
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Improving the Productivity of Hardware Design

Permalink
https://escholarship.org/uc/item/6bd5n1c7

Author
Trapani Possignolo, Rafael

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bd5n1c7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

IMPROVING THE PRODUCTIVITY OF HARDWARE DESIGN
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Rafael Trapani Possignolo

December 2018

The Dissertation of
Rafael Trapani Possignolo is approved:

Professor Jose Renau, Chair

Professor Matthew Guthaus

Professor Scott Beamer

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Rafael Trapani Possignolo

2018

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgments ix

1 Introduction 1

2 Automating pipeline transformations of digital designs 9
2.1 Introduction . 9
2.2 Related Work . 13
2.3 Automated pipelining in sequential circuits 16
2.4 Fluid Pipelines . 18

2.4.1 Communication and Flow Control 20
2.4.2 RePipe: Optimizing Fluid Pipelines circuits with ReCycling and

Retiming . 23
2.4.3 Fluid Pipelines Deadlock Avoidance 26
2.4.4 Fluid Pipelines Channel Grouping 30
2.4.5 Design Example . 32
2.4.6 Design Overhead . 33

2.5 New Evaluation Methodology . 36
2.6 Evaluation . 39

2.6.1 Setup . 40
2.6.2 Fluid Pipelines overheads . 43
2.6.3 Results . 44
2.6.4 Elastic FPU . 46
2.6.5 Elastic OoO Core . 48
2.6.6 Evaluating the overhead of Fluid Pipelines 50

2.7 Conclusion . 50

iii

3 Anubis: A new benchmark for incremental synthesis 54
3.1 Introduction . 55
3.2 Related Work . 58
3.3 ANUBIS . 62

3.3.1 Benchmark Selection . 63
3.3.2 Change insertion . 65
3.3.3 Setup requirements to report ANUBIS results 67
3.3.4 Technology target . 68

3.4 How to score ANUBIS . 69
3.4.1 QoR penalty . 71
3.4.2 Score . 74
3.4.3 ANUBIS Value . 75

3.5 Evaluation Setup . 76
3.6 Evaluation . 77

3.6.1 Overall Results . 77
3.6.2 No change cases . 79

3.7 Conclusion . 81

4 Enabling Live Synthesis with Incremental Methods 83
4.1 Introduction . 84
4.2 Related Work . 89
4.3 LiveSynth . 91

4.3.1 Incremental Synthesis . 92
4.3.2 What size should the blocks be? 93
4.3.3 What should constitute a block? 94
4.3.4 LiveSynth flow . 96

4.4 Structural Matching . 102
4.4.1 Structural Matching of Netlists 103
4.4.2 Handling Retiming and extra registers 107
4.4.3 Partitioning the design size . 109

4.5 Evaluation Setup . 110
4.6 Evaluation . 112

4.6.1 Incremental Synthesis Runtime 112
4.6.2 Complete Flow . 114
4.6.3 QoR degradation . 118
4.6.4 Setup overhead . 119

4.7 Conclusions . 120

5 Conclusion and Future Opportunities 122

Bibliography 126

iv

List of Figures

1.1 The timing-closure loop . 6

2.1 A simple feed-forward pipeline structure 17
2.2 Elastic Systems semantics . 19
2.3 Elastic buffer interface . 20
2.4 Elastic buffer implementation strategy 21
2.5 Fluid Pipelines datapath operators . 21
2.6 Basic pipeline transformations in Fluid Pipelines 24
2.7 Simple pipeline example comparing Elastic and Fluid Pipelines 25
2.8 Sample circuit to illustrate deadlock avoindance 28
2.9 Pseudo-code implementation of a deadlock prone circuit 28
2.10 A deadlock-free implementation in pseudo-code 29
2.11 Fluid Pipelines example: Processor issue logic 31
2.12 Pipelining in the presence of channel constraints 32
2.13 Sample fluid Register File . 34
2.14 Petri Net models for each of the Fluid Pipelines operators 39
2.15 FPU block diagram used in the evaluation of Fluid Pipelines 41
2.16 FabScalar diagram used in the evaluation of Fluid Pipelines 41
2.17 Energy-delay curve for FabScalar . 45
2.18 Energy-delay curve for the FPU . 45
2.19 Average througput for the FPU . 47
2.20 Energy-delay product by frequency for the FPU 48
2.21 Effective frequency by number of pipeline stages for FabScalar 48
2.22 Energy-delay product by frequency for FabScalar 49

3.1 Penalty function for ANUBIS scoring system 74
3.2 Speedup for each incremental flow for the NoChanges changes 80

4.1 Synthesis runtime with respect to design size measured in number of gates 94
4.2 Example of Functional Invariant Boundaries 96
4.3 Overview of the LiveSynth flow . 97
4.4 The overlapping nature of invariant cones 97

v

4.5 A subset of the design is extracted for re-synthesis 101
4.6 Conceptual overview of SMatch . 103
4.7 FPGA slices and ALMs overview . 108
4.8 Overview of the SMatch flow . 110
4.9 Synthesis runtime for LiveSynth, LLIR, and a FPGA flow 113
4.10 Complete flow runtime speedup for SMatch, LiveSynth and a commercial

FPGA flow . 114
4.11 Runtime breakdown for LiveSynth and SMatch 116
4.12 Runtime of different tasks in the Vivado TCL interface 117
4.13 Speedup for synthesis placement and routing for SMatch, LiveSynth and

a commercial FPGA flow. 117
4.14 QoR degradation for LiveSynth and SMatch 119

vi

List of Tables

1.1 Comparison of software and hardware design turnaround times 3

2.1 Trace execution for simple pipeline . 26
2.2 Maximum throughput for FPU with varying pipeline depth 46
2.3 Fluid Pipelines overhead in RISC-V coreas 51

3.1 The ANUBIS benchmark suite . 65
3.2 Summary of number and types of changes per benchmark 67
3.3 Sample report table for ANUBIS. 75
3.4 ANUBIS table for incremental Flow 1. 78
3.5 ANUBIS table for incremental Flow 2. 78

4.1 Functional invariant cone size distribution in different circuits 96

vii

Abstract

Improving the productivity of hardware design

by

Rafael Trapani Possignolo

Current hardware development techniques contrast with agile methods that

became popular in modern software development. This has been mitigated with tech-

nology scaling, when performance gains for every generation relied mostly on transistor

shrinking. However, the end of Dennard’s scaling, the limitations in multicore design

and with hardware accelerators emerging as an alternative to improve performance,

hardware design has become an important bottleneck for chip developers. This is par-

ticularly important as application domain experts, who are not hardware designers, turn

to hardware accelerators to make new technologies viable. In this dissertation, I discuss

efforts to improve hardware design productivity: improving pipeline design and reducing

synthesis runtime. Pipeline configuration is typically set very early in the design phase,

which make changes costly. I proposed Fluid Pipelines, a novel design style that allows

for changes in the number of pipeline stages late in the design cycle. To accurately

evaluate the impact of pipeline changes, a designer needs to wait for synthesis results.

I also proposed LiveSynth and SMatch, two incremental techniques that re-use existing

synthesis results to drastically reduce synthesis time. Combined with work from others,

I expect these techniques to ease design overhead and improve the adoption of domain

specific hardware.

viii

Acknowledgments

A PhD is a long journey but not one that I have walked alone. I was fortunate

enough to share this journey with some amazing people, who have helped shape the

researcher and the person that I became, from whom I have learned so much, and with

whom I have spent the highs and the lows that are part of getting a PhD.

I want to thank my advisor Jose Renau, who has taken me under his advising

and guided me throughout this journey. Many of the ideas in this work started with

discussion between the two of us. I am grateful that he has always been receptive of

my input and has treated me more like a peer than like a student. Jose allowed me to

explore different areas which contributed to make me a better researcher.

My thanks to Matthew Guthaus, who first emailed me my acceptance to the

program and was a co-advisor in the first few years that I spent in Santa Cruz. I have

learned so much from him and his feedback during different steps was helped define my

research. Professor Scott Beamer, who has also agreed to be part of my dissertation

committee, has provided valuable feedback for the final form of this thesis. I thank

Scott for all the assistance and interactions I had with him during this time.

I also need to thank Cintia Margi, my MS advisor, who is the reason I applied

to UCSC. She also guided my very first steps as a researcher. Special thanks to Ilya

Ganusov, my mentor in my first PhD internship. That internship has been one of the

most defining three months in my life, largely thanks to Ilya. His comments were very

helpful for my research and for my professional growth.

ix

During my years in Santa Cruz, I spent most time with fellow students in

the MASC Lab. We collaborated, discussed ideas, problems, shared lunches, sleepless

nights before paper deadlines, and pleasant afternoons in the nice California weather.

My thanks to Ehsan, Sheng, Sina, Akash, Nursultan, David, Alamelu, Rigo, Matheus,

Nilufar, Rohan, Yuxun, and Yuxiong. Special thanks to Gabriel and Ramesh with whom

I had interesting off-topic discussions and who have reviewed my poor writing.

In particular, I need to thank Elnaz Ebrahimi, Daphne Gorman, and Blake

Skinner. Elnaz and I had many research projects together, I am grateful for so many

discussion we had, either to make sure we were in the right path or to work out challeng-

ing problems. Without Daphne this thesis would have twice as many commas. She has

patiently read my writing to over and over. I am glad we had technical collaborations

towards the end of her PhD. I have also collaborated in various projects with Blake.

We had productive discussions from high level ideas to implementation details.

Last, I thank my family for their unconditional support. My very special

thanks to my wife Gisele, who supported me, encouraged me, inspired me, and pushed

me beyond what I thought was possible. She never let me give up and always found a

way to make me feel well. Thank you for the support during the years we were apart

and the ones we were close. This would not have been possible without you. Thanks

to my parents who made me who I am, gave me everything and sacrificed so much for

my education even during financially challenging times. I also thank my brother for his

support, understanding, and many interesting discussions about absolutely any topic,

life wouldn’t be complete without you.

x

Chapter 1

Introduction

Ich habe keine besondere Begabung,

sondern bin nur leidenschaftlich

neugierig.

Albert Einstein

Current practices for digital design largely contrast with the rapid development

techniques that became so popular in software development in the last decade [33, 76].

This has not been a major problem, as performance advances in digital design have

largely relied on technology scaling [44, 52]. Dennard’s scaling allowed for performance

improvement with limited power impact [98]. However, as the rate of voltage scaling

was reduced–a significant part due to nearing transistor threshold voltage–power be-

came a major bottleneck to maintain the accelerated frequency scaling that was key for

performance gains [46].

In that scenario, multicore computers emerged as an alternative to keep in-

1

creasing performance [57]. Since the original multicores were homogeneous, i.e., each

core was a copy of each other, this approach resulted in limited design effort. The

move to multicore systems, however, was a bet on moving the performance improve-

ment efforts from hardware to software [10]. It soon became clear that multicore alone

would not be sufficient to maintain the levels of performance improvement historically

observed by computers [50].

More recently, it became clear that to maintain performance scaling, special-

ized hardware would be needed. There are many approaches to specialized, or domain-

specific, hardware. Graphical Processing Units (GPUs) [83] certainly became the most

popular type in this category and have since been applied to a wide variety of application

domain. Nevertheless, using GPUs for compute–while known to improve throughput

of some applications–is not the best case for “specialized” design. Heterogeneous mul-

ticores [15] and accelerator-based architectures [35, 72] provide hardware that is more

optimized to specific tasks.

While specialized hardware is known to improve both performance and en-

ergy efficiency by orders of magnitude over general purpose hardware [65, 93, 94], the

lack of flexibility of specialized hardware has proved a challenge for deployment in

some cases [94]. Accelerators in Field-Programmable Gate Arrays (FPGAs) provides

a more flexible alternative [94] that allows for changes after deployment, with reduced

performance compared to Application-Specific Integrated Circuits (ASICs) but better

performance than general purpose computing.

For both ASIC and FPGA accelerators alike, design techniques and synthesis

2

Table 1.1: Hardware design methodologies largely contrast with modern software de-
velopment, based on agile techniques that allow for several iterations over a relatively
small amount of time. The table shows one software project (LGraph), one hardware
project (Boom) and the runtimes to compile/synthesize them in full or a small change
in each.

Codebase Lines of code Task Runtime (s) Small change time (s)
LGraph [92] 1.5M Compilation 82.6 6.7
Boom [14] 0.5M Synthesis 996 948
Boom [14] 0.5M Place & Route 1314 1103

times are major bottlenecks [93]. These bottlenecks become more prominent as spe-

cialized hardware becomes more broadly accessible and domain specialists–that are not

necessarily hardware designers–become interested in using specialized hardware. It is

clear that “compile” time, in a broad sense here, is very different when targeting software

or hardware, which is a initial barrier to domain specialists used to software compilation.

Hardware compilation includes synthesis, placement and routing. To get a rough idea

of how those times vary, I compare the runtimes for two projects, 1 LGraph, a software

project, and Boom, a hardware core. Note that even though those are arguably not

representative of all software and hardware designs, this comparison provides an idea

of timescales seen in both worlds. Also, even though LGraph compiles 3× more code

than Boom, compiling LGraph is sill over 10× faster than just synthesizing Boom.

Recently, researchers have focused on improving the productivity of hard-

ware design in multiple fronts. New abstractions and Hardware Description Languages

(HDLs), such as Chisel [16], PyMTL [74], Pyrope [101], among others, have been cre-

ated to increase the expressiveness of code describing hardware. Those and others try
1Archlinux Server with 32 Intel Xeon E5-2689 cores, running at 2.6GHz, with 256Gb of RAM.

Compilation with Clang 7.0 and Synthesis, Placement and Routing with Xilinx Vivado 2017.2.

3

to provide features already common in modern programming languages for hardware

designers, while maintaining the engineer in control of the resulting circuit. Chip gener-

ators are also a framework for improving productivity by providing a complete sandbox

that can be reused and specialized as needed, some examples are Rocket Chip [12],

Celerity [3], OpenPiton [17], and FabScalar [32].

Lee et al. proposed an agile approach for building chips using the Rocket

Chip generator as the main building block [70]. They introduced the concept of “tape-

ins,” a complete chip specification with a small number of added features as a base

for iteration. The main advantage of this approach is to split validation into multiple

iterations, reducing the amount of features that need to be validated at a given cycle.

This flow tries to escape the traditional waterfall approach of hardware development in

favor of a iterative flow, usually seen in agile methodologies for software.

However, some of the underlying problems still persist and have not been

addressed. Due to the need of synthesis, each iteration, either for functionality or

timing targets, remains long. Moreover, timing closure still requires multiple iterations,

even if those are more evenly distributed during design time, as opposed to concentrated

closer to the end of the cycle.

Current methodologies for digital design are based on either the fixed cycle

paradigm, where cycle time target and pipeline depth are set early in the design phase,

or on High Level Synthesis (HLS) [36, 54, 95], where scheduling is done in an initial

pass before Register Transfer Level (RTL) generation. In both those cases, the timing

characteristics of the design are only accurately known after synthesis, placement and

4

routing, which are time consuming tasks. Meeting a desired cycle time requires numer-

ous long iterations between design and implementation [87]. Existing Electronic Design

Automation (EDA) tools allow automatic optimizations such as gate sizing, retiming

and time borrowing, but for a synchronous system, such transformations preserve cycle

accuracy [88] and thus are limited by the existing pipeline stages already present in the

design [53].

Moreover, to fully assess the impact of pipelining, or any other transformation

on a circuit, designers have to wait hours for synthesis, placement and routing. Fig-

ure 1.1 depicts a typical flow for the timing closure problem. Pipeline stages and timing

targets are set before any RTL is produced, after synthesis and physical design, the

achieved timing of the circuit can be assessed, at that point, there are a few options,

the designer may decide to tweak the physical implementation, change the RTL or go

back to the pipelining choices made. The closer to the end of the flow, the faster the

iteration cycle, but also the lower potential for impact.

Nevertheless, synthesis, and physical design may still take several hours or even

days of runtime, they quickly become a bottleneck in any iterative optimization flow,

including pipeline changes. The problem of long synthesis, placement and routing times

has been recognized by industry players that have been trying to address them [6,108],

but with only limited success so far. Even when small changes are inserted in the design,

which is often the case on the late phases of the design cycle, runtimes for synthesis

and physical design are very long. The last column in Table 1.1 show the runtime for a

small change (a signal was inverted). The runtime is almost the same as the one for the

5

Functional
Specification

Frequency and
Pipeline Specs

RTL
Implementation

Synthesis

Physical
Synthesis

Meet timing?

Yes

Done

No

Several Months

Months

Weeks

Figure 1.1: The timing closure problem often requires several iterations, simple changes
to the physical design are usually faster but have limited impact on the final timing of
the circuit, whereas changes to the pipeline stages have potential for significant changes
in the design timing, but at high cost in terms of effort.

initial run. Once again, the contrasts between hardware and software flows are clear,

since the software recompilation only took a few seconds after a change was introduced.

This dissertation discusses efforts to improve the productivity of digital de-

sign, in particular looking into the problems of pipelining and long synthesis times.

When addressing pipelining, the main efforts taken were towards automating pipeline

analysis and enabling pipeline transformations later and with lower effort than what is

currently possible. When addressing the problem of long synthesis times, the focus is in

incremental synthesis techniques, i.e., techniques towards quickly modifying a synthe-

sis results once the code changed. This may not seem like a general approach, however

most designers today rely on version control for the source code of digital designs, and

thus, incremental synthesis may be applied across different versions of the code. Even if

6

that is not the case, incremental synthesis can be used in the optimization loops when

relatively small changes are being made.

The remainder of this dissertation is organized as follows:

Chapter 2 discusses work done for improving the analysis and design of pipelin-

ing configuration of digital circuits. In sequential circuits, extra pipeline stages can only

be added on feed-forward paths where no sequential loops are present [53]. I also discuss

Fluid Pipelines, a novel design style, based on latency insensitive circuits, that allow

for late changes in the number of pipeline stages, without breaking circuit functionality

and without penalty in performance, usually observed in this type of circuits [86–88].

Then, Chapter 3 presents ANUBIS, a benchmark specially crafted for incre-

mental synthesis [89]. ANUBIS fills a gap so far observed in incremental synthesis

research, where custom, unpublished benchmarks were used, which made it hard to

reproduce results our compare results across different approaches. In some cases, pub-

lished circuits were used, however, ANUBIS is the first benchmark that includes both

the baseline design and standard changes. ANUBIS also provides a scoring function

that allows for easier comparison between papers.

In Chapter 4, I discuss LiveSynth [90,91] and SMatch, two techniques that aim

to improve the runtime of synthesis. LiveSynth was the first proposal for an interactive

synthesis flow, where synthesis results are available within a few seconds of a code

change. LiveSynth can be used in ASICs and FPGAs alike and is based on an heuristic

partitioning of the netlist to reduce the amount of work needed during synthesis. When

a code change is made, only the affected partitions are synthesized. SMatch is built on

7

top of LiveSynth and targets FPGAs specifically. It uses the structure of the netlist to

reduce the amount of gates that need to be placed and routed.

Finally, I present my concluding remarks on Chapter 5 and discuss open re-

search opportunities derived from this work. During my PhD, I have also had the

opportunity to collaborate in other projects that are not included in this thesis. Voltage

stacking is a technique that arranges transistors in series, rather than in parallel, to

reduce the total current needed by the design [8, 48, 49, 85]. To support the design of

Fluid Pipelines, I have contributed in the development of a compiler infrastructure for

Pyrope, a HDL that embeds Fluid Pipelines constructs [101, 102], and a intermediate

representation for VLSI that aims to ease integration of open-source tools and improve

LiveSynth runtimes [92].

8

Chapter 2

Automating pipeline transformations of

digital designs

Para lograr lo imposible se debe

intentar lo absurdo.

Miguel de Cervantes

In this chapter, I discuss a framework for pipelining transformations. The work

presented here is a first step towards an automated flow to find the optimal pipeline

configuration, both in terms of number and position of pipeline stages. The design style

presented here enables tools to automatically find pipeline opportunities.

2.1 Introduction

In digital design, cycle time and pipeline depth are set early due to their impact

on other design parameters. Digital designers usually refer to the process of meeting

9

the original cycle time specifications as the timing closure problem [1, 53]. Timing

closure takes numerous long iterations between design and implementation, to meet a

desired cycle time, making it challenging and costly to meet the original specifications.

The problem is getting worse with the increased sizes of designs, both in ASICs and in

FPGAs. Existing EDA tools allow automatic optimizations such as gate sizing, retiming

and time borrowing, but for a synchronous system, such transformations preserve cycle

accuracy. The reuse of Intellectual Property (IP) blocks, e.g., blocks of logic with well

defined functionality that are distributed by vendors, is a way to ease timing closure,

since it allows for pre-defined and optimized blocks. However, while existing blocks may

reused in multiple scenarios, it is often the case that the blocks need to be redesigned

for new frequency or technology targets.

Automated tools for inserting or suggesting new pipeline stages in synchronous

designs have been introduced in commercial EDA flows. While changing the latency

(number of clock cycles) is possible in feed-forward paths in regular synchronous circuits,

the presence of sequential loops1 has been shown to quickly limit its applicability on

real-world circuits [53].

Elastic Systems [38, 41, 86], an alternative to the fixed pipeline paradigm, are

based on the assumption that system correctness does not depend on latency between

two events, but only on their order [28, 104]. Such paradigm allows for the insertion of

new stages later in the design time, when physical implications of micro-architectural

choices are known and the circuit timing characteristics are well understood, without
1Cycles in the graph representing the connections between registers, not to be confused with program

loops.

10

breaking the circuit correctness [28], thus improving the ability to meet timing re-

quirements. In Elastic Systems, it is also possible to add extra pipeline stages within

sequential loops, thus improving the ability to meet timing constraints.

Although inserting additional pipeline stages within sequential loops [25, 71]

is possible in Elastic Systems, it has been shown to degrade the overall throughput of

the circuit [28,66]. Sequential loops are of interest because early approaches for Elastic

Systems always maintain the completion order of operations, due to the automated flow

used to transform synchronous circuits into elastic. This behavior significantly reduces

the applicability of Elastic Systems, because most modern circuits, such as processors,

include loops. Throughput losses can be mitigated [25] but the whole system remains

constrained by the throughput of the worst sequential loop, even when that loop is not

used.

In contrast, Out-of-Order (OoO) execution is omnipresent in modern digital

design and is known to improve system throughput. Fluid Pipelines integrate OoO

execution into Elastic Systems [86–88]. They enable unordered completion, by relying

on designer annotations in the code where ordering can be changed. Fluid Pipelines

are a generalization of Elastic Systems, since without user annotations, they behave

like Elastic Systems. User defined elasticity [26] is thought to improve design method-

ologies [104] since it reduces the pressure on timing constraints and lets logic designers

focus on functionality rather than physical implementation.

Fluid Pipelines reclaim the throughput losses from the automated conver-

sion [86] that is typical in Elastic Systems. The automated flow of Elastic Systems

11

transforms a sequential circuit to an elastic one by inserting special control operators:

Fork and Join. In short, Fork is used when the output of one stage forks to multiple

stages, whereas Join is used when parallel data paths reunite, therefore, the inputs of a

stage come from separate stages. The Join operator requires all the inputs to be valid

in order to proceed, e.g., the inputs to an adder unit need to be ready at the same time

for the operation to take place. In addition, Fluid Pipelines rely on Branch and Merge

operators [45, 59] to implement the Out-of-Order behavior. They are dual to Fork and

Join, but with different behavior. When there is no dependency between the inputs

of a block, a Merge operation is said to take place. Merge differs from Join because

it is triggered when at least one of the inputs is valid (i.e., it has “or-causality”). In

addition, only data from one of the inputs is consumed at each cycle. Its dual, Branch,

propagates data to only one of multiple output paths, as opposed to sending data to

all of them. This behavior is found in many digital designs, like a Floating Point Unit

(FPU) with independent operations; or a network router, where packages come from

different inputs and propagate to a single output.

To evaluate Fluid Pipelines performance, a designer or a tool needs to estimate

the throughput of a given pipeline configuration. A methodology based on Coloured

Petri Nets (CPN) [62] can be used to that end [87]. This methodology allows a designer

to quickly explore the design space without performing slow RTL or gate-level simulation

of every design point. In some cases it may be hard to accurately model the system

as a CPN, and thus it may be more suitable to perform cycle accurate simulation to

determine the system performance.

12

Experimental results show that for an OoO core, Fluid Pipelines improve the

optimal energy-delay (ED) point by increasing performance by 17% and reducing energy

by 13%, when compared to previous Elastic Systems. A simpler FPU benchmark shows

even better results, with improvements of up to 176% in performance, and 5% less power

consumption. By using CPN models, it is possible to explore the Pareto frontier and

select different interesting design points, depending on a specific application.

