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Abstract 
This paper focuses on how capabilities to interpret somebody 
else’s emotions can be modelled in an adaptive manner. First 
a cognitive model to generate emotional states is described. 
This model involves a recursive body loop: a converging 
positive feedback loop based on reciprocal causation between 
body states and emotions felt. By this model emotion reading 
can be modelled taking into account the Simulation Theory 
perspective on mindreading as known from the literature, 
which assumes that the own emotions are involved in reading 
somebody else’s emotions. It is shown how the model was 
extended to an adaptive model within which a direct 
connection between a stimulus and the emotion recognition is 
created, which implies that in principle the observed emotion 
can be recognised just before it is felt. 

Keywords: Theory of Mind; mindreading; adaptive emotion 
reading; emotion generation; modeling; simulation. 

Introduction 
From an evolutionary perspective, mindreading (or having a 
Theory of Mind) in humans and some other kinds of 
animals has developed for a number of aspects, for example, 
intention, attention, emotion, knowing  (e.g., Baron-Cohen, 
1995; Bogdan, 1997; Dennett, 1987; Goldman, 2006; 
Goldman & Spirada, 2004; Malle, Moses & Baldwin, 2001). 
Two philosophical perspectives on having a Theory of Mind 
are Simulation Theory and Theory Theory (Goldman, 
2006). In the first perspective it is assumed that mindreading 
takes place by using the facilities involving the own 
cognitive states that are counterparts of the cognitive states 
attributed to the other person. For example, the state of 
feeling pain oneself is used in the process to determine 
whether the other person has pain. The second perspective is 
based on reasoning using knowledge about relationships 
between cognitive states and observed behaviour. An 
example of such a pattern is: ‘ I hear that the person says 
‘ouch!’ . Having pain causes saying ‘ouch!’ . Therefore the 
person has pain’ . The current paper addresses emotion 
reading from a Simulation Theory perspective: an approach 
is adopted that involves a person’s own emotions in the 
process of reading the human’s emotions. 

The concept of ‘body loop’  as put forward by Damasio 
(1999) and formalised by Bosse, Jonker and Treur (2008) is 
used as a point of departure. This perspective distinguishes 
the (bodily) emotional response to a stimulus from feeling 
the emotion (sometimes called the emotional feeling), which 
is caused by sensing the own bodily response. Secondly, an 
extension of this idea is adopted by assuming that the body 
loop is not processed once, but in a recursive manner: a 
converging positive feedback loop based on reciprocal 

causation between emotional state (with gradually more 
feeling) and body state (with gradually stronger expression). 
This cycle is triggered by the stimulus and after an 
indefinite number of rounds ends up in equilibrium for both 
states. In this way a model is obtained in which the process 
of generating an emotional feeling is not only assumed to be 
carried by neurological structures, but equally well by body 
states, in a reciprocal causation and convergence process. 
By Bosse, Memon, and Treur (2008) and Memon and Treur 
(2008), it was shown that such a recursive body loop model 
for emotions is an appropriate basis to obtain an emotion 
reading model from the Simulation Theory perspective. In 
the current paper it is shown how the model based on a 
recursive body loop can be extended to obtain an adaptive 
model for emotion reading. The adaptation creates a 
shortcut connection from the stimulus (observed facial 
expression) to the imputed emotion, bypassing the own 
emotional states. Some simulation results are discussed, and 
some formally specified dynamic properties of adaptive and 
non-adaptive emotion reading are shown, and it is discussed 
how they were verified against simulation traces. 

An Emotion Generation Model 
The model to generate emotional states for a given stimulus 
adopts from Damasio (1999) the idea of a ‘body loop’  and 
‘as if body loop’ , but extends this by making these loops 
recursive. According to the original idea, emotion 
generation via a body loop roughly proceeds according to 
the following causal chain: 

sensing a stimulus  →  sensory representation of stimulus  →  
(preparation for)  bodily response  → sensing the bodily response  →   
sensory representation of the bodily response  →  feeling the emotion 

As a variation, an ‘as if body loop’  uses a causal relation 
preparation for  bodily response  →   
sensory representation of the bodily response  

as a shortcut in the causal chain. In the model used here an 
essential addition is that the body loop (or as if body loop) 
is extended to a recursive (as if) body loop by assuming that 
the preparation of the bodily response is also affected by the 
state of feeling the emotion (also called emotional feeling):  

feeling the emotion  →  preparation for  bodily response   

as an additional causal relation. This idea is supported by 
the following quote from Damasio (2003, p. 91-92): 

