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SUMMARY

Approximately 15%-30% of women diagnosed with ductal carcinoma in situ (DCIS) develop a sub-
sequent tumor event within 10 years after surgical lumpectomy. To date, little is known about the
molecular pathways that confer this differential risk for developing subsequent disease. In this study,
we demonstrate that expression of biomarkers indicative of an abrogated response to cellular stress
predicts DCIS with worse outcome and is a defining characteristic of basal-like invasive tumors.
Mechanistic studies identify the Rb pathway as a key regulator of this response. Conversely, bio-
markers indicative of an intact response to cellular stress are strongly associated with a disease-
free prognosis. Assessment of these biomarkers in DCIS begins to allow prediction of tumor formation
years before it actually occurs.

INTRODUCTION

Of the 62,000 women diagnosed with pure DCIS in 2006,
only ~15%-30% will develop a subsequent tumor event
within the first decade after undergoing lumpectomy,
half as subsequent invasive disease and half as DCIS
(Kerlikowske et al., 2003). In the absence of robust predic-
tors for subsequent invasive disease, currently, women
diagnosed with DCIS tend to be offered similar treatment
options. A dwindling number of women elect to have com-
plete mastectomies (~25%), while the majority of women
opt for a lumpectomy with or without adjuvant treatments

such as radiation, hormones, or chemotherapy (~70%).
A few women choose “watchful waiting” (<5%). Since
the majority of DCIS lesions are not associated with sub-
sequent invasive tumors, it is likely that many women di-
agnosed with DCIS who opt for surgery, with or without
adjuvant treatment, are being overtreated. Conversely,
since even with this therapy some initially observed
DCIS lesions are followed by subsequent invasive carci-
nomas, some women may be undertreated. Identification
of characteristics of DCIS and biomarkers that predict
subsequent tumor development would allow us to
stratify 2 women'’s individual risk for subsequent invasive

SIGNIFICANCE

Our ability to determine future tumor formation in women diagnosed with ductal carcinoma in situ (DCIS) is cur-
rently limited. Here we describe distinct subsets of molecular markers that identify women that have an increased
risk or decreased risk of developing subsequent tumor events after diagnosis of DCIS. The markers for increased
risk also characterize a subset of invasive tumors known as the “basal-like” subtype and provide a biological
rationale for the aggressive malignant phenotypes associated with this subclassification of tumors. This informa-
tion could be used in the clinic to determine which women should receive more or less aggressive therapy.
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tumors and avoid over- and undertreatment of women
with DCIS.

Historically, DCIS lesions are characterized by clinico-
pathological variables which are combined in several ways
to provide classification systems (Van Nuys classification,
Nottingham classification, etc.). An extensive effort over
the last four decades has tried to identify additional clini-
copathological variables (and, more recently, molecular
markers) that may be important in predicting women who
will develop subsequent tumors. Of these variables, sev-
eral are routinely assessed in the clinic (i.e., size, nuclear
grade, surgical margins, etc.) and have been found to
have predictive value. However, none have proven strong
enough to fully support choices for intervention (hazards
ratios ~2-5) (Bijker et al., 2006; Eusebi et al., 1994; Fisher
et al., 1999; Kerlikowske et al., 2003).

Recent studies have focused on the differential expres-
sion of molecular markers to address this important clini-
cal problem. Expression profiling and immunohistochem-
ical studies confirm the presence of molecular subtypes
in DCIS (Adeyinka et al., 2002; Bryan et al., 2006; Hanne-
mann et al., 2006; Livasy et al., 2007), which may parallel
the distinct molecular subtypes observed in invasive tu-
mors. However, features of molecular subtypes that can
distinguish those premalignant lesions that will be fol-
lowed by a subsequent tumor event from those that will
not are currently lacking.

There are several reasons why this important clinical
problem is so difficult to address and has eluded a solution
for so long. First, the majority of tissue associated with
a premalignant lesion is typically used for diagnostic pur-
poses. Since these lesions are usually small to begin
with, this leaves vanishingly little tissue left for research
purposes. Second, in order to extract clinical information
from these samples, outcome must be assessed many
years later. This requires an extensive and expensive infra-
structure to collect the biopsies, annotate the samples,
and provide clinical follow-up for 10-20 years following
the initial biopsy. Few cohorts have been assembled that
fulfill these criteria.

QOur goal has been to evaluate molecular characteristics
and their association with outcome in a cohort of women
diagnosed with DCIS. In this translational study, we tested
the hypothesis that cells activated for stress-induced
senescence would not form subsequent tumors, while
cells that bypass senescent signals could progress to
tumor formation.

RESULTS

Determination of Molecular Markers Associated
with Risk for Subsequent Tumor Events

in Women Diagnosed with DCIS

A well-recognized barrier to carcinogenesis is the induc-
tion of a senescent cellular response. To determine if
this tumor suppressor pathway in DCIS lesions provides
mechanistic insight about subsequent tumor events, we
examined p16 expression in samples of women without
subsequent disease (38 controls) matched to a sample
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of women with subsequent disease (32 cases), in a DCIS
case-control study sufficiently powered to explore path-
ways that may provide risk stratification. A subsequent
tumor event (recurrence) was defined as a subsequent
DCIS lesion or invasive cancer lesion diagnosed in the
ipsilateral breast or at a distant site at least 6 months fol-
lowing the initial diagnosis of DCIS. Representative p16
staining is illustrated in Figure 1A. We find 26% (18/70)
of DCIS lesions show high p16 staining (Table 1). This p16
immunopositivity is not associated with any clinicopatho-
logical variables such as nuclear grade or hormone recep-
tor status (Tables S1 and S2 in the Supplemental Data
available with this article online). We would predict that
high p16 expression induces a cellular growth arrest, and
thus, DCIS lesions overexpressing p16 would be less likely
to precede subsequent disease. This prediction was not
substantiated. We find that high p16 expression, as a uni-
variate marker, does not significantly stratify a woman’s
risk for developing a subsequent tumor event (DCIS and
invasive cancer combined; HR = 1.1, 95% CI, 0.5 to 2.5;
Figure 1B, Table 1).