The remainder of this chapter is organized as follows. In Section 2.2, I describe

other approaches that try to improve the ability of a designer to meet timing specifica-

tions in digital design. I briefly discuss automated pipelining in non-elastic systems and

its limitations in Section 2.3. Then, Section 2.4 describes novelty brought in by Fluid

Pipelines, with its semantics, constraints and possible pitfalls. In Section 2.5, I show

how CPNs can be used to model systems based on Fluid Pipelines. Finally, Section 2.6

provides an experimental evaluation of Fluid Pipelines, comparing with previous Elastic

System approaches. I wrap-up this chapter in Section 2.7.

2.2 Related Work

Software Dataflow Networks [18] uses OoO and Speculation in parallel software

scheduling. By speculating whether dependencies in the code being executed are true

dependencies, the flow can improve execution speed. In case of mispeculation, execution

is re-triggered, similarly to what occurs in the case of branch misprediction. Some of

the concepts used in Software Dataflow Networks are similar to the ones used by Fluid

13

Pipelines, but in this context, they are applied in a higher abstraction level (macro-

architecture) to improve parallel execution. Fluid Pipelines also avoids speculation by

giving control to the designer.

High Level Synthesis (HLS) [82] is a technique that uses high-level program-

ming languages to generate hardware. By avoiding describing hardware directly, HLS

allows designers to focus on functionality, and the HLS tools take care of timing and

pipelining during scheduling phase [29]. Traditionally, HLS generates synchronous cir-

cuits (i.e., not elastic), and thus scheduling is limited by the presence of dependency

loops. HLS could leverage Fluid Pipelines to enable changing the number of stages

in such loops, making the two approaches orthogonal. In fact, this could improve HLS

design time by avoiding multiple iterations to meet timing (i.e., by adding flops without

going back to the RTL description).

Dimitrakopoulos et al. [45] explore the reduction of buffering to support

multi-threading in Elastic Systems. Their work presents a certain amount of Out-of-

Ordering on an inter-thread basis (i.e., no ordering enforced between different threads).

Fluid Pipelines allow full Out-of-Order execution. The analogy would be that of a

Simultaneous Multithread (SMT) in-order core versus an Out-of-Order core. Also note

that this work brings concepts of threads to circuit level decisions, which is usually not

performed in digital design.

Transactors are another version of latency insensitive models [11] that rely on

queues between coarse grained logic blocks. Each transactor can have a few possible

transactions that describe a set of possible computations that can be performed and are

14

controlled by a scheduler. Transactions are seen as atomic operations and can affect the

architectural state of the circuit. Although architectural changes have not been explored,

it would technically be possible to perform operation like those proposed in this chapter.

However, within a transactor, the synchronous nature of the operations would limit the

ability to automatically insert or remove pipeline stages inside a transactor.

Elastic Coarse Grain Reconfigurable Arrays (CGRAs) [59] are an approach

for coarse grain reconfigurable logic that relies on elastic interfaces for flow control.

Elastic CGRAs use Branch and Merge operators across basic blocks (connecting inputs

and outputs from different accelerator units), while the Fork and Join operators are

used within basic blocks (in the calculation itself). This is conceptually similar to Fluid

Pipelines, but limits where each operator can be used. Elastic CGRAs are also based on

an automated flow that can differentiate to some extent between ordered and unordered

operators. Such a flow could be further extended to be used with Fluid Pipelines, but

would most likely require more information from the designer that what is currently

done in RTL code.

Several approaches have been proposed to mitigate throughput loss in Elastic

Systems. The Eager Fork operator [41] lets one of the paths start executing even

when the parallel path is not ready, whereas, FIFOs allow for more buffering [104].

Early Evaluation [25] determines which inputs in merging paths are actually needed

(such as in a multiplexer), and only waits for those inputs. The next input from other

paths is ignored to maintain correctness. Nevertheless, those approaches do not change

system semantics. This becomes problematic when one of the paths takes multiple

15

cycles to complete, which causes back pressure propagates to the preceding stages.

Fluid Pipelines avoid this scenario by not waiting for parallel paths unless it is needed.

Another important class of related work is asynchronous circuits [51, 109].

Asynchronous circuits do not rely on a periodic clock signal to exchange data between

pipeline stages, but rather on handshake signals [96]. In general, asynchronous hand-

shakes are described as a pair of signals, very similarly to Elastic Circuits. Data transfer

between states occur when a “Request” signal is set, indicating the existence of data at a

cycle, and is confirmed by an “Acknowledge” signal that is propagated from the receiv-

ing stage. In asynchronous circuits, pipeline transformations are usually expressed in

terms of slack matching [19,75] between stages. Increasing and reducing the number of

pipeline stages is a natural operation in asynchronous circuits, since the control logic al-

ready rely on handshake signals. In fact, it has been suggested that Elastic Systems are

a form of discretized asynchronous circuit [40] in the sense that communication can only

occur based on specific instants in time (defined by the clock). However, elastic circuits

can leverage the existing modern techniques from computer-aided design (CAD) for

synchronous circuits, whereas tools for asynchronous circuits are not as advanced [41].

2.3 Automated pipelining in sequential circuits

In current practice, extra pipelining is a manual and laborious process [53].

Designers identify critical paths in the circuit, insert extra registers on those paths, add

extra registers to balance the flow of data in parallel paths, verify functionality, and

16

Comb
Logic

Comb
Logic

Comb
Logic

Comb
Logic

4 ns

Comb
Logic

Comb
Logic

Comb
Logic

Comb
Logic

2 ns

2 ns

(a) Original (b) Extra Pipeline

Figure 2.1: Pipelining simple feed-forward paths can lead to increased frequency at the
cost of extra latency. This is a relatively simple problem that has been addressed in
commercial tools.

then re-run implementation flow. Finally, the designer may discover new paths that

need to be pipelined – and the process repeats. This process is both time-consuming

and error-prone. In addition, it is not clear ahead of time how many extra stages will

have to be added to the design to reach the desired delay.

Automated tools for pipelining analysis in sequential circuits have been pro-

posed in commercial tools. Synopsys’ Design Compiler has the ability to insert extra

pipeline stages, balancing the timing in each stage [103]. However, this approach can

only be used in simple feed-forward pipelines, much like the example provided in Fig-

ure 2.1. Most modern designs will contain pipeline branches, for instance multiple

functional units in an FPU, or sequential loops, like a forwarding unit in a CPU core.

A tool that is able to analyze the potential of adding more pipeline stages

in more complex designs has recently been introduced in Vivado [53]. Theoretically,

pipeline stages can be added in sequential paths in any design, provided that two con-

ditions are met: 1) the path is not included in any sequential loop in the design; 2)

17

pipeline stages are added in parallel paths to keep pipeline balance. In graph theory, a

set of parallel paths in a graph is usually called a graph “cut” and a minimum sized cut

(min-cut) can be found through a Maximum-Flow algorithm [60].

Another consequence of the conditions described above is that for any design,

am upper bound on the frequency that can be achieved is provided by the sequential

loops in the design. A simple strategy then is to find all paths in the design that are

not in a sequential loop and that have delay longer than the maximum delay within a

loop. To minimize the amount of registers added, a strategy like min-cut can be used,

however, it is not strictly necessary.

In practice, the presence of sequential loops is a major limiting factor. For a

set of around 90 commercial designs and IP blocks mapped to Xilinx FPGAs, it has

been shown that for around 50%, no improvement in frequency is possible due to the

presence of loops [53]. On the remaining 50% the improvement was of up to 6x, with

30 designs showing at least 50% improvement on frequency [53].

In the remainder of this chapter, I discuss how Fluid Pipelines can further the

improvement in frequency by removing the constraint on sequential loops.

2.4 Fluid Pipelines

Elasticity is defined as functional correctness depending only on the order of

events and not the exact arrival time or clock cycle [27]. Events, also called tokens,

are meaningful data, from a designer perspective, flowing through a channel. A typical

18

Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12
A 0 4 3 7
B 1 2 5 6

A+B 1 6 8 13

Figure 2.2: The figure depicts the functionality of an elastic adder. Operands A and B
may arrive at different clock cycles and the latency may be arbitrary. Elastic Systems
functionality does not depend on the exact cycle events happen, but rather on their
order.

execution example of a circuit implementing the elastic property is shown in Figure 2.2,

where the arrival of a valid token is represented by a number in a given cell. When a

result is produced, the token is consumed and can no longer be used. Empty cells in the

table denote that no new data has arrived in that cycle. Note that the latency between

events is arbitrary2.

To implement this behavior, Elastic System approaches have traditionally re-

lied on a pair of handshake signals signals: Valid (V) and Stop (S)3, which determine

three states: transfer (V = 1, S = 0), idle (V = 0) and retry (V = 1, S = 1) [41]. Fluid

Pipelines keep this convention, but could be built using other equivalent approaches.

The name Fluid Channel is used to denote a data bus and its associated control signals.

Towards this chapter, a Fluid Channel will be often represented as a single arrow for

the sake of cleanness.
2In practice, a circuit implementing elasticity will most likely be deterministic depending on the

input set, but this is not a formal requirement of the Elastic Systems specification.
3Other equivalent naming conventions have been used, e.g., Elasticity has been expressed in terms

of FIFO operation [104].

19

S
e
n
d
e
r

R
e
ce
iv
e
r

EB

din

Vin

Sin

q

Vout

Sout

Figure 2.3: An elastic buffer is shown with respective sender and receiver sides, thick
lines denote multi-bit buses. An elastic buffer contains a data bus (din and q) and the
valid (Vin, Vout) and stop (Sin, Sout) handshake signals. Elastic buffers are the basic
construct blocks of Elastic Systems and can be viewed as queues with a limited size.

2.4.1 Communication and Flow Control

The inter-stage communication is performed through the help of Elastic Buffers

(EBs), storage units that replace registers, which include handshake signals both on the

input and output interface. Figure 2.3 shows the interface of an EB with input and

output control signals. Multiple implementations of EBs have been proposed in the

literature (see [39] for some). In this chapter, I do not discuss the trade-offs involved

in each implementation, and the experimental evaluation uses the implementation pre-

sented in Figure 2.4 that has buffering capacity of 2, which has been used widely in

prior work [41].

In general, each stage can have multiple input/output channels. To support

this, Fluid Pipelines rely on two pairs of control operators: one that maintains the

ordering (Fork and Join) and one that does not guarantee ordering (Branch and Merge).

The basic implementation of these operators is depicted in Figure 2.5. In Figure 2.5a,

sel is a data-dependent selection signal that indicates to which output the data will

propagate. The operators can be easily extended to more than two inputs/outputs.

20

Control
Vin

din

Sin
Vout

q

Sout

c1 c2s

(a) EB implementation

empty half full

Vin
Vin.Sout/c1

Sout/c2Vin.Sout/c2
/s,Vout,Sin

Sout

Vin.Sout/c1

/Vout

Vin

/c2,Vout

Vin.Sout/c2

(b) State diagram of Control block

Figure 2.4: The elastic buffer implementation assumed in this chapter is shown here,
thick lines denote multi-bit buses. (a) shows the datapath implementation with two
registers, and (b) shows the state diagram of the control block. This implementation
works as a buffer of size 2 with variable latency [41], but multiple implementations of
elastic buffers have been proposed [39].

1:N N:1

Un
ord

ere
d

Or
de
red

VI1
SI1

VI2
SI2

VO

SO

Vi

Si

VO1
SO1

VO2
SO2

VI1
SI1

VI2
SI2

VO

SO

dataI1

dataI2

dataO

Vi

Si

VO1

SO1

VO2

SO2

sel

(a) Branch (b) Merge

(c) Fork (d) Join

Figure 2.5: The four operators used by Fluid Pipelines are shown in the figure for the
2 input or 2 output versions. (a) shows the Branch operator which propagates data
to one out of n possible outputs, (b) shows the Merge operator that propagates data
from any of the m inputs, (c) shows the Fork operator that propagates data to all the
n outputs, and (d) shows the Join operator that propagates data when all the m inputs
contain valid data. The operators translate the intended functionality of a circuit and
enable better design space exploration. Branch and Merge are used when the relative
order of operations can be broken, while Forks and Joins enforce ordering. Note the
difference in the handling of “valid” and “stop” signals.

21

Branch is used when the datapath forks into multiple paths, but data should

propagate to only one of them. This is controlled by the selection signal. For instance,

an operation in an FPU only needs to propagate to the appropriate functional unit,

and the selection signal is encoded by the operation bits. Merge operates as an arbiter:

multiple senders compete for a single channel. The sender that wins the arbitration

propagates its data. In the FPU example, a Merge would be used at the end of the

functional units when results from each unit are collected. Another way to think of

the Merge is that it fires when at least one of its inputs contains valid data. This is

known as disjoint or-causality and introduces the or-firing rule to the context of Fluid

Pipelines. For simplicity and without loss of generality, the proposed implementation

in Figure 2.5b has simple fixed-priority, but can be replaced with any of the existing

elaborated arbitration schemes such as Round-Robin [86].

In general, Branch and Merge cannot be automatically inserted like Fork and

Join, because they alter the relative order between events. As a result, the programmer

is responsible for inserting them when needed. For example, in a complex Floating

Point Unit, just one Branch and Merge pair is needed after the normalization and de-

normalization stages to indicate that the floating operations can complete out of order.

On the other hand, the Fork and Join operators can be automatically inserted in a

similar way as the insertions performed in traditional Elastic Systems. Branch and

Merge can be performed with direct Verilog/VHDL instantiation or just code annota-

tions. To present, user annotations have been used to determine which operators can be

unoredered. More automated approaches, like language support, are still open research

22

questions that need to be addressed.

The use of special buffers and flow control operators are a source of possible

overheads in terms of area and delay. In particular, the mechanism to hold data when a

stop condition occurs requires buffering capacities as well as control logic, which could,

in theory, increase the area utilization needed by Fluid Pipelines. In practice, using

simpler latches to break down the buffering can mitigate the area impact and reduce

the overhead to almost none [102].

2.4.2 RePipe: Optimizing Fluid Pipelines circuits with ReCycling and

Retiming

As mentioned, Fluid Pipelines can be optimized by means of pipeline trans-

formations. Modern EDA tools perform operation such as gate sizing, time borrowing,

and logic replication to help improve timing and, hopefully, meet design specifications.

All those operations preserve cycle accuracy and can be applied to most synchronous

circuits, including Fluid Pipelines. The main advantage of Elastic Systems and Fluid

Pipelines is the ability to change the number of pipeline stages without breaking the

system behavior.4

To improve the frequency of Elastic Systems, it is possible to move EBs across

circuit blocks (Retiming) [25] (Figure 2.6a) or to insert additional stages in slower paths

(ReCycling) [25] (Figure 2.6b), ReCycling can also remove pipeline stages from non-

critical paths for power/area optimization. Retiming preserves the sequential behavior
4Note that inserting pipeline stages was proposed in synchronous circuits [53], but breaks the cycle

accuracy of the circuit and should be used with care.

23

F1 F2 F1 F2

(a) Retiming

F1 F2 F1 F2

(b) ReCycling

Figure 2.6: (a) Retiming is the operation of moving registers across combinational logic,
it is used to balance the pipeline, (b) ReCycling is the operation of changing, usually
adding, registers to the pipeline. Retiming and ReCycling are used to improve the circuit
frequency, but ReCycling decrease the throughput of Elastic Systems when applied to
sequential loops.

of the circuit [25] and thus it can be applied mostly without penalties.

Inserting pipeline stages can be applied to Fluid Pipelines and prior Elastic

System approaches, but in prior approaches this comes with a reduction in throughput

in cases where pipeline stages are added to sequential loops. In fact, the throughput of

the whole system is limited by the loop with the lowest throughput, due to backpressure,

even when this loop is not used. The throughput of a cycle can increase with Early Eval-

uation depending on how often each event occurs [66], but due to back pressure, there

is still a limit on such mitigation. Thus, in prior Elastic System approaches, ReCycling

is able to reduce cycle time [53] but may decrease the overall system performance in the

case of stage insertion in sequential loops [25,28,66].

In Fluid Pipelines, on the other hand, unused paths are isolated from the

remainder of the circuit by the use of the unordered operators Branch and Merge. Since

only used paths are triggered when Branch and Merge are used, unused low-throughput

paths do not “contaminate” the overall system performance. This will become clearer

24

in out

T1

F1

T2

F2

T3

F3

B

F4

(a) Loop Case

ID
I1
I2
I3
I4
I5
I6
I7

Path
Bottom

Top
Bottom
Bottom

Top
Bottom
Bottom

(b) Instructions

Figure 2.7: Toy case to illustrate the Elastic vs. Fluid approaches. (a) the test
circuit, where grey boxes indicate elastic buffers, circles represent combinational logic,
and dots represent registers with a valid token. (b) shows the instructions executed in
this example and which path they are assumed to use.

in the next sub-section with a simple execution example.

2.4.2.1 Execution Example

To clarify the practical differences in the formalization between Fluid Pipelines

and prior Elastic Systems, let us analyze the sample execution in the example in Fig-

ure 2.7, where circles represent combinational logic, boxes represent EBs, and the dots

inside boxes represent the presence of valid data (tokens). The paths are mutually ex-

clusive (each operation either takes the top or the bottom path), and the mux near the

output EB chooses the appropriate path. The instructions can take either the bottom

path or the top path in Figure 2.7b. The execution traces for traditional Elastic Systems

and Fluid Pipelines are shown in Table 2.1.

The execution order of Fluid Pipelines is altered (Table 2.1), note how in cycle

3, it is possible to move I3 to the bottom path, while the top path is still executing. In

the Elastic System version, it is not possible to start I3, since the bottom path is shorter

25

Table 2.1: Sample trace for the toy case in Figure 2.7 considering both regular Elastic
Systems and Fluid Pipelines. Each line denotes a clock cycle and in which stage the
instruction is at that cycle. Fluid Pipelines improve throughput compared to Elastic
Systems.

Elastic Fluid
Cycle in T1 T2 T3 B out in T1 T2 T3 B out

0 I1 I1
1 I2 I1 I2 I1
2 I3 I2 I1 I3 I2 I1
3 I3 I2 I4 I2 I3
4 I3 I2 I5 I2 I4 I3
5 I4 I3 I2 I6 I5 I2
6 I5 I4 I3 I6 I5 I6 I4
7 I6 I5 I4 I7 I5 I7 I6
8 I6 I5 I5
9 I6 I5 I7

10 I7 I6 I5
11 I7 I6
12 I7

and it would reach the output before I2. The re-ordering in Fluid Pipelines is a result of

the “or-firing” rule in the “in” stage and it is done because it was specified by the user,

and not changed by the tool. In a processor core, the reordering buffer performs this

function, while in network-on-chips, the reordering is usually not performed. Since this

requirement is application specific, it is left out of this dissertation. Here, it is assumed

that any reordering needed is performed in the design. In the case where order should

be maintained, regular Fork and Join operators must be used, causing the design to

behave similarly to a Elastic System.

2.4.3 Fluid Pipelines Deadlock Avoidance

One possible pitfall in Fluid Pipelines design is the possibility of deadlocks.

Since control is given to the designer, special care is needed when designing Fluid

Pipelines to avoid deadlock prone situations. Two properties are enough to guaran-

26

tee that Fluid Pipelines are deadlock free: No-Extraneous Dependencies (NED) and

Self-Cleaning (SC) [104]. Those properties can be summarized in the following design

directives:

• No-extraneous dependencies: If an output o of a module does not depend on

an input i of that module, then o should be produced regardless of the existence

of valid data in i. Also, the dependency list of o should be a subset of the inputs

of the module.

• Self-cleaning: A circuit is self-cleaning if whenever it has produced n tokens in

its outputs, it has also consumed n tokens from its inputs.

These directives do not restrict which designs are possible, but rather how to

implement each design. To make it clearer why those properties are important and how

the directives work, let us take the example in Figure 2.8. The synchronous module

described in the figure has a pair of inputs (a and b) and outputs (c and d), c is a

function of a and b, while the value of d depends only on the value of b. Now, assume

a designer wants to implement that module using Fluid Pipelines.

The most straightforward implementation of the block would follow the behav-

ior described in Figure 2.9, where “xx_valid” and “xx_stop” denote respectively the

valid and stop bit for the “xx” bus. In this implementation, the circuit waits until all

inputs have valid data, and all outputs can accept new data to perform the operation.

This is a violation to the NED directive and can cause deadlocks depending on the con-

text in which the block is used. For instance, in cases where the output d is connected

27

fa c

b dg

Figure 2.8: Sample circuit to illustrate deadlock avoidance directives. The circuit con-
tains 2 inputs (a and b) and 2 outputs (c and d) and performs two operations (f and
g), one of which (f) depends on both inputs and the other (g) depends only on input b.
The handshake signals are omitted for the sake of clarity. Fluid Pipelines design uses a
few design practices to avoid deadlocks. Those are restrictions on how to implement a
given design and not on which designs can be implemented.

1 always @ (posedge clk) begin
2 if (a_valid && b_valid) begin
3 if(!c_stop && !d_stop) begin
4 c <= f(a,b);
5 d <= g(b);
6 c_valid <= true;
7 d_valid <= true;
8 a_stop <= false;
9 b_stop <= false;

10 end
11 end
12 end

Figure 2.9: A pseudo-verilog snippet that generates a deadlock prone implementation
of the circuit in Figure 2.8. This implementation waits until all the inputs have valid
data and that all the outputs can receive new data.

as a feedback path to a, d will only produce output when both a and b are available.

A simple solution to this case is the use of a Fork operator (Figure 2.10). The

Fork operator isolates the handshake handling, and thus avoids the deadlock situation

by avoiding the unnecessary wait on a valid signal in a to propagate d.

The Self-Cleaning property is needed to avoid buffer overflow. Consider the

case where a circuit produces n inputs per token consumed. If there is a loop where the

output of the circuit is connected back to its input, there will be buffer overflow. For a

28

1 module fork(in, in_valid , in_stop ,
2 out1, out1_valid , out1_stop ,
3 out2, out2_valid , out2_stop);
4 //data
5 input [N-1:0] in;
6 output [N-1:0] out1, out2;
7

8 //handshake
9 input in_valid , out1_stop , out2_stop;

10 output in_stop , out1_valid , out2_valid;
11

12 wire ready = in_valid && !out1_stop && !out2_stop;
13 assign {out1, out1_valid} = {in, ready};
14 assign {out2, out2_valid} = {in, ready};
15 assign in_stop = !ready;
16 endmodule
17

18 module f_and_g(a, a_valid , a_stop ,
19 b, b_valid , b_stop ,
20 c, c_valid , c_stop ,
21 d, d_valid , d_stop ,
22 clk);
23 //data
24 input [N-1:0] a, b;
25 output [N-1:0] c, d;
26 wire [N-1:0] b1, b2;
27

28 //handshake
29 input a_valid , b_valid , c_stop , d_stop;
30 output a_stop , b_stop , c_valid , d_valid;
31 wire b1_valid , b1_stop , b2_valid , b2_stop;
32

33 input clk;
34

35 fork(b, b_valid , b_stop ,
36 b1, b1_valid , b1_stop ,
37 b2, b2_valid , b2_stop);
38

39 always @ (posedge clk) begin
40 if (a_valid && b1_valid && !c_stop) begin
41 {c, c_valid , b1_stop} <= {b1, true, false};
42 end
43

44 if (b2_valid && !d_stop) begin
45 {d, d_valid , b2_stop} <= {b2, true, false};
46 end
47 end
48 endmodule

Figure 2.10: A pseudo-verilog implementation that solves the deadlock problem by using
the fork operator and thus avoiding the extraneous dependency of output d on input a.

29

circuit with buffering capacity of m, the overflow will occur after m/n cycles, causing a

deadlock.

2.4.4 Fluid Pipelines Channel Grouping

In high performance design SoCs, it is common to have a guaranteed number

of cycles between events. For example, a cache hit in a processor may be known to take

3 cycles. The issue logic in the processor may start to wake up instructions two cycles

ahead. If the design shrinks/increases by 1 cycle, the time dependence may be broken.

These scenarios need to be taken into account in Fluid Pipelines, when adding extra

pipeline stages. This information is known by processor architects at design time and

can be given to the Fluid Pipelines framework.

To support this behavior, Fluid Pipelines allow the designer to assign group

IDs to a Fluid Channel. For simplicity, channels without user defined group ID are

automatically assigned a unique ID (i.e., empty group). When additional stages are

inserted in a channel (or existing stages are removed), all other channels with the same

ID get the same amount of extra stages. This guarantees that the relative number of

cycles between the channels is kept. There is no requirement that channels share wires

or handshake signal and the number of buffers already present in different channels do

not need to match [86].

