
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Architectures for stateful data-intensive analytics

Permalink
https://escholarship.org/uc/item/6bg2j75n

Author
Logothetis, Dionysios

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bg2j75n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Architectures for Stateful Data-intensive Analytics

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Dionysios Logothetis

Committee in charge:

Kenneth Yocum, Chair
Rene Cruz
Alin Deutsch
Massimo Franceschetti
Alex Snoeren
Geoffrey M. Voelker

2011

Copyright

Dionysios Logothetis, 2011

All rights reserved.

The dissertation of Dionysios Logothetis is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . xi

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 The “big data” promise 1
1.2 Data-intensive computing 3
1.3 Stateful data-intensive computing 5

1.3.1 An example: web crawl queue 6
1.3.2 Challenges in managing state 7

1.4 Architectures for stateful analytics 8
1.4.1 Continuous ETL analytics 9
1.4.2 Stateful bulk data processing 10

1.5 Contributions . 11
1.6 Outline . 12

Chapter 2 Background and related work 14
2.1 Groupwise processing . 14
2.2 The MapReduce programming model 15
2.3 MapReduce architecture 18

2.3.1 Program execution 18
2.3.2 Fault tolerance 20

2.4 Stateful analytics on unstructured data 21
2.4.1 Automatic incrementalization 21
2.4.2 Iterative analytics 22
2.4.3 Models for incremental analytics 23

Chapter 3 Stateful online analytics . 25
3.1 Design . 27

3.1.1 Continuous MapReduce 29
3.1.2 Program execution 29
3.1.3 Using in-network aggregation trees 31

iv

3.1.4 Efficient window processing with panes 32
3.2 Fidelity-latency tradeoffs 36

3.2.1 Measuring data fidelity 36
3.2.2 Using C2 in applications 38
3.2.3 Result eviction: trading fidelity for availability . . 41

3.3 Related work . 43
3.3.1 “Online” bulk processing 43
3.3.2 Log collection systems 44
3.3.3 Load shedding in data stream processors 44
3.3.4 Distributed aggregation 45

3.4 Acknowledgments . 45

Chapter 4 An architecture for in-situ processing 46
4.1 Implementation . 46

4.1.1 Building an in-situ MapReduce query 47
4.1.2 Map and reduce operators 48
4.1.3 Load cancellation and shedding 51
4.1.4 Pane flow control 52
4.1.5 MapReduce with gap recovery 52

4.2 Evaluation . 53
4.2.1 Scalability . 54
4.2.2 Load shedding . 55
4.2.3 Failure eviction 57
4.2.4 Using C2 . 58
4.2.5 In-situ performance 67

4.3 Acknowledgments . 69

Chapter 5 Stateful bulk processing . 70
5.1 A basic translate operator 71
5.2 Continuous bulk processing 73
5.3 Support for graph algorithms 76
5.4 Summary of CBP model 77
5.5 Applications . 79

5.5.1 Mining evolving graphs 79
5.5.2 Clustering coefficients 80
5.5.3 Incremental PageRank 82

5.6 Related work . 84
5.7 Acknowledgments . 85

Chapter 6 CBP design and implementation 86
6.1 Controlling stage inputs and execution 87
6.2 Scheduling with bottleneck detection 87
6.3 Failure recovery . 88

v

6.4 CBP on top of Map-Reduce 89
6.4.1 Incremental crawl queue example 90
6.4.2 Increment management 91

6.5 Direct CBP . 92
6.5.1 Incremental shuffling for loopback flows 92
6.5.2 Random access with BIPtables 93
6.5.3 Multicast and broadcast routing 94
6.5.4 Flow separation in Map-Reduce 95

6.6 Evaluation . 96
6.6.1 Incremental crawl queue 96
6.6.2 BIPtable microbenchmarks 99
6.6.3 Clustering coefficients 100
6.6.4 PageRank . 101

6.7 Acknowledgements . 103

Chapter 7 Conclusion . 104

Bibliography . 108

vi

LIST OF FIGURES

Figure 1.1: An illustration of the evolution from traditional data processing
to “big-data” analytics, including the evolution in the relational
data management technology. 3

Figure 1.2: Groupwise processing requires users to specify: (i) how to group
input records, and (ii) the operation to perform on each group.
To group input records, users specify a function that extracts a
grouping key for every record. To specify the operation, users
implement a generic operator that receives as input the grouping
key and all the input records that share the same key. 4

Figure 1.3: Groupwise processing is a core abstraction in DISC systems.
Figure (a) shows the semantics of a groupwise count operation.
Here input URLs are grouped according to the domain they
belong to and the operation on each group is a count. Figure (b)
illustrates the physical execution. Grouping allows independent
operations to execute in parallel. 5

Figure 1.4: A dataflow for computing a web crawl queue. Stateful stages
are labeled with an S. 6

Figure 1.5: An incremental approach to update the URL counts in the crawl
queue dataflow. This approach re-uses previously computed
URL counts. 7

Figure 1.6: Stateful groupwise processing extends the groupwise processing
construct by integrating state in the model. A user-specified
operation now has access to state that can be used to save and
re-use computations. 9

Figure 2.1: A MapReduce computation is expressed using two main func-
tions. The Map is used to extract information from raw data
and determine the partitioning of data into groups. The Re-
duce function is used to aggregate data in the same group. The
Combine function is used as an optimization to reduce the size
of the Map output. 16

Figure 2.2: A MapReduce example program that counts word occurrences
in text. The Map function receives as input the document text
and extracts words from it. For every word, it emits an in-
termediate key-value pair, with the key set equal to word and
the value set to “1”, indicating a single occurrence. For ev-
ery intermediate key, the Reduce function counts the number of
occurrences of the corresponding word. 16

vii

Figure 2.3: The execution of a MapReduce program. Data flow between
Map and Reduce tasks. Map tasks process input splits in par-
allel and output intermediate key-value pairs. Intermediate key-
value pairs from each Map output are partitioned across multi-
ple Reduce tasks according to their key. Reduce tasks are also
executed in parallel. 19

Figure 3.1: The in-situ MapReduce architecture avoids the cost and latency
of the store-first-query-later design by moving processing onto
the data sources. 27

Figure 3.2: This illustrates the physical instantiation of one iMR MapRe-
duce partition as a multi-level aggregation tree. 30

Figure 3.3: iMR nodes process local log files to produce sub-windows or
panes. The system assumes log records have a logical timestamp
and arrive in order. 32

Figure 3.4: iMR aggregates individual panes Pi in the network. To produce
a result, the root may either combine the constituent panes
or update the prior window by removing an expired pane and
adding the most recent. 34

Figure 3.5: iMR extends the traditional MapReduce interface with an un-
combine function that allows the specification of differential
functions. The uncombine function subtracts old data and the
combine function adds new data to produce the final result. . . 35

Figure 3.6: C2 describes the set of panes each node contributes to the win-
dow. Here we show two different ways in which C2 represents
50% of the total data: all the nodes process half their data or
half the nodes process all their data. 36

Figure 4.1: Each iMR job consists of a Mortar query for the map and a
query for the reduce. Here there are two MapReduce partitions
(r = 2), which result in two aggregation trees. A word count
example illustrates partitioning map output across multiple re-
duce operators. 48

Figure 4.2: Data processing throughput as the number of workers and roots
increases. When the root of the query becomes the bottleneck,
iMR scales by partitioning data across more roots. 54

Figure 4.3: Impact of load shedding on fidelity and latency for a word count
job under maximum latency requirement and varying worker load. 56

Figure 4.4: Application goodput as the percentage of failed workers in-
creases. Failure eviction delivers panes earlier, improving good-
put by up to 64%. 57

viii

Figure 4.5: The performance of a count statistic on data uniformly dis-
tributed across the log server pool. The relative count error
drops linearly as we include more data. Because of the uni-
form data distribution, both the count and the frequency do
not depend on the C2 specification. 59

Figure 4.6: The performance of a count statistic on data skewed across
the log server pool. Because of the spatial skew, enforcing ei-
ther random pane selection or spatial completeness allows the
system to better approximate count frequencies than temporal
completeness, and lower result latency. 60

Figure 4.7: Estimating user session count using iMR and different C2 poli-
cies. We preserve the original data distribution, where clicks
from the same user may exist on different servers. Random
pane selection and temporal completeness provide higher data
fidelity and sample more userIDs than when enforcing spatial
completeness. 62

Figure 4.8: Estimating user session count using iMR and different C2 poli-
cies. Here we distribute data so that clicks from the same user
exist on a single server. Temporal completeness returns ses-
sions that are accurate, but samples the smallest percentage of
userIDs. Instead, random sampling can sample a larger space
of userIDs. 63

Figure 4.9: (a) Results from the Kolmogorov-Smirnov test illustrate the
impact of reduced data fidelity on the histograms reported for
each HDFS server. (b) For HDFS anomaly detection, random
and spatial completeness C2 improve latency by at least 30%. . 66

Figure 4.10: Fidelity and Hadoop performance as a function of the iMR pro-
cess niceness. The higher the niceness, the less CPU is allocated
to iMR. Hadoop is always given the highest priority, nice = 0. . 68

Figure 5.1: The progression from a stateless groupwise processing primi-
tive to stateful translation, T (·), with multiple inputs/outputs,
grouped state, and inner groupings. 71

Figure 5.2: Translator pseudocode that counts observed URLs. The trans-
lator reads and updates the saved count. 73

Figure 5.3: A stage implementing symmetric set difference of URLs from
two input crawls, A and B. 74

Figure 5.4: Users specify per-input flow RouteBy functions to extract keys
for grouping. Special keys enable the broadcast and multicast
of records to groups. Here we show that multicast address mcX

is bound to keys k1 and k3. 77
Figure 5.5: Incremental clustering coefficient dataflow. Each node main-

tains as state its adjacency list and its “friends-of-friends” list. . 79

ix

Figure 5.6: The clustering coefficients translator adds new edges (2-3), sends
neighbors updates (4-6), and processes those updates (7-10). . 80

Figure 5.7: Incremental PageRank dataflow. The loopback flows are used
to propagate messages between nodes in the graph. 82

Figure 5.8: Pseudocode for incremental PageRank. The translator acts as
an event handler, using the presence of records on each loopback
flow as an indication to run a particular phase of the algorithm. 83

Figure 6.1: The Map-Reduce jobs that emulate the CBP incremental crawl
queue dataflow. 91

Figure 6.2: Cumulative execution time with 30GB and 7.5GB increments.
The smaller the increments, the greater the gain from avoiding
state re-shuffling. 97

Figure 6.3: The performance of the incremental versus landmark crawl queue.
The direct CBP implementation provides nearly constant runtime. 98

Figure 6.4: Running time using indexed state files. BIPTable outperforms
sequential access even if accessing more than 60% of state. . . . 99

Figure 6.5: Incremental clustering coefficient on Facebook data. The mul-
ticast optimization improves running time by 45% and reduces
data shuffled by 84% over the experiment’s lifetime. 100

Figure 6.6: Incremental PageRank. (a) Cumulative running time of our in-
cremental PageRank translator adding 2800 edges to a 7 million
node graph. (b) Cumulative data moved during incremental
PageRank. 102

x

LIST OF TABLES

Table 5.1: Five functions control stage processing. Default functions exist
for each except for translation. 78

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Kenneth Yocum,

for his guidance during my graduate studies. I am grateful for his support over

these years and for always trying to teach me how to become a better researcher.

I have learned a lot from him.

I would like to thank all the members of my thesis committee for accepting

to evaluate this work. I want to specially thank Dr. Alin Deutsch, Dr. Geoff

Voelker, and Dr. Alex Snoeren for their advice and valuable feedback on many

aspects of my research. I would also like to acknowledge Chris Olston and Ben

Reed for their contribution to a large body of this work. Finally, I would like to

thank my colleagues Chris Trezzo and Kevin Webb for their collaboration. It was

great fun working with them.

Chapters 3 and 4, in part, are reprints of the material published in the Pro-

ceedings of the USENIX Annual Technical Conference 2011. Logothetis, Dionysios;

Trezzo, Chris; Webb, Kevin C.; Yocum; Ken. The dissertation author was the pri-

mary investigator and author of this paper.

Chapters 5 and 6, in part, are reprints of the material published in the Pro-

ceedings of the ACM Symposium on Cloud Computing 2010. Logothetis, Diony-

sios; Olston, Christopher; Reed, Benjamin; Webb, Kevin C.; Yocum Ken. The

dissertation author was the primary investigator and author of this paper.

xii

VITA

2004 Diploma in Computer Science and Engineering, National Tech-
nical University of Athens, Greece

2007 Master of Science in Computer Science, University of Cali-
fornia, San Diego

2011 Doctor of Philosophy in Computer Science, University of Cal-
ifornia, San Diego

PUBLICATIONS

Dionysios Logothetis, Chris Trezzo, KevinWebb, Kenneth Yocum, “In-situ MapRe-
duce for Log Processing”, USENIX Annual Technical Conference, Portland, OR,
June 2011.

Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin Webb, Kenneth
Yocum, “Stateful Bulk Processing for Incremental Analytics”, 1st ACM Sympo-
sium on Cloud Computing, Indianapolis, IN, June 2010

Dionysios Logothetis, Kenneth Yocum, “Data Indexing for Stateful, Large-scale
Data Processing”, 5th International Workshop on Networking Meets Databases,
Big Sky, MT, October 2009

Dionysios Logothetis, Kenneth Yocum, “Ad-hoc Data Processing in the Cloud”,
34th International Conference on Very Large Databases (demo), Auckland, New
Zealand, August 2008

Emiran Curtmola, Alin Deutsch, Dionysios Logothetis, K.K. Ramakrishnan, Di-
vesh Srivastava and Kenneth Yocum, “XTreeNet: Democratic Community Search”,
34th International Conference on Very Large Databases (demo), Auckland, New
Zealand, August 2008

Dionysios Logothetis, Kenneth Yocum, “Wide-Scale Data Stream Processing”,
USENIX Annual Technical Conference, Boston, MA, June 2008.

Yang-Suk Kee, Dionysios Logothetis, Richard Huang, Henri Casanova, Andrew
Chien, “Efficient Resource Description and High Quality Selection for Virtual
Grids”, 5th International Symposium on Cluster Computing and the Grid, Cardiff,
UK, May 2005

xiii

ABSTRACT OF THE DISSERTATION

Architectures for Stateful Data-intensive Analytics

by

Dionysios Logothetis

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Kenneth Yocum, Chair

The ability to do rich analytics on massive sets of unstructured data drives

the operation of many organizations today and has given rise to a new class of

data-intensive computing systems. Many of these analytics are update-driven, they

must constantly integrate new data in the analysis, and a fundamental requirement

for efficiency is the ability to maintain state. However, current data-intensive

computing systems do not directly support stateful analytics, making programming

harder and resulting in inefficient processing.

This dissertation proposes that state become a first-class abstraction in

data-intensive computing. It introduces stateful groupwise processing, a program-

ming abstraction that integrates data-parallelism and state, allowing sophisticated,

easily parallelizable stateful analytics. The explicit modeling of state abstracts the

xiv

details of state management, making programming easier, and allows the runtime

system to optimize state management. This work investigates the use of stateful

groupwise processing in two distinct phases in the data management lifecycle: (i)

the extraction of data from its sources and online analysis, and (ii) its storage

and follow-on analysis. We propose two complementary architectures that manage

data in these two phases.

This work proposes In-situ MapReduce (iMR), a model and architecture for

efficient online analytics. The iMR model combines stateful groupwise processing

with windowed processing for analyzing streams of unstructured data. To allow

timely analytics, the iMR model supports reduced data fidelity through partial

data processing and introduces a novel metric for the systematic characterization

of partial data. For efficiency, the iMR architecture moves the data analysis from

dedicated compute clusters onto the sources themselves, avoiding costly data mi-

grations.

Once data are extracted and stored, a fundamental challenge is how to

write rich analytics to gain deeper insights from bulk data. This work introduces

Continuous Bulk Processing (CBP), a model and architecture for sophisticated

dataflows on bulk data. CBP uses stateteful groupwise processing as the building

block for expressing analytics, lending itself to incremental and iterative analytics.

Further, CBP provides primitives for dataflow control that simplify the compo-

sition of sophisticated analytics. Leveraging the explicit modeling of state, CBP

executes these dataflows in a scalable, efficient, and fault-tolerant manner.

xv

Chapter 1

Introduction

1.1 The “big data” promise

Data is emerging as a new science, a result of the unprecedented increase

in the amount of digital information produced today and the realization of in-

novative ways to extract value from it. Technological advances have led to an

abundance of digital information sources that constantly generate data: Inter-

net users producing valuable content (browsing history, e-mail exchanges, online

purchases, social network interactions etc.), ubiquitous digital devices generating

information (mobile phones, cameras, RFID sensors etc.), and advanced scientific

instruments producing hundreds of terabytes of data [48]. The information hidden

in this vast amount of data has the potential to transform human endeavors, like

science, business, and finance, in ways that were previously unimagined. For in-

stance, public health organizations now monitor trends in search engine queries to

detect flu epidemics [40]. Social networks analyze user interactions to do targeted

advertising [27] and retailers track sales data to understand consumer behavior [63],

recommend products, and increase profit. Banks analyze financial and personal

information to detect fraud [24], while stock traders base their decision making on

the analysis of real-time financial data [78].

Realizing this potential with traditional data management approaches has

been challenging. For decades, Database Management Systems (DBMSs) have

been the dominant approach for data storage and analysis. Databases were de-

1

2

signed to store data using well-defined structure, a schema, carefully determined in

advance. DBMSs model data as relations [30], essentially tables, and typical uses

of a DBMS include the transactional access of these data to ensure data integrity.

For instance, banks use DBMSs to store tables of bank accounts, and guarantee

account information integrity (e.g. during concurrent account withdrawals). Rela-

tional algebra [30] and the SQL language have been the main tool for manipulating

this type of data. The strength of SQL is mainly in updating or retrieving data

from tables and producing simple reports through data summaries. In fact, years

of work on parallel databases and relational query optimization have resulted in

DBMSs that can store and analyze large amounts of structured data efficiently.

However, meeting the promise of big data depends on a fundamentally dif-

ferent kind of analysis. First, there is a growing demand for complex analytics on

unstructured data, such as text (e.g. web pages, e-mails, server logs), video (e.g.

surveillance videos, YouTube uploads) and images (e.g. photo albums, MRI scans,

satellite images). Such data are often difficult to represent as relational tables,

the core abstraction in DBMSs. Furthermore, transactional access is often un-

necessary since these data are archived and analyzed in bulk, and these analytics

may not be expressible with relational algebra [72, 35]. For instance, several graph

analyses found in social networks or web mining applications are hard and some-

times impossible to express using relational algebra [80]. Other such applications

include machine learning [29, 64] and natural language processing [20] algorithms.

A constrained programming model may hinder users from unlocking the potential

value of their data through sophisticated analysis [72, 71].

Second, there has been an enormous increase in the scale of the data, with

scientists estimating that digital data are growing at least as fast as Moore’s

Law [12]. Studies have shown that this unstructured data is accumulating in

data centers at three times the rate of traditional transaction-based data [65]. For

instance, Facebook reported in 2009 that it collected data at a rate of 15TB per

day [59], a number that within less than two years has increased to 130TB per

day [49], while YouTube integrates 24 hours of new video a minute [4]. Traditional

DBMSs often cannot manage data at this scale, or in some cases cannot do so in

3

D
e

p
th

 o
f
a

n
a

ly
s
is

Reporting

Basic analytics

Big data analytics

GB TB PB

Relational data,

transcations
DBMS

Data summaries

Parallel DBMS

Unstructured data,

rich, single-pass

analytics DISC

Data warehouses

Dynamic data,

continuous/iterative

analytics
Stateful

DISC

EB+

Figure 1.1: An illustration of the evolution from traditional data processing to
“big-data” analytics, including the evolution in the relational data management
technology.

a cost-efficient way. Figure 1.1 shows this evolution on data analysis, from sim-

ple reports on small-scale data to what we call today “big data analytics”: rich

analytics on very large unstructured data.

1.2 Data-intensive computing

The emergence of big data analytics has given rise to a new class of data-

intensive scalable computing (DISC) [21] systems that address the above chal-

lenges. Systems like MapReduce [34], Hadoop [8] and Dryad [46] are representative

of this class. These systems have turned a challenge, the scale of the data, into

an advantage by enabling users to obtain deep insights from large data. They are

used for a wide variety of data analytics by organizations ranging from educational

institutions and small enterprises to large Internet firms that manage petabytes of

data [3, 34, 46].

These systems assume no structure in the data and support sophisticated

analytics. Unlike the declarative model of the SQL language, in these models users

express the application logic using general-purpose languages, like Java, that allow

arbitrary data structures and computations. This model is more powerful and

4

group (rin) → key

process (key, {rin}) → rout

Figure 1.2: Groupwise processing requires users to specify: (i) how to group
input records, and (ii) the operation to perform on each group. To group input
records, users specify a function that extracts a grouping key for every record. To
specify the operation, users implement a generic operator that receives as input
the grouping key and all the input records that share the same key.

intuitive for a variety of applications. It has been used to implement analytics like

machine learning [5, 64], natural language translation [20, 58] and graph mining [31,

51].

At the core of these models is groupwise processing, a programming abstrac-

tion that makes it easy for users to express the data-parallelism inherent in many

analytics. Many analyses can be expressed as the same computation on multiple

independent groups of data. Groupwise processing requires users to specify only

(i) how to partition the data into groups, and (ii) the computation to perform

on each group. Users specify these operations through two functions illustrated

in Figure 1.2. For instance, search engines extract URL links from web pages,

group them according to their URL domain, and count the URLs in each group

to measure the popularity of different URL domains. Figure 1.3(a) illustrates this

groupwise count operation.

This abstraction allows these DISC systems to analyze massive amounts of

data by distributing the computation across large compute clusters. For instance,

Figure 1.3(b) shows how groupwise processing divides the count operation to in-

dependent operations that can execute in parallel on separate CPUs. As opposed

to using reliable, high-performance hardware, these systems scale by using pools

of commodity machines in a fault-tolerant manner. They employ a simple fault

tolerance model that can restart individual computations when machines fail. This

allows DISC systems to scale to virtually any amount of data simply by employing

more machines.

5

cnn.com

nbc.com/index.htm

fox.com

cnn.com/index.htm

nbc.com

Groupwise count

per URL domain

cnn.com, 2

fox.com, 1

nbc.com, 2

(a) Logical representation of a groupwise count

nbc.com

nbc.com/index.htm
nbc.com, 2

cnn.com

cnn.com/index.htm

fox.com

Count

Count

Count

cnn.com, 2

fox.com, 1

CPU 0

CPU 1

CPU 2

(b) Parallel evaluation of the groupwise count on multiple CPUs

Figure 1.3: Groupwise processing is a core abstraction in DISC systems. Figure
(a) shows the semantics of a groupwise count operation. Here input URLs are
grouped according to the domain they belong to and the operation on each group is
a count. Figure (b) illustrates the physical execution. Grouping allows independent
operations to execute in parallel.

1.3 Stateful data-intensive computing

While DISC systems can scale to large data, it is becoming apparent that

scalability alone is not sufficient for certain applications. Many applications must

now manage large data by following a fundamentally different programming ap-

proach. As the rightmost part of Figure 1.1 shows, several applications no longer

view data analytics as a “one-shot” process, rather as a process that must con-

stantly update the analysis. For instance, search engines must crawl new web pages

and update their indices to deliver up-to-date results, while iterative graph min-

ing analytics, like PageRank [62], must repeatedly refine the result of the analysis

across iterations.