Paradoxically, overexpression of p16 can represent
two different biological processes; a response to cellular-
stress or abrogation of functional Rb signaling (Bates
et al., 1994; Parry et al., 1995; Serrano et al., 1993). A cell
with functional p16/Rb signaling will initiate stress-in-
duced overexpression of p16 resulting in a proliferative
arrest characteristic of cellular senescence. On the other
hand, a cell with a compromised Rb pathway will initiate
a regulatory-induced overexpression of p16 due to unob-
structed negative feedback regulation and disregard the
many stress signals that induce senescence and cellular
arrest. These later cells proliferate unimpeded and bypass
senescence.

To distinguish between these two opposing pheno-
types, we also stained serial sections for a proliferation
marker, Ki67. Thirty-seven percent (26/70) and 63% (44/
70) of the lesions within this case-control study express
high and low Ki67, respectively (Table 1). High Ki67 alone
provides a modest stratification for women that develop
a subsequent tumor (DCIS and invasive combined; HR
2.7, 95% CI 1.2 to 5.9; Figure 1C; Table 1). Interestingly,
almost half (8/18) of DCIS lesions exhibiting high Ki67
index labeling also show high p16 levels (Table 1). We de-
termined if this phenotype, representing deregulated p16/
Rb signaling, identifies DCIS associated with subsequent
tumor events. We find that all women with DCIS express-
ing high p16 and high Ki67 develop a subsequent tumor
(Table 1), and thus, Ki67 stratifies high p16 expression
into two groups: those who develop a subsequent breast
cancer (case) versus those that do not (control; HR=15.1,
95% Cl, 1.4 to 161.4; Figure 1D). The tumors that develop
following DCIS with high p16/high Ki67 are often invasive
breast cancer (5 of 8; Figure S1). The remaining DCIS le-
sions showing high p16 immunopositivity (3/18) exhibited
low Ki67 index labeling, suggesting these cells have main-
tained p16/Rb checkpoint regulation. Indeed, most (9 of
10) lesions expressing a high p16/low Ki67 phenotype
were not associated with a subsequent tumor event and
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Figure 1. p16 Overexpression Coupled

with Proliferation Increases the Risk of

P16 low Subsequent Tumor Events among
Women with DCIS
1_P16high (A) Representative p16 immunohistochemistry.

(B) High p16 staining fails to stratify women
with DCIS that develop subsequent disease.
Recurrence-free survival plots demonstrate
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(C) Ki67 index labeling stratifies recurrence-
free survival in women with DCIS.

(D) DCIS exhibiting high p16 immunostaining
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a reduced recurrence-free survival (red ling).
Conversely, DCIS exhibiting high p16 in the

Ki67 low

Ki67 high

T
60 0 1 1D 10 10 10

......

absence of proliferation identifies women that

Months have a low probability of subsequent disease

(green line).

(E) Ki67 does not differentiate risk in DCIS

lesions with low p16.

Box plots and corresponding p values were

determined using Wilcoxon/Kruskal-Wallis

‘ rank of sums test. Survival plots were gener-
| ated using Kaplan-Meyer analysis.

P16 high/Ki67 low

P16 high/Ki67 high

T T T T T
0 80 10 1D 1@ 1w 10

Months

P16 low/Ki67 low

P16 low/Ki6} Tiigh

p16 immunostaining p=0407 =
3
- it =
score 0 - Low g‘ » é )
z 2
B 20 S os-
73 =
2 g
2 1w - € 04
€ g
E 5
o 0 e é 02
a
E 00
Case Control
n=70
“score 1-Low C 10
- B p=0017 = 1
£ =4 g 1
F S os
= 2 |4
g sd $ osd |
5 &
5 10 > -
= 4
ST |k
4 LL | 5
2 o &
- v L T
score 2 - High Case Control o
(n=70)
D 30 - "
p=0.001
2%+ _—
z S o5
z o £ L
] 2 L
; 18 t -
K] [ b
¥ 14 o — & oad
€ N c
3 s+ g
- o 02
score 3 - High & o4 E
5 . oo T
Case Control o=
E Highp16 (n=18)
30
p=0406 *
> 251 B 5
£ o
100 um £ n . g
o 2
§' 154 P o8-
H 3
3o [ -
~ g
g 51 El
g | il
I == &
5 00 +—
Case Control . %
Low p16(n=52)

thus may represent a protective signature (Figure S1).
Women with DCIS that exhibit low p16 irrespective of
Ki67 are not likely to develop recurrent disease
(Figure 1E; HR = 1.1, 95% Cl, 0.4 to 3.4; Table 1).

High p16 mRNA Levels Define the Basal-like
Subtype of Invasive Tumors

Previous reports have demonstrated that ipsilateral
tumors that develop subsequent to DCIS share many
histological and genetic alterations with the primary lesion
suggesting a clonal relationship (Bijker et al., 2001;
Lininger et al., 1998; Millis et al., 2004; Waldman et al.,
2000). Therefore, one might anticipate that high p16/high
Ki67 in the initial DCIS lesion would characterize the sub-
sequent invasive carcinoma. To test this prediction, we
explored the prevalence and subtype distribution of p16
and proliferation by evaluating a previously published
data set of gene expression profiles of 130 primary inva-
sive breast tumors (Chin et al., 2006). Unsupervised clus-
tering with a set of intrinsically variable genes identifies
previously reported subtypes (Perou et al., 2000; Sorlie
et al., 2003; Figure 2A, Table S3). Molecular subtypes
were additionally classified based upon a nearest centroid
approach using molecular subtype training data as pre-

T T T T T

0 60 0 10 1D W W 1@

Months

viously defined (see Supplemental Experimental Proce-
dures; Hu et al., 2006).