 

‘ In other words, feelings are not a passive perception or a flash in time, 
especially not in the case of feelings of joy and sorrow. For a while after an 
occasion of such feelings begins – for seconds or for minutes – there is a 
dynamic engagement of the body, almost certainly in a repeated fashion, 
and a subsequent dynamic variation of the perception. We perceive a series 
of transitions. We sense an interplay, a give and take.’  
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Both the bodily response and the emotional feeling are 
assigned a level or gradation, expressed by a number, which 
is assumed dynamic. The causal cycle is modelled as a 
positive feedback loop, triggered by the stimulus and 
converging to a certain level of emotional feeling and body 
state. Here in each round of the cycle the next body state has 
a level that is affected by both the level of the stimulus and 
of the emotional feeling state, and the next level of the 
emotional feeling is based on the level of the body state. In 
the more detailed model described below, the combined 
effect of the levels of the stimulus and the emotional state 
on the body state is modelled as a weighted sum (with equal 
weights 0.5 in this case). This implies a pattern of gradual 
generation (and extinction) of an emotion upon a stimulus. 

In the description of the detailed cognitive model the 
temporal relation a →→ b denotes that when a state property 
a occurs, then after a certain time delay (which for each 
relation instance can be specified as any positive real 
number), state property b will occur. In this language 
(called LEADSTO) both logical and numerical calculations 
can be specified, and a dedicated software environment is 
available to support specification and simulation; for details 
see (Bosse, Jonker, Meij, & Treur, 2007). The specification 
(both informally and formally) of the model for emotion 
generation based on a recursive body loop is as follows. 

LP1  Sensing a stimulus 
If stimulus s occurs then a sensor state for s will occur. 

s →→  sensor_state(s) 
 

LP2  Generating a sensory representation of a stimulus 
If a sensor state for s occurs, then a sensory representation for s will occur. 

sensor_state(s)  →→  srs(s) 
 

LP3  From sensory representation and emotion to preparation1 
If a sensory representation for s occurs and emotion e has level v,  
then preparation state for facial expression f will occur with level (1+v)/2. 

srs(s) & emotion(e, v)  →→  preparation_state(f, (1+v)/2) 
If no sensory representation for s occurs and emotion e has level v,  
then preparation state for facial expression f will occur with level v/2. 

not srs(s) & emotion(e, v)  →→  preparation_state(f, v/2) 
 

LP4  From preparation to body modification 
If preparation state for facial expression f occurs with level v, 
then the face is modified to express f with level v. 

preparation_state(f, v) →→  effector_state(f, v) 
 

LP5  From body modification to modified body 
If the face is modified to express f with level v, 
then the face will have expression f with level v. 

effector_state(f, v) →→  own_face(f, v) 
 

LP6  Sensing a body state 
If facial expression f with level v occurs, 
then this facial expression is sensed. 

own_face(f, v) →→  sensor_state(f, v) 
 

LP7  Generating a sensory representation of a body state 
If facial expression f of level v is sensed, then a sensory representation for 
facial expression f with level v will occur. 

sensor_state(f, v)  →→  srs(f, v) 
                                                                    
1 Here, it is assumed that the relative effects of both antecedents are the 

same. However, the formula (1+v)/2 can as well be replaced by the more 
generic formula w1+w2*v with weights w1 and w2. Such an extension 
also enables the modeller to distinguish different types of emotions (e.g., 
fear may develop faster than happiness).  

 

LP8  From sensory representation of body state to emotion 
If a sensory representation for facial expression f with level v occurs, 
then emotion e is felt with level v. 

srs(f, v) →→  emotion(e, v) 
 

LP9   Imputation 
If a certain emotion e is felt, with level ≥ th and a sensory representation for 
s occurs, then emotion e will imputed to s. Here, th is a (constant) threshold 
for imputation of emotion. In the simulations shown, th is assumed 0.95. 

srs(s) & emotion(e, v)  &  v≥th  →→  imputation(s, e) 
 

In the imputation state, the experienced emotion e is 
related to the stimulus s, which triggers the emotion 
generation process. Note that this state makes sense in 
general, for any type of stimulus s, as usually a person does 
not only feel an emotion, but also has an awareness of what 
causes an emotion; what by Damasio (1999) is called a state 
of conscious feeling also plays this role. This state that 
relates an emotion felt to any triggering stimulus will play 
an important role in the emotion reading process. 