However, current DISC systems are not designed for update-driven analyt-

ics, often resulting in inefficient data processing. For instance, these DISC systems

can re-generate a search index from the entire web corpus simply by adding com-

6

count

links

extract

links

merge score

Crawled

pages

Crawl

queue

S

S

Figure 1.4: A dataflow for computing a web crawl queue. Stateful stages are
labeled with an S.

pute power when more pages are crawled. Processing petabytes of data only to

update a small part of the index each time is inefficient [66]. This approach dis-

cards prior computation, wasting CPU cycles and network resources, and increases

energy consumption and monetary cost.

Instead, to run these analytics efficiently, users have to program these ap-

plications in a different manner. Critical to the efficiency of these analytics is

the ability to maintain state, derived data that persist and are re-used across ex-

ecutions of the analysis. Stateful computations arise in at least three kinds of

analytics: incremental, continuous, and iterative. For instance, analytics that are

amenable to incremental computation re-use previous computations (e.g. the pre-

viously computed search index) to update the analysis instead of recomputing from

scratch when new data arrive. Iterative analytics refine the result of the analysis

by repeatedly combining the same input data with the results of prior iterations.

Examples of such iterative applications include PageRank [62], data clustering [37],

social network analytics [77], and machine learning algorithms [5].

1.3.1 An example: web crawl queue

To illustrate the importance of state, we use a toy web data-mining applica-

tion. In general, such analyses consist of multiple processing stages that comprise

a larger dataflow. In particular, we use a crawl queue, a common and important

dataflow in search engines that determines the crawl frontier, the pages to crawl.

At a high-level, the dataflow parses crawled web pages to extract URL links and

counts the frequency of these extracted URLs. Subsequently, it compares the ex-

7

nbc.com, 3

Stateful

count
cnn.com, 2

fox.com, 1

nbc.com, 2
{

{ nbc.com/main.htm

state

new data
cnn.com, 2

fox.com, 1

nbc.com, 2
{updated

state

Figure 1.5: An incremental approach to update the URL counts in the crawl
queue dataflow. This approach re-uses previously computed URL counts.

tracted URLs against the already crawled pages and outputs uncrawled pages with

the highest score (URL frequency). Figure 1.3.1 shows the different stages of this

dataflow.

Since the web changes over time (e.g. users upload new pages), a search

engine must continuously run this dataflow. This means, for instance, updating

all the counts computed by the count links stage. One approach is to repeatedly

use the same dataflow every time new pages are crawled, re-processing all web

pages from scratch. However, this approach is inefficient since a large fraction of

the analysis may not be affected by newly crawled pages. In the count links stage,

only a few counts may be updated.

Instead, a user may program such an application to re-use prior results by

maintaining previously computed URL counts as state. Figure 1.3.1 shows this

approach. This way, when new web pages become available for processing, we

can simply increment the counts of the affected URLs instead of re-computing all

counts from scratch. Such a stateful approach produces the same result, reduces

the processing time and uses fewer compute resources.

1.3.2 Challenges in managing state

Stateful analytics present new data management challenges. Current DISC

systems where designed for “one-shot” processing as they did not consider update-

driven computations. Attempting to retrofit stateful programming in these systems

has the following implications.

• State management: To turn a stateless application into a stateful one, users

often modify their analysis to manually manage state by storing it to external stor-

8

age systems, like distributed file systems or databases. This makes programming

more error-prone and less portable, since the details of state management are not

abstracted from the user. The user has to take into consideration the specifics of

the storage system, which may vary among computing environments. For instance,

porting an application to a different environment depends on the availability of the

same storage systems.

• Fault tolerance: While DISC systems are designed to handle failures trans-

parently, storing state to a storage system external to the processing system may

require extra effort from the user to handle storage failures. This adds program-

ming complexity and distracts users from specifying the data processing logic.

• Dataflow orchestration: To develop continuous dataflows, applications must

manually orchestrate these potentially complex multi-step computations. For in-

stance, as new data arrive, applications must decide when to execute each stage,

how much data to process, and synchronize execution across stages. Implementing

ad-hoc synchronization logic on large dataflows can be an error-prone task. In-

stead, this task should be simplified and automated through programmatic control.

• Efficiency: Retrofitting stateful programming techniques in systems that are

not designed for this purpose results in inefficient processing. As pointed out in

the example in Section 1.3.1, often only a small fraction of the state needs to

be updated when new data arrive. However, existing DISC systems treat state

just like any other data input. As they repeatedly execute the analysis, they

must re-read and re-process the entire state. This wastes resources and results in

processing time that is proportional to the size of the constantly growing state, not

the amount of changes to the state. Instead, to allow efficient processing a system

should directly support stateful analytics.

1.4 Architectures for stateful analytics

This dissertation addresses the above challenges in large-scale stateful ana-

lytics. This work aims to build systems for stateful analytics in different scenarios

9

group (rin) → key

process (key, stateold, {rin}) → (statenew, rout)

Figure 1.6: Stateful groupwise processing extends the groupwise processing con-
struct by integrating state in the model. A user-specified operation now has access
to state that can be used to save and re-use computations.

that process unstructured data. The goal of this dissertation is to design (i) pro-

gramming models that allow users to easily write sophisticated stateful analytics

and (ii) scalable, efficient and fault-tolerant runtime systems.

This dissertation proposes that state become a first-class abstraction, and

introduces stateful groupwise processing, a programming abstraction that inte-

grates data-parallelism and state. Figure 1.4 shows the integration of state in

the groupwise processing model. While groupwise processing hides the details of

parallel execution, stateful groupwise processing abstracts the details of state man-

agement. Tasks like reliably storing and accessing state are left to the underlying

runtime system, making stateful applications easier to program and more portable.

At the same time, by explicitly modeling state, this abstraction gives the system

the opportunity to optimize state management, resulting in reduced processing

times and efficient resource usage.

In this dissertation, we explore the application of stateful groupwise pro-

cessing in two distinct phases of the data management lifecycle: (i) the extraction

of data from the sources and online analysis, and (ii) the storage and follow-on

analysis. The analytics in both phases present the general challenges outlined

above: they must perform sophisticated, update-driven analysis in a scalable, ef-

ficient, and fault-tolerant manner. However, the analytics in these scenarios serve

different purposes and admit different solutions.

1.4.1 Continuous ETL analytics

The first phase in data analytics is the extraction of data from their sources

and preparation for storage and follow-on analysis, what is often referred to as

an Extract-Transform-Load (ETL) process [69, 76]. The ETL process collects raw

data from sources, like click logs from web servers and news feeds from social

10

network servers. Such raw data must usually undergo an initial analysis that

includes filtering, transforming data into an appropriate format, and summarizing

data before they are stored.

The ETL process is often used to obtain quick insights by analyzing data

in an online fashion [44, 32]: online analytics often require the analysis to return

results before all data have been collected, to provide timely results. Online analy-

sis is important for applications like failure detection that must be responsive even

when not all data are available. A fundamental challenge in online analytics is the

ability to assess the accuracy of the analysis when data are incomplete. At the

same time, unlike “one-shot” batch processing, the ETL process must continuously

update the result of the analysis as data are generated. A challenge here is how to

program ETL analytics on data streams.

To address these challenges, this dissertation proposes In-situ MapReduce

(iMR), a model and architecture for online ETL analytics. iMR (i) provides a

programming model that combines stateful groupwise processing with windowed

processing for unstructured data and (ii) introduces a novel metric that helps users

assess the accuracy of their analysis in online analytics and allows applications to

trade accuracy for timeliness, and (iii) proposes an architecture for moving ETL

analytics from dedicated compute clusters to the data sources themselves to avoid

costly data migration.

1.4.2 Stateful bulk data processing

Once data are collected by the ETL process, users run analytics to obtain

deeper insights. In this phase, the interest shifts from the ability to obtain quick

insights toward the ability to do richer analysis on bulk data. Unlike ETL ana-

lytics that filter or summarize data, applications now run sophisticated dataflows

that must continuously integrate large batches of data in the analysis. Iterative

analytics, like PageRank [62], must make multiple passes over large data sets. A

fundamental challenge that programmers face now is how to program these sophis-

ticated analytics and how to execute them efficiently on bulk data.

To address these challenges, this dissertation introduces Continuous Bulk

11

Processing (CBP), a programming model and architecture for sophisticated stateful

analytics. CBP (i) introduces a model for stateful groupwise processing on bulk

data, (ii) provides primitives that allow users to orchestrate sophisticated stateful

dataflows, and (iii) introduces an architecture that leverages the programming

model to execute these dataflows in a scalable, efficient, and fault-tolerant manner.

1.5 Contributions

In summary, this dissertation presents two complementary architectures

that incorporate state to address the distinct challenges in the two phases of data

management. This dissertation makes the following contributions:

• State as a first-class abstraction: This dissertation introduces stateful group-

wise processing, an abstraction that integrates data-parallelism and state, allowing

users to write sophisticated, easily parallelizable stateful analytics. By abstract-

ing the notion of state, users no longer have to manage state manually, and the

underlying system can optimize state management.

• Model for online ETL analytics: This dissertation presents In-situ MapRe-

duce (iMR), a programming model that supports stateful groupwise processing

tailored for continuous ETL analytics on unstructured data. The iMR model ex-

tends the MapReduce [34] programming model with a sliding window construct,

a concept that arises naturally in analytics on data streams. By combining state

and windows, the model allows efficient processing through incremental updates

to the analysis.

• Architecture for in-situ processing: The iMR architecture processes data

in-place, obviating the costly and often unnecessary migration of data from their

sources to centralized compute clusters. This approach reduces resource usage and

allows faster analysis by processing data as they are generated. We evaluate our in-

situ architecture and show how it can provide efficient analysis in real application

scenarios.

12

• Metric for systematic characterization of incomplete data: To support

online analysis, this dissertation introduces a novel fidelity metric that (i) allows

users to assess the impact of incomplete data on the fidelity of the analysis and (ii)

provides a flexible way to express fidelity requirements and trade fidelity for result

availability. Further, we provide general guidelines on using the metric. Through

our evaluation we validate its usefulness in real applications.

• Model for stateful bulk data analytics: The core component of Continuous

Bulk Processing (CBP) is a generic stateful groupwise operator that allows users

to write incremental and iterative analytics. By abstracting state management,

CBP simplifies programming. CBP extends the concept of grouping with new

constructs to efficiently support a wide range of iterative analytics, such as graph

mining. Further, the CBP model provides primitives that allow the composition

and orchestration of sophisticated stateful dataflows.

• Efficient stateful groupwise processing: The fundamental mismatch be-

tween current DISC models and stateful computations results in inefficient pro-

cessing. The CBP runtime leverages the explicit modeling of state, to optimize

state management. Through a series of optimizations CBP improves processing

times and reduces computation and network usage. By comparing against state-

of-the-art DISC systems, our evaluation validates the benefits in performance and

efficiency that the explicit modeling of state offers. In many cases, CBP reduces

the running time and the network usage by at least 50%.

1.6 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents

basic concepts and systems that this work builds upon, like groupwise processing

and DISC architectures, and reviews related work on stateful analytics. Chap-

ter 3 introduces the iMR programming model for continuous ETL analytics, while

Chapter 4 presents the implementation and evaluation of the iMR prototype. In

Chapter 5, we introduce the CBP model for stateful analytics on bulk data. Chap-

13

ter 6 describes the design and implementation of CBP, as well as an evaluation

with real-world applications. Finally, Chapter 7 summarizes the dissertation.

Chapter 2

Background and related work

To provide scalable analytics, this work builds upon the concept of data-

parallelism and the architectural principles of DISC systems, like MapReduce and

Hadoop. This chapter reviews the basic programming abstractions and architec-

tural principles that allow scalable analytics on unstructured data. We describe

the groupwise processing abstraction for expressing data-parallel analytics in the

context of the MapReduce programming model. Further, this chapter gives a brief

overview of the design of DISC systems, like MapReduce and Hadoop. Lastly, this

chapter discusses related work in stateful large-scale analytics.

2.1 Groupwise processing

Grouping is a concept that appears naturally in many real-world data anal-

ysis scenarios [26] and allows parallel execution of the analytics. In Section 1.2

we illustrated this with a simple web analytics example. Because of its impor-

tance in data analysis and the opportunity for scalable execution, grouping is a

core construct in various programming models. The GROUP BY operation in the

SQL language is an example. Grouping also underlies the programming models

in DISC, like MapReduce [34] and Hadoop [8], but also in higher-level, SQL-like

languages layered on top of these processing systems [82, 81, 61, 9].

While groupwise processing appears in various flavors in these programming

models, there are two basic parts of every groupwise operation: (i) specifying how

14

15

to partition input records into groups and (ii) specifying the function to apply on

the records of every group. These operations were shown in Figure 1.2. The output

of a groupwise operation is a list of group-value pairs, with every pair corresponding

to a distinct group and the result of applying the user-specified function on the

group. This was shown in the example of Figure 1.3(a).

For instance, in the SQL language a user partitions an input table by spec-

ifying one of the table columns as the partitioning attribute. Part of the group

operation specification is also an aggregate function, like SUM, to apply on each

group. The result of a GROUP BY query in SQL is a table with a row for each group

that contains the result of the aggregate function. Parallel DBMSs may leverage

this construct to distribute the evaluation of GROUP BY aggregate queries across

multiple machines.

Notice that the GROUP BY construct in SQL assumes some structure in the

data. For instance, the grouping operation assumes the existence of a column in

the table that is used as the partitioning attribute. Next, we show how the MapRe-

duce programming model extends the basic groupwise processing abstraction with

constructs that allow analysis on unstructured data.

2.2 The MapReduce programming model

MapReduce [34] is a programming model designed by Google to mine large

web datasets, like crawled pages and has been used for tasks like generating

Google’s search index and rank web pages. The motivation for the MapReduce

model was the need for a simple abstraction that can leverage the power of hun-

dreds of thousands of machines available in large data centers, without exposing the

complexities of parallel processing in such an environment. At its core, a MapRe-

duce program performs groupwise processing, providing the tools for partitioning

data and performing arbitrary computations on a per partition basis.

A MapReduce program consists of two user-specified functions, the Map

and the Reduce function. Input data in a MapReduce program consist of a set

of input records, modeled as key-value pairs. The Map function takes an input

16

map (k,v) → {(k’,v’)}

reduce (k’, {v’}) → {v’}

combine (k’, {v’}) → {v’}

Figure 2.1: A MapReduce computation is expressed using two main functions.
The Map is used to extract information from raw data and determine the parti-
tioning of data into groups. The Reduce function is used to aggregate data in the
same group. The Combine function is used as an optimization to reduce the size
of the Map output.

Map(Key k, Value text)

1 foreach word w in text

2 emit(w, “1”);

Reduce(Key k, Value vals[])

1 count:=0;

2 foreach v in vals[]

3 count++;

4 emit(k, count);

Figure 2.2: A MapReduce example program that counts word occurrences in
text. The Map function receives as input the document text and extracts words
from it. For every word, it emits an intermediate key-value pair, with the key set
equal to word and the value set to “1”, indicating a single occurrence. For every
intermediate key, the Reduce function counts the number of occurrences of the
corresponding word.

key-value pair and emits zero or more intermediate key-value pairs. MapReduce

applies the Map function on every input key-value pair, and subsequently groups

intermediate key-value pairs according to their key. The Reduce function accepts as

input an intermediate key and all the intermediate values that share the same key.

The Reduce function may aggregate or transform in an arbitrary way the group

of values and emit one or more output values. MapReduce applies the Reduce

function on every distinct intermediate key. Figure 2.2 shows the definition of the

Map and Reduce functions.

In Figure 2.2, we show how a user can write a MapReduce program to count

the frequency of each word in a large body of documents. Here an input key-value

pair represents a document, where the key is the document name and the value is

the document contents. The Map function extracts the words from the documents

17

and outputs a set of intermediate key-value pairs, one for each word, where the key

is the word itself and the number of occurrences of each word, here the number

’1’, indicating a single occurrence. These intermediate key-value pairs are grouped

according to key. The Reduce function sums the number of occurrences and emits

the total sum for every word.

While the Map and Reduce function comprise the core of the model, users

may optionally specify a Combine function. The MapReduce system may use

the Combine function as an optimization to decrease the amount data shipped

across the network. As Section 2.3 shows, MapReduce systems send the output

of the Map functions across the network from the processes that execute the Map

function (Map tasks) to the processes that execute the Reduce function (Reduce

tasks). MapReduce uses the Combine function to calculate partial results from the

Map output before they are passed to the Reduce function. Often, the same key

appears multiple times in the output of a Map tasks. Reduce functions that are

commutative and associative allow the final result to be computed by combining

partial results. The Combine function may decrease the size of the Map output

before the Reduce function is applied.

The Map function is generally used to extract information from raw data

(e.g. words from text), while the Reduce function is typically used to aggregate

groups of values from the intermediate data (e.g. count or sum values). Although in

the previous example the Map and Reduce functions perform simple operations, a

user may implement arbitrary application logic. This flexible model gives users the

ability to implement sophisticated analyses, leveraging the capabilities of general

purpose languages, like C++ and Java. This makes the MapReduce model more

expressive than SQL, allowing a wider range of data analytics. For instance, it has

been used to do satellite image stitching, render map images, and create inverted

indices from web documents [34, 35].

Programmers also use the Map function to determine how to partition input

data into groups. The Map function essentially implements the group operation

shown in Figure 1.2 by specifying the intermediate key. Unlike grouping in rela-

tional databases, where the grouping attribute must be one of the table columns,

18

the Map function can be used to group input data in an arbitrary way. For in-

stance, a Map function that extracts URLs from web pages may specify the URL

itself as the grouping key (e.g. to count per URL), or it may extract the URL

domain as the grouping key (e.g. to count per domain), as shown in Figure 1.3.

This flexibility is a key aspect of the MapReduce model. It allows users

to write analytics without assuming any structure on the data. Unlike databases,

where data have a well defined schema, determined in advance, MapReduce allows

users to interpret input data in ad-hoc manner.

2.3 MapReduce architecture

While the MapReduce programming model allows users to express paral-

lelism in the analysis, the role of the MapReduce runtime is to hide the details of

parallel processing from the user. The runtime system handles tasks like program

execution, machine communication and fault tolerance transparently, allowing pro-

grammers focus on the application logic. In this section, we review basic design

principles of the MapReduce architecture that allow MapReduce to execute pro-

grams in a scalable and fault tolerant manner.

2.3.1 Program execution

The main tasks of a MapReduce runtime are to (i) execute the Map function

on the input data, (ii) group the intermediate data according to key, and (iii) call

the Reduce function for every group.

The execution of the Map function on the input data is a data-parallel

operation. Input data are typically partitioned into input splits that are distributed

across machines. An input split may be, for instance, a document. For every such

input split a Map task is responsible for reading the split, converting it into input

key-value pairs, and calling the Map function for every input pair. This way, the

Map task generates a set of intermediate key-value pairs that are stored on the

local disk. Every machine outputs a subset of all the intermediate key-value pairs

that must collectively be grouped and reduced.

19

Input splits Map tasks Intermediate

data

Reduce tasks Output files

Figure 2.3: The execution of a MapReduce program. Data flow between Map and
Reduce tasks. Map tasks process input splits in parallel and output intermediate
key-value pairs. Intermediate key-value pairs from each Map output are partitioned
across multiple Reduce tasks according to their key. Reduce tasks are also executed
in parallel.

In order to parallelize the grouping and reduction as well, the system exe-

cutes in parallel a number of Reduce tasks with each Reduce task being responsible

for grouping and reducing a partition of all the intermediate key-value pairs. Ev-

ery Map task partitions its intermediate key-value pairs into R sets according to

a partitioning function, usually a hash on the key. The system starts R Reduce

tasks and assigns each Reduce task to a partition. Every Reduce task fetches its

corresponding partitions from all the Map tasks, and groups key-value pairs in

them according to key. This operation is called the shuffle phase. After the shuffle

phase has completed, the Reduce task can execute the Reduce function on every

group of values. Every Reduce task writes the output in its own output partition

file. Figure 2.3.1 displays the execution of a MapReduce program.

Because both the Map and Reduce operations are data-parallel, the system

can easily scale to large data by using more machines. As the input data increases,

the system distributes the input splits across more machines. The runtime can

then divide the execution of the Map function across more Map tasks. Similarly,

to scale the Reduce phase, the runtime can increase the number of partitions and

the corresponding Reduce tasks.

20

2.3.2 Fault tolerance

The MapReduce system scales by distributing the analysis to potentially

thousands of commodity machines. Because failures are common in such an envi-

ronment, it is critical for the runtime to tolerate failures.

To provide fault tolerant computations, the MapReduce system must en-

sure that (i) input data are not lost due to failures, and (ii) a MapReduce program

can complete despite failures. To ensure input data availability, MapReduce archi-

tectures leverage distributed file systems like the Google File System (GFS) [39]

and the Hadoop Distributed File System (HDFS) [8] that replicate data across

multiple machines.

To ensure that a program completes in the event of failures, MapReduce

employs a restart mechanism. A task is the granularity at which MapReduce

restarts processing. MapReduce leverages the partitioning of the analysis to in-

dependent operations, executed by Map and Reduce tasks, and handles failures

by re-executing individual tasks. The MapReduce runtime monitors the status of

both machines and running tasks across the compute cluster, and can re-start all

the tasks that did not complete successfully on a new machine.

The MapReduce fault tolerance mechanism ensures that a program will al-

ways make progress toward completion even under high failure rates. Map tasks

typically save their output to local disks and in the event of a Reduce task failure,

the restarted Reduce task can simply re-fetch the Map output. This simple mecha-

nism prevents long running programs from aborting execution and re-starting from

scratch because of single machine failures.

To achieve fault tolerance at a scale of thousands of commodity machines,

a basic assumption of the MapReduce fault tolerance model is that the execution

of Map and Reduce tasks is free of side-effects. For instance, tasks are not allowed

to communicate with each other through files, or with external services. This

simplifies fault tolerance and ensures that re-starting a task does not require coor-

dination with other tasks or external services, a process that can be complicated

and error-prone.

However, the MapReduce model allows users to implement arbitrary logic

21

inside a MapReduce program. For instance, as pointed out in Section 1.3.2, users

may abuse this flexibility to implement stateful computations by storing state to

external storage systems. This introduces side-effects, and may leave a program

in an inconsistent state in the event of a task failure and restart. Ensuring cor-

rectness under failures is now the responsibility of the user, adding programming

complexity. In Chapter 6, we show how the explicit modeling of state eliminates

this problem.

2.4 Stateful analytics on unstructured data

While the MapReduce system provides a scalable platform for large-scale

analysis, it is not designed for stateful computations. Recent work has investi-

gated the use of state for efficient incremental or iterative analysis on large-scale

unstructured data. These approaches vary in the target application scenarios and

the way they incorporate state in the programming model. Several approaches

are targeted toward iterative analytics, while others focus on efficient processing

through incremental analytics. Additionally, certain approaches incorporate state

in manner transparent to the user, while others allow user-specified stateful pro-

grams. This section gives an overview of these approaches and compares them

with the proposed solution of this thesis.

2.4.1 Automatic incrementalization

Incremental analysis through computation re-use is critical for the efficient

processing of data that change over time. Various systems aim to incrementally

update the analysis in an automatic manner [43, 42, 67, 22]. Unlike the approach

proposed in this thesis, these systems do not require users to write custom in-

cremental computations using state. Instead, users specify analytics as one-shot

dataflows. The runtime systems are responsible for maintaining any necessary

state and for automatically transforming the dataflow to an incremental one.