We find increased p76 mRNA expression preferentially
characterizes the highly proliferative basal-like tumor sub-
type (Figure 2B). p16 expression falls within a gene clus-
ter comprised of many well-established basal-like genes,
such as keratin 5, 17, SFRP5, and MMP-7 (Table S3). To
determine if the increased expression of p16 in actively
proliferating cells is a consequence of p16/Rb pathway
deregulation, we examined the expression levels of Rb,
E2F3, cyclin E, and cyclin D1. We find the basal-like sam-
ple cluster tends to display relatively low levels of Rb and
high levels of E2F3 (Figure 2B). Since E2F3 transcriptional
upregulation is a consequence of Rb inactivation (Lecne
et al., 2000), we propose that deregulation of Rb signaling
is a characteristic feature of basal-like tumors. Loss of Rb
signaling can occur as a consequence of genetic alter-
ations that have been observed to account for approxi-
mately 35% of breast tumors (Nielsen et al., 1997; Reis-
Filho et al., 2006). Alternatively, Rb can be negatively
regulated through phosphorylation by cyclin-dependent
kinases. In examining the transcript levels of cyclin E
and cyclin D1 among all tumor subtypes, we observe
that cyclin E levels are among the highest and cyclin D1
among the lowest in basal-like tumors (Figure 2B). In



Cancer Cell 72, 479-491, November 2007 ©2007 Elsevier Inc. 481



Cancer Cell

ARCS Links Basal-like Tumors and DCIS Recurrence

Table 1. p16 and COX-2 Expression Coupled with Proliferation Increases the Risk of Developing Subsequent

Disease among Women with DCIS

Marker No. Control Case HR (95% CI)
p16 70

High 24% (9/38) 28% (9/32) 0.17 (0.02,1.4)
Low 76% (29/38) 72% (23/32)

COX-2 70

High 58% (22/38) 53% (17/32) 0.79 (0.4, 1.7)
Low 42% (16/38) 47% (15/32)

Ki67 70

High 24% (9/38) 53% (17/34) 2.7(1.2,5.9)
Low 76% (29/38) 47% (15/32)

p16 High 18

Ki67 High 0% (0/9) 89% (8/9) 15.1 (1.4, 161.4)
K67 Low 100% (9/9) 11% (1/9)

p16 Low 52

Ki67 High 31% (9/29) 39% (9/23) 1.1 (0.4, 3.4)
Ki67 Low 69% (20/29) 61% (14/23)

COX-2 High 39

Ki67 High 23% (5/22) 76% (13/17) 4.8 (0.8, 27.5)
K67 Low T7% (17/22) 24% (4/17)

COX-2 Low 31

Ki67 High 25% (4/16) 27% (4/15) 0.86 (0.2, 3.3)
Ki67 Low 75% (12/16) 73% (11/15)

concordance with previous observations (Loden et al.,
2002; Reis-Filho et al., 2006), we find increased cyclin D1
levels to be most consistently elevated in the luminal B
subtype. Although deregulation of p16/Rb signaling regu-
lates genes involved in cell-cycle progression, altered
transcript levels of members of this pathway does not
simply reflect proliferating tumor cells since highly prolifer-
ating Luminal B tumors do not exhibit the same transcrip-
tional pattern.

To confirm the reproducibility of the observed differen-
tial subtype specificity of p16/Rb/Cyclin D1, we analyzed
gene expression levels in four publicly available data sets
from three different platforms (Figure 3). In each case,
tumors with overexpression of p76 and low transcript
levels of both Rb and cyclinD1 were consistently found
to be classified as basal-like tumors. Taken together, the
observation that Rb transcript levels are among the lowest
in basal-like tumors, and that E2F3 and cyclin E are among
the highest suggests that loss of functional p16/Rb signal-
ing may play a defining role in the biology of this tumor
subtype.

High COX-2 mRNA Levels Are Enriched

in Basal-like Tumors

To further analyze p76 and explore gene expression inter-
actions, hierarchical clustering was performed on the top
6000 variable genes in 130 tumors (for details and data see

Supplemental Experimental Procedures, Figure S2, and
Table S4). As expected, members of the p16/Rb/cyclinD1
pathway showed variable expression along with many
members of the E2F family. We find that COX-2 is a mem-
ber of the basal-like gene cluster. It is well recognized that
high levels of expression of many basal-like genes are also
found in normal-like invasive tumors (Hu et al., 2006;
Perou et al., 2000; Sorlie et al., 2003). Similarly, we find the
18% of tumors with elevated COX-2 mRNA are restricted
to basal-like and normal-like subtypes. While 50% (16/32)
of basal-like and 33% (4/12) of normal-like tumors overex-
press COX-2, virtually all luminal and HER2 positive tu-
mors express COX-2 mRNA levels below the median.
The prevalence of COX-2 overexpression in basal- and
normal-like tumors is confirmed in independent data sets
(Figure 3).

Concordance between mRNA and Protein
Expression of p16 and COX-2 in Tumors

The low levels of COX-2 mRNA expression in HER2 posi-
tive tumors is perplexing because previous studies had
demonstrated that COX-2 protein levels are enriched in
HER2 amplified tumors (Boland et al., 2004; Cho et al.,
2006; Ristimaki et al., 2002). Notably, microarray analyses
are typically average measurements of numerous cell
types that often represent arbitrary units relative to a
median value and fail to address posttranscriptional
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Figure 2. High p16 mRNA Defines the Basal-like Subtype of Invasive Tumors

(A) Unsupervised hierarchical clustering of 130 invasive tumors using 589 unique genes that are intrinsically variable (see Supplemental Experimental
Procedures) identifies luminal A, luminal B, normal-like, HER2 positive and basal-like clusters. Molecular subtypes, additionally classified by a nearest
centroid approach, are indicated by colored bars (light blue, Luminal B; dark blue, Luminal A; green, Normal-like; orange, Basal-like; pink, HER2

positive tumors; gray, unclassified).