To illustrate this, let us analyze the example of an OoO core. Figure 2.11

shows the instruction wake-up and data cache of an OoO core, the channels connecting

wake-up to execute and data cache to execute are assigned the same ID, and thus the

30

Issue Ex

D$

cID1 cID1

cID1

cID1

(a) Original

Issue

D$

Ex

(b) Valid

Issue Ex

D$

(c) Invalid

Figure 2.11: The issue logic of a processor core is shown, arrows represent a data/hand-
shake bundle, shaded boxes represent elastic buffers and boxes with names represents
pipeline stages, the channel IDs is denoted with the arrows. (a) shows the original logic
with two cycles between issue and execute (Ex) units and one cycle between data cache
(D$) and execute, (b) an extra stage (shaded box) is added to both channels to create
a valid pipeline configuration, (c) a different number of stages is added to each path,
yielding to an invalid pipeline configuration. By annotating channel IDs, the designer
can constraint what pipeline configurations are allowed to guarantee the functional be-
havior of the circuit, this is specially useful when there is dependency in the latency
between two channels.

same number of stages need to be added/removed to them. A valid solution is shown

in Figure 2.11b, where one extra stage is added (shaded). The circuit in Figure 2.11c is

not a valid solution, since different number of stages is added in each channel.

An implication of channel grouping is that it is always possible to add pipeline

stages, but not always possible to remove pipeline stages in some cases. Figure 2.12

shows two channel groups, out of a fully connected design graph (not represented for

cleanness). Group A has the same delay between producers and consumers. This means

that any number of stages can be inserted/removed in channels A1 and A2, as long as

the number is the same in both channels. Group B has similar constraint, but channel

B2 has a number of stages that is larger by one than channel B1. Strictly speaking, this

means that pipeline B2 has to have at least one pipeline stage. The minimum number

31

EB EB

EB

EB EB

EB EB

Ch: A1
Gr: A

Ch: A2
Gr: A

Ch: B2
Gr: B

Ch: B1
Gr: B

(a) Original Grouping

EB

Ch: A1
Gr: A

Ch: A2
Gr: A

Ch: B2
Gr: B

Ch: B1
Gr: B

(b) Minimum Stage Configuration

Figure 2.12: (a) shows 2 channel groups A and B. Each channel in A has two elastic
buffers (EB) between source and sink, whereas the channel B1 has one EB and B2 has
2 EBs between source and sink; (b) shows the minimum pipeline configuration for both
groups, for group B it is not possible to remove all the EBs due to the uneven number
of buffers in the original configuration. It is not possible to remove all the stages in the
design, but it is always possible to add more stages.

of stages in each case is shown in Figure 2.12b.

2.4.5 Design Example

Using Fluid Pipelines in dataflow is in general a straightforward task as seen so

far. In this section, I provide a different example of how memories or Register Files (RF)

could be integrated into Fluid Pipelines. When designing Fluid Pipelines it is common

to replace registers by EBs, but this is not desirable in the case of RFs, since RFs are

supposed to hold a value until a new value is written over it, and after reading from an

EB, the data is consumed. Instead, I show here how the memory abstraction (regardless

of actual implementation) can be used to model RFs, or any block of memory, in the

32

RTL level.

The idea is to create a wrapper over the memory block that implements the

Fluid Pipelines handshaking. Memory is represented as an array of registers, but a

black-box memory, from a memory compiler could be equally used. The Verilog code

for the RF is shown in Figure 2.13.

2.4.6 Design Overhead

One of the main disadvantages of Fluid Pipelines is the need for design inter-

vention in the RTL code. In this section, I look into how much of what is needed to

implement Fluid Pipelines already exists in digital design. In fact, finding points where

Branch and Merge operators can be inserted is a simple task because most existing

designs are inherently elastic.

Elasticity is omnipresent in digital design. Most designs already include sig-

nals such as “start”, “done”, “busy” or “full”, which implement the logic used by Fluid

Pipelines. In some cases, like network routers, packages are well defined and routing/-

contention schemes are already in place. That means that Fluid Pipelines does not

require any logic that may be unfamiliar to designers, but only standardizes how to

implement this behavior.

To estimate what proportion of existing designs do implement the type of

logic required by Fluid Pipelines, I considered various designs in OpenCores,5 an open-

source database of digital designs. Even though those designs may not be an ideal
5http://www.opencores.org.

33

1 module reg_file(in_data , in_addr , in_valid , in_stop ,
2 out1_addr , out1_valid , out1_stop ,
3 out2_addr , out2_valid , out2_stop ,
4 out1_data , out1_data_valid , out1_data_stop ,
5 out2_data , out2_data_valid , out2_data_stop ,
6 clk);
7 //addr and data
8 input [M-1:0] in_addr , out1_addr , out2_addr;
9

10 input [N-1:0] in_data;
11 output [N-1:0] out1_data , out2_data;
12

13 //handshake
14 input in_valid;
15 output in_stop;
16

17 input out1_addr_valid , out2_addr_valid;
18 output reg out1_addr_stop , out2_addr_stop;
19 output reg out1_data_valid , out2_data_valid;
20 input out1_data_stop , out2_data_stop;
21

22 input clk;
23 assign in_stop = 0; //always take inputs
24 reg [N-1:0] registers [REG_COUNT -1:0];
25

26 always @ (posedge clk) begin
27 if(out1_addr_valid && !out1_data_stop) begin
28 out1_data <= registers[out1_addr];
29 {out1_data_valid , out1_addr_stop} <= 2'b10;
30 end else if(out1_data_stop) begin
31 {out1_data_valid , out1_addr_stop} <= 2'b01;
32 end else
33 {out1_data_valid , out1_addr_stop} <= 2'b00;
34

35 if(out2_addr_valid && !out2_data_stop) begin
36 out2_data <= registers[out2_addr];
37 {out2_data_valid , out2_addr_stop} <= 2'b10;
38 end else if(out2_data_stop) begin
39 {out2_data_valid , out2_addr_stop} <= 2'b01;
40 end else
41 {out2_data_valid , out2_addr_stop} <= 2'b00;
42

43 if(in_valid)
44 register[in_addr] <= in_data;
45 end
46 endmodule

Figure 2.13: Sample Fluid Register File using register array in pseudo-Verilog. In this
case, it is simpler to keep registers as a memory block, instead of replacing them by
EBs, so data is kept after a read operation.

34

representation of practical/commercial designs, it provides a rich estimate from vari-

ous domains. Designs were classified as equivalent (same or inverted signals), partially

equivalent (only using one signal or using signals with different meanings), or nonequiv-

alent (not implementing any handshaking) to Fluid Pipelines handshaking mechanism.

Only projects marked as “DONE” were considered, in Verilog or VHDL and for which

the code is publicly available. Out of 270 projects, 35% are equivalent in most blocks,

10% are equivalent in a few blocks, 20% are partially equivalent (in general, only “start”

and “done” signals). 25% implement no or an incompatible handshake. The remaining

10% are IO operations (debouncer, LED control, …) or only combinational logic (lookup

tables, arithmetic operation, …).

These statistics show that the type of handshaking required by Fluid Pipelines

is already implemented in a significant number of designs, and therefore, Fluid Pipelines

will not introduce design overhead. The designer simply needs to annotate the code. It

also show that designer are used to the type of handshake used by Fluid Pipelines, and

including them will not be hard for any experienced designer.

Even though a large number of designs already contain some of the handshakes

proposed by Fluid Pipelines, there have been recent efforts to reduce the overhead of

creating new Fluid Pipelines designs. Liam [101] is a new paradigm for HDL that

implicitly implement Fluid Pipelines. Pyrope [100] is the first HDL to implement LIAM.

Language constructions like “consume” and “abort” are used to abstract behaviors

typical of Fluid Pipelines. Particular care is taken to avoid the construction of deadlock

prone constructions. I expect more languages to implement constructors that will ease

35

the adoption of Fluid Pipelines, however, this is out of the scope of this chapter.

2.5 New Evaluation Methodology

To find the optimal pipeline depth, a designer or tool must estimate the

throughput of a pipeline configuration (i.e., number and position of pipeline stages). In

theory, this can be accomplished through RTL simulation, cycle-accurate simulators or

others. RTL simulations are often slow, especially if a large number of configurations

need to be tested. For CPU cores, architects usually rely on standard cycle-accurate

simulators, such as ESESC [9]. Still, for other designs it may be hard to write custom

simulators. Therefore, a more light-weight methodology can be used to model simple

designs faster and evaluate different pipeline configurations early in the design time for

space exploration, or late when changes due to physical constraints are included.

A methodology based on Coloured Petri Nets (CPN) [62], a formal framework

used to model systems in different areas of computer science, was proposed to evaluate

Fluid Pipelines and other Elastic Systems alike [86]. The use of the coloured version of

Petri Nets is justified by the data-dependent Branch operations that cannot be modeled

on the non-coloured versions.

CPNs are defined as a bipartite graph of places and transitions, connected by

arcs. Places can contain tokens that have data value attached to them (colour). The

state of the net (the marking) is defined by the number and colour of tokens in each

place. The initial marking is changed when transitions fire. When a transition fires,

36

tokens are subtracted from its input places and added to its output places according

to arc expressions. There is a capacity associated with each place representing the

maximum number of tokens in that place, and prevents input transitions from firing.

Definition 1 A Coloured-Petri Net is a tuple CPN = ⟨P, T, A, Σ, C, G, E, I, Cap⟩:

• P is a finite set of places.

• T is a finite set of transitions, such that P ∩ T = ∅.

• A ⊆ (T × P) ∪ (P × T) is a set of directed arcs. Let a.p and a.t denote the place

and transition connected by a respectively.

• Σ is a finite set of non-empty colour sets.

• C : P → Σ is a colour set function which assigns a colour set to each function.

• G is a guard function that assigns to each transition t ∈ T a guard function

G(t) : (∅ ∪ Σ)|•t| → {0, 1}, where •t = {p|(p, t) ∈ A}.

• E is an arc expression function that assigns to each arc a ∈ A an expression E(a),

such that the type of E(a) should match C(a.p).

• I is an initialization function that assigns to each place p ∈ P an initialization

expression I(p), I(p) must evaluate to C(p).

• Cap : P → I is a capacity function that attributes a maximum capacity to each

place.

37

Firing Semantics: Let M , a marking function, map each place p ∈ P into

a set of tokens M(p) ∈ C(p). Let G(t)(M) (resp. E(a)(M)) denote the evaluation

of G(t) (resp. E(a)) with the marking M . A transition t is enabled, and said to fire

when G(t)(M) = true and ∀a ∈ {b|b = (p, t), p ∈ P, b ∈ A}, E(a)(M) <= M(a.p), and

∀p ∈ t•, M(p) < Cap(p), where t• = {p|(t, p) ∈ A}. The firing updates the marking

function to M ′(p) = (M(p) E(p, t) ∪ E(t, p)∀p ∈ P .

Timing: In order to evaluate digital circuits, one needs to account for timing,

which is not included in CPN models. In regular CPNs, only one transaction fires at

a given cycle. Without changing the underlying semantics of CPNs, it is possible to

change the model so that every transition that is enabled at the beginning of the cycle

fires. This is a more accurate description of digital circuits and will help determine the

number of clock cycles it takes to execute.

There is one extra restriction to this formulation. The cardinality of each

expression must be 1; this means that for each arc, only one token can be consumed/-

generated. Also, note that guard functions can only depend on the incoming arcs to

a transition. This complies with the constraints defined previously, and thus, avoids

deadlocks. The restriction on the cardinality of expressions changes the formalism of

CPNs, and a formal analysis of the impact of it needs to be further explored in future

work.

Figure 2.14 depicts how the Fluid Pipelines’ operators are modeled as CPN

transitions. Circles represent places, bars represent transitions, and dots represent to-

kens in transitions that are not colour dependent while letters represent coloured tokens.

38

(a) Fork

b

b

a

a

b

b

a

a

b

b

a

a

b

b

a

a

b

b

a

a

(b) Branch

(c) Join (d) Merge

Figure 2.14: The CPN models of each of the four operators used in Fluid Pipelines.
The models are shown before and after firing. Branch is data dependent and thus the
arrows are annotated with the expected data. Those models can be used to estimate
the overall throughput of Fluid Pipelines and Elastic Systems.

Merge operators do not define priority, and thus, conceptually both transitions can oc-

cur at the same time, which is compatible with the theoretical formulation of Fluid

Pipelines. While places correspond to elastic buffers, transitions do not have a direct

translation from the circuit model. However, they can be mapped from the logic.

2.6 Evaluation

In this Section, I provide some experimental results that show how Fluid

Pipelines compare with prior Elastic System approaches, and what kind of trade-offs

that Fluid Pipelines enable. I first discuss the evaluation methodology and setup and

then show the experimental results.

39

2.6.1 Setup

A fully compliant IEEE-754 FP Unit developed by PhD students in my lab

and a 2-way Out-of-Order FabScalar core [31] are used to evaluate Fluid Pipelines [86].

They were both designed as synchronous (for previous approaches), and annotated with

Fluid Pipelines’ operators.

A functional block diagram of the FPU unit is presented in Figure 2.15a, and

the CPN model used for the performance evaluation considering Fluid Pipelines is shown

in Figure 2.15b. In this case, the Branch and Merge operators are used. Note how the

division and square root modules use the Merge to choose between the loop when the

operation is computing or sending the result to the queue when done. Both division and

square root take 64 cycles to complete. For regular elastic, the Fork and Join operators

are used instead.

The FabScalar-2W OoO core (Figure 2.16) contains nested loops and interac-

tions between blocks and allows us to explore the scalability of the different approaches.

Branch operators are used in the dispatch unit, exec units, bypass logic, and issue logic.

Merge operators are used after the exec units, bypass logic, in the free register pool

handling (ROB to Rename path), and in the next program counter calculation (Fetch

1).

Fluid Pipelines are compared against SELF [25,45] and LI-BDNs [104]. Elastic

Systems are implemented with EBs with storage capacity of 2. For LI-BDNs, queues

of size 8 were used. In the SELF implementation adding pipeline stages to all the

40

denorm

add1

queue norm

sub1

mult1

div1

sqrt1

add2

sub2

mult2

div2

sqrt2

(a) FPU

denorm

add1

queue norm

sub1

mult1

div1

sqrt1

a

b

m

d

q

add2

sub2

mult2

div2

sqrt2

d

d

c

c

(b) CPN Model

Figure 2.15: The FPU block diagram (a) and the corresponding CPN model (b) used
to evaluate system performance.

Fetch 1

Fetch 2

Decode

Dispatch

Exec
Units

LS
Units

Rename

Issue

RF

ROB

Figure 2.16: Block diagram of the FabScalar core used to evaluate Fluid Pipelines in
this chapter. An OoO core contains a complex structure of nested loops and interactions
between blocks. It is used to show the scalability of Fluid Pipelines.

41

paths that are parallel to the critical path will yield best performance and that is the

performance considered in this evaluation.

2.6.1.1 Benchmarks

For the FPU design, I report maximum and average throughput. Maximum

throughput is calculated by using a synthetic workload that only considers the best

path (add, subtract and multiply in this case). The average case is calculated as the

throughput over a million random instructions.

For the OoO core, only the average case over the SPEC2006 benchmarks6 is

reported. Per benchmarks results did not add much information and were therefore

omitted.

2.6.1.2 ReCycling

The evaluation considers the addition of extra pipeline stages to each design.

Pipeline stages are added to the blocks with the worst delay. Perfect ReCycling/Retim-

ing (perfect balancing of delays) is assumed. Although this is usually not possible, this

approximation is sufficient. It is only necessary to ensure that after the insertion of a

pipeline stage, the two resulting stages have a delay smaller than the second most crit-

ical path before insertion. Also, to account for register overhead, 2FO4 (fan-out-of-4)

delay was added per added stage.

To find the most critical pipeline stages, synthesis results for the FPU and
6Only the benchmarks that do not require Fortran were used.

42

previously published data from FabScalar [31] that reports pipeline stage breakdowns

were used. The minimum pipeline configuration is the same as in the original non-elastic

baseline: 6 for FPU and 13 for the core.

Since ReCycling changes both throughput in instructions per cycle (IPC) and

timing, the performance metric used is throughput× frequency (equivalent to instruc-

tion per seconds, IPS). Also, it has been shown that unless power is considered, the ideal

pipeline for a design is extremely deep [78]. Therefore, Energy Delay product (ED) is

used. Power is estimated from synthesis results for the FPU and ESESC [9] simulations

(based on McPAT [73]) for the core. Logic energy consumption (both dynamic and

leakage) is assumed to remain roughly constant independent of the number of pipeline

stages. However, the dynamic clock energy consumption increases linearly with both

frequency and number of registers, and the leakage clock energy increases linearly with

the number of registers. This evaluation does not consider the effects of Retiming, that

may increase the number of registers added, and assume that the added stages have

roughly the same number of flops as existing ones, which may not always be true in the

case a stage is added in the middle of an operation.

2.6.2 Fluid Pipelines overheads

To evaluate the overhead of Fluid Pipelines, open-source RISC-V cores [13] of

various sizes and pipeline depths were re-implemented using Pyrope [100]. The cores

were synthesized using commercial tools and a commercial standard cell library. Even

though the comparison is not strictly fair, since those are still different implementations,

43

it allows a good estimate of how Fluid Pipelines compares with non-fluid circuits. The

core compares were: Zero-Riscy,7 a 2-stage core; VSCALE,8 a 3-stage core; PICORV32,9

a 4-stage core; and RI5CY.10 All the cores are 32 bits and the implementations in Pyrope

were done over the course of a quarter by another PhD student in my lab.

2.6.3 Results

I first show the design space exploration of the different approaches. In par-

ticular, I show that Fluid Pipelines are able to push the Pareto frontier towards better

performance and energy efficiency. Then, I report the more detailed results, such as the

maximum frequency, throughput, and ED for different pipeline configurations for both

the FPU (Section 2.6.4) and Out-of-Order core (Section 2.6.5).

Fluid Pipelines push the design space towards more energy efficiency and better

performance. This is accomplished by avoiding false dependencies between concurrent

paths. For most of the design points in the design space, Fluid Pipelines improve both

better performance and energy. In comparison, LI-BDNs reach better performance than

SELF, but at the cost of more energy (and area, not evaluated here).

Near-Pareto frontier points (Figure 2.17) shows that for OoO core, Fluid

Pipelines (FP) deliver both less energy and more performance than SELF. Also, Fluid

Pipelines improve the best performance (by 6%, but with 28% less energy) and the best

energy point (by 14%, but with 16% more performance). Each point represents a dif-
7https://github.com/pulp-platform/zero-riscy
8https://github.com/ucb-bar/vscale
9https://github.com/cliffordwolf/picorv32

10https://github.com/pulp-platform/riscv

44

https://github.com/pulp-platform/zero-riscy
https://github.com/ucb-bar/vscale
https://github.com/cliffordwolf/picorv32
https://github.com/pulp-platform/riscv

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 0.6 0.65 0.7 0.75 0.8 0.85 0.9
N

o
rm

a
liz

e
d

 P
o
w

e
r

Normalized Delay

Fluid
SELF

Figure 2.17: Energy-delay curve for Fluid Pipelines and SELF for the OoO core. Each
point represents a different number of pipeline stages. The results show that Fluid
Pipelines push the Pareto frontier for the OoO core by improving both performance
and energy.

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d

 P
o
w

e
r

Normalized Delay

Fluid
SELF

LI-BDN

Figure 2.18: Energy-delay curve for Fluid Pipelines, SELF and LI-BDN for the FPU de-
sign. Each point represents a different number of pipeline stages. The results show that
Fluid Pipelines push the Pareto frontier for the FPU by improving both performance
and energy.

ferent pipeline configuration, where deeper pipelines tend to improve performance while

consuming more energy. In this case, LI-BDN was not used, as it will be explained in

the detailed evaluation.

For the FPU (Figure 2.18), LI-BDNs result in increased energy consumption

due to the increased storage, but improved the performance, when compared to SELF.

Fluid Pipelines present the best performance and energy out of the three schemes, since

they do not require extra storage. Compared to SELF, Fluid Pipelines improve the

45

Table 2.2: The maximum expected throughput with respect to the number of pipeline
stages is shown for the FPU design when using Fluid Pipelines, SELF and LI-BDNs. The
original design contains 6 pipeline stages. Fluid Pipelines deliver constant maximum
throughput, regardless of the number of pipeline stages.

Pipeline stages Fluid Pipelines SELF LI-BDN
6 1 1 1
7 1 1 1
8 1 1 1
9 1 0.67 1
10 1 0.50 1
11 1 0.40 0.83
12 1 0 37 0.74
13 1 0.33 0.67

best performance by 120%, with 21% less energy, or improve the best energy by 12%

with 230% improvement in performance. In comparison with LI-BDNs, Fluid Pipelines

improved the best performance by 33%, using 83% less energy, or improved the best

energy by 38% with 118% better performance.

2.6.4 Elastic FPU

The maximum throughput for each of the models is summarized in Table 2.2.

Fluid Pipelines deliver constant throughput regardless of the number of pipelines. The

throughput of SELF decreases when there is additional pipeline stages in the sequential

loops. In the case of LI-BDNs, the extra buffering helps maintaining the throughput

even after the insertion of a few stages in the loops, but after a certain number of

insertions, there is back pressure due to the dependencies.

The effective frequency, calculated for the average throughput, is reported in

Figure 2.19. It does not necessarily increase with the number of pipeline stages. This

is due the fact that despite the frequency gain with the new pipeline stage, the reduced

46

 0.4
 0.8
 1.2
 1.6

 2
 2.4

 6 9 12M
ill

io
n

 I
n

st
ru

ct
io

n
s

 p
e

r
S

e
co

n
d

 (
M

IP
S

)

of Pipeline Stages

Fluid-av SELF-av LI-BDN-av

Figure 2.19: The average throughput with respect to the number of pipeline stages in
shown for the FPU for Fluid Pipelines, SELF and LI-BDN. The average was calculated
over a random input set. In Fluid Pipelines, circuits can be ReCycled with higher
throughput then possible with Elastic Systems, and thus for better system performance.

throughput reverts the gains and reduces the overall performance. Since in the average

case the loop path is used, there is a reduction in the gap between Fluid Pipelines and

the other models. The same fact also causes reduction in the throughput of both SELF

and LI-BDN. Despite the reduction in the gap, Fluid Pipelines are still able to deliver a

considerably improved performance compared to SELF (120%), and slightly improved

performance compared to LI-BDN (40%), but using less resources.

ED is reported in Figure 2.20. The energy overhead caused by the extra storage

in LI-BDNs reverses the advantages when compared to SELF. When comparing Fluid

Pipelines with SELF, Fluid Pipelines improve the best ED point by improving perfor-

mance by 176%, with 5% better energy. Alternatively, Fluid Pipelines deliver 120%

better top performance (with 21% less energy). When comparing Fluid Pipelines with

LI-BDNs, Fluid Pipelines improve the best ED point by improving both performance

(by 163%) and energy (by 25%).

47

0
0.2
0.4
0.6
0.8

1
1.2
1.4

8 12 16 20
N

o
rm

a
liz

e
d

E
n

e
rg

y
-D

e
la

y

of Pipeline Stages

Fluid
SELF

LI-BDN
Best ED

2.2GHz 3.4GHz 4.2GHz 5.2GHz

Figure 2.20: Energy-delay product by frequency for the FPU design. The plot was made
varying the number of pipeline stages and calculating the ED product and expected
frequency for each pipeline configuration. Fluid Pipelines is shown to improve the best
ED point of the FPU, pushing the depth of the pipeline.

 0.4

 0.5

 0.6

 0.7

 20 30 40 50M
ill

io
n

 I
n

st
ru

ct
io

n
s

 p
e

r
S

e
co

n
d

 (
M

IP
S

)

of Pipeline Stages

Fluid SELF

Figure 2.21: The plot shows effective frequency, in million instruction per seconds
(MIPS) for the OoO core. Effective frequency considers both throughput and frequency
for each pipeline configuration. Nevertheless, effective frequency alone is not a fair
metric since it does not consider the extra registers added by SELF.

2.6.5 Elastic OoO Core

LI-BDNs were not considered, since their main improvement over SELF is the

addition of FIFOs between modules. This is an important overhead for both area and

power. In addition, note from the previous experiment that for deep pipelining, LI-BDN

behavior approaches that of SELF.