These approaches are based on the concept of memoization, the caching

and re-use of intermediate results. In general, these systems represent analyt-

22

ics as dataflows consisting of multiple sub-computations and cache the results of

individual sub-computations. When only part of the input data changes across

dataflow invocations, the input of some sub-computations in the dataflow may

remain the same as in previous invocations. Memoization avoids re-running these

sub-computations by re-using the cached results.

These techniques may be applied, for instance, to MapReduce programs.

A MapReduce program can be represented as a dataflow consisting of Map and

Reduce tasks as in Figure 2.3.1. The output of such a program can be incrementally

updated by memoizing the output of Map and Reduce tasks. For example, if only

one of the input splits changes, we need to re-execute only the corresponding Map

task. Reduce tasks can re-use the memoized output of the rest of the Map tasks.

Similarly, because only a fraction of the intermediate data may change, we may

need to re-run only a fraction of the Reduce tasks. While these approaches do not

require users to devise incremental analytics, making programming easier, they

restrict the range of workloads that may benefit from incremental processing. For

instance, even if a single input split changes in a MapReduce program, it is possible

that all Reduce tasks have to be re-executed despite the caching of intermediate

results. As we show in Chapter 5, explicit incremental programming using state,

as described in the example of Section 1.3, can improve efficiency in such cases by

incrementally evaluating the Reduce functions using previous results.

2.4.2 Iterative analytics

Iterative analysis, like several machine learning algorithms, are inherently

stateful. They repeatedly refine the analysis by combining a static input set with

the analysis result of previous iterations. These analytics must re-use both the

static input set and the analysis result across iterations.

The Spark [83] system supports iterative analysis by allowing users to spec-

ify distributed read-only state, used to store the static input set. The modeling

of this static state allows the system to optimize iterative analytics by avoiding

the re-loading of the input data from a file system in every iteration. Instead,

Spark maintains this distributed data set in memory, allowing processing tasks to

23

access it fast. Twister [36] is an extension to the MapReduce system that also

supports iterative analytics. Like Spark, it gives programs access to static state.

In Twister, Map and Reduce tasks persist across iterations, amortizing the cost of

state loading.

While these approaches improve the efficiency in iterative analytics, they

restrict the ability to re-use computation only to the static input data set. Instead,

our approach provides a more general abstraction of state that allows the update

of the state. Iterative analytics may use this state abstraction to model not only

the static input set, but also the iteratively refined result of the analysis.

2.4.3 Models for incremental analytics

Unlike the approaches described above, certain systems require users to

write custom incremental programs. Like the solution proposed in this thesis,

these systems give users access to state, allowing them to store and re-use compu-

tation results. Because transparent incremental analysis is not possible for certain

analytics, the explicit access to state allows a wider range of analytics to leverage

the opportunity for efficient processing through incremental analysis.

The Percolator system [66] adopts this approach. Percolator is motivated by

the need to incrementally maintain an index of the web as web documents change

over time. In Percolator, programs are structured as sequences of observers, pieces

of code that are triggered when user-specified data are updated. For instance,

a change to an existing document may trigger an observer that updates the link

counts, as in the example of Section 1.3.1, of the documents affected by the change.

An observer can access and modify the data repository. Such modifications may

subsequently trigger downstream observers. Percolator allows multiple observers to

access and modify the repository in a shared manner. Because multiple observers

may be triggered at the same time, Percolator provides transactions, to allow users

to reason about the consistency of the data.

In Percolator, data are stored in tables that persist across time. For in-

stance, the web indexing application may use the tables to store web documents.

Analytics can access and modify these tables when changes in the input happen.

24

Tables provide random access, allowing the selective update of analysis results

when small changes occur in the input data. For example, newly crawled web

documents might affect only part of the stored documents in the index. This

avoids accessing the entire web document body when small changes happen. As

we also show in Chapters 5 and 6, the ability to selectively access state is critical

for efficient incremental processing.

While Percolator allows multiple applications to share the same state, state-

ful groupwise processing provides a simpler state model where state is private to

a single application and concurrent state modifications are not allowed. This sim-

plifies programming and obviates the need for transactions that can limit scalabil-

ity [66]. At the same time, our model leverages the groupwise processing abstrac-

tion to easily expose data-parallelism in analytics.

Chapter 3

Stateful online analytics

The purpose of an ETL process is to continuously extract data from its

sources and prepare data for follow-on analysis. Analytics in this phase include

filtering, transforming raw data into an appropriate format for storage, and sum-

marizing data. ETL analytics are intended to allow applications to prepare data.

By analyzing data in an online fashion, the ETL process also allows users to get

quick insights from the data.

The dominant approach for ETL analytics today is to migrate data from

their sources to centralized clusters dedicated to running analytics. Typically,

applications store data on distributed file systems, like the Google File System

(GFS) [39], or the Hadoop Distributed File System (HDFS) [8] and execute the

analytics with batch processing systems, like MapReduce and Hadoop. This ap-

proach is illustrated on the left-hand in Figure 3.1.

However, this approach has certain drawbacks. First, these batch process-

ing systems are not designed for continuous data processing. Their programming

models support only one-shot processing on well defined input, making program-

ming continuous applications harder and less efficient. For instance, users may have

to devise custom and often complicated application logic to repeatedly update the

analysis with new data. Instead, continuous ETL analytics require programming

models that directly support processing on streams of unstructured data. At the

same time, these analytics are update-driven and present opportunities for efficient

processing through incremental computation that one-shot programming models

25

26

fail to leverage.

Second, transferring bulk data to a centralized compute cluster limits the

timeliness of the analysis and is inefficient. Due to the size of the data it is often

impossible to migrate all data in a timely fashion. Even with well-provisioned

infrastructure, this bulk data transfer stresses both the network and the disks as

data are migrated from the sources to the dedicated cluster. Furthermore, this bulk

data transfer is often unnecessary since the ETL process may eventually reduce

the size of the data through filtering or summarization, making this approach

inefficient.

Third, these approaches do not support online analysis through partial data

processing. Often data may become unavailable due to load at the sources or

failures. For instance, server logs may become unavailable when servers become

unreachable. In this case, current approaches must sacrifice result availability and

timeliness, waiting until all data are available. Alternatively, current systems may

choose to blindly return partial results, degrading arbitrarily the accuracy of the

results. However, applications have no means to assess the impact of partial data

on the accuracy of the analysis, rendering the results practically unusable.

To address these challenges, this chapter introduces In-situ MapReduce

(iMR), a programming model and architecture for online ETL analytics. iMR

leverages the flexibility and inherent parallelism of the MapReduce model, and

extends the model for continuous unstructured data. The iMR model combines (i)

stateful groupwise processing to improve efficiency through incremental process-

ing and (ii) windowed processing to simplify the programming of continuous data.

To support online analytics, the iMR model allows processing of partial data and

introduces a novel, general purpose metric that allows applications to (i) assess

the analysis fidelity, and (ii) explicitly trade fidelity for latency. To avoid expen-

sive data transfers, the iMR architecture moves the ETL analytics from dedicated

clusters on to the data servers themselves.

In the rest of this chapter, we show how the iMR model allows sophisticated

ETL analytics on continuous data and describe the mechanisms that allow scalable,

efficient, and timely execution of the analytics in-situ.

27

server cloud
(1000's servers)

1.) Load data

2.) Process in dedicated cluster

mapmap

reducereduce
map

reduce

HDFS HDFS HDFS

Store First / Query Later

1.) In-network data

processing

map

reduce
map

reduce

HDFS HDFS HDFS

Continuous In-situ Analytics

server cloud
(1000's servers)

2.) Store results

Figure 3.1: The in-situ MapReduce architecture avoids the cost and latency of
the store-first-query-later design by moving processing onto the data sources.

3.1 Design

iMR is designed to provide scalable, online ETL analytics. It is meant for

analytics that filter or transform data either for immediate use or before loading

it into a distributed storage system (e.g., HDFS) for follow-on analysis. Moreover,

today’s batch processing queries exhibit characteristics that make them amenable

to continuous, in-network processing. For instance, many analytics are highly

selective. A 3-month trace from a Microsoft large-scale data processing system

showed that filters were often highly selective (17 - 26%) [43], and the first step for

many Facebook log analytics is to reduce the log data by 80% [11]. Additionally,

many of these queries are update-driven, integrate the most recent data arrivals,

and recur on an hourly, daily, or weekly basis. Below we summarize the goals of

the iMR system and the design principles to meet these goals:

Scalable: The target operating environment consists of thousands of servers

in one or more data centers, each producing KBs to MBs of log data per second.

In iMR, MapReduce jobs run continuously on the servers themselves (shown on

the right in Figure 3.1). This provides horizontal scaling by simply running in-

place, i.e, the processing node count is proportional to the number of data sources.

28

This design also lowers the cost and latency of loading data into a storage clus-

ter by filtering data on site and using in-network aggregation, if the user’s reduce

implements an aggregate function [41].

Responsive: Today the latency of ETL analytics dictates various aspects

of a site’s performance, such as the speed of social network updates or accuracy

of ad-targeting. The iMR architecture builds on previous work in stream process-

ing [15, 23, 13] to support low-latency continuous data processing. Like stream

processors, iMR MapReduce jobs can process over sliding windows, updating and

delivering results as new data arrives.

Available: iMR’s lossy data model allows the system to return results that

may be incomplete. This allows the system to improve result availability in the

event of failures or processing and network delays. Additionally, iMR may pro-

actively reduce processing fidelity through load shedding, reducing the impact on

existing server tasks. iMR attaches a metric of result quality to each output, al-

lowing users to judge the relative accuracy of processing. Users may also explicitly

trade fidelity for improved result latency by specifying latency and fidelity bounds

on their queries.

Efficient: A data processing architecture should make parsimonious use

of computational and network resources. iMR explores the use of sub-windows

or panes for efficient continuous processing. Instead of re-computing each win-

dow from scratch, iMR allows incremental processing, merging recent data with

previously computed panes to create the next result. And adaptive load-shedding

policies ensure that nodes use compute cycles for results that meet latency require-

ments.

Compatible: iMR supports the traditional MapReduce API, making it

trivial to “port” existing MapReduce jobs to run in-situ. It provides a single

extension, uncombine, to allow users to further optimize incremental processing in

some contexts (Section 3.1.4).

29

3.1.1 Continuous MapReduce

Programming in the iMR system is in principle similar to the MapReduce

programming model. The iMR model maintains the flexibility and ability to eas-

ily expose parallelism that comes with MapReduce. However, unlike traditional

MapReduce programs that process a well defined input data set, in our application

scenarios, data are continuously generated and iMR must continuously update the

analysis.

Analyzing such infinite data streams requires a way to bound the amount of

data that iMR can process. iMR borrows the concept of windows used in stream

processors [15]. A window specification consists of a range and a slide. A window

range R specifies the amount of data processed each time. Typically, users define

the window range in terms of time. For instance, in a web log analysis scenario, a

user may require to count user clicks generated over the last 5 minutes (R=5 min).

A window range may even be defined in terms of data size in bytes (e.g. the last

10MB of click data), record count, or any user-defined logical sequence number.

A window slide S defines how frequently to update the analysis with new data.

In the previous example, a user may specify that the click count must be updated

every minute (S=1 min). Just like the input, the output of an iMR program is

also an infinite stream of results, one for each window of data.

Semantically, the result of executing an iMR program is the same as ex-

ecuting traditional MapReduce programs continuously on overlapping data sets.

For every such window, data go through the same map-group-reduce process as in

MapReduce and the final output is a list of key-value pairs. However, this naive

approach of evaluating sliding windows by reprocessing overlapping data may re-

sult in inefficient processing. Section 3.1.4 shows how iMR optimizes windowed

processing for more efficient analysis.

3.1.2 Program execution

The power of the MapReduce model lies not only in its flexibility, but also

the ability to parallelize the analysis in a scalable manner. Here we show, how

iMR analyzes data in-situ by distributing the execution of a program across the

30

Merge

Reduce

Map

GroupBy

Combine

GroupBy

Map

GroupBy

Combine

Map

GroupBy

Combine

local records

Map

GroupBy

Combine

Map

GroupBy

Combine

Map

GroupBy

Combine

Hadoop/HDFS cluster

Server pool

local records local records local records

local recordslocal records

Figure 3.2: This illustrates the physical instantiation of one iMR MapReduce
partition as a multi-level aggregation tree.

data sources.

In Chapter 2, we saw that a MapReduce system is tasked with three funda-

mental operations: mapping input records, grouping intermediate data according

to key and reducing groups to produce the final output. Map tasks run in paral-

lel, to apply the map function and produce the intermediate data. Intermediate

data are shuffled, grouped according to key and partitioned, with each partition

containing a subset of the keys. Subsequently parallel reduce tasks, one for each

partition, apply the reduce function for every group in the corresponding partition,

to produce the final result.

iMR distributes the work of a MapReduce job across multiple trees, one

for each reducer partition. Figure 3.2 shows how a single tree operates. An iMR

tree consists of a number of processing nodes, one for every data source. Every

processing node is responsible for mapping input records that are obtained from the

local source, and grouping the intermediate data according to their key. Just like

in MapReduce, a processing node may also leverage the combine API, to produce

partial values and decrease the size of the data that exit a processing node.

These partial values are then shipped to the root of the tree that is hosted,

31

not on the data sources, but on a dedicated processing cluster. The root is respon-

sible for merging partial values and applying the reduce function. The final result

of the reduce function is stored on the dedicated cluster.

3.1.3 Using in-network aggregation trees

Like in MapReduce, iMR leverages the combine API to decrease the data

shipped from mappers to reducers. However, iMR can use multi-level aggregation

trees, to further decrease the size of the data transferred by aggregating in-network,

like the Dryad bulk processing system [46, 47]. This requires decomposable func-

tions [55, 81] that can benefit from in-network aggregation. Operations, like a sum

or max are examples of such functions that present the greatest opportunity for

data reduction. Such operations may leverage the combine API to merge partial

values produced by processing nodes in a tree-like manner. In contrast, holis-

tic functions [41], like union and median always produce partial values with size

proportional to the size of the input data and, therefore, do not benefit from ag-

gregation trees.

Apart from reducing network traffic a multi-level aggregation tree may also

distribute the processing load of the root. The root is responsible for receiving and

merging partial values from all the sources. As the number of sources or the size

of the partial values grows, the root may not be able to process them in a timely

manner. Instead, partial values can be merged in a hierarchical way before they

reach the root.

Note that the effectiveness of an aggregation tree in reducing network traffic

and distributing processing load depends not only on the appropriateness of the

function but also on the input data. Recall that data in the MapReduce model

are structured as lists of key-value pairs. Each processing node map input data

to produce such a list of intermediate key-value pairs and the combine function

is applied on a per key basis. Therefore, merging key-value lists in an in-network

fashion is effective only if there is a significant overlap in the intermediate keys

produced between nodes. If, instead, the lists are disjoint in the keys they contain,

the result of a combine function is simply a concatenation of two lists, an operation

32

rts=12 r59 r61 r80 r96
time stamped

Map(r)

Group/combine in pane

{k ,v}1 12 59 59 61 80 96
{k ,v}2 {k ,v}2 {k ,v}2 {k ,v}3 {k ,v}3

0 Min 60 Min 120 Min

P0= PV{k ,v }1 PV{k ,v }2 P1= PV{k ,v }2 PV{k ,v }3

log records

key-value

panes

pairs

Figure 3.3: iMR nodes process local log files to produce sub-windows or panes.
The system assumes log records have a logical timestamp and arrive in order.

that does not reduce the size of the data. This may actually increase the network

traffic compared to a one-level tree since lists may traverse the network multiple

times in the aggregation tree instead of being sent directly to the root. Sampling

the input data may be used as a way to infer the key distribution and determine

whether a tree is necessary.

As in MapReduce, reducers may become a performance bottleneck as they

aggregate data from an increasing number of mappers. Adding more partitions

and reducers addresses this bottleneck. In a similar way, iMR may run multiple

such aggregation trees, one for each partition. Section 4.1.1 describes in more

detail how iMR distributes the workload to multiple trees.

3.1.4 Efficient window processing with panes

Sliding windows capture a natural property in many online analytics ap-

plications: the analysis must continuously be updated with the most recent data

and old data become obsolete. Recall from Section 3.1.1 that, with the exception

of the sliding window specification, an iMR program is in principle similar to a

MapReduce program. An obvious way to update the analysis with new data, is to

continuously execute the same program iMR on every new window of data.

However, this approach may waste resources, introducing unnecessary pro-

cessing and data transfers. Between successive windows there are overlapping input

33

records. In general, every input record may belong in R/S processing windows,

where R is the range and S is the slide of the window. This means that every in-

put record is mapped, grouped, combined and transmitted to the network multiple

times by an iMR processing node.

To eliminate these overheads, iMR uses panes, a concept introduced in [50]

for efficient window processing on single-node stream processors. Panes divide

a processing window into non-overlapping sub-windows that the system processes

individually, creating partial results. The system merges partial results to calculate

the result for an entire window. This section shows how iMR adapts this technique

for distributed in-situ execution of MapReduce programs.

Pane management

A pane is a quantum of re-usable computation. A processing node creates a

pane by mapping, grouping and combining raw input records in the corresponding

sub-window. A node processes raw data in a pane only once. Figure 3.3 illustrates

a 2-hour window divided into two 1-hour panes. Every pane is annotated with a

logical index that corresponds to the sub-window it represents. Figure 3.3 shows

panes P0 and P1. After processing the raw input records, a pane contains a partial

result that is essentially a key-value list.

Instead of sending entire windows, nodes in an iMR aggregation tree now

send processed panes to their parents. Interior nodes in a tree merge and combine

panes with the same. As the panes reach the root in an aggregation tree, the

root combines these partial results into a window result. By sending panes up the

tree instead of whole windows, the system sends a single copy of a key-value pair

produced at a processing node, reducing network traffic.

The size of the panes is a parameter that affects the ability of the system

to decrease network traffic. By default, iMR sets the pane size to R/S, but it can

be any common divisor of R and S. By increasing the size of the pane, we allow

a processing node to aggregate more data in a single pane through the combine

operation, potentially reducing the amount of the data sent up the tree. The ability

to reduce network traffic by increasing the pane size depends on the distribution of

34

P
a
1 P

a
2 P

b
1 P

b
2

P
a
1
+P

b
1 P

a
2
+P

b
2

Aggregate pane partial values

P
a
0
+P

b
0

+P1 P2W1= OR +P0 P2W1=W0 -

A
Child

B
Child

Figure 3.4: iMR aggregates individual panes Pi in the network. To produce
a result, the root may either combine the constituent panes or update the prior
window by removing an expired pane and adding the most recent.

the keys across a processing window. For instance, the existence of many unique

keys favors small pane sizes as there is little opportunity to reduce the data size.

Instead, the bigger overlap in the keys across the window, the more the system

can reduce data size.

However, as we describe in Section 3.2.1, panes also represent the granular-

ity at which iMR may proactively shed processing load, or the granularity at which

failed nodes restart processing. Reducing the size of the pane gives iMR more fine

control when shedding load and may reduce the amount of lost data when nodes

fail and restart.

Window creation

The root of an iMR job is responsible for calculating the final result for the

entire window from the individual panes. The root must group and combine all

keys in the window before executing the reduce function. Figure 3.4 shows two

strategies to do so. Here, a window is divided in two panes and for simplicity there

are only two nodes sending panes to the root.

The first strategy leverages panes to allow incremental processing by simply

using the traditional MapReduce API. In this approach, the root maintains a list

of outstanding panes. Each such pane is the result of combining corresponding

35

uncombine (k′, {v′}current, {v
′}old)→ {v

′}partial

combine (k′, {v′}partial, {v
′}new)→ {v

′}

Figure 3.5: iMR extends the traditional MapReduce interface with an uncombine
function that allows the specification of differential functions. The uncombine
function subtracts old data and the combine function adds new data to produce
the final result.

panes from nodes in the tree as they reach the root. For instance, pane P a+b
1 at

the root is the result of combining P a
1 from node A andP b

1 from node B. Window

W1 consists of panes P1 and P2 and the root can calculate the final result for W1

by combining the key-value lists inP a+b
1 and P a+b

2 .

This improves efficiency by re-using the partial values in a pane for every

window. Merging panes is cheaper than repeatedly mapping and combining input

value for every window. Note that the benefit from merging panes depends again

on the key distribution. The more values per key that iMR has to combine in a

single pane, the more work it saves by re-using the pane. This is because the cost

of creating a pane from raw data is large relative to the cost of merging panes to

calculate a window. Importantly, this optimization is transparent to the user. The

system leverages the same MapReduce combine API.

However, for sliding windows it sometimes more efficient to remove old data

and then add new data to the prior window. For instance, consider a query with a

24-hour window that updates every 1 hour. This means that for every window the

root must combine 24 panes, even though there is only one pane that is old and

one pane that is new each time and the majority of the panes remain the same. In

contrast, the root can simply remove and add a pane’s worth of keys to the prior

window, reducing the amount of processing for every window. Figure 3.4 shows

how to compute window W1 from W0. Assuming that the cost of removing and

adding keys to a window is equivalent, this strategy is always more efficient that

merging all constituent panes in a window when the slide S is less than half the

range R of the window.

However, applying this strategy requires differential functions [50, 14]. A

differential function allows users to update the analysis by “subtracting” old data

36

50% C Completeness
2

window panes

n
o
d
e
s

A

C

B

D

P1 P2 P3 P4
window panes

A

C

B

D

P1 P2 P3 P4

Figure 3.6: C2 describes the set of panes each node contributes to the window.
Here we show two different ways in which C2 represents 50% of the total data: all
the nodes process half their data or half the nodes process all their data.

and adding new data. The count and sum function are examples of differential func-

tions, while max and min are not differential. To define how to subtract old data,

the iMR model extends MapReduce with an uncombine function. Figure 3.1.4

shows how iMR can use the uncombine and combine functions to calculate a new

window from the prior one.

3.2 Fidelity-latency tradeoffs

This section describes the features of iMR that allow applications to accom-

modate data loss. Data loss may occur because of node or network failures, or as

a consequence of result latency requirements. In such cases, an iMR job may need

to report a result before the system has had time to process all the data in the

window. The key challenges we address here are (i) how to represent and calculate

result quality to allow users to interpret partial results, and (ii) how to use this

metric to trade result fidelity for improved result latency.

3.2.1 Measuring data fidelity

A useful metric for data fidelity should not only inform users that data is

missing, but also allow them to assess the impact of data loss on the accuracy of

the analytics. Here we introduce C2, a fidelity metric that exposes the spatial and

temporal properties of data, allowing users to better understand incomplete data.

37

Data are naturally distributed across space, the nodes that generate the

data, and time, the processing window. The C2 metric annotates results with spa-

tial and temporal information about the lost data. Spatial information describes

the source nodes from which data were lost. Temporal information describes the

time periods during which data were lost. Such information can often provide

valuable insights about the impact of the lost data on the analysis. For instance,

losing data from certain nodes may be of less significance if they are not active.

Similarly, there may be certain time periods of inactivity on a specific node. Being

able to distinguish these cases can help users understand the impact of data loss

on the accuracy of the analysis.

As a comparison, one fidelity metric that has been proposed is completeness,

the fraction of nodes whose data are included in the result [53, 60]. Notice that

such a coarse metric cannot differentiate between a node that produces data that

span the entire window and a node that does not. Completeness cannot describe

situations where a node fails intermittently, for a small period of time during a

window, and looses only a part of the data. An alternative proposed metric is

progress, the percentage of data processed, which is used by systems like Hadoop

Online [32]. This metric too does not describe the source of the lost data or the

time during which it was lost.

Instead, the C2 metric leverages the concept of panes to describe the spatio-

temporal properties of data. A pane represents a fraction of the total window and is

annotated with the corresponding temporal information, the range of time within

the window it represents. Additionally, a pane carries information about the source

node that created the pane from raw data.

