. To indicate these modes, we add
the alignment modes’ abbreviations as a suffix to our tool, e.g.,
PASTIS-SW or PASTIS-XD. For XD alignment, we use an x-
drop value of 49. We use a k-mer size of 6 for PASTIS. For
PASTIS, we also evaluate a parameter called common k-mer
threshold. When this parameter is set to t, we eliminate (i.e., do
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Fig. 12. Runtime of PASTIS variants on two datasets. The y-axis denotes the
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not perform alignment on) read pairs that share t or fewer k-
mers. For exact k-mers we use a common k-mer threshold of 1
and for substitute k-mers we use a common k-mer threshold of
3. The variants of PASTIS with this parameter are indicated
with CK suffix. During the pairwise alignment, we use the
BLOSUM62 substitution matrix [22] with a gap opening cost
of 11 and a gap extension cost of 1. For MMseqs2 and LAST,
we use the default settings except for the sensitivity, identity
score and coverage thresholds, which change according to
the experiment setup as described later. Note that LAST’s
parallelism is constrained to a single node. Nonetheless, we
include it in our evaluation mainly for sensitivity comparison,
although we also report its single-node runtime performance.

A. Parallel Performance

First, we evaluate parallel performance of PASTIS by com-
paring it against another distributed memory aligner MMseqs2
and shared memory aligner LAST. Then, we focus on scaling
aspects and investigate how different components of PASTIS
scale.
Comparison against MMseqs2 and LAST. For the compar-
ison we use two datasets with 0.5 and 1 million sequences.
We vary the number of nodes from 1 to 256, increasing it by
a factor of 4. Additionally, we evaluate a number of different
options for PASTIS. For the alignment, we test SW and XD.
For substitute k-mers we use the values of 0 (i.e., there is
no S matrix) and 25. These are indicated with suffixes to
PASTIS. For MMseqs2, we test out three different sensitivity
settings (parameter s): low (1.0), default (5.7), and high (7.5).
A smaller sensitivity value should result in a faster execution
for MMseqs2. For LAST, we use 100 for the maximum
initial matches per query position. This parameter controls the
sensitivity and the higher it is, the more time LAST takes.
Figure 12 compares PASTIS variants among themselves and
Figure 13 shows the execution time of the fastest variant of
PASTIS, MMseqs2, and LAST. The missing data points for
PASTIS are due to running out of memory.
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Fig. 13. Runtime of PASTIS vs. MMseqs2 on two datasets. The y-axis denotes
the execution time in seconds.

When we compare different variants of PASTIS in
Figure 12, we can see that using substitute k-mers in-
creases the execution time as expected because we add
the substitution matrix to the sparse matrix computations
and increase the number of alignments. For instance, in
Metaclust50-0.5M, the number of alignments performed
with exact k-mers is 399 million whereas with 25 substitute
k-mers it is 3.5 billion – amounting to a factor of 8.7× in the
number of alignments. XD is substantially faster than SW,
without any significant change in accuracy (we discuss this
in Section VI-B). The PASTIS variants that use the common
k-mer threshold are faster as they perform fewer alignments
than their counterparts.

Figure 13 shows that PASTIS is slower than MMseqs2
for small node counts but, due to its better scalability, it is
able to close the performance gap rather quickly. PASTIS-
XD-s0-CK runs faster than MMseqs2 in both datasets start-
ing around 16 nodes. PASTIS often scales favorably. We
investigated the unscalable behavior of MMseqs2 and found
out that although the computations scale well, the processing
after running the alignments constitutes bulk of the time
and causes a bottleneck. In that processing stage, MMseqs2
probably gathers alignment results from other nodes in order
to write the output using a single process, which is handled
in parallel in PASTIS. Among different variants of MMseqs2,
MMseqs2-low runs faster as expected in a single-node setting.
However, MMseqs2-high scales somewhat better as it is more
compute-bound than the two other variants. LAST’s single-
node performance is better than three variants of MMseqs2.

The percentage of time spent in aligning pairs in PASTIS is
presented in Table I. The alignment percentages are higher for
SW as it is more expensive than XD. Increasing the number
of sequences from 0.5 million to 1 million causes a quadratic
increase in the number of aligned pairs (will be discussed
shortly), while sparse matrix operations usually scale linearly.
Hence, the percentage of time spent in alignment tends to
increase with increased number of sequences.
Strong and Weak Scaling. In this section, we solely focus on
the sparse matrix operations and exclude alignment. The align-
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ment computations are independent of each other and each
process computes its portion of alignments without requiring
any coordination or synchronization with other processes. The
local alignments at a process are also highly parallel as aligned
pairs are also independent of each other. Conversely, the sparse
matrix computations have different flavors and accommodate
more challenges in terms of parallelization. Hence, we only
focus on the scalability of PASTIS without alignment of
sequence pairs. The experiments in this section are performed
on the KNL partition of Cori to exploit a larger number of
nodes.