 

 

Figure 1:  Example simulation of emotion generation  
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Instead of a recursive body loop, a variation of the model 
as described can be made to model a ‘recursive as if body 
loop’; see (Damasio, 1999) for evidence for a causal 
relation between preparation state and sensory 
representation. This can be incorporated by replacing the 
temporal relations LP4, LP5. LP6, LP7 by the following: 

LP4*  From preparation to sensory representation of body state 
If preparation state for facial expression f occurs with level v, then a 
sensory representation for facial expression f with level v will occur. 

preparation_state(f, v) →→  srs(f, v) 
 

Based on the model, a number of simulations have been 
performed; for an example, see Figure 1 (here the time 
delays within the temporal LEADSTO relations were taken 
1 time unit). In this figure, where time is on the horizontal 
axis, the upper part shows the time periods in which the 
binary logical state properties s, sensor_state(s), srs(s), 
imputation(s, e) hold (indicated by the dark lines): 
respectively from time point 0, 1, 2 and 9. Below this part 
for the other state properties values for the different time 
periods are shown (by the dark lines). For example, the 
preparation state for f has value 0.5 at time point 3, which is 
increased to 0.75 and further at time points 9 and further. 
The graphs show how the recursive body loop approximates 
converging states both for emotion and facial expression. 

Emotion Reading 
Based on the model for emotion generation presented in the 
previous section, in this section a model for emotion reading 
(for the Simulation Theory perspective) is discussed. Such a 
model for emotion reading should essentially be based on a 
model to generate the own emotions. Indeed, the model 
presented in the previous section can be specialised in a 
rather straightforward manner to enable emotion reading. 
The main step is that the stimulus s that triggers the 
emotional process, which until now was left open, is 
instantiated with the body state of another person; to make it 
specific, a facial expression f of another person is 
considered: s = othersface(f). Indeed there is strong 
evidence that (already from an age of 1 hour) sensing 
somebody else’s facial expression leads (within about 300 
milliseconds) to preparing for and showing the same facial 
expression (Goldman & Sripada, 2004, pp. 129-130). 
Furthermore, for the sake of illustration, following the 
emotion imputation, a communication about it is prepared 
and performed. This extension is not essential for the 
emotion reading capability, but just shows an example of 
behaviour based on emotion reading. 

 

LP10   Communication preparation 
If  emotion e is imputed to s, then a related communication is prepared 

imputation(e, s) →→ preparation_state(say(your emotion is e)) 
 

LP11   Communication 
If a communication is prepared, then this communication will be 
performed. 

preparation_state(say(your emotion is e))  
→→  effector_state(say(your emotion is e)) 
 

The model described in the previous section has been 
extended by the above two temporal relations in LEADSTO 

format, and used for simulation. An example simulation 
trace was obtained that  for a large part coincides with the 
one shown in Figure 1 (with the other person’s facial 
expression f as the stimulus), with an extension as shown in 
Figure 2. Here also the time delays within the additional 
temporal LEADSTO relations were taken one time unit. 
 
 

 

Figure 2:  Trace extension for emotion reading 

Adaptive Emotion Reading 

As a next step, the model for emotion reading is extended 
by a facility to learn a direct connection between the 
stimulus (the other face) and the emotion imputation. Such a 
connection creates an emotion reading process that in 
principle bypasses the generation of the own emotion. The 
learning principle to achieve such an adaptation process is 
inspired by the well-known learning principle at a 
neurological level that connected neurons that are frequently 
activated simultaneously strengthen their connecting 
synapse (e.g., Gleitman, 1999). In an analogous manner, 
within the model presented here an extra state is included 
that represents the sensitivity of a direct connection between 
the sensory representation of the stimulus (the other face) 
and the emotion imputation. If this sensitivity is high, the 
imputation will directly follow the sensory representation of 
the stimulus, as is expressed by the following temporal 
relationship. 

 

LP12   Imputation shortcut 
If the imputation sensitivity is high and a sensory representation for s 
occurs, then emotion e will imputed to s. 
srs(s) & srs_stimulus_imputation_sensitivity(high)  

→→ imputation(s, e) 
 

The adaptation process itself and the persistence of the 
sensitivity level is described by the following relationships. 
 