As in the FPU case, the effective frequency fluctuates (Figure 2.21) when the

frequency improvement is not enough to compensate for the throughput decrease. Note

48

0.4

0.6

0.8

1

1.2

1.4

20 30 40 50 60
N

o
rm

a
liz

e
d

E
n

e
rg

y
-D

e
la

y

of Pipeline Stages

Fluid
SELF

Best ED

2.0GHz 3.3GHz 4.2GHz 5.3GHz 6.4GHz

Figure 2.22: The energy-delay product is shown for each pipeline configuration for the
OoO core. The frequency shown in the x-axis was estimated based on the frequency
for the original design and the number of added stages. The figure shows that Fluid
Pipelines shift the optimal ED point of the pipeline depth and improve performance
with a smaller power overhead.

that for some points, SELF yields better overall performance than Fluid Pipelines. This

is due to the insertion of extra pipeline stages into all the paths that are parallel to the

critical path, which in some cases ends up hitting the second most critical path, and

yields a better frequency increase, with a cost in power and area (area is not reported).

The first few stages added increase the frequency considerably, with relatively

small hit on IPC (throughput) and energy. This leads to an improvement in the ED.

As the pipeline depth increases, the addition of extra stages has a smaller impact on

frequency, but lowers IPC more. In other terms, a relatively high number of stages (i.e.,

power overhead) is needed to improve the overall performance, and thus ED gets worse.

In SELF, when one stage is added to a path, the optimal solution for throughput is to

also add a stage in all parallel paths with extra power overhead. Also in SELF, adding

stages has a negative effect on throughput. Combining these two effects results in a

faster degradation of ED. Fluid Pipelines shift the optimal number of pipeline stages,

make a deeper pipeline configuration, while improving energy by 13% and performance

49

by 17%.

2.6.6 Evaluating the overhead of Fluid Pipelines

Table 2.3 shows the comparison between Fluid Pipelines cores and their non-

Fluid Pipelines counterparts. PICORV32 is the smallest core, even though it is a 4-stage,

and as such, the Fluid Pipelines implementation is not able to closely match the original

version in size. For the 2 and 3 stages, area is very closely related between the Fluid

Pipelines and non-Fluid Pipelines versions.

There are some important differences both in area and delay, but it is worth

noting that the Fluid Pipelines cores were generated from a single code base with au-

tomated transformations [102] and with very low effort over a small amount of time,

whereas the non-Fluid Pipelines cores come from different groups in a multi-year effort

implementation in some cases. For the open-source non-Fluid Pipelines version of the

cores, it is important to note that a lot of differences in the numbers come from differ-

ences in code style and not as much from functionality or performance goals. In that

sense, it is arguable that Fluid Pipelines versions are within the noise level of differences

in coding style and not really a large constant overhead over non-Fluid Pipelines cores.

2.7 Conclusion

In this chapter, I discuss automated pipelining strategies, with a brief review

of repipelining techniques in non-elastic circuits and then presenting Fluid Pipelines,

a new abstraction for Elastic Systems. By using Fluid Pipelines, the designer has the

50

Table 2.3: The delay and area of 4 RISC-V cores are compared with Fluid Pipelines
implementation of similar cores. Fluid Pipelines shows low area overhead an similar
delay to the non-Fluid Pipelines counterparts. Delay data is normalized by the fastest
core and area‘ data by the smallest core.

Core Stages Non-Fluid Pipelines Fluid Pipelines
Delay Area Delay Area

Zero-riscy 2 1.78 1.20 1.73 1.29
VScale 3 1.60 1.00 1.73 1.61
PICORV32 4 1.00 1.76 1.31 1.78
RI5CY 4 2.18 3.67 1.38 2.00

opportunity to extract OoO execution from the circuit whenever possible, and boost

the design performance. Fluid Pipelines push the design’s Pareto frontier, by improving

performance and energy. In the experiments presented, Fluid Pipelines improve the

optimal ED configuration of an OoO core by improving energy 13% and performance by

17%, over SELF. For a pure high performance configuration, Fluid Pipelines deliver 6%

better top performance while using 28% less energy. In addition, Fluid Pipelines brings

the advantages already existing in prior Elastic System approaches, like the possibility of

changing the number of pipeline stages, without breaking the design functionality, and

thus improves the ability of a designer to meet the design targets. The improvements

brought by Fluid Pipelines come from less throughput reduction where ordering was

not needed but also due to the ability of reducing the amount of buffering.

Fluid Pipelines can be used as a design strategy to generate multiple end-

products. For instance, the same RTL can be used to generate a deep-pipelined high

performance design and a design with few pipeline stages for low power. It is common

for companies to keep multiple teams to create designs for each of those points. This

practice leads to replication of work and code, that could be easily avoided with a Fluid

51

Pipelines-oriented strategy.

I also present a modeling framework using Coloured Petri Nets, which allows

designers to evaluate the system runtime behavior, and perform early design space

exploration. This framework is later used to evaluate Fluid Pipelines against other

Elastic System approaches, showing an improvement in the overall throughput of the

systems.

Fluid Pipelines open many research opportunities in EDA and architecture

alike. From a circuit designer perspective, Fluid Pipelines enable a more logic-oriented

design methodology, less worried with physical design constraints. For architects, Fluid

Pipelines provide a framework for flow control, opposed to the current token-credit ap-

proaches commonly used in CPU cores. Fluid Pipelines also allow for faster exploration

of the design space and energy-delay trade-offs. But it is in EDA that Fluid Pipelines

open the most interesting opportunities. A number of automated transformations is

possible in Fluid Pipelines. I have discussed RePipelining (ReCycling + Retiming), but

Fluid Pipelines transformations are not limited to it. It is also possible to apply resource

utilization techniques of port sizing optimization and pipeline stage replication. For ex-

ample, Fluid Pipelines allow to increase or decrease the number of ports required by an

SRAM without changing overall system correctness. This is possible because when not

enough ports are available at run-time, it is legal to stall the inputs and wait until a free

port becomes available. As long as the stall operation is not frequent, the performance

is not affected. Such transformation leverages the handshake signals of Fluid Pipelines

under the hood to generate the proper control signals.

52

A new hardware description language that incorporates Fluid Pipelines struc-

tures is currently being developed [101]. It improves the ability to design circuits that

implement Fluid Pipelines directives abstracting away some of the lower level machinery

needed. This language has been shown to facilitate pipeline transformations and gener-

ate multiple design points from a single RTL specification [102], and therefore automate

the design space exploration for multiple area-delay points.

53

Chapter 3

Anubis: A new benchmark for

incremental synthesis

A man who dares to waste one hour

of time has not discovered the value

of life.

Charles Darwin

In the previous chapter, I have discussed how automation tools can be used to

improve pipelining analysis and how Fluid Pipelines, a new paradigm for digital circuit

design, improves the opportunities for extra pipelining. While automating pipelining

is an important step for hardware design productivity, to get accurate estimations of

frequency, power and area for a circuit, a designers needs to perform synthesis. Runtime

for synthesis remains a major bottleneck for digital design, which this thesis proposes to

address with the use of incremental techniques. However, before I dive into incremental

54

synthesis, I present ANUBIS, a benchmark to evaluate incremental synthesis techniques.

The lack of a standardized benchmark that included designs and design changes is a

gap and is one of the main challenges for the creation of incremental synthesis.

3.1 Introduction

Synthesis and physical design (placement and routing) are tedious and time

consuming processes repeated multiple times during the design phase of a project [91].

Industry players have recognized this problem and have been trying to reduce synthesis

time by taking different approaches [6, 107]. Nevertheless, the current standards are

either limited in results or require manual interactions, often increasing designer effort

and degrading Quality of Results (QoR).

Incremental synthesis techniques have been shown to improve synthesis time

by re-utilizing parts of the resulting circuit. These techniques have been applied in

industry [6, 108] and in academia [30, 91], but the lack of standard benchmarks makes

it hard to compare different approaches and to understand how the results presented in

a paper can be translated into “real-life” expectations.

Moreover, different approaches target different steps of the synthesis process,

making it harder to directly compare them, even if the benchmarks are the same. For

instance, the current version of Vivado includes incremental placement and routing [108]

but does not perform incremental logic synthesis, while existing research focus only on

logic synthesis [30,91].

55

There are multiple sets of standard benchmarks used by the design automation

community, e.g., the ISCAS benchmarks [23, 24] or the ITC benchmarks [42] (among

others). However, these benchmarks do not target incremental flows. This prevents

them from being applied directly in incremental synthesis due to the lack of standard

changes to those circuits. Incremental synthesis benchmarks should be representative

of real world designs, but they should also include representative changes over which

incremental synthesis is evaluated. Moreover, when comparing multiple flows, the same

set of changes needs to be used to allow for a fair comparison.

Existing papers dealing with incremental synthesis have used ad-hoc bench-

marks, that included a variable number of designs, some of which may be “real-life,”

but with rather arbitrary changes. For instance, Chen and Singh [30] used 40 industrial

benchmarks with hand made “small” changes; while it is more likely that the designs

come from actual industrial applications, it is unclear whether the changes are reflective

of real changes. LiveSynth [91] used three publicly available designs and based their

changes on commented out code and repository history. This approach yields more rea-

sonable changes, but the designs used are not good representatives of industrial designs.

In this chapter, I discuss the first incremental synthesis benchmark suite, ANU-

BIS, which includes a collection of open-source designs as well as standard changes.

The use of industrial benchmarks would certainly improve the representativeness of

the benchmark set. However, benchmarks should be made publicly available to ease

adoption. Therefore, only designs that are publicly available and can be freely used

for academic research without licensing are included in ANUBIS. On top of the designs

56

used, ANUBIS introduces changes based on repository history and commented out code,

when available, with the addition of a few synthetic changes that aim to exercise the

case where RTL file changes do not result in any logic change in the circuit (comments,

variable renaming, so forth), as those could be common and should not result in any

effort by an “ideal” flow.

ANUBIS also defines a standard way of scoring and reporting results using

ANUBIS. The goal is to have an equivalent to the popular SPECint benchmark [56,63],

typically used to report performance numbers in CPUs. The unified ANUBIS score

provides an easy way to compare different proposals for incremental synthesis, while

the standard reporting requirements provides insights on where flows are doing a good

or a poor job. The ANUBIS score takes into account incremental synthesis time but

also includes QoR results.

Finally, I evaluate ANUBIS using two commercial incremental synthesis flows

over ANUBIS. The results are reported in the proposed standard table with the final

scores. The evaluation shows that both the flows considered do a good job in delivering

the same QoR when in incremental mode, with a maximum of 4% of area degradation

observed, and no more than 1% increase in delay observed for both flows. However, the

incremental synthesis time is usually not proportional to the amount of changes. For

instance, in cases where no actual change was made, runtime was usually on the order

of half of the full synthesis runtime. More importantly for an evaluation of ANUBIS,

the flow that has incremental synthesis, scored better for the synthesis partial score,

and the flow that has incremental placement and routing scored better in those partial

57

scores.

The main contributions of this chapter are:

• Propose ANUBIS, the first incremental synthesis benchmark set

• Propose a standard score and report table to facilitate the comparison of flows

using ANUBIS

• Evaluate ANUBIS using existing incremental synthesis flows

The remainder of this chapter is organized as follows. First, Section 3.2

presents work related to incremental synthesis and benchmark construction for EDA.

Then, in Section 3.3, I present the ANUBIS benchmark suite and some considerations

on how to handle different technology targets for synthesis, and in Section 3.4, I discuss

the scoring function for ANUBIS. The evaluation setup is described in Section 3.5 and

the results are presented in Section 3.6. I wrap-up this chapter in Section 3.7 with

concluding remarks and discuss some future steps for this research.

3.2 Related Work

The related work is split into two main parts: incremental synthesis techniques

and other benchmarks. In the first part, I discuss the type of work that could benefit

from ANUBIS and the benchmarks used in their evaluation. In the second part, I discuss

how other benchmarks (not necessarily for synthesis) work, how they were created, and

how they are evaluated.

58

Incremental Synthesis: The first incremental synthesis flow was proposed

30 years ago [64] in order to improve timing closure in digital design. The flow was

interactive and kept the design in memory while changes were being made by the de-

signer. The flow needed under 30 minutes to evaluate large (at the time) designs, but

could compute the effects in frequency of a small design change in only a few seconds.

The main motivation of the flow was timing analysis, with an incremental timer and

the designer would manually indicate design changes over the netlist to improve timing.

There is close to no details on what circuit was used in the evaluation or how changes

were made.

Incremental synthesis was revisited more recently by other authors. Dehko-

rdi et al. [43] propose a flow that partitions the design into independent synthesis re-

gions. After a change is introduced only the affected partition is re-synthesized. Due

to the artificial partitioning method, there is a significant hit on QoR depending on the

parameters chosen. The authors used a set of 22 “industrial benchmarks” with manu-

ally added changes. There is no information about the changes added, but it is clear

that they were not based on real code changes, since changes were “randomly” added.

Benchmarks used were also not made public due to their commercial nature.

To reduce the impact on QoR, newer approaches include detecting regions

impacted by the changes, regardless of an original partitioning of the design. A flow

coupled with Altera synthesis flows leverages information of nets whose functionality is

not modified during synthesis. When a change is made to the RTL, the flow maps that

change to a specific region defined by those “invariant” nets, replaces the synthesized

59

of the affected region by the elaborated netlist of the new code and launch synthesis

over the design. Since most of the design is already synthesized and optimized, there is

little work that needs to be done, reducing synthesis time [30]. A different approach is

to only synthesize the modified logic, which further reduces the synthesis time and has

been shown to maintain QoR [91].

Incremental timing analyses have recently been pointed out to be a weakness

in timing-driven flows [58]. In modern digital design flows, timing analysis is essen-

tial to identify critical paths and to avoid optimizing non-critical paths [69]. During

performance-driven optimization, timing analysis tools are used several times to assess

the impact of optimizations in the circuit [69]. Since most of these changes are localized,

running full timing analysis is a waste of resources. The recognition of this problem led

to an academic competition in 20151 for incremental timers. Although incremental

timers are more geared towards the optimization process of a static netlist, for instance,

during placement, it is also true that they could be used for incremental changes to the

RTL, specially during the timing closure loop.

Other Benchmarks: In the Incremental Timing contest the evaluation of de-

signs was done by using standard circuit benchmarks with changes generated randomly

by a computer program in the netlist level and not from real Engineering Change Order

(ECO) changes.2 The changes were described in the form of actions, such as “add/re-

move connection”, “add/remove cell”, and so forth. Despite being useful to evaluate

and test incremental timing, those changes do not reflect real-world like changes that
1TAU 2015 Contest: Incremental Timing: https://sites.google.com/site/taucontest2015/.
2Personal communication with contest organizers.

60

https://sites.google.com/site/taucontest2015/

would be done to a design.

The ISCAS benchmarks [23,24] are very popular in the synthesis and physical

design communities and have been used by countless research papers to evaluate and

compare different proposals. The ISCAS benchmarks consist of a set of netlists from

real industrial designs. Another set of benchmarks, the IWLS benchmark [4] include

RTL description of over 80 industrial designs, with the respective mapped netlists. The

IWLS benchmarks serve a more specific purpose for use in logic synthesis, but can also

be used to evaluate parsers and elaboration tools. However, both these benchmark sets

are static, in the sense that they do not include changes that were made to those designs

during their project and therefore are not suitable for incremental synthesis evaluation.

Evaluating a benchmark is not an easy task. The most common problem

associated with creating and using a benchmark is to assess how representative it is

of the expected space of applications intended. For instance, on one hand excessive

benchmark redundancy was shown to be an issue due to the added runtime to evaluate

the suite, on the other hand reducing too much the number of entries in a benchmark

can yield reduced coverage [84]. Another issue is to define which metrics are the most

suited to evaluate a benchmark. For instance, the placement community has been

discussing between different metrics (wirelength, routability, so forth) and the decision

on which metric to use largely impacts which placer will be considered the best [2]. A

good benchmark should be able to rank proposals according to well defined metrics, but

in some cases, conflicting metrics make it hard to intuitively determine which flow is in

fact the best.

61

In the relatively new and largely unexplored field of incremental synthesis and

physical design methods, there is still need to define what it means to be the best, what

metrics are more relevant and how to weigh different metrics. In this chapter, I discuss

some of the metrics that I believe will be important and use them to compose a scoring

system that was used to evaluate existing commercial flows.

3.3 ANUBIS

ANUBIS, A New Benchmark for Incremental Synthesis, is a benchmark suite

that considers incremental changes in digital designs. The main premise of ANUBIS

is that most of the time during the design cycle of digital circuits, small and localized

changes are introduced to the code. Still, current benchmarks for synthesis (logical and

physical) consider mostly static benchmarks. ANUBIS tries to capture real changes that

were introduced into real designs. With ANUBIS, researchers working on incremental

synthesis, placement, routing, timing, bug finding techniques or others are provided

with a standard tool to compare their work more fairly and consistently.

ANUBIS consists of a collection of Verilog designs. The benchmarks were cho-

sen based on open-source status, availability of design changes (as explained later) and

size/diversity. ANUBIS was built trying to maximize the number and type of designs

and changes to be representative of a large set of real-life cases. In the next subsec-

tions, I describe how the benchmarks were selected, how changes were inserted into the

benchmarks, and how to run ANUBIS to compare multiple incremental synthesis flows.

62

3.3.1 Benchmark Selection

The main objective of the benchmark selection criteria is to allow for a good

number of designs that are as reflective of real world designs as possible and have enough

real code changes in them. These criteria are not very strict, but work mostly as a set

of guidelines.

Closed source designs or code with limited distribution were excluded to pre-

vent limiting broad adoption. There is also a particular interest in looking for code

changes. This can take two forms: commented out code or repository commits. Given

those two requirements, the main source of benchmarks considered are open-source

repositories online, such as GitHub3 and OpenCores.4 The mipsFPGA softcore [55,61]

was originally used in one of my papers, but was finally not included in this benchmark

set due to the restricted distribution.

Another important source considered was from academic designs that were

made available with changes, for that research groups in multiple universities were

contacted directly. Designs from Bug Underground,5 a project at University of Michigan

that aims to find bugs in RTL code of cores, were added. They provide two processors

with a large number of bugs that are inspired into bugs found in commercial CPUs and

reported through erratas. Although those are not actual changes that were made to

designs, they closely reflect issues found in real commercial CPUs.

Generated code, such as from High-Level Synthesis (HLS), Bluespec, Chisel,
3http://github.org.
4http://www.opencores.org.
5http://bugs.eecs.umich.edu.

63

http://github.org
http://www.opencores.org
http://bugs.eecs.umich.edu

and so forth, were not considered. In theory, generated RTL could be used, but this

adds an extra layer to the benchmarks and is currently out of the scope of the bench-

mark suite. Those may be considered for a future version of ANUBIS, in particular

designs implemented in Chisel and for HLS tools. After gathering open-source design

candidates, the number of code changes that could be found for them was considered.

The code was inspected for commented out code, and the commits in the repository for

meaningful changes. Open-source designs with no design changes, as is the case of most

of the designs in OpenCores, were excluded.

Other variables considered are the ability to fit the design in a large high-

end FPGA, to allow for flows to place and route designs for FPGA and that the design

should not require specific vendors. For instance, some designs use IPs specific to Altera

or Xilinx, which prevents them from being ported to other back-ends. Unfortunately,

this leaves a very limited number of useful designs, but more designs will be added to

ANUBIS as they are made available.

The list of ANUBIS designs is provided in Table 3.1. In the remainder of

this dissertation, the benchmarks will be referred to using the acronym presented in

the second column of Table 3.1. ANUBIS will be provided under the BSD License 2.0,

and results of flows using ANUBIS will be published on the official ANUBIS repository

(http://github.com/masc-ucsc/anubis), some of the benchmarks are distributed un-

der different licenses. Anyone using ANUBIS can submit results, and a list of top

contenders will be available in the official repository.

64

http://github.com/masc-ucsc/anubis

Table 3.1: ANUBIS consists of a collection of open-source benchmarks and standard
changes applied to it. Lines of Code (LoC), area and maximum frequency (Fmax) (for
an ASIC 32nm library using a commercial flow) are included as estimates of the design
complexity. The FPU design was provided by the MASC-UCSC lab.

Description Acronym LoC FMax (MHz) Cells
DLX core [20] dx 743 770 7152
ALPHA core [20] al 1086 666 17558
IEEE 754 FPU fp 4716 2500 58149
mor1k RISC core [80] mo 15012 2500 62752
OR1200 RISC core [81] or 19437 1300 329280

3.3.2 Change insertion

In order to emulate design changes, code changes were inserted to the bench-

mark code. The changes can be activated or deactivated through define statements.

Some synthetic changes were added to exercise some cases that are interesting but did

not appear in either of the above, such as replacing a signal by a constant. A change

can be single-line, multi-line, or multi-file. Changes include changing conditions in if

statements, changing logic to generate data, including/removing ports on a module, and

others.

The main source of code differences used was commits in public repositories. In

particular, commits in nearby dates were considered, since ANUBIS specifically targets

small changes in code. Commits that added entire modules or sub-systems were not

considered. The idea of using commits from repositories is to try to mimic “real-word”

work. Commits of large amounts of code usually reflect the changes over several days

or weeks which is not aligned with the incremental synthesis philosophy. Commented

out code was used when available, following a methodology similar to the one proposed

in [37]. In addition, changes that cause syntax errors were ignored, but there are no

65

assumptions on functional correctness. Changes needed to be parsed and synthesized

by Yosys [105] in order to be considered.

A special case where no logic change is inserted was also considered. For

instance, adding/removing comments, white space, changing variable names, so forth.

The rationale behind this is to understand how good the system is at detecting these

corner cases where no re-synthesis is needed. Ideally, a good implementation should be

able to detect that there was no change and return in almost no time. In some cases,

this will not happen and at least a part of the flow will be triggered. Those changes

were artificially created, but were inspired in cases observed in repository diffs.

Changes are divided into three categories: NoChanges, LocalChanges, Glob-

alChanges. NoChanges are changes that do not reflect any real change in the behavior

of a system–they can be adding whitespace, double inversions, changing the name of

a variable, or actual changes to unused parts of the circuit. The LocalChanges cat-

egory includes changes within a module, mostly single line changes, or very localized

changes, such as changing the conditions on an if-else if chain, changing the constant

values, arithmetic operations, so forth. Finally, GlobalChanges are changes that either

affect multiple modules or a module that is instantiated multiple times in the design.

Although changes are either classified as LocalChanges and GlobalChanges, it is not

necessarily the case that the amount of reused cells will be lower for GlobalChanges,

since this is largely flow-dependent. Moreover, researches may be interested in different

types of changes depending on the specifics of the work being done, since different types

of techniques will behave differently in each category.

66

Table 3.2: Summary of changes inserted in the benchmarks with breakdown by category
and source: actual code changes including git and commented out code (A) and synthetic
(S).

Design Total NoChanges LocalChanges GlobalChanges
A S A S A S

dx 27 0 4 23 0 0 0
al 15 1 5 9 0 0 0
fp 37 0 7 12 14 2 2
mo 34 0 7 20 0 4 3
or 31 1 5 19 0 4 2

A summary with the number of changes added to each benchmark is given in

Table 3.2, with breakdown by category and source (actual or synthetic). For dx and al,

all changes are considered actual changes. ANUBIS is largely composed of LocalChanges,

since the idea behind ANUBIS is to leverage small incremental steps, although some

GlobalChanges are expected. The percentage of LocalChanges versus GlobalChanges

approximately reflects observations from the repository histories, although no statistical

analysis over the histories was performed.

3.3.3 Setup requirements to report ANUBIS results

For the sake of fairness, ANUBIS assumes that researchers will abide to ethics

when reporting results. Nevertheless, I discuss some of the “minimum” expected setup

conditions for a fair reporting on ANUBIS.

Equality in number of cores and resources used: When running full syn-

thesis, setup and incremental synthesis the same number of cores and physical resources

(memory, IO and network bandwidth, so forth) should be available. The workload on

the computers running the flow should also be consistent, and if at all possible only the

benchmarks should be running. The server configuration should be disclosed as much

67

as possible, but at least the number and model of cores used and the available memory

should be reported. Note that if, for instance, the setup flow is single threaded, the

incremental synthesis could be parallelized, but the results should be reported with a

single thread. This measure prevents a flow of scoring artificially high due to higher

parallelism, and although parallelism is embraced and encouraged, they are not the

main target of ANUBIS.

High effort flow: Flow options should be chosen to achieve the highest

quality circuit. In general, that means, maximum (or within 5%) achievable frequency.

The 5% is to allow for approximation to integer numbers and to avoid pushing the flow

to extremes, which could incur large optimization overheads, that end up creating a lot

of unpredictability to runtime. However, flow options like “retiming” can be used at the

researcher discretion, but those should be consistent between full and incremental flows

and should be clearly disclosed.

Multiple runs: To reduce the effects of runtime variability, ANUBIS should

be run at least 3 times and the average should be used. If too much variability is

observed (i.e., the runtime between different runs differs by more than 10%), 5 runs are

recommended.