On the left side of Figure 14, we illustrate the strong
scaling behavior on Metaclust50-2.5M with number of
substitute k-mers {0, 10, 25, 50}, and the number of nodes
{64, 121, 256, 529, 1024, 2025}. The odd number of nodes is
due to perfect square process count requirement in PASTIS.
We choose the perfect square integer closest to the target
process count. Figure 14 shows that using exact k-mers
exhibits better scalability than using substitute k-mers up to
2K nodes. Substitute k-mers exhibit similar scalability among
themselves with an increase in runtime as the number of
substitutions increases. The substitute k-mers implementation
requires formation of the substitution matrix S, an additional
SpGEMM, and the symmetrization of the similarity matrix.
These components seem to be less scalable compared other
components.

On the right side of Figure 14, we illustrate the
weak scaling behavior. We use three different datasets:
Metaclust50-1.25M at 64 nodes, Metaclust50-2.5M
at 256 nodes, and Metaclust50-5M at 1024 nodes. We
observe that the number of nonzeros in the output matrix
increases roughly by a factor of four when we double the
number of sequences. For example, for 25 substitute k-mers,
the output matrices resulting from using 1.25M, 2.5M, and
5M sequences respectively contain 10.9, 43.3, and 172.3
billion nonzeros. The lines in the weak scaling plots have a
negative slope, which may seem unrealistic. However, not all
operations scale with a quadratic factor. For example, some
operations such as communicating sequences and generating
substitute k-mers scale linearly with the number of processes.
Consequently, a weak-scaling line with a negative slope may

TABLE I
ALIGNMENT TIME PERCENTAGE IN PASTIS.

Metaclust50-0.5M Metaclust50-1M

Scheme 1 4 16 64 256 1 4 16 64 256

PASTIS-SW-s0 49% 83% 89% 91% 81% - 73% 91% 94% 71%
PASTIS-SW-s25 - 80% 81% 78% 75% - - 90% 89% 94%
PASTIS-XD-s0 7% 54% 55% 55% 52% - 51% 59% 64% 50%
PASTIS-XD-s25 - 31% 29% 25% 27% - - 50% 40% 39%

PASTIS-SW-s0-CK 12% 60% 69% 77% 64% - 58% 71% 77% 62%
PASTIS-SW-s25-CK - 44% 53% 51% 48% - - 68% 66% 69%
PASTIS-XD-s0-CK 1% 48% 44% 34% 33% - 48% 47% 44% 36%
PASTIS-XD-s25-CK - 17% 11% 6% 7% - - 25% 15% 12%

be expected as we increase the number of nodes with a factor
of four. On the other hand, a factor of two would result in
lines with a positive slope.
Dissection Analysis. In this section, we examine the time
spent in various components of PASTIS and how these
components scale. As in the previous section, we exclude
alignment from our analysis. We measure the time of 5 dif-
ferent components when exact k-mers are used and 8 different
components when substitute k-mers are used. Figure 15 shows
the obtained results. The components that are specific to
substitute k-mers are (i) the formation of S, (ii) AS, and (iii)
the symmetrization. The last component is required to make
the output matrix symmetric. The “fasta.”, “tr. A”, and “wait”
components respectively stand for reading/processing of fasta
data, computing AT, and waiting for the communication of
sequence data to be completed (Section V-C).

Figure 15 shows that waiting for the sequence transfers
to complete constitutes a considerable portion of the overall
time, especially at small node counts. This component is
less pronounced when substitute k-mers are used as other
components take more time while the sequence transfer time
stays the same. For the exact k-mers, the most computationally
dominant component is the SpGEMM, whereas for the substi-
tute k-mers, SpGEMM and the formation of S dominate the
computation. The formation of A or S often takes less time
than the SpGEMMs at the smaller node counts. However, with
increasing number of nodes, the percentage of time spent in
SpGEMM increases as opposed to that of matrix formation,
which indicates that SpGEMM is less scalable.

In Figure 16, we investigate how each component of
PASTIS scales. The results in the plot at the top are obtained
with Metaclust50-2.5M with exact k-mers and the results
in the plot at the bottom are obtained with the same dataset
with 25 substitute k-mers. In both plots, the bottleneck for
scalability seems to be the SpGEMM operations. Other com-
ponents either take too short time or scale relatively better.

B. Precision and Recall

In our evaluation, PASTIS, MMseqs2, and LAST perform
alignment and generate alignment statistics for sequence pairs
to form the similarity graph G. Then, G is clustered with High-
performance Markov Clustering (HipMCL) [9] to discover
possible protein families. To determine the edge weights in G,
we use two different similarity measures: Average Nucleotide
Identity (ANI) and Normalized Raw Alignment Score (NS).
When we use ANI, the alignments with ANI less than 30%
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and shorter sequence coverage less than 70% are eliminated
from the similarity graph and the edge weight w(si, sj) is set
to the ANI of sequences si and sj .

In NS, we use the raw alignment score normalized with
respect to the shorter sequence. A motivation for this is that
computing NS score is cheaper than ANI as the former does
not necessitate a trace-back step in the alignment. Although
NS may not be as accurate as ANI, it still accommodates a
rough information that the clustering algorithm can effectively
make use of. We use a number of different substitute k-
mers {0, 10, 25, 50} for PASTIS to measure its effect on the
quality of the clusters. Similarly, we utilize sensitivity values
{1, 5.7, 7.5} for MMseqs2 and {100, 200, 300} for LAST. The
default for the sensitivity is 5.7 in MMseqs2.