Panes are the quantum of accuracy. A pane is included in the result ei-

ther in its entirety or not at all. By varying the size of a pane, we can control

the granularity in the temporal dimension at which we want to measure fidelity.

Smaller panes allow finer information in the event, for instance, of a very short

node failure. However, as described in Section 3.1.4, a pane that is too small may

hurt the ability to combine data locally, increasing the amount of data that a node

ships to the network.

38

To inform users about the spatio-temporal properties, each delivered result

is annotated with a logical scoreboard that indicates which panes were successfully

received. Figure 3.6 shows two example scoreboards. Such a scoreboard, has two

dimensions. It shows which panes across a time window (temporal dimension) are

successfully included in the result for every individual node (spatial dimension).

As an example, Figure 3.6 shows two different scenarios that process the

same amount of data, in this case 50% of the total data, but have different spatio-

temporal properties. In the first case, all the nodes process half of their data,

while in the second case, half of the nodes process all their data. In general, there

are many different ways in which the system can process 50% of the data, and C2

allows users to differentiate between them.

To maintain the C2 metric in an aggregation tree, when interior nodes

merge panes, they also merge their corresponding C2 metric. Essentially each

pane maintains a count and the IDs of the data sources that have contributed to

the pane. As panes are merged inside the aggregation tree, the list of source IDs

is merged as well.

Note that we can compactly summarize the IDs of the data sources using a

bloom filter. This approach is useful when maintaining a large number of source

IDs per pane adds significant space overhead. This may happen when the size of

the panes is small and there are many data sources. While bloom filters add the

possibility of false positives when testing for the existence of a source node, we can

control the probability of false positives, making it practically negligible.

3.2.2 Using C2 in applications

The goal of the C2 metric is to allow users to better understand the impact

of data loss on the analysis, but also allow users to trade result fidelity for result

latency. Here, we describe how users can achieve this by appropriately specifying

latency and fidelity requirements using C2.

In general, the C2 metric gives users flexibility in specifying fidelity require-

ments. For instance, a user may require simply a minimum amount of data, as

the percentage of the total data, to be processed. Alternatively, users may require

39

the processed data to have specific spatial and temporal properties. For instance,

users may simply require a minimum 50% of the data to be processed, or put more

constraints. They may require that all of the nodes should return at least half of

their data. This specification is illustrated in the left-hand of Figure 3.6. This is

only one of many possibilities, and users may arbitrarily specify which panes they

require to be processed, by specifying the exact layout of the C2 scoreboard.

Specifications with different spatio-temporal properties, like the ones in

Figure 3.6 may affect the accuracy of the analysis, but also the result latency in

completely different ways, even if they specify the same percentage of data. The

impact of the different C2 specifications may depend on factors like the particular

operation applied on the data and the distribution of data across nodes and across

the time window. Users should set the C2 in a way that allows them to determine

the result quality when there is data loss, but also to reduce the result latency. We

have identified four general C2 specifications that allow different fidelity/latency

tradeoffs and may be useful for a wide range of applications.

Minimum volume with earliest results

This C2 specification gives the system the most freedom to decrease result

latency. Users specify a percentage X% of the data they require to process and

the system will return the first X% of the panes available.

This type of specification is suitable for applications where the accuracy of

the analysis depends on the relative frequency of events, and the data are uniformly

distributed. Here, an event is any distinct piece of information of interest appearing

within the data set. As an example, consider an application that analyzes clicks

logs from web servers, to count user’s clicks. If events, clicks from users, are

uniformly distributed across the servers and the time window, then processing

any percentage of the total data can still summarize the relative frequency of the

events, and give users a good estimate of the impact of data loss on the analysis.

However, this specification may provide poor estimates if data are not uni-

formly distributed. For instance, if events are associated mainly with the remain-

ing panes that were not processed, this specification may not capture the relative

40

frequency of the events.

Minimum volume with random sampling

This C2 specification ensures that the system will process a minimum per-

centage X% of the data that is randomly sampled across the entire data set. This

specification gives less freedom to decrease latency since the sampled data may not

be they earliest available, but it can reproduce the relative frequency of events,

even if data are not uniformly distributed.

Since a pane is the quantum of accuracy in C2, random sampling occurs

at the granularity of panes. To perform random sampling, every node decides

whether to process a pane with a probability proportional to the percentage X.

Note that although this guarantees a random sample, it is possible that due to

conditions that the system has no control of, like node or network failures, the

returned result may not satisfy the user’s criteria for randomness. For instance,

pane sampling may appear biased toward specific nodes. However, users can still

leverage the C2 scoreboard to verify the appropriateness of the sample.

Temporal completeness

This C2 specification ensures that a minimum percentage X% of the nodes

process 100% of the panes in a window. This specification is suitable for applica-

tions that must correlate events on a per server basis. For example, an application

may analyze server logs to count how often individual servers produce log errors.

This implicitly partitions the analysis also on a per server basis. As a consequence,

loosing data from a node does not affect the accuracy of the analysis on the rest

of the servers. In the previous example, the resulting error counts for the rest of

the servers will be accurate.

This specification is also useful for applications in which it is difficult to

estimate the accuracy of the analysis based on incomplete data, and conclusions

can be made only by processing all the data. The specification guarantees that a

node will not pollute the analysis with incomplete data.

Note that the notion of temporal completeness can be applied not only on

41

individual nodes, but also on clusters of nodes. Often, an analysis may correlate

events across specific clusters of nodes. For instance, a data center operator may

analyze system logs to measure resource usage across racks of servers, or across

servers owned by distinct users. Requiring temporally complete results for clusters

of nodes can similarly accommodate data loss on some clusters of nodes, and at

the same time guarantee the accuracy of the analysis on the rest.

This specification may, however, result in high result latency, compared to

the rest of the specifications. For a result to be produced, the system must wait

for nodes to process the whole window.

Spatial completeness

This specification ensures that a minimum percentage X% of the panes in

the result window contain data from the 100% of the nodes in the system. The

system discards any panes for which data from some nodes are missing.

This C2 specification is useful for applications that correlate events across

the whole system that occur close in time, that is, within the same pane. As

an example, consider an application that analyzes click logs from web servers

to characterize user behavior. A common click analysis is to find user sessions,

groups of clicks from a user that are close in time. In load-balanced web server

architectures, clicks from a single user may be served by multiple servers in the

system, even during the same session. Therefore, to accurately capture sessions

from a user, we need data from all the nodes in the system within the same pane.

3.2.3 Result eviction: trading fidelity for availability

iMR allows users to specify latency and fidelity bounds on continuous

MapReduce queries. Here we describe the policies that determine when the root

evicts results. The root has final authority to evict a window and it uses the

window’s completeness, C2, and latency to determine eviction. Thus a latency-

only eviction policy may return incomplete results to meet the deadline, while a

fidelity-only policy will evict when the results meet the quality requirement.

Latency eviction: A query’s latency bound determines the maximum

42

amount of time the system spends computing each successive window. If the

timeout period expires, the operator evicts the window regardless of C2. Before

the timeout, the root may evict early under three conditions: if the window is

complete before the timeout, if it meets the optional fidelity bound C2, or if the

system can deduce that further delays will not improve fidelity. Like the root,

interior nodes also evict based on the user’s latency deadline, but may do so before

the deadline to ensure adequate time to travel to the root [55].

Fidelity eviction: The fidelity eviction policy delivers results based on a

minimum window fidelity at the root. As panes arrive from nodes in the network,

the root updates C2 for the current window. When the fidelity reaches the bound

the root merges the existing panes in the window and outputs the answer.

Failure eviction: Just as the system evicts results that are 100% com-

plete, the system may also evict results if additional wait time can not improve

fidelity. This occurs when nodes are heavily loaded or become disconnected or fail.

iMR employs boundary panes (where traditional stream processors use boundary

tuples [70]) to distinguish between failed nodes and stalled or empty data streams1.

Nodes periodically issue boundary panes to their parents when panes have been

skipped because of a lack of data or load shedding (Section 4.1.3).

Boundary panes allow the root to distinguish between missing data that

may arrive later and missing data that will never arrive. iMR maintains boundary

information on a per-pane basis using two counters. The first counter is the C2

completeness count; the number of successful pane merges. Even if a child has no

local data for a pane, its parent in the aggregation tree may increase the complete-

ness count for this pane. However, children may skip panes either because they

re-started later in the stream (Section 4.1.5) or because they canceled processing

to shed load (Section 4.1.3). In these cases, the parent node increases an incom-

pleteness counter indicating the number of nodes that will never contribute to this

pane.

Both interior nodes and the root use these counts to evict panes or entire

windows respectively. Interior nodes evict early if the panes are complete or the

1In reality, all panes contain boundary meta data, but nodes may issue panes that are other-
wise empty except for this meta data.

43

sum of these two counters is equal to the sum of the children in this sub tree. The

root determines whether or not the user’s fidelity bound can ever be met. By simply

subtracting incompleteness from the total node count (perfect completeness), the

root can set an upper bound on C2 for any particular window. If this estimate of

C2 ever falls below the user’s target, the root evicts the window.

Note that the use of fidelity and latency bounds presumes that the user

either received a usable result or cannot wait longer for it to improve. Thus,

unlike other approaches, such as tentative tuples [16] or re-running the reduction

phase [32], iMR does not, by default, update evicted results. iMR only supports

this mode for debugging or determining a proper latency bound, as it can be

expensive, forcing the system to repeatedly re-process (re-reduce) a window on

late updates.

3.3 Related work

3.3.1 “Online” bulk processing

iMR focuses on the challenges of migrating initial data analytics to the

data sources. A different (and complementary) approach has been to optimize

traditional MapReduce architectures for continuous processing themselves. For

instance, the Hadoop Online Prototype (HOP) [32] can run continuously, but re-

quires custom reduce functions to manage their own state for incremental compu-

tation and framing incoming data into meaningful units (windows). iMR’s design

avoids this requirement by explicitly supporting sliding window-based computa-

tion (Section 3.1.1), allowing existing reduce functions to run continuously without

modification.

Like iMR, HOP also allows incomplete results, producing “snapshots” of

reduce output, where the reduce phase executes on the map output that has accu-

mulated thus far. HOP describes incomplete results with a ”progress” metric that

(self admittedly) is often too coarse to be useful. In contrast, iMR’s C2 framework

(Section 3.2) not only provides both spatial and temporal information about the

result, but may be used to trade particular aspects of data fidelity for decreased

44

processing time.

Dremel [57] is another system that, like iMR, aims to provide fast analysis

on large-scale data. While iMR targets continuous raw log data, Dremel focuses on

static nested data, like web documents. It employs an efficient columnar storage

format that is beneficial when a fraction of the fields of the nested data must be

accessed. Like HOP, Dremel uses a coarse progress metric for describing early,

partial results.

3.3.2 Log collection systems

A system closely related to iMR is Flume [6], a distributed log collection

system that places agents in-situ on servers to relay log data to a tier of collectors.

While a user’s “flows” (i.e., queries) may transform or filter individual events, iMR

provides a more powerful data processing model with grouping, reduction, and

windowing. While Flume supports best-effort operation, users remain in the dark

about result quality or latency. However, Flume does provide higher reliability

modes, recovering events from a write-ahead log to prevent data loss. While not

discussed here, iMR could employ similar upstream backup [16] techniques to better

support queries that specify fidelity bounds.

3.3.3 Load shedding in data stream processors

iMR’s load shedding (Section 4.1.3) and result eviction policies (Section

3.2.3) build upon the various load shedding techniques explored in stream process-

ing [23, 75, 74]. For instance, iMR’s latency and fidelity bounds are related to

the QoS metrics found in the Aurora stream processor [23]. Aurora allows users

to provide “graphs” which separately map increased delay and percent tuples lost

with decreasing output quality (QoS). iMR takes a different approach, allowing

users to specify latency and fidelity bounds above which they’d be satisfied. Ad-

ditionally, iMR leverages the temporal and spatial nature of log data to provide

users more control than percent tuples lost.

Many of these load shedding mechanisms insert tuple dropping operators

45

into query plans and coordinate drop probabilities, typically via a centralized con-

troller, to maintain result quality under high-load conditions. In contrast, our

load shedding policies act locally at each operator, shedding sub-windows (panes)

as they are created or merged. These “pane drop” policies are more closely related

to the probabilistic “window drop” operators proposed by Tatbul, et al. [75] for

aggregate operators. In contrast, iMR’s operators may drop panes both determin-

istically or probabilistically depending on the C2 fidelity bound.

3.3.4 Distributed aggregation

Aggregation trees have been explored in sensor networks [55], monitoring

wired networks [79], and distributed data stream processing [53, 45]. More recent

work explored a variety of strategies for distributed GroupBy aggregation required

in MapReduce-style processing [81]. Our use of sub-windows (panes) is most closely

related to their Accumulator-PartialHash strategy, since we accumulate (through

combining) key-value pairs into each sub-window. While they evicted the sub

window based on its storage size (experiencing a hash collision), iMR uses fixed-

sized panes.

3.4 Acknowledgments

Chapter 3, in part, is reprint of the material published in the Proceedings

of the USENIX Annual Technical Conference 2011. Logothetis, Dionysios; Trezzo,

Chris; Webb, Kevin C.; Yocum; Ken. The dissertation author was the primary

investigator and author of this paper.

Chapter 4

An architecture for in-situ

processing

This chapter describes the design of the iMR architecture. Here, we show

how iMR can execute continuous MapReduce programs in a scalable and efficient

manner. We also describe the mechanisms that allow iMR analytics to run in-situ.

This includes load shedding mechanisms to accommodate server load, as well as

fault tolerance mechanisms. This chapter presents an evaluation of iMR through

microbenchmarks. Furthermore, we validate the usefulness of the C2 metric in

understanding incomplete data and trading fidelity for timeliness in the analysis

through experiments with real applications.

4.1 Implementation

The iMR design builds upon Mortar, a distributed stream processing archi-

tecture [53]. We significantly extended Mortar’s core functionality to support the

semantics of iMR and the MapReduce programming model along four axes:

• Implement the iMR MapReduce API using generic map and reduce Mortar

operators.

• Pane-based continuous processing with flow control.

46

47

• Load shedding/cancellation and pane/window eviction policies.

• Fault-tolerance mechanisms, including operator re-start and adaptive routing

schemes.

4.1.1 Building an in-situ MapReduce query

Mortar computes continuous in-network aggregates across federated sys-

tems with thousands of nodes. This is a natural fit for the map, combine, and

reduce functions since they are either local per-record transforms (map) or often

in-network aggregates. A Mortar query consists of a single operator, or aggregate

function, which Mortar replicates across nodes that produce the raw data streams.

These in-situ operators give iMR the opportunity to actively filter and reduce in-

termediate data before it is sent across the network. Each query is defined by its

operator type and produces a single, continuous output data stream. Operators

push, as opposed to the pull-based method used in Hadoop, records across the

network to other operators of the same type.

Mortar supports two query types: local and in-network queries. A local

query processes data streams independently at each node. In contrast, in-network

queries use a tree of operators to aggregate data across nodes. Either query type

may subscribe to a local, raw data source such as a log file, or to the output of an

existing query. Users compose these query types to accomplish more sophisticated

tasks, such as MapReduce jobs.

Figure 4.1 illustrates an iMR job that consists of a local query for map

operators and an in-network query for reduce operators. Map operators run on

the log servers and partition their output among co-located reduce operators (here

there are two partitions, hence two reduce trees). The reduce operator does most

of the heavy lifting, grouping key-value pairs issued by the map operators before

calling the user’s combine, uncombine, and reduce functions. Unlike traditional

MapReduce architectures, where the number of reducers is fixed during execution,

iMR may dynamically add (or subtract) reducers during processing.

48

Partition 1

Final Output

Node C

Reduce 1

Node A
Source

Map

Reduce 1 Reduce 2

Node B
Source

Map

Reduce 1 Reduce 2

Partition 2

Final Output

Node D

Reduce 2

"the for the"

< the, 4 > < for, 2 >

< the, 2 > < for, 1 > < for, 1 >< the, 2 >

"the for the"

Figure 4.1: Each iMR job consists of a Mortar query for the map and a query
for the reduce. Here there are two MapReduce partitions (r = 2), which result in
two aggregation trees. A word count example illustrates partitioning map output
across multiple reduce operators.

4.1.2 Map and reduce operators

Like other stream processors, Mortar uses processing windows to bound

computation and provides a simple API to facilitate programming continuous op-

erators. We implemented generic map and reduce operators using this API to call

user-defined MapReduce functions at the appropriate time and properly group the

key-value pairs. We modified operator internals so that they operate on panes

as described in Section 3.1.4. Operators take as input either raw records from

a local source or they receive panes from upstream operators in the aggregation

tree. Internally, iMR represents panes as (possibly sorted) hash maps to facilitate

key-value grouping.

In iMR operators have two main tasks: pane creation, creating an initial

pane from a local data source, and pane merging, combining panes from children

in an aggregation tree. Pane creation operates on a record-by-record basis, adding

new records into the current pane. In contrast, pane merging combines locally

49

produced panes with those arriving from the network. Because of differences in

processing time and network congestion, operators maintain a sequence of panes

that the system is actively merging (they have not yet been evicted). We call this

the active pane list or APL.

To adapt Mortar for MapReduce processing, we introduce immutable times-

tamps into the system. Mortar assumes logically independent operators that times-

tamp output records at the moment of creation. In contrast, iMR defines process-

ing windows with respect to the original timestamps on the input data, not with

respect to the time at which an operator was able to evict a pane. iMR assigns

a timestamp to each data record when it first enters the system (e.g. using a

pre-existing timestamp embedded in the data, or the current real time). This

timestamp remains with the data as it travels through successive queries. Thus

networking or processing delays do not alter the window in which the data belongs.

The map operator

The simplicity of mapping allows a streamlined map operator. The operator

calls the user’s map function for each arriving record, which may contain one or

more log entries1. For each record, the map operator emits zero or more key-value

pairs. We optimized the map operator by permanently assigning it a window

with a range and slide equal to one record. This allowed us to remove window-

related buffering and directly issue records containing key-value pairs to subscribed

operators. Finally, the map operator partitions key-value pairs across subscribed

reduce operators.

The reduce operator

The reduce operator handles the in-network functionality of iMR including

the grouping, combining, sorting and reducing of key-value pairs. The operators

maintain a hash map for each pane in the active pane list. Here we describe how

the reduce operator creates and merges panes.

1Like Hadoop, iMR includes handlers that interpret log records.

50

After a reduce operator subscribes to a local map operator it begins to re-

ceive records (containing key-value {k,v} pairs). The reducer operator first checks

the logical timestamp of each {k,v} pair. If it belongs to the current pane, the

system inserts the pair into the hash table and calls the combiner (if defined).

When a {k,v} pair arrives with a timestamp for the next pane, the system inserts

the prior pane into the active-pane list (APL). The operator may skip panes for

which there is no local data. In that case, the operator inserts boundary panes

into the APL with completeness counts of one.

Load shedding occurs during pane creation. As records arrive, the operator

maintains an estimate of when the pane will complete. The operator periodically

updates this estimate, maintained as an Exponentially Weighted Moving Average

(EWMA) biased towards recent observations (α = 0.8), and determines whether

the user’s latency deadline will be met. For accuracy, the operator processes 30%

of the pane before the first estimate update. For responsiveness, the operator

periodically updates and checks the estimate (every two seconds). For each skipped

pane the operator issues a boundary pane with an incompleteness count of one.

The APL merges locally produced panes with panes from other reduce

operators in the aggregation tree. The reduce operator calls the user’s combiner

for any group with new keys in the pane’s hash map. The operator periodically

inspects the APL to determine whether it should evict a pane (based on the policies

in Section 3.2.3). Reduce operators on internal or leaf nodes forward the pane

downstream on eviction.

If the operator is at the tree’s root, it has the additional responsibility

of determining when to evict the entire window. The operator checks eviction

policies on periodic timeouts (the user’s latency requirement) or when a new pane

arrives (possibly meeting the fidelity bound). At that point, the operator may

produce the final result either by using the optional uncombine function or by

simply combining the constituent panes (strategies discussed in Section 3.1.4).

After this combining step, the operator calls the user-defined reduce function for

each key in the window’s hash map.

51

4.1.3 Load cancellation and shedding

When the root evicts incomplete windows, nodes in the aggregation tree

may still be processing panes for that window. This may be due to panes with

inordinate amounts of data or servers that are heavily loaded (have little time for

log processing). Thus they are computing and merging panes that, once they arrive

at the root, will no longer be used. This section discusses mechanisms that cancel

or shed the work of creating and merging panes in the aggregation tree. Note

that iMR assumes that mechanisms already exist to apportion server resources

between the server’s normal duties and iMR jobs. For instance, iMR may run in

a separate virtual machine, letting the VM scheduler allocate resources between

log processing and VMs running site services. Here our goal is to ensure that iMR

nodes use the resources they are given effectively.

iMR’s load cancellation policies try to ensure that internal nodes do not

waste cycles creating or merging panes that will never be used. When the root

evicts a window because it has met the minimum C2 fidelity requirement, there is

almost surely outstanding work in the network. Thus, once the root determines

that it will no longer use a pane, it relays that pane’s index down the aggregation

tree. This informs the other nodes that they may safely stop processing (creat-

ing/merging) the pane.

In contrast, iMR’s load shedding strategy works to prevent wasted effort

when individual nodes are heavily loaded. Here nodes observe their local processing

rates for creating a pane from local log records. If the expected time to completion

exceeds the user’s latency bound, it will cancel processing for that pane. It will then

estimate the next processing deadline that it can meet and skip the intervening

panes (and send boundary panes in their place).

Internal nodes also spend cycles (and memory) merging panes from children

in the aggregation tree. Here interior nodes either choose to proceed with pane

merging or, in the event that it violates the user’s latency bound, “fast forward”

the pane to its immediate parent. As we shall see in Section 6.6, these policies can

improve result fidelity in the presence of straggler nodes.

52

4.1.4 Pane flow control

Recall that the goal of load shedding in iMR is not to use less resources,

but to use the given resources effectively. Given some large input data at a source,

load shedding changes the work done, not its processing rate. Thus, it is still

possible for some nodes to produce panes faster than others, either because they

have less data per pane or more cycles available. In these cases, the local active

pane list (APL) could grow in an unbounded fashion, consuming server memory

and impacting its client-facing services.

We control the amount of memory used by the APL by employing a window-

oriented flow control scheme. Each operator monitors the memory used (by the

JVM in our implementation) and issues a pause indicator when it reaches a user-

defined limit. The indicator contains the logical index of the youngest pane in

the operator’s APL. Internally, pane creation waits until the indicator is greater

than the current index or the indicator is removed. Pause indicators are also

propagated top-down in the aggregation tree, ensuring that operators send evicted

panes upward only when the indicator is greater than the evicted indices or it is

not present.

4.1.5 MapReduce with gap recovery

While load shedding and pane eviction policies improve availability during

processing and network delays, nodes may fail completely, losing their data and

current queries. While traditional MapReduce designs, such as Hadoop, can restart

map or reduce tasks on any node in the cluster, iMR does not assume a shared

filesystem that can reliable store data. Instead, iMR provides gap recovery [16],

meaning that the system may drop records (i.e., panes) in the event of node failures.

Multi-tree aggregation

Mortar avoids failed network elements and nodes by routing data up mul-

tiple trees. Nodes route data up a single tree until the node stops receiving heart

beats from its parent. If a parent becomes unreachable, it chooses another tree

53

(i.e., another parent) to route records to. For this work, we use a single tree; this

simplifies our implementation of failure eviction policies because internal nodes

know the maximum possible completeness of panes arriving from their children.