3.3.4 Technology target

There is an important impact of technology target for synthesis, placement,

and routing in the overall runtime and QoR. For fairness, when comparing results, flows

will be divided into FPGA and ASIC targets.

68

If divergence due to specific standard cell library or FPGA vendors are ob-

served, further categories may be specified or generic open-source technology files may

be made available with ANUBIS. This is not expected however, since the scoring system

is taking into account the full synthesis as well, thus effects of specific technology should

be captured and taken into account.

3.4 How to score ANUBIS

An important part of a benchmark is to have a fair way of comparing different

approaches and answer what does it mean to be the best approach. That can be broken

down into finding the metrics of interest for the problem at hand and giving a relative

weight to them.

For incremental synthesis, knowing the percentage of reuse (changed cells,

moved cells, wires that needed re-routing) is an initial potential metric of interest, but

as it becomes clear in the evaluation, those do not necessarily translate into saved

runtime. At the end of the day, designers doing incremental synthesis are interested in

reducing runtime and keeping quality of results. Runtime savings and QoR are easily

accessible from running the full and incremental flows, although it is hard to place an

absolute importance between them. For instance, it is intuitive to think that a designer

would not use an incremental flow that saves 90% of runtime but at the cost of doubling

the delay. On the other hand, an incremental flow that offers 10% speedup with minimal

QoR impact may not be appealing either. However, it is not as simple to decide if a

69

designer would use a flow that reduces runtime by half with, say, 5% impact on delay.

That may be acceptable in some cases, for instance if a final optimization synthesis can

be performed later to catch up on the QoR gap. In those corner cases, it may be harder

to decide which of two flows is better.

Given that, I believe that the ultimate metric for incremental synthesis should

be related to runtime speedup, that is, how much time the incremental flow under

evaluation can save compared to the full flow. However, the flow should be penalized if

it degrades QoR by a “too much”, of course how much penalty for how much degradation

is an important point of discussion.

Runtime comparisons should be as independent of the hardware in which a flow

is running as possible, therefore ANUBIS uses runtime normalized by that of of running

a standard flow, which serves as a baseline for assessing the hardware power. It is also

expected that any incremental flow will require a setup phase that consists at least of an

initial synthesis, but possibly additional processing steps such as the approach proposed

in [30], change the regular synthesis flow to keep track of information needed later and

include extra steps beyond synthesis to prepare for the incremental steps. The runtime

of this setup phase is also considered, but is weighted less, since it should not need to

be run often.

The scoring system is such that higher scores indicate better flows. The score

system works as follows: first a sub-score is calculated for each change in each bench-

mark and the baseline benchmark (i.e., no change case). Then a benchmark score is

calculated based on the sub-scores. Finally, a global ANUBIS value is calculated us-

70

ing the benchmark scores. The ANUBIS value takes into account the time to perform

synthesis, placement and routing. To provide better insights on the speedup, the stan-

dard reporting also includes breakdown for each phase, as will be discussed later in this

chapter.

3.4.1 QoR penalty

One important point to consider is QoR degradation. When performing in-

cremental synthesis, it is possible that there will be degradation in QoR. This is not

a deal-breaker in the sense that non-incremental synthesis may be used to close the

QoR gap. Prior works on incremental synthesis recommend running non-incremental

synthesis while no changes are being performed on the design [91]. Therefore, although

it is important that a flow can achieve accurate QoR, it is possible to tolerate small

losses. However, if the losses are significant, it may be impractical to use the flow. The

scoring system takes that into account.

The answer to the question of how much QoR degradation can be tolerated

may vary significantly from case to case and from personal taste. Still, ANUBIS tries

to capture in general terms what may be acceptable in general to most designers and in

most use-cases. Since a hard consensus on a specific number would not be possible, I try

to argue here in more general terms. The first observation is that commercial FPGAs

are divided into speedgrade due to process variation. For instance, in Xilinx FPGAs

the difference in speed between grades is of about 14− 15% [106], which indicates that

10% is too large of a variation to be tolerated. Another insight is taken from industrial

71

blogs: for instance, setting different clock constraints around the maximum achievable

frequency can led to Fmax differences of around 14% [99], which also seems to point that

14% is too high. Another industrial post suggests that there is a variation of around

4 − 5% in performance due to sign-off [79], which may seem to suggest that 5% could

be a tolerable error for most designers.

As a final argument, when 50 synthesis runs using Quartus over the same

unmodified design, there was fluctuation of, on average, around 3% in frequency [89].

This is due to randomness present in the flow.6 The range was of about ±7%. This

result also seems to confirm that variability should be around 5% to be tolerable by

designers. Therefore, ≈ 5% QoR variation seems to be acceptable fluctuation, but

≈ 10% seems to be too much. However, since there is not a definitive answer to this

question, instead of using a step function, i.e., penalize any difference higher than 5%,

ANUBIS uses a sharp but continuous increase in penalty as QoR degrades.

The other piece missing to this discussion is how much penalty should be

attributed to flows that “break” QoR. The reasoning behind this is much simpler. If

an incremental flow is degrading QoR, it is natural to run the full flow to recover the

penalty. Therefore, the scoring function should be such that if QoR is within 5% of the

full synthesis QoR, the score is inversely proportional to the incremental synthesis time,

and if the QoR is degraded to unreasonable levels, the score is inversely proportional

to the incremental synthesis plus the full synthesis time, remember that higher scores

mean better flows. This is called the corrected runtime for change n of benchmark a:
6Modern synthesis flows have been moving away from randomness for the sake of repeatability.

72

τ(an), where a is one of the ANUBIS benchmarks and 1 ≤ n ≤ na is the change id

and na is the number of changes for benchmark a. Given that, the corrected runtime is

given by:

τ(an) = ti(an) + (1 + α)× tf (an)
α + eβ×Qf (an)/Qi(an) (3.1)

where α and β are constants, ti(an) is the time it takes to run the incremental flow on

change i of the benchmark a, tf (an) is the time it takes to run the non-incremental flow

on that change/benchmark, Qi(an) and Qi(an) are the QoR metric of interest (critical

path delay, area or power) for the incremental and full synthesis flows respectively.

The constants were selected empirically, to have steep sigmoid function be-

tween 5− 10% degradation in QoR, with 5% close to no penalty, high penalty for 10%,

and close to maximum penalty over 15%. The constants chosen were α = 108 and

β = 26. There is no benefit for improving QoR. Figure 3.1 illustrates how this works,

the x-axis shows the percentage QoR change of the incremental flow compared to the

full synthesis flow (100% is the same QoR, and lower than 100% indicates degradation).

The penalty rises sharply after around 5% degradation in QoR up to the time it takes

to perform full synthesis. Note that this plot denotes the corrected runtime (τ) of the

flow for change i of benchmark a, and therefore higher is worse. This number will still

be inverted before calculating the final score.

73

0
0 20 40 60 80 100 120 140

Ta
u

Incremental QoR (%)

AN Score

QoR
degradation

QoR
improvement

tf + ti

ti

Figure 3.1: ANUBIS penalizes QoR loses. The penalty is dependent on how much QoR
was lost and on the full synthesis time. The rationale is that, if there is too much QoR
degradation, the full synthesis will be run to recover it.

3.4.2 Score

To make the score machine independent, i.e., to take into account that more

powerful machines would artificially improve the runtime, the score for each change

in each benchmark is normalized by the runtime of YOSYS (version 0.7+154) with a

provided synthesis script for that change in the same machine. YOSYS [105] is an

opensource synthesis tool that fully supports Verilog. The correct YOSYS version, the

library for techmap and the standard synthesis scripts are provided with ANUBIS, and

will be run automatically. Changes to any of these are not allowed. The ANUBIS score

an(an) for each change is provided by:

an(an) = tY (an)
τ(an)

(3.2)

where tY (an) is the YOSYS runtime for change n of benchmark a. This score is cal-

74

Table 3.3: Sample report table for ANUBIS.
Phase Delay Energy Area gmean Full
Synth ans,d ans,e ans,a gmean (ans) fulls
Place anp,d anp,e anp,a gmean (anp) fullp
Route anr,d anr,e anr,a gmean (anr) fullr
gmean gmean (and) gmean (ane) gmean (ana) gmean (gmean) gmean (full)

culated for synthesis, placement and routing independently, but since YOSYS only

performs synthesis the baseline is the same for the three. This is only to normalize for

computation power. One extra score an(a0) is added to each benchmark and is calcu-

lated considering the setup phase of the algorithm. The idea is that longer setup times

will result in a lower overall score.

3.4.3 ANUBIS Value

For each phase (synthesis, placement and routing) and for each QoR metric

(delay, energy and area), the score an is calculated as the geometric mean (gmean)

of all the scores. This yields 9 values that are reported as a table (QoRs vs phase),

and 6 sub-scores are calculated as the gmean of rows and lines. The final of the flow

ANUBIS score is calculated as the gmean of the those. A sample standard report table

is provided in Table 3.3. A set of scripts to calculate the scores and generate the table

is also provided with the benchmark code. In each cell in the scoring table, a higher

number indicates a better flow. Researchers focusing on a specific phase can report a

subset of the ANUBIS table and/or assume a coupling with incremental approaches for

other phases.

The table also includes a column with the scores for full synthesis flow. In this

75

case there is no QoR penalty, and thus there is only one column. The average speedup

can be obtained by dividing the gmean column by the Full column for each task. This

already takes into account any penalty in the incremental flow. Researchers working on

specific areas may want to add extra metrics. For instance, research in placement tools

usually report routability and congestion. This is also encouraged as it allows for better

insights on trade-offs of each tool.

3.5 Evaluation Setup

To evaluate ANUBIS, I rely on two commercial incremental synthesis flows

(Flow 1 and Flow 2). There is little information publicly available about how these

flows are implemented, but the main focus of both flows is to reduce the impact on

QoR while leveraging as much as possible from the original design. For this evaluation,

both the flows are able to do incremental synthesis automatically, that is, without

user intervention such as user-defined partitioning and placement constraints, that are

common in FPGA flows.

Incremental Flow 1 basically consists of regular elaboration and synthesis and

incremental placement and routing. Whenever a file is changed and saved, the regular

frontend flow is run over the design, and the incremental backend flow is ran over the

changes. Flow 2 also includes a frontend incremental flow that feeds the incremental

backend flow, and thus I would expect better scores in the first row of the ANUBIS for

Flow 2, in comparison with Flow 1 (higher scores are better).

76

ANUBIS is ran for the two flows independently, on a 32 core Intel Xeon E5-

2689 with 64GB of memory, running ArchLinux-4.9.11-1. Timing measurement was

done using the tool provided time to avoid loading overheads. Delay, area and power

were also used as provided by the tool, post-routing. Each flow is run for each change in

incremental and non-incremental modes and QoR is compared for each change between

the two.

3.6 Evaluation

In the first part of the evaluation, I show the standard ANUBIS table for both

the flows and discuss the results obtained. I also look into the behavior of each flow in

the NoChanges category, which provides an interesting sample use case to and could be

a low-hanging fruit to improve runtime in simple cases.

3.6.1 Overall Results

The results for Flow 1 are shown in Table 3.4. The best absolute scores are

for placement, even though routing is also supposedly incremental the tool still takes

considerable time in routing which explains the low scores. The results for synthesis

are the worst among the three phases, since it is not incremental. One good way to get

insights about the results is to look at the last column of the ANUBIS table that reports

the scores for the full synthesis flow. In an ideal case, with no QoR degradation, the

speedup of the incremental flow with regards to the full synthesis flow can be obtained

by dividing the value in each the gmean column by the value in the full column. In this

77

Table 3.4: ANUBIS table for incremental Flow 1.
Phase Delay Energy Area gmean Full
Synth 0.105 0.098 0.098 0.100 0.105
Place 2.982 2.704 2.704 2.794 0.175
Route 0.148 0.136 0.136 0.140 0.042
gmean 0.359 0.330 0.330 0.359 0.092

Table 3.5: ANUBIS table for incremental Flow 2.
Phase Delay Energy Area gmean Full
Synth 0.129 0.129 0.129 0.129 0.075
Place 0.039 0.039 0.039 0.039 0.039
Route 0.070 0.070 0.070 0.070 0.070
gmean 0.065 0.065 0.065 0.065 0.059

case, there is no speedup for synthesis, ≈ 15 times speedup in placement and ≈ 4 times

speedup for routing, on average.

The results for Flow 2 are shown in Table 3.5, they confirm the expectation

of better results for the synthesis phase when comparing with Flow 1. However, the

results for placement and routing are worse then Flow 1, which indicate that Flow

1 does a better job in the incremental placement and routing then Flow 2. Overall,

the much better placement times for Flow 1 make it have a higher, and thus better,

ANUBIS number. However, the Flow 2 scores for placement and routing are the same

for incremental and full synthesis, which indicate that the runtime for those phases are

the same in both cases. This either indicates that there is not really an incremental

flow or that the incremental flow is a slow as the full flow.

Note that all the columns of Table 3.5 are basically the same. In fact, there

was actually some difference after the 5th decimal. This is because Flow 2 was very

good at preserving the QoR, with less than 1% differences between full and incremental

78

flows. In Flow 1, it is possible to observe differences mainly in the delay column, which

has higher numbers. The variation in delay for the Flow 1 flow was of up to 1%, but

area and power had differences of up to to 4%, which affects the score a bit. Since the

median was of ≈ 1%, the penalty is still pretty low.

One interesting note is that YOSYS took on average 8.83 seconds to complete

synthesis in the machine used. Thus it is possible to get average runtime, considering

the QoR penalty, for each task, multiplying the gmean column by the YOSYS run-

time. Although YOSYS is pretty fast for current standards, I believe that incremental

synthesis should be able to beat YOSYS. One evidence of that is the current score for

placement in Flow 1.

3.6.2 No change cases

This section provides a sample use case on how to evaluate specific features

of an incremental flow. In this particular example, I look into how the incremental

flows evaluated behave in the case of NoChanges changes, i.e., simple code refactoring,

such as comment addition, variable name change, or whitespace addition. Intuitively, a

smart incremental flow should be able to detect that no logic change was made to the

circuit, and no placement and routing is needed.

Since the results for all the benchmarks were very similar, I will focus on the

results for fp. Figure 3.2 shows the runtime achieved by both flows for synthesis (Syn),

placement (Place) and routing (Route) when no actual changes are applied to the design.

In Flow 1, there is no change in synthesis compared to the full flow. For placement,

79

 0

 50

 100

 150

 200

 250

 300

Syn Place Route

Ti
m

e
 (

s)

Flow 1

Syn Place Route

Flow 2

Full synthesis

Figure 3.2: The flows tested cannot detect that no actual change was inserted and run
at least partially the incremental flows. Flow 1 does a very good job in placement
presenting a median runtime of zero for placement, but it does a poor job in synthesis
and routing. Flow 2 presents a 2× speedup in synthesis, but placement and routing
take a long time.

there is a reduction to zero most of the time. Routing is roughly half of the full flow.

In Flow 2, the speedup observed for synthesis is basically flat in all the cases, and of

around 2×, while placement and routing have more varying runtimes, but in the order

of up to 20%.

Although the NoChanges scenario is arguably less important, from this data

it looks like there is a lot of room for improvement in current incremental commercial

flows. In theory, it should be relatively easy to detect, at least after synthesis that no

changes are necessary in the physical implementation. This is an unexpected result,

given that the reports for both flows show that over 99% of cells and nets were reused

from the original to the new implementation. Thus, it looks like there is a lot of time

spent in matching which cells and nets can be reused, which eventually reduces the

gains from the incremental synthesis.

80

3.7 Conclusion

In this chapter, I presented ANUBIS, a set of RTL designs and code changes

that comprise the first benchmark set intended to be used for incremental synthesis,

placement and routing. In this initial version, ANUBIS is a small set of designs, but

with a rich collection of changes that represent real code changes applied to those designs

during time. ANUBIS considers both runtime and QoR to generate a final unified score

that allows to easily compare multiple flows.

Incremental synthesis has been the subject of various research in the past and

has gained traction in the industry as a path to reduce the synthesis time, which is

recognized as one of the main bottlenecks in digital design. Other research areas may

also leverage ANUBIS, such as incremental timing analysis tools.

ANUBIS was evaluated using two incremental commercial flows. Although

there are not many public available details on how those flows are implemented, they

are more focused on keeping QoR, since rather no QoR degradation was observed. This

comes with a cost in runtime, which was relatively high when considering the high re-

utilization of the designs. Other approaches, such as LiveSynth [91], advocate for small

QoR degradation for more aggressive runtime reduction. In that case, the authors argue

for the use of incremental steps while the code is being changed, and full synthesis to

recover QoR, when there is no code change being performed.

As new benchmarks with code changes become available, they will be added to

future versions of ANUBIS, there is particular interest in larger designs that could help

81

on the study of the scalability of incremental flows and possibly reflect better industrial

designs. Generated RTL is also an interesting addition, since even small changes in the

original code can cause significant changes in multiple parts of a design. Finally, as

new incremental tools for synthesis emerge, the scoring system needs to be tested and

validated against a larger set of flows.

82

Chapter 4

Enabling Live Synthesis with

Incremental Methods

Rien n’est plus fort qu’une idée dont

l’heure est venue.

Victor Hugo

In Chapter 2, I described Fluid Pipelines, a new framework to enable adding

and removing pipeline stages at any point the during the design flow. While Fluid

Pipelines reduces the overhead of changing pipeline stages in a design, an accurate

assessment of the impacts of extra pipeline stages can only be obtained after synthesis,

placement, and routing, which remain costly. In this dissertation, I advocate for the

adoption of incremental synthesis as a way to mitigate this cost. Then, in Chapter 3, I

presented ANUBIS, the first benchmark to evaluate incremental synthesis that includes

designs and code changes to them. In this chapter, I discuss incremental synthesis that

83

allows quick turnaround for synthesis and evaluation of small code changes to a design.

4.1 Introduction

In the VLSI and FPGA design cycles, engineers typically wait several hours

for synthesis, placement, and routing. Most of the time, this is done for relatively small

changes while the design is being optimized, when the engineer is trying to assess the

impact of a single change in the overall circuit, often for timing closure. Incremental

synthesis does not exist in commercial ASIC flows, but it exists in commercial FPGA

flows [6, 107, 108]. These incremental passes try to cut the time to generate an FPGA

bitstream; however, those industrial flows are either not fast enough, as seen in Chap-

ter 3, since they aim to guarantee maximum Quality of Results (QoR) or rely on manual

partitioning of the circuit, which often degrades quality.

There is an important contrast of VLSI and FPGA design cycles with modern

software engineering techniques that advocate for agile development cycles [76], even

with live feedback for programming. While most software engineers would consider

hours of compilation unacceptable, this is the de-facto expectation in synthesis. I pro-

pose a different workflow for hardware development that allow the designer to trigger

synthesis results very frequently as the design is being modified. Most of the time,

providing accurate results takes seconds instead of hours. This results in quick feed-

back to further optimize the design without degrading quality. The proposed flow is an

incremental synthesis flow on steroids.

84

Incremental synthesis is especially interesting for FPGAs on emulation plat-

forms like Strober [68] or FireSim [67], where short implementation time could reduce

the overheads involved in programming FPGAs during the evaluation of multiple simi-

lar RTLs, with negligible QoR impacts. However, even for ASICs, synthesis flows could

benefit from faster feedback for evaluation of small changes.

Designers’ productivity should improve with an interactive synthesis environ-

ment, as evidenced by the increase observed for agile software development [47]. My

vision is of a “live” flow, where designers know right away how the change will affect

Quality of Results (QoR). The flow is divided into two parts: an interactive, low-effort

part, and a background high-effort part. The interactive aspect gives “live” feedback

(within a few seconds) with good accuracy but not necessarily fully optimized designs.

The background process has a slow turnaround time and optimizes the design while the

human works in the next set of changes.

This flow allows more iterations per day, helping reduce the time for tim-

ing/power closure. Since iterations are fast, the designer can make more changes, and

thus it is easier to track the impact of each change in the design. If the change did not

positively impact QoR, it is easy and cheap to undo the change and proceed in another

direction. In this vision, synthesis is triggered as the designer types or saves the file

(as long as it is possible to parse the code). This guarantees small enough increments

while avoiding the undesirable old habits of experienced designers that avoid triggering

synthesis frequently. When there are no pending incremental small jobs, a background

high-effort synthesis runs to improve the design quality. This background process aims

85

to remove imperfections inserted by the live flow, thereby slowly improving the design

implementation.

To support this development model, in this chapter I present two distinct but

complementary ideas: LiveSynth and SMatch. LiveSynth is an incremental synthesis

framework that leverages an existing post-synthesis netlist to generate another post-

synthesis netlist for a small code change in the RTL of a design [91]. SMatch is a tech-

nique that structurally compares two post-synthesis netlists to find structurally match-

ing gates to re-use placement and routing information, and thus reduce the amount of

work the physical design tool needs to do. There is no need for the logical function of the

gates to match. SMatch can theoretically be used in ASICs and FPGAs, however, since

in ASICs gate sizes may differ, SMatch is more suitable for FPGAs, where Look-Up

Tables (LUTs) can be re-programmed to implement any logic function.

In both cases, the target is 30 seconds of runtime. This target was set since

30 seconds is the time that the short-term memory lasts in humans.1 LiveSynth targets

the front-end flow, and can be applied to ASICs and FPGAs and even though SMatch

targets the reduction of placement and routing workload, it can be technically classified

as part of the front-end. Both the techniques are designed to be tool independent and

can be adapted to any synthesis, placement and routing flow.

Triggering synthesis over the whole design is widely adopted in industry and

academia alike. Nevertheless, usually, at a given iteration, a designer is focusing on

one small portion of the circuit. In traditional synthesis, even if a small portion of
1Personal communication with faculty in the Psychology Department at UCSC.

86

the design is changed, logic synthesis and placement are triggered for large blocks and

require hours to complete. This is due to two main reasons: tools are not designed for

incremental synthesis, and inter-module optimization has a significant impact in QoR,

which makes it hard to assess where the impact of a change is important.

The techniques presented in this chapter focus on highly optimizing the sub-

region and triggering re-synthesis only when necessary, and not over the whole design.

LiveSynth divides the design into multiple regions with invariant boundaries, i.e., regions

whose boundaries’ functionality has not been changed during synthesis. These regions

are smaller than user defined modules on average. When a change is made in the

RTL description of the design, the synthesis flow needs only to find which regions were

touched and replace them with the newly synthesized netlist. SMatch leverages existing

placement and routing information, which are known to be a good, if not somewhat

optimal, implementation of the circuit, and then only re-places and routes gates as

needed.

Even though each region is highly optimized, this process is much faster since

the region that is touched by the flows is kept small. To be able to maintain QoR,

especially delay, if part of the critical path is within the region, the neighboring regions

are also included in the high effort synthesis. Special care is given to the case where

multiple instances of a module exist in the design. If the region frontiers are within the

module, the region can be optimized alone, which yields a faster process. In the case

where the region frontiers are outside the module, each instance must be dealt with

separately.

87

SMatch can operate over the whole design, and should still be relatively fast,

since to a structural comparison of the circuit can be done in linear time. However,

LiveSynth can be leveraged to reduce the search space. In any case, both techniques

include a setup phase that performs a regular synthesis of the whole design and also

finds invariant regions, which are used as incremental grains for the incremental phase.

When there is a change in the RTL, LiveSynth finds which regions were affected and

synthesizes only them. The algorithms are designed so that LiveSynth does not traverse

the whole graph. Then if SMatch is used to find structurally matching components and

keep place and route information. Finally, the regular place and route flow is used over

the unmatched cells within the incremental synthesis region.

The results showed that LiveSynth was able to reduce synthesis time by about

10× on average, but with high variation. LiveSynth was consistently faster than any

of the previous approaches. When coupled with SMatch, the flow was able to deliver a

fully placed and routed design in about 16−20× faster than a regular flow, or 2× faster

than LiveSynth, on average. SMatch was able to finish synthesis placement and routing

in less than 30 seconds for 70% of the changes in the Anubis benchmark suite [89].

SMatch was faster than previous approaches in most of the cases, but it was never

slower. There was a slight degradation in QoR but not statistically distinguishable

than previous approaches, only a minority of design changes had degradation and never

more than 3% degradation in delay.

The main contributions presented in this chapter are:

• LiveSynth, the first incremental synthesis flow that allows inter-module optimiza-

88

tion

• Interactive synthesis methodology with fast feedback

• Incremental synthesis flow that is independent of a specific synthesis tool

• SMatch, the first synthesis flow that leverages the structure of the netlist to reduce

placement and routing

• First proposal of SMatch, a flow that leverages the pre-fixed nature of FPGAs to

accelerate synthesis results

The remainder of this chapter is organized as follows. First, I discuss related

work on Section 4.2. Then, in Section 4.3, I present LiveSynth, which is the main build-

ing block for this chapter. I discuss how SMatch builds upon LiveSynth in Section 4.4.