(B) Expression levels of p16, Rb, E2F3, cyclin E1, cyclin D1, and COX-2. The level of expression of each gene is relative to the median across all

samples as represented by color saturation.

and posttranslational regulation. It is, therefore, critical to
relate thresholds of detection of mMRNA by microarray
analysis to levels of protein expression as measured by im-
munochistochemistry (IHC). Furthermore, it is important to
determine the contributions of distinct cell types to overall
levels of gene expression. We performed p16 and COX-2
IHC on paraffin-embedded tumor blocks representing 54
of the 130 tumors analyzed by microarray. These samples
were chosen to represent all 5 molecular subtypes and
span a continuum from the lowest to the highest levels of
p16 and COX-2 microarray gene expression.

In samples of invasive tumors that showed elevated
P16 via microarray analysis, immunopositivity is predom-

inantly found in carcinoma cells. To a lesser extent, het-
erogeneous foci exhibiting p16 staining are detectable
in the morphologically normal epithelial cells. Occasional
p16 positivity is also observed in fibroblasts, predominantly
those within desmoplastic-appearing stroma. Cases with
elevated COX-2 show abundant staining within the carci-
noma cells as well as in the morphologically normal epi-
thelia. In rare cases, we found intense COX-2 staining in
macrophages infiltrating invasive tumors.

For p16, we observe a significant correlation (Wilcoxon
rank of sums, p < 0.0001) between mRNA and protein ex-
pression (Figure 4A). Basal tumors that express the highest
levels of p76 mMRNA showed intense p16 protein staining
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Figure 3. High p16 and COX-2 mRNA Levels Are Enriched in
Basal-like Tumors across Multiple Microarray Platforms
(A-D) mRNA expression for p16, Rb, cyclin D1, and COX-2 in the
indicated four publicly available datasets utilizing different microarray
platforms. Subtype classifications are as determined previously.

by IHC (score 3+, Figure 4B). We did observe a fraction of
HER?2 positive tumors (2/8) that showed intense p16 stain-
ing despite low mMRNA expression. This concordance be-
tween mRNA and protein suggests that p16 protein levels
are primarily regulated at the transcriptional level and that
p16 protein levels determined by IHC reflect the subtype
specificity.

In contrast, COX-2 demonstrated poor correlation be-
tween mRNA and protein levels (Wilcoxon rank of sums,
p = 0.161; Figure 4C). Those cases with the highest levels
of COX-2 mRNA, as defined by a greater than 2-fold
increase over the median value, exhibited complete con-
cordance and displayed high COX-2 immunoreactivity
(Figure 4D). Ten of the 54 invasive tumors show COX-2
mRNA levels greater than 2-fold above the median, eight
of these cases are basal, and the remaining two are clas-
sified as normal-like. In remaining cases (44/54), 10 exhibit
low mRNA and were discordant with elevated protein
expression as measured by IHC (Figure 4D). We found
that 80% of the discordant samples were in the HER2
subtype.

COX-2 Overexpression Coupled with Proliferation
Is Associated with Subsequent Tumor Events
among Women with DCIS

To determine if elevated COX-2 protein expression in
DCIS is also associated with subsequent tumor events,
COX-2 IHC was performed in serial sections of 70 cases
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previously analyzed for p16 and Ki67 (representative
staining in Figure 5A). We find that 56% (39/70) of DCIS
lesions show high COX-2 protein levels (Table 1), which
by itself does not stratify risk for subsequent tumor forma-
tion and, similar to p16 overexpression by itself, is equally
distributed among women that develop subsequent DCIS
or invasive cancer (case) and those that do not (control;
HR = 0.79, 95% ClI, 0.4 to 1.7; Table 1; Figure 5B).

As with p16, stratifying high and low COX-2 DCIS le-
sions by proliferation identifies those more and less likely
to have a subsequent tumor event. A significantly higher
fraction of women (13 of 17) with high COX-2/high Ki67
develop a subsequent tumor (Figure 5C; Wilcoxon rank
test; p = 0.002) as compared to lesions that show high
COX-2/low Ki67 (HR = 4.8, 95% Cl, 0.8 to 27.5, Table 1).
Correspondingly, we did not observe an increase in sub-
sequent tumor events in women that exhibit low COX-2
expressing DCIS irrespective of Ki67 (Figure 5D; Wilcoxon
rank test p=0.925; HR=0.86, 95% ClI, 0.2 t0 3.3; Table 1).
In examining the lesions that develop subsequent to high
COX-2/high Ki67 DCIS, 7 of 13 cases are invasive breast
cancer (Figure S1).

Similar to our observation that high p16 in the absence
of proliferation identifies a protective signature (Table 1),
81% (17/21) of women with high COX-2/low Ki67 DCIS
do not develop a subsequent tumor event (Table 1). Most
DCIS lesions (6/7) expressing both high p16 and high
COX-2 in the absence of proliferation are not associated
with subsequent disease (Figure S1). These observations
suggest high COX-2 and/or high p16 mark two clinically
different populations of cells in DCIS that can be stratified
by proliferation.