LP13   Imputation sensitivity adaptation 
If the imputation sensitivity is sen1 and a sensory representation for s 
occurs and an imputation occurs, then the imputation sensitivity is the value 
sen2 next to sen1. 
srs(s) & imputation(s, e) & 
srs_stimulus_imputation_sensitivity(sen1) &  
next_value(sen1, sen2) 
 →→  srs_stimulus_imputation_sensitivity(sen2) 
 

LP14   Imputation sensitivity persistence 
If the imputation sensitivity is sen1 and no increase occurs, then it will 
remain the same. 
srs_stimulus_imputation_sensitivity(sen1) &  
next_value(sen1, sen2) &  
not srs_stimulus_imputation_sensitivity(sen2) 

→→  srs_stimulus_imputation_sensitivity(sen1) 
srs_stimulus_imputation_sensitivity(high)  

→→ srs_stimulus_imputation_sensitivity(high) 

s
sensor_state(s)

srs(s)
imputation(s, e)

preparation_state(say(your emotion is e))
effector_state(say(your emotion is e))

time 0 5 10 15 20 25 30 35
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Adaptive Simulation 
Based on the model for adaptive emotion reading presented 
in the previous section, a number of simulations have been 
performed; for an example, see Figure 3. In this figure, the 
imputation sensitivity state has initial value set to low, 
represented by srs_stimulus_imputation_sensitivity(low) in the 
upper part. The adaptation phase consists of two trials, 
where as soon as the person imputes emotion e to the target 
stimulus s (which is the observation of the other person’s 
face), the imputation sensitivity level goes up, i.e., from low 
to medium to high, in accordance with the temporal 
relationship LP13 described above. Note that the sensitivity 
state keeps its value in the adaptation phase until the person 
(again) imputes emotion e to target, as described by 
temporal relationship LP14, but retains its final value, i.e. 
high, after the adaptation phase of two trials.  

 

 
 

Figure 3:  Simulation results for adaptive emotion reading 

Note in the lower part of Figure 3, the values of other 
state properties gradually increase as the person observes 
the stimulus, following the recursive feedback loop 
discussed in Section 3. These values sharply decrease as the 
person stops observing the stimulus, as described by the 
temporal relationship LP3 in Section 3. After the adaptation 
phase, and with the imputation sensitivity at high, the person 
imputes emotion e to the target stimulus directly after 
occurrence of the sensory representation of the stimulus, as 
shown in the third trial in the upper part of Figure 3. Note 
here that even though the person has adapted to impute 
emotion e to the target directly after the stimulus, the other 
state property values continue to increase in the third trial as 
the person receives the stimulus; this is because the 
adaptation phase creates a connection between the sensory 
representation of the stimulus and emotion imputation 
without eliminating the recursive feedback loop altogether. 

Verification of Properties 
To verify whether the overall behaviour of the model is 
according to expectations, some hypotheses (in terms of 
logical dynamic properties) have been identified, formally 
specified, and verified for simulation traces. These 
properties express proper emotion reading, and some of 
them are meant to distinguish emotion reading in a situation 
before adaptation and after adaptation. In particular, before 
an accomplished adaptation process, upon occurrence of a 
stimulus, first the emotion has to be felt before the emotion 
reading takes place. After an adaptation process, the 
emotion reading takes place before the emotion is felt and 
therefore it will take place faster. 

The modelling approach for temporal expressions is 
based on the Temporal Trace Language TTL (cf. Bosse, 
Jonker, Meij, Sharpanskykh & Treur, 2009). This reified 
temporal predicate logical language supports formal 
specification and analysis of dynamic properties, covering 
both qualitative and quantitative aspects. TTL is built on 
atoms referring to states, time points and traces. A state of a 
process for (state) ontology Ont is an assignment of truth 
values to the set of ground atoms in the ontology. The set of 
all possible states for ontology Ont is denoted by 
STATES(Ont). To describe sequences of states, a fixed time 
frame T is assumed which is linearly ordered. A trace γ over 
state ontology Ont and time frame T is a mapping γ : T → 

STATES(Ont), i.e., a sequence of states γt (t ∈ T) in  
STATES(Ont). The set of dynamic properties DYNPROP(Ont) 
is the set of temporal statements that can be formulated with 
respect to traces based on the state ontology Ont in the 
following manner. Given a trace γ over state ontology Ont, 
the state in γ at time point t is denoted by state(γ, t). These 
states can be related to state properties via state(γ, t) |= p 
which denotes that state property p (from sort SPROP(Ont)) 
holds in trace γ at time t. Based on these statements, 
dynamic properties can be formulated in a sorted first-order 
predicate logic, using quantifiers over time and traces and 
the usual first-order logical connectives such as ¬, ∧, ∨, �, 
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∀, ∃. A special software environment has been developed 
for TTL, featuring a Property Editor for building TTL 
properties and a Checking Tool that enables formal 
verification of such properties against a set of traces. 