Then, Section 4.5 discussed the evaluation setup and Section 4.6 the main results. I

wrap-up this chapter on Section 4.7.

4.2 Related Work

Incremental synthesis tools are by no means new. An interactive synthesis flow

was first proposed over 30 years ago [64], motivated to improve timing closure in digital

design. The authors claim that the flow needed under 30 minutes to evaluate relatively

large designs (for the time), but could compute the effects in frequency of a small design

change in only a few seconds of CPU time. Although the main motivation was timing

analysis, the result is largely an incremental (though manual) synthesis flow. The whole

89

circuit is kept in memory while the designer applies small changes to it.

Incremental flows also exist to target software compilation [97]. This technique

consists of identifying which functions are affected by a single code change and then

only recompiling those functions. Authors put particular effort into checking inline

functions–code that was declared a function by the programmer but was merged into

its calling point–as well as inter-procedural optimizations. Those are the main challenges

in incremental compilation and can be translated to inter-module optimization in RTL

synthesis. The techniques used here are sensitive to inter-module optimization.

Multiple incremental synthesis flows have been proposed. Early [43] and still

widely used [6] flows rely on pre-partition of the design, either manually or automatically.

Each partition is independently synthesized, placed, and routed, and then the overall

circuit is connected together. When changes are made, only the affected partitions are

re-synthesized, placed, and routed, reducing the total time. However, the QoR is heavily

dependent on the partitioning, and there does not seem to be a way of predicting which

partitioning method is the ideal short of trying multiple partitioning strategies.

Traditional ECO approaches [34, 77] can also be classified under the larger

umbrella of incremental synthesis, but the main goal of ECO flows is to reduce the

amount of disturbance to an existing mask, usually late in the design process where it is

costly to change the design. Therefore, the algorithms and methods used are well suited

to reduce the amount of cells changed, wire re-routed and so forth, and not necessarily

to keep overall quality or reduce runtime [21]. The approaches presented in this chapter

do not look into minimizing the size of changes as much, since they are focusing more

90

on the timing closure cycle, which is typically earlier in the design cycle than ECOs.

Finally, post-synthesis partitioning methods first synthesize the design and

then find suitable partitions. Because these methods do not arbitrarily decide where

to partition before synthesis, they have the advantage of minimizing QoR degradation.

Both LiveSynth and SMatch fall within this category. Line-Level Incremental Recom-

pilation (LLIR) [30] propose a line-level incremental synthesis flow that is implemented

coupled with the Altera synthesis flow. Since this flow has access to internals of the

synthesis flow, it is able to keep track of changes during the synthesis flow and reduces

the setup overhead observed in this approach. The final proposal also incurs in the

elaboration of the whole design at each change and launches the synthesis over the full

design. The approaches discussed here are more efficient, since they reduce the amount

of work in the RTL elaboration, the final synthesis, and in placement and routing. They

also be used with different synthesis tools without accessing any code.

4.3 LiveSynth

LiveSynth works by creating an implementation for a modified RTL specifi-

cation, utilizing as much as possible from a previous implementation for the original

specification. Incremental flows rely on partitioning the design into regions that will

be independently synthesized. Then, re-synthesis can be triggered in each region when

a change occurs. Early flows depend on user-defined partitions, which are usually de-

pendent on hierarchy and not optimal, since partitioning has an important impact on

91

synthesis quality [43].

LiveSynth automatically defines regions of a few thousand gates that are used

as incremental grains. To reduce the impact on QoR, LiveSynth finds invariant cones,

i.e., regions whose functionality do not change during synthesis. Intuitively, these cones

define the regions across which no further optimization is possible (or necessary) during

the initial synthesis. Although this is not always the case, these regions are a good

starting point for the incremental phase of the synthesis. This is better than relying

on a rather arbitrary hierarchical division, since it is well known that inter module

optimization plays an important role in design optimization.

LiveSynth (Figure 4.3) is built on top of third-party tools. A setup pass is

performed right after the initial synthesis to determine equivalence between specification

and implemented netlist. This pass could be removed by integrating equivalence tracking

into the synthesis step itself [30]. Still, since it is only executed once, the overhead from

this pass is not a big problem.

4.3.1 Incremental Synthesis

Any incremental synthesis approach looks into applying changes in the RTL

specification of a design to an existing implementation. Conceptually, this process

involves 4 netlists:

• Spec0 and Spec1: are the netlists after elaboration (and before synthesis) for the

original (Spec0) and modified (Spec1) RTL. I refer to these as elaborated netlists.

92

• Impl0 and Impl1: are the synthesized netlists for the original (Impl0) and modified

(Impl1) RTL. I refer to these as synthesized netlists.

The objective of incremental synthesis is to create Impl1 that implements Spec1 by

utilizing as much as possible from Impl0. In LiveSynth, Spec1 is not fully generated:

only the modified files will pass elaboration, whereas the remainder of the modules are

inferred from Spec0, since they did not change.

To avoid the need of arbitrarily defining incremental regions, which was shown

to degrade synthesis quality [43], LiveSynth first synthesizes the entire design and then

finds regions that can be used for incremental synthesis.

4.3.2 What size should the blocks be?

Partition size has a major impact on synthesis time, especially because synthe-

sis time is not linear with design time. LiveSynth targets a “few seconds” synthesis time.

Thus, I need to understand how large an incremental block can be to be synthesized

within this target. To better understand how synthesis time varies with design time

and thus define the target partition size, I synthesized various modules of different sizes

in two synthesis tools, a commercial tool and Yosys [105] (the synthesized blocks were

subsets of the benchmarks, explained in Section 4.5). Since for incremental synthesis, I

am mostly interested in small blocks, I did not scale to large sizes.

In these simple experiments, there is an overhead to start the synthesis tools,

observed when the number of gates is very small (< 100 gates). This overhead is

more important for the commercial tool and also depends on load time for the target

93

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000 50000

S
y
n
th

e
si

s
Ti

m
e
 (

s)

of Gates

commercial
yosys

Figure 4.1: Synthesis time varies super-linearly depending on design size. Designs with
less than ≈ 5k gates were within the runtime target.

technology library. I also observed that synthesis for designs under 5k gates, synthesis

time is consistently below 1 minute (Figure 4.1).2 Moreover, for designs too small (< 1k

gates), most of the time is consumed in tool overhead, which would be wasteful. These

data suggest that the 1k − 5k gates size offers a decent trade-off between amount of

work done and runtime, and therefore, LiveSynth aims to use design partitions in this

range.

4.3.3 What should constitute a block?

The choice of partitioning strategy has a major impact on synthesis time, area,

and delay in incremental synthesis flows [43]. Choosing modules as blocks would prevent

inter-procedural optimizations, and thus is not a suitable approach due to degradation

of QoR [43]. Chen and Singh [30] propose a flow that triggers re-synthesis in the totality

of the design after the modified region is included into the original design. Although
2Note that other factors, such as target frequency, technology node, and synthesis flow, may also

affect synthesis time and were not considered, since they are considered to be constant throughout this
chapter. For the commercial flow there is also considerable overhead for loading the tool.

94

this technique yields very good results for both area and delay, it comes at a relatively

high cost in runtime. In some designs, the incremental synthesis takes as much as 77%

of the original runtime. This penalty is due to the necessity to pass through the whole

design at least once, making the approach effectively have a O(N) complexity with the

design size.

LiveSynth takes a different approach. The main goal is to minimize synthesis

time while maintaining the design quality level, but not necessarily delivering the same

QoR. LiveSynth uses the concept of Invariant Cones to take advantage of the idea

that further optimization is not possible (or needed) within the boundaries of that

region. The definition of Invariant Cone used here is not tied to module boundaries,

and thus leverages intra-module optimizations. Since LiveSynth does not artificially

define partitions, the QoR impact is substantially reduced.

Functionally-Invariant Boundaries (FIBs) [30] are the endpoints of invariant

cones. A FIB is a net in the design whose logic function has not been changed during

synthesis, regardless of how it is implemented. Global inputs and outputs are (always)

FIBs, if retiming is not applied flops are also FIBs. A change due to a “don’t care”

condition is considered a functional change and thus, the node is not a FIB.

In the example in Figure 4.2, the synthesis process may change the implemen-

tation of the logic function f =!(!a + bc) to f = a·!(bc). In this case, there are two

Invariant Cones: fib1 = bc and fib2 =!a·!fib1. Note that internal nodes in fib2 presented

logic changes and thus do not constitute an Functionally-Invariant Boundary.

Table 4.1 shows statistics of the number of gates per Invariant Cone for some

95

A

B
C

Y

(a) Specification

A

B
C

Y

(b) Implementation

Figure 4.2: Functionally-Invariant Boundaries provide a natural boundary for incre-
mental synthesis.

Table 4.1: Invariant Cones provide a natural boundary for incremental synthesis. Most
of the Invariant Cones present in the benchmarks tested are smaller than the proposed
target.

Invariant Cone Size al dx fp mo or
< 200 3825 2489 1769 2702 643

200− 300 10 35 99 161 172
300− 400 91 47 938 136 156
400− 500 138 8 1 83 185
500− 600 10 22 649 106 74
600− 800 5 43 34 1 63
800− 1000 18 13 33 0 58

> 1000 46 10 6 0 56

circuits (details in Section 4.5). The block sizes are smaller than the target established

for LiveSynth, which means that they can be easily combined for when a change affects

multiple Invariant Cones but also to attach neighboring regions in cases where the

critical path is split into multiple blocks.

4.3.4 LiveSynth flow

The overall flow of LiveSynth is depicted in Figure 4.3, and consists of two

phases: the Setup phase and the Live phase. The Live phase is split into three steps:

Netlist diff, ∆Synthesis, and Netlist stitch. The Setup phase identifies FIBs (and re-

spective Invariant Cones) between the Spec0 and Impl0 after the initial synthesis. After

setup in the Live phase, when a change is made in the RTL, the changed file passes

96

HDL

Elaboration

Synthesis

Functional
Match

Initial Synthesis Setup Pass

∆HDL

∆Elaboration

∆Synthesis

Netlist Diff

Netlist Stitch

spec0

impl0

spec0 impl0

FIBs

Place & Route Place & Route

Setup Phase Live Phase

Interactive

Figure 4.3: LiveSynth extracts a small subset of the design for synthesis and merges it
back into the original synthesized netlist, quickly achieving results comparable to the
non-incremental synthesis. Place and route are not included.

(a) Original (b) Modified

Figure 4.4: A single code change can impact multiple invariant cones that will need to
be synthesized.

elaboration, and the modified netlist is structurally compared to Spec0. The structural

comparison (Netlist diff) only matches the portions of the netlist that are identical in

their logic structure, and thus has linear complexity with the module size [30]. The

main goal of this pass is to identify which Invariant Cones have been changed.

The final incremental synthesis region can include multiple cones. This is

because a single code change may affect multiple cones, due to the overlapping nature

of cones. This is depicted in Figure 4.4, which shows a single gate change in a design

that affects two Invariant Cones (marked with the dashed ellipses).

97

After Netlist diff, the extracted netlist containing all the modified Invariant

Cones is synthesized. Then, the resulting netlist replaces the equivalent Invariant Cones

in the original synthesized netlist. Note that only the small region that was modified is

synthesized during the LiveSynth step, which is a key factor for synthesis speed.

4.3.4.1 Setup phase

The main goal here is to find FIBs and which gates belong to each cone, as

well as to how many cones a given gate belongs to. By knowing which gates belong to

each cone, LiveSynth avoids traversing the whole design when a change is made. Also,

since cones may overlap, a gate is only removed from the design when it belongs to zero

cones.

Since the structure of the logic changes during synthesis, it is not sufficient to

simply compare the netlists. Thus, LiveSynth relies on logic equivalence checkers (LEC)

to compare the elaborated and the synthesized netlists. To reduce the search space,

I assume that the synthesis flow has kept user-defined net names unchanged (except

for appending instance names), which I have observed to be true in all five flows tested

(commercial and open source).3 Then, LECs compare the function implemented by each

of the logic cones. To account for retiming (i.e., changing of flop position) that may

have occurred during synthesis, the method also counts the number of flops between

each pair of FIBs. Although this is a very long step, it only needs to be performed

once in a while (prior to the execution of the flow) and not for every code change, so
3It is fine to miss some equivalency between nets, this only increases the size of regions, but does not

jeopardize the method as a whole.

98

this is not a huge problem. Also, if needed, this time could be mitigated with better

integration with the synthesis flow to keep track of FIBs [30].

4.3.4.2 Live phase

After setup, the LiveSynth flow enters a interactive phase that provides de-

signers feedback within a few seconds. This Live phase consists of cycling through three

steps each time a designer makes a valid change, defined as any change that produces

valid code. If a change is not valid in syntax, the Live phase is not ran.

The Netlist diff step finds which portions of the netlist have changed. Netlist

diff compares the modules that have been changed (identified by system time stamp) of

Spec1 with the original modules of Spec0. It traverses the netlist, starting at each FIB

and going backwards, until a new FIB is found. If a difference is found, that cone needs

to be synthesized. If the traversal does not spot a difference in the netlist, the synthesis

results for that region can be kept.

This structural comparison is fast since it only matches logic that is imple-

mented in the exact same way. Note that to make this search fast, I assume that nets

with the same ID are equivalent. Then, the search itself is responsible for proving that

the two cones are structurally, and thus, functionally identical. The ID is the con-

catenation of instance names and the net name in the leaf instance. This allows for

uniqueness of identifiers.

The Netlist diff pass also keeps track of which gates are part of the cone, and

thus at the end of the pass, the gates that need to be synthesized are known. After the

99

comparison, all cones that were marked as different are treated as a single region for

the next steps. The process is depicted in Algorithm 1.

Algorithm 1 Netlist diff algorithm
1: procedure diff(FIB old, FIB new)
2: diff_cone ← Set.new
3: same ← same_operation(old.op,new.op)
4: for idx gets 0; idx < new.fanin.size; idx++ do
5: if ! is_fib(fanin(new,idx)) then
6: diff_cone.append(fanin(new,idx))
7: same ← same & diff(fanin(old,idx),fanin(new,idx))
8: end if
9: end for

10: return [same, diff_cone]
11: end procedure

After Netlist diff, the marked cones are extracted from the context of the

design, and synthesized on their own (Figure 4.5) in ∆Synthesis. Inputs and outputs

to the region are carefully set to prevent optimizations in the synthesis flow to simplify

away logic that should have been kept. Moreover, since the block being synthesized

does not necessarily begin and end in flops, I also set input and output delays according

to the ones reported in the original synthesis for those nets. This forces the synthesis to

account for the delay of the logic that was not included in the block. Timing constraints

are also set in accordance with the original design.

After the delta synthesis, the resulting netlist needs to be reattached to Impl0

to create Impl1 in the Netlist stitch step. Also, any unused nets and gates need to

be removed since synthesis will not be triggered over the whole design. Thus, Netlist

stitch first inspects each gate in the original Invariant Cone and decrement the counter

on how many cones the gate belongs to, removing from the design any gate that reaches

100

(a) Full Design
Delta Module

(b) Incremental Region

Figure 4.5: Instead of triggering synthesis in the whole design, LiveSynth extracts the
region that needs to be synthesized. This is a key point for speed in LiveSynth.

the count of zero cones (Algorithm 2).

This procedure is sub-optimal for area, since it may result in redundancy. This

overhead is small for each synthesis increment, but may accumulate over the course of

multiple changes. However, note that a small increase in area (of around up to 5%,

observed by [43]) is generally more tolerable than the same increase in delay.

Algorithm 2 Netlist stitch algorithm
1: procedure stitch(Impl0, new_gates, old_gates, gate_count)
2: for all gate ← old_gates do
3: gate_count[gate.id]–
4: if gate_count[gate_id] == 0 then
5: remove(Impl0, gate.id)
6: end if
7: end for
8: for all gate ← new_gates do
9: insert(Impl0, gate.id)

10: end for
11: end procedure

101

4.3.4.3 Dealing with delay degradation

To reduce delay penalties, when a critical path crosses the boundary of the

changed region, the neighboring region is also included in for synthesis. This increases

the runtime, but reduces delay impact on the final circuit. Another possibility would

be to extend the partition definition, so the critical paths always lie within a region.

One option not explored here is to trigger a second incremental synthesis when there is

frequency degradation, however, it is not possible to know if the degradation is due to

the flow or the change introduced.

4.4 Structural Matching

In the previous section, I have described LiveSynth, an incremental synthesis

flow that aims to synthesize a circuit in a few seconds, after a small change. However,

LiveSynth stops after synthesis. It could be tied to existing incremental place and route

tool, as those existing in commercial FPGAs flows described in Chapter 3, however,

as the results there show, those do not meet the LiveSynth targets. In this section, I

describe SMatch, a method that allows a flow to leverage existing placement and routing

results and reduce the amount of work needed to generate a fully placed and routed

netlist after a small code change.

102

4.4.1 Structural Matching of Netlists

SMatch is based on two key observations: 1) placement and routing are agnostic

to logic function and only depend on netlist structure and the physical dimensions of

its components, 2) in FPGAs, the elements of a netlist can only be a handful of types,

and thus there is a large number of equal objects in the netlist.

From the first observation, it is possible to conclude that structurally similar

netlists will be placed and routed in similar ways. At this point it is important to

recognize that small variations in a netlist can cause important variations in the optimal

result of placement and routing. However, the initial statement must be interpreted in

the perspective of modern incremental synthesis, which allows small perturbations (less

than a few percent) on QoR. Then, re-using an existing placement and routing will most

likely yield similar QoR results.

LUT_0
func: f0(in0, in1)

LUT_1
func: f1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)

(a) Original Netlist

LUT_0
func: f0(in0, in1)

LUT_1
func: g1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)

(b) Updated Function

(c) Extra LUT

LUT_0
func: f0(in0, in1)

LUT_1
func: g1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)LUT_4

func: g4(in0, in1)

Figure 4.6: After synthesis of modified cones, some LUTs are structurally equivalent
between the original and modified netlists. SMatch leverages that to reduce the amount
of work needed to do during placement and routing.

103

In general, this could be applied to any netlist for a target. However, for ASIC

netlists, the standard cell libraries are usually rich in types and sizes of cells. Moreover,

in ASIC flows, macros are often used to implement specific logic functions, such as

arithmetic functions, which introduce heterogeneity to the netlist and make it harder to

find matches. This makes the second key observation useful. In FPGA netlists, there

are only a few types of cells. Since LUTs with the same number of inputs are physically

equivalent in an FPGA, it is perfectly plausible to change the logic implemented by a

LUT without the need to re-place and re-route it, as long as the physical and logical

connections with adjacent LUTs are unchanged. Since not all LUTs will be matched,

remaining LUTs need to be placed and routed following conventional place and route

flow.

Therefore, the main challenge is to find the largest structurally matching region

after a change is introduced to the design in the minimum amount of time. This process

is illustrated in Figure 4.6, for the sake of simplicity and without loss of generality, it

illustrates LUTs with two input bits, however the method is trivially extended to any

number of input bits. Figure 4.6a shows an example of an initial netlist. Each LUT

is named LUT_X with a unique numeric ID, the function implemented by each LUT

is indicated by a unique name. Figure 4.6b, the change added only affected the final

function implemented by a single LUT, namely LUT_1, from f1 to g1. A regular

physical implementation flow would run placement and routing for all the LUTs in the

design. A smarter flow could fix the position of all the LUTs, except for LUT_1, and

run placement and routing for LUT_1. SMatch proposes to not run placement and

104

routing for any LUTs, and simply update the function implemented by LUT_1, by

changing the contents written to the table. Then, in Figure 4.6c, the change made

introduced an extra LUT, LUT_4. Since this is a new LUT, it will clearly need to be

placed and routed. However, the inputs for LUT_3 also changed, since it originally

came from an input, but now comes from another LUT. Therefore, LUT_3 will also be

placed and routed. LUT_1, however, also had its functionality changed, but will not

require place and route, since its inputs and outputs did not change.

One could argue that since LUT_3 will be most likely placed in a different

position, this could affect the ideal placement for LUT_1, thus it should also be re-

placed. Although this is a valid observation, the evaluation that this is not needed to

reach “close-to-ideal” results and that the impact on QoR of not considering those cases

for placement and routing have low QoR penalty, which is compatible with the goals of

SMatch and LiveSynth.

Since this is a structural pass over both the netlists, it can also be performed in

linear time with the size of block considered. The method is explained in Algorithm 3.

In the first loop (lines 5 to 17), candidate equivalent LUTs are found between the original

design and the newly synthesized netlist. Since outputs are fixed and each net has a

single driver, there is only one possible candidate LUT for the output nets. Then, for an

arbitrary LUT throughout the netlist, SMatch only considers the LUTs from the same

input, that is, if the functionality is still the same, but the inputs are in a different order,

the LUT will be marked as not equivalent. Then, in the second loop (lines 18 to 24),

the algorithm verifies that all the LUTs that were still not marked as not equivalent,

105

have the same set (and order of inputs), otherwise the LUT is marked for placement

and routing.

After SMatch, matching LUTs are updated, and any additional LUT is placed

and routed using the conventional place and route tools available in the flow. Any LUT

that is no longer used in the new implementation of the circuit should be removed and

made available before placement and routing of remaining LUTs, since it will open up

space for new LUTs to be placed, which can improve QoR.

Algorithm 3 SMatch algorithm
1: procedure smatch(new_gates, old_gates)
2: candidates ← map()
3: matches ← ∅
4: no_equiv ← ∅
5: for all BFS from outputs(new_gates) do
6: current ← BFS.next
7: if is-output(current) then
8: can ← same_output(old_gates)
9: else

10: can ← fan-in(candidates[fan-out(current)])
11: end if
12: if candidates[current] != can then
13: no_equiv += current
14: else
15: candidates[current] ← can;
16: end if
17: end for//End BFS
18: for all lut,candidate ← candidates do
19: if fan-in(candidate) = candidates[fan-in(lut)] then
20: matches += lut
21: else
22: no_equiv += lut
23: end if
24: end for
25: return no_equiv, matches
26: end procedure

106

4.4.2 Handling Retiming and extra registers

Retiming is the operation of moving logic across registers to improve timing

closure [60,71]. Retiming can be applied to any circuit without changing the sequential

behavior of it. Adding registers to a design is also an alternative for timing closure.

They can be manually inserted, inserted through the assist of automated tools [53], or

even in latency insensitive designs [39, 86]. Regardless of the technique used, SMatch

needs to handle those changes in an efficient manner.

The main observation here is that, in FPGAs, adding, removing or moving

flip-flops is a simple operation due to the FPGA architecture and organization. FPGA

LUTs are organized in slices (Xilinx FPGAs) [108], or equivalently ALMs (Adaptive

Logic Module, in Intel FPGAs) [7]. The overall architecture of a block vary by vendor.

In Xilinx slices, there are 4 LUTs, with hardened arithmetic logic, 4 flip-flops, and by-

pass logic. The 4 LUTs can have different number of inputs in different slices (from 2

to 6). They can be used independently, or combined into larger logic blocks (of up to 6

inputs). In any configuration, there is at least one flip-flop per LUT. In Intel FPGAs,

each ALM contain an 8-input fracturable LUT, two full adders and four flip-flops. The

fracturable LUT can be split into pairs of LUTs of up to 6-input. Combinations that

total less than 8 inputs can have independent inputs, however, combinations that exceed

the amount of available inputs need to use shared inputs. For instance, to implement

two 5-input LUTS, two inputs need to be shared [5]. In the Intel FPGA case, the

number of flip-flops is also enough to handle any configuration, there is at least one

107

(a) Xilinx Slices

DFFLUT

DFFLUT

DFFLUT

DFFLUT

A
ri

th
m

e
ti

c
C

a
rr

y
 L

o
g
ic

(b) Intel ALMs

Adder
DFF

DFF

Adder
DFF

DFF

Fracturable
LUT

Figure 4.7: SMatch leverages the fact that each LUT has a flip-flop in its output that
can be activated/deactivated without impacting which routing resources will be used.

flip-flop per LUT and per adder. Also, in the case of both vendors, regardless of the

flip-flop usage in each LUT, the routing resources from the output of the slice are the

same. Figure 4.7 depicts a simplified version of the architecture of both Xilinx and Intel

FPGAs.

Thus, SMatch can simply add or remove flip-flops at the output of each LUT

to increase the amount of matching LUTs between two netlists. Simply put, during the

SMatch pass, registers can be ignored, and a final pass over flops only can add or remove

flip-flops to match the modified netlist.