COX-2 Overexpression Causes Cell-Cycle Arrest
in Cells that Maintain Functional p16/Rb Signaling
To determine the cellular context that governs if COX-2 is
associated with quiescence or proliferation, we investi-
gated the S-phase fraction in normal mammary epithelial
cells and in a series of cell populations and mammary
cell lines (both premalignant and malignant), engineered
to constitutively overexpress COX-2. Normal human
mammary epithelial cells (HMEC) were propagated from
disease-free reduction mammoplasty tissue from three
different individuals. Premalignant cells studied include
a subpopulation of HMEC (variant HMEC or vHMEC)
with an extended but finite lifespan (Crawford et al.,
2004; Gauthier et al., 2005; McDermott et al., 2006; Roma-
nov et al., 2001), vHMEC-hTert, yYHMEC immortalized by
stably expressing human telomerase, and 184A1, nontu-
morigenic immortalized mammary epithelial cells. In addi-
tion, we examined four malignant cell lines (T47D, MDA-
MB-231, BT549, and SkBr3) that have compromised
p16/Rb signaling through diverse mechanisms including
p16 hypermethylation, p16 deletion, and/or Rb deletion.
In HMEC, sustained COX-2 overexpression significantly
reduces the number of cycling cells (Figure 6A) and pro-
duces enlarged flattened morphology (Figure 6B). The
proliferative arrest phenocopies that observed with over-
expression of p16 (data not shown). In contrast, COX-2
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overexpression neither induces nor diminishes prolifera-
tion in any of premalignant and malignant cells examined
(Figure 6A). Functional p16/Rb signaling is one of the
distinguishing features of normal cells compared to all
other cells we examined. Therefore, we hypothesized that
COX-2-induced growth arrest is dependent on functional
p16/Rb signaling. Indeed, we find HMEC overexpressing

COX-2 exhibited elevated protein levels of p16, p53, and
p21 (Figure 6C). This is in contrast to vHMEC, which did
not express p16, where overexpression of COX-2 did not
alter the level of p53 or p21. Additionally, targeted degra-
dation of Rb, p107, and p130 (all three Rb family members)
by HPV16-E7 (human papilloma virus16-E7) in HMEC re-
sulted in ongoing proliferation in the presence of COX-2

Figure 5. COX-2 Overexpression Cou-
pled with Proliferation Increases the Risk

of Subsequent Tumor Events among
Women with DCIS
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(A) Representative COX-2 immunohistochem-
istry.

(B) COX-2 measured as a single variable fails to
stratify risk of recurrent disease or recurrence-
free survival.

(C) DCIS lesions high for COX-2 and Ki67 iden-
tify women that develop subsequent breast
cancer and have reduced recurrence-free
survival (red line). Conversely, DCIS exhibiting
high COX-2 in the absence of proliferation
identifies women that have a low probability
of subsequent disease (green line).

(D) Ki67 does not differentiate risk in DCIS
lesions with low COX-2.

Box plots and corresponding p values were
determined using Wilcoxon/Kruskal-Wallis rank
of sums test. Survival plots were generated
using Kaplan-Meyer analysis.
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Figure 6. p16/Rb Pathway Regulates
COX-2 Expression and COX-2-Depen-
dent Cell-Cycle Arrest

(A) Cells of varying malignant potential were ret-
rovirally infected with a constitutive expressing
COX-2 construct or an empty vector control
(LXSP). Cells were pulsed for 4 hr with BrdU
and analyzed by flow cytometry following pro-
pidium iodide staining. The S-phase fraction is
expressed as fold increase of COX-2 express-
ing cells compared to vector control cells.

(B) Phase contrast micrographs of HMEC,
vHMEC, and HMEC expressing HPV16-E7.
Cells either retrovirally infected with a constitu-
tive COX-2 expressing construct or an empty
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overexpression (Figure 6B). Thus, COX-2 overexpression
in cells with functional p16/Rb signaling induces a p16-
dependent growth arrest, while cells with disrupted p16/
Rb signaling continue to proliferate in the presence of
COX-2 overexpression.

Deregulation of Rb Signaling Causes COX-2
Overexpression

Our finding that the majority of high p16/high Ki67 DCIS
lesions overexpress COX-2 suggests that deregulation
of p16/Rb may drive COX-2 expression. To test this hy-
pothesis, we modulated the p16/Rb pathway in HMEC
generated from three different reduction mammoplasties
using different approaches and then determined the effect
on basal and induced COX-2 protein levels. Downregula-
tion of p16 protein level in HMEC by infecting them with
a virus expressing p16-targeted short hairpin RNA (shp16)
leads to upregulation of both Rb and E2F1 as expected
(Figure 6; Zhang et al., 2006). Reducing p16 protein level
did not change the basal level of COX-2 expression appre-
ciably but increased TGF-p treatment-induced COX-2 ex-
pression (Figure 6E). Overexpression of cyclin D1 alone
did not cause hyperphosphorylation of Rb or alter E2F1
protein levels (Figure 6D), consistent with previous find-
ings (Lundberg and Weinberg, 1998). Overexpression of
cyclin D1 did not increase either basal or TGF-§ treat-
ment-induced COX-2 expression (Figure 6E). Silencing
of Rb expression by infecting cells with a virus expressing

an established short hairpin RNA against Rb (shRb) (Boehm
et al., 2005) resulted in the upregulation of not only E2F1
(Figure 6D) but also both basal and induced levels of
COX-2 protein (Figure 6E). Similarly, expression of HPV16-
E7 elevated both basal and induced levels of COX-2 pro-
tein (Figures 6D and 6E). These data demonstrate that
abrogation of p16/Rb signaling through genetic silencing
of p16, Rb, and Rb family members sensitizes cells to
COX-2 upregulation. Thus, the propensity for COX-2 over-
expression in DCIS lesions that exhibit high p16/high Ki67
is most likely a consequence of deregulation of the p16/Rb
pathway.