Mortar employs new routing rules to retain a degree of failure resilience.

If a parent becomes unreachable, the child forwards data directly to the root.

This policy allows data to bypass failed nodes at the expense of fewer aggregation

opportunities. Mortar also designs its trees by clustering network coordinates [33],

and we use the same mechanism in our experiments. We leave more advanced

routing and tree-building schemes as future work.

Operator re-install

iMR guarantees that queries (operators) will be installed and removed on

nodes in an eventually consistent manner. Mortar provides a reconciliation al-

gorithm to ensure that nodes eventually install (or un-install) query operators.

Thus, when nodes recover from a failure, they will re-install their current set of

operators. While we lose the data in the operator’s APL at the time of failure, we

need to re-start processing at an appropriate point to avoid duplicate data. To do

so, operators, during pane creation, maintain a simple on-disk write-ahead log to

indicate the next safe point in the log to begin processing on re-start. For many

queries the cost of writing to this log is small relative to pane computation, and

we simply point to the next pane.

4.2 Evaluation

In the section, we evaluate the scalability of iMR through microbenchmarks

but also its ability to deliver high-fidelity results in a timely manner under failures

or constrained computational resources. We also assess the usefulness of the C2

metric in understanding incomplete data and trading data fidelity for result latency.

54

0 5 10 15 20 25 30
0
2
4
6
8

10
12
14

Workers

M
ill

io
n

tu
pl

es
 p

er
 s

ec
on

d

1 root
2 roots
3 roots
4 roots

Figure 4.2: Data processing throughput as the number of workers and roots
increases. When the root of the query becomes the bottleneck, iMR scales by
partitioning data across more roots.

4.2.1 Scalability

One of the design goals of iMR is to scale to large datasets. Here, we evalu-

ate the ability of iMR to scale as we increase the computational resources available.

As described in Section 3.1, in the iMR in-network architecture, machines may play

one of two distinct roles: they are either workers that process and summarize raw

data from the local sources, or roots that combine summaries from child nodes.

Increasing the number of workers should increase data processing throughput until

the point that roots become a performance bottleneck. As with the MapReduce

framework, iMR handles this bottleneck by increasing the number of partitions,

that is, the number of roots. Therefore, we must verify the ability of iMR to scale

by adding more workers and roots.

For this experiment, we evaluated iMR on a 40 node cluster of HP DL380G6

servers, each with two Intel E5520 CPUs (2.27 GHz), 24 GB of memory, and 16

HP 507750-B21 500GB 7,200 RPM 2.5 SATA drives. Each server has two HP P410

drive controllers, as well as a Myricom 10 Gbps network interface. The network

interconnect we use is a 52-port Cisco Nexus 5020 data center switch. The servers

run Linux 2.6.35. Our implementation of iMR is written in Java.

55

In this experiment, we implement a word count query that runs on synthetic

input data, a set of randomly generated numbers. In our query, the map function

implements the identity function, while the reducer implements a count. The query

specifies a tumbling window, where the range is 150 million records. This window

range corresponds to processing approximately 1GB of input data per node. We

allow the query to run for five minutes and compute the average throughput across

all windows computed.

In Figure 4.2, we plot throughput, the total number of records processed

per second, as we increase computational resources, that is, workers and roots.

More specifically, on the x-axis we increase the number of workers and each line

corresponds to an increasing number of roots. We observe that as long as the

root is not a performance bottleneck, adding more workers increases throughput

linearly. Notice that a single root can handle the incoming data sent by up to 10

workers. At this point, by doubling the number of roots, we can also double the

throughput. Given the available resources in our experimental cluster, we were

able to use up to 30 workers and we observe that three roots are enough to handle

this load.

4.2.2 Load shedding

iMR employs techniques that shed processing load when nodes do not have

sufficient resources due to other services and the analysis has to deliver results

before a deadline. These techniques are designed to maximize result fidelity under

given time constraints. Here, we evaluate the effectiveness of these techniques in

providing high-fidelity results under limited CPU results. More specifically, we

verify that a single node can accurately estimate the right amount of data to shed

under varying CPU load.

For this and the remaining experiments we used a 30-node cluster with

Dual Intel Xeon 2.4 GHz CPUs. Nodes have 4GB of RAM and are connected on

a gigabit Ethernet.

In this experiment, we execute a word count query, where the map function

is the identity function and the reduce function implements a count. The query

56

0 20 40 60 80 100
0

20

40

60

80

100

Load (%)

F
id

el
ity

 (
%

)

Baseline
Timeout
Shedding

(a) Fidelity

0 20 40 60 80 100
0

20

40

60

80

100

120

Load (%)

La
te

nc
y

(m
in

)

Baseline
Timeout
Shedding

(b) Latency

Figure 4.3: Impact of load shedding on fidelity and latency for a word count job
under maximum latency requirement and varying worker load.

specifies a tumbling window with 20 million records and we configure iMR to use

20 panes per window. We install the query on a single worker that delivers result

to a single root. To limit the CPU available to iMR, we use the Linux cpulimit

tool [2] on the worker. We execute the query until it delivers 10 results and report

the average result latency and fidelity as we vary the CPU available to iMR.

In Figure 4.3(a) we show the fidelity of the delivered results as the CPU

load increases, while Figure 4.3(b) shows the latency of the delivered results. The

baseline case represents a query with no latency requirements that always delivers

results with 100% fidelity. As expected, the result latency of the baseline case

grows hyperbolically2 as the load increases.

Next, we set the latency requirement of the query to the observed baseline

window latency, which is 160 seconds. Based on this timeout, the ideal maximum

fraction of raw data that cannot be processed within the latency requirement is

equal to the CPU load percentage wise. The effectiveness of our load shedding

technique is determined by how much fidelity approaches this ideal maximum.

For comparison, the timeout line represents a query that does not employ

any shedding. The node keeps processing data until the timeout passes, in which

2Latency as a function of the CPU load x is of the type L(x) = c

1−x

57

0 20 40 60 80 100
0

1

2

3

4

Failed workers (%)
P

an
es

/m
in

Timeout
Failure eviction

Figure 4.4: Application goodput as the percentage of failed workers increases.
Failure eviction delivers panes earlier, improving goodput by up to 64%.

case the root evicts any data delivered up to that point. We observe that although

results meet the latency requirement, fidelity drops quickly as the load increases.

Without load shedding, the node attempts to process all raw data as they become

available. However, only the first few panes can be delivered within the deadline

and processing subsequent panes is useless.

Instead, by enabling load shedding workers use available CPU intelligently.

They process only panes that can be delivered within the deadline. This improves

result fidelity on average by 242%. Additionally, result fidelity is on average within

10% of the ideal fidelity. Notice that the higher the load is, the greater the diver-

gence from the ideal is. Shedding data incurs some CPU overhead and increasing

the CPU load results in shedding more data. Therefore, iMR spends more CPU

cycles in shedding rather than useful processing, causing this divergence from the

ideal fidelity.

4.2.3 Failure eviction

Apart from maximizing result fidelity through load shedding, iMR is de-

signed to minimize result latency. Through the failure eviction mechanism, iMR

detects opportunities to deliver results early when fidelity cannot be further im-

proved by waiting for overloaded or failed nodes. Here, we evaluate the ability of

the failure eviction mechanism to improve result latency when nodes fail.

58

In this experiment, we execute a word count query with a window of 2

million records and 2 panes per window. We set the query latency requirement to

30 seconds. We execute the query on 10 workers and emulate transient failures by

stopping an increasing number of workers for 4 minutes and then resuming them.

We run the query until it delivers 20 results.

Figure 4.4 plots the application goodput, the number of panes delivered to

the user per time. Note that this metric does not measure how fast workers can

process raw data. Instead it reflects the ability of the system to detect failures and

deliver panes to the user early. The higher the metric, the less the user waits to

get the same number of panes.

Without failure eviction, the root waits until the 30-second timeout before

it delivers incomplete results, even if all live nodes have delivered their data and

fidelity cannot improve. With failure eviction enabled, the root detects failed

workers and delivers results before the timeout, improving goodput by 57-64%.

4.2.4 Using C2

In this experiment, we show how using the C2 metric users can trade result

fidelity for latency. We display how depending on the application requirements

and data distributions, users may appropriately set the C2 specification. In par-

ticular, we explore the use of three general classes of C2 specifications: temporal

completeness, spatial completeness, and minimum volume with random pane se-

lection. We also show how choosing the right C2 specification allows users to make

more useful conclusions for incomplete data than with coarser metrics, like simple

progress. We perform experiments with three different application scenarios: a

word count with varying word distributions, click-stream analysis, and an HDFS

anomaly detector.

Word count

Here, we execute a word count query on synthetic data. We vary the total

percentage of data included in the result and measure how the accuracy of the

result changes. We repeat this for the three different classes of C2 specifications.

59

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
co

un
t e

rr
or

 (
%

)

100% time, X% space
X% time, 100% space
Random X%

(a) Count error

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
fr

eq
ue

nc
y

er
ro

r
(%

)

100% time, X% space
X% time, 100% space
Random X%

(b) Frequency error.

0 20 40 60 80 100
0

20
40
60
80

100
120
140
160

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 4.5: The performance of a count statistic on data uniformly distributed
across the log server pool. The relative count error drops linearly as we include
more data. Because of the uniform data distribution, both the count and the
frequency do not depend on the C2 specification.

We report the accuracy of two application metrics, the count of the words and the

relative frequency. For both metrics we report the relative error3. Additionally,

we report the result latency.

The query specifies a tumbling window with a size-based range of 100MB.

Each window consists of 10 panes. In this experiment, there is no latency bound.

The query is executed on 10 workers.

The data set is text consisting of random words chosen from a pool of

100K words. We distribute the words across the 10 workers and experiment with

3The relative error of a measurement X with respect to an ideal value Y is 100Y−X

Y
%.

60

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
co

un
t e

rr
or

 (
%

)

100% time, X% space
X% time, 100% space
Random X%

(a) Count error

0 20 40 60 80 100
0

20
40
60
80

100
120
140
160
180
200

Data volume (%)

R
el

at
iv

e
fr

eq
ue

nc
y

er
ro

r
(%

)

100% time, X% space
X% time, 100% space
Random X%

(b) Frequency error.

0 20 40 60 80 100
0

20
40
60
80

100
120
140

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 4.6: The performance of a count statistic on data skewed across the log
server pool. Because of the spatial skew, enforcing either random pane selection
or spatial completeness allows the system to better approximate count frequencies
than temporal completeness, and lower result latency.

different data distributions, to display how the C2 specification impacts our ability

to understand the results in different scenarios. We change the distribution of the

word frequency but also the distribution of words across different nodes. While this

is a simple text processing application, the results are relevant to any application

that counts, instead of words, events with similar distributions.

First, we create a data set where word frequency is uniformly distributed

and also words are spatially distributed uniformly across the workers. Figures 4.5(a)

and 4.5(b) plot the relative count and frequency errors respectively, while Fig-

ure 4.5(c) plots the result latency as the data volume included in the result in-

61

creases. The error reported is the average across all words in the result. The

vertical bars are equal to plus or minus one standard deviation.

As expected, the relative count error decreases linearly as more data are

include in the result. Because of the uniform spatial distribution, all C2 specifica-

tions result in the same error. Due to the uniform word frequency distribution, the

standard deviation of the error across all words is very small, since the accuracy

of every word count is equally degraded.

Furthermore, due to the uniform distribution, the relative frequency error

is low and also exhibits a small standard deviation. This is because the absolute

count of every word is reduced by the same percentage as the total volume of the

data. In Figure 4.5(c), we notice that requiring temporally complete results implies

that we have to wait until at least one of the workers processes all data in a window,

thus, increasing result latency. In contrast, by specifying spatially completeness

or random pane drops, we can reduce the result latency. Therefore, when data

are uniformly distributed, this C2 specification is preferred since it reduces result

latency and achieves result fidelity equal to the other specifications.

Next, we change the spatial distribution of the data. We skew the distri-

bution so that some words are more likely to exist on some workers than others.

As Figure 4.6(a) shows, while the average relative count error is similar to the

previous case, notice that the standard deviation is much higher here, especially

for the C2 specification that requires temporally complete results. In this case,

windows that are not temporally complete are dropped in their entirety, and data

from the corresponding workers are completely lost. Therefore, words that are

located on those nodes exhibit a higher relative count error, which impacts the

standard deviation.

The effect of the spatial skew is more obvious in the relative frequency er-

ror, shown in Figure 4.6(b). By removing entire windows from specific workers,

we reduce the count of the words that exist on those workers more than the count

of the words on the rest of the workers percentage wise. This adds to the relative

frequency error of these words. Instead, with spatially complete windows or ran-

domly dropped panes, the system samples keys from the entire server pool and the

62

relative frequency error remains low as in the previous case.

We observe that different classes of C2 specifications, which return the same

volume of data, may return qualitatively different results. The C2 metric exposes

the spatio-temporal characteristics of data, allowing users to either understand the

effect of data loss on their analysis, or set the C2 specification based on knowledge

about the data distribution.

Click-stream analysis

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
er

ro
r

(%
)

100% time, X% space
X% time, 100% space
Random X%

(a) Average error per userID

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

%
 u

se
rI

D
s

fo
un

d

100% time, X% space
X% time, 100% space
Random X%

(b) Percentage userID’s found.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 4.7: Estimating user session count using iMR and different C2 policies. We
preserve the original data distribution, where clicks from the same user may exist on
different servers. Random pane selection and temporal completeness provide higher
data fidelity and sample more userIDs than when enforcing spatial completeness.

63

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
er

ro
r

(%
)

100% time, X% space
X% time, 100% space
Random X%

(a) Average error per userID

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

%
 u

se
rI

D
s

fo
un

d

100% time, X% space
X% time, 100% space
Random X%

(b) Percentage userID’s found.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 4.8: Estimating user session count using iMR and different C2 policies.
Here we distribute data so that clicks from the same user exist on a single server.
Temporal completeness returns sessions that are accurate, but samples the smallest
percentage of userIDs. Instead, random sampling can sample a larger space of
userIDs.

Here, we implement a common click-stream analysis application. In par-

ticular, we develop a query that takes as input web server logs that contain user

clicks and computes user sessions. Clicks are the result of users browsing on a site

and are usually defined by (i) a userID, the identity of the user browsing, (ii) the

page that they clicked, and (iii) a timestamp that denotes the time of the click.

Although these are the most essential information, click logs may contain other

useful information as well.

A user session is a period during which a user is using a site and click

64

sessionization is the method of finding distinct user sessions by analyzing clicks.

Such an analysis is useful to understand user behavior, for instance, how much

time users spend on a site for every visit. A common method to sessionize clicks

is to compare the timestamps of subsequent clicks and group them in the same

sessions if they occurred withing a maximum amount of time.

We implemented an iMR query in which the map function extracts clicks

from the logs and the reduce function performs the sessionization by grouping clicks

as described above. The corresponding MapReduce query is also described in [38].

In this experiment, the reduce function, summarizes the calculated sessions by

reporting the number of sessions found per user. As with the previous experiment,

we want to evaluate how the different C2specifications affect the accuracy and the

latency of the analysis for varying amounts of data loss. Here, we measure accuracy

as the relative error on the computed session count.

The data set consists of 24 hours of sever logs from the 1998 World Cup

web site [1]. These represent logs from 32 web servers that comprise the site

infrastructure, and have a size of 4.5GB in total. The query window is set to 2

hours, and we set the pane size to 6 minutes, allowing for 20 panes per window.

We run the query for the entire data sets, which corresponds to 12 windows.

As with the previous experiment, we also want to explore how the data

distribution affects the accuracy of the analysis for the different C2 specifications.

Here the main characteristic of interest is the distribution of a user’s click across

servers. Clicks from the same user may either be distributed across servers, or

exist on a single server. Initially, we retain the original data distribution, where a

user’s clicks exist across different servers.

In Figure 4.7(a), we plot the relative error in the session count as the per-

centage of data included in the analysis changes. We compute the average error

across all users in a result. Note that this average does not take into account users

for which data are completely missing from the result. However, to quantify the

missing users, in Figure 4.7(b) we plot the percentage of userIDs discovered in the

data. This graph shows the ability of the system to sample a wide range of the

user space under the different C2 specifications.

65

We see in Figure 4.7(a) that although all three specifications provide a rel-

atively low relative error, temporal completeness and random sampling provide

a lower error than spatial completeness. In particular, temporal completeness

reduces the relative error by approximately 50% with respect to spatial complete-

ness. Because of the non-uniform distribution of the clicks across time, by requiring

spatially complete panes, we may miss panes with larger amounts of clicks. Fig-

ure 4.7(b) shows that spatially complete results are not effective in sampling a

large number of keys. Instead random sampling and temporally complete results

can return a better representation of the user space.

In Figure 4.7(c) we plot the corresponding latency. While random sampling

and spatial completeness allow the analysis to finish earlier, as expected, due to

the small data size the differences in latency are not significant.

Next, we experiment with a different data distribution, where clicks from a

single user exist on a single server. Figure 4.8(a) shows that temporal completeness

returns session counts that are perfectly accurate. Since a user’s clicks are local to

a server, by retrieving all data from a server we are able to accurately reconstruct

the user’s sessions. Instead, spatial completeness and random sampling incur errors

similar to the previous experiment, as expected, since only the distribution across

space has changed. However, in Figure 4.8(b) we see that temporal completeness

samples less userIDs. As the graph shows, we may improve the percentage of

userID discovered by 30-50%, simply by requiring random sampling.

We see that C2 provides a flexible way for applications to reduce fidelity

depending on data distribution and the objective. In this scenario, we may choose

to trade the fidelity of the results computed per user, for a wider sample of the

user space.

HDFS log analysis

Here, we implement a query that analyzes logs from the Hadoop Distributed

File System (HDFS) [8] service, to detect analysis. In the HDFS system, multiple

file servers, accept requests from clients to store blocks of a file locally. Among

other events, HDFS servers log the time it takes to serve client requests to write

66

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Data volume (%)

K
−

S
 s

ta
tis

tic

Random X%
X% time, 100% space
100% time, X% space

(a) KS-test

0 20 40 60 80 100
0

100

200

300

400

500

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
Random X%
X% time, 100% space

(b) Latency

Figure 4.9: (a) Results from the Kolmogorov-Smirnov test illustrate the impact
of reduced data fidelity on the histograms reported for each HDFS server. (b) For
HDFS anomaly detection, random and spatial completeness C2 improve latency
by at least 30%.

blocks locally. By computing the distribution of these times on a per server basis,

we can compare pairs of servers and detect anomalies where the distributions differ

substantially [73].

We implemented an iMR query with a map function that filters server logs

to find all entries that signify the beginning or end of a block write operation. The

reduce function matches the beginning and end of a block write operation for each

unique block, calculates the duration of such an operation, and maintains a his-

togram of the block write service times for every server. The resulting histograms

represent the distribution of the service times, and are compared according to [73],

to detect anomalies.

Similarly to the previous experiments, we measure how data loss affects the

accuracy and the latency of the analysis for different C2 specifications. In this

experiment, data loss affects the calculated service time distribution of a server

and, essentially, the ability of the application to detect anomalies, resulting either

in missing anomalies or in false alerts. We measure the accuracy of the analysis

by comparing the observed distribution for every server with the ideal one, that

67

is, the distribution when there is no data loss. We compare distributions using the

Kolmogorov-Smirnov (KS) statistical test [10]. The KS-test determines whether

the observed distribution is different from the ideal one.

The data set in this experiment consists of a 48-hour HDFS log trace gener-

ated by running the GridMix Hadoop workload generator [7] on a 30-node cluster.

Each server generated approximately 2.5GB of data, resulting in a total of 75GB.

The iMR query specifies a window of 60 minutes with 20 panes per window.

In Figure 4.9(a), we show the fraction of the observed histograms that are

different than the ideal ones. We see that since data distributions are computed

on a per server basis, temporal completeness returns perfectly accurate data. Even

though data form some nodes may be completely lost, the rest of the nodes report

all their data, resulting in accurate distributions. Notice that the other C2 specifi-

cations require more than 80% of the data to be processed in order to return results

with good quality. However, these specifications can reduce the result latency by

approximately 30% at that data volume.

Similarly to the previous applications, central to the choice of the right C2

specification is prior knowledge about the spatial properties of the data, in this

case, that time distributions are calculated on a per server basis. The C2 metric

allows users to leverage such knowledge when choosing the right C2 specification.

At the same time, users have the choice to trade analysis accuracy for reduced

latency.

4.2.5 In-situ performance

One of the main design principles of iMR is the co-location of the data

analysis with the services generating the data. This implies that CPU resources

may be limited for data analysis, since services are typically allocated the majority

of the resources. Here, we want to verify the feasibility of running analytics in-

situ. Specifically, we will evaluate (i) the ability of iMR to deliver useful results

while running side-by-side with a real service, and under time constraints for the

analysis, and (ii) the impact on the co-located service.

In particular, we run iMR side-by-side with a Hadoop installation on a 10-

68

0 2 4 6 8 10
0

20

40

60

80

100

niceness

F
id

el
ity

 (
%

)

Shedding
No shedding

(a) Fidelity

0 2 4 6 8 10
60

70

80

90

100

niceness

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

%
)

(b) Hadoop performance

Figure 4.10: Fidelity and Hadoop performance as a function of the iMR process
niceness. The higher the niceness, the less CPU is allocated to iMR. Hadoop is
always given the highest priority, nice = 0.

node cluster. We submit to Hadoop a workload that consists of a variety of Hadoop

jobs, generated by the GridMix workload generator [7]. Hadoop is configured to

use all the nodes in our compute cluster. At the same time, iMR executes a word

count query on the synthetic data set used in Section 4.2.4. The query specifies a

window with 2 million records, 20 panes per window, and a 60-second timeout.

In this experiment, we vary the CPU allocated to iMR and measure the

quality of the delivered results under the given time constraint of 60 seconds. As

less CPU is allocated to iMR, we expect fidelity to drop since iMR will not be

able to process an entire window within the time constraint. We vary the CPU

allocated by changing the iMR process niceness, the priority assigned by the kernel

scheduler, and report the fidelity of the returned results. Here, fidelity is equal

to the volume of data processed. Additionally, we report the relative change in

the Hadoop performance, in terms of jobs completed per time, as the iMR CPU

allocation varies. This metric measures the impact of running iMR in-situ on

Hadoop.

Figure 4.10(a) shows that without load shedding iMR returns poor results

and fidelity drops quickly as iMR is allocated less CPU. In this case, iMR spends

69

most time trying to process data that will never be delivered before the time

constraint. Instead, the load shedding mechanism is able to use available resources

intelligently, improving result fidelity by a factor of more than 5.6× most of the

time. Notice than when the iMR niceness is set to greater than 9, CPU resources

are not sufficient to process data within the 60-second timeout, and fidelity drops

significantly.

Figure 4.10(b) shows the relative change performance for Hadoop as the

CPU allocated to iMR varies. We measure Hadoop performance as the job com-

pletion throughput. For reference, when iMR and Hadoop are assigned the same

priority by the scheduler (niceness=0), the cost in Hadoop performance is a 17%-

decrease in job throughput. When the iMR niceness is set to 8, at which point

iMR can still deliver good quality results, the cost in Hadoop performance is less

than a 10%-decrease in job throughput. We see that iMR is able to deliver useful

results even when assigned only a small fraction of the CPU. At the same time iMR

incurs little impact on the co-located Hadoop system, making in-situ processing a

practical approach.