Using the TTL environment, the following Global 
Properties (GP’s) have been identified, formalised and 
automatically verified (first an abbreviation is introduced to 
count how often a state holds in a certain time period): 
 

Abbreviations  
state_holds_times_between(S:SPROP,0,tb,te:TIME,γ:TRACE) ≡ 
  ¬ [ ∃t1:TIME tb<t1<te & state(γ, t1) |= S ] 
 

state_holds_times_between(S:SPROP,n+1,tb,te:TIME,γ:TRACE)  ≡  
∃t1:TIME tb<t1<te & state(γ, t1) |= S & 

¬[ ∃t2:TIME tb<t2<t1 & state(γ, t2) |= S ] & 
state_holds_times_between(S, n, t1, te, γ) 
 

GP1a  Input-Output Correlation Timing 
In trace γ, if at time point t1 the person perceives a facial expression of 
another person, then within time duration D this leads to communication 
about the person’s emotional state. 
GP1a(t1:TIME, γ:TRACE, D:REAL)  ≡ 

state(γ, t1) |= othersface(f) � 
[ ∃t2:TIME  t1<t2<t1+D &  
state(γ, t2) |= effector_state(your emotion is e) ] 

 

This first property checks whether the process of 
responding (verbally) to the stimulus is performed correctly. 
As could be expected, this property indeed turned out to 
hold for any t1. In the situation before learning, it holds for 
D=36, and after learning it holds already for D=6. 
 

GP1b  Input-Output Correlation During Learning 
If in trace γ between tb and te the person perceives a facial expression of 
another person for n (different) time points, then within time duration D 
this leads to communication about the person’s emotional state. 
GP1b(tb, te:TIME, n:INTEGER, γ:TRACE, D:REAL)  ≡ 

state_holds_times_between(othersface(f), n, tb, te, γ) � 
[ ∃t:TIME  te<t<te+D &  
state(γ, t) |= effector_state(your emotion is e) ] 

 

This property also holds for all time points, and for n=3 
and D=6: in all situations that the person perceived the 
stimulus three times, this resulted in a response within 6 
time points. 
 

GP2  Successful Associative Learning 
If in trace γ between tb and te state property S1 and S2 hold together for n 
(different) time points, then eventually a relation between these states will 
be learned.  
GP2(tb, te:TIME, n:INTEGER, γ:TRACE)  ≡ 

∀S1,S2:SPROP 
state_holds_times_between(S1∧S2, n, tb, te, γ) � 
[ ∃t:TIME ∃w:REAL  te<t<te+D &  
state(γ, t) |= sensitivity_for_relation_between(w, S1,S2) &  w>δ ] 

 

This property holds for n=2 (and for D=1), which 
confirms that the associative learning is directly successful 
after two trials. Note that here δ is a certain sensitivity 
threshold, which can be considered to depend on n. Thus, an 
example instance of sensitivity_for_relation_between(w, S1, S2) 
could be the predicate srs_stimulus_imputation_sensitivity(high).  
 

GP3a  Emotion reading with own feeling 
In trace γ, if at time point t1 a stimulus occurs, then there is a point in time 
that the emotion is recognised whereas it is felt as well.  
GP3a(t1:TIME, γ:TRACE)  ≡ 

state(γ, t1) |= othersface(f) �  
∃t2:TIME, v:REAL  [ t1<t2<t1+D & v>th & 
state(γ, t2) |= effector_state(your emotion is e) &  
state(γ, t2) |= emotion(e, v) ] 

 

GP3b  Emotion reading without own feeling 
In trace γ, if at time point t1 a stimulus occurs, then there is a point in time 
that the emotion is recognised whereas it is not felt (yet).  
GP3b(t1:TIME, γ:TRACE)  ≡ 

state(γ, t1) |= othersface(f) �  
∃t2:TIME, v:REAL  [ t1<t2<t1+D & v≤0.1 & 
state(γ, t2) |= effector_state(your emotion is e) &  
state(γ, t2) |= emotion(e, v) ] 

 

These properties can be used to distinguish the phase 
when the person performs emotion reading with an 
experienced emotion from the phase without an experienced 
emotion. Checks pointed out that the second phase is 
entered at time point 126. To conclude, although not proven 
exhaustively, the above checks have pointed out that the 
model satisfies a number of relevant expected properties. In 
addition, they allow the modeller to fine-tune the precise 
temporal aspects of the simulated emotion reading process. 