DISCUSSION

In this report, we demonstrate that expression of bio-
markers indicative of an abrogated response to cellular
stress occurs in DCIS associated with subsequent tumor
events and is a defining characteristic of basal-like inva-
sive tumors. Conversely, expression of biomarkers indic-
ative of an intact response to cellular stress and the induc-
tion of senescence are strongly associated with DCIS
lesions that are not associated with subsequent tumor
events. These phenotypes may predict tumor events that
would or would not happen up to 10 years in advance. The
clinical significance of these biological phenotypes is cur-
rently being validated in a large independent cohort of
women previously diagnosed with DCIS.
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Biological Rationale for Initial Selection

of Stress-Associated Biomarkers

Normal cellular responses to stress are important barriers
to carcinogenesis and, therefore, provide molecular candi-
dates to identify lesions that will not progress to malig-
nancy (Bartkova et al., 2005; Campisi, 2005; Gorgoulis
et al.,, 2005; Mooi and Peeper, 2006; Schmitt, 2003).
Genotoxic, oxidative, metabolic stress, as well as onco-
gene-driven mitogenic signals all engage cellular stress
response programs in normal cells. If the level of damage
is substantial, an apoptotic or senescent program limits
the propagation of damaged cells. Activated p16 signaling
drives premature and replicative senescence. (Lowe and
Sherr, 2003; Serrano et al., 1995, 1996). Through inhibition
of cyclin-dependent kinase (cdk4/6), p16 blocks phos-
phorylation of Rb and, thus, inhibits E2F targets essential
for cell-cycle progression (Dyson, 1998; Harbour and
Dean, 2000; Lukas et al., 1995; Medema et al., 1995; Narita
et al., 2003; Nevins, 1998; Sellers et al., 1995).

Stress-Associated Biomarkers Are Conditional
Cells that have abrogated apoptotic or senescent path-
ways may exhibit unimpeded growth despite signals that
indicate activation of cellular stress. For example, in cervi-
cal cancer, high p16 expression represents inactivation of
the Rb pathway through the HPV E6/E7 proteins (Kalof
and Cooper, 2006). Therefore, biological markers of stress
activation are conditional and can reflect two biologically
different processes that can be distinguished by the ab-
sence or presence of proliferation. We demonstrate that
two stress-activated proteins, p16 and COX-2, identify
different groups among women with DCIS.

The first group, high p16 and/or COX-2 in the absence
of proliferation, reflects stress activation and a protective
anti-proliferative response. These lesions have maintained
intact p16/Rb checkpoint regulation and may reflect an
initiated senescent program. This DCIS phenotype begins
to identify women less likely to have a subsequent tumor
event adding support to the hypothesis that the senescent
program is a barrier to tumorigenesis (Braig et al., 2005;
Chen et al., 2005; Collado and Serrano, 2005; Michaloglou
et al., 2005).

The second group, high p16 and/or COX-2 in the pres-
ence of ongoing proliferation, reflects an abrogated re-
sponse to cellular stress. These lesions have lost functional
p16/Rb signaling allowing cells to bypass senescence,
extend proliferation, and drive chromosome instability
(Hernando et al., 2004; McDermott et al., 2006; Romanov
et al., 2001), ultimately leading to increased risk of malig-
nant conversion. This phenotype identifies women that
are more likely to develop a subsequent tumor.

Previously, others have sought to determine if aberra-
tions in G1/S checkpoint regulation could stratify women
with DCIS that have an increased risk of developing sub-
sequent disease (Jirstrom et al., 2003). In examining the
levels of cyclin D1, cyclin E, p16, and p27 by IHC, only cy-
clin D1 showed an association with local recurrence. Inter-
estingly, the authors found that cyclin D1 immunopositivity
was strongly and inversely associated with developing

subsequent disease. Our results are consistent with this
observation. The data presented here also support the
previous finding that p16, measured as a single variable,
fails to identify women at high risk for subsequent tumor
development.

COX-2 immunostaining has also been examined as a
biomarker for DCIS lesions that progress to malignancy.
Recently, COX-2 immunopositivity in DCIS has been dem-
onstrated to correlate with disease recurrence when mea-
sured as a single variable (Barnes et al., 2006). This appar-
ent discrepancy with our reported results is likely due
to the relative overrepresentation of actively proliferating
high-grade DCIS lesions in the Barnes et al. cohort and
therefore a relative under-representation of quiescent
COX-2-positive lesions. The proportion of high-grade
DCIS lesions in Barnes et al. (60%) is significantly higher
than the proportion of high-grade DCIS lesions in this
study (37%).

Functional Parallels between p16/Rb and COX-2
Activities and Their Regulatory Connection

Qur studies reveal functional parallels between p16/Rb
and COX-2 activities. Similar to p16 induction, cells induce
COX-2 expression following DNA damage, oncogenic
activity, or in response to inflammatory cytokines. Al-
though COX-2 has tumor-promoting effects in cell lines,
we show that COX-2 overexpression in finite lifespan pri-
mary mammary epithelial cells induces a p16-dependent
cell-cycle arrest and morphologic changes, analogous to
cellular senescence (Figure 6). Cells that have lost p16/
Rb checkpoint regulation are refractive to COX-2-induced
cell-cycle arrest. These cells continue to proliferate in the
presence of high COX-2 and manifest COX-2-dependent
tumorigenic phenotypes. These data have important con-
sequences because COX-2 has both antitumorigenic and
protumorigenic properties that are dependent on the ge-
netic composition of the cell.

Underlying the functional parallels between p16 and
COX-2 lies a regulatory relationship between abrogation
of the p16/Rb pathway and regulation of COX-2. To un-
mask this link, we examined normal nontumorigenic cells
that are not confounded by the genomic alterations in cell
lines. In finite lifespan normal epithelial cells, loss of p16 or
Rb activity through genetic manipulation leads to COX-2
upregulation (Figure 6). These observations are consistent
with previous reports demonstrating increased COX-2
expression and activity in murine prostate epithelial cells
with engineered deletion of Rb (Davis et al., 2005) and
HPV E6/E7 infected cervical cancer cell lines (Subbara-
maiah and Dannenberg, 2007). Although primary mam-
mary epithelial cells with engineered loss of p16/Rb sig-
naling proliferate in the presence of high COX-2, they
maintain a finite lifespan and are nontumorigenic. In sum-
mary, this relationship also provides a molecular rationale
for why basal-like DCIS lesions are associated with worse
outcome. The overexpression of COX-2 in these samples
and the consequential acquisition of the malignant pheno-
types that it controls, would predict poor prognosis.
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Additional Mechanisms to Overexpress COX-2