To compute precision and recall, we use the clusters pro-
duced by HipMCL against the protein families in SCOPe
dataset. Particularly, we use weighted precision and recall as
defined in the protein clustering studies [27]. The weighted
precision metric penalizes clusters that contain proteins from
multiple families while the weighted recall metric penalizes
clusters that are split into multiple families. Figure 17 shows
the values obtained by the compared schemes in terms of
weighted precision and recall. As an important note, the
precision range in Figure 17 is between 0.65 and 0.90, and
the recall range is between 0.48 and 0.62.

Figure 17 shows that one can use different number of
substitute k-mers to adjust the sensitivity, where increasing the
number of substitute k-mers increases recall at the expense of
precision. In the figure, the range in which the precision and
recall vary is somewhat limited. We note that a more compre-
hensive spectrum can be obtained by altering the parameters
given to SeqAn. Except for PASTIS-SW-NS, PASTIS shows
competitive performance compared to MMseqs2 and LAST.

Comparing SW and XD with fixed parameters except for the
alignment mode shows that utilizing SW achieves slightly bet-
ter recall at the expense of slightly, or sometimes substantially,
worse precision. A second important point is that NS proves
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to be viable compared to the ANI score. This is especially the
case for PASTIS with XD alignment and MMseqs2. However,
PASTIS with SW alignment seems to be more sensitive to
NS. Notably, we do not apply any cut-off threshold when
using NS in the similarity graph. Hence, while XD may be
able to eliminate some of the low-score alignments, this is
not the case for SW. Alignment libraries aside, the clustering
algorithm (Markov Clustering in our case) may also be playing
an important role in closing the quality gap between different
weighting schemes used for the edges in the similarity graph.

The common k-mer threshold causes a 2%-3% loss in recall.
This loss is arguably small when weighted against the benefits
it brings in runtime. In many cases, applying this threshold
results in more than 90% reduction in the alignments PASTIS
performs and leads to drastic gains in parallel runtime.

In Table II, we investigate the effect of directly using con-
nected components of the similarity graph as protein families.
Here, the alignments with less than 30% ANI score and less
than 70% coverage are eliminated. The connected components
might be appealing to avoid running an expensive clustering
algorithm. Components generated using MMseqs2 and LAST
exhibit higher quality than the ones generated by PASTIS. On
one hand, using substitute k-mers without clustering causes
substantial precision penalty as the number of connected com-
ponents gets very small with increasing number of substitute
k-mers. Therefore, clustering is indispensable when substitute
k-mers are used within PASTIS. On the other hand, PASTIS
with exact k-mers may be a viable option when clustering
cannot be performed.
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from left to right as 100, 300, 500.

VII. CONCLUSION

We developed a scalable approach to protein similarity
search within our software PASTIS. PASTIS harnesses the
expressive power of sparse matrix operations and those oper-
ations’ strong parallel performance to enable construction of
huge protein similarity networks on thousands of nodes in par-
allel. The substitute k-mers in PASTIS facilitate better recall
and enables controlling sensitivity. With several optimizations,
PASTIS illustrates how linear algebra can provide a flexible
medium to tackle problems in computational biology that deal
with huge datasets and require resources that cannot be met
with small- or medium-scale clusters.

Unlocking the true power of distributed-memory supercom-
puters for protein sequence similarity search will help acceler-
ate the mining of functional and taxonomical diversity of the
protein world, especially when analyzing large metagenomic
datasets. Identification of biosynthetic gene clusters [28], dis-
covery of novel protein families [29], uncovering the world of
viruses [30], and routine functional [31] and taxonomical [32]
classification from large metagenomic samples all depend
on the ability to perform protein sequence similarity search
at scale. PASTIS is a step towards enabling new biological
discoveries at extreme scale using the fastest supercomputers.
One of the next major milestones in PASTIS development is
to take advantage of accelerators such as GPUs in distributed-
memory protein sequence similarity search.

As future work, we first plan to address the issues related to
memory requirements of PASTIS as it occasionally runs out of
memory at small node counts. A direction in this regard is the
partial formation of the output matrix and once this partial
information is obtained to run the alignment and free the
corresponding memory. Another future avenue is to perform

TABLE II
CONNECTED COMPONENTS AS PROTEIN FAMILIES.

Number of substitute k-mers

0 10 25 50

PASTIS-SW precision 0.67 0.38 0.28 0.22
recall 0.67 0.77 0.83 0.87

PASTIS-XD precision 0.69 0.55 0.46 0.39
recall 0.64 0.69 0.73 0.76

Sensitivity

1 5.7 7.5

MMseqs2 precision 0.77 0.75 0.75
recall 0.60 0.71 0.72

Max initial matches

100 200 300

LAST precision 0.76 0.76 0.76
recall 0.68 0.70 0.70

an analysis of k-mers in a pre-processing stage to see whether
some of them can be eliminated without sacrificing recall too
much. We also plan to conduct an performance analysis of
enhanced pipeline with clustering.
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