One could imagine a FPGA architecture where less flip-flops exist, and thus

the simple approach of deciding where to use flip-flops after SMatch run is not viable

anymore. In those cases, it would be possible to adapt SMatch to: while doing SMatch,

verify whether a flip-flop is needed for each LUT and if so, verify if one exists, in this

case, no extra work is needed. In case a flip-flop is needed and one is not available, the

LUT is marked for placement and routing.

108

4.4.3 Partitioning the design size

Thus far, I have discussed how SMatch works, but not where it should be

applied. In theory, the method to find the matching LUTs could be applied to an entire

modified design, but that would be inefficient because it would require the synthesis of

the whole design, even for a small change. Moreover, synthesizing the whole design,

even after a small change, may yield important differences in the final netlist. Thus,

SMatch is tied with LiveSynth to reduce the region where it needs to be applied.

SMatch uses the same setup and Netlist diff methods as specified by LiveSynth.

However, instead of simply replacing the whole incremental synthesis block, as it would

be done in LiveSynth, SMatch is run. Then, instead of placing and routing the whole

incremental block, matching LUTs are updated, and only LUTs that do not match are

placed and routed.

The final SMatch flow is depicted in Figure 4.8. The invariant regions are

found during a setup step, which is run once after the initial synthesis. It is reused

across multiple incremental steps and can be recalculated, ideally when no changes are

being performed over the code. When changes are being performed, the incremental

step is used. It consists of three main substeps: Netlist diff, synth, SMatch. Netlist diff

compares the elaborated netlist from the original code with the elaborated netlist of

the modified code, keeping track of which invariant cones were changed. Then, these

invariant cones are synthesized, with aggressive optimization goals. Finally, during

SMatch, the newly synthesized netlist is structurally compared against the equivalent

109

HDL

Elaboration

Synthesis Functional
Match

Initial Synthesis

Setup Pass

∆HDL

∆Elaboration

FIBs

Setup Phase Incremental Phase

Interactive

Place &
 Route

∆Place &
 Route

Netlist Diff

∆Synthesis

Structural
Match

Figure 4.8: SMatch replaces placement and routing for a subset of cells changed in a
design during incremental synthesis. This allows to reduce place and route time.

region of the original synthesized netlist. Matching LUTs have their logic updated;

while unmatched LUTs are removed, replaced with newly synthesized LUTS, that are

then placed and routed. Both Netlist diff and SMatch are a simple pass over the graph,

with simple comparisons across cells in each and therefore are linear with respect to the

netlist size.

4.5 Evaluation Setup

LiveSynth and SMatch were implemented in C++14, compiled with CLANG

5.0.0, based on the open-source LGraph, a graph representation for VLSI design [92].

Synthesis is performed with YOSYS [105] version 0.7+312, a tool based on ABC [22],

targeting Xilinx FPGAs. Placement and Routing were done using Xilinx Vivado 2017.2,

QoR results are reported after routing. For LiveSynth only the complete incremental

region is re-placed and re-routed after a code change. I compared QoR after each change

110

for each incremental flow with full synthesis, independently for each change. For the

structural updates, the TCL interface of Vivado was used, I estimated the overhead of

using the TCL interface to guarantee that it was acceptable. For incremental updates

in placement and routing, the TCL interface was again making sure only the relevant

cells were placed and routed. The experiments were run on 2 Intel(R) Xeon(R) E5-2689

CPUs at 2.60GHz, with 64GB of DDR3 memory, ArchLinux 4.3.3-3 server.

First, the runtime for synthesis of LiveSynth LLIR [30] and an incremental

commercial synthesis flow for FPGAs are compared. LLIR is also implemented on top

of the same baseline as LiveSynth for fairness. The commercial flow is completely inde-

pendent of this flow. Then, the synthesis, placement and routing runtimes are compared

for SMatch, LiveSynth and an incremental placement and routing flow from a commer-

cial FPGA vendor. LiveSynth and SMatch share most of the same implementation

infrastructure, however, the final SMatch algorithm is applied to reduce the amount of

placement and routing needed.

I used the Anubis benchmarks [89], described in Chapter 3. Briefly, Anubis

includes five designs (DLX, ALPHA, FPU, MOR1KX, OR1200) and code changes from

real changes done to the code during its development cycle. Design changes were taken

from repository commits. Each benchmark includes around 20-30 code changes, divided

into three categories: NoChange, Local, Global. NoChange are code changes that do

not affect the logic (renames, double inversions, so forth), Local affect a single module

and Global affect either multiple modules or modules that are instantiated multiple

times.

111

4.6 Evaluation

The evaluation begins by looking at the runtime of LiveSynth for synthesis

only. Since the same overall flow is shared for SMatch. LiveSynth is compared with

LLIR and a commercial FPGA flow for runtime. Then, I consider the runtime for

synthesis, placement, and routing for both LiveSynth and SMatch, comparing with the

incremental placement and routing flow from a commercial incremental FPGA flow.

To provide more insights on how SMatch can achieve speedups over LiveSynth,

I looked into the runtime of changing the functionality of a few hundred LUTs, chang-

ing their placement, and changing their routing. SMatch is trading off placement and

routing for the structural comparison of the netlist.

Finally, I report the overall speedups for each flow, considering synthesis, place-

ment and routing and I looked into QoR results from each flow to show the quality

differences between a full synthesis and the incremental synthesis.

4.6.1 Incremental Synthesis Runtime

I first look into runtime for synthesis only. Figure 4.9 show the absolute runtime

numbers for the three incremental synthesis flows tested. LiveSynth had on average,

across benchmarks and across design changes, runtime of less than ≈ 7s to deliver a

fully synthesized netlist when applying a change to the RTL. Elaboration was the slowest

task, since it sometimes requires parsing and elaborating relatively large modules. LLIR

was over 3× slower than LiveSynth on average. The main difference was the need to

112

0

20

40

60

80

100

dlx

alpha
fpu

m
or1kx

or1200

S
y
n
th

e
si

s
R

u
n
ti

m
e
 (

s)

LiveSynth

Elab
Diff

Synth

dlx

alpha
fpu

m
or1kx

or1200

LLIR

dlx

alpha
fpu

m
or1kx

or1200

Commercial

Figure 4.9: LiveSynth improves the synthesis speed by an average of ≈ 10x compared
to a full synthesis. Each bar shows the runtime breakdown for various tasks up to
synthesis. The values reported are average across all the changes for each ANUBIS
benchmark.

run synthesis on the full netlist, even though most of the netlist is already optimized

at that point, the synthesis tool still needs to, at least, traverse the whole design. The

average for the commercial flow was about 50s, and the flow did not finish for or1200

due to resource constraints on the FPGA.

Both LiveSynth and LLIR have large variation in the speedup results, which

is expected since each change to the RTL has a different impact in the final design. In

relative terms, LiveSynth was typically 10× (or more) faster than the full baseline flow,

while LLIR was in general only 2× faster. Both flows presented large variability, with

speedups from as low as 10− 20% to as high as 80× for LiveSynth and 32× for LLIR.

113

0

100

200

300

400

500

dlx

alpha
fpu

m
or1kx

or1200

S
y
n
th

e
si

s
a
n
d
 P

a
R

 R
u
n
ti

m
e
 (

s)

SMatch

dlx

alpha
fpu

m
or1kx

or1200

LiveSynth

Elab
Diff

Synth

Match
Place
Route

dlx

alpha
fpu

m
or1kx

or1200

Vivado

Figure 4.10: SMatch performs synthesis placement and routing in under 30s for most
changes in the Anubis benchmark suite. This is faster than the incremental flow of the
commercial flow and LiveSynth, the state-of-the-art academic incremental flow.

4.6.2 Complete Flow

Overall, SMatch has a runtime of under 30 seconds for synthesis, placement

and routing, for most changes in the Anubis benchmark suite, with an average of around

21s. This is around 1.6 to 2× faster than LiveSynth on average, and 5 to 21× faster

than the incremental mode of the commercial flow. Figure 4.10 reports the runtime

for each flow, for each benchmark in the Anubis suite, averaged across all changes and

broke down by step in the flow.

Most of the SMatch synthesis routine is the same as LiveSynth, however,

SMatch has a more elaborated merge step (the Structural Matching algorithm). This

adds to the synthesis time, however, SMatch has the advantage of reducing placement

and routing even further. Since placement and routing are both slower that the simple

SMatch algorithm, SMatch ends up being faster than LiveSynth. SMatch is able to finish

114

more than 70% of the changes in less than 30s, while LiveSynth can only finish 31% in

that time, mostly changes that affect a very small number of gates.

In the commercial flow, there is no incremental synthesis step, the incremental

flow uses a full synthesis and then runs incremental placement and routing, trying to

leverage existing results for those steps. This explains the large portion of synthesis for

the commercial flow runtime results.

Figure 4.11 shows the same data as before, but with a more close view of

the runtime breakdown for LiveSynth and SMatch, normalized to 100%. Most of the

time is spent in placement and routing. Even though the proposed flows minimize the

amount of routing needed, they still rely on Vivado’s placer and router, which even in

incremental mode is meant to maximize QoR at all costs. This is true for both flows,

but is more noted in LiveSynth, since there are more wires to route in that case. SMatch

trades off an added step (SMatch) by reduced placement and routing times. The stitch

phase of LiveSynth is not visible on the plot since it only takes a few milliseconds. The

main difference between commercial flow and the other two is that since the commercial

flow performs full synthesis, there is usually a larger number of gates that is affected

even after small changes.

The LiveSynth speedup comes from two different places. First, LiveSynth

reduces the amount of work during synthesis. Then, untouched gates are kept in its

original placement, and only changed blocks are re-placed and re-routed. Thus, there

is also a reduction in the amount of gates that need to be placed and routed.

Note that in SMatch the time spent in place and route is proportionally smaller

115

0

20

40

60

80

100

dlx alpha fpu mor1kx or1200

R
u
n
ti

m
e
c%

Elab
Diff

Synth
Match

Place
Route

(a) SMatch

0

20

40

60

80

100

dlx alpha fpu mor1kx or1200

R
u
n
ti

m
e
c%

Elab
Diff

Synth
Place

Route

(b) LiveSynth

Figure 4.11: Most of the time is spent in placement and routing, that are both performed
without modification in Vivado.

than in LiveSynth. Placement account for only about 20% of the runtime and routing

for an average of under 50% of runtime in the SMatch flow. Another way of looking

at it, is to check how much time it takes to update a LUT as opposed to place and

or route LUTs. I performed a simple experiment where a design was fully synthesized,

placed and routed, and then performed three operations independently, in a varying

number of LUTs: change LUT functionality, place re-place LUTs, re-route LUTs. This

was performed for ≈ 100, 400, 1000 and 5000 LUTs, since those are in the typical range

for incremental synthesis. Results are summarized in Figure 4.12.

Finally, this can be summarized by looking into the overall speedups for each

incremental flow against the respective full flow. Thus, the incremental commercial flow

was compared with a full synthesis, placement, and routing in the same commercial flow.

SMatch and LiveSynth were compared with full synthesis in Yosys, plus placement and

routing in Vivado. The overall speedup when running SMatch is over 20 times faster

than a full synthesis, placement, and routing run. It is also at least 1.6× and up to 300×

116

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

R
u
n
ti

m
e
 (

s)

Number of LUTs

Place Time
Route Time
LUT Update

Figure 4.12: Place and route LUTs is orders of magnitude more expensive than simply
update the functionality of an already placed and routed LUT. The speedups of SMatch
come from that observation.

0

10

20

30

40

50

60

70

80

SMatch LiveSynth Commercial

S
p
e
e
d
u
p

dl
x
al
ph
a
fp
u

m
or
1k
x

or
12
00 dl

x
al
ph
a
fp
u

m
or
1k
x

or
12
00 dl

x
al
ph
a
fp
u

m
or
1k
x

or
12
00

Figure 4.13: SMatch is able to deliver over 20× speedup over the full synthesis flow,
since it allows to reduce the amount of placement and routing needed in the full flow.

faster than full synthesis (maximum achieved when place and route are reduced to zero

during the incremental phases). SMatch is also 1.5 − 2× faster than LiveSynth, when

performing placement and routing only over the gates within invariant cones touched

by the code change. Those results are summarized in Figure 4.13.

When comparing the incremental mode of the commercial flow, it is only 30-

117

80% faster on average than the full mode, being slower in some cases. There is a

difference in goal between the two flows presented here and the commercial flow. The

commercial flow is trying to optimize for QoR, while reducing the runtime. LiveSynth

and SMatch are carefully designed to maintain the QoR level of the full flows, but the

main objective is to reduce runtime. Therefore, even the incremental placement and

routing mode in the commercial flow are sometimes as slow as the full mode.

4.6.3 QoR degradation

I also looked into QoR degradation due to SMatch. Given the approach taken,

I expected that some degradation would be observed. I compare SMatch and LiveSynth

against the full baseline flow (synthesis, placement, and routing). In some cases there

was increase in frequency, but I report those cases as 0% degradation, since those are

not due to the incremental techniques, however I saw increases of up to 3% in frequency.

The maximum observed decrease in frequency was of ≈ 5% and more than 80% of the

changes had < 0.5%.

A histogram of frequency degradation of all the changes in Anubis is shown in

Figure 4.14. In this experiment, I compared the degradation of running the incremental

flows versus a full synthesis in Yosys, plus placement and routing in Vivado. The figure

shows what percentage of changes, combining all benchmarks, observed a given amount

of delay degradation. For instance, over 70% had no delay degradation and only about

5% of the changes had a degradation of about 1% in delay. The high number of changes

with no degradation is in part due to some changes not affecting the critical path, and

118

 0

 10

 20

 30

 40

 50

 60

 70

 80

-5 -4 -3 -2 -1 0

%
 c

h
a
n
g

e
s

p
e
r

d
e
g

ra
d

a
ti

o
n

Frequency Degradation (%)

(a) LiveSynth

 0

 10

 20

 30

 40

 50

 60

 70

 80

-5 -4 -3 -2 -1 0

%
 c

h
a
n
g

e
s

p
e
r

d
e
g

ra
d

a
ti

o
n

Frequency Degradation (%)

(b) SMatch

Figure 4.14: In more than 80% of the test cases SMatch and LiveSynth delivered fre-
quency within 0.5% of a full synthesis flow. The maximum decrease in frequency was
of ≈ 5%.

thus no change is observed. A comparison between the basic Vivado flow and the flows

synthesized in Yosys with Vivado place and route is out of the scope of this dissertation

and not included.

This small degradation in quality is compatible with the goals of this work

of providing fast feedback for small changes even with small degradation in QoR. For

deployment, this gap can be closed with a final step of full synthesis, but during devel-

opment, this small degradation is within acceptable ranges [89].

4.6.4 Setup overhead

Both LiveSynth and SMatch require a setup step, that needs to be run once be-

fore the incremental steps can run. Even though a single setup run can be used across

multiple incremental updates, this is still undesirable overhead. The setup includes

includes a full synthesis, placement and routing, and finding invariant boundaries. Syn-

119

thesis, placement and routing time are not exactly overhead, since they would be ran

before the change.

The routine to find the boundaries is the only added task. It requires a netlist

after elaboration and a netlist after synthesis. In my experiments, I noticed that finding

the boundaries takes about twice as much as the synthesis alone. For the benchmarks

tested, that ranged from 120 to 480 seconds. However, this overhead can be amortized

over multiple incremental changes.

4.7 Conclusions

Slow turnaround time for synthesis, placement, and routing are one of the main

bottlenecks in hardware design productivity. I believe that an interactive synthesis flow

is possible and would reduce design time by allowing faster iterations between code

changes and results.

In this chapter, I have presented LiveSynth– an incremental synthesis flow

independent of specific tools – and SMatch– an incremental flow optimized for FP-

GAs. LiveSynth leverages natural invariant boundaries to reduce the impact of split-

ting the design into regions while minimizing the impact on QoR. LiveSynth minimizes

the amount of work that needs to be done by: 1) only elaborating RTL files that were

changed by the designs, and 2) avoiding launching synthesis over the whole design.

When a critical path lies within the boundaries of the incremental region, LiveSynth

includes neighboring regions to reduce the hit on frequency.

120

SMatch builds upon the idea of live turnaround, but attacks long placement

and routing times, while still looking at logic synthesis techniques. In particular, SMatch

relies on structurally matching LUTs and only changes the logic implemented by match-

ing them, leveraging existing placement and routing from previous runs.

The results show that LiveSynth is able to reduce synthesis time by an average

of 10×. SMatch is up to 20× faster than existing incremental commercial FPGA flows.

I also showed that LiveSynth and SMatch have small impact on delay (frequency) for

only a few design changes but always smaller than 5%.

Future work will include looking for ways to further partitioning the synthesis

blocks, by leveraging logically independent blocks, but also at ways to handle unmatched

LUTs without the need to fully re-place and re-route them, always with low impact in

QoR.

121

Chapter 5

Conclusion and Future Opportunities

Imparare non stanca mai la mente.

Leonardo da Vinci

In this thesis, I have examined some of the problems in current hardware de-

sign methodologies and describe some of my efforts to address these problems. The

design of domain specific hardware has emerged as a solution to the slowdown in the

improvement of single-thread performance observed in the last few years. As a con-

sequence, hardware design has attracted many domain specialists, who do not have a

background in hardware development and the contrast between modern hardware and

software development cycles became evident.

Recently, there have been multiple attempts to address the gap between hard-

ware and software development by improving the productivity of hardware designers,

either by increasing the abstraction of HDLs or trying to increase design reuse. The

work that I have presented in this thesis bears a different, orthogonal, direction, try-

122

ing to improve the circuit abstractions used by hardware designs and by improving the

runtime of hardware tools.

Fluid Pipelines, a new hardware design style, allow tools to more efficiently

change the pipeline configuration of a design, by adding, removing or changing the

position of pipeline stages and thus improve the ability of designers to meet the timing

constraints of the design. Fluid Pipelines transformations can be applied at any stage

of the design cycle without the need to spend weeks of engineering time re-working the

design to the new specifications. Therefore, Fluid Pipelines reduces the early pressure

on carefully specifying a design before it is well known and understood.

Even though Fluid Pipelines can be applied late in the design cycle, to fully

assess the impact of those changes it is still necessary to get a post-routing imple-

mentation of the circuit, which is often costly. Incremental synthesis techniques can

leverage existing synthesis results to create a synthesized design after small changes.

In this thesis, I presented the first benchmark for incremental synthesis, ANUBIS,

that contains both RTL code and design changes. ANUBIS is publicly available at

https://github.com/masc-ucsc/anubis. Thus far, research with incremental syn-

thesis had been using arbitrarily defined changes over designs and since those were not

made publicly available, it was not possible to fairly compare two various incremental

flows. ANUBIS includes real changes, taken from the design during design development

to improve the representativeness of the changes.

Finally, I presented LiveSynth and SMatch, two incremental synthesis flows

that aim to provide feedback for small changes in a few seconds. LiveSynth focuses

123

https://github.com/masc-ucsc/anubis

on synthesis, the first step of the implementation flow, whereas SMatch also tries to

minimize the amount of work that is needed to fully place and route a design. Both

techniques operate over invariant cones, i.e., cones whose functionality did not change

during synthesis. After a change affected cones are synthesized independently of the

design, considerably reducing the runtime. SMatch also tried to structurally match the

netlist, without regards to logic of each cell, and then simply replace the logic, avoiding

the need to place and route matching cells.

The work presented here also opens up opportunities for new research. Any of

the ideas presented here can be used independently, however, there is a lot of synergy

between them. A single combined framework that can perform pipeline transformations

and quickly evaluate if those transformations yield better results would help advance

the Pareto frontier by improving both performance and energy. For changes that affect

throughput, the missing piece here is a “live” cycle accurate simulator. Although not

part of this thesis, I am collaborating in the development of such simulator.

Another important opportunity to further improve the work presented here

is to continue to develop new incremental steps, like an incremental placer and an

incremental router tools. SMatch can be easily applied to FPGAs, but its applicability

to ASICs is limited by size and aspect ratio of cells and macros. Thus, an incremental

place and route tool could improve the accuracy of LiveSynth when applied to ASIC

designs. Finally, LiveSynth still requires integration with incremental timing and power

analysis tools to truly provide feedback within a few seconds. Incremental timing tools

have been studied and exist, however, there has not been a lot of research on faster

124

methods for power estimation.

I finish this PhD and this thesis positive that there is a lot of exciting op-

portunities and challenging problems that need to be addressed. While I believe that

this thesis is a good step towards more efficient tools for hardware design, we, as a

community, still have a lot of work to do to establish hardware design techniques that

are capable of the same level of productivity that exist in software design.

125

Bibliography

[1] Mustafa Abbas and Vaughn Betz. Latency insensitive design styles for FPGAs. In

Field Programmable Logic and Applications, Proceedings of the 28th Conference

on, FPL’18, Aug. 2018.

[2] Saurabh N. Adya, Mehmet C. Yildiz, Igor L. Markov, Paul G. Villarrubia, Phi-

roze N. Parakh, and Patrick H. Madden. Benchmarking for large-scale placement

and beyond. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 23(4):472–487, Apr. 2004.

[3] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul

Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao, et al. Celerity: An open-

source RISC-V tiered accelerator fabric. In A Symposium on High Performance

Chips (Hot Chips 29), Aug. 2017.

[4] Christoph Albrecht. IWLS 2005 benchmarks. http://iwls.org/iwls2005/

benchmarks.html, Jun. 2005. Online; accessed on 8 November 2018.

[5] Altera Inc. Altera: FPGA Architecture white paper. https://www.intel.com/

126

http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf

content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf,

Jul. 2006. Online; accessed on 8 November 2018.

[6] Altera Inc. Quartus prime standard edition handbook volume 1: Design

and synthesis. https://www.altera.com/en_US/pdfs/literature/hb/qts/

qts-qps-handbook.pdf, Mar 2016.

[7] Altera Inc., Intel. Cyclone V device overview. https://www.intel.com/

content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_

51001.pdf, Dec. 2017. Online; accessed on 8 November 2018.

[8] Ehsan K. Ardestani, Rafael T. Possignolo, Jose L. Briz, and Jose Renau. Man-

aging mismatches in voltage stacking with coreUnfolding. Architecture and Code

Optimization, ACM Transactions on, 12(4):43:1–43:26, Nov. 2015.

[9] Ehsan K. Ardestani and Jose Renau. ESESC: A fast multicore simulator using

time-based sampling. In High Performance Computer Architecture, Proceedings

of the IEEE 19th International Symposium on, HPCA’13, pages 448–459, Wash-

ington, DC, USA, Feb. 2013. IEEE Computer Society.

[10] Arvind, Krste Asanović, Derek Chiou, James C. Hoe, Christoforos Kozyrakis,

Shih-Lien Lu, Mark Oskin, David Patterson, Jan Rabaey, and John Wawrzynek.

RAMP: research accelerator for multiple processors - a community vision for a

shared experimental parallel HW/SW platform. Technical Report UCB/CSD-05-

127

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf

1412, EECS Department, University of California, Berkeley, Berkeley, CA, USA,

Dec. 2005.

[11] Krste Asanović. Transactors for parallel hardware and software co-design. In

High Level Design Validation and Test Workshop, Proceedings of the IEEE Inter-

national, HLDV’07, pages 140–142. IEEE, Nov. 2007.

[12] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam

Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, and John Koenig. The

rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department,

University of California, Berkeley, Berkeley, CA, USA, Apr. 2016.

[13] Krste Asanović and David Patterson. Instruction sets should be free: The case for

RISC-V. Technical Report UCB/EECS-2014-146, EECS Department, University

of California, Berkeley, Berkeley, CA, USA, Aug. 2014.

[14] Krste Asanović, David Patterson, and Christopher Celio. The Berkeley Out-of-

Order Machine (BOOM): An industry-competitive, synthesizable, parameterized

RISC-V processor. Technical Report UCB/EECS-2015-167, University of Califor-

nia, Berkeley, Berkeley, CA, USA, Jun. 2015.

[15] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. StarPU: a unified platform for task scheduling on heterogeneous multicore ar-

128

chitectures. Concurrency and Computation: Practice and Experience, 23(2):187–

198, Feb. 2011.

[16] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing

hardware in a scala embedded language. In Design Automation Conference, Pro-

ceedings of the 49th Annual, DAC ’12, pages 1216–1225, New York, NY, USA,

Jun. 2012. ACM.

[17] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,

Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,

Matthew Matl, and David Wentzlaff. OpenPiton: An open source manycore

research framework. In Architectural Support for Programming Languages and

Operating Systems, Proceedings of the 21st International Conference on, ASPLOS

’16, pages 217–232, New York, NY, USA, 2016. ACM.

[18] Daniel Baudisch and Klaus Schneider. Evaluation of speculation in out-of-order

execution of synchronous dataflow networks. Parallel Programming, International

Journal of, 43(1):86–129, Feb. 2015.