Are Found in the HER-2 Overexpressing

Tumor Subtype

In a representative subset of our invasive tumor series, we
have directly correlated mRNA expression by microarray
to protein expression by IHC within the same sample. In
a number of samples, we observe high COX-2 protein ex-
pression in the absence of high COX-2 mRNA (Figure 4D).
This apparent discordance has a number of possible ex-
planations that are technical (i.e., inconsistent sampling
of tumor tissue in microarray samples) and biological
(i.e., posttranscriptional or posttranslational regulation).
Inconsistent sampling of tumor tissue in microarray sam-
ples appears an unlikely explanation as all of the samples
exhibiting low COX-2 mRNA still showed robust basal-like
tumor microarray signatures (Figures 4B and 4C and data
not shown). Furthermore, a number of the samples discor-
dant for COX-2 mRNA and protein levels showed concor-
dant elevations in p76 mRNA and protein levels (data not
shown). We favor a biological explanation for the discrep-
ant protein/IHC and mRNA/microarray levels of COX-2
because the discordance is enriched in the HER2-positive
tumors. Our results suggest that HER2 positive invasive
tumors target protein stabilization or increased translation
of COX-2 as a distinct and important mechanism of
achieving COX-2 protein overexpression.

Overexpression of p16 Is a Characteristic

of the Basal-like Subtype

This report highlights that elevated p76 mRNA is specific
to the basal-like subtype as measured and defined by
microarray analysis. Increased p76 mRNA as a defining
feature of basal-like tumors has been underappreciated
largely due to technical limitations of the microarray plat-
forms used to define intrinsic sets and molecular subtypes
in previous studies. p16 gene probesets were either ab-
sent or unreliable such that resulting datapoints were
empty spots or flagged as erroneous. Our findings that
mRNA levels of p16, cyclin E, and E2F3 are among the
highest and levels of Rb and cyclin D1 are among the
lowest in the basal-like tumors strongly suggest that inac-
tivation of Rb is mechanistically linked to the basal-like
subtype. In support of this link, p16 overexpression at
the immunohistochemical level has been previously iden-
tified in poorly differentiated tumors through associations
with high nuclear grade, high Ki67, increased p53, and low
ER/PR expression (Emig et al., 1998; Han et al., 2001; Hui
et al., 2000; Milde-Langosch et al., 2001; Singh et al.,
2004). In addition, increased immunodetection of p16 cor-
relates with decreased Rb in breast carcinomas (Dublin
et al., 1998; Gorgoulis et al., 1998; Nielsen et al., 1997).

Relationship between the Basal-like Subtype

in DCIS and Nuclear Grade

Molecular phenotypes are of particular clinical signifi-
cance only if they outperform traditional histopathological
parameters. Consistent with our previous findings and
that of others (Bijker et al., 2001; Kerlikowske et al.,
2003; Millis et al., 2004; Silverstein et al., 1995), high nu-
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clear grade predicts risk for a subsequent tumor event in
a significant manner (HR 5.6, 95% CIl 1.2 to 25.5). Although
nuclear grade statistically stratifies a subpopulation of
women with increased risk for a subsequent tumor event
in this pilot set, roughly one third of women with high nu-
clear grade DCIS do not develop subsequent disease,
while roughly one quarter of women with low-grade
DCIS develop subsequent disease. In this pilot study,
we do not have the statistical power to determine to
what extent an abrogated response to cellular stress is in-
dependent from nuclear grade. However, it is worth noting
that previous studies have demonstrated that less than
one-half of high-grade DCIS lesions exhibit basal-like char-
acteristics (Bryan et al., 2006; Livasy et al., 2007). Consis-
tent with these previous reports, we find that a minority of
high-grade lesions demonstrate an abrogated response
to cellular stress (6/26 high-grade lesions show high
p16/Ki67). In this report, all high nuclear grade/high p16/
high Ki67 lesions develop subsequent disease (100% or
6/6). Therefore, this phenotype appears to identify a sub-
set of high nuclear grade DCIS lesions, all of which de-
velop subsequent disease, and thus, evaluation in a large
population based study may considerably refine the pre-
dictive value of nuclear grade.

Abrogated Response to Cellular Stress,

ARCS, Is a Property of ER-Negative

and ER-Positive DCIS: Implications

for the Origin of the Basal-like Subtype

In extension of these data, we have examined a larger se-
ries of DCIS lesions and find that over one-half of those
cases that exhibit ARCS (either high p16/high Ki6é7 and/
or high COX-2/high Ki67) were clinically classified as ER
positive (data not shown). This is in contrast to invasive
tumors where we find ARCS limited to the ER negative,
basal-like subtype. This discrepancy could be explained
by differential risk for subsequent tumor formation: ER
negative ARCS DCIS lesions would be followed by ER
negative basal-like invasive carcinomas, whereas ER pos-
itive ARCS DCIS would be “dead-end” lesions not linked
to subsequent disease. Alternatively, all DCIS lesions, both
ER negative and positive, with ARCS may give rise to
basal-like tumors. Our data argue for this later possibility
since nearly all triple-positive (high p16/high COX-2/high
Ki67) DCIS lesions, both ER positive and negative, are
linked to subsequent invasive tumors.

Since ARCS appears to be a defining feature of basal-
like tumors and since ER expression defines luminal tu-
mors, our findings suggest that a subset of DCIS lesions
exist of mixed basal and luminal character. If true, efforts
to identify basal-like DCIS lesions based upon an ER-neg-
ative restricted definition would underestimate the preva-
lence of the basal-like subtype in DCIS. This may account
for recent reports from the Carolina Breast Cancer Study
that find 16% of invasive tumors are of the basal molecular
subtype compared to only 8% of DCIS lesions (Livasy
et al., 2007; Millikan et al., 2007).