4.3 Acknowledgments

Chapter 4, in part, is reprint of the material published in the Proceedings

of the USENIX Annual Technical Conference 2011. Logothetis, Dionysios; Trezzo,

Chris; Webb, Kevin C.; Yocum; Ken. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Stateful bulk processing

In the previous chapters we presented a system for managing data during

the extraction from their sources and early analysis. After the extraction, data

are stored for follow-on, richer analysis. Analytics in this phase do not simply

filter or summarize data. Instead, they may perform more complex computations,

like iterative graph mining and machine learning algorithms, often consisting of

large, multi-step dataflows. At the same time, emphasis is given on extracting

information from a large body of data, rather than obtaining quick insights over

the most recent data.

In these analytics, state remains a key requirement for efficient processing.

For instance, many analytics must often incorporate large batches of newly col-

lected data in an efficient manner, and use state to avoid recomputation. This

chapter presents CBP, a complementary architecture for stateful analytics on bulk

data. CBP provides a programming model and runtime system for sophisticated

stateful analytics. Here, we describe the basic constructs of the model and show

how it allows users to program sophisticated stateful analytics. We illustrate how

CBP can be used to program (i) incremental analytics that must absorb large

batches of continuously arriving data, and (ii) iterative analytics.

A core component of CBP is a flexible, stateful groupwise operator, trans-

late, that cleanly integrates state into data-parallel processing. This basic op-

eration allows users to write stateful analytics and affords several fundamental

opportunities for minimizing data movement in the underlying processing system.

70

71

Additionally, CBP allows users to compose sophisticated dataflows using

the translate operator as the building block, and introduces primitives for dataflow

management. Continuous dataflows require control for determining stage execution

and input data consumption. The CBP allows dataflow control through simple yet

flexible primitives. These features simplify the construction of incremental and

iterative programs for large, evolving data sets.

5.1 A basic translate operator

(a) Basic groupwise processing. (b) Groupwise processing with access to

state.

(c) Grouping input with state records.

Figure 5.1: The progression from a stateless groupwise processing primitive to
stateful translation, T (·), with multiple inputs/outputs, grouped state, and inner
groupings.

We begin by studying the incremental crawl queue (Figure 1.3.1) dataflow

in more detail, where each stage is a separate translation operator. We illustrate

translate with a simplified version of the count in-links stage, called URLCount,

that only maintains the frequency of observed URLs. This stateful processing stage

72

has a single input that contains URLs extracted from a set of crawled web pages.

The output is the set of URLs and counts that changed with the last set of input

records.

For illustration, Figure 5.1 presents a progression from a stateless group-

wise primitive, such as reduce, to our proposed translate operator, T (·), which will

eventually implement URLCount. Figure 5.1(a) shows a single processing stage

that invokes a user-defined translate function, T (·). To specify the grouping keys,

users write a RouteBy〈r〉 function that extracts the grouping key from each input

record r. In the case of URLCount, RouteBy extracts the URL as the grouping

key. When the groupwise operator executes, the system reads input records, calls

RouteBy, groups by the key k, partitions input data (we illustrate a single parti-

tion), and runs operator replicas in parallel for each partition. Each replica then

calls T (·) for each grouping key k with the associated records, r[]. We call each

parallel execution of an operator an epoch.

To maintain a frequency count of observed URLs, the URLCount translator

needs access to state that persists across epochs. Figure 5.1(b) adds a logical

state module from which a translate function may read or write values for the

current grouping key. In our case, URLCount stores counts of previously seen

URLs, maintaining state records of the type {url, count}. However, as the next

figure shows, translate incorporates state into the grouping operation itself and

the semantics of reading and writing to this state module are different than using

an external table-based store.

Figure 5.1(c) shows the full-featured translation function:

T : 〈k , F in

S , F in

1 , . . . , F in

n 〉, with multiple logical input and output flows and grouped

state. As the figure shows, we found it useful to model state using explicit, loopback

flows from a stage output to a stage input. This allows translate to process state

records like any other input, and avoids custom user code for managing access to

an external store. It also makes it simple for the system to identify and optimize

flows that carry state records. For simple stateful translators like URLCount one

loopback suffices, F out
S to F in

S .

Figure 5.2 shows pseudocode for our URLCount translate function called

73

URLCount T(url, F in
state[], F

in
urls[])

1 newcnt ← F in
urls.size()

2 if F in
state[0] 6= null then

3 newcnt ← newcnt + F in
state[0].cnt

4 F out
state.write({url, newcnt})

5 F out
updates.write({url, newcnt})

Figure 5.2: Translator pseudocode that counts observed URLs. The translator
reads and updates the saved count.

within this stage. With multiple logical inputs, it is trivial to separate state from

newly arrived records. It counts the number of input records grouped with the

given url , and writes the updated counts to state and an output flow for down-

stream stages. A translation stage must explicitly write each state record present

in F in
S to F out

S to retain them for the next processing epoch. Thus a translator

can discard state records by not propagating them to the output flow. Note that

writes are not visible in their groups until the following epoch.

We can optimize the URLCount translator by recognizing that F in

urls
may up-

date only a fraction of the stored URL counts each epoch. Current bulk-processing

primitives provide “full outer” groupings, calling the groupwise function for all

found grouping keys. Here URLCount takes advantage of translation’s ability to

also perform “inner” groupings between state and other inputs. These inner group-

ings only call translate for state records that have matching keys from other inputs,

allowing the system to avoid expensive scans of the entire state flow. However, to

improve performance this requires the underlying processing system to be able to

randomly read records efficiently (Section 6.5.2).

5.2 Continuous bulk processing

We now turn our attention to creating more sophisticated translators that

either iterate over an input or, in incremental environments, continuously process

newly arrived data. A key question for CBP is how to manage continuous data

arrivals. For example, an incremental program typically has an external process

74

RouteBy<r>=URL

F
state

in

F
A

in
F
B

in

F
Adiff

out
F
state

out

F
Bdiff

out

SetDiff_T(url, S[], A[], B[]){
 if S.hasNext() then {
 S.write(url); // propagate state
 } else {
 S.write(url); // write new state
 if (A.hasNext() && !B.hasNext())
 Adiff.write(url);
 if (B.hasNext() && !A.hasNext())
 Bdiff.write(url);
} }

(URL,time)

FrameBy<r>=hour

Figure 5.3: A stage implementing symmetric set difference of URLs from two
input crawls, A and B.

creating input. CBP systems must decide when to run each stage based on the

records accumulating on the input flows. In some cases they may act like existing

bulk-processing systems, in which a vertex (a Dryad vertex or a Map-Reduce job)

runs when a batch of records exists on each input. They may behave in a manner

similar to data stream processors [15], which invoke a dataflow operator when any

input has a single tuple available. Or they may behave in some hybrid fashion.

During each processing epoch, the translator, T (·), reads zero or more

records from each input flow, processes them, and writes zero or more records

to output flows. Thus a flow F is a sequence of records passed between two pro-

cessing stages over time. The sequence of records read from a given input flow

is called an input increment, and a special input framing procedure determines

the sizes of the input increments. The sequence of records output to a given flow

during one epoch form an output increment. CBP couples the framing function

with a second function, runnability, which governs the eligibility of a stage to run

(Section 6.2) and also controls consumption of input increments.

We illustrate these concepts by using a CBP program to compare the output

of two experimental web crawlers, A andB. The stage, illustrated in Figure 5.3, has

an input from each crawler whose records contain (url,timestamp) pairs. Similarly,

there is an output for the unique pages found by each crawler. The translator

75

implements symmetric set difference, and we would like to report this difference

for each hour spent crawling.1

First, the stage should process the same hour of output from both crawlers

in an epoch. A CBP stage defines per-flow F rameBy〈r〉 functions to help the

system determine the input increment membership. The function assigns a framing

key to each record, allowing the system to place consecutive records with identical

framing keys into the same increment. An increment is not eligible to be read until

a record with a different key is encountered.2 Here, F rameBy returns the hour at

which the crawler found the URL as the framing key.

However, the stage isn’t runnable unless we have an hour’s worth of crawled

URLs on both F in
A and F in

B . A stage’s runnability function has access to the status

of its input flows, including the framing keys of each complete increment. The

function returns a Boolean value to indicate whether the stage is eligible to run,

as well as the set of flows from which an increment is to be consumed and the set

from which an increment is to be removed.

For our symmetric set difference stage, runnability returns true iff both

input flows contain eligible increments. If both input flow increments have the

same framing key, the runnability function indicates that both should be read. On

the other hand, if the framing keys differ, the runnability function selects only the

one with the smaller key to be read. This logic prevents a loss of synchronization

in the case that a crawler produces no data for a particular hour.

Finally, the stage’s translation function, SetDiff T, is ready to process ob-

served URLs, storing them in state records. This stage’s RouteBy〈r〉 function

extracts the URL from each input record as the grouping key for state and crawler

records. If there is a state record for this url, then it either was reported in a prior

epoch or belongs to both crawls (the intersection). In this case the translator only

needs to manually propagate the state record. Otherwise, this URL has not been

seen and it is written to state. If it was seen exclusively by either crawl, we add it

1 Note that this is the change in unique URLs observed; the outputs won’t include re-crawled
pages (though that is easily done).

2The use of punctuations [15] can avoid having to wait for a new key, although we have not
implemented this feature.

76

to the appropriate output flow.

Framing and runnability are a powerful combination that allows stages to

determine what data to present to a stage, and to synchronize consumption of

data across multiple input flows. As with framing functions, runnability functions

may maintain a small amount of state. Thus it may contain significant control

logic. We have used it to synchronize inputs (e.g., for temporal joins), properly

interleave writes to and reads from state, and to maintain static lookup tables

(read but not remove an increment). Finally, applications such as PageRank can

use it to transition from one iterative phase to another, as we show in Section 5.5.3.

5.3 Support for graph algorithms

Groupwise processing supports obvious partitionings of graph problems by

assigning a single group to each vertex or edge. For example, programmers can

write a single translator that processes all vertices in parallel during each processing

epoch. In many cases, those per-vertex translation instances must access state

associated with other vertices. To do so, each vertex sends “messages” to other

vertices (addressed by their grouping key) so that they may exchange data. Such

message passing is a powerful technique for orchestrating large computations (it

also underlies Google’s graph processing system, Pregel [56]), and the CBP model

supports it.

Translation complements message passing in a number of ways. First, using

a second loopback flow to carry messages allows an inner grouping with the state

used to store the graph. Thus the system will call translate only for the groups

representing message destinations. Second, message passing can take advantage of

the generality of the RouteBy construct.

Often a computation at a single vertex in the graph affects some or all

of the vertices in the graph. For example, our incremental PageRank translator

(Section 5.5.3) must broadcast updates of rank from dangling nodes (nodes w/o

children) to all other nodes in the graph. Similarly, an update may need to be sent

to a subset of the nodes in the graph. While RouteBy can return any number of

77

Figure 5.4: Users specify per-input flow RouteBy functions to extract keys for
grouping. Special keys enable the broadcast and multicast of records to groups.
Here we show that multicast address mcX is bound to keys k1 and k3.

grouping keys from within a record, there is no simple way for a translator to write

a record that includes all nodes in the graph. It is difficult to know the broadcast

(or multicast) keyset a-priori.

To address this issue, RouteBy supports logical broadcast and multicast

grouping keys. Figure 5.4 shows RouteBy returning the special ALL broadcast key

for the input record on F in
1 . This ensures that the record b becomes associated

with all groups found in the input flows. While not shown, it is also possible

to limit the broadcast to particular input flows, e.g., only groups found in state.

Translators may also associate a subset of grouping keys with a single logical

multicast address. Here RouteBy on input flow F in
0 returns a multicast address,

mcX, associated with grouping keys k1 and k3. We describe both mechanisms in

more detail in Section 6.5.3.

5.4 Summary of CBP model

Naturally, multiple translation stages may be strung together to build more

sophisticated incremental programs, such as the incremental crawl queue. In gen-

eral, a CBP program itself (like Figure 1.3.1) is a directed graph P , possibly

containing cycles, of translation stages (the vertices), that may be connected with

multiple directed flows (the edges). Here we summarize the set of dataflow control

primitives in our CBP model that orchestrate the execution of stateful dataflow

programs.

78

Table 5.1: Five functions control stage processing. Default functions exist for
each except for translation.

Function Description Default

Translate(Key,∆F in

0 , . . . ,∆F in

n)→
(∆F out

0 , . . . ,∆F out

n)
Per-Stage: Groupwise
transform from input to
output records.

—

Runnable(framingKeys, state) →
(reads, removes, state)

Per-Stage: Determines
if stage can execute and
what increments are
read/removed.

RunnableALL

FrameBy(r, state) → (Key, state) Per-Flow: Assign
records to input incre-
ments.

FrameByPrior

RouteBy(r) → Key Per-Flow: Extract
grouping key from
record.

RouteByRcd

OrderBy(r) → Key Per-Flow: Extract sort-
ing key from record.

OrderByAny

As our examples illustrate, CBP controls stage processing through a set of

five functions, listed in Table 5.1. An application may choose these functions, or

accept the system-provided defaults (except for translate). The default framing

function FrameByPrior returns the epoch number in which the upstream stage pro-

duced the record, causing input increments to match output increments generated

by upstream stages. The default runnability function, RunnableAll, makes a stage

runnable when all inputs have increments and then reads and removes each.

The default RouteBy function, RouteByRcd, gives each record its own group

for record-wise processing. Such translators can avoid expensive grouping opera-

tions, be pipelined for one-pass execution over the data, and avoid state mainte-

nance overheads. Similarly, the OrderBy function, another key-extraction func-

tion that provides per-flow record ordering, has a default OrderByAny, which lets

the system select an order that may improve efficiency (e.g., using the order in

which the data arrives).

79

Figure 5.5: Incremental clustering coefficient dataflow. Each node maintains as
state its adjacency list and its “friends-of-friends” list.

5.5 Applications

The collection of default behaviors in the CBP model support a range of

important incremental programs, such as the incremental crawl queue example,

which uses RunnableAll and FrameByPrior for all its stages. Here we showcase the

extra flexibility the model provides by building stateful, iterative algorithms that

operate on graphs.

5.5.1 Mining evolving graphs

Many emerging data mining opportunities operate on large, evolving graphs.

Instances of data mining such graphs can be found in systems biology, data net-

work analysis, and recommendation networks in online retail (e.g., Netflix). Here

we investigate algorithms that operate over Web and social network graphs. The

Web is perhaps the canonical example of a large, evolving graph, and we study

an incremental version of the PageRank [62] algorithm used to help index its

content. On the other hand, the explosive growth of community sites, such as

MySpace or Facebook, have created extremely large social network graphs. For

instance, Facebook has over 300 million active users (as of September 2009, see

www.facebook.com/press). These sites analyze the social graph to support day-

to-day operations, external querying (Facebook Lexicon), and ad targeting.

80

ClusteringCoefficient T(node,F in
state,F

in
edges,F

in
FoF)

1 if F in
state.hasNext() then state ← F in

state.next()

2 foreach edge in F in
edges

3 state.adj.add(edge.dst);

4 foreach edge in F in
edges

5 foreach target in state.adj

6 F out
FoF .write(target,edge.src,edge.dst);

7 foreach update in F in
FoF

8 state.adj[update.src].adj.add(update.dst);

9 if F in
FoF .hasNext() then

10 recalcCo(state); F out
Co .write(node,state.co);

11 F out
state.write(state);

Figure 5.6: The clustering coefficients translator adds new edges (2-3), sends
neighbors updates (4-6), and processes those updates (7-10).

5.5.2 Clustering coefficients

We begin with a simple graph analysis, clustering coefficient, that, among

other uses, researchers employ to ascertain whether connectivity in social net-

works reflects real-world trust and relationships [77]. This example illustrates how

we load graphs into a stateful processing stage, how to use groupwise processing

to iteratively walk across the graph, and how messages may be used to update

neighbor’s state.

The clustering coefficient of a graph measures how well a graph conforms to

the “small-world” network model. A high clustering coefficient implies that nodes

form tight cliques with their immediate neighbors. For a node ni, with N neighbors

and E edges among the neighbors, the clustering coefficient ci = 2E/N(N−1).This

is simple to calculate if each node has a list of its neighbor’s neighbors. In a social

network this could be described as a “friends-of-friends” (FoF) relation.

For graph algorithms, we create a grouping key for each unique node in the

graph. This allows the calculation to proceed in parallel for each node during an

epoch, and us to store state records describing each vertex. Figure 5.5 illustrates

81

the single stateful stage for incrementally computing clustering coefficients.3 The

input F in
edges carries changes to the graph in the form of (src,dst) node ID pairs that

represent edges. Records on the state flow reference the node and its clustering

coefficient and FoF relation. Each input’s RouteBy returns a node ID as the

grouping key.

Figure 5.6 shows the translator pseudocode. The translator must add new

graph nodes4, update adjacency lists, and then update the FoF relations and clus-

tering coefficients. Line 1 retrieves a node’s state (an adjacency list, adj, of ad-

jacencies). Each record on F in
edges represents a new neighbor for this node. Lines

2-3 add these new neighbors to the local adjacency list. While that code alone

is sufficient to build the graph, we must also send these new neighbors to every

adjacent node so that they may update their FoF relation.

To do so, we send a record to each adjacent node by writing to the loop-

back flow F out
FoF (lines 4-6). During the next epoch, RouteBy for F in

FoF routes these

records to the node designated by target. When the system calls translate for these

nodes, lines 7-10 process records on F in
FoF , updating the FoF relation and recal-

culating the clustering coefficient. Finally, line 11 propagates any state changes.

Note that the runnability function allows the stage to execute if input is available

on any input. Thus during one epoch, a translate instance may both incorporate

new edges and output new coefficients for prior changes.

There are several important observations. First, it takes two epochs to

update the cluster coefficients when the graph changes. This is because “messages”

cannot be routed until the following epoch. Second, Figure 5.5 shows state as an

“inner” flow. Thus translation only occurs for nodes that have new neighbors

(input on F in
edges) or must update their coefficient (input on F in

FoF). These two

flows actively select the graph nodes for processing each epoch. Finally, where

a single input record into the URLCount translator causes a single state update,

here the work created by adding an edge grows with the size of state. Adding an

edge creates messages to update the FoF relation for all the node’s neighbors. The

message count (and size) grows as the size and connectivity of the graph increase.

3Going forward we hide the loop in state loopback flows.
4For ease of exposition we do not show edge deletions.

82

Figure 5.7: Incremental PageRank dataflow. The loopback flows are used to
propagate messages between nodes in the graph.

We explore these implications further in Section 6.6.3.

5.5.3 Incremental PageRank

PageRank is a standard method for determining the relative importance of

web pages based on their connectivity [62]. Incremental PageRank is important

because (1) computing PageRank on the entire web graph still takes hours on large

clusters and (2) important changes to the web graph occur on a small subset of

the web (news, blogs, etc.). However, truly incremental PageRank is challenging

because small changes (adding a link between pages) can propagate throughout

the entire graph. Here we implement the approximate, incremental PageRank

computation presented in [28], which thresholds the propagation of PageRank

updates. This algorithm takes as input a set of link insertions in the web graph;

other approaches exist to incorporate node additions and removals [28].

Figure 5.7 illustrates our incremental PageRank dataflow, which shares

many features with clustering coefficient. It uses the same format for input edges,

groups records by vertex, stores adjacency lists in state records, uses an inner state

flow, and sends “messages” to other nodes on loopback flows. We skip the sundry

details of translation, and instead focus on how to manage an algorithm that has

several distinct iterative phases.

At a high level, the algorithm must build the graph W , find the subgraph G

affected by newly inserted edges, compute transition probabilities to a supernode

83

IncrPageRank T(node,F in
S ,F in

E ,F in
R ,F in

W ,F in
Cvg,F

in
Ω)

1 if F in
E .hasNext() then makeGraph();startWeight();

2 if F in
W .hasNext() then sendWeightToNeighbors();

3 if F in
Ω .hasNext() then updateSupernode();

4 if F in
Cvg.hasNext() then resetRankState();

5 elseif F in
R .hasNext() then

6 doPageRankOnG();

Figure 5.8: Pseudocode for incremental PageRank. The translator acts as an
event handler, using the presence of records on each loopback flow as an indication
to run a particular phase of the algorithm.

Ω (W − G), and then compute PageRank for G (pages in Ω retain their rank).

This algorithm has been shown to be both fast and to provide high-quality ap-

proximations for a variety of real and synthesized web crawls [28].

Figure 5.8 shows high-level pseudocode for the PageRank translator. Inter-

nally, the translator acts as a per-node event handler, using the presence of records

on each loopback flow as an indication to run a particular phase of the algorithm.

Here the runnability function plays a critical role in managing phase transitions;

it exclusively reads each successive phase’s input after the prior input becomes

empty. Thus runnability first consumes edges from F in
edges, then F in

W (to find G),

then F in
Ω (updating the supernode), and finally F in

R (to begin PageRank on G).

When doPageRankOnG converges, the second stage writes an ALL record to F out
Cvg.

This causes the translator to reset graph state, readying itself for the next set of

edge insertions.

This design attempts to minimize the number of complete scans of the

nodes in W by using both “inner” state flows and the multicast ability of the

RouteBy function. For example, when calculating PageRank for G, leaves in G

multicast their PageRank to only nodes in G. We discuss the multicast API more

in Section 6.5.3. Finally, note that we place all the phases in a single translator.

Other organizations are possible, such as writing a stage for each phase, though

this may make multiple copies of the state. In any case, we envision such analytics

as just one step in a larger dataflow.

84

5.6 Related work

Non-relational bulk processing: This work builds upon recent non-

relational bulk processing systems such as Map-Reduce [34] and Dryad [46]. Our

contributions beyond those systems are two-fold: (1) a programming abstraction

that makes it easy to express incremental computations over incrementally-arriving

data; (2) efficient underlying mechanisms geared specifically toward continuous,

incremental workloads.

A closely related effort to CBP enhances Dryad to automatically identify

redundant computation; it caches prior results to avoid re-executing stages or to

merge computations with new input [67]. Because these cached results are outside

the dataflow, programmers cannot retrieve and store state during execution. CBP

takes a different approach, providing programmers explicit access to persistent

state through a familiar and powerful groupwise processing abstraction.

Our work also complements recent efforts to build “online” Map-Reduce

systems [32]. While their data pipelining techniques for Map-Reduce jobs are

orthogonal to the CBP model, the work also describes a controller for running

Map-Reduce jobs continuously. The design requires reducers to manage their own

internal state, presenting a significant programmer burden as it remains outside

of the bulk-processing abstraction. The controller provides limited support for

deciding when jobs are runnable and what data they consume. In contrast, CBP

dataflow primitives afford a range of policies for controlling these aspects of itera-

tive/incremental dataflows.

Twister [36], a custom Map-Reduce system, optimizes repeatedly run (iter-

ative) Map-Reduce jobs by allowing access to static state. Map and Reduce tasks

may persist across iterations, amortizing the cost of loading this static state (e.g.,

from an input file). However, the state cannot change during iteration. In con-

trast, CBP provides a general abstraction of state that supports inserts, updates,

and removals.

Data stream management: CBP occupies a unique place between tradi-

tional DBMS and stream processing. Data stream management systems [15] focus

on near-real-time processing of continuously-arriving data. This focus leads to an

85

in-memory, record-at-a-time processing paradigm, whereas CBP deals with disk-

resident data and set-oriented bulk operations. Lastly, CBP permits cyclic data

flows, which are useful in iterative computations and other scenarios described

below.