[19] Peter A. Beerel, Andrew Lines, Mike Davies, and Nam-Hoon Kim. Slack matching

asynchronous designs. In Asynchronous Circuits and Systems, Proceedings of the

12th IEEE International Symposium on, ASYNC’06, pages 184–194, Washington,

DC, USA, Mar. 2006. IEEE Computer Society.

129

[20] Valeria Bertacco, Todd Austin, and Ilya Wagner. Bug UnderGround. http:

//bug.eecs.umich.edu/, Aug. 2007. Online; accessed on 8 November 2018.

[21] Daniel Brand, Anthony Drumm, Sandip Kundu, and Prakash Narain. Incremen-

tal synthesis. In Computer-aided Design, Proceedings of the 1994 IEEE/ACM

International Conference on, ICCAD’94, pages 14–18, Los Alamitos, CA, USA,

Nov. 1994. IEEE Computer Society.

[22] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength

verification tool. In Computer Aided Verification, Proceedings of the 22nd In-

ternational Conference on, CAV’10, pages 24–40, Berlin, Heidelberg, Jul. 2010.

Springer-Verlag.

[23] Franc Brglez, David Bryan, and Krzysztof Koźmiński. Combinational profiles

of sequential benchmark circuits. In Circuits and Systems, IEEE International

Symposium on, volume 3 of ISCAS’89, pages 1929–1934. IEEE, May 1989.

[24] Franc Brglez and Hideo Fujiwara. A neutral netlist of 10 combinational benchmark

circuits and a target translator in Fortran. In Circuits and Systems, Proceedings

of IEEE International Symposium on, ISCAS’85, pages 677–692, Piscataway, NJ,

USA, Jun. 1985. IEEE Press.

[25] Dmitry E. Bufistov, Jordi Cortadella, Marc Galceran-Oms, Jorge Julvez, and Mike

Kishinevsky. Retiming and recycling for elastic systems with early evaluation. In

130

http://bug.eecs.umich.edu/
http://bug.eecs.umich.edu/

Design Automation Conference, Proceedings of the 46th ACM/IEEE, DAC’09,

pages 288–291. IEEE, Jul. 2009.

[26] Bingyi Cao, Kenneth Ross, Martha Kim, and Stephen Edwards. Implementing

latency-insensitive dataflow blocks. In Formal Methods and Models for Code-

sign, Proceedings of the 13th ACM/IEEE International Conference on, MEM-

OCODE’15. IEEE, Jul. 2015.

[27] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L.

Sangiovanni-Vincentelli. A methodology for correct-by-construction latency-

insensitive design. In Computer-Aided Design, Digest of Technical Papers of the

IEEE/ACM International Conference on, ICCAD’99, pages 309–315. IEEE, Nov.

1999.

[28] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Performance analysis and

optimization of latency insensitive systems. In Design Automation Conference,

Proceedings of the 37th, DAC’00, pages 361–367, New York, NY, USA, Jun. 2000.

ACM.

[29] Liang-Fang Chao, Andrea S. LaPaugh, and Edwin H.-M. Sha. Rotation schedul-

ing: a loop pipelining algorithm. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 16(3):229–239, Mar. 1997.

[30] Doris Chen and Deshanand Singh. Line-level incremental resynthesis tech-

niques for FPGAs. In Field Programmable Gate Arrays, Proceedings of the 19th

131

ACM/SIGDA International Symposium on, FPGA ’11, pages 133–142, New York,

NY, USA, 2011. ACM.

[31] Niket K. Choudhary, Brandon H. Dwiel, and Eric Rotenberg. A physical design

study of FabScalar-generated superscalar cores. In VLSI and System-on-Chip,

Proceedings of the 2012 IEEE/IFIP 20th International Conference on, VLSI-

SoC’12, pages 165–170. IEEE, Oct. 2012.

[32] Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah, Hiran Mayukh,

Jayneel Gandhi, Brandon H. Dwiel, Sandeep Navada, Hashem H. Najaf-abadi,

and Eric Rotenberg. FabScalar: composing synthesizable RTL designs of arbi-

trary cores within a canonical superscalar template. In Computer Architecture,

Proceedings of the 38th International Symposium on, ISCA’11, pages 11–22, New

York, NY, USA, Jun. 2011. ACM.

[33] Alistair Cockburn. Agile software development. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, Oct. 2002.

[34] Jason Cong, Jie Fang, and Kei-Yong Khoo. An implicit connection graph maze

routing algorithm for eco routing. In Computer-aided Design, Proceedings of

the 1999 IEEE/ACM International Conference on, ICCAD’99, pages 163–167,

Piscataway, NJ, USA, Nov. 1999. IEEE Press.

[35] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn

Reinman. CHARM: a composable heterogeneous accelerator-rich microprocessor.

132

In Low power electronics and design, Proceedings of the 2012 ACM/IEEE Inter-

national Symposium on, ISLPED’12, pages 379–384, New York, NY, USA, Jul.

2012. ACM.

[36] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and

Zhiru Zhang. High-level synthesis for FPGAs: From prototyping to deployment.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 30(4):473–491, Apr. 2011.

[37] Kypros Constantinides, Onur Mutlu, and Todd Austin. Online design bug de-

tection: RTL analysis, flexible mechanisms, and evaluation. In Microarchitec-

ture, Proceedings of the 41st Annual IEEE/ACM International Symposium on,

MICRO’41, pages 282–293, Washington, DC, USA, Nov. 2008. IEEE Computer

Society.

[38] Jordi Cortadella, Marc Galceran-Oms, and Mike Kishinevsky. Elastic systems.

In Formal Methods and Models for Codesign, Proceedings of the 8th ACM/IEEE

International Conference on, MEMOCODE’10, pages 149–158, Washington, DC,

USA, Jul. 2010. IEEE Computer Society.

[39] Jordi Cortadella, Marc Galceran-Oms, Mike Kishinevsky, and Sachin S. Sapat-

nekar. RTL synthesis: From logic synthesis to automatic pipelining. Proceedings

of the IEEE, 103(11):2061–2075, Nov. 2015.

[40] Jordi Cortadella and Mike Kishinevsky. Synchronous elastic circuits with early

133

evaluation and token counterflow. In Design Automation Conference, Proceedings

of the 44th Annual, DAC ’07, pages 416–419, New York, NY, USA, Jun. 2007.

ACM.

[41] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. SELF: Specification

and design of synchronous elastic circuits. In Timing Issues, Proceedings of the

ACM/IEEE International Workshop on, TAU’06, Feb. 2006.

[42] Scott Davidson. Characteristics of the ITC’99 benchmark circuits. In IEEE In-

ternational Test Synthesis Workshop (ITSW), ITSW’99, Mar. 1999.

[43] Mehrdad Eslami Dehkordi, Stephen D. Brown, and Terry Borer. Modular parti-

tioning for incremental compilation. In Field Programmable Logic and Applica-

tions. Proceedings of the International Conference on, FPL’06, pages 1–6. IEEE,

Aug. 2006.

[44] Robert H. Dennard, Fritz H. Gaensslen, Hwa-nien Yu, V. Leo Rideout, Ernest

Bassous, and Andre R. LeBlanc. Design of ion-implanted mosfet’s with very

small physical dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268,

Oct. 1974.

[45] George Dimitrakopoulos, Ioannis Seitanidis, Anastasios Psarras, Kostas Tsiouris,

Pavlos M. Mattheakis, and Jordi Cortadella. Hardware primitives for the synthesis

of multithreaded elastic systems. In Design, Automation Test in Europe Confer-

134

ence Exhibition, Proceedings of the, DATE’14, pages 1–4, Leuven, Belgium, Mar.

2014. European Design and Automation Association.

[46] Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and

Trevor Mudgi. Near-threshold computing: Reclaiming moore’s law through energy

efficient integrated circuits. Proceedings of the IEEE, Feb. 2010.

[47] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development:

A systematic review. Information and Software Technology, 50(9):833–859, Aug.

2008.

[48] Elnaz Ebrahimi, Rafael T. Possignolo, and Jose Renau. Level shifter design for

voltage stacking. In Circuits and Systems, Proceedings of the IEEE International

Symposium on, ISCAS’17. IEEE, May 2017.

[49] Elnaz Ebrahimi, Rafael Trapani Possignolo, and Jose Renau. SRAM voltage stack-

ing. In Circuits and Systems, Proceedings of the IEEE International Symposium

on, ISCAS’16, pages 1634–1637. IEEE, May 2016.

[50] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Computer Ar-

chitecture, Proceedings of the 38th Annual International Symposium on, ISCA’11,

pages 365–376, New York, NY, USA, Jun. 2011. ACM.

[51] Karl M. Fant and Scott A. Brandt. Null convention logictm: a complete and

consistent logic for asynchronous digital circuit synthesis. In Application Specific

135

Systems, Architectures and Processors, Proceedings of International Conference

on, ASAP’96, pages 261–273, Washington, DC, USA, Aug. 1996. IEEE Computer

Society.

[52] David J. Frank, Robert H. Dennard, Edward Dowak, Paul M. Solomon, Yuan

Taur, and Hon-Sum Philip Wong. Device Scaling Limits of Si MOSFETs and

Their Application Dependencies. Proceedings of the IEEE, 89(3):259–288, Mar.

2001.

[53] Ilya Ganusov, Henri Fraisse, Aaron Ng, Rafael T. Possignolo, and Sabya Das.

Automated extra pipeline analysis of applications mapped to Xilinx UltraScale+

FPGAs. In Field Programmable Logic and Applications, Proceedings of the 26th

Conference on, FPL’16. IEEE, Aug. 2016.

[54] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: a high-level synthesis

framework for applying parallelizing compiler transformations. In VLSI Design,

Proceedings of the 16th International Conference on, ICVD’03, pages 461–466.

IEEE, Jan. 2003.

[55] Sarah L. Harris, David M. Harris, Daniel Chaver, Robert Owen, Zubair L.

Kakakhel, Enrique Sedano, Yuri Panchul, and Bruce Ableidinger. Mipsfpga: using

a commercial mips soft-core in computer architecture education. IET Circuits,

Devices Systems, 11(4):283–291, Jul. 2017.

136

[56] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1–17, Sept. 2006.

[57] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer,

41(7):33–38, Jul. 2008.

[58] Tsung-Wei Huang and Martin D. F. Wong. OpenTimer: A high-performance

timing analysis tool. In Computer-Aided Design, Proceedings of the IEEE/ACM

International Conference on, ICCAD’15, pages 895–902, Piscataway, NJ, USA,

Nov. 2015. IEEE Press.

[59] Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengyong

Wu. Elastic CGRAs. In Field Programmable Gate Arrays, Proceedings of the

ACM/SIGDA International Symposium on, FPGA’13, pages 171–180, New York,

NY, USA, Feb. 2013. ACM.

[60] Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton. Fast minimum-register

retiming via binary maximum-flow. In Formal Methods in Computer Aided Design,

Proceedings of the, FMCAD’07, pages 181–187, Washington, DC, USA, Dec. 2007.

IEEE Computer Society.

[61] Imagination Inc. MIPSfpga microMIPS core, v1.3. https://community.imgtec.

com/downloads/mipsfpga-getting-started-v1-3/, Jul. 2016. Online; accessed

on 15 January 2017.

137

https://community.imgtec.com/downloads/mipsfpga-getting-started-v1-3/
https://community.imgtec.com/downloads/mipsfpga-getting-started-v1-3/

[62] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets Modelling and Valida-

tion of Concurrent Systems. Springer, Berlin Heidelberg, Germany, Jul. 2009.

[63] J.L. Henning. SPEC CPU2000: Measuring Performance in the New Millenium.

IEEE Computer, 33(7):28–35, July 2000.

[64] Norman P. Jouppi. Timing analysis and performance improvement of mos vlsi

designs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 6(4):650–665, Nov. 1987.

[65] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-

ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra

Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,

John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-

mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-

hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,

Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan

Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,

Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Wal-

138

ter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance

analysis of a tensor processing unit. In Computer Architecture, Proceedings of the

ACM/IEEE 44th Annual International Symposium on, ISCA’17, pages 1–12, New

York, NY, USA, Jun. 2017. ACM.

[66] Jorge Julvez, Jordi Cortadella, and Mike Kishinevsky. Performance analysis of

concurrent systems with early evaluation. In Computer-Aided Design, Proceedings

of the IEEE/ACM International Conference on, ICCAD’06, pages 448–455, New

York, NY, USA, Nov. 2006. ACM.

[67] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya

Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan

Bachrach, and Krste Asanović. Firesim: FPGA-accelerated cycle-exact scale-out

system simulation in the public cloud. In Computer Architecture, Proceedings of

the 45th Annual International Symposium on, ISCA’18, pages 29–42, Piscataway,

NJ, USA, Jun. 2018. IEEE Press.

[68] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,

Yunsup Lee, Jonathan Bachrach, and Krste Asanović. Strober: Fast and accurate

sample-based energy simulation for arbitrary RTL. In Computer Architecture,

Proceedings of the 43rd International Symposium on, ISCA’16, pages 128–139,

Piscataway, NJ, USA, Jun. 2016. IEEE Press.

[69] Pei-Yu Lee, Iris H. R. Jiang, Cheng R. Li, Wei-Lun L. Chiu, and Yu-Ming Yang.

139

iTimerC 2.0: Fast incremental timing and CPPR analysis. In Computer-Aided

Design, Proceedings of the IEEE/ACM International Conference on, ICCAD’15,

pages 890–894, Piscataway, NJ, USA, Nov. 2015. IEEE Press.

[70] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto

Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic, Pi-Feng

Chiu, Rimas Aviz̃ienis, Brian Richards, Jonathan Bachrach, David Patterson,

Borivoje Nikolić, and Krste Asanović. An agile approach to building RISC-V

microprocessors. IEEE Micro, 36(2):8–20, Mar. 2016.

[71] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algo-

rithmica, 6:5–35, Jun. 1991.

[72] Haiyan Li, Mei Wen, Chunyuan Zhang, Nan Wu, Li Li, and Changqing Xun.

Accelerated motion estimation of H.264 on imagine stream processor. In Mohamed

Kamel and Aurélio Campilho, editors, Image Analysis and Recognition, ICIAR’05,

pages 367–374, Berlin, Heidelberg, Germany, Sept. 2005. Springer.

[73] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Microarchitecture. Pro-

ceedings of the 42nd IEEE/ACM International Symposium on, MICRO’09, pages

469–480, New York, NY, USA, Dec. 2009. ACM.

[74] Derek Lockhart and Christopher Zibrat, Garyd Batten. PyMTL: A unified frame-

140

work for vertically integrated computer architecture research. In Microarchitec-

ture, Proceedings of the 47th Annual IEEE/ACM International Symposium on,

MICRO’14, pages 280–292, Washington, DC, USA, Dec. 2014. IEEE Computer

Society.

[75] Rajit Manohar and AlainJ. Martin. Slack elasticity in concurrent computing.

In Johan Jeuring, editor, Mathematics of Program Construction, volume 1422 of

Lecture Notes in Computer Science, pages 272–285. Springer Berlin Heidelberg,

May 1998.

[76] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, Oct. 2002.

[77] Nilesh A. Modi and Malgorzata Marek-Sadowska. Eco-map: Technology remap-

ping for post-mask eco using simulated annealing. In Computer Design, Proceed-

ings of the IEEE International Conference on, ICCD’08, pages 652–657, Wash-

ington, DC, USA, Oct. 2008. IEEE Computer Society.

[78] Hrishikesh Murukkathampoondi, Doug Burger, Norman P. Jouppi, Keith I.

Farkas, and Premkishore Shivakumar. The optimal logic depth per pipeline stage

is 6 to 8 FO4 inverter delays. In Computer Architecture, Proceedings of the 29th

International Symposium on, ISCA’02, Washington, DC, USA, May 2002. IEEE

Computer Society.

[79] Nandan Nayampally and Michael Montana. Best practices for high-performance,

141

energy-efficient implementations of the ARM Cortex-A73 processor in 16-nm Fin-

FET plus (16FF+) process technology using synopsys galaxy design platform. In

Synopsys User Group, Proceedings of the, SNUG’16, Sept. 2016.

[80] OpenRISC. mor1kx - an OpenRISC processor IP core. https://github.com/

openrisc/mor1kx, Apr. 2013. Online; accessed on 8 November 2018.

[81] OpenRISC. OR1200 ip core. https://github.com/openrisc/or1200, Oct. 2015.

Online; accessed on 8 November 2018.

[82] Mark Oskin, Frederic T. Chong, and Matthew Farrens. HLS: Combining sta-

tistical and symbolic simulation to guide microprocessor designs. In Computer

Architecture, Proceedings on the International Symposium on, ISCA’00, pages

71–82, New York, NY, USA, Jun. 2000. ACM.

[83] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and

James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, May

2008.

[84] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of redundancy and

application balance in the SPEC CPU2006 benchmark suite. In Computer Ar-

chitecture, Proceedings of the 34th Annual International Symposium on, ISCA’07,

pages 412–423, New York, NY, USA, Jun. 2007. ACM.

[85] Rafael T. Possignolo, Elnaz Ebrahimi, Ehsan K. Ardestani, Alamelu Sankara-

narayanan, Jose L. Briz, and Jose Renau. GPU NTC process variation compen-

142

https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx
https://github.com/openrisc/or1200

sation with voltage stacking. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 26(9):1713–1726, Sept. 2018.

[86] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Fluid-

Pipelines: Elastic circuitry meets out-of-order execution. In Computer Design,

Proceedings of the 34th International Conference on, ICCD’16, pages 233–240,

Washington, DC, USA, Oct. 2016. IEEE Computer Society.

[87] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Flu-

idPipelines: Elastic circuitry without throughput penalty. In Logic Synthesis,

Proceedings of the International Workshop on, IWLS’16, Jun. 2016.

[88] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Auto-

mated pipeline transformations with Fluid Pipelines. In Reis Andre and Drechsler

Rolf, editors, Advanced Logic Synthesis, pages 125–150. Springer, Cham, Switzer-

land, 2018.

[89] Rafael T. Possignolo, Nursultan Kabylkas, and Jose Renau. Anubis: A new

benchmark for incremental synthesis. In Logic Synthesis, Proceedings of the In-

ternational Workshop on, IWLS’17, Jun. 2017.

[90] Rafael T. Possignolo and Jose Renau. LiveSynth: towards an interactive syn-

thesis flow. Poster at the 28th HotChips: A Symposium on High Perfor-

mance Chips. Available at https://users.soe.ucsc.edu/~rafaeltp/files/

livesynth-hotchips2016.pdf.

143

https://users.soe.ucsc.edu/~rafaeltp/files/livesynth-hotchips2016.pdf
https://users.soe.ucsc.edu/~rafaeltp/files/livesynth-hotchips2016.pdf

[91] Rafael T. Possignolo and Jose Renau. LiveSynth: Towards an interactive synthesis

flow. In Design Automation Conference, Proceedings of the 53rd, DAC’17, pages

74:1–74:6, New York, NY, USA, Jun. 2017. ACM.

[92] Rafael T. Possignolo, Sheng H. Wang, Haven Skinner, and Jose Renau. Lgraph:

A multilanguage open-source database. In Open-Source EDA Technology, Pro-

ceedings of the First Workshop on, WOSET’18, Oct. 2018.

[93] Andrew Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, Prasanna Sundarara-

jan, and Susan Eggers. CHiMPS: A C-level compilation flow for hybrid CPU-

FPGA architectures. In Field Programmable Logic and Applications, Proceedings

of the International Conference on, FPL’08, pages 173–178. IEEE, Sept. 2008.

[94] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth

Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,

Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron

Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric

for accelerating large-scale datacenter services. In Computer Architecture, Pro-

ceeding of the 41st Annual International Symposium on, ISCA’14, pages 13–24,

Piscataway, NJ, USA, Jun. 2014. IEEE Press.

[95] Joydeep Ray and James C. Hoe. High-level modeling and FPGA prototyp-

ing of microprocessors. In Field programmable gate arrays, Proceedings of the

144

ACM/SIGDA 11th International Symposium on, FPGA’03, pages 100–107, New

York, NY, USA, Feb. 2003. ACM Press.

[96] Marc Renaudin. Asynchronous circuits and systems : a promising design alterna-

tive. Microelectronic Engineering, 54(1):133–149, Dec. 2000.

[97] Patrick W. Sathyanathan, Wenlei He, and Ten H. Tzen. Incremental whole pro-

gram optimization and compilation. In Code Generation and Optimization, Pro-

ceedings of the IEEE/ACM International Symposium on, CGO’17, pages 221–232,

Piscataway, NJ, USA, Feb. 2017. IEEE Press.

[98] Ofer Shacham, Omid Azizi, Megan Wachs, Stephen Richardson, and Mark

Horowitz. Rethinking digital design: Why design must change. IEEE Micro,

30(6):9–24, Nov. 2010.

[99] Sharad Sinha. Using the clock period constraint to your advantage. http://www.

eetimes.com/document.asp?doc_id=1279254, Nov. 2011. Online; accessed on 8

November 2018.

[100] Haven Skinner. Pyrope: A Latency-Insensitive Digital Architecture Toolchain.

PhD thesis, University of California, Santa Cruz, Santa Cruz, CA, USA, Dec.

2018.

[101] Haven Skinner, Rafael T. Possignolo, and Jose Renau. Liam: An actor based

programming model for HDLs. Formal Methods and Models for System Design,

145

http://www.eetimes.com/document.asp?doc_id = 1279254
http://www.eetimes.com/document.asp?doc_id = 1279254

Proceedings of the 15th ACM-IEEE International Conference on, pages 185–188,

Sept. 2017.

[102] Haven Skinner, Rafael T. Possignolo, and Jose Renau. Automating the area-delay

trade-off problem. In Computer Architecture Research with RISC-V, Proceedings

of the Second Workshop on, CARRV’18, Jun. 2018.

[103] Synopsys Inc. Design compiler user guide, Jun. 2010.

[104] Muralidaran Vijayaraghavan and Arvind. Bounded dataflow networks and

latency-insensitive circuits. In Formal Methods and Models for Codesign, Pro-

ceedings of the 7th IEEE/ACM International Conference on, MEMOCODE’09,

pages 171–180, Piscataway, NJ, USA, Jul. 2009. IEEE Press.

[105] Clifford Wolf. Yosys open SYnthesis suite. http://www.clifford.at/yosys/,

2016. Online; accessed on 8 November 2018.

[106] Xilinx Inc. All programmable 7 Series product selection guide.

https://www.xilinx.com/support/documentation/selection-guides/

7-series-product-selection-guide.pdf, May 2015. Online; accessed on 8

November 2018.

[107] Xilinx Inc. Vivado synthesis - strategies for reducing run time. http://www.

xilinx.com/support/answers/62215.html, Apr. 2015. Online; accessed on 8

November 2018.

[108] Xilinx Inc. Vivado design suite user guide. http://www.xilinx.com/support/

146

http://www.clifford.at/yosys/
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
http://www.xilinx.com/support/answers/62215.html
http://www.xilinx.com/support/answers/62215.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf

documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.

pdf, Apr. 2016. Online; accessed on 8 November 2018.

[109] Alexandre Yakovlev, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno,

and Marta Pietkiewicz-Koutny. On the models for asynchronous circuit behaviour

with or causality. Formal Methods in System Design, 9(3):189–233, 1996.

147

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Automating pipeline transformations of digital designs
	Introduction
	Related Work
	Automated pipelining in sequential circuits
	Fluid Pipelines
	Communication and Flow Control
	RePipe: Optimizing Fluid Pipelines circuits with ReCycling and Retiming
	Fluid Pipelines Deadlock Avoidance
	Fluid Pipelines Channel Grouping
	Design Example
	Design Overhead

	New Evaluation Methodology
	Evaluation
	Setup
	Fluid Pipelines overheads
	Results
	Elastic FPU
	Elastic OoO Core
	Evaluating the overhead of Fluid Pipelines

	Conclusion

	Anubis: A new benchmark for incremental synthesis
	Introduction
	Related Work
	ANUBIS
	Benchmark Selection
	Change insertion
	Setup requirements to report ANUBIS results
	Technology target

	How to score ANUBIS
	QoR penalty
	Score
	ANUBIS Value

	Evaluation Setup
	Evaluation
	Overall Results
	No change cases

	Conclusion

	Enabling Live Synthesis with Incremental Methods
	Introduction
	Related Work
	LiveSynth
	Incremental Synthesis
	What size should the blocks be?
	What should constitute a block?
	LiveSynth flow

	Structural Matching
	Structural Matching of Netlists
	Handling Retiming and extra registers
	Partitioning the design size

	Evaluation Setup
	Evaluation
	Incremental Synthesis Runtime
	Complete Flow
	QoR degradation
	Setup overhead

	Conclusions

	Conclusion and Future Opportunities
	Bibliography