Finally, the finding of premalignant lesions with mixed
basal and luminal character may hold important clues
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to the origins of the basal-like subtype. In particular, basal-
like invasive carcinomas may be linked to precursor
lesions that display variable degrees of ER positivity and
luminal differentiation. Insomuch as an abrogated re-
sponse to cellular stress may characterize such precursor
lesions, the combination of stress-activation and deregu-
lation of p16/Rb signaling may represent a defining signa-
ture of basal-like carcinogenesis that can be assayed far
in advance to the development of invasive disease and
present clinical opportunities.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture

Human mammary epithelial cells (HMEC) and variant HMEC (vHMEC)
were isolated from reduction mammoplasties (RM) of multiple individ-
uals RM13, RM 15, RM16, RM18, and RM21. All RM tissue was ac-
quired with patient consent and Institutional Review Board approval.
Cells were propagated in modified MCDB 170 media (MEGM, Cam-
brex) as previously described (Hammond et al., 1984; Romanov et al.,
2001). Nontumorigenic immortalized 184A1 breast cells were a kind
gift from M. Stampfer (Lawrence Berkeley National Laboratories).
Breast cancer cell lines T47D, SKBr3, BT549, and MDA-MB-231
were obtained from the ATCC.

DNA Constructs

DNA constructs used in this study are as follows: pMSCV and pMSCV-
shp16 (G. Hannon and S. Lowe, Cold Spring Harbor Laboratories);
PLXSN and pLXSN-HPV16 E7 (D.Galloway, Fred Hutchinson Cancer
Center); pMKO, pMKO-shRb (W. Hahn, Harvard Medical School and
Dana-Farber Cancer Institute), and pBabe; pBabe-cyclinD1 (O. Tetsu,
UCSF Cancer Center), pBabe, and pBabe-hTert (K.Collins, UC-Berke-
ley); and LXSP and LXSP-COX-2 (D.Dixon, Vanderbilt University
Medical Center).

Western Blot

Cell lysates containing 15-20 ug total protein were electrophoretically
separated according to standard procedures. Antisera against COX-2
(160107; Cayman Chemical, Ml), Rb (554136, BD PharMingen), p16
(16P07 Neomarkers), E2F1 (sc-251 Santa Cruz), cyclinD1 (2926, Cell
Signaling), p53 (sc-126, Santa Cruz), and p21 (SC-6246 Santa Cruz)
were used according to manufacturers’ protocols.

Tumor Samples

Primary gene expression analyses were performed on 130 primary in-
vasive breast cancers from UCSF and California Pacific Medical Cen-
ter (CPMC). Details of this cohort have been previously described (Chin
et al.,, 2006) Raw microarray data and additional sample information
is available (http://cancer.lbl.gov/breastcancer/data.php). Paraffin-em
bedded tumor samples corresponding to 61 of the 130 cases were ob-
tained with patient consent and Institutional Review Board approval.

Gene Expression Profiling Analyses and Identification

of Molecular Subtypes

For details of microarray methods and derivation of molecular sub-
types please see Supplemental Experimental Procedures.

Premalignant Samples

DCIS samples comprise a subset of women treated by lumpectomy or
lumpectomy/radiation from UCSF and CPMC (n = 28) and a large pop-
ulation-based cohort study of women treated by lumpectomy alone
between 1984 and 1996 (n = 42). To determine if response to adjuvant
therapy affected the predictive value of the phenotypes studied, we re-
moved the samples from patients who had been treated with radiation
and reanalyzed the remaining subset of samples. We conclude, in this
study, there is no correlation with treatment type. All tissue was ac-

quired with patient consent and Institutional Review Board approval.
Patients were identified through anonymous reference numbers.

Tissue Preparation and Immunochistochemistry

Five uM sections from formalin-fixed paraffin embedded tissue were
stained with antisera against COX-2 (Dako M3617, 1/200), p16 (Neo-
markers MS218, 1/150), or Ki67 (Dako M7250, 1/80) overnight at
4°C. Antigen-antibody complexes were labeled using the Vectastain
Elite ABC (Vector Laboratories, CA), visualized using 2.5% 3-amino-
9-ethyl-carbazole in 50 mM acetate buffer pH5 with 0.05% hydrogen
peroxide, and counterstained in Mayers hematoxylin.

Evaluation of Inmunohistochemistry Staining

Using a condensed Allred score (Allred et al., 1998), COX-2 staining
was evaluated on a scale of 0, 1, 2, and 3 with each value correspond-
ing to a combination of 2 Allred classes (i.e.,0=0,1;1=2,3;2=5, 6;
3 =7, 8). COX-2 showed predominantly a cytoplasmic pattern of im-
munopositivity with occasional membranous staining. p16 staining
was scored on a 0, 1, 2, and 3 scale based on the extent of immuno-
positive cells (0, no staining; 1, <25%; 2, 25%-75%; 3, >75%). p16
showed predominantly a cytoplasmic pattern of immunopositivity
with occasional nuclear staining. In the manuscript where indicated
for both COX-2 and p16, “high” immunostaining refers to a score
of >2. Ki67 index was determined by manually counting a minimum of
1000 nuclei within at least three 40x fields. High Ki67 is defined as
greater than 10%.

Statistical Analysis

Chi-square tests were used to determine associations between p16,
COX-2, Ki67, nuclear grade and combinations therein with subsequent
tumor development among women with DCIS. JMP statistical pack-
age (SAS Institute) was used for all analyses. We used a Cox Propor-
tional Hazards Model stratified by year of diagnosis to study the ability
of four markers (grade and expression of COX-2, p16, and Ki67) to pre-
dict recurrence during follow-up. Controls were matched to cases by
year of diagnosis. There were too few cases (recur) and controls (non-
recur) for several of the years of diagnosis, so years were grouped as
shown for the stratified analyses (Table S5). We analyzed biomarkers
separately and in combination. Results are expressed as hazard ratios
representing time to subsequent tumor event.

Supplemental Data

The Supplemental Data include Supplemental Experimental Proce-
dures, two supplemental figures, and five supplemental tables and
can be found with this article online at http://www.cancercell.org/
cgi/content/full/12/5/479/DC1/.
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