Incremental view maintenance: Traditional view-maintenance environ-

ments, like data warehousing, use declarative views that are maintained implicitly

by the system [18, 68]. In contrast, CBP can be thought of as a platform for

generalized view-maintenance; a CBP program is an explicit graph of data trans-

formation steps. Indeed, one can support relational view maintenance on top of

our framework, much like relational query languages have been layered on top of

Map-Reduce and Dryad (e.g., DryadLINQ [82], Hive [9], Pig [61]).

5.7 Acknowledgments

Chapter 5, in part, is reprint of the material published in the Proceedings of

the ACM Symposium on Cloud Computing 2010. Logothetis, Dionysios; Olston,

Christopher; Reed, Benjamin; Webb, Kevin C.; Yocum Ken. The dissertation

author was the primary investigator and author of this paper.

Chapter 6

CBP design and implementation

This chapter describes the design and implementation of the CBP runtime

system. We describe how CBP allows the orchestration of dataflows and how it can

reliably and efficiently execute them. Furthemore, we illustrate the fundamental

mismatch between DISC systems and stateful computations by comparing two

implementations of the CBP model: (i) a “black-box” implementation on top of a

state-of-the-art DISC system, and (ii) a direct implementation of the CBP model.

Our evaluation shows how the CPB runtime that directly supports the model

significantly improves processing time and reduces resources usage.

The CBP architecture has two primary layers: dataflow and physical. The

physical layer reliably executes and stores the results of a single stage of the

dataflow. Above it, the dataflow layer provides reliable execution of an entire

CBP dataflow, orchestrating the execution of multiple stages. It ensures reliable,

ordered transport of increments between stages and determines which stages are

ready for execution. The dataflow layer may also compile the logical dataflow into

a more efficient physical representation, depending on the execution capabilities of

the physical layer. Such automated analysis and optimization of a CBP dataflow

is future work.

86

87

6.1 Controlling stage inputs and execution

The dataflow layer accepts a CBP dataflow and orchestrates the execution

of its multiple stages. The incremental dataflow controller (IDC) determines the

set of runnable stages and issues calls to the physical layer to run them.

The IDC maintains a flow connector, a piece of run-time state, for each

stage’s input flow. Each flow connector logically connects an output flow to its

destination input flow. It maintains a logical, ordered queue of identifiers that

represent the increments available on the associated input flow. Each output flow

may have multiple flow connectors, one for each input flow that uses it as a source.

After a stage executes, the IDC updates the flow connectors for each output flow

by enqueueing the location and framing key of each new output increment. The

default, with a DefaultFraming framing function, is for the stage to produce one

output increment per flow per epoch.

The IDC uses a stage’s runnable function to determine whether a stage can

be run. The system passes the function the set of flow connectors with un-read

increments and the associated framing keys, and an application-defined piece of

state. The runnable function has access to each flow connector’s meta data (e.g.,

number of enqueued increments) and determines the set of flow connectors from

which to read, readSet, and remove, removeSet, increments for the next epoch. If

the readSet is empty, the stage is not runnable. After each epoch, the IDC updates

each flow connector, marking increments as read or removing increment references.

Increments may be garbage collected when no flow connector references them.

6.2 Scheduling with bottleneck detection

The IDC must determine the set of runnable stages and the order in which to

run them. Doing so with prior bulk processing systems is relatively straightforward,

since they take a DAG as input. In that case a simple on-line topological sort

can determine a vertex (stage) execution order that respects data dependencies.

However, CBP presents two additional criteria. First, P may contain cycles, and

the scheduler must choose a total order of stages to avoid starvation or high result

88

latency (makespan). Second, using the runnability function, stages can prefer or

synchronize processing particular inputs. This means that increments can “back

up” on input flows, and that the stage creating data for that input no longer needs

to run.

Our simple scheduler executes in phases and may test each stage’s runnabil-

ity function. It can detect stage starvation and respond to downstream backpres-

sure (a bottleneck stage) by not running stages that already have increments in all

outputs. Full details of this algorithm are available in our technical report [52]).

6.3 Failure recovery

The dataflow layer assumes that the physical layer provides atomic exe-

cution of individual stages and reliable storage of immutable increments. With

such semantics, a single stage may be restarted if the physical layer fails to run a

stage. The executed stage specifies a naming convention for each produced incre-

ment, requiring it to be tagged by its source stage, flow id, and increment index.

These may be encoded in the on-disk path and increment name. Once the physical

layer informs the IDC of success, it guarantees that result increments are on disk.

Dryad used similar techniques to ensure dataflow correctness under individual job

failures [46].

Next, the IDC updates the run-time state of the dataflow. This consists

of adding and deleting increment references on existing flow connectors. The con-

troller uses write-ahead logging to record its intended actions; these intentions

contain snapshots of the state of the flow connector queue. The log only needs to

retain the last intention for each stage. If the IDC fails, it rebuilds state from the

XML dataflow description and rebuilds the flow connectors and scheduler state by

scanning the intentions.

89

6.4 CBP on top of Map-Reduce

We divide the design and implementation of the CBP model into two parts.

In the first part we map translate onto a Map-Reduce model. This is a reasonable

starting point for the CBP physical layer due to its data-parallelism and fault-

tolerance features. However, this provides an incomplete implementation of the

translate operator and CBP dataflow primitives. Further, such a “black-box” em-

ulation results in excess data movement and space usage, sacrificing the promise of

incremental dataflows (Section 6.6). The next section describes our modifications

to an open-source Map-Reduce, Hadoop, that supports the full CBP model and

optimizes the treatment of state.

The design of our bulk-incremental dataflow engine builds upon the scal-

ability and robustness properties of the GFS/Map-Reduce architecture [39, 34],

and in particular the open-source implementation called Hadoop. Map-Reduce

allows programmers to specify data processing in two phases: map and reduce.

The map function outputs a new key-value pair, {k1, v1}, for each input record.

The system creates a list of values, [v]1, for each key and passes these to reduce.

The Map-Reduce architecture transparently manages the parallel execution of the

map phase, the grouping of all values with a given key (the sort), and the parallel

execution of the reduce phase.

We now describe how to emulate a single CBP stage using a single Map-

Reduce job.1 Here we describe the Map and Reduce “wrapper” functions that

export translate T (·). In CBP applications data is opaque to the processing

system, and these wrapper functions encapsulate application data (a record) in-

side an application data unit (ADU) object. The ADU also contains the flowID,

RouteByKey, and OrderByKey.

While the Map-Reduce model has one logical input and output, current im-

plementations allow a Map-Reduce job to process multiple input and write multiple

output files. In CBP, the flowIDs within each ADU logically separate flows, and

the wrapper code uses the flowID to invoke per-flow functions, such as RouteBy

1An efficient implementation of CBP over a Map-Reduce environment requires deterministic
and side-effect-free translators.

90

and OrderBy that create the routing and ordering keys. This “black-box” ap-

proach emulates state as just another input (and output) file of the Map-Reduce

job.

• Map: The map function wrapper implements routing by running the RouteBy

function associated with each input flow. It wraps each input record into an ADU

and sets the flowID, so the reduce function can separate data originating from

the different flows. Map functions may also run one or more preprocessors that

implement record-wise translation. The optional Map-Reduce combiner has also

been wrapped to support distributive or algebraic translators.

• Reduce: The Hadoop reducer facility sorts records by the

RouteByKey embedded in the ADU. Our CBP reduce wrapper function multiplexes

the sorted records into n streams, upcalling the user-supplied translator function

T (·) with an iterator for each input flow. Per-flow emitter functions route output

from T (·) to HDFS file locations specified in the job description. Like the map,

emitter functions may also run one or more per-record postprocessing steps before

writing to HDFS.

Thus a single groupwise translator becomes a job with a map/reduce pair, while

a record-wise translator can be a map-only job (allowed by Hadoop) or a reduce

postprocessor.

6.4.1 Incremental crawl queue example

We illustrate the compilation of a CBP dataflow into Map-Reduce jobs

using our incremental crawl queue examples from Figure 1.3.1. This dataflow is

compiled into two Map-Reduce jobs: CountLinks and DecideCrawl. Figure 6.1

shows the two jobs and which stages each wrapper function implements. In both

jobs all input flows RouteBy the site, and order input by the URL. Otherwise

all input flows use the default framing and runnability functions. The first Map-

Reduce job implements both extract links and count in-links. It writes state ADUs

with both site and URL routing keys to maintain counts for each. The second job

91

Figure 6.1: The Map-Reduce jobs that emulate the CBP incremental crawl queue
dataflow.

places both score and threshold as postprocessing steps on the groupwise merge

translator. This state flow records all visited src URLs.

6.4.2 Increment management

Map-Reduce implementations use shared file systems as a reliable mecha-

nism for distributing data across large clusters. All flow data resides in the Hadoop

distributed file system (HDFS). The controller creates a flow directory for each flow

F and, underneath that, a directory for each increment. This directory contains

one or more files containing the ADUs. As discussed in Section 6.2, when Hadoop

signals the successful completion of a stage, the controller updates all affected flow

connectors.

We emulate custom (non-default) framing functions as post processing steps

in the upstream stage whose output flow the downstream stage sources. The reduce

wrapper calls the framing function for each ADU written to that output flow.

By default, the increment directory name is the stage’s processing epoch that

generated these ADUs. The wrapper appends the resulting FramingKey to the

increment directory name and writes ADUs with that key to that directory. The

wrapper also adds the FramingKey to the meta data associated with this increment

in the input flow’s flow connector. This allows a stage’s runnable function to

compare those keys to synchronize input increments, as described in Section 5.2.

92

6.5 Direct CBP

We now modify Hadoop to accommodate features of the CBP model that

are either inexpressible or inefficient as “black-box” Map-Reduce emulations. The

first category includes features such as broadcast and multicast record routing. The

second category optimizes the execution of bulk-incremental dataflows to ensure

that data movement, sorting, and buffering work are proportional to arriving input

size, not state size.

6.5.1 Incremental shuffling for loopback flows

The system may optimize state flows, and any loopback flow in general, by

storing state in per-partition side files. Map-Reduce architectures, like Hadoop,

transfer output from each map instance or task to the reduce tasks in the shuffle

phase. Each map task partitions its output into R sets, each containing a subset of

the input’s grouping keys. The architecture assigns a reduce task to each partition,

whose first job is to collect its partition from each mapper.

Hadoop, though, treats state like any other flow, re-mapping and re-shuffling

it on each epoch for every groupwise translator. Shuffling is expensive, requiring

each reducer to source output from each mapper instance, and state can become

large relative to input increments. This represents a large fraction of the processing

required to emulate a CBP stage.

However, state is local to a particular translate instance and only contains

ADUs assigned to this translate partition. When translators update or propagate

existing state ADUs in one epoch, those ADUs are already in the correct partition

for the next epoch. Thus we can avoid re-mapping and re-shuffling these state

ADUs. Instead, the reduce task can write and read state from/to an HDFS parti-

tion file. When a reducer starts, it references the file by partition and merge sorts

it with data from the map tasks in the normal fashion.

Note that a translator instance may add state ADUs whose RouteBy key

belongs to a remote partition during an epoch. These remote writes must be

shuffled to the correct partition (translation instance) before the next epoch. We

93

accomplish this by simply testing ADUs in the loopback flow’s emitter, splitting

ADUs into two groups: local and remote. The system shuffles remote ADUs as

before, but writes local ADUs to the partition file. We further optimize this process

by “pinning” reduce tasks to a physical node that holds a replica of the first HDFS

block of the partition file. This avoids reading data from across the network by

reading HDFS data stored on the local disk. Finally, the system may periodically

re-shuffle the partition files in the case of data skew or a change in processor count.

6.5.2 Random access with BIPtables

Here we describe BIPtables (bulk-incremental processing tables), a simple

scheme to index the state flow and provide random state access to state. This

allows the system to optimize the execution of translators that update only a frac-

tion of state. For example, a translator may specify an inner state flow, meaning

that the system only needs to present state ADUs whose RouteBy keys also ex-

ist on other inputs. But current bulk-processing architectures are optimized for

“streaming” data access, and will read and process inputs in their entirety. This

includes direct CBP with state partition files (described above), which reads the

entire partition file even if the translator is extremely selective.

However, the success of this approach depends on reading and writing

matched keys randomly from a table faster than reading and writing all keys

sequentially from a file. Published performance figures for Bigtable, a table-based

storage infrastructure [25], indicate a four to ten times reduction in performance for

random reads relative to sequential reads from distributed file systems like GFS[39]

for 1000-byte records. Moreover, our recent investigation indicates even achieving

that performance with open-source versions, such as Hypertable, is optimistic, re-

quiring operations to select under 15% of state keys to improve performance [52].

The design outlined below outperforms sequential when retrieving as many as 60%

of the state records (Section 6.6.2).

BIPtables leverages the fact that our CBP system needs only simple (key,

ADUs) retrieval and already partitions and sorts state ADUs, making much of the

functionality in existing table-stores redundant or unnecessary. At a high level,

94

each state partition now consists of an index and data file. While similar to HDFS

MapFiles or Bigtable’s SSTable files, they are designed to exist across multiple

processing epochs. Logically, the data file is an append-only, unsorted log that

contains the state ADUs written over the last n epochs. Because HDFS only

supports write-once, non-append files, we create additional HDFS data files each

epoch that contain the new state inserts and updates.

Each translate instance reads/writes the entire index file corresponding to

its state partition each epoch. They use an in-memory index (like Bigtable) for

lookups, and write the index file as a sorted set of key to {epoch, offset} pairs. To

support inner state flows using BIPtables, we modified reduce tasks to query for

state ADUs in parallel with the merge sort of mapper output and to store reads

in an ADU cache. This ensures that calls to the translate wrapper do not stall on

individual key fetches. Our system learns the set of keys to fetch during the merge

and issues reads in parallel. The process ends when the ADU cache fills, limiting

the memory footprint, or all keys are fetched. The reduce task probes the ADU

cache on each call to the translate wrapper, and misses fault in the offending key.

6.5.3 Multicast and broadcast routing

The CBP model extends groupwise processing by supporting a broadcast

ALL address and dynamic multicast groups. Here we describe how to do so effi-

ciently, reducing duplicate records in the data shuffle. We support ALL RouteBy

keys by modifying mappers to send ALL ADUs to each reduce task during the

shuffle phase. At this point, the reduce wrapper will add these tuples to the ap-

propriate destination flow before each call to translate. Since the partition count

is often much less than the number of groups in state, this moves considerably less

data than shuffling the messages to each group. ALL may also specify an optional

set of input flows to broadcast to (by default the system broadcasts to all inputs).

While broadcasting has an implicit set of destination keys for each epoch,

we provide translator authors the ability to define multicast groups dynamically.

They do so by calling associate(k ,mcaddr), which associates a target key k with a

multicast groupmcaddr. A translator may call this for any number of keys, making

95

any key a destination for ADUs whose RouteBy returns mcaddr. The association

and multicast address are only valid for this epoch; the translator must write to

this multicast address in the same epoch in which it associates keys.

Under the hood, calls to associate place records of {k,mcaddr} on a dy-

namically instantiated and hidden loopback flow named fmcaddr. The system treats

input records routed to a multicast address in a similar fashion to ALL ADUs, send-

ing a single copy to each reduce task. That record is placed in an in-memory hash

table keyed by mcaddr. When the reduce wrapper runs, it reads the hidden loop-

back flow to determine the set of multicast addresses bound to this key and probes

the table to retrieve the data.

6.5.4 Flow separation in Map-Reduce

While the FlowID maintains the logical separation of data in the black-box

implementation, the Map-Reduce model and Hadoop implementation treat data

from all flows as a single input. Thus the system sorts all input data but must

then re-separate it based on flowID. It must also order the ADUs on each flow

by that flow’s OrderBy keys. This emulation causes unnecessary comparisons and

buffering for groupwise translation.

Consider emulating a groupwise translator with n input flows. A Hadoop

reduce tasks calls the reduce function with a single iterator that contains all records

(ADUs) sharing a particular key. Direct CBP emulates the individual flow iterators

of T (·) by feeding from a single reduce iterator, reading the flow iterators out of

flowID order forces us to buffer skipped tuples so that they can be read later.

A read to that last flow causes the system to buffer the majority of the data,

potentially causing OutOfMemoryErrors and aborted processing. This occurs in

practice; many of our examples apply updates to state by first reading all ADUs

from a particular flow.

We resolve this issue by pushing the concept of a flow into Map-Reduce. Re-

duce tasks maintain flow separation by associating each mapper with its source in-

put flow. While the number of transfers from the mappers to reducers is unchanged,

this reduces the number of primary (and secondary) grouping comparisons on the

96

RouteBy (and OrderBy) keys. This is a small change to the asymptotic analysis

of the merge sort of r records from m mappers from O(rlogm) to O(rlogm
n
). This

speeds up the secondary sort of ADUs sharing a RouteByKey in a similar fashion;

the reduce task now employs n secondary sorts based only on the OrderByKey.

This allows each flow to define its own key space for sorting and permits reading

flows in an arbitrary order that avoids unnecessary ADU buffering.

6.6 Evaluation

Our evaluation validates the benefits of programming incremental dataflows

using the CBP model. It explores how the various optimizations for optimizing

data movement improve the performance of our three example programs: the

incremental crawl queue, clustering coefficients, and PageRank. We built our CBP

prototype using Hadoop version 0.19.1, and the implementation consists of 11k

lines of code.

6.6.1 Incremental crawl queue

This part of the evaluation illustrates the benefits of optimizing the treat-

ment of state for incremental programs on a non-trivial cluster and input data

set. These experiments use the physical realization of the incremental crawl queue

shown in Figure 6.1. Our input data consists of 27 million web pages that we

divide into ten input increments (each appr. 30GB) for the dataflow. We ran

our experiments on a cluster of 90 commodity dual core 2.13GHz Xeons with two

SATA harddrives and 4GB of memory. The machines have a one gigabit per second

Ethernet connection to a shared switch fabric.

The goal of our system is to allow incremental algorithms to achieve per-

epoch running times that are a function of the number of state updates, not the

total amount of stored state. Note that for the incremental crawl queue, the num-

ber of state record updates is directly proportional to the number of arriving input

records. Thus, as our test harness feeds the incremental crawl queue successive

increments, we expect the running time of each successive increment to be almost

97

0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

% data processed

T
im

e
el

ap
se

d
(m

in
)

7.5GB−Black box
7.5GB−Direct
30GB−Black box
30GB−Direct

Figure 6.2: Cumulative execution time with 30GB and 7.5GB increments. The
smaller the increments, the greater the gain from avoiding state re-shuffling.

constant. To measure the effectiveness of our optimizations, we compare executions

of the “black-box” emulation with that of direct CBP.

For some dataflows, including the incremental crawl queue, the benefits of

direct CBP increase as increment size decreases. This is because processing in

smaller increments forces state flows to be re-shuffled more frequently. Figure 6.2

shows the cumulative processing time for the black-box and direct systems with

two different increment sizes: 30GB (the default) and 7.5GB (dividing the original

increment by 4). Though the per-stage running time of direct CBP rises, it still

remains roughly linear in the input size (i.e., constant processing time per incre-

ment). However, running time using black-box emulation grows super linearly,

because the cumulative movement of the state flow slows down processing.

Figure 6.3 shows a similar experiment using 30GB increments, but re-

ports the individual epoch run times, as well as the run times for the individ-

ual CountLinks and DecideCrawl jobs. This experiment includes the strawman,

non-incremental processing approach that re-computes the entire crawl queue for

each arriving increment. In this case we modify the dataflow so that runs do not

read or write state flows. As expected, the running time of the non-incremental

dataflow increases linearly, with the majority of the time spent counting in-links.

While the incremental dataflow offers a large performance improvement (seen in

98

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Increment

R
un

ni
ng

 ti
m

e
(m

in
.)

Total
CountLinks
DecideCrawl

(a) Non-incremental dataflow.

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Increment

R
un

ni
ng

 ti
m

e
(m

in
.)

Total
CountLinks
DecideCrawl

(b) Incremental dataflow: black-box.

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Increment

R
un

ni
ng

 ti
m

e
(m

in
.)

Total
CountLinks
DecideCrawl

(c) Incremental dataflow: direct.

Figure 6.3: The performance of the incremental versus landmark crawl queue.
The direct CBP implementation provides nearly constant runtime.

Figure 6.3(b)), the runtime still increases with increment count. This is because

the black-box emulation pays a large cost to managing the state flow, which con-

tinues to grow during the execution of the dataflow. Eventually this reaches 63GB

for the countlinks stage at the 7th increment.

Figure 6.3(c) shows run times for the direct CBP implementation that uses

incremental shuffling (with reducer pinning) and flow separation. Note that state is

an “outer” flow in these experiments, causing translation to access all state ADUs

each epoch. Even so, incremental shuffling allows each stage to avoid mapping

and shuffling state on each new increment, resulting in a nearly constant runtime.

Moreover, HDFS does a good job of keeping the partition file blocks at the prior

reducer. At the 7th increment, pinning in direct CBP allows reducers to read 88%

99

of the HDFS state blocks from the local disk.

6.6.2 BIPtable microbenchmarks

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

% keys accessed

C
om

pl
et

io
n

tim
e

(s
ec

)

Sequential
Sequential, no sort
Hypertable
BIPTable

Figure 6.4: Running time using indexed state files. BIPTable outperforms se-
quential access even if accessing more than 60% of state.

These experiments explore whether randomly reading a subset of state is

faster using BIPtable than reading all of state sequentially from HDFS. We identify

the break-even hit rate, the hit rate below which the random access outperforms

the sequential access. The test uses a stage that stores a set of unique integers in

an inner state flow; input increments contain numbers randomly drawn from the

original input. Changing input increment size changes the workload’s hit rate, the

fraction of accessed state. We run the following experiments on a 16-node cluster

consisting of Dual Intel Xeon 2.4GHz machines with 4GB of RAM, connected by

a Gigabit switch. We pre-loaded the state with 1 million records (500MB). Here

translation uses a single data partition, running on a single node, though HDFS

(or Hypertable) runs across the cluster.

Figure 6.4 compares running times for four configurations. BIPtable out-

performs Sequential, which reads the entire state partition file, for every selectivity.

One benefit is that BIPtable does not sort its records; it uses hashing to match

keys on other inputs. To measure this effect, sequential, no sort does not sort the

partition file (and will therefore incorrectly execute if the translator writes new

100

0 5 10 15 20 25 30
0

50

100

150

200

Epoch

C
um

ul
at

iv
e

tim
e

(m
in

)

Non−incremental shuffling
Incremental shuffling
Multicast

(a) Running time.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Epoch

C
um

ul
at

iv
e

da
ta

 m
ov

ed
 (

G
B

)

Non−incremental shuffling
Incremental shuffling
Multicast

(b) Data shuffled.

Figure 6.5: Incremental clustering coefficient on Facebook data. The multicast
optimization improves running time by 45% and reduces data shuffled by 84% over
the experiment’s lifetime.

keys during an epoch). In this case, BIPtable still outperforms sequential access

when accessing a majority (>60%) of state. For reference we include a prior re-

sult [54] using Hypertable; it failed to produce data when reading more than 50%

of state. Finally, it is relatively straightforward for BIPtables to leverage SSDs to

improve random access performance; a design that promises to significantly extend

the performance benefit of this design [54].

6.6.3 Clustering coefficients

Here we explore the performance of our clustering coefficient translator

(Figure 5.6). These graph experiments use a cluster of 25 machines with 160GB

drives, 4GB of RAM, and 2.8GHz dual core Xeon processors connected by gigabit

Ethernet. We incrementally compute clustering coefficients using a publicly avail-

able Facebook crawl [77] that consists of 28 million edges between “friends.” We

randomize the graph edges and create increments containing 50k edges a piece.

These are added to an initial graph of 50k edges connecting 46k vertices.

101

Figure 6.5(a) shows the cumulative running time for processing successive

increments. We configure the translator to use full, outer groupings and succes-

sively enable incremental shuffling and multicast support. First note that, unlike

the incremental crawl queue, running times with incremental shuffling are not con-

stant. This is because the mapped and shuffled data consists of both messages and

state. Recall that these messages must be materialized to disk at the end of the

prior epoch and then shuffled to their destination groups during the next epoch.

In fact, the message volume increases with each successive increment as the graph

becomes increasingly more connected.

Additionally, map tasks that emulate multicasting (i.e, by replicating an

input record for each destination) take four to six times as long to execute as

map tasks that operate on state records. Hadoop interleaves these longer map

tasks with the smaller state map tasks; they act as stragglers until state becomes

sufficiently large (around epoch 24). At that point incremental shuffling removes

over 50% of the total shuffled data in each epoch, enough to impact running times.

Even before then, as Figure 6.5(b) shows, incremental shuffling frees a significant

amount of resources, reducing total data movement by 47% during the course of

the experiment.

For this application the critical optimization is multicasting, which both

eliminates the user emulating multicast in map tasks and removes duplicate records

from the data shuffle. In this case, direct CBP improves cumulative running time

by 45% and reduces data shuffled by 84% over the experiment’s lifetime.

6.6.4 PageRank

This section explores the impact of direct CBP optimizations on the in-

cremental PageRank dataflow. We have verified that it produces identical results

for smaller, 7k node graphs using a non-incremental version. As input we use

the “indochina-2004” web graph obtained from [19]; it contains 7.5 million nodes

and 109 million edges. These experiments execute on 16 nodes in our cluster (de-

scribed above). Here our incremental change is the addition of 2800 random edges

(contained in a single input increment).

102

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

400

Epoch

C
um

ul
at

iv
e

tim
e

(m
in

)

Find subgraph G PageRank in new graph

Broadcast
Incremental shuffling
BIPtables

(a) Running time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

250

300

350

Epoch

C
um

ul
at

iv
e

da
ta

 s
hu

ffl
ed

 (
G

B
)

Find subgraph G PageRank in new graph

Broadcast
Incremental shuffling

(b) Data shuffled

Figure 6.6: Incremental PageRank. (a) Cumulative running time of our incre-
mental PageRank translator adding 2800 edges to a 7 million node graph. (b)
Cumulative data moved during incremental PageRank.

Figure 6.6(a) shows the cumulative execution time for this process. As Sec-

tion 5.5.3 explained, the dataflow proceeds in three phases: computing PageRank

on the original graph (epochs 1-3), finding the subgraph G (epochs 4-8), and re-

computing PageRank for nodes in G (epochs 9-16). Here we have purposefully

reduced the number of iterations in the first phase to highlight the incremental

computation. For this incremental graph update, the affected subgraph G con-

tains 40k nodes.

Here we evaluate the impact of incremental shuffling and inner state flows

via BIPtables. Note that this dataflow required the direct CBP implementation,

specifically broadcast support for propagating weights from dangling nodes. With-

out it, local disks filled with intermediate data for even small graphs.

Unlike clustering coefficient, incremental shuffling improves cumulative run-

ning time by 23% relative to only using broadcast support. Improvements occur

primarily in the last phase as there are fewer messages and processing state dom-

inates. After re-computing PageRank, incremental shuffling has reduced bytes

moved by 46%. Finally, we see a significant gain by using inner state flows (BIPt-

ables), as each epoch in the last phase updates only 0.5% of the state records.

In this case our architecture reduced both network and CPU usage, ultimately

cutting running time by 53%.

103

6.7 Acknowledgements

Chapter 6, in part, is reprint of the material published in the Proceedings of

the ACM Symposium on Cloud Computing 2010. Logothetis, Dionysios; Olston,

Christopher; Reed, Benjamin; Webb, Kevin C.; Yocum Ken. The dissertation

author was the primary investigator and author of this paper.

Chapter 7

Conclusion

We have been witnessing an unprecedented increase in the amount of un-

structured data produced today. Exploiting these big data sets requires data man-

agement systems that allow users to gain valuable insights through rich analysis.

This thesis is based on the observation that data analysis is no longer a ”one-shot”

process, rather we view it as an update-driven process. Update-driven analytics

arise in several scenarios, like continuous data processing, or machine learning al-

gorithms that iteratively refine the result of the analysis. We argue that there

is a fundamental mismatch between current data-intensive systems and update-

driven analytics that makes programming big data analytics harder and inefficient.

This dissertation introduces a different programming approach that captures this

update-driven nature, simplifying programming and allowing efficient analytics.

We observe that the concept of state arises naturally in these update-driven

data analytics and is a fundamental requirement for efficient processing. Based

on this observation, this dissertation proposes that state become a first-class ab-

straction in large-scale data analytics. To this end, this thesis introduces stateful

groupwise processing, an abstraction that integrates data-parallelism for scale with

state for efficiency. We use stateful groupwise processing to efficiently manage ana-

lytics in two phases of the data lifecycle: (i) online ETL analysis, and (ii) follow-on

analysis.

Critical to building a practical system for online ETL analytics is the abil-

ity to assess the impact of incomplete data on the analysis fidelity. We found

104

105

that knowledge about the natural spatial and temporal distribution of the data

across their sources allows useful insights about the quality of the analysis results.

By exposing this information to the users through the C2 metric, iMR allows a

wide range of online analytics applications. At the same time, we provided general

guidelines for using C2 to trade fidelity for latency depending on the different ap-

plication requirements. Through our iMR prototype we validated the usefulness of

the metric in a variety of real applications. We showed that it is possible to process

incomplete data, to retain result availability, and still make useful conclusions from

the data.

To efficiently execute ETL analytics, the iMR architecture moves the anal-

ysis from dedicated clusters to the data sources, avoiding costly data migrations.

While this in-situ processing architecture reduces network traffic, it requires iMR

to make careful use of available resources to minimize the impact on collocated

services. iMR’s load shedding techniques use available resources intelligently, and

provide useful results under constrained resources or latency requirements with

little impact on collocated services.

While iMR is suitable for running ETL analytics, running richer analytics

requires a different programming model and architecture. iMR is designed mainly

for filtering and summarizing data, operations that are common as a first step in

data analytics. However, several follow-on analytics may be expressed as complex,

multi-step dataflows. Additionally, some of these analytics implement algorithms,

like graph mining, that must iterate over datasets.

We designed the CBP model to be expressive enough to allow a variety

of sophisticated stateful analytics. We exhibited the expressiveness of CBP by

building a number of real applications, including web mining analytics, and itera-

tive graph algorithms. CBP’s broadcast and multicast grouping constructs proved

particularly useful in graph algorithms. Abstracting these common graph mining

operations made programming easier and allowed the CBP runtime to optimize the

execution of this type of analytics. Furthermore, we found that running dataflows

adds to the programming complexity as users must coordinate the execution of

individual steps. CBP assists users in this task by allowing the programmatic

106

control of dataflows through simple, yet powerful primitives.

We validated the benefits of integrating state in the CBP programming

model by comparing CBP against a prototype that implements stateful computa-

tions on top of the MapReduce model. Leveraging the explicit modeling of state,

CBP can optimize state management, significantly reducing processing times and

network resource usage. In many cases CBP reduces both processing time and

network traffic by at least a factor of 2. Further, we verified that CBP’s extended

grouping constructs allow huge performance gains in graph mining analytics. In

certain scenarios we found that executing these iterative analytics with current

DISC systems was impossible due to the amount of data that has to be saved to

disks and transferred across the network.

Our work is a first step toward addressing the basic challenges in managing

update-driven analytics. At the same time it creates the ground for investigating

a variety of interesting issues in the future. There is a trend toward real-time

analytics and a need to extract useful information from partial data. An interest-

ing direction is to explore the use of fidelity metrics for online analysis in more

sophisticated analytics, like machine learning and graph mining, not just ETL.

Incomplete data impact such analytics in non-obvious ways. Understanding and

characterizing this impact is a step toward making online analysis applicable to a

wider range of analytics.

Like MapReduce, one of the strengths of CBP is its flexibility. Even though

this allows rich analytics, it may result in a lot of custom, complicated user code

that is difficult to maintain and re-use [61]. Higher-level languages, like Pig [61]

and DryadLINQ [82], that are layered on top of systems like MapReduce and Dryad

allow users to compose dataflows from a restricted set of high-level operations (e.g.

filtering, grouping, aggregations, joins), simplifying programming. A promising

direction is to investigate the integration of stateful programming in a higher-level

language.

Devising incremental algorithms that use state may sometimes be a hard

programming task. Recent work has explored the ability to automatically detect

opportunities for computation re-use [67, 42, 43, 17]. These approaches transpar-

107

ently modify ”one-shot” dataflows to update the analytics in an incremental way.

An interesting future study would be to investigate the sweet spot between ease

of programming that these systems provide and increased performance through

explicitly incremental programs.

Bibliography

[1] 1998 World Cup Web Server Logs. http://ita.ee.lbl.gov/html/traces.html.

[2] CPU Usage Limiter for Linux. http://cpulimit.sourceforge.net.

[3] List of companies using Hadoop. http://wiki.apache.org/hadoop/PoweredBy.

[4] Oops pow surprise...24 hours of video all up in your eyes! http://youtube-
global.blogspot.com/2010/03/oops-pow-surprise24-hours-of-video-all.html.

[5] The Apache Mahout machine learning library. http://mahout.apache.org.

[6] The Flume log collection system. https://github.com/cloudera/flume.

[7] The GridMix Hadoop Workload Generator.
http://hadoop.apache.org/mapreduce/docs/current/gridmix.html.

[8] The Hadoop project. http://hadoop.apache.org.

[9] The Hive project. http://hadoop.apache.org/hive.

[10] The Komogorov-Smirnoff test. http://en.wikipedia.org/wiki/Kolmogorov-
Smirnov test.

[11] Windows Azure and Facebook teams. Personal communications, August 2008.

[12] Supercomputers: ’Data Deluge’ Is Chang-
ing, Expanding Supercomputer-Based Research.
http://www.sciencedaily.com/releases/2011/04/110422131123.htm, April
2011.

[13] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the Borealis stream processing engine. In Conference on Inno-
vative Data System Research, Asilomar, CA, Jan. 2005.

[14] A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggre-
gates. In International Conference on Very Large Data Bases, pages 336–347,
Toronto, Canada, Aug. 2004.

108

109

[15] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In ACM Symposium on Principles of Database
Systems, page 1, Madison, WI, June 2002. ACM Press.

[16] M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik. High-
Availability Algorithms for Distributed Stream Processing. In International
Conference on Data Engineering, pages 779–790, Tokyo, Japan, Apr. 2005.
IEEE.

[17] P. Bhatodia, A. Wieder, I. E. Akkus, R. Rodrigues, and U. Akar. Large-scale
Incremental Data Processing with Change Propagation. In Workshop on Hot
Topics in Cloud Computing, Portland, OR, June 2011.

[18] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materi-
alized views. In ACM SIGMOD International Conference on Management of
Data, volume 15, pages 61–71, June 1986.

[19] P. Boldi and S. Vigna. The WebGraph Framework I: Compression Tech-
niques. In International World Wide Web Conference, pages 595–601, Man-
hattan, NY, 2004. In Proc. of the Thirteenth International World Wide Web
Conference.

[20] T. Brants, A. C. Popat, and F. J. Och. Large Language Models in Ma-
chine Translation. In Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, volume 1, pages 858–867, Prague,
Czech Republic, June 2007.

[21] R. E. Bryant. Data-Intensive Supercomputing: The case for DISC. Technical
report, Carnegie Mellon University, Pissburgh, PA, May 2007.

[22] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: efficient iterative
data processing on large clusters. Proceedings of the VLDB Endowment, 3(1-
2):285–296, Sept. 2010.

[23] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a new class
of data management applications. In International Conference on Very Large
Data Bases, pages 215–226, Hong Kong, China, Aug. 2002.

[24] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed data mining
in credit card fraud detection. IEEE Intelligent Systems, 14(6):67–74, Nov.
1999.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage
system for structured data. In USENIX Symposium on Operating Systems

110

Design and Implementation, OSDI ’06, pages 205–218, Seattle, WA, Nov.
2006. USENIX Association.

[26] D. Chatziantoniou and K. A. Ross. Groupwise Processing of Relational
Queries. In International Conference on Very Large Data Bases, pages 476–
485, Athens, Greece, Aug. 1997.

[27] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. In
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 209, New York, New York, USA, June 2009. ACM Press.

[28] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and D. Sivakumar. Link Evo-
lution: Analysis and Algorithms. Internet Mathematics, 1:277–304, 2004.

[29] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Oluko-
tun. Map-Reduce for Machine Learning on Multicore. In Neural Information
Processing Systems, Dec. 2006.

[30] E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 26(1):64–69, Jan. 1983.

[31] J. Cohen. Graph Twiddling in a MapReduce World. Computing in Science
& Engineering, 11(4):29–41, 2009.

[32] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. MapReduce online. In USENIX Symposium on Networked Systems
Design and Implementation, page 21, San Jose, CA, Apr. 2010.

[33] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized Net-
work Coordinate System. In ACM SIGCCOMM Conference on Applications,
Technologies, Architectures and Protocols of Computer Communications, vol-
ume 34, page 15, Portland, OR, Oct. 2004.

[34] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. In USENIX Symposium on Operating Systems Design and Imple-
mentation, page 10, San Francisco, CA, Dec. 2004.

[35] J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Com-
munications of the ACM, 53(1):72, Jan. 2010.

[36] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, and G. Fox. High Perfor-
mance Parallel Computing with Cloud and Cloud Technologies. In Interna-
tional Conference on Cloud Computing, June 2009.

[37] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental
Clustering for Mining in a Data Warehousing Environment. In International
Conference on Very Large Data Bases, pages 323–333, New York City, NY,
Aug. 1998.

111

[38] E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce: a practi-
cal approach to self-describing, polymorphic, and parallelizable user-defined
functions. Proceedings of the VLDB Endowment, 2(2):1402–1413, Aug. 2009.

[39] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In ACM
Symposium on Operating Systems Principles, volume 37, page 29, Bolton
Landing, New York, Dec. 2003.

[40] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and
L. Brilliant. Detecting influenza epidemics using search engine query data.
Nature, 457(7232):1012–4, Feb. 2009.

[41] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In
International Conference on Data Engineering, New Orleans, LA, Mar. 1996.

[42] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nec-
tar: Automatic Management of Data and Computation in Datacenters. In
USENIX Symposium on Operating Systems Design and Implementation, Oct.
2010.

[43] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet:
batched stream processing for data intensive distributed computing. In ACM
Symposium on Cloud Computing, pages 63–74, Indianapolis, IN, June 2010.
ACM.

[44] J. Hellerstein, P. Haas, and H. Wang. Online Aggregation. In ACM SIGMOD
International Conference on Management of Data, Tucson, AZ, June 1997.

[45] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Sto-
ica. Querying the internet with PIER. In International Conference on Very
Large Data Bases, pages 321–332, Berlin, Germany, Sept. 2003.

[46] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In EuroSys Euro-
pean Conference on Computer Systems, volume 41, page 59, Lisbon, Portugal,
June 2007.

[47] M. Isard and Y. Yu. Distributed data-parallel computing using a high-level
programming language. In 35th International Conference on Management of
Data, page 7, Providence, Rhode Island, 2009.

[48] Z. Ivezic, J. A. Tyson, R. Allsman, J. Andrew, and R. Angel. LSST: From Sci-
ence Drivers to Reference Design and Anticipated Data Products. Evolution,
page 29, May 2008.

112

[49] R. Johnson. Scaling Facebook to 500 Million Users and Beyond.
http://www.facebook.com/note.php?note id=409881258919.

[50] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain:
efficient evaluation of sliding-window aggregates over data streams. ACM
SIGMOD Record, 34(1), 2005.

[51] J. Lin and M. Schatz. Design Patterns for Efcient Graph Algorithms in
MapReduce. In Workshop on Mining and Learning with Graphs, 2010.

[52] D. Logothetis, C. Olston, B. Reed, K. Webb, and K. Yocum. Programming
Bulk-Incremental Dataflows. Technical report, University of California, San
Diego, 2009.

[53] D. Logothetis and K. Yocum. Wide-Scale Data Stream Management. In
USENIX Annual Technical Conference, Boston, MA, June 2008.

[54] D. Logothetis and K. Yocum. Data Indexing for Stateful , Large-scale Data
Processing. In 5th International Workshop on Networking Meets Databases
(NetDB’09), Big Sky, MT, Oct. 2009.

[55] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation service for ad-hoc sensor networks. In USENIX Symposium on
Operating Systems Design and Implementation, volume 36, page 131, Boston,
MA, Dec. 2002.

[56] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. Interna-
tional Conference on Management of Data, 2010.

[57] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis. Dremel : Interactive Analysis of Web-Scale Datasets. Proceed-
ings of the VLDB Endowment, 3, Sept. 2010.

[58] D. Metzler and E. Hovy. Mavuno: A Scalable and Effective Hadoop-Based
Paraphrase Acquisition System. In KDD Workshop on Large-scale Data Min-
ing: Theory and Applications, San Diego, CA, Aug. 2011.

[59] C. Monash. Facebook, Hadoop, and Hive, 2009.

[60] R. N. Murty and M. Welsh. Towards a dependable architecture for internet-
scale sensing. In Workshop on Hot Topics in System Dependability, Hot-
Dep’06, pages 8–8, Berkeley, 2006. USENIX Association.

[61] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a
not-so-foreign language for data processing. In ACM SIGMOD International
Conference on Management of Data, page 1099, Vancouver, BC, Canada,
June 2008. ACM Press.

113

[62] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab,
Nov. 1999.

[63] C. Palmisano, A. Tuzhilin, and M. Gorgoglione. User profiling with hierarchi-
cal context: an e-Retailer case study. In International and Interdisciplinary
Conference on Modeling and Using Context, pages 369–383, Aug. 2007.

[64] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: massively
parallel learning of tree ensembles with MapReduce. Proceedings of the VLDB
Endowment, 2(2):1426–1437, Aug. 2009.

[65] B. Pariseau. IDC: Unstructured data will become the primary task for storage,
Oct. 2008.

[66] D. Peng and F. Dabek. Large-scale incremental processing using distributed
transactions and notifications. In USENIX Symposium on Operating Systems
Design and Implementation, pages 1–15, Vancouver, BC, Canada, Oct. 2010.

[67] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc: Reusing work in large-
scale computations. In USENIX Workshop on Hot Topics in Cloud Comput-
ing, page 21. USENIX Association, 2009.

[68] X. Qian and G. Wiederhold. Incremental recomputation of active rela-
tional expressions. IEEE Transactions on Knowledge and Data Engineering,
3(3):337–341, Sept. 1991.

[69] A. Simitsis, P. Vassiliadis, S. Skiadopoulos, and T. Sellis. Data Warehouse
Refreshment. In R. Wrembel and C. Koncilia, editors, Data Warehouses and
OLAP: Concepts, Architectures and Solutions. IRM Press, 2006.

[70] U. Srivastava and J. Widom. Flexible time management in data stream sys-
tems. In ACM Symposium on Principles of Database Systems, page 263, Paris,
France, June 2004. ACM Press.

[71] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge, N. Hachem,
S. Harizopoulos, J. Lifter, J. Rogers, and S. Zdonik. One size fits all? Part
2: benchmarking results. In Conference on Innovative Data System Research,
Asilomar, CA, Jan. 2007.

[72] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era: (it’s time for a complete rewrite).
In International Conference on Very Large Data Bases, pages 1150–1160, Vi-
enna, Austria, Sept. 2007.

114

[73] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. SALSA: analyzing
logs as state machines. In 1st USENIX Workshop on Analysis of System Logs,
page 6, Dec. 2008.

[74] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT: efficient load shedding
techniques for distributed stream processing. In International Conference on
Very Large Data Bases, page 11, Vienna, Austria, Sept. 2007.

[75] N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries
over data streams. In International Conference on Very Large Data Bases,
Seoul, Korea, Sept. 2006.

[76] P. Vassiliadis and A. Simitsis. Extraction, transformation, and loading. In
L. Liu and M. T. Özsu, editors, Encyclopedia of Database Systems. Springer,
2009.

[77] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao. User interac-
tions in social networks and their implications. In ACM European Conference
on Computer Systems (EuroSys ’09), EuroSys ’09, page 205, New York, New
York, USA, 2009. ACM Press.

[78] H. Wu, B. Salzberg, and D. Zhang. Online event-driven subsequence matching
over financial data streams. In ACM SIGMOD International Conference on
Management of Data, page 23, Paris, France, June 2004. ACM Press.

[79] P. Yalagandula and M. Dahlin. A scalable distributed information manage-
ment system. In ACM SIGCCOMM Conference on Applications, Technolo-
gies, Architectures and Protocols of Computer Communications, volume 34,
page 379, Portland, OR, Oct. 2004.

[80] A. Yoo and I. Kaplan. Evaluating use of data flow systems for large graph
analysis. In Workshop on Many-Task Computing on Grids and Supercomput-
ers, MTAGS ’09, pages 1–9, New York, New York, USA, 2009. ACM Press.

[81] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for data-parallel
computing: interfaces and implementations. In ACM Symposium on Operat-
ing Systems Principles, page 13, Big Sky, MT, Oct. 2009.

[82] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: a system for general-purpose distributed data-parallel
computing using a high-level language. In USENIX Symposium on Operating
Systems Design and Implementation, pages 1–14, San Diego, CA, Dec. 2008.

[83] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark :
Cluster Computing with Working Sets. In Workshop on Hot Topics in Cloud
Computing, Boston, MA, June 2010.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The ``big data'' promise
	Data-intensive computing
	Stateful data-intensive computing
	An example: web crawl queue
	Challenges in managing state

	Architectures for stateful analytics
	Continuous ETL analytics
	Stateful bulk data processing

	Contributions
	Outline

	Background and related work
	Groupwise processing
	The MapReduce programming model
	MapReduce architecture
	Program execution
	Fault tolerance

	Stateful analytics on unstructured data
	Automatic incrementalization
	Iterative analytics
	Models for incremental analytics

	Stateful online analytics
	Design
	Continuous MapReduce
	Program execution
	Using in-network aggregation trees
	Efficient window processing with panes

	Fidelity-latency tradeoffs
	Measuring data fidelity
	Using C2 in applications
	Result eviction: trading fidelity for availability

	Related work
	``Online'' bulk processing
	Log collection systems
	Load shedding in data stream processors
	Distributed aggregation

	Acknowledgments

	An architecture for in-situ processing
	Implementation
	Building an in-situ MapReduce query
	Map and reduce operators
	Load cancellation and shedding
	Pane flow control
	MapReduce with gap recovery

	Evaluation
	Scalability
	Load shedding
	Failure eviction
	Using C2
	In-situ performance

	Acknowledgments

	Stateful bulk processing
	A basic translate operator
	Continuous bulk processing
	Support for graph algorithms
	Summary of CBP model
	Applications
	Mining evolving graphs
	Clustering coefficients
	Incremental PageRank

	Related work
	Acknowledgments

	CBP design and implementation
	Controlling stage inputs and execution
	Scheduling with bottleneck detection
	Failure recovery
	CBP on top of Map-Reduce
	Incremental crawl queue example
	Increment management

	Direct CBP
	Incremental shuffling for loopback flows
	Random access with BIPtables
	Multicast and broadcast routing
	Flow separation in Map-Reduce

	Evaluation
	Incremental crawl queue
	BIPtable microbenchmarks
	Clustering coefficients
	PageRank

	Acknowledgements

	Conclusion
	Bibliography