Discussion 
A person’s observations of another person’s body, for 
example facial expressions, are used by the person as a basis 
for emotion recognition. Here, a specific emotion 
recognition process can be modelled in the form of a 
prespecified classification process of facial expressions in 
terms of a set of possible emotions; see, e.g., (Cohen, Garg 
& Huang, 2000; Malle, Moses & Baldwin, 2001; Pantic & 
Rothkrantz, 1997 & 2000). Indeed, a model based on such a 
classification procedure is able to perform emotion 
recognition. However, within such an approach the imputed 
emotions will not have any relationship to a person’s own 
emotions. The model for emotion reading presented in the 
current paper combines the person’s own emotion 
generation with the emotion reading process as also claimed 
by the Simulation Theory perspective on mindreading, (e.g., 
Goldman, 2006; Goldman & Sripada, 2004). In addition, 
adaptive facilities within the model allow the person to learn 
a direct classification without involving the own emotions. 

In (Goldman, 2006, pp. 124-132), a number of possible 
emotion reading models from the Simulation Theory 
perspective are sketched and discussed. For his model 1, a 
generate and test process for emotional states was assumed, 
where on the basis of a hypothesized emotional state an own 
facial expression is generated, and this is compared to the 
observed facial expression of the other person. In the 
assessment of this model, the hypothesis generation process 
for a given observed face was considered as less 
satisfactory. Models 2 and 3 discussed by Goldman (2006) 
are based on a notion of ‘reverse simulation’. This means 
that for the causal relation from emotional state to (the 
preparation of) a facial expression which is used to generate 
the own facial expressions, also a reverse relation from 
prepared own facial expression to emotional state is 
assumed, which is used for the mind reading process. A 
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point of discussion concerning these models is that it is 
difficult to fit them to the Simulation Theory perspective: 
whereas the emotional states and facial expression 
(preparation) states used for mindreading are the same as 
used for the own emotions and facial expressions, the causal 
relations between them used in the two cases are not the 
same. Model 4 is based on a so-called ‘mirroring process’, 
where a correlation between the emotional state of the other 
person and the corresponding own emotional state is 
assumed, based on a certain causal chain between the two. 
However, the relation of such a causal chain with the causal 
relations used to generate the own emotional states and 
facial expressions is not made clear.  

The approach adopted in the current paper has drawn 
some inspiration from the four models sketched (but not 
formalised) by Goldman (2006), as briefly discussed above. 
The recursive body loop (or as if body loop) introduced here 
addresses the problems of model 1, as it can be viewed as an 
efficient and converging way of generating and testing 
hypotheses for the emotional states. Moreover, it solves the 
problems of models 2 and 3, as the causal chain from facial 
expression to emotional state is not a reverse simulation, but 
just the causal chain via the body state which is used for 
generating the own emotional feelings as well. Finally, 
compared to model 4, the models put forward here can be 
viewed as an efficient manner to obtain a mirroring process 
between the emotional state of the other person on the own 
emotional state, based on the machinery available for the 
own emotional states. 

Models for emotion reading by a person can be of two 
types: either they make use of the own emotion states of the 
person, or they are independent of them. In principle models 
according to the Simulation Theory perspective are of the 
first type, whereas models according to the Theory Theory 
perspective or based on a specific classification procedure 
can be of the second type. In (Bosse, Memon, & Treur, 
2008) a non-adaptive cognitive model for emotion reading 
is described based on a recursive body loop according to the 
Simulation Theory perspective. Moreover, it is shown how 
this model can be used by an ambient software agent in 
order to estimate a person’s emotion level. This software 
agent is adaptive in the sense that at run-time the parameter 
in the emotion reading model can be tuned to the person. By 
Memon and Treur (2008) it is shown how this non-adaptive 
model according to the Simulation Theory perspective can 
be related to a biological (neurological) model. In contrast 
to the above models, the current paper addresses a cognitive 
model for emotion reading which itself is adaptive. This 
adaptivity allows the model to gradually incorporate 
relations that bypass the own emotion states, and thus at 
run-time provides a model for emotion reading independent 
of the own emotion state. As this learnt pathway bypasses 
the own emotion generation process, and its body-related 
part, it may be faster. Moreover, as own emotions are not 
involved anymore, it may be argued that the learnt model 
for emotion reading by itself is not a model from the 

Simulation Theory perspective, whereas the model for the 
learning process to obtain this model is. As a final remark, it 
may be considered that the learnt model (or part of) is 
innate, and is only further tuned by the learning process. 